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Abstract

This thesis consists of two separate parts. In the first part, I investigate the so called
tethered galaxy problem, which concerns the motion of free particles in an eternally ex-
panding universe. In particular, I try to analytically determine what happens to a particle
removed from the Hubble flow according to currently favored theories. Will it for example
rejoin the Hubble flow, or will it forever maintain its peculiar velocity through the expand-
ing universe? So far, there have been different opinions about the correct answer, which is
important for our understanding of the expansion of the universe. I find that the answer
depends partly on how one mathematically defines what it means to rejoin the Hubble flow
and partly on the dominant equation of state.

In the second part, I estimate the influence that the infall velocity in galaxy clusters
has on the cluster dynamics and on the total mass profile of clusters in particular. When
dealing with the dynamics of galaxy clusters, hydrostatic equilibrium is usually assumed,
i.e. it is assumed that there is no infall velocity. However, most galaxy clusters are not yet
fully equilibrated, and therefore this assumption is unjustifiable. I find that the influence
of the infall velocity is non-negligible outside approximately one virial radius, and that
the error associated with omitting it is as large as ∼ 15% according to simulation data.
Furthermore, I present a method for measuring the anisotropy parameter, β, the value of
which can be used to put constraints on the collisionality of dark matter.
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1 Introductory comments
My thesis is divided into two separate parts. The first part concerns the

tethered galaxy problem, while the second part concerns the infall velocity in
galaxy clusters. Originally, I started working on the first project (part 1), but
after a few months I ran into a dead end and therefore started working on the
second project (part 2), which can be regarded as the "main project".

2 Part 1: The tethered galaxy problem
The conventional interpretation of the observed redshifts of galaxies is that

space itself expands and that cosmological structures (although essentially static)
are "carried" away from each other by this expansion.1

In a popular analogy, space is represented by a rubber sheet being stretched.
If one was to take this analogy literally it would imply that free particles in an
expanding universe would always join the Hubble flow. However, in reality there
is no rubber sheet - this is just an analogy that seems to fit well with reality due
to observations. Barnes et al. 2006 set up the following thought experiment. A
person is at rest on a large invisible rubber sheet (at rest in space) and observes
an object moving away from him/her. The person can interpret this phenomenon
in two equally correct ways: 1) The invisible rubber sheet is being stretched. 2)
The sheet is at rest, and the object is moving across the sheet. Whether option
1 or option 2 is correct can be tested by dropping an object onto the sheet a
certain distance away from the observer. If the sheet is being stretched, the
dropped object would be carried away, but if the sheet is at rest, the dropped
object would remain at rest as well, and thus one could conclude that the receding
object must be moving across the sheet.

This thought experiment is similar to the tethered galaxy problem. Imagine
two galaxies tethered together and thereby prevented from receding from each
other. If the tether between the galaxies is cut, will the galaxies remain at rest, or
will they move away from one another as a result of the Hubble flow? Intuitively,
one would expect that only one of the two possibilities can be correct, but this is
of course difficult to test experimentally. Attempts have been made to obtain an

1In an alternative interpretation of the observed redshifts of galaxies, structures homoge-
nously and isotropically move away from each other through a static space. Although the
expanding space interpretation is widely favored while the static space interpretation is gener-
ally regarded as being wrong, there are in fact no arguments justifying this conviction, which
I explained in my Bachelor’s thesis (The Expansion of the Universe).
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answer analytically, and the generally most favored conclusion seems to be that
the galaxies will join the Hubble flow. There are no clear arguments justifying
this conclusion though, which will be explained below. One particular attempt
to obtain the answer to the question analytically can be found in Barnes et
al. 2006. In this paper, the authors set up seven mathematically different (but
equally correct) definitions of what it means to "asymptotically join the Hubble
flow", and for each of them, they determine whether a free particle will join the
Hubble flow or not in an eternally expanding universe.

Below, I present four of their seven definitions2, but firstly, for convenience,
the Robertson-Walker metric is introduced.

2.1 The Robertson-Walker metric

The Robertson-Walker (RW) metric describes a spatially homogeneous and
isotropic universe and relates the spacetime interval, ds, to the cosmic time, t,
and the spherical comoving spatial coordinates; χ, θ and φ (χ being the radial
coordinate while θ and φ are the tangential ones). The RW metric is given by

ds2 = dt2 − a2(t)
[
dχ2 + S2

k

(
dθ2 + sin2 θdφ2

)]
. (2.1)

Here, a(t) is the scale factor determining whether the universe is expanding,
contracting or static, and Sk = sinχ, χ, sinhχ, for k = +1, 0,−1, where k is the
spatial geometry parameter determining whether space is closed, flat or open,
respectively. The speed of light, c, which usually appears squared in front of dt2,
has been set to unity for convenience.

2.2 Definitions

Definition 1 (χ̇→ 0 as t→∞):
If a particle’s velocity through coordinate space, χ̇ = dχ

dt
, approaches zero as t

approaches ∞, the coordinate trajectory, χ(t), of the particle approaches a con-
stant as t → ∞. This means that the particle gradually slows down its motion
through coordinate space and thus asymptotically joins the Hubble flow.

Definition 2 (χ→ χ∞ as t→∞):
If the coordinate trajectory, χ(t), of a particle approaches a constant, χ∞, as t

2This is sufficient for my purpose, since an examination including the remaining three def-
initions yields the same result and therefore only enhances the conclusion that will be drawn
from the examination of the four selected definitions.
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approaches ∞, the particle gradually slows down and thus asymptotically joins
the Hubble flow.

Definition 3 (vpec → 0 as t→∞):
The peculiar velocity of a particle is defined as vpec ≡ a(t)χ̇(t) (the scale factor
at time t times the velocity relative to the Hubble flow). Meanwhile, proper
distance is defined as the radial spacetime interval at constant time (i.e. dt =
dθ = dφ = 0). With these conditions, the RW metric (equation (2.1)) yields
the proper distance rp(t) = a(t)χ(t). Taking the time derivative of the proper
distance and using the product rule gives the proper velocity

ṙp = ȧ(t)χ(t) + a(t)χ̇(t) = vrec + vpec, (2.2)

where vrec (the recession velocity) is the velocity of the Hubble flow. If I define
the coordinate system so that χ(t) = 0 at time t, then vrec = 0, and thus the
proper velocity of the particle is solely its peculiar velocity. Therefore, the pecu-
liar velocity of a particle is its proper velocity relative to the Hubble flow. So in
the case that vpec of a particle approaches zero as t approaches ∞, the particle
must asymptotically join the Hubble flow.

Definition 4 (ṙp → vrec as t→∞):
In the case that the proper velocity of a particle approaches its recession velocity
(which is by definition the velocity of the Hubble flow) as t approaches ∞, the
particle must asymptotically join the Hubble flow.

2.3 Examination of definitions

If true, each of the mathematical definitions presented above implies that a
free particle asymptotically will join the Hubble flow. Therefore, I will now exam-
ine all of the definitions closer to see if they actually do hold true in any eternally
expanding universe.

Definition 1 (χ̇→ 0 as t→∞):
For purely radial particle motion, the following equation applies (Grøn & Elgarøy
2006):

χ(t) = χ0 ±
∫

1

a
√

1 + Ca2
dt, (2.3)
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where C is a positive constant, and χ0 is the value of χ at t = 0. The time
derivative of this is

χ̇(t) = ± 1

a
√

1 + Ca2
, (2.4)

but as t→∞ in an eternally expanding universe, a becomes very large, and thus
I can infer the approximation

√
1 + Ca2 ≈

√
Ca2 =

√
Ca, so I get

χ̇(t) ≈ ± 1

a
√
Ca

= ± 1√
Ca2

. (2.5)

Equation (2.5) shows that as t → ∞, χ̇ ∝ a−2 → 0 in an eternally expand-
ing universe, so according to definition 1, any free particle in space will indeed
asymptotically join the Hubble flow.

Definition 2 (χ→ χ∞ as t→∞):
Although looking similar, this definition is different from definition 1 for the
following reason: If the derivative of a function approaches zero, it is not always
the case that the function itself approaches a constant. f(x) = log(x) is an
example of such a function. By use of the cosmological GR equations of motion,
Barnes et al. show that when considering purely radial geodesics, there is no
dependence on the curvature parameter, k. Therefore, one can without loss of
generality, set k = 0 in the Friedmann equation, which then yields (see e.g. Ryden
2003)

a(t) = a0

(
t

t0

)2/(3+3ωi)

, (2.6)

where a0 is the scale factor at the present epoch, t0 is the age of the universe
and, ωi is the sum of the equation of states of the components present in the
universe. In an eternally expanding universe, a(t)→∞ as t→∞ by definition,
and from equation (2.6), it is apparent that a ∝ t−

3
2

(1+ωi). Therefore, for large t,
the component with the most negative equation of state dominates the dynamics
of the universe, and thus I can write an approximation for large t as

a(t) ≈ a0

(
t

t0

)2/(3+3ωd)

, (2.7)

where ωd is the most dominant (most negative) equation of state.
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Now, again using the approximation
√

1 + Ca2 ≈
√
Ca and substituting equa-

tion (2.7) into equation (2.3) while integrating from t0 = 1 to t, I get

χ(t) ≈ χ0 ±
∫ t

t0

1√
Ca2

dt′ = χ0 ±
1√
C

∫ t

1

a−2dt′

= χ0 ±
1√
Ca0

∫ t

1

t′−4/(3+3ωd)dt′ = χ0 ±
1√
Ca0

∫ t

1

t′−2ndt′

= χ0 ±
1√
Ca0

(∫ t

t′−2ndt′ +
1

2n− 1

)
= χ0 ±

1√
Ca0

1

2n− 1
± 1√

Ca0

∫ t

t′−2ndt′

= χf ±
1√
Ca0

∫ t

t′−2ndt′, (2.8)

where n = 2/(3 + 3ωd) and χf = χ0 ± 1√
Ca0

1
2n−1

. So for χ to approach χf = χ∞
as t approaches ∞, it is required that

2n > 1 => ωd < 1/3. (2.9)

Otherwise the integral in equation (2.8) will diverge, and thus χ will diverge from
χ∞ when increasing t. Therefore, according to definition 2, a free particle in a
universe dominated by an energy component with equation of state ω ≥ 1/3 will
not join the Hubble flow.3

Definition 3 (vpec → 0 as t→∞):
Equation (2.5) shows that χ̇ ∝ a−2, so I have that

vpec ≡ a(t)χ̇(t) ∝ a−1, (2.10)

and since a becomes large at large t, this means that vpec → 0 as t→∞. There-
fore, according to definition 3, any free particle in space will asymptotically join
the Hubble flow.

