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Abstract

Causal Sets is a Quantum Gravity theory which postulates space-time to be emergent

from partially ordered sets. These sets are causal in the sense that the order encodes

the causality relations between the elements, which can be understood as space-time

points. Einstein’s theory of General Relativity describes gravity as curvature of space-

time. This curvature is encoded in curvature operators like the Ricci-scalar R and the

Ricci-tensor Rµν . To understand how a discrete causal set encodes the geometry of

space-time and how space-time emerges from fundamental causal sets, it is important

to be able to calculate curvature operators intrinsically from their causal order. It has

already been shown that one can define an operator B, called Causal Set d’Alembertian,

which acting on a causal set contains the Ricci-scalar in its continuum limit. This thesis

presents an extended proof for the continuum limit of the Causal Set d’Alembertian in

curved space-times of arbitrary dimension and finds a generalization of this operator

that allows to extract higher orders of the Ricci-scalar R directly from the causal set.

This new operator B2 resembles a composition of the B-operator and contains both R2

and □R in its continuum limit. This limit is derived and both operators are assessed

by numerical simulations on two-dimensional causal sets resembling Minkowski and de

Sitter space-times.
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Chapter 1

Introduction

1.1 The problem of Quantum Gravity

Two of the most fundamental theories in physics today are Quantum Field Theory and

General Relativity. Quantum Field Theory is concerned with quantum fields and their

interactions. It is the language used to describe all the known fundamental particles,

like for example electrons and quarks, and their interactions (except gravitation) in the

standard model of particle physics. General Relativity is used to describe phenomena

related to gravity. It depicts space-time as a Lorentzian manifold on which matter exists

and describes the interaction between the manifold and the matter. Both theories have

been very successful in their respective fields.

A fundamental difference between these two theories is that General Relativity is

purely classical. At the moment there is no agreed upon way of quantizing General

Relativity. This is already conceptually challenging as gravity in General Relativity

is not described as a field on a space-time but as changes of space-time itself. The

most straightforward way in analogy to other fundamental interactions is to quantize

the space-time metric gµν around a fixed background metric and write for example

gµν = ηµν + hµν , where here ηµν is the metric of flat Minkowski space and hµν is

the quantum field of gravity. When applying standard perturbative renormalization

techniques on this setup it turns out that one needs an infinite number of counter terms

to renormalize the theory. This is due to the Newton constant, which is the coupling

constant for gravity, having mass-dimension −2 in natural units. The consequence is

that there is an infinite number of parameters which need to be fixed by experiment.

That makes the theory non-predictive and is the reason why gravity is said to be non-

renormalizable.

A conservative approaches to tackle this problem is Asymptotic Safety [1], where non-

perturbative renormalization techniques are used to try to find a ultraviolet (UV) fix

point in the renormalization group flow, which would introduce relations between the
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infinite number of terms in the Lagrangian and leave only a finite number of parameters

to be fixed by experiment. Another possibility is to use canonical quantization in a

background independent way, which leads to Loop Quantum Gravity and Spin Foams [2,

3]. Other approaches introduce more fundamental building blocks from which gravity

emerges. The most popular example are strings in String Theory [4]. Of course there

are many other approaches and proposals trying to tackle Quantum Gravity. One of

them, Causal Sets, will be the outset for this thesis and is described in detail in the next

section.

While trying to combine General Relativity and Quantum Mechanics, Quantum Grav-

ity approaches also try to solve other problems particle physics and General Relativity

currently face. For particle physics this includes the Laundau pole of the Standard

Model, which means that the theory breaks down at some point when going to arbitrary

high energies. In the case of General Relativity problems arise in the form of singular-

ities in black holes and at the beginning of the universe where the theory is no longer

applicable. These breakdowns of the theory are seen as an indication that a new descrip-

tion of physics is necessary. The singularities appear in regimes of high energy/small

length scales where quantum fluctuations of the space-time metric are expected to play

a role. Therefore it is expected that the singularities are just an artifact of the classical

approximation and can be resolved, e.g. by a discrete spectrum of the corresponding

quantum theory.

1.2 Introduction to Causal Sets

1.2.1 Motivation for Causal Sets

Customarily in General Relativity the metric encodes all the information on the causal

relations of points in the space-time manifold (if they are space-, time- or light-like

separated) and their distances to each other. The information on distances is related to

information on scales and volume. Causal Sets, first proposed by Bombelli, Lee, Mayer

and Sorkin in 1987 [5], is a quantum gravity theory which arose from the realization that

conversely the causal order between points alone encodes almost all information about

the metric. This statement has been made precise by various theorems. Some of the

main ones can be found in [6–8]. Combined they can be summarized as [9]:

The causal structure of a past and future distinguishing space-time with dimension

greater than 2 determines its dimension, topology, differentiable structure and metric up

to a conformal factor.

Here past and future distinguishing means there are no causal (i.e. time-like or light-
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like) loops in the space-time and no two different points have exactly the same causal

past or future [10]. A conformal factor is a (generally position dependent) overall factor

of the metric and related to information about the volume. Exactly this information

about the size/volume of space-time regions is what is missing from the causal structure.

This problem can however be overcome if space-time is fundamentally discrete as then

a notion of volume can be defined by simply counting the number of discrete points in

a given region. In addition a fundamental discreteness could act as a natural cutoff and

resolve the problems coming from UV divergences in Quantum Field Theory (e.g. the

Landau pole) and curvature singularities in General Relativity. Another argument in

favor of fundamental discreteness is that it makes the entanglement entropy of black

holes finite [11, 12]. This is the entropy of a pure quantum state after tracing out the

interior of the black hole and important as it is a possible explanation or part of the

overall entropy of a black hole, which scales with the area of the horizon divided by the

Planck-length squared.

The theorem also means that in contrast to other quantum gravity theories Causal

Sets does not have to a priori assume a certain dimension or global hyperbolicity of

the space-time and further also the Lorentzian nature, namely that there is exactly one

time-like dimension, arises naturally from the causal order.

1.2.2 Kinematics of Causal Sets

The causal relation between points/elements of space-time can mathematically be de-

scribed by a partial order. A partial order is a binary relation ⪯ between elements of a set

that is anti-symmetric (x ⪯ y ∧ y ⪯ x⇒ x = y) and transitive (x ⪯ y ∧ y ⪯ z ⇒ x ⪯ z).

Applied to causality anti-symmetric means that an event can not simultaneously be in

the future and the past of another event, i.e. there are no causal loops, and transitivity

means that if an event x happened in the past of y and y happened in the past of z then

x also lies in the past light-cone of z. This leads us to the definition of a causal set [9]:

Def. A causal set is defined as set C with an order relation ⪯ such that

∀x, y, z ∈ C : x ⪯ y ∧ y ⪯ z ⇒ x ⪯ z (1.1a)

∀x, y ∈ C : x ⪯ y ∧ y ⪯ x⇒ x = y (1.1b)

∀x, z ∈ C : the set {y | x ⪯ y ⪯ z} is finite (1.1c)

In the definition of a causal set one finds again the definition of transitivity (1.1a) and

anti-symmetry (1.1b), also known as non-circularity as it is related to the non-existence of
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causal loops. The last condition is known as local finiteness and ensures the discreteness

of the causal set.

As mentioned the discreteness in the causal set provides information about the volume

by counting how many elements are in a given region of space-time. To ensure the

number to volume correspondence, the elements must be uniformly distributed in the

manifold we want to associate the causal set with. This uniform distribution is usually

associated with a random sprinkling process, where the probability to have N elements

in a space-time region of volume V is [13]

P (N) =
(ρV)N e−ρV

N !
. (1.2)

ρ is the fundamental density of the causal set. This Poisson sprinkling has the advantage

that it provides the best number to volume correspondence for small volumes [14] and

other than regular lattices or other triangulatians where each element only has a low

number of neighbors, it does not induce a preferred frame in Minkowski space [15]. This

makes causal sets fundamentally Lorentz invariant. This is in strong contrast to regular

lattices, which after boost loose their uniformity as can be seen in figure 1.1 where both

a causal set and a regular lattice are compared with a boosted version of themselves. In

should be noted that in two dimensions one can build regular lattices that do not have

this problem, but this is no longer possible in higher dimension [14].

A causal set C is then said to embed faithfully into a manifold M if there exists an

embedding f : C → M such that 1) f(x) ∈ J− (f(y)) iff x ≺ y, 2) the embedded points

are distributed uniformly with density ρ, and 3) the continuous geometry varies only on

a length scale much greater than the length scale of the causal set l = ρ−
1
d [5, 16]. J−(·)

denotes the causal past and the first condition means that the order of the elements

in the causal set is the same as the causal order of the points where the elements are

embedded in the manifold. It is expected that if there exists a faithful embedding of

a causal set into a manifold this manifold is essentially unique on scales greater than

l. This is so far not proven in general and called the Hauptvermutung (engl: main

conjecture) of causal sets. More precisely it states [5, 16]

Hauptvermutung. If there exists f1 : C → (M1, g1) and f2 : C → (M2, g2) then M1

and M2 are related by a C-preserving diffeomorphism h : M1 → M2, where C-preserving
means f2 = h ◦ f1, which is an approximate isometry of g1 to g2.

Although the Hauptvermutung is not proven yet it is already clear that a lot of continuum

information can be extracted from a causal set. This includes the dimension [17, 18] and
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(a) causal set
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(b) boosted causal set
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(c) regular lattice
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(d) boosted regular lattice

Fig. 1.1: a) part of a causal set sprinkled into a section of two-dimensional Minkowski
space, b) the same section after the causal set was boosted with γ = 4;
c) a regular lattice in Minkowski space, d) points in regular lattice after a boost
with γ = 4;
causal connections between elements are not shown
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Fig. 1.2: Causal set with nearest neighbor connections between elements. Connections
to elements outside the frame are not shown.
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topology [19] of the manifold as well as time-like [20] and space-like [21] geodesic distances

and scalar curvature [22].

Causal sets, just as any partially ordered set, can be visualized in a Hasse diagram.

In a Hasse diagram only the relation to nearest neighbors are shown. Two elements x

and y with x ≺ y are nearest neighbors iff there exists no element z such that x ≺ z ≺ y.

(x ≺ y means x ⪯ y but x ̸= y.) Elements which are higher in the order are shown

further in the top and elements which precede them further to the bottom of the picture.

For the causal set of figure 1.1c this is shown in figure 1.2. Here the causal set is also still

embedded into two dimensional Minkowski space and one can see that the links between

elements are mainly concentrated along the light cones. In many space-times a causal

set element has in principle an infinite number of nearest neighbors in a narrow region

along its light cone. This makes causal sets highly non-local.

1.2.3 Dynamics of Causal Sets

The dynamics of Causal Sets are still under development. The theory allows one to write

the path integral over the metric as a sum over causal set configurations. The problem

is that the sample space of such configurations is dominated by Kleitman-Rothschild

type [23] and other non-manifold-like (i.e. not faithfully embeddable into a manifold)

causal sets.

Causal sets of the Kleitman-Rothschild type for example consist of three layers with

a quarter of the elements being in the first or third layer each and the rest being in the

middle layer. In the causal set context, these would resemble space-times with only two

time steps.

The challenge is therefore to find an action that suppresses the non-manifold like

causal sets in the path sum. It has already been shown that the Benincasa-Dowker

action [24], which is the causal set version of the Einstein-Hilbert action, can suppress

two-level orders [25], which is another large class of non-manifold like causal sets.

Applications of the path sum over causal sets include Markov Chain Monte Carlo

simulations on the set of two-dimensional causal sets. The simulations exhibit phase

transitions between manifold-like and non-manifold-like causal sets, based on the value

of a factor β which is introduced to turn the quantum measure exp
(
i
ℏS(C)

)
into a

probability measure exp
(
−β

ℏS(C)
)
[26, 27]. In [28] the path sum over two-dimensional

causal sets was used in a cosmological context.

Another, very different approach, which is however somewhat natural to causal sets

and requires only a few basic assumptions are (classical) sequential growth models [29].

Here the causal set is “grown” by subsequent transitions in each of which an element
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is added space-like or to the future of existing elements and each possible transition is

given a probability.

The requirements imposed on the dynamics are discrete general covariance (the prob-

ability of transitioning from a causal set C to a causal set C′ should not depend on the

order in which elements are added), the Bell causality condition (the ratio of transition

probabilities depends only on the elements in the past of the new element), and that the

sum of probabilities of transition from a given causal set gives unity. An easy example

is transitive percolation where the probability of the new element being in the future of

another element is fixed. It was shown that in certain sequential growth models which

exhibit a bouncing cosmology the dynamics converge towards transitive percolation [30].

One proceeds by defining a probability measure space for the causal sets. So far these

growth models use classical probability distributions and the idea behind making classical

sequential growth models quantum is to replace the classical probability measure with

a quantum measure [31]. This can however in general not easily be extended to the

whole sigma algebra (the collection of subsets closed under compliment and countable

unions) [32], in which physically interesting configurations lie.

A more detailed review on Causal Sets can be found in [33].

1.3 Motivation

To be able to reconstruct continuum physics from a theory where causal sets are fun-

damental and to possibly proof the Hauptvermutung it is desirable within Causal Set

Theory to be able to tell if a given causal set can be faithfully embedded into a manifold

and reconstruct that manifold from the causal set if it is. Therefore it is important to

find techniques that extract information about the manifold from a causal set. Several

procedures to extract such information are already proposed in the literature [17–22]

and this thesis aims to extend this list by providing a generalization of the Causal Set

d’Alembertian, which allows for extracting higher powers of the Ricci-scalar directly

from a causal set.

The Causal Set d’Alembertian B(d)(·), defined in the next chapter, is an operator on

causal sets that gives direct information about curvature in form of the Ricci-scalar R.

It also appears in the Benincasa-Dowker action [24]

S
(d)
k (C) = ℏ

1

ρld−2
p

∑
x∈C

B(d)(−1), (1.3)

8



where lp in the formula is the Planck-length. It would be valuable to have more oper-

ators of this form. This would allow to extract more information about the curvature

directly from the causal set and one could possibly construct more general terms for the

action, that would correspond to terms beyond the Einstein-Hilbert action for General

Relativity. With this one could study Causal Set dynamics in more variety and one

could imagine to use causal sets in combination with alternative theories of gravity.

Motivation to extract information about higher order curvature from causal sets also

comes from other Quantum Gravity theories, especially Asymptotic Safety. Stressing

that physical discreteness in the dynamics and kinematical discreteness do not imply

one another, causal sets can be seen as merely a UV regulator for the path integral

over geometries [34]. The question then arises if the continuum limit for the dynamics

of the regulator exists. The existence of a continuum limit is related to a fixed point

when scaling the couplings of the theory. Finding such a fixed point would give an

independent proof of the Asymptotic Safety conjecture, that gravity possesses an UV

fixed point and is therefore renormalizable and predictive, in a Lorentzian setting. So

far the Asymptotic Safety program uses mainly the Euclidean setting as the continuum

techniques in a Lorentzian setting are technically challenging.

One way of finding such a fixed point is by refining the discretization while adjusting

the coupling constants of the discrete theory in a way that keeps physical observables

constant. If a continuum limit exists the coupling then flow towards the fixed point. The

existence of a continuum limit and a fixed point then implies the existence of a second-

or higher-order phase transition in the phase diagram of coupling constant space, where

scale invariance can be enforced. [35] discusses this in the context of Causal Dynamical

Triangulations [36], which is a way of discretizing space-time into spacial hypersurfaces

which are triangulated by 4-simplices. The advantage of using causal sets instead, is the

intrinsic Lorentzian nature of the theory, which does not rely on a foliation of space-time.

Also taking the density of a causal set to infinity gives a clearer notion of a continuum

limit then taking the length of lattice links in Causal Dynamical Triangulations to zero

as the relation between the length of a lattice link has no clear correspondence to any

physical length.

An alternative way to search for a continuum limit is to use the Renormalization

Group equation for causal sets [34, 37] to look for a fixed point in the space of couplings.

In both cases one first has to span the coupling space or rather a relevant sub-space

thereof in which one wants to search for the fixed point. Calculations in the Euclidean

setting indicate that the coupling of the R2 term is relevant, i.e. a free parameter of

the theory [38–40]. It would then be important to include the coupling associated with

9



this term in the search for a fixed point in the case of causal sets, which is why it

is important to generalize the Causal Set d’Alembertian to higher orders and extend

the Benincasa-Dowker action to include this term. Such an extension beyond Einstein-

Hilbert is difficult to find for the action in Causal Dynamical Triangulations.