Definition 4 (ṙp → vrec as t→∞):
Although looking similar, this definition is different from definition 3 for the
following reason: If ṙp = ȧ(t)χ(t) + a(t)χ̇(t) = vrec + vpec, and vpec → 0, it must
be the case that ṙp → vrec, but if vrec too approaches zero and does so as fast or

3Note that no substance with ω > 1/3 is currently known.
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faster than vpec, this no longer applies. The condition for definition 4 to apply
can be restated in the following way:

ṙp → vrec =>
ṙp

vrec

→ 1 =>
vrec + vpec

vrec

→ 1

=>
vpec

vrec

→ 0. (2.11)

This condition will be used in a moment. Meanwhile, using equation (2.8), I can
write

χ(t) ≈ χf ±
1√
Ca0

∫ t

t′−2ndt = χf ±
1√
Ca0

{
t1−2n

1−2n
, if n 6= 1/2

ln(t), if n = 1/2
. (2.12)

Furthermore, I have that vrec = ȧχ, where ȧ ∝ tn−1, since a ∝ t2/(3+3ωd) = tn.
Therefore, I can now write

vrec ∝ tn−1χ ∝ tn−1 +

{
t−n, if n 6= 1/2
t−1/2 ln(t), if n = 1/2

. (2.13)

Now I examine what happens to vpec
vrec

as t → ∞ for the three cases n > 1/2,
n = 1/2 and n < 1/2. For the definition to hold, vpec

vrec
has to approach zero

according to equation (2.11).

n > 1/2:
n > 1/2 => 2n− 1 > 0 => n− 1 > −n. (2.14)

Therefore, the first term in equation (2.13) is the dominant one, so I have that
vrec ∝ tn−1. Equation (2.10) states that vpec ∝ a−1 ∝ t−n, so

vpec

vrec

∝ t−n

tn−1
→ 0 as t→∞ (2.15)

in accordance with equation (2.11).

n = 1/2:
If n = 1/2, then vrec ∝ t−1/2 + t−1/2 ln(t), where t−1/2 < t−1/2 ln(t), so the second
term is the dominant one, and thus I have that vrec ∝ t−1/2 ln(t). Furthermore,
vpec ∝ t−n = t−1/2, so

vpec

vrec

∝ t−1/2

t−1/2 ln(t)
→ 0 as t→∞ (2.16)
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again in accordance with equation (2.11).

n < 1/2:
If n < 1/2, then n − 1 < −n, simply by reversing the sign in equation (2.14),
and thus the first term in equation (2.13) is now the dominant one, which implies
that vrec ∝ t−n. Meanwhile, vpec ∝ t−n, so

vpec

vrec

∝ t−n

t−n
→ 1 as t→∞. (2.17)

So when n < 1/2, or equally, when ωd > 1/3, definition 4 fails. Therefore,
according to definition 4, a free particle in a universe dominated by an energy
component with equation of state ω > 1/3 will not join the Hubble flow.

2.4 Discussion

Do free particles in space asymptotically join the Hubble flow? Due to the
rubber sheet analogy of space, one would intuitively expect the answer to be
yes, but in this project, I have (on the basis of Barnes et al. 2006) investigated
the question analytically by considering four mathematical definitions of what it
means to "asymptotically join the Hubble flow".

According to definitions 1 and 3, free particles in any eternally expanding uni-
verse will asymptotically join the Hubble flow. However, according to definitions
2 and 4, particles will join the Hubble flow only in universes that comply with
certain conditions depending on the equation of state of the dominant energy
component. For example, according to definition 2, particles will join the Hubble
flow in a matter dominated universe (ω = 0), while they will fail to do this in a
radiation dominated universe (ω = 1/3).

In order to justify a conclusion that "free particles in an eternally expanding
universe will join the Hubble flow" all mathematical definitions of the phrase
(including those that are not mentioned in this document) would have to be met,
and since this is not the case, one cannot make this conclusion.

Our initial thought was that this ambiguity of the answer could be caused by
a flaw in the mathematical analysis, since it intuitively makes little sense that,
whether a free particle in an eternally expanding universe joins the Hubble flow
or not may depend on whether the universe is dominated by matter or radiation.
Therefore, I decided to go backwards through the calculations to "search" for an
error.
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2.5 Equation (2.3)

In the mathematical definitions presented above, the equation describing ra-
dial particle motion (equation (2.3)) is the key equation, since it is part of each
definition. Thus, I will now (on the basis of Grøn & Elgarøy 2006) derive this
equation in order to determine if it is in fact correct. I start out with the general
relativistic equation describing the motion of a free particle, namely the geodesic
equation given by

d2xµ

dτ 2
+ Γµνσ

dxν

dτ

dxσ

dτ
= 0. (2.18)

Here, τ is the proper time, µ, ν and σ are spacetime indices, and Γµνσ is the
Christoffel symbol given by

Γµνσ =
1

2
gµρ
[
∂gσρ
∂xν

+
∂gρν
∂xσ

− ∂gνσ
∂xρ

]
, (2.19)

where ρ too is a spacetime index, and gµν is the metric tensor:

gµν =


−c2 0 0 0

0 a2 0 0
0 0 0 0
0 0 0 0

 , (2.20)

gµν = (gµν)
−1 =


−c−2 0 0 0

0 a−2 0 0
0 0 0 0
0 0 0 0

 . (2.21)

The only non-vanishing Christoffel symbols are Γχχt, Γχtχ and Γtχχ:

Γχχt = Γχtχ =
ȧ

a
, Γtχχ =

aȧ

c2
. (2.22)

Using equation (2.22), the geodesic equation yields

d2χ

dτ 2
= −2

ȧ

a

χ̇

τ̇ 2
,

d2t

dτ 2
= −aȧ

c2

χ̇2

τ̇ 2
. (2.23)

See appendix A for a derivation of equations (2.22) and (2.23).
Now I want to find an expression for χ̈ = dχ̇

dt
, where χ̇ = dχ/dτ

dt/dτ
, and the

expression is (see appendix B for details)

χ̈ =
dχ̇

dt
=

d

dt

(
dχ/dτ

dt/dτ

)
= τ̇ 2

(
d2χ

dτ 2
− χ̇ d2t

dτ 2

)
. (2.24)
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Substituting equation (2.23) into equation (2.24) yields

χ̈ = τ̇ 2

(
−2

ȧ

a

χ̇

τ̇ 2
+ χ̇

aȧ

c2

χ̇2

τ̇ 2

)
=
aȧ

c2
χ̇3 − 2

ȧ

a
χ̇. (2.25)

I now introduce the dimensionless variable y = c2/χ̇2. In terms of y, I get
χ̇ = c/

√
y and χ̈ = c d

dt

(
1√
y

)
= − cẏ

2y3/2
, so equation (2.25) becomes (see appendix

C for details)

ẏ − y d

dt

(
ln a4

)
= −da2

dt
. (2.26)

A solution to equation (2.26) is

y = a2 + eKa4, (2.27)

whereK is a constant. That equation (2.27) is in fact a solution to equation (2.26)
has been checked by substituting equation (2.27) into equation (2.26). Since K is
a constant, C ≡ eK is a positive constant. If I substitute y = c2/χ̇2 into equation
(2.27), I get

c2

χ̇2
= a2 + Ca4 => χ̇2 = c2

(
a2 + Ca4

)−1
=>

χ̇ = ±c
(
a2 + Ca4

)−1/2
. (2.28)

Integrating equation (2.28) and setting the speed of light, c, to unity, yields

χ(t) = χ0 ±
∫

1

a
√

1 + Ca2
dt, (2.29)

which is indeed identical to equation (2.3). That the equation is in fact cor-
rect, presupposes that the geodesic equation is correct, since this is the equation
from which I started the derivation. Therefore, for the sake of completeness, a
derivation of the geodesic equation can be found in appendix D.

2.6 Remarks

All the definitions given in section 2.2 are mathematical translations of what
it means to asymptotically join the Hubble flow. Definition 1, for example, says
that as time goes, the peculiar velocity of a free particle (or a previously tethered
galaxy) should asymptotically approach zero, while definition 2 says that as time
goes, the coordinate trajectory of a free particle should asymptotically approach
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a constant. Both of these mathematical translations intuitively (in my opinion)
make sense, since if a particle gradually slows down its motion through coordinate
space, it gradually comes closer to purely follow the Hubble flow. However, I have
a minor issue with the fact that Barnes et al., without further comments, base
their definitions on the assumption that free particles in an eternally expanding
universe will asymptotically join the Hubble flow. For instance, one could just as
easily have assumed that the peculiar velocity of a free particle in such a universe
would forever remain constant. According to this scenario, what happens when
the tether between two galaxies is cut could depend on whether the expansion (or
in theory the contraction) of the universe is constant or accelerating. Whether
or not the correct scenario is assumed is not the most important aspect though,
when one wants to explore what would happen in reality, since in this case, it is
the mathematical analysis (which should yield the same result regardless of the
presumptions) that is conclusive.

2.7 Summary and conclusion

Whether a free particle in an eternally expanding universe will asymptotically
join the Hubble flow or not (or whether mutually tethered galaxies recede from
each other when the tether is cut) is an open question to which it is apparently
difficult to obtain a clear answer. According to section 2.3 above, the answer
depends on how one mathematically defines what it means to asymptotically
join the Hubble flow, and whether the particular universe is dominated by e.g.
matter or radiation. In order to obtain a clear answer, each definition should yield
the same result regardless of the dominant component of the universe, and since
this is not the case, I investigated whether the derivation of the equation leading
to the ambiguous answer (equation (2.3)) is in fact correct and found that it is
(section 2.5). Therefore, I have to conclude that, according to my examination,
the answer to the question of whether a free particle will asymptotically join
the Hubble flow or not in an eternally expanding universe seems to be truly
ambiguous, and that a clear answer apparently cannot be obtained from a purely
mathematical analysis.
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3 Part 2: Infall velocity in galaxy clusters
The main objective of this second part of the project is to estimate the in-

fluence that the infall velocity in galaxy clusters has on the cluster dynamics.
Galaxy clusters are the largest gravitationally bound structures in the universe,
and they consist of an extended dark matter (DM) halo, the X-ray emitting
intracluster medium (ICM) and galaxies. When dealing with the dynamics of
galaxy clusters, one generally uses the equation of hydrostatic equilibrium for the
baryonic matter and the Jeans equation for the dark matter.

3.1 The standard equations of cluster dynamics

In this section, I introduce the standard equations describing the dynamics
of galaxy clusters, i.e. the equation of hydrostatic equilibrium and the Jeans
equation. The equation of hydrostatic equilibrium can be derived from the Euler
equation describing adiabatic and inviscid flows given by (see e.g. Binney &
Tremaine 2008)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇Φ, (3.1)

where v = (vr, vθ, vφ) is the velocity vector, ∇ = (∂r, ∂θ, ∂φ) is the spatial gra-
dient, ρ is the density, P is the pressure, and Φ is the gravitational potential.
The condition of hydrostatic equilibrium presupposes that the thermal pressure
of the gas balances the clusters gravitational potential, which means that there
is no net radial streaming motion, i.e. vr = 0. In addition, it will be assumed
that there are no net rotational streaming motions, i.e. vθ = vφ = 0. This is a
reasonable assumption as shown in Bullock et al. 2001. Hydrostatic equilibrium
also means that the system is in a steady state, whereby all time gradients vanish.
If in addition, the system is spherical, all angular gradients vanish, which means
that ∇ = ∂r. Furthermore, assuming that the gas in the system can be regarded
as an ideal gas, equation (3.1) can be rewritten as (see appendix E for details)

∂Φ(r)

∂r
=
GM(r)

r2
= − kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
, (3.2)

where M is the total mass of the galaxy cluster, T is the gas temperature, ρ is
the gas density, G is the gravitational constant, kB is the Boltzmann constant, µ
is the mean molecular weight, and mH is the mass of a hydrogen atom. Equation
(3.2) is known as the equation of hydrostatic equilibrium.
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The collisionless analog to the equation of hydrostatic equilibrium is called
the Jeans equation, and it can be obtained from the collisionless Boltzmann equa-
tion describing the statistical behavior of collisionless systems, which in spherical
coordinates reads (see e.g. Binney & Tremaine 2008)

∂f

∂t
+ pr

∂f

∂r
+
pθ
r2

∂f

∂θ
+

pφ
r2 sin2 θ

∂f

∂φ
−
(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
∂f

∂pr

−
(
∂Φ

∂θ
−
p2
φ cos θ

r2 sin3 θ

)
∂f

∂pθ
− ∂Φ

∂φ

∂f

∂pφ
= 0, (3.3)

where f is the distribution function, pr, pθ and pφ are the canonical momenta, and
Φ is again the gravitational potential. For a spherical system in a steady state,
the terms involving ∂t, ∂θ and ∂φ will vanish. The spherical velocity components
feature in equation (3.3) via the relations pr = vr, pθ = rvθ and pφ = r sin θvθ,
and if each mean velocity component is neglected (i.e. if vr = vθ = vφ = 0),
equation (3.3) can be rewritten as (see appendix F for details)

−ν ∂Φ(r)

∂r
=

∂

∂r
(νσ2

r) + 2
β

r
νσ2

r , (3.4)

where ν is the DM number density, σr is the radial velocity dispersion, and

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

(3.5)

is the anisotropy parameter, where σθ and σφ are the tangential velocity disper-
sions. The anisotropy parameter expresses the degree of velocity anisotropy in
clusters. The value of β can vary from −∞, corresponding to perfectly circular
orbits (σr = 0), to 1, corresponding to perfectly radial orbits (σθ = σφ = 0).
When σr = σθ = σφ, the system is isotropic (i.e. β = 0). Equation (3.4) is known
as the Jeans equation, which can be rewritten as

∂Φ(r)

∂r
=
GM(r)

r2
= −σ

2
r

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
. (3.6)

A derivation of equation (3.6) is given in appendix F.
Equation (3.2) and equation (3.6) both yield the total mass profile of a galaxy

cluster given the assumptions of spherical symmetry, a steady state and hydro-
static equilibrium. These assumptions are reasonable within ∼ 1 virial radius4

4The virial radius of a galaxy cluster is the radius within which the mean density of the
cluster is 200 times the critical density of the universe.
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(rv), which will be shown later. However, in the outer parts (for r & 1 rv),
even clusters that appear relaxed can have a non-zero infall velocity, and thus,
depending on the magnitude of this velocity, the assumption of hydrostatic equi-
librium may not be valid, and it could lead to wrong estimates of cluster masses.
Therefore, I will estimate the influence that the infall velocity has on the total
cluster mass profile. This will be done using data from numerical simulations.
First though, I introduce the generalized equations of the cluster dynamics, cor-
responding to equations (3.2) and (3.6), in which radial streaming motions are
not neglected.

3.2 The generalized equations of cluster dynamics

If one retains the radial velocity component in the Euler equation given by
equation (3.1) and terms involving the time derivative but still assumes spherical
symmetry, equation (3.2) becomes (see appendix E for details)

∂Φ(r)

∂r
=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vr
∂vr
∂r

+
∂vr
∂t

)
=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vp
∂vp
∂r

+H

(
vp + r

∂vp
∂r

)
− qH2r +

∂vp
∂t

)
. (3.7)

Here, I have used that vr = Hr + vp, where H(t) is the Hubble parameter, and
vp(r, t) is the mean radial peculiar velocity component. I have also used that
Ḣ = ∂H

∂t
= −(q + 1)H2, where q = − äa

ȧ2
is the so called deceleration parameter5

describing the acceleration of the expanding space, where a(t) is the scale factor.
Furthermore, since I am now considering relatively large distances, the under-

lying cosmology should also be taken into account. In addition to being subject
to its own gravitational potential, the outer parts of a galaxy cluster is also
subject to an attractive potential resulting from the background density of the
universe (ρb) and a repulsive potential resulting from the cosmological constant
(Λ). Including these contributions, the total potential gradient becomes (see e.g.
Peebles 1980)

∂Φ(r)

∂r
=
GM(r)

r2
+

4π

3
Gρbr −

1

3
Λr. (3.8)

5The name is historical. It could more appropriately be named "the acceleration parameter".
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Using equation (3.8), equation (3.7) can be rewritten as

GM(r)

r2
=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vr
∂vr
∂r

+
∂vr
∂t

)
− qH2r

=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vp
∂vp
∂r

+H

(
vp + r

∂vp
∂r

)
+
∂vp
∂t

)
. (3.9)

Equation (3.9) is the new generalized equation replacing the equation of hydro-
static equilibrium. A derivation of this equation is given in appendix E.

Meanwhile, if one retains the radial velocity component in the collisionless
Boltzmann equation given by equation (3.3) and terms involving the time deriva-
tive but still assumes spherical symmetry and in addition uses equation (3.8) for
the gravitational potential, equation (3.6) becomes (see appendix F for details)

GM(r)

r2
=− σ2

r

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
−
(
ṽr
∂ṽr
∂r

+
∂ṽr
∂t

)
− qH2r

=− σ2
r

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
−
(
ṽp
∂ṽp
∂r

+H

(
ṽp + r

∂ṽp
∂r

)
+
∂ṽp
∂t

)
. (3.10)

Note that I have used a tilde instead of a bar when writing the mean radial and
peculiar velocity in order to clarify that the DM velocity is in general different
from the gas velocity. Equation (3.10) is the new generalized equation replacing
the standard Jeans equation.

In order to be able to estimate the influence that the infall velocity has on
the total cluster mass, I need to know both of these parameters. Unfortunately,
they cannot be obtained from direct observations, so instead I do the second best
thing and use simulation data.

3.3 Numerical simulations

I use the data from two different numerical simulations of the formation of
galaxy clusters in the standard ΛCDM cosmology to parameterize the infall ve-
locity in galaxy clusters and assess its influence on the total cluster mass. In par-
ticular, one simulation was run with the adaptive mesh refinement (AMR) code
RAMSES (Teyssier 2002), while the other simulation was run with the smoothed
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particle hydrodynamics (SPH) code GADGET-3, which is an improved version of
the GADGET-2 code (Springel 2005). These two simulation techniques are com-
pletely different from each other, and thus they should provide a good check for
systematic effects. Throughout the thesis, I refer to the former as the RAMSES
simulation and to the latter as the GADGET-3 simulation.

3.3.1 The RAMSES simulation

I first analyze a sample of 51 cluster sized halos (all with total mass larger
than 1014M�) extracted from a simulation performed by Martizzi, Mohammed,
Teyssier and Moore. All details of the simulation can be found in Martizzi et al.
2014. The simulation was run with the AMR code RAMSES and follows the evo-
lution of large-scale structure within a box of size 144h−1 Mpc. The cosmological
parameters are h = 0.704, σ8 = 0.809, ns = 0.963, ΩΛ = 0.728, Ωm = 0.272 and
Ωb = 0.045. Here, the Hubble constant is given by H0 = 100h km s−1 Mpc−1, σ8

is the rms mass fluctuation at the present epoch in a sphere of radius 8h−1 Mpc,
ns is the spectral index of primordial density perturbations, and ΩΛ, Ωb and Ωm

are the density parameters of the cosmological constant, the baryonic matter
and the baryonic matter plus the dark matter, respectively. The 51 halos were
re-simulated three times; one time considering only dark matter and two times
including baryons. Both runs including baryons include models for gas cooling,
star formation, supernovae feedback and metal enrichment, while AGN feedback
was only included in one of them.

3.3.2 The GADGET-3 simulation

The second sample consists of 29 cluster sized halos (most of which have a total
mass larger than 1015M�) extracted from re-simulations of a parent simulation
presented in Bonafede et al. 2011. All details of the parent simulation can be
found in Bonafede et al. 2011, while the details of the resimulations can be found
in Planelles et al. 2013. The simulations were run with the TREEPM-SPH code
GADGET-3, and the cosmological parameters are h = 0.72, σ8 = 0.8, ns = 0.96,
ΩΛ = 0.76, Ωm = 0.24 and Ωb = 0.04. Three different sets of re-simulations were
run: 1) A non-radiative hydrodynamical set. 2) A hydrodynamical set including
effects of cooling, star formation and supernovae feedback. 3) A set including
AGN feedback but otherwise similar to set 2.
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3.4 Parameterizing the radial velocity

Now I want to estimate the influence that the mean radial velocity has on the
total cluster mass, but as mentioned, to do this, the radial velocity first needs to
be parameterized, so it can be handled as an analytic function in equations (3.9)
and (3.10).

Figure 1 displays the mean radial peculiar velocity component relative to
the circular velocity at the virial radius given by vv =

√
GMv/rv, where Mv is

the mass within the virial radius, rv. The upper plot represents the RAMSES
simulation which extends to 2 rv, while the lower one represents the GADGET-
3 simulation which (unfortunately) only extends to ∼ 1.3 rv. In the RAMSES
plot, the radial peculiar velocity of the dark matter and that of the gas seem to
be almost identical, while the gas component is generally slightly less negative
than the DM component in the GADGET-3 plot. It is not quite obvious why
the magnitude of the radial velocity of the dark matter is almost equal to the
magnitude of the radial velocity of the gas, since there is great difference between
the ways that DM particles and baryonic particles give off energy. For instance,
infalling baryonic particles primarily lose their energy in the form of radiation
due to internal collisions, while DM particles lose their energy non-radiatively
primarily due to dynamical friction and violent relaxation.

Figure 2 illustrates the difference between the peculiar velocity of the dark
matter and that of the gas for both the RAMSES simulation (red) and the
GADGET-3 simulation (blue). In particular, the quantities plotted are (ṽp −
vp)/vv (upper plot) and (ṽp − vp)/(ṽp + vp) (lower plot). The values of these
two quantities are not exactly zero (which would ideally be the case if the two
velocity components were identical), but the deviation from zero is so small that
it is difficult to account for in practice. Thus, I will throughout the thesis assume
that ṽp = vp, i.e. that the radial velocity profile of the dark matter and that of
the gas are identical. In particular, I treat the peculiar velocity as an analytic
function of radius given by

f

(
r

rv

)
= −α

(( r

rv

)−a
+ C

(
r

rv

)b)1/a

−D

−1

, (3.11)

where α, a, b, C and D are the free parameters. For both the RAMSES plot
and the GADGET-3 plot, I have given the parameters the following values: α =
0.12655906, a = 12.8245615, b = 0.5a, C = 2.2179 · 10−6 and D = 0.31763796.
These values are close to the ones presented in Falco et al. 2013, and they best
match the RAMSES plot, but they also provide a decent fit to the GADGET-3
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plot as seen in Figure 1.
In its innermost region, a galaxy cluster is fully equilibrated, i.e. vr = 0. This

implies that vp(r, t) ≈ −Hr for r � rv. In equation (3.11), this is accounted for
by the term proportional to r (the leftmost term). In Figure 1, it is also apparent
that in the innermost region, vp is approximately linear as it should be.

Far from the center (although close enough for gravity to dominate the Hubble
expansion), where clusters are non-equilibrated, matter is falling towards the
center almost freely, since in this region there are virtually no collisions, dynamical
friction or any other slowing effects. Therefore, in this entire region, due to
conservation of energy, the sum of the kinetic energy and the potential energy
should equal a constant as the matter is falling in. In general, the potential of
a particle of mass m, located at a radius r, from a point mass6 M , is defined as
the work done by the gravitational field bringing the unit mass in from infinity7,
and it is given by

Φ = −GM
r
. (3.12)

At infinite radius, Φ = 0, and Φ becomes more and more negative as r is de-
creased. Meanwhile, the kinetic energy of the particle of mass m is given by

K =
1

2
mv2, (3.13)

where v is the velocity of the particle. At infinite radius, v = 0, which implies
that K = 0 at infinity. This implies that at all radii, K + Φ = 0, and thus that
K = −Φ. This, combined with equation (3.12) and equation (3.13), allows me
to write

1

2
mv2 =

GM

r
=> v =

√
2GM

rm
∝ r−1/2. (3.14)

In equation (3.11), this "conservation of energy" or "free fall" term is accounted
for by the term proportional to r−1/2 (the term that is multiplied by C).

The constants C and D feature in equation (3.11) to make sure that the fitted
curve in Figure 1 decreases by the "right" amount when approaching 2 rv.

6The galaxy cluster can be regarded as a point mass in the described region, since essentially
all of its mass lies within the radius at which the particle is located.