The rest of this thesis is structure as follows: In the next chapter the Causal Set

d’Alembertian is defined and its continuum limit is proven for curved space-times of

arbitrary dimension in chapter 3. Chapter 4 introduces a new operator which has R2

and □R in its continuum limit. Chapter 5 provides and introduction to numerical sim-

ulations for sprinkled causal sets and discusses simulation results for the Causal Set

d’Alembertian and the new operator. At the end an outlook for the future of this

research is presented.
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Chapter 2

Introduction to the Causal Set

d’Alembertian

After introducing causal sets as the foundation of space-time the question arises how

matter fields propagate on this discrete background. The simplest form of a matter field

is a scalar field ϕ. To describe its propagation one needs a causal set analog of the

d’Alembertian operator □ = −∂2t + ∂2x1
+ . . . + ∂2xd

(c = 1). Such an operator was first

introduced in [13, 41] for two-dimensional causal sets, where it is defined as

B(2)(ϕ(x)) = 4ρ

−1

2
ϕ(x) +

∑
y∈L1(x)

ϕ(y)− 2
∑

y∈L2(x)

ϕ(y) +
∑

y∈L3(x)

ϕ(y)

 . (2.1)

ρ is the density of the causal set and the sums run over contributions from different

layers Li. A layer is defined by

Li(x) = {y ∈ C | y ≺ x ∧ |I(x, y)| = i+ 1} (2.2)

with I(x, y) = {z ∈ C | y ⪯ z ⪯ x} . (2.3)

I(x, y) is the causal interval between x and y. That is the intersection of the set of

elements in the future of y with the set of elements in the past of x. Elements in

L1(x) are exactly the nearest neighbors of x and an element y ∈ Li(x) has exactly i+ 1

elements (including x and y) in I(x, y). Figure 2.1 visualizes this. It shows a causal set

embedded into a cone in two dimensional Minkowski space. Elements in the first layer

of the element at the tip of the cone are colored in red, elements in the second layer are

colored in blue and elements in the third layer are colored orange. Other layers are not

colored. The dashed lines indicate where the boundary between layers lies on average

over many such causal sets.

The Causal Set d’Alembertian was extended to 4-dimensional causal sets [22, 24, 42]
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Fig. 2.1: Causal Set sprinkled into a cone in two dimensional Minkowski space. Elements
in the first layer of the element at the tip of the cone are colored red, elements
of the second layer are colored blue and elements of the third layer are colored
orange. The expectation value for the boundary between layers are indicated
by dashed lines.
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by Benincasa and Dowker and later to the d-dimensional case [43, 44] by Dowker and

Glaser. In d dimension the Causal Set d’Alembertian of a scalar field is defined as

B(d) (ϕ(x)) = ρ
2
d

αdϕ(x) + βd

nd∑
i=1

C
(d)
i

∑
y∈Li(x)

ϕ(y)

 . (2.4)

The constants αd and βd are dimension-dependent and have been found to be [44]

αd =


−2

c
2
d
d

Γ( d+2
d )

for even d

− c
2
d
d

Γ( d+2
d )

for odd d

, βd =


2Γ( d

2
+2)Γ( d

2
+1)

Γ( 2
d)Γ(d)

c
2
d
d for even d

d+1
2d−1Γ( 2

d
+1)

c
2
d
d for odd d

(2.5)

with cd =
2π

d−1
2

2
d
2
−1d(d− 1)Γ

(
d−1
2

) . (2.6)

In (2.4) the first nd layers are summed over and nd is taken as
⌊
d
2

⌋
+2 which is the min-

imum number necessary to achieve the right cancellations between the different layers.

The definition of the C
(d)
i will become clear shortly and an expression to compute them

is given in [44].

In this form the Causal Set d’Alembertian at point x depends only on the past of

x. Due to the nature of causal sets the operator is also non-local. It turns out that

locality is restored in the continuum limit in the sense that the main contribution comes

from an area close to x. We are interested the expectation value of the operator in

the continuum limit. For this one first averages over all causal sets which could have

originated from a sprinkling process. According to equation (1.2) the probability that

a causal set element is sprinkled into a point y with infinitesimal Volume
√
−gddy is

ρ
√
−gddy and the probability that this element at point y is in the i-th layer Li relative

to a causal set element sprinkled in point x, i.e. that there are i − 1 elements in the

causal interval between x and y, is (ρV(x,y))i−1

(i−1)! e−ρV(x,y) where V(x, y) is the Volume of

the causal interval between y and x. Therefore, when averaging over all sprinklings,

summing over a layer becomes integrating all points in the causal past of x, J−(x),

weighted with these probabilities:

∑
y∈Li

ϕ(y) →
∫
J−(x)

ϕ(y)
(ρV(x, y))i−1

(i− 1)!
e−ρV(x,y) · ρ

√
−gddy. (2.7)

Assuming there is a causal set element at point x, the Causal Set d’Alembertian (2.4)
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then turns into the averaged Causal Set d’Alembertian

B̄(d) (ϕ(x)) = E (B(ϕ(x)))

= αdρ
2
dϕ(x) + βdρ

d+2
d

∫
J−(x)

√
−gϕ(y)Pd(ρV)e−ρV(x,y)ddy,

(2.8)

where

Pd(ξ)e
−ξ =

nd∑
i=1

C
(d)
i

ξi−1

(i− 1)!
e−ξ (2.9)

is a dimension-dependent polynomial which can be written as

Pd(ρV)e−ρV = Ode
−ρV , (2.10)

where

O2n =
(dρ∂ρ + 2)(dρ∂ρ + 4) . . . (dρ∂ρ + 2n+ 2)

2n+1(n+ 1)!
for even d, (2.11a)

O2n+1 = O2n for odd d. (2.11b)

One can take this derivative operator together with (2.10) as the definition of the coef-

ficients C
(d)
i in the d’Alembertian.

As an example, in the two-dimensional case, one gets

B̄(2)(ϕ(x)) =

− 2ρϕ(x) + 4ρ2
∫
J−(x)

√
−gϕ(y)

(
1− 2ρV(x, y) + 1

2
(ρV(x, y))2

)
e−ρV(x,y)d2y.

(2.12)

It turns out that when taking the limit ρ→ ∞ and as proven in chapter 3 one gets

lim
ρ→∞

B̄(ϕ(x)) = □ϕ(x)− 1

2
R(x)ϕ(x) (2.13)

and the main contribution comes from a region close to x called W1 in chapter 3.
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Chapter 3

Proof for the limit of the Causal Set

d’Alembertian in arbitrary space-times

3.1 Definitions and coordinates

Before looking into higher order curvature terms it is useful to review the derivation for

the limit of the Causal Set d’Alembertian which gives the Ricci-scalar. Calculations to

get R2 will later involve the same kind of integrals and the results from this chapter

can be used. The following derivation follows closely the general outline of [24, 42] but

generalizes it to the n-dimensional case. It has already been shown in chapter 2 how the

average over causal sets for the d’Alembertian is taken. The goal is now to show that

B̄(d) (ϕ(x)) = αdρ
2
dϕ(x) + βdρ

d+2
d

∫
J−(x)

√
−gϕ(y)Pd(ρV)e−ρV(x,y)ddy (3.1)

−−−→
ρ→∞

□ϕ(x)− 1

2
R(x)ϕ(x).

For this it has to be assumed that the field ϕ is at least two times differentiable at x

and has compact support, so that the integration region becomes J−(x) ∩ suppϕ and

is finite. J−(x) denotes the causal past of x. It will further be assume that ϕ does not

diverge in the integration region. One can define Riemann normal coordinates [45] {yµ}
centered on x. In this coordinate system a point y has the coordinates yµ = saµ where s

is the geodesic distance between x and y and aµ is the unit tangent vector of this geodesic

at x. The coordinates are locally flat and well defined as long as the geodesic from x to

y is unique. In general dimension one can then define spatial polar coordinates {r, θi}
in a neighborhood of x and the coordinates u = 1√

2

(
−y0 − r

)
and v = 1√

2

(
−y0 + r

)
.

Note that u and v are in this case defined to increase into the past which makes things

easier since the integral will run over the causal past of x. One further defines Null

Gaussian Normal Coordinates [46] {V,U, θi} in a neighborhood of ∂J−(x) that contains
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∂J−(x) ∩ suppϕ. In this coordinate system V is the affine parameter along each null

geodesic γ ({θi}) emanating from x and {V, 0, θi} are coordinates of the light cone of

which ∂J−(x) is the part in the past of x. U is defined as the affine parameter along

the null geodesic at each point of the hypersurface {V, 0, θi} perpendicular to it. When

also defined to be past directed, the Null Gaussian Normal Coordinates coincide with

the Riemann Normal Coordinates in a region close to x where both coordinate systems

are valid.

In the near region where the Riemann Normal Coordinates are valid the metric can

be expanded as [43, 45]

gµν(y) = ηµν −
1

3
Rµανβy

αyβ + . . . (3.2)

√
−g = 1− 1

6
Rµνy

µyν + . . . (3.3)

where the ellipsis stand for terms with higher order in curvature. The volume V(x, y) in
the near region can be expanded in d dimensions as [33, 43, 47]

V(x, y) = V0d

(
1− d

24(d+ 1)(d+ 2)
Rηµνy

µyν +
d

24(d+ 1)
Rµνy

µyν +O
(
R2
))

, (3.4)

V0d = 2
V (Sd−2)

d(d− 1)

(τ
2

)d
= cd(uv)

d
2 , (3.5)

where V (Sd−2) is the volume of a Sd−2 sphere and τ2 = ηµνy
µyν = 2uv.