7In this case infinity is a bad term, since particles at sufficiently large radii would be carried
away by the Hubble flow. Therefore, in this scenario, infinity is somewhere far away from the
cluster center, but where the gravitational potential of the cluster still overcomes the Hubble
expansion. Today, this is at ∼ 3.5 rv for a cluster of mass M ≈ 1014M� (Cuesta et al. 2008).
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Figure 1: The mean radial peculiar velocity relative to vv (the circular velocity at
the virial radius) as a function of radius. The upper plot represents the RAMSES
simulation, while the lower one represents the GADGET-3 simulation. In both cases,
the red and blue filled circles represent the median value (of all the clusters) of the
mean peculiar velocity of the gas (vp) and the dark matter (ṽp) respectively, and the
vertical lines are 1σ error bars. The black solid lines represent the fit given by equation
(3.11). Note that the gas part has been displaced slightly to the right in both plots for
visual purposes.
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Figure 2: Illustration of the difference between the mean peculiar velocity of the dark
matter and that of the gas given by ṽp and vp respectively. The upper plot shows the
quantity (ṽp − vp)/vv plotted as a function of radius, while the lower plot shows the
quantity (ṽp − vp)/(ṽp + vp). In both cases, the red and blue filled circles represent
the median value of all the clusters in the RAMSES simulation and the GADGET-3
simulation respectively. The vertical lines are 1σ error bars.
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3.5 Influence of the infall velocity: The mass excess

In this section, the influence that the infall velocity has on the cluster dynam-
ics is estimated. From Figure 1 it is apparent that, according to the simulations,
within ∼ 1.3 and 2 virial radii respectively, there is a negative mean peculiar
velocity in galaxy clusters. With equation (3.11) representing this infall velocity,
I now have the tools needed to estimate the influence that the infall velocity has
on the cluster dynamics and on the total cluster mass in particular. First though,
for convenience, I introduce the new quantity

S(r) = vp
∂vp
∂r

+H0

(
vp + r

∂vp
∂r

)
, (3.15)

where H0 is the Hubble parameter at the present epoch (i.e. the Hubble con-
stant). S was first presented in Falco et al. 2013. It is the extra term that
has (re)appeared in Jeans equation and the Euler equation after including radial
streaming motion, time dependence and the gravitational potential components
due to the underlying cosmology of our universe, and it can be thought of as a
correction to the standard Jeans equation and the equation of hydrostatic equi-
librium. Note that I have completely ignored the term ∂vp

∂t
, for the simple reason

that it is very difficult to estimate. I shortly discuss the consequence of doing
this in section 3.8.2. Throughout the thesis, I refer to S as the "mass excess".
By applying equation (3.11) to equation (3.15), S can be calculated analytically.

Figure 3 shows the mass excess of the two simulations normalized with respect
to GM(r)/r2, where M(r) is the mass profile calculated from the density profiles
extracted from the two simulations. In both cases, it is apparent that the influence
of the infall velocity is negligible within 1 rv (as stated earlier), while it has a non-
negligible contribution between 1 rv and 2 rv. In fact, according to the RAMSES
plot it has a maximum contribution of ∼ 15% at ∼ 1.78 rv compared to the
correct total mass of the cluster. A positive value of S means that the standard
Jeans equation and the equation of hydrostatic equilibrium overestimate the total
mass and vice versa. It is unfortunate that the GADGET-3 data only extends
to ∼ 1.3 rv, since it is mainly outside this region that the influence becomes
important. It is however, worth to note that within 1.3 rv, the GADGET-3 plot
shows a similar behavior to the RAMSES plot8, and it even seems to predict an
influence at lower radii than the RAMSES plot.

On the basis of Figure 3, I conclude that the correction to the standard Jeans
equation and the equation of hydrostatic equilibrium (i.e. the infall velocity

8This is of course not so strange, since I have used the same function and parameters for
the velocity profile in both simulations.
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represented by the S term) becomes important (non-negligible) to the dynamics
of galaxy clusters beyond the viral radius.

Figure 4 shows the contribution from each term in S relative to GM(r)/r2.
The term vp

∂vp
∂r

gives the largest and the only positive contribution, while the
terms H0vp and H0r

∂vp
∂r

give smaller (but non-negligible) and negative contribu-
tions.

Figure 3: The mass excess, S, given by equation (3.15), relative to GM(r)/r2, where
M(r) is the (correct) total mass profile calculated from the density profiles extracted
from the numerical simulations. The red line represents the RAMSES simulation while
the blue line represents the GADGET-3 simulation. The GM(r)/r2 value used is the
median value from the particular simulation. Furthermore, in order to get the correct
unit (and value) on S, vp has been multiplied by the circular velocity at the virial
radius, vv =

√
GMv/rv, while ∂vp/∂r has been multiplied by vv/rv. Note that there

are of course error bars to the median value of the mass excess, but these have been
excluded from the figure in order to make it more legible.

23



Figure 4: Each term that contributes to S given by equation (3.15) relative to
GM(r)/r2. The upper plot represents the RAMSES simulation, while the lower one
represents the GADGET-3 simulation. In both cases, the red, blue and green lines
represent the terms vp

∂vp
∂r , H0vp and H0r

∂vp
∂r respectively.
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3.6 Measuring β

In this section, I solve the DM dynamics and provide a method for measuring
the anisotropy parameter, β. The total mass profile of galaxy clusters can be
calculated using either the generalized equation describing the gas part of cluster
dynamics, i.e. equation (3.9) or the equation describing the dark matter part,
i.e. equation (3.10). In order to do this, several parameter profiles (in addition
to the radial velocity profile) need to be known: T (r), ρ(r) and vr(r) or vp(r) in
equation (3.9) and σr(r), ν(r), β(r) and vr(r) or vp(r) in equation (3.10).

However, the only direct information we receive from cosmological structures
is the radiation that they emit. This information is very valuable though, since
some of the parameters can be estimated from it via theories. For example, it is
relatively simple to calculate the density and temperature profiles of the baryonic
matter from its observed emission profile as explained briefly below (in section
3.7), and since vp(r) has already been parameterized, equation (3.9) (describing
the gas) is "complete" in the sense that M(r) is the only unknown variable.
Therefore, if one observes the density and temperature profiles of the baryonic
matter in a galaxy cluster and adopt vp as given by equation (3.11), then one can
calculate a more exact cluster mass profile by using equation (3.9) than by using
the equation of hydrostatic equilibrium given by equation (3.2).

Equation (3.10) (describing the dark matter) is more difficult to complete for
the reason that dark matter does not emit any radiation, since this means that
there are no directly observable DM parameters. Anyhow, it is possible to solve
the DM dynamics, and I now present one particular way of doing this, which will
result in two expressions for the anisotropy parameter, β.

I start by defining a DM temperature9 given by

TDM ≡
µmH

kB

1

3
(σ2

r + σ2
θ + σ2

φ). (3.16)

This definition of the DM temperature was first presented in Hansen & Piffaretti
2007, and TDM could be defined in other ways as well, as long as it has the right
dimension. I return to this topic in section 3.8.3. The DM temperature can be
related to the gas temperature by

TDM = κTgas. (3.17)

In general κ is a function of radius, and it can be estimated through numerical
simulations (see section 3.6.1). Equations (3.16) and (3.17) make it possible

9The concept of a DM temperature is not well defined, since there is no thermodynamic
equilibrium for a collisionless gas. The distribution functions are fairly close to having Maxwell-
Boltzmann shape though (Hansen et al. 2006), so the concept is not completely unnatural.
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to solve the DM dynamics using measurements of the gas, which will now be
explained.

In this section, I only include the main equations, while a detailed derivation
can be found in appendix G. Rewriting the generalized Jeans equation given by
equation (3.10) and using equations (3.16) and (3.17) to get rid of β, I obtain a
differential equation for the radial velocity dispersion given by

σ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 3

)
= ψ(r, t), (3.18)

where
ψ(r, t) =

3kBTDM

µmH

− GM(r)

r
− rF̃ (r, t), (3.19)

and

F̃ (r, t) =

(
ṽr
∂ṽr
∂r

+
∂ṽr
∂t

)
+ qH2r =

(
ṽp
∂ṽp
∂r

+H

(
ṽp + r

∂ṽp
∂r

)
+
∂ṽp
∂t

)
. (3.20)

In the derivation of equation (3.18), I have assumed that the tangential velocity
dispersions are equal, i.e. σθ = σφ = σt, which means that the anisotropy param-
eter is given by β = 1− σ2

t

σ2
r
. The error associated with this assumption has been

shown to be negligibly small (see Bullock et al. 2001). The solution to equation
(3.18) is

σ2
r(r) =

1

ν(r)r3

∫ r

0

ψ(r′)ν(r′)r′2dr′, (3.21)

where the DM density, ν, can be determined by subtracting the gas density
from the total density, which in turn can be determined from the total mass
profile. With the radial velocity dispersion determined by equation (3.21), the
only unknown DM parameter remaining is the anisotropy parameter, β, which
can now be obtained in two ways. It can be recovered from equations (3.16) and
(3.17), i.e. the relation between the DM temperature and the gas temperature,
which yields

β =
3

2

(
1− κ kBTgas

µmHσ2
r

)
. (3.22)

Alternatively, β can be recovered directly from the generalized Jeans equation,
since it is now as mentioned the only unknown parameter in the equation. This
way I get

β = −1

2

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+
GM(r)

rσ2
r

+
r

σ2
r

F̃ (r, t)

)
. (3.23)

26



Ideally, equations (3.22) and (3.23) should of course yield the same β profile.
Knowledge of β can be used to put constraints on the collisionality of DM

particles. If dark matter was collisional like baryonic matter, it would equilibrate
through internal collisions, and in that case, β = 0. However, dark matter is
known to be effectively collisionless on the dynamical timescale of galaxy clusters
(τ ∼ 109 yr), and thus β has a non-zero radial dependence as seen in Figure 5.
Anyhow, it is possible that dark matter does have a tiny collision rate, which can
be estimated from the value of β. In Host et al. 2009, an order of magnitude
upper limit to the scattering cross section of dark matter of. 1 cm2/g is obtained.

Figure 5: The anisotropy parameter, β, predicted by numerical simulations. In the
simulations, the dark matter is assumed to be completely collisionless. The red and blue
filled circles represent the median value of all the clusters in the RAMSES simulation
and the GADGET-3 simulation respectively. The vertical lines are 1σ error bars.

3.6.1 Estimating the κ profile

In order for the DM dynamics model presented above to be complete, the
radial κ profile also needs to be determined. I have estimated it using the data
from the numerical simulations described in section 3.3.

Figure 6 shows the κ profile with the upper and lower plot representing the
RAMSES and GADGET-3 simulation respectively. In both cases, the value of
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κ lies relatively close (within a factor of 2) to 1 (corresponding to TDM = Tgas)
at all radii, but the two simulations predict different shapes and values for the
profile. The profile resulting from the RAMSES simulation starts out at a value
of ∼ 0.5 and grows all the way out to 2 rv, where it reaches a maximum value of
∼ 1.5, while the one resulting from the GADGET-3 simulation starts out at a
value of ∼ 1.3, reaches its maximum value of ∼ 2 at relatively low radius (within
0.5 rv) and then decreases to a value of ∼ 1.25 at ∼ 1.3 rv, where the data stops.
Rough ("chi-by-eye") fits (the red lines) have been added to the plots, where I
have used f(r/rv) = arb (a = 1.323, b = 0.215) as the fitting function to the
RAMSES plot, while f(r/rv) = arb − cr (a = 3.7, b = 0.31, c = 2.15) has been
used as the fitting function to the GADGET-3 plot.

3.6.2 Incomplete modelling of the gas physics?

In Figure 7, I have plotted the temperature of both the gas and the dark
matter, where the upper and lower plot represents the RAMSES and GADGET-3
simulation respectively. This figure makes the difference between the κ profiles of
the two simulations apparent. The shapes of the DM temperature profiles of the
simulations are similar (they both drop with a factor of between 1.5 and 2 from the
innermost region to one virial radius), but there is a noticeable difference between
the shapes of the gas temperature profiles. The RAMSES gas temperature drops
with a factor of ∼ 4.5 from the innermost region to one virial radius (from
∼ 6.5 · 107K to ∼ 1.4 · 107K), while the GADGET-3 gas temperature drops with
a factor of ∼ 1.7 in the same region (from ∼ 1.2 · 108K to ∼ 7 · 107K).

The difference between the gas temperature profiles of the two simulations
induces a corresponding difference in the κ profile (since the DM temperature
profiles are almost equivalent), and thus the DM parameters depending on κ
(TDM, σr and β) of course, in turn, depend on which simulation one uses for
the parameterization of κ (which it ideally should not). The difference between
the gas temperature profiles is probably caused by diverse modelling of e.g. gas
cooling, SN feedback or AGN feedback, and in that case, the implementation of
the gas physics is insufficient in at least one of the simulations.10 This is exactly
the reason why we have used two different simulations. We cannot know which

10One should have in mind that the clusters extracted from the two simulations have different
total mass (most of the clusters from the GADGET-3 simulation have a total mass greater
than 1015M�, while this only applies to one of the clusters from the RAMSES simulation). It
is unlikely though, that this difference causes the relatively large difference between the shapes
of the gas temperature profiles, since the dynamics and timescales applying to 1014M� and
1015M� clusters are essentially the same.
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of the simulations used in this project is right (if any), but we do know that
something is not right. Therefore, more time must be devoted to the prospect
of determining κ, and the next step could be that we were given direct access
to unprocessed simulation data. That way, we would have more control over the
data, and it would for example be easier to check for errors.

Figure 6: The relation between the DM temperature and the gas temperature, κ =
TDM/Tgas, as a function of radius. The upper plot represents the RAMSES simulation,
while the lower one represents the GADGET-3 simulation. In both cases, the blue filled
circles represent the median value of κ for the entire cluster samples, while the vertical
lines are 1σ error bars. The red curves are rough "chi-by-eye" fits.
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Figure 7: Temperature in units of Kelvin (K) as a function of radius. The upper plot
represents the RAMSES simulation, while the lower one represents the GADGET-3
simulation. In both cases, the red and blue filled circles represent the median value of
the gas temperature and the DM temperature respectively. The vertical lines are 1σ
error bars. Note that the gas part has been displaced slightly to the right in both plots
for visual purposes.
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3.7 Extracting the gas density and temperature from ob-
servations

3.7.1 X-ray observations

Now, all the theory is in place, and the DM dynamics model presented above
is ready to process data from observations of real galaxy clusters. As previ-
ously mentioned, radiation is the only source of information that we receive from
galaxy clusters, and the main part of the radiation coming from the hot ICM
is X-ray radiation. An extensive description of X-ray emission mechanisms in
galaxy clusters can be found in Sarazin 1986, as I will here only provide a brief
description.

The density and temperature of the ICM can be extracted from an observed
X-ray spectrum of the particular galaxy cluster. This job is usually done by
specialists, who then give other physicists access to their data. Figure 8 shows
an X-ray spectrum of the Virgo Cluster (the closest galaxy cluster to the Local
Group). The continuum part of the spectrum is primarily caused by thermal
bremsstrahlung (free-free emission) with contributions from recombination (free-
bound) emission and two-photon decay (bound-bound emission). Bremsstrahlung
is radiation produced by the acceleration of a charged particle (usually an elec-
tron) when deflected by another charged particle (usually an ion). When de-
flected, the moving particle loses kinetic energy, which is emitted in the form of
a photon. At the temperature of the ICM, hydrogen and helium is virtually fully
ionized, and most of the bremsstrahlung results from encounters between free
electrons and ions from these elements.

It is evident from Figure 8 that, in addition to the continuum, emission lines
(from e.g. magnesium, oxygen and iron) are also present in the X-ray spectrum of
the Virgo Cluster - this is a general feature of X-ray spectra from galaxy clusters.
Emission lines result from excited ions decaying to a lower energy level while
emitting a photon of characteristic energy depending on the specific ion.

The combination of the different emission processes mentioned above results
in an X-ray spectrum similar to the one seen in Figure 8. The bremsstrahlung
emission per unit time per unit volume per unit frequency range, ε, scales as
(Rybicki & Lightman 1979) T−1/2 exp(−E/kBT )gff (E, T ), where gff (E, T ) is
the so called Gaunt factor averaged over velocity. Since ε depends on parame-
ters depending on energy and temperature exclusively, ε depends on energy and
temperature only as well, and with ε given as function of energy by the X-ray
spectrum, the temperature can be determined directly from a fit to the spectrum.

Meanwhile, the density of the gas can be determined from the height of the
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X-ray spectrum. A higher density results in more free ions and electrons, which
in turn results in more bremsstrahlung and therefore a higher emission rate. In
particular, the height of the spectrum is proportional to the density squared.

Figure 8: X-ray spectrum of the Virgo Cluster. The spectrum shows the dis-
tribution of the number of X-ray photons (from which the "amount" of emission
can be obtained) as a function of energy. The upper line is the raw unpro-
cessed spectrum, while the lower line is the "true" spectrum emitted by the ICM,
where the influence of the detector has been accounted for. The figure is from
http://www.isas.jaxa.jp/e/forefront/2004/matsushita/02.shtml.

3.7.2 Deprojection ("onion peeling")

The optical depth of the ICM is very low, which means that almost all radi-
ation travels unaffected through a galaxy cluster (Sarazin 1986). Therefore, the
X-ray emission from a galaxy cluster, observed along a given line of sight, results
in a spectrum with the emission coming from all of the gas in the cluster lying
along that particular line of sight. What one wants however, is the emission re-
ceived from a particular gas shell (or bin), which will allow one to determine the
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temperature in each shell (where it is assumed to be constant). In order to account
for this, one has to deproject the "two-dimensional" spectrum to recover the cor-
rect three-dimensional properties of the cluster. The outermost shell of a galaxy
cluster does not need to be modified, since when observing the "edge" of the
cluster, no gas from inner shells can "obscure" the data as illustrated by Figure
9. When the emission spectrum from the outermost shell has been determined,
one can determine the spectrum from the second outermost shell. When observ-
ing the emission from this shell however, one cannot avoid observing emission
coming from the outermost one as well, so the emission from the outermost shell
has to be subtracted subsequently. The process, which is sometimes analogously
referred to as onion peeling, continues in this way until the emission spectrum
resulting from the central region has been obtained. One particular deprojection
package can be found at http://cxc.harvard.edu/contrib/deproject/.

Figure 9: Illustration of the deprojection process. When one observes along annu-
lus 5, the received emission comes from shell 5 only. However, when one observes
along e.g. annulus 2, shell 2, 3, 4 and 5 all contribute to the received emission.
Therefore, in order to determine the amount of emission coming exclusively from shell
2, one has to subtract the contributions from shell 3, 4 and 5. The figure is from
http://cxc.harvard.edu/contrib/deproject/.
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3.8 Discussion

3.8.1 The numerical simulations

The numerical simulations used in this project have been run with completely
different codes, and thus the chances of avoiding (or detecting) systematic errors
should be optimal. It is unfortunate though, that the GADGET-3 data only
extends to ∼ 1.3 rv, since it is mainly outside this radius that the work done in
this project is relevant. Therefore, it would be desirable to compare the results to
data from other numerical simulations. Hopefully, this would improve the results
and conclusions of this thesis.

3.8.2 The mass excess

In section 3.5, the mass excess, S, is given as a function of radius only:

S(r) = vp
∂vp
∂r

+H0

(
vp + r

∂vp
∂r

)
. (3.24)

This is just an approximation to the true mass excess given by

S(r, t) = vp
∂vp
∂r

+H(t)

(
vp + r

∂vp
∂r

)
+
∂vp
∂t

, (3.25)

which also depends on time. In equation (3.24), the term ∂vp
∂t

has been ignored,
while the Hubble parameter, H(t), has been replaced by the Hubble constant,
H0, for the equation to yield a "snapshot" of the current epoch. Ideally, the
∂t term should be included when calculating the mass excess, but it is rather
circumstantial to estimate, which is the sole reason why it has been ignored. An
effort to estimate its value has been made in Falco et al. 2013, but the result was
not completely conclusive and has therefore not been adopted in this thesis.

3.8.3 The dark matter temperature

In section 3.6, I defined the DM temperature as

TDM ≡
µmH

kB

1

3

(
σ2
r + σ2

θ + σ2
φ

)
. (3.26)

Another equally correct definition could be

T̃DM ≡
µmH

kB

(
σ2
rσ

2
θσ

2
φ

)1/3
, (3.27)
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since it has the same dimension as equation (3.26), and there are of course more
possibilities.

Figure 10 shows the difference between the two definitions of the dark matter
temperature given by equations (3.26) and (3.27) for both the RAMSES simula-
tion (red) and the GADGET-3 simulation (blue). In both cases, TDM/T̃DM ≈ 1
at all radii, which implies that TDM ≈ T̃DM at all radii.

Figure 11 shows the κ̃ profile, where the tilde denotes that the alternative
definition given by equation (3.27) has been used for the DM temperature. Com-
paring Figure 11 to Figure 6 (section 3.6.1) makes it apparent that the κ̃ profile is
essentially identical to the κ profile for the respective simulations. This indicates
that whether one chooses to define the DM temperature by equation (3.26) or
by equation (3.27) has no significant influence on the κ profile. Note however,
that using T̃DM instead of TDM will alter the first expression for β in section
3.6 (equation (3.22)), but the method for obtaining the altered expression is the
same. Furthermore, the obtained β profile should be the same regardless of the
DM temperature definition used.

Figure 10: Difference between TDM given by equation (3.26) and T̃DM given by equa-
tion (3.27). In particular, TDM/T̃DM is plotted as a function of radius. The red and blue
filled circles represent the median value of all the clusters in the RAMSES simulation
and the GADGET-3 simulation respectively. The vertical lines are 1σ error bars.
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Figure 11: The relation between the alternative DM temperature defined by equation
(3.27) and the gas temperature, κ̃ = T̃DM/Tgas, as a function of radius. The upper plot
represents the RAMSES simulation, while the lower one represents the GADGET-3
simulation. In both cases, the blue filled circles represent the median value of κ̃ for the
entire cluster samples, while the vertical lines are 1σ error bars.
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3.9 Summary and conclusion

The main purpose of this part of the thesis (part 2) was to estimate the in-
fluence that the infall velocity in galaxy clusters has on the cluster dynamics and
on the total mass profile of clusters in particular. This has been done on the
basis of the Euler equation and the collisionless Boltzmann equation given by
equations (3.1) and (3.3) respectively, and using data from the numerical simu-
lations introduced in section 3.3. I found that within one virial radius, the infall
velocity has effectively no influence, i.e. in this region, galaxy clusters are vir-
tually fully equilibrated, and thus the assumption of hydrostatic equilibrium is
justifiable. However, between one and two virial radii, the infall velocity does
have a non-negligible influence on the cluster dynamics. In this region, according
to the simulations, the standard Jeans equation and the equation of hydrostatic
equilibrium given by equations (3.2) and (3.6) respectively, in general overesti-
mate the total mass. According to the RAMSES simulation, the largest effect
is at ∼ 1.78 times the virial radius, where the standard equations overestimate
the total cluster mass by ∼ 15% (see Figure 3). A more accurate mass profile
is given by the generalized equations describing the dynamics of galaxy clusters
(equations (3.9) and (3.10)).

While investigating the infall velocity in galaxy clusters, I found that the infall
velocity of the baryonic matter and that of the dark matter seem to be effectively
equal at all radii as shown in Figure 1 and Figure 2. That this is the case is not
quite trivial, since baryonic particles and DM particles give off energy differently
(by collisional and non-collisional effects respectively).