We can parallel transport a pseudo-orthonormal frame along each null geodesic ema-

nating from x to define Null Fermi Normal Coordinates [48] {z+, z−, zi} at each point of a

geodesic γ ({θi}) such that a point y in the neighborhood of the geodesic with Gaussian

Normal Coordinates {V,U, θi} lies at coordinates {z+ = V, z− = U, zi = 0}. Follow-

ing the prescription in [42], after an appropriate re-scaling of the Null Fermi Normal

Coordinates the metric in the limit of small U becomes

ds2 = U
(
−2dz+dz− + δabdz

adzb −R−a+b

(
z+
)
zazb

(
dz+

)2)
+O

(
U

3
2

)
(3.6)

and the Volume becomes

V(x, y) = U
d
2 f0 (V, θi) + U

d
2
+1f1 (U, V, θi) . (3.7)

where f0(V, θi) is an increasing function of V and is bigger than zero for positive V as

the volume is zero for V = 0.
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The integration region J−(x) ∩ suppϕ is divided into the three parts

W1 =
{
y ∈ J−(x) | 0 ≤ u ≤ v ≤ a

}
, (3.8)

W2 =

{
y ∈ J−(x) | 0 ≤ a′ ≤ V ≤ L ∧ 0 ≤ U ≤ b

2
d

f0 (V, θi)
2
d

}
, (3.9)

W3 =
(
J−(x) ∩ suppϕ

)
\ (W1 ∪W2) . (3.10)

W1 is a small causal diamond to the past of x and W2 is a region close to the light cone

of x. W3 are all other points in the support of ϕ and to the past of x. The parameter a

is chosen small enough such that in W1 the corrections to equations (3.3) and (3.4) are

small and ϕ can be expanded as

ϕ(y) = ϕ(x) + ϕ′(x)µy
µ +

1

2
ϕ′′(x)µνy

µyν + ψ(y)yµyνyσ (3.11)

with ψ being a function that captures all higher order terms. Accordingly b is chosen

small enough such that for all y ∈W2 equation (3.7) is valid. L is chosen big enough and

a′ small enough so that W1 ∪W2 ⊇ ∂J−(x) ∩ suppϕ and that W1 and W2 overlap (so

that there is no point in the integration region and near the light cone that is neither in

W1 nor in W2).

3.2 The far region

First look at the region W3. For all y ∈ W3 the volume V(x, y) is bigger then zero and

also 0 < V inf := infy∈W3 V(x, y). This is particularly because one can choose L to be

finite since we have chosen ϕ to have compact support. Now one gets for the Integral∣∣∣∣∫
W3

ddy
√
−gϕ(y)Pd(ρV)e−ρV(x,y)

∣∣∣∣ ≤ e−ρV inf

∫
W3

ddy
∣∣√−gϕ(y)Pd(ρV)

∣∣ . (3.12)

This shows that this part of the integral declines exponentially with increasing ρ and

will not contribute in the continuum limit.

3.3 The light cone region

Next look at the region W2. The goal is to bound the absolute value of the integral over

the region. One has
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∣∣∣∣∫
W2

ddy
√
−gϕ(y)Pd(ρV)e−ρVd(x,y)

∣∣∣∣ (3.13)

=

∣∣∣∣∣∣∣
∫ L

a′
dV

∫
Sd−2

dΩ

∫ b
2
d

f0(V,θi)
2
d

0
dU

√
−gϕ(y)Ode

−ρV(x,y)

∣∣∣∣∣∣∣ (3.14)

≤
∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣∣∣Od

∫ b
2
d

f0(V,θi)
2
d

0
dU

√
−gϕ(y)e−ρV(x,y)

∣∣∣∣∣∣∣ (3.15)

=

∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣∣∣Od

∣∣∣∣∣∣∣
∫ b

2
d

f0(V,θi)
2
d

0
dU

√
−gϕ(y)e−ρV(x,y)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ . (3.16)

For the last step the following identity was used.∣∣∣∣ ∂∂x |f(x)|
∣∣∣∣ = ∣∣∣∣sgn (f(x)) ∂

∂x
f(x)

∣∣∣∣ = ∣∣∣∣ ∂∂xf(x)
∣∣∣∣ (3.17)

Now, using the uniform norm on W2 ∥f(y)∥∞ = supy∈W2
|f(y)| one can further bound

the integral as

(3.16) ≤
∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣∣∣
∥∥√−g

∥∥
∞ ∥ϕ∥∞Od

∫ b
2
d

f0(V,θi)
2
d

0
dU
∣∣∣e−ρV(x,y)

∣∣∣
∣∣∣∣∣∣∣ (3.18)

=
∥∥√−g

∥∥
∞ ∥ϕ∥∞

∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣∣∣Od

∫ b
2
d

f0(V,θi)
2
d

0
dU
∣∣∣e−ρV(x,y)

∣∣∣
∣∣∣∣∣∣∣ . (3.19)

Everything in front of the integral is just a constant multiplying the rest and will be

ignored in the following equations to make them shorter. Putting in equation (3.7) for
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the volume and writing the second part of the exponential as a series yields

∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣∣∣Od

∫ b
2
d

f0(V,θi)
2
d

0
dU

∣∣∣∣∣e−ρ

(
U

d
2 f0(V,θi)+U

d
2+1f1(U,V,θi)

)∣∣∣∣∣
∣∣∣∣∣∣∣ (3.20)

=

∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣∣∣Od

∫ b
2
d

f0(V,θi)
2
d

0
dUe−ρU

d
2 f0(V,θi)

∣∣∣∣∣∣∣
∞∑
l=0

(−1)lρl
(
U

d
2
+1
)l

l!
f1(U, V, θi)

l

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

(3.21)

One can now get rid of the inner absolute value. As by using the triangle inequality and

again the uniform norm on W2 the integral can be bounded by

(3.21) ≤
∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣∣∣Od

∞∑
l=0

∥f1(U, V, θi)∥l∞
l!

ρl
∫ b

2
d

f0(V,θi)
2
d

0
dU U l( d

2
+1)e−ρU

d
2 f0(V,θi)

∣∣∣∣∣∣∣ .
(3.22)

From this the integral over U can be taken. When substituting x = U
d
2 that integral is

of the form ∫ a

0
dx xk−1e−cx =

γ(k, ca)

ck
(k > 0), (3.23)

where γ(k,m) is the lower incomplete gamma function. Defining λ = l + 2
d(l + 1) one

gets

(3.22) =

∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣Od

∞∑
l=0

∥f1(U, V, θi)∥l∞
l!

ρl
2

d

∫ b
f0(V,θi)

0
dxxλ−1e−ρxf0(V,θi)

∣∣∣∣∣
(3.24)

=
2

d

∫ L

a′
dV

∫
Sd−2

dΩ

∣∣∣∣∣Od

∞∑
l=0

∥f1(U, V, θi)∥l∞
l!

ρl
γ(λ, bρ)

ρλfλ0 (V, θi)

∣∣∣∣∣ . (3.25)
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From here one can apply the triangle inequality again and then apply the operator Od.

With n =
⌊
d
2

⌋
such that Od = O2n this results in

(3.25) ≤ 2

d

∫ L

a′
dV

∫
Sd−2

dΩ

∞∑
l=0

∥f1(U, V, θi)∥l∞
l!fλ0 (V, θi)

∣∣∣∣Od
γ(λ, bρ)

ρλ−l

∣∣∣∣ (3.26)

=
1

2nd(n+ 1)!

∫ L

a′
dV

∫
Sd−2

dΩ

∞∑
l=0

∥f1(U, V, θi)∥l∞
l!fλ0 (V, θi)∣∣∣∣∣Aλ,l(n)

γ(λ, bρ)

ρλ−l
+

n∑
k=0

(−1)kBλ,l(k + 1, n)d1+kbλ+kρl+ke−bρ

∣∣∣∣∣ .
(3.27)

where for n ≥ 0 and 0 ≤ m ≤ n+ 1

Aλ,l(n) :=

n∏
j=0

(d(l − λ) + 2j + 2) , (3.28)

Bλ,l(m,n) :=


Aλ,l(n), if m = 0

1, if m = n+ 1

Bλ,l(m,n− 1) (d(l +m− 1) + 2n+ 2) +Bλ,l(m− 1, n− 1), otherwise.

(3.29)

The proof for this step is shown in appendixA. In equation (3.27) f0(V, θi) is the only

term left depending on the integration variables. By writing everything else in front of

the integral and using the triangle inequality one last time, one can finally bound the

original integral (3.13) by∣∣∣∣∫
W2

ddy
√
−gϕ(y)Pd(ρV)e−ρVd(x,y)

∣∣∣∣
≤ 1

2nd(n+ 1)!

∥∥√−g
∥∥
∞ ∥ϕ∥∞ ·

∞∑
l=0

[
∥f1(U, V, θi)∥l∞

l!

(
|Aλ,l(n)|

γ(λ, bρ)

ρλ−l
+

n∑
k=0

|Bλ,l(k + 1, n)| d1+kbλ+kρl+ke−bρ

)

·
∫ L

a′
dV

∫
Sd−2

dΩ
1

fλ0 (V, θi)

]
.

(3.30)

Assuming
√
−g does not diverge inW2 and because f0(V, θi) > 0 for V > 0 everything in

equ. (3.30) is finite and one can see that for ρ→ ∞ all terms either vanish exponentially
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or are of the order ρl−λ = ρ−
2
d
(l+1). As in the d’Alembertian the integral is multiplied by

a factor ρ
d+2
d this means that in the d’Alembertian the region W2 will contribute terms

of order

ρ
d+2
d ρ−

2
d
(l+1) = ρ1−l 2

d . (3.31)

These terms will automatically vanish for ρ → ∞ if l > d
2 . For l ≤ d

2 the terms are

however zero anyways, because one has to take into account that they are all multiplied

by |Aλ,l(n)| and

Aλ,l(n) =

n∏
j=0

(d(l − λ) + 2j + 2) =

n∏
j=0

2(j − l), (3.32)

which is zero if l ≤ n ⇔ l ≤
⌊
d
2

⌋
. This is equivalent with l ≤ d

2 as l is an integer. From

this one concludes that

lim
ρ→0

∫
W2

ddy
√
−gϕ(y)Pd(ρV)e−ρVd(x,y) = 0, (3.33)

so that the region W2 also does not contribute to the continuum limit. The region will

however contribute corrections of order O
(
ρ−

2
d

)
for even dimension and O

(
ρ−

1
d

)
for

odd dimension. The value of these corrections can unfortunately to current knowledge

not be calculated in general space-times except one finds a way to express the functions

f0(V, θi) and f1(U, V, θi) in the volume expansion in more detail.
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3.4 The near region

3.4.1 Finding the contributing terms

For the regionW1 on can use the expansions (3.3), (3.4), and (3.11) as well as expanding

the exponential and the integrals becomes∫
W1

ddy
√
−gϕ(y)Pd(ρV)e−ρV(x,y)

=

∫ a

0
dv

∫ v

0
du

∫
Sd−2

dΩ

(
v − u√

2

)d−2(
1− 1

6
Rµν(x)y

µyν + T (y)yµyνyσ
)

(
ϕ(x) + ϕ′(x)µy

µ +
1

2
ϕ′′(x)µνy

µyν + ψ(y)yµyνyσ
)

Ode
−ρcd(uv)

d
2

∞∑
l=0

(−1)lρlcld(uv)
dl
2

l!

(
− dR(x)ηµνy

µyν

24(d+ 1)(d+ 2)
+
dRµν(x)y

µyν

24(d+ 1)
+ S(y)yµyνyσ

)l

(3.34)

T (y), ψ(y) and S(y) are functions which capture all the higher order terms.

The goal now is to see which of these terms in the integral contribute to which order

in ρ. After performing the angular integration one is left with terms of the form∫ a

0
dv

∫ v

0
du (v − u)d−2 (v − u)α(v + u)β(uv)l

d
2Odρ

le−ρcd(uv)
d
2 . (3.35)

Because everything inside the integral is radial symmetric one can change the integration

limits in the following manner:∫ a

0
dv

∫ v

0
du . . .→ 1

2

∫ a

0
dv

∫ a

0
du . . . (3.36)

Also one has

(v − u)d−2+α (v + u)β(uv)l
d
2 (3.37)

=

[
α+d−2∑
i=0

(
α+ d− 2

i

)
vi(−u)α+d−2−i

] β∑
j=0

(
β

j

)
vjuβ−j

 (uv)l
d
2 (3.38)

=

α+d−2∑
i=0

β∑
j=0

(
α+ d− 2

i

)(
β

j

)
(−1)α+d−2−ivi+j+l d

2uα+β+d−2−i−j+l d
2 . (3.39)
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so that one is effectively left with a sum of integrals of the form∫ a

0
dv

∫ a

0
du vm+l d

2uk+l d
2Ode

−ρcd(uv)
d
2 (3.40)

and m, k are integers between 0 and α+ β + d− 2. It is important to note that

max(m, k) ≥
⌈
α+ β + d− 2

2

⌉
. (3.41)

To analyze the integral the first step is to perform a coordinate transformation

x = u
d
2 , y = v

d
2 to get

4

d2

∫ a

0
dy

∫ a

0
dx yµxκOde

−ρcdxy, (3.42)

where a = a
d
2 , µ = 2

d(m+ 1) + l − 1, κ = 2
d(k + 1) + l − 1.

For the following it is assumed that µ ≥ κ. This can be done without loss of generality

because the order of integration can be swapped. Then the solution of the integral is

4

d2
1

2n+1(n+ 1)!

[
Aκ+1,l(n)

aµ+κ+2ρl

(κ+ 1)(µ+ 1)
F2 2

(
κ+ 1, µ+ 1

κ+ 2, µ+ 2

∣∣∣∣∣ −a2cdρ

)

+c−µ−1
d aκ−µρl−µ−1

n∑
ι=0

(−1)ιBκ+1,l(ι+ 1, n)d1+ιγ
(
µ+ ι+ 1, a2cρ

)]
.

(3.43)

Here n = ⌊d2⌋ and Al(n), Bl(n,m) are defined as in the previous section or appendixA re-

spectively. Fp q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

is the generalized hypergeometric function. The details

of the calculation can be found in AppendixB.

For the first term in (3.43) one can separate the two cases µ = κ and µ ̸= κ. For

the case µ = κ it is useful to write the generalized hypergeometric function through the

Meijer G-function [49]

F2 2

(
κ+ 1, µ+ 1

κ+ 2, µ+ 2

∣∣∣∣∣ −a2cdρ

)
=

Γ(κ+ 2)Γ(µ+ 2)

Γ(κ+ 1)Γ(µ+ 1)
G1,2

2,3

(
a2cdρ

∣∣∣∣∣ κ, µ

0, κ− 1, µ− 1

)
,

(3.44)
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as for µ = κ this can be further simplified by [50]

G1,2
2,3

(
a2cdρ

∣∣∣∣∣ κ, µ

0, κ− 1, µ− 1

)
= e−a2cdρ

(
a2cdρ+

(
a2cdρ

)2)
. (3.45)

So in the limit ρ→ ∞ the fist term in equ. (3.43) vanishes exponentially for µ = κ.

For the case µ ̸= κ the first term in equ. (3.43) can be transformed by using [51] and

[52] as

Aκ+1,l(n)
aµ+κ+2ρl

(κ+ 1)(µ+ 1)
F2 2

(
κ+ 1, µ+ 1

κ+ 2, µ+ 2

∣∣∣∣∣ −a2cdρ

)
(3.46)

=Aκ+1,l(n)
aµ+κ+2ρl

(κ+ 1)(µ+ 1)

1

µ− κ

[
(µ+ 1) F1 1

(
κ+ 1

κ+ 2

∣∣∣∣∣ −a2cdρ

)
−

(κ+ 1) F1 1

(
µ+ 1

µ+ 2

∣∣∣∣∣ −a2cdρ

)] (3.47)

=Aκ+1,l(n)
aµ+κ+2ρl

µ− κ

[(
a2cdρ

)−κ−1
γ
(
κ+ 1, a2cdρ

)
−
(
a2cdρ

)−µ−1
γ
(
µ+ 1, a2cdρ

)]
(3.48)

=
Aκ+1,l(n)

µ− κ

[
aµ−κc−κ−1

d ρl−κ−1γ
(
κ+ 1, a2cdρ

)
− aκ−µc−µ−1

d ρl−µ−1γ
(
µ+ 1, a2cdρ

)]
.

(3.49)

This contributes to the order l − κ− 1 and l − µ− 1 in ρ. In order to contribute in the

continuum limit this has to be bigger or equal to −d+2
d . So for a term to contribute it

needs l − κ − 1 = l −
(
2
d(k + 1) + l − 1

)
− 1 ≥ −d+2

2 ⇔ k ≤ d
2 or m ≤ d

2 respectively.

However,

Aκ+1,l(n) =
n∏

ζ=0

(d (l − (κ+ 1)) + 2ζ + 2) (3.50)

=
n∏

ζ=0

(
d

(
l − (

2

d
(k + 1) + l − 1 + 1)

)
+ 2ζ + 2

)
(3.51)

=

n∏
ζ=0

2 (−k + ζ) , (3.52)

so that Aκ+1,l = 0 for k ≤ n =
⌊
d
2

⌋
. Because k is an integer the term with ρl−κ−1 will

not contribute and only give corrections of order ρ−
2
d for even dimensions respectively

ρ−
1
d for odd dimensions and lower.
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One is left with contributions of order l−µ− 1 and the contributions from the second

term of equ. (3.43) which are of the same order. As it was assumed that µ ≥ k ⇔ m ≥ k

and with equation (3.41) it is clear that m is at least
⌈
α+β+d−2

2

⌉
. The condition m ≤ d

2

for a term to contribute in the limit can then be transformed into the condition that

α + β ≤ 2. The order of the corrections is again ρ−
2
d for even dimensions and ρ−

1
d for

odd dimensions.