In section 3.6, I have used equation (3.9) and equation (3.10) to solve the dark
matter dynamics of galaxy clusters, and two ways of measuring the anisotropy
parameter, β, are presented (equations (3.22) and (3.23)). In order to apply this
in practice, the density and temperature profiles of the gas (ICM) need to be
known, and in section 3.7, I have provided a brief description of how these can
be obtained.
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Appendix

A
In this appendix, a derivation of equation (2.22) and equation (2.23) is pro-

vided. The Christoffel symbol is given by equation (2.19), and as mentioned in
section 2.5, the only non-vanishing Christoffel symbols are Γχχt, Γχtχ and Γtχχ. By
symmetry I have that Γχχt = Γχtχ, so

Γχχt = Γχtχ =
1

2
gχχ

[
∂gχχ
∂t

+
∂gχχ
∂χ
− ∂gtχ

∂χ

]
=

1

2
a−2

(
∂a2

∂t
+
∂a2

∂χ

)
=

1

2a2

∂a2

∂t
,

where
∂a2

∂t
= a

∂a

∂t
+ a

∂a

∂t
= 2a

∂a

∂t
= 2aȧ =>

Γχχt = Γχtχ =
1

2a2
2aȧ =

ȧ

a
. (A.1)

This is the first (left) part of equation (2.22). Meanwhile, the last non-vanishing
Christoffel symbol yields

Γtχχ =
1

2
gtt
[
∂gχt
∂t

+
∂gtχ
∂t
− ∂gχχ

∂t

]
= − 1

2c2

(
−∂a

2

∂t

)
=

1

2c2
2aȧ =

aȧ

c2
. (A.2)

This is the second (right) part of equation (2.22).
For the sake of completeness, the remaining (vanishing) Christoffel symbols

have also been calculated. Since I am dealing with radial particle motion ex-
clusively, all symbols involving θ and φ vanish, and furthermore, since gµν is a
diagonal matrix, I only get a contribution, when ρ = µ. Thus, the remaining
symbols (not yet calculated) are:

Γχχχ =
1

2
gχχ

[
∂gχχ
∂χ

+
∂gχχ
∂χ
− ∂gχχ

∂χ

]
=

1

2
a−2∂a

2

∂χ
= 0,

Γχtt =
1

2
gχχ

[
∂gtρ
∂t

+
∂gχt
∂t
− ∂gtt

∂χ

]
=

1

2
a−2∂c

2

∂χ
= 0,

Γttt =
1

2
gtt
[
∂gtt
∂t

+
∂gtt
∂t
− ∂gtt

∂t

]
=

1

2
c−2∂c

2

∂t
= 0,

Γtχt = Γttχ =
1

2
gtt
[
∂gtt
∂χ

+
∂gtχ
∂t
− ∂gχt

∂t

]
=

1

2
c−2∂c

2

∂t
= 0, (A.3)
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and as stated, they all vanish.
Now to equation (2.23). Substituting equation (A.1) into the geodesic equa-

tion given by equation (2.18) yields

d2χ

dτ 2
+ (Γχχt + Γχtχ)

dχ

dτ

dt

dτ
=

d2χ

dτ 2
+ 2

ȧ

a

dχ

dτ

dt

dτ
= 0 =>

d2χ

dτ 2
= −2

ȧ

a

dχ

dτ

dt

dτ
= −2

ȧ

a

dχ

dt

dt

dτ

dt

dτ
= −2

ȧ

a

dχ

dt

(
dt

dτ

)2

= −2
ȧ

a
χ̇

(
dt

dτ

)2

,(
dt

dτ

)2

=

(
dτ

dt

)−2

= τ̇−2 =
1

τ̇ 2
=>

d2χ

dτ 2
= −2

ȧ

a

χ̇

τ̇ 2
. (A.4)

This is the first (left) part of equation (2.23). Substituting equation (A.2) into
the geodesic equation yields

d2t

dτ 2
+ Γtχχ

dχ

dτ

dχ

dτ
=

d2t

dτ 2
+
aȧ

c2

(
dχ

dτ

)2

= 0 =>

d2t

dτ 2
= −aȧ

c2

(
dχ

dτ

)2

,

dχ

dτ
=

dχ

dt

dt

dτ
=
χ̇

τ̇
=>

d2t

dτ 2
= −aȧ

c2

χ̇2

τ̇ 2
. (A.5)

This is the second (right) part of equation (2.23).

B
In this appendix, a derivation of equation (2.24) is provided. During the

derivation, I make use of the chain rule and the relation
d

dx

(
u
v

)
= v(du/dx)−u(dv/dx)

v2
.

χ̈ =
dχ̇

dt
=

d

dt

(
dχ

dt

)
=

d

dt

(
dχ/dτ

dt/dτ

)
=

(
dt

dτ
· d

dt

(
dχ

dτ

)
− dχ

dτ
· d

dt

(
dt

dτ

))
·
(

dt

dτ

)−2

,
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d

dt

(
dχ

dτ

)
=

d

dτ

(
dχ

dτ

)
dτ

dt
=

d2χ

dτ 2

dτ

dt
,

d

dt

(
dt

dτ

)
=

d

dτ

(
dt

dτ

)
dτ

dt
=

d2t

dτ 2

dτ

dt
=>

χ̈ =

(
dt

dτ

d2χ

dτ 2

dτ

dt
− dχ

dτ

d2t

dτ 2

dτ

dt

)(
dt

dτ

)−2

=

(
dτ

dt

)2(
d2χ

dτ 2
− dχ

dt

d2t

dτ 2

)
= τ̇ 2

(
d2χ

dτ 2
− χ̇ d2t

dτ 2

)
. (B.1)

Equation (B.1) is identical to equation (2.24).

C
In this appendix, a derivation of equation (2.26) is provided. I want to obtain

equation (2.25) in terms of the dimensionless variable y = c2/χ̇2 instead of χ.
In terms of y, I have χ̇ = c/

√
y and χ̈ = c d

dt

(
1√
y

)
= − cẏ

2y3/2
, so equation (2.25)

becomes

− cẏ

2y3/2
=
aȧ

c2

(
c
√
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)3

− 2
ȧ
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c
√
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c
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ȧ

a

c
√
y

=>

−1

2
ẏy−3/2 = aȧy−3/2 − 2

ȧ

a
y−1/2 =>

−1

2
ẏ = aȧ− 2

ȧ

a
y =>

ẏ = 4
ȧ

a
y − 2aȧ,

4
ȧ

a
=

d

dt
(ln a4),

2aȧ =
da2

dt
=>

ẏ = y
d

dt
(ln a4)− da2

dt
=>

ẏ − y d

dt
(ln a4) = −da2

dt
(C.1)

Equation (C.1) is identical to equation (2.26).

42



D
In this appendix, a derivation of the geodesic equation given by equation

(2.18) is provided on the basis of Herman 2008. A geodesic is the curved-space
generalization of the notion of a straight line, and the geodesic equation describes
the motion of a particle in the four-dimensional spacetime.

In Euclidean space, the shortest path between two points is a straight line,
and according to Newtonian physics, a free particle subject to no acceleration
always follows a straight line through space (assuming it has an initial velocity
greater than zero).

In general relativity, the theory of gravitation is described as "the presence
of matter curves the four-dimensional spacetime" (and not as a force as in New-
tonian physics). Therefore, in the presence of matter, spacetime is curved, and
thus there may not exist any straight lines for free particles to follow. Instead,
they move along a geodesic. For example, the orbit of the Earth around the Sun
is a geodesic, and when an apple falls off a tree, that too follows a geodesic (if
one disregards the friction from the atmosphere).

Note that if no matter is present, spacetime is flat, and thus a free particle
will move along a straight line. Therefore, the geodesic equation has to reduce
to the equation of a straight line, when no matter is present.

Derivation

In geometry, a line element ds can be expressed as

ds2 = gαβdxαdxβ. (D.1)

Meanwhile, in GR, the path length, S, is given by

S =

∫
ds =

∫ √
gαβdxαdxβ. (D.2)

I now consider the parameterized world line xα = xα(λ) and multiply the RHS
of equation (D.2) by dλ/dλ:

S =

∫ (
gαβ

dxα

dλ

dxβ

dλ

)1/2

dλ. (D.3)

I want to minimize S, and this can be done using the Euler-Lagrange (E-L)
equations, which for the parameter λ are given by

d

dλ

(
∂L

∂(dxγ/dλ)

)
− ∂L

∂xγ
= 0, (D.4)
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where L is the Lagrangian given by

L =
ds

dλ
=

√
gαβdxαdxβ

dλ
=

√
gαβ

dxα

dλ

dxβ

dλ
. (D.5)

I can get rid of the square root after the last equality sign by using L′ = L2 =
gαβ

dxα

dλ
dxβ

dλ
as the Lagrangian instead of L. This way I have

∂L′

∂x
=

∂

∂x
(L2) = L

∂L

∂x
+ L

∂L

∂x
= 2L

∂L

∂x
, (D.6)

so equation (D.4) becomes

d

dλ

(
∂L′

∂(dxγ/dλ)

)
− ∂L′

∂xγ
=

d

dλ

(
2L

∂L
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)
− 2L

∂L

∂xγ
= 0,

and if λ satisfies that L = ds
dλ

is a constant, I have that

d

dλ
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∂L′

∂(dxγ/dλ)

)
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∂xγ
= 2L
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∂(dxγ/dλ)
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d
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(
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∂(dxγ/dλ)
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]
= 0 =>

d

dλ

(
∂L

∂(dxγ/dλ)

)
− ∂L

∂xγ
= 0. (D.7)

So using L′ as the Lagrangian leads to the same E-L equations as using L does,
provided that λ is chosen so ds

dλ
is constant, i.e. λ has to be an affine parameter.
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Now I want to rewrite equation (D.7) starting with the first term:

∂L
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. (D.8)

Now I still need to take the derivative of equation (D.8) with respect to λ:

d

dλ

(
∂L

∂(dxγ/dλ)

)
=

d

dλ

(
1

L
gαγ

dxα

dλ

)
=

1

L

d

dλ

(
gαγ

dxα

dλ

)
=

1

L

(
gαγ

d2xα

dλ2
+

dxα

dλ

dgαγ
dλ

)
=

1

L

(
gαγ

d2xα

dλ2
+

dxα

dλ

dgαγ
dxβ

dxβ

dλ

)
,

dgαγ
dxβ

=
1

2

(
dgαγ
dxβ

+
dgαγ
dxβ

)
=

1

2

(
dgαγ
dxβ

+
dgγβ
dxα

)
=>

d

dλ

(
∂L

∂(dxγ/dλ)

)
=

1

L

(
gαγ

d2xα

dλ2
+

1

2

(
dgαγ
dxβ

+
dgγβ
dxα

)
dxα

dλ

dxβ

dλ

)
(D.9)
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The second term in equation (D.7):

∂L

∂xγ
=

1

2L

∂L′

∂xγ

=
1

2L

∂

∂xγ

(
gαβ

dxα

dλ

dxβ

dλ

)
=

1

2L

∂gαβ
∂xγ

dxα

dλ

dxβ

dλ
(D.10)

Substituting the equations (D.9) and (D.10) into equation (D.7), yields

0 =
1

L

(
gαγ

d2xα

dλ2
+

1

2

(
dgαγ
dxβ

+
dgγβ
dxα

)
dxα

dλ

dxβ

dλ

)
− 1

2L

∂gαβ
∂xγ

dxα

dλ

dxβ

dλ

= gαγ
d2xα

dλ2
+

1

2

(
dgαγ
dxβ

+
dgγβ
dxα

)
dxα

dλ

dxβ

dλ
− 1

2

∂gαβ
∂xγ

dxα

dλ

dxβ

dλ
=>

gαγ
d2xα

dλ2
=

1

2

∂gαβ
∂xγ

dxα

dλ

dxβ

dλ
− 1

2

(
dgαγ
dxβ

+
dgγβ
dxα

)
dxα

dλ

dxβ

dλ

= −1

2

(
dgαγ
dxβ

+
dgγβ
dxα

− ∂gαβ
∂xγ

)
dxα

dλ

dxβ

dλ

= −1

2

(
dgδγ
dxβ

+
dgγβ
dxδ

− ∂gδβ
∂xγ

)
dxδ

dλ

dxβ

dλ
. (D.11)

Now it is time to introduce the Christoffel symbol given by

Γαδβ =
1

2
gαγ
(

dgδγ
dxβ

+
dgγβ
dxδ

− ∂gδβ
∂xγ

)
. (D.12)

Since gαγ = (gαγ)
−1, equation (D.12) allows me to write

gαγΓ
α
δβ =

1

2

(
dgδγ
dxβ

+
dgγβ
dxδ

− ∂gδβ
∂xγ

)
. (D.13)

Substituting equation (D.13) into equation (D.11) yields

gαγ
d2xα

dλ2
= −gαγΓαδβ

dxδ

dλ

dxβ

dλ
=>

d2xα

dλ2
= −Γαδβ

dxδ

dλ

dxβ

dλ
=>

d2xα

dλ2
+ Γαδβ

dxδ

dλ

dxβ

dλ
= 0. (D.14)
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Equation (D.14) is known as the Geodesic equation - the generalization of the
notion of a straight line to curved spacetime. As required, the geodesic equation
reduces to that of a straight line, d2xα

dλ2
= 0, in flat spacetime, because in this

case, all components of the Christoffel symbol vanish, since all derivatives of the
metric tensor, gµν , vanish.