When applying these restriction to the original integral (3.34) only terms with at most

order 2 in the coordinate yµ fulfill them and one is left with only the three terms∫
W1

ddy

(
ϕ(x) + ϕ′(x)µy

µ +
1

2
ϕ′′(x)µνy

µyν
)
Ode

−ρcd(uv)
d
2 , (3.53)∫

W1

ddy

(
−1

6
Rµν(x)y

µyν
)
ϕ(x)Ode

−ρcd(uv)
d
2 , (3.54)∫

W1

ddy ϕ(x)Od

(
−ρcd(uv)

d
2

(
− dR(x)ηµνy

µyν

24(d+ 1)(d+ 2)
+
dRµν(x)y

µyν

24(d+ 1)

))
e−ρcd(uv)

d
2 .

(3.55)

3.4.2 Results for the remaining integrals

Remember that the averaged Causal Set d’Alembertian is

B̄(d) (ϕ(x)) = αdρ
2
d + βdρ

d+2
d

∫
J−(x)

√
−gϕ(y)Ode

−ρVd(x,y)ddy (3.56)

and the goal was to show that

lim
ρ→∞

B̄(d) (ϕ(x)) = □ϕ(x)− 1

2
R(x)ϕ(x). (3.57)

From the three contributing terms of the integral (3.53) will give the contributions for

□ϕ(x), and as shown in [44] (3.54) and (3.55) will result in −1
2R(x)ϕ(x) in the continuum

limit. This section will focus on (3.53) and add some detail on how the results arise.

The first term of (3.53) will give rise to the integral

V (Sd−2)

∫ a

0
dv

∫ v

0
du

(
v − u√

2

)d−2

ϕ(x)Ode
−ρcd(uv)

d
2 . (3.58)

This will give a non-vanishing contribution, but the Causal Set d’Alembertian is designed

in a way that this contribution gets canceled. In fact as is done in [44], αd can be derived
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from the definition

αd := −βd lim
ρ→∞

ρV (Sd−2)

∫ a

0
dv

∫ v

0
du

(
v − u√

2

)d−2

ϕ(x)Ode
−ρcd(uv)

d
2 . (3.59)

From this it is clear that the contribution of the first term in (3.53) will cancel with the

first term of the d’Alembertian.

The second term in (3.53) will be proportional to∫ a

0
dv

∫ v

0
du(v − u)d−2(v + u)Ode

−ρcd(uv)
d
2 (3.60)

after angular integration. This integral can be expanded as

1

2

d−2∑
i=0

(
d− 2

i

)
(−1)d−2−i

∫ a

0
dv

∫ a

0
du
(
vi+1ud−2−i + viud−2−i+1

)
Ode

−ρcd(uv)
d
2 . (3.61)

In this step also the integration bounds where changed which is possible due to the fact

that everything in the integral is radially symmetric. This allows one to later change

the order of integration and effectively rename v → u, u→ v. Using

n∑
i=0

(
n

i

)
xiyn−i =

n∑
i=0

(
n

i

)
xn−iyi (3.62)

the integral can be written as

1

2

d−2∑
i=0

(
d− 2

i

)[
(−1)d−2−i

∫ a

0
dv

∫ a

0
du vi+1ud−2−iOde

−ρcd(uv)
d
2

+(−1)i
∫ a

0
dv

∫ a

0
du vd−2−iui+1Ode

−ρcd(uv)
d
2

]
.

(3.63)

After renaming the variables and changing the order of integration in the second integral

one finally gets

1

2

d−2∑
i=0

(
d− 2

i

)[
(−1)d−2−i + (−1)i

] ∫ a

0
dv

∫ a

0
du vi+1ud−2−iOde

−ρcd(uv)
d
2 . (3.64)

If d is odd all terms cancel and the result is 0. In even dimensions this cancellation does
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not take place, but one has a sum of integrals of the form∫ a

0
dv

∫ v

0
du vmukOde

−ρcd(uv)
d
2 (3.65)

with

min
i

max(m, k) =
d

2
+ 1. (3.66)

As was shown, in order to contribute to the continuum limit of the d’Alembertian a term

must have max(m, k) ≤ d
2 . Therefore this integral will not contribute to the continuum

limit and only give corrections to it.

The last term in (3.53) contains □ϕ(x). By using □ϕ(x) =
(
−∂2t +

∑
i ∂

2
i

)
ϕ(x) the

integral after angular integration becomes

V (Sd−2)

2

∫ a

0
dv

∫ v

0
du

(
v − u√

2

)d−2 [(v + u)2

2
∂2t ϕ(x) +

(v − u)2

2(d− 1)

(
∂2t +□

)
ϕ(x)

]
Ode

−ρcd(uv)
d
2 .

(3.67)

Using the results from [44] one has for even dimensions

lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2

∫ a

0
dv

∫ v

0
du

(
v − u√

2

)d−2(v + u√
2

)2

Ode
−ρcd(uv)

d
2 (3.68)

= lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2

d−2∑
i=0

2∑
j=0

(
d− 2

i

)(
2

j

)
(−1)i

2
d
2

ad+2

(i+ j + 1)(d+ 2)

Fd
2
+1 d

2
+1

(
2
d(i+ j + 1), 2d + 1, . . . , 2
2
d(i+ j + 1) + 1, 2d , . . . , 1

∣∣∣∣∣ −adcdρ
)
(3.69)

= −βd V (Sd−2)
Γ
(
2 + 2

d

)
Γ(d− 1)

2
d
2
−1(d+ 2)2Γ

(
1 + d

2

)
Γ
(
d
2

) = −1, (3.70)
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lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2

1

d− 1

∫ a

0
dv

∫ v

0
du

(
v − u√

2

)d

Ode
−ρcd(uv)

d
2 (3.71)

= lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2(d− 1)

d∑
i=0

(
d

i

)
(−1)i

2
d
2

ad+2

(i+ 1)(d+ 2)

Fd
2
+1 d

2
+1

(
2
d(i+ 1), 2d + 1, . . . , 2
2
d(i+ 1) + 1, 2d , . . . , 1

∣∣∣∣∣ −adcdρ
)
(3.72)

= βd V (Sd−2)
2

d
2
−1Γ

(
2
d + 1

)
Γ
(
d−1
2

)
d(d+ 2)

√
πΓ
(
d
2 + 1

)
c
d+2
d

d

= 1, (3.73)

and for odd dimensions

lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2

∫ a

0
dv

∫ v

0
du

(
v − u√

2

)d−2(v + u√
2

)2

Ode
−ρcd(uv)

d
2 (3.74)

= lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2

d−2∑
i=0

2∑
j=0

(
d− 2

i

)(
2

j

)
(−1)i

2
d
2

ad+2

(i+ j + 1)(d+ 2)

Fd+1
2

+2 d+1
2

+2

(
1 + 2

d ,
2
d(i+ j + 1), 2d + 1, . . . , 2 + 1

d

2 + 2
d ,

2
d(i+ j + 1) + 1, 2d , . . . , 1 +

1
d

∣∣∣∣∣ −adcdρ
)
(3.75)

= −βd V (Sd−2)
2

d
2Γ
(
2
d + 1

)
d(d+ 1)(d− 1)c

d+2
d

d

= −1, (3.76)

lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2

1

d− 1

∫ a

0
dv

∫ v

0
du

(
v − u√

2

)d

Ode
−ρcd(uv)

d
2 (3.77)

= lim
ρ→∞

βdρ
d+2
d

V (Sd−2)

2(d− 1)

d∑
i=0

(
d

i

)
(−1)i

2
d
2

ad+2

(i+ 1)(d+ 2)

Fd+1
2

+2 d+1
2

+2

(
1 + 2

d ,
2
d(i+ 1), 2d + 1, . . . , 2 + 1

d

2 + 2
d ,

2
d(i+ 1) + 1, 2d , . . . , 1 +

1
d

∣∣∣∣∣ −adcdρ
)
(3.78)

= βd
V (Sd−2)

(d− 1)

2
d
2Γ
(
2
d + 1

)
d(d+ 1)c

d+2
d

d

= 1. (3.79)

So the final contribution is □ϕ(x).
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To summarize, this chapter together with [44] shows that

lim
ρ→∞

B̄(d) (ϕ(x)) = □ϕ(x)− 1

2
R(x)ϕ(x) (3.80)

in any dimension d ≥ 2. Further, it has also been shown that the first order corrections

are of order ρ−
2
d for even and ρ−

1
d for odd dimension.
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Chapter 4

Getting higher powers of the Ricci-Scalar

An easy way to get the higher order of some curvature terms is by applying the Causal

Set d’Alembertian twice. This allows to define

B2(ϕ(x)) := B (B(ϕ(x)))

= ρ
2
d

αdB (ϕ(x)) + βd

nd∑
i=1

C
(d)
i

∑
y∈Li(x)

B (ϕ(y))

 (4.1)

= ρ
2
d

αd

ρ 2
d

αdϕ(x) + βd

nd∑
i=1

C
(d)
i

∑
z∈Li(x)

ϕ(z)

 +

βd

nd∑
i=1

C
(d)
i

∑
y∈Li(x)

ρ 2
d

αdϕ(y) + βd

nd∑
i=1

C
(d)
i

∑
z∈Li(y)

ϕ(z)

 .

(4.2)

By averaging over sprinklings and transforming the sums into integrals as discussed at

in chapter 3 one gets

B̄2(ϕ(x)) =αdρ
2
d

[
αdρ

2
dϕ(x) + βdρ

d+2
d

∫
J−(x)

√
−gϕ(z)Pd(ρV)e−ρVd(y,z)ddz

]
(4.3)

+βdρ
d+2
d

∫
J−(x)

√
−g
[
αdρ

2
dϕ(y)+

βdρ
d+2
d

∫
J−(y)

√
−gϕ(z)Pd(ρV)e−ρVd(y,z)ddz

]
Pd(ρV)e−ρVd(x,y)ddy.

Now assuming the field ϕ is at least two time differentiable in the entire region J−(x)

and has compact support, one can first solve the inner integral using the results from
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the previous chapter to get

B̄2(ϕ(x)) = αdρ
2
d

[
□ϕ(x)− 1

2
R(x)ϕ(x) + Ω0(x)

]
+ βdρ

d+2
d

∫
J−(x)

√
−g
[
□ϕ(y)− 1

2
R(y)ϕ(y) + Ω0(y)

]
Pd(ρV)e−ρVd(x,y)ddy.

(4.4)

Here Ω0 is a function of order O(ρκ) with κ < 0 which captures the corrections to the

continuum limit. Now, by defining ψ(x) = □ϕ(x) − 1
2R(x)ϕ(x) + Ω0(x) and assuming

that ψ is two times differentiable at x one can again use the results from the previous

chapter to solve the integral. The assumptions means that ϕ has to be at least 4 times

partially differentiable at x and R and Ω are at least two times differentiable at x. The

result is

B̄2(ϕ(x)) =□

[
□ϕ− 1

2
Rϕ+Ω0

]
(x)− 1

2
R(x)

[
□ϕ− 1

2
Rϕ+Ω0

]
(x) + Ω1(x) (4.5a)

=□(□ϕ)(x)− 1

2
□ (R(x)ϕ(x)) +□Ω0(x)

− 1

2
R(x)□ϕ(x) +

1

4
R2(x)ϕ(x)− 1

2
Ω0(x) + Ω1(x)

(4.5b)

= (□−R(x))□ϕ(x)− 1

2
(□R)(x)ϕ(x)− ∂iR(x)∂

iϕ(x) +
1

4
R2(x)ϕ(x) +O(ρκ).

(4.5c)

Ω1 is again a function of order O(ρκ), κ < 0. The derivatives of Ω0 are of the same order

in ρ as Ω0 itself, because Ω0 does not explicitly depend on any coordinates. The order

of the first order corrections for B2 (ϕ(x)) in ρ is the same as for B (ϕ(x)).

In the special case of ϕ = 4 in a compact region one has

lim
ρ→∞

B̄2 (ϕ(x)) = R2(x)− 2□R(x). (4.6)

This shows that the Causal Set d’Alembertian can also be used to geht higher orders

of R and its derivatives. The next step would be B3 which would give terms with

□3, R□2,□R□, R2□,□2R,R□R,□R2, and R3 acting on ϕ.
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Chapter 5

Simulations

5.1 Introduction

The sprinkling of causal sets gives a very clear prescription on how to generate different

causal sets from a given manifold. This allows for a method of testing operators on

causal sets. First different causal sets are sprinkled in a manifold where the continuum

result is known and thereafter the causal set operator in question is applied to the causal

sets and the average is taken.

There exist already a few programs that generate sprinklings of causal sets [53, 54].

For this thesis another program was developed which can be found on github [55]. It is

written in python. This makes the program slower but easy to run on any operating

system and easy to adjust for other people as python is a popular programming lan-

guage [56]. The program can sprinkle causal sets in a space-time cylinder, a causal cone

or a causal diamond in Minkowski, de Sitter or Anti-de Sitter space-time in arbitrary

dimension d ≥ 2, d ∈ N. The different forms of the sprinkling region are characterized by

a depth τ and a radius R which can both be freely chosen. Their definition is depicted

(0,0)

𝜏

𝑅

(a) cylinder

(0,0)

𝜏

𝑅

(b) cone

(0,0)

𝜏

𝑅

(c) diamond

Fig. 5.1: Different forms to sprinkle in.

32



in figure 5.1. The coordinates are chosen such that the origin is at the tip of the cone

or diamond and in each sprinkling an element is added there. This element can later

be used as point of evaluation for the operators B and B2, which are also implemented.

Other parameters for the sprinkling are the causal set density ρ as well as the curvature

parameter l for de Sitter and Anti-de Siter space.

The sprinkling is generated by

1. sprinkling causal set elements

a) sprinkling the time and radial coordinates in a cylinder

b) removing unnecessary elements in case of cone or diamond

c) sprinkling angular coordinates

2. connecting the elements

a) connecting elements which are causal to each other and generate a directed

graph

b) performing transitive reduction, so that the graph only contains direct links

(This step is not necessary for calculations of B and B2, but the links encode

all the relevant information about the causal set and might be relevant for

other applications.)

Some details of the procedure are described in the next section.

5.2 Methodology

5.2.1 Sprinkling into d-dimensional Minkowski space

Sprinkling into Minkowski space can easily be done by choosing a random total number

of elements from a Poisson distribution and then randomly distributing these points in

a given space-time section in a way that preserves the volume to number relation. A

very easy way to do this is to sprinkle into a space-time cylinder with height of proper

time τ and whose spacial slices are described by a (d− 1)-dimensional ball with radius

R. Other forms of space-time regions like a causal diamond can then be obtained as a

subset of the points in the cylinder by removing all the points that do not lie within

them. The time coordinate can be drawn from a uniform distribution in the interval

[0, τ ] while the radius is first drawn from a power-distribution with density

P (r) = (d− 1)rd−2, r ∈ [0, 1] (5.1)
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and then multiplied by R to scale it to the target sphere size. In d dimensions one must

further pick d− 2 angles. The last angle ϕ can be picked from a uniform distribution on

[0, 2π] but for the other angles θi, i = 1, 2, ..., d− 3 one needs

P (θi) =
1∫ π

0 sini(x)dx
sini(θ), θ ∈ [0, π]. (5.2)

This is because how these angles contribute to the volume. For example in a three-

dimensional ball there are more points with angle θ = π
2 than θ = π

4 .

There exist multiple methods that allow to draw random numbers from a distribution

given by a general probability density function P (x) [57]. A first one to consider is the

inversion method. For this, one needs the inverse of the cumulative distribution function

F (x) which in turn is the integral of the density function, i.e.

F (x) =

∫ x

−∞
P (x′)dx′. (5.3)

Then random numbers with the desired distribution can be generated by generating

random numbers ui from a uniform distribution on [0, 1] and calculating xi = F−1(ui).

As an example, see what that means if one wants to sprinkle a causal set into a

cylinder in four-dimensional space-time. Each element has coordinates (t, r, θ, ϕ). t

and ϕ can just be drawn from uniform distributions as described above. For r and

θ the inversion method may be used. For the power-distribution this is often already

implemented in packages for random number generation, therefore let’s focus on how to

draw random angles θ ∈ [0, π] from the probability density function P (θ) = 1
2 sin(θ). The

corresponding cumulative distribution function is F (θ) = 1
2 (1− cos(θ)) and its inverse

F−1(u) = arccos (1− 2u). To generate N random angles θ one now has to generate N

uniformly distributed random numbers in the interval [0, 1] and then calculate F−1(u)

for each of them. This is indeed how it is implemented in the program for the four-

dimensional case.

The inversion method has the advantage that it is straightforward and fast once the

inverse cumulative distribution function is known. To sprinkle in a space-time with some

arbitrary dimension d, however, this would necessitate to know the integral of sini(θ)

for i = 1, ..., d − 3. Therefore, the program instead uses a simple version of rejection

sampling to acquire random angles for dimensions greater than four. To draw a random

angle from the probability distribution (5.2) first θ ∈ [0, π] is drawn from a uniform

distribution together with y from a uniform distribution on [0, 1]. If y ≤ sini(θ) the

angle is accepted and if y > sini(θ) the angle is rejected and another attempt with new θ
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and y is made. This will be repeated until the desired number of angles have successfully

been drawn.

5.2.2 Sprinkling into de Sitter and Anti-de Sitter space

To test the Causal Set d’Alembertian B as well as B2 one would also wish to be able

to sprinkle into space-times with different curvature. For this the maximally symmetric

space-times of de Sitter (dS) and Anti-de Sitter (AdS) space are an obvious choice. These

can defined as hypersurfaces in a (d+ 1)-dimensional embedding space described by

dS: −X2
0 +X2

1 +X2
2 + · · ·+X2

d = l2c , (5.4)

AdS: −X2
0 −X2

1 +X2
2 + · · ·+X2

d = −l2c (5.5)

and have the useful property that their line element can be written as

dS: ds2 = − l
2
c − r2

l2c
dt2 +

l2c
l2c − r2

dr2 + r2dΩ2, (5.6)

AdS: ds2 = − l
2
c + r2

l2c
dt2 +

l2c
l2c + r2

dr2 + r2dΩ2. (5.7)

with
de Sitter

X0 =
√
l2c − r2 sinh

t

lc
(5.8a)

X1 =
√
l2c − r2 cosh

t

lc
(5.8b)

Xi = rΩi−i, i = 2, ..., d (5.8c)

Anti-de Sitter

X0 =
√
l2c + r2 sin

t

lc
(5.9a)

X1 =
√
l2c + r2 cos

t

lc
(5.9b)

Xi = rΩi−i, i = 2, ..., d (5.9c)
and the Ωi defined as

Ω1 = cos(θ1), (5.10a)

Ω2 = sin(θ1) cos(θ2), (5.10b)

... (5.10c)

Ωd−2 = sin(θ1) . . . sin(θd−2) cos(θd−1), (5.10d)

Ωd−1 = sin(θ1) . . . sin(θd−2) sin(θd−1). (5.10e)

If d = 2 then X2 = r.

From (5.6) and (5.7) one can see that in these coordinates both de Sitter and Anti-

de Sitter space have exactly the same volume element as Minkowski space in polar
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coordinates. This has the huge advantage that one can sprinkle elements into a space-

time cylinder just in the same way as one would do for Minkowski space and described in

section 5.2.1. The difference between the three space-times arises in how these elements

get connected in the causal set. While in Minkowski space the condition ∆s2 ≤ 0 for two

elements being causally connected simply becomes
∑d

i=1∆x
i ≤ ∆t, where ∆ stands for

the difference in the coordinates, this is not as straightforward in de Sitter and Anti-de

Sitter space-times. For this reason often conformal coordinates are used for sprinkling

into de Sitter and Anti-de Sitter space instead [58]. There is however another simple way

to calculate the geodesic distance in de Sitter space. For this, one has to calculate the

coordinates X(p) and X(q) of the two points p and q in the (d + 1)-dimensional space

in which the de Sitter space is embedded in. From here, one calculates

Z(p, q) = l−2
c X(p) ·X(q) (5.11)

where the dot-product X ·Y = −X0Y0+X1Y1+ · · ·+XdYd is defined through the metric

of the embedding space. For Anti-de Sitter this will be X ·Y = −X0Y0−X1Y1+X2Y2+

· · ·+XdYd. The geodesic distance between p and q in de Sitter space is then simply [59,

60]

d(p, q) = lc arccosZ(p, q). (5.12)

This can be adapted for Anti-de Sitter to

d(p, q) = lc arccoshZ(p, q). (5.13)

To correctly link the causal set elements it is enough to know if they are time-like,

null or space-like separated. For de Sitter p and q are causally connected (time-like or

null separated) if Z ≥ 1 and space-like if Z < 1. For Anti-de Sitter they are causally

connected if Z ≤ 1 and space-like if Z > 1.

Another useful relation is that the light cones emanating from a point with r = 0, t = t0

are parameterized by

dS: r = lc tanh
|t− t0|
lc

, (5.14)

AdS: r = lc tan
|t− t0|
lc

. (5.15)

Therefore points with a given time-coordinate t and whose radial coordinate is smaller

than given by these two equations are time-like to the point with r = 0, t = t0. This leads
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to easy conditions for elements being in a causal cone or causal diamond whose axis is the

r = 0 line without having to calculate the coordinates in the embedding space. Sprinkling

into a cone or diamond can then be done by sprinkling into a cylinder and removing

all the elements that do not satisfy the conditions. The program uses the conditions

resulting from equations (5.14) and (5.15) to eliminate the points outside the specified

form already before assigning the angular coordinates and subsequently calculating the

coordinates in the (d+ 1)-dimensional embedding space for the remaining elements.

5.2.3 Smearing

When trying to increase the number of elements in a given space-time volume to approach

the continuum limit an important problem arises. Increasing the density ρ of the causal

set also increases fluctuations of the Causal Set d’Alembertian over different sprinklings.

For this reason Sorkin introduced the concept of smearing in [41]. The idea is that

as one is mainly interested in the continuum limit of the operator averaged over many

causal sets and tries to find a new operator with the same continuum limit but less

fluctuations. When looking at the averaged Causal Set d’Alembertian (2.8) one can view

ρ as just a parameter which is later taken to infinity in the continuum limit. Therefore

one introduces another density ρk and replaces ρ with ρk to get

B̄
(d)
k (ϕ(x)) = αdρ

2
d
k + βdρ

d+2
d

k

∫
J−(x)

√
−gϕ(y)O⋆

de
−ρk V(x,y)ddy. (5.16)

O⋆
d is the same operator as Od but with ρk replacing ρ everywhere. ρk is usually chosen

smaller then ρ and introduces a new length scale lk = ρ
− 1

d
k > l = ρ−

1
d . The result is that

the operator will be smeared. The meaning of “smeared” will become clearer at the end

of this section.

In chapter 2 the averaged d’Alembertian (2.8) was obtained by averaging the Causal

Set d’Alembertian (2.4) over sprinklings. Now the task is reverse. One wants to find

an operator who has (5.16) as it’s average over sprinklings. To get to the averaged

d’Alembertian it was previously used that the probability of a causal set element being

in the infinitesimal Volume
√
gddy is ρ

√
−gddy to turn the sum over elements into an

integral. Now this step will be used in reverse. This relation between the form of the

operator on a single causal set and it’s average can be visualized as

∑
y≺x

· · · ↔ ρ

∫
J−(x)

√
−g · · · ddy. (5.17)
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Further, one uses that ρV(x, y) is the expectation value of N(x, y), the number of ele-

ments between x and y to replace V(x, y) by ρ−1N(x, y).

Applying these rules to get from the average (5.16) back to the operator on a single

causal set on one gets

B
(d)
k (ϕ(x)) = αdρ

2
d
k + βdρ

2
d
k

ρk
ρ

∑
y≺x

ϕ(y)O⋆
de

− ρk
ρ
N(x,y)

. (5.18)

The ratio ρk
ρ is called ϵ. What is further done, since only the continuum limit of the

operator has to be the same, is to view the exponential as the result of the limit

lim
N(x,y)→∞

(
1− ϵN(x, y)

N(x, y)

)N(x,y)

= e−ϵN(x,y) (5.19)

and replacing it with (1− ϵ)N(x,y) before applying O⋆
d. For this reason it is important to

start with O⋆
d appearing in (5.16) instead of Pd (ρk V(x, y)) when doing the derivation

in this direction.

Applying O⋆
d on (1− ϵ)N(x,y) results in a similar structure as applying Od on e−ρV .

The differences arise because the power N gets reduces by 1 after each differentiation. To

see this, first look at O⋆
2n acting on (1− ϵ)N(x,y) for n = 1, 2, i.e. for 2, 3 or 4 dimensions:

O⋆
2 (1− ϵ)N =

1

8
(dρk∂ρk + 2)(dρk∂ρk + 4)

(
1− ρk

ρ

)N

(5.20)

=
1

8

[
d2
ϵ2N(N − 1)

(1− ϵ)2
− (d2 + 6d)

ϵN

(1− ϵ)
+ 8

]
(1− ϵ)N ,

O⋆
4 (1− ϵ)N =

1

48
(dρk∂ρk + 2)(dρk∂ρk + 4)(dρk∂ρk + 6) (1− ϵ)N (5.21)

=
1

48

[
−d3 ϵ

3N(N − 1)(N − 2)

(1− ϵ)3
+ (3d3 + 12d2)

ϵ2N(N − 1)

(1− ϵ)2

−(d3 + 12d2 + 44d)
ϵN

(1− ϵ)
+ 48

]
(1− ϵ)N .

In these equations N(x, y) is written as N for better readability. In comparison acting
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with Od on e−ρV yields

O2e
−ρV =

1

8
(dρ∂ρ + 2)(dρ∂ρ + 4)e−ρV (5.22)

=
1

8

[
d2ρ2 V2−(d2 + 6d)ρV +8

]
e−ρV ,

O4e
−ρV =

1

48
(dρ∂