E
In this appendix, I provide a derivation of the equation of hydrostatic equi-

librium given by equation (3.2) and the generalized equation including radial
streaming motions and time dependence given by equation (3.9). I start out with
the Euler equation given by

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇Φ. (E.1)

The variables are explained in section 3.1.

The equation of hydrostatic equilibrium

A system in hydrostatic equilibrium is a steady state system, which means
that time gradients vanish, and thereby the first term on the LHS of equation
(E.1) vanishes. For simplicity, it is furthermore assumed that the system is spher-
ically symmetric, whereby all angular gradients vanish, and thus the spatial gra-
dient, ∇, reduces to the radial gradient, ∂r. In addition, a system in hydrostatic
equilibrium is characterized by the property that the internal gas pressure push-
ing the gas outwards exactly cancels the self-gravity of the system. In this case,
there are no net radial streaming motions, i.e. vr = 0, and thus the second term
on the LHS of equation (E.1) also vanishes.11 Therefore, using these assumptions,
equation (E.1) reduces to

∂Φ(r)

∂r
= −1

ρ

∂P

∂r
. (E.2)

Meanwhile, assuming that the gas in the system can be regarded as an ideal
gas, the gas pressure, P , can be related to the gas density, ρ, and the gas tem-

11In order for this derivation to be consistent with the derivation of the Jeans equation
in appendix F, it is also assumed that there are no net rotational streaming motions, i.e.
vθ = vφ = 0. This has no immediate influence, since the two terms on the LHS of equation
(E.1) have already vanished due to our assumptions of a steady state and spherical symmetry.
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perature, T , by the ideal gas law given by

P =
kBρT

µmH

, (E.3)

where kB is the Boltzmann constant, µ is the mean molecular weight, and mH

is the mass of a hydrogen atom. Substituting equation (E.3) into equation (E.2)
yields

∂Φ

∂r
= −1

ρ

kB
µmH

∂

∂r
(ρT ) , (E.4)

and using the relation, ∂a
∂b

= a
b
∂ ln a
∂ ln b

, I get

∂Φ(r)

∂r
= − kB

µmH

ρT

ρr

∂ ln (ρT )

∂ ln r
= − kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
. (E.5)

As the last thing, I assume that the system is subject to its own gravitation
only, and thereby gravitational contributions from the underlying cosmology of
the universe (i.e. contributions from the background density and the cosmological
constant) are neglected. This means that ∂Φ(r)

∂r
= GM(r)

r2
, and thus I arrive at

equation (3.2); the equation of hydrostatic equilibrium given by

∂Φ(r)

∂r
=
GM(r)

r2
= − kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
. (E.6)

The generalized equation

Now to the generalized version of equation (3.2) given by equation (3.9). If
one retains the mean radial velocity component, vr, and time derivatives, ∂t, i.e.
if one does not neglect radial streaming motions (hydrostatic equilibrium) and
time dependence, the two terms on the LHS of equation (E.1) can no longer be
ignored. However, spherical symmetry will still be assumed (i.e. ∇ = ∂r). In this
case, the RHS of equation (E.1) can be written in the form of equation (E.5), so
in total, equation (E.1) now reads

∂vr
∂t

+ vr
∂vr
∂r

= −∂Φ(r)

∂r
− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
=>

∂Φ(r)

∂r
= − kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vr
∂vr
∂r

+
∂vr
∂t

)
. (E.7)
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Moreover, the mean radial velocity is the sum of the peculiar velocity com-
ponent, vp, and the Hubble flow given by Hr, so vr = vp + Hr. Using this
expression, the last term in equation (E.7) can be rewritten as

vr
∂vr
∂r

+
∂vr
∂t

= (vp +Hr)
∂

∂r
(vp +Hr) +

∂

∂t
(vp +Hr)

= (vp +Hr)

(
∂vp
∂r

+H

)
+
∂vp
∂t

+
∂

∂t
(Hr)

= vp
∂vp
∂r

+Hvp +Hr
∂vp
∂r

+H2r +
∂vp
∂t

+ r
∂H

∂t

= vp
∂vp
∂r

+H

(
vp + r

∂vp
∂r

)
+
∂vp
∂t

+ r(H2 + Ḣ). (E.8)

Meanwhile, I have that

Ḣ = −(1 + q)H2 => r(H2 + Ḣ) = −qH2r, (E.9)

where q is the deceleration parameter. Substituting equation (E.9) into equation
(E.8) yields

vr
∂vr
∂r

+
∂vr
∂t

= vp
∂vp
∂r

+H

(
vp + r

∂vp
∂r

)
− qH2r +

∂vp
∂t

. (E.10)

Thus, equation (E.7) can now be written

∂Φ(r)

∂r
=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vr
∂vr
∂r

+
∂vr
∂t

)
=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vp
∂vp
∂r

+H

(
vp + r

∂vp
∂r

)
− qH2r +

∂vp
∂t

)
, (E.11)

which is identical to equation (3.7).
As mentioned in section 3.2, since I am considering relatively large distances,

the underlying cosmology of our universe should be taken into account. When
doing this, the total gravitational potential is given by equation (3.8) (rewritten
here for convenience):

∂Φ(r)

∂r
=
GM(r)

r2
+

4π

3
Gρbr −

1

3
Λr, (E.12)

49



where ρb is the background density of the universe, and Λ is the cosmological
constant. The first term is the system’s own gravitational potential, while the
second and third terms are the potential resulting from the background density
and that resulting from the cosmological constant respectively. Now it is time to
introduce the dimensionless density parameters of the background density and
the cosmological constant given by respectively,

Ωm =
8πGρb
3H2

, ΩΛ =
Λ

3H2
. (E.13)

Solving these expressions for ρb and Λ yields

ρb =
3H2Ωm

8πG
, Λ = 3H2ΩΛ, (E.14)

and substituting this into equation (E.12) gives

∂Φ(r)

∂r
=
GM(r)

r2
+

1

2
H2rΩm −H2rΩΛ

=
GM(r)

r2
+H2r

(
1

2
Ωm − ΩΛ

)
=
GM(r)

r2
+ qH2r, (E.15)

where I have used that q = 1
2
Ωm − ΩΛ. Now substituting equation (E.15) into

equation (E.11), I recover equation (3.9):

GM(r)

r2
=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vr
∂vr
∂r

+
∂vr
∂t

)
− qH2r

=− kBT

µmHr

(
∂ ln ρ

∂ ln r
+
∂ lnT

∂ ln r

)
−
(
vp
∂vp
∂r

+H

(
vp + r

∂vp
∂r

)
+
∂vp
∂t

)
. (E.16)

F
In this appendix, I provide a derivation of the standard Jeans equation given

by equation (3.6) and the generalized Jeans equation including radial streaming
motions and time dependence given by equation (3.10).
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The standard Jeans equation

I start out with the collisionless Boltzmann equation given by

∂f

∂t
+ pr

∂f

∂r
+
pθ
r2

∂f

∂θ
+

pφ
r2 sin2 θ

∂f

∂φ
−
(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
∂f

∂pr

−
(
∂Φ

∂θ
−
p2
φ cos θ

r2 sin3 θ

)
∂f

∂pθ
− ∂Φ

∂φ

∂f

∂pφ
= 0. (F.1)

The variables are explained in section 3.1. Assuming that I am dealing with
a spherical and time-independent system, terms involving ∂t, ∂θ and ∂φ can be
dropped, and so equation (F.1) reduces to

pr
∂f

∂r
−
(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
∂f

∂pr
−
p2
φ cos θ

r2 sin3 θ

∂f

∂pθ
= 0. (F.2)

I multiply equation (F.2) by prdprdpθdpφ and integrate over all momenta using
the relation

∫
dprdpθdpφf = r2 sin θν. I first consider the leftmost term on the

LHS of equation (F.2):

pr
∂

∂r

(∫
prdprdpθdpφf

)
=

∂

∂r

(
p2
rr

2 sin θν
)

= sin θ
∂

∂r

(
νr2p2

r

)
= sin θ

(
r2 ∂

∂r

(
νp2

r

)
+ νp2

r

∂r2

∂r

)
= r2 sin θ

∂

∂r
(νp2

r) + 2r sin θνp2
r. (F.3)

The middle term on the LHS of equation (F.2):

∂

∂pr

(∫
prdprdpθdpφf

)
= r2 sin θν =>

∫ (
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
∂f

∂pr
prdprdpθdpφ = r2 sin θν

(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
.

(F.4)
The rightmost term on the LHS of equation (F.2):∫

prdprdpθdpφpr
∂f

∂pθ
=

∂

∂pθ
(prr

2 sin θν) = 0. (F.5)
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Combining equations (F.3), (F.4) and (F.5) and dividing each term by r2 sin θ
yields

∂

∂r
(νp2

r) + 2ν
p2
r

r
+ ν

(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
= 0. (F.6)

Next I substitute the relations pr = vr, pθ = rvθ and pφ = r sin θvθ (relating
the canonical momenta, pi, to the velocity components, vi, where i = r, θ, φ)
into equation (F.6). This way, each momentum component gets replaced by the
corresponding velocity component, so equation (F.6) becomes

∂

∂r
(νv2

r) + 2ν
v2
r

r
+ ν

(
∂Φ

∂r
− v2

θ

r
−
v2
φ

r

)
= 0. (F.7)

Rearranging equation (F.7) and solving for −ν ∂Φ
∂r

yields

−ν ∂Φ

∂r
=

∂

∂r
(νv2

r) +
ν

r

(
2v2

r − v2
θ − v2

φ

)
. (F.8)

In general, σ2
i = v2

i − vi
2. Now however, I assume that any net streaming

motion can be neglected, i.e. the mean velocity components vi are all set to zero,
and therefore I can now write σ2

i = v2
i . Substituting this relation into equation

(F.8) gives

−ν ∂Φ

∂r
=

∂

∂r
(νσ2

r) +
ν

r

(
2σ2

r − σ2
θ − σ2

φ

)
. (F.9)

Now I use the definition of β given by equation (3.5) to get rid of the angular
velocity dispersions in the last term on the RHS of equation (F.9):

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

=> 2βσ2
r = 2σ2

r − σ2
θ − σ2

φ, (F.10)

so equation (F.9) now becomes

−ν ∂Φ(r)

∂r
=

∂

∂r
(νσ2

r) + 2
β

r
νσ2

r . (F.11)

This equation is identical to equation (3.4).
The solution to equation (F.11) that satisfies the boundary condition, limr→∞ σ

2 =
0, is

σ2
r(r) =

1

r2βν(r)

∫ ∞
r

r′2βν(r′)
∂Φ(r′)

∂r′
dr′. (F.12)
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I want to solve equation (F.12) for ∂Φ
∂r

in order to recover equation (3.6). Starting
by multiplying by r2βν and differentiating with respect to r, I get

∂

∂r

(
σ2
rνr

2β
)

= −r2βν
∂Φ

∂r
, (F.13)

where the LHS can be rewritten using the relation ∂a
∂b

= a
b
∂ ln a
∂ ln b

:

∂

∂r

(
σ2
rνr

2β
)

= νr2β ∂σ
2
r

∂r
+ σ2

rr
2β ∂ν

∂r
+ νσ2

r

∂r2β

∂r

= νr2β σ
2
r

r

∂ lnσ2
r

∂ ln r
+ σ2

rr
2β ν

r

∂ ln ν

∂ ln r
+ 2βνσ2

r

r2β

r

= νσ2
r

r2β

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
. (F.14)

Using equation (F.14) and dividing by ν r2β
r
, equation (F.13) becomes

σ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
= −r∂Φ(r)

∂r
= −rGM(r)

r2
, (F.15)

where it has been assumed that the system is subject to its own gravitation only,
i.e. ∂Φ(r)

∂r
= GM(r)

r2
. Dividing equation (F.15) by r, I recover the standard Jeans

equation in the form of equation (3.6) given by

∂Φ(r)

∂r
=
GM(r)

r2
= −σ

2
r

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
. (F.16)

The generalized Jeans equation

Now to the generalized Jeans equation given by equation (3.10), where the
mean radial velocity component, vr, and time derivatives, ∂t, will not be ignored.
In this case, one has to retain the first (leftmost) term in equation (F.1), while
terms involving ∂θ and ∂φ can still be dropped due to the assumption of spherical
symmetry, so equation (F.1) becomes

∂f

∂t
+ pr

∂f

∂r
−
(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
∂f

∂pr
−
p2
φ cos θ

r2 sin3 θ

∂f

∂pθ
= 0. (F.17)

The only difference between equation (F.2) and equation (F.17) is the inclusion of
the term ∂f/∂t in equation (F.17). I will now give this term the same treatment
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as was given to the other terms in the equation in the derivation of the standard
Jeans equation, i.e. it will be multiplied by prdprdpθdpφ and integrated over all
momenta using the relation

∫
dprdpθdpφf = r2 sin θν. This yields

∂

∂t

(∫
prdprdpθdpφf

)
=

∂

∂t

(
prr

2 sin θν
)

= r2 sin θ
∂

∂t
(νpr) , (F.18)

which gives

∂

∂t
(νpr) +

∂

∂r
(νp2

r) + 2ν
p2
r

r
+ ν

(
∂Φ

∂r
− p2

θ

r3
−

p2
φ

r3 sin2 θ

)
= 0 (F.19)

as a replacement for equation (F.6). Again using the relations pr = vr, pθ = rvθ
and pφ = r sin θvθ and solving for −ν ∂Φ

∂r
, equation (F.19) becomes

−ν ∂Φ

∂r
=

∂

∂t
(νvr) +

∂

∂r
(νv2

r) +
ν

r

(
2v2

r − v2
θ − v2

φ

)
. (F.20)

In the derivation of equation (3.6), it was assumed that any net streaming
motion can be neglected, i.e. the mean velocity components, vi, are all set to zero.
Now however, it will only be assumed that there are no net angular streaming
motions (i.e. vθ = vφ = 0), while vr is retained. This way, I have the relations
σ2
θ = v2

θ , σ
2
φ = v2

φ and σ2
r = v2

r − vr2 => v2
r = σ2

r + v2
r, which I now substitute into

equation (F.20). This yields

−ν ∂Φ

∂r
=

∂

∂t
(νvr) +

∂

∂r
(ν(σ2

r + v2
r)) +

ν

r

(
2(σ2

r + v2
r)− σ2

θ − σ2
φ

)
=

∂

∂t
(νvr) +

∂

∂r
(νσ2

r) +
∂

∂r
(νv2

r) + 2
ν

r
v2
r +

ν

r

(
2σ2

r − σ2
θ − σ2

φ

)
=

∂

∂t
(νvr) +

∂

∂r
(νσ2

r) +
∂

∂r
(νv2

r) + 2
ν

r
v2
r + 2β

ν

r
σ2
r , (F.21)

where, at the last equality sign, I have used the definition of β given by equation
(F.10).

To get further, I need a generalized version of the continuity equation, and
to obtain this, I start by multiplying equation (F.17) by dprdpθdpφ and then
integrate over all momenta. Here, only the first two terms of equation (F.17) will
be calculated, since all the other terms vanish when the integration is carried out.
The first term on the LHS:

∂

∂t

(∫
dprdpθdpφf

)
= r2 sin θ

∂ν

∂t
. (F.22)
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The second term on the LHS:

pr
∂

∂r

(∫
dprdpθdpφf

)
= sin θ

∂

∂r

(
νr2vr

)
= sin θ

(
νvr

∂r2

∂r
+ r2 ∂

∂r
(νvr)

)
= r2 sin θ

∂

∂r
(νvr) + 2r sin θνvr. (F.23)

Combining equations (F.22) and (F.23) and dividing by r2 sin θ gives

∂ν

∂t
+

∂

∂r
(νvr) + 2

ν

r
vr = 0 =>

∂ν

∂t
= − ∂

∂r
(νvr)− 2

ν

r
vr, (F.24)

so the first term after the last equality sign in equation (F.21) becomes

∂

∂t
(νvr) = vr

∂ν

∂t
+ ν

∂vr
∂t

= −vr
(
∂

∂r
(νvr) + 2

ν

r
vr

)
+ ν

∂vr
∂t

= −vr
∂

∂r
(νvr)− 2

ν

r
v2
r + ν

∂vr
∂t

. (F.25)

Substituting equation (F.25) into equation (F.21) yields

−ν ∂Φ

∂r
= −vr

∂

∂r
(νvr)− 2

ν

r
v2
r + ν

∂vr
∂t

+
∂

∂r
(νσ2

r) +
∂

∂r
(νv2

r) + 2
ν

r
v2
r + 2β

ν

r
σ2
r

= −vr
∂

∂r
(νvr) + ν

∂vr
∂t

+
∂

∂r
(νσ2

r) +
∂

∂r
(νv2

r) + 2β
ν

r
σ2
r . (F.26)

Now I look at the first and the fourth term after the last equality sign in
equation (F.26), starting with the first:

vr
∂

∂r
(νvr) = νvr

∂vr
∂r

+ v2
r

∂ν

∂r
. (F.27)

And now the fourth term:
∂

∂r
(νv2

r) = ν
∂v2

r

∂r
+ v2

r

∂ν

∂r
= ν

(
vr
∂vr
∂r

+ vr
∂vr
∂r

)
+ v2

r

∂ν

∂r
= 2νvr

∂vr
∂r

+ v2
r

∂ν

∂r
.

(F.28)
Subtracting equation (F.27) from equation (F.28) yields

2νvr
∂vr
∂r

+ v2
r

∂ν

∂r
−
(
νvr

∂vr
∂r

+ v2
r

∂ν

∂r

)
= νvr

∂vr
∂r

, (F.29)

so equation (F.26) now reads

−ν ∂Φ

∂r
= ν

∂vr
∂t

+
∂

∂r
(νσ2

r) + νvr
∂vr
∂r

+ 2β
ν

r
σ2
r

=
∂

∂r
(νσ2

r) + 2β
ν

r
σ2
r + ν

(
vr
∂vr
∂r

+
∂vr
∂t

)
. (F.30)
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Equation (F.30) is one way to write the generalized Jeans equation. The
difference between the standard and the generalized Jeans equation given by
equations (F.16) and (F.30) respectively, is the term, ν

(
vr

∂vr
∂r

+ ∂vr
∂t

)
, that has

been "added" to the generalized version. The solution to equation (F.30) that
satisfies the boundary condition, limr→∞ σ

2 = 0, is

σ2
r(r) =

1

r2βν(r)

∫ ∞
r

r′2βν(r′)

(
∂Φ(r′)

∂r′
+ vr′

∂vr′

∂r′
+
∂vr′

∂t

)
dr′. (F.31)

As in the derivation of the standard Jeans equation, I multiply this by r2βν and
differentiate with respect to r, which yields

∂

∂r

(
σ2
rνr

2β
)

= −r2βν

(
∂Φ

∂r
+ vr

∂vr
∂r

+
∂vr
∂t

)
. (F.32)

Using equation (F.14) to rewrite the LHS and dividing by ν r2β
r
, equation (F.32)

becomes

σ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
= −r

(
∂Φ

∂r
+ vr

∂vr
∂r

+
∂vr
∂t

)
(F.33)

Furthermore, including contributions from the underlying cosmology of the
universe to the gravitational potential, i.e. using equation (E.12) for the gravita-
tional potential gradient and solving for GM/r2, I finally recover the generalized
Jeans equation in the form of equation (3.10):

GM(r)

r2
=− σ2

r

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
−
(
ṽr
∂ṽr
∂r

+
∂ṽr
∂t

)
− qH2r

=− σ2
r

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
−
(
ṽp
∂ṽp
∂r

+H

(
ṽp + r

∂ṽp
∂r

)
+
∂ṽp
∂t

)
. (F.34)

Note that I have swapped the bar with a tilde when writing the mean radial and
peculiar velocity in equation (F.34) in order to clarify that the DM velocity is in
general different from the gas velocity.

G
In this appendix, I provide a derivation of equation (3.18) to equation (3.23)

(section 3.6). I start out with the generalized Jeans equation given by

GM(r)

r2
= −σ

2
r

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
− F̃ (r, t), (G.1)
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where

F̃ (r, t) =

(
ṽr
∂ṽr
∂r

+
∂ṽr
∂t

)
+ qH2r =

(
ṽp
∂ṽp
∂r

+H

(
ṽp + r

∂ṽp
∂r

)
+
∂ṽp
∂t

)
. (G.2)

Multiplying equation (G.1) by r gives

GM(r)

r
= −σ2

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2β

)
− rF̃ (r, t). (G.3)

Now I assume that the tangential velocity dispersions are equal, i.e. that
σθ = σφ = σt, which means that the anisotropy parameter is given by

β = 1− σ2
t

σ2
r

. (G.4)

Substituting this expression into equation (G.3) yields

GM(r)

r
= −σ2

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 2

(
1− σ2

t

σ2
r

))
− rF̃ (r, t)

= −σ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r

)
− 2σ2

r + 2σ2
t − rF̃ (r, t). (G.5)

Meanwhile, the DM temperature was defined as (equation (3.16))

TDM ≡
µmH

kB

1

3
(σ2

r + σ2
θ + σ2

φ) =
µmH

3kB
(σ2

r + 2σ2
t ). (G.6)

This can be rewritten as
2σ2

t =
3kBTDM

µmH

− σ2
r , (G.7)

and using this expression, equation (G.5) reads

GM(r)

r
= −σ2

r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r

)
− 2σ2

r +
3kBTDM

µmH

− σ2
r − rF̃ (r, t)

= −σ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 3

)
+

3kBTDM

µmH

− rF̃ (r, t). (G.8)

Equation (G.8) can be rewritten as

σ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 3

)
= ψ(r, t), (G.9)
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where
ψ(r, t) =

3kBTDM

µmH

− GM(r)

r
− rF̃ (r, t). (G.10)

Equations (G.9) and (G.10) are identical to equations (3.18) and (3.19) respec-
tively.

Now I will show that equation (3.21) given by

σ2
r(r) =

1

ν(r)r3

∫ r

0

ψ(r′)ν(r′)r′2dr′ (G.11)

is a solution to equation (3.18) (equation (G.9)). Rewriting equation (G.11) and
differentiating with respect to r yields

∂

∂r
(νr3σ2

r) = ψνr2. (G.12)

Next, I rewrite the LHS of equation (G.12) using the relation ∂a
∂b

= a
b
∂ ln a
∂ ln b

:

∂

∂r
(νr3σ2

r) = r3σ2
r

∂ν

∂r
+ νσ2

r

∂r3

∂r
+ νr3∂σ

2
r

∂r

= r3σ2
r

ν

r

∂ ln ν

∂ ln r
+ 3r2νσ2

r + νr3σ
2
r

r

∂ lnσ2
r

∂ ln r

= r2νσ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 3

)
. (G.13)

Substituting equation (G.13) back into equation (G.12) and dividing by νr2, I
get

σ2
r

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+ 3

)
= ψ(r, t), (G.14)

which is identical to equation (3.18) (equation (G.9)).
Now I proceed to the derivations of the two expressions for the anisotropy

parameter, β, given by equations (3.22) and (3.23) starting with the former.
Substituting equation (G.7) into equation (G.4) and using that TDM = κTgas

yields

β = 1− 1

2σ2
r

(
3kBTDM

µmH

− σ2
r

)
= 1− 3kBTDM

2µmHσ2
r

+
1

2
=

3

2

(
1− kBTDM

µmHσ2
r

)
=

3

2

(
1− κ kBTgas

µmHσ2
r

)
, (G.15)
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which is identical to equation (3.22). Meanwhile, solving the general Jeans equa-
tion given by equation (3.10) for β, directly yields equation (3.23) given by

β = −1

2

(
∂ ln ν

∂ ln r
+
∂ lnσ2

r

∂ ln r
+
GM(r)

rσ2
r

+
r

σ2
r

F̃ (r, t)

)
. (G.16)
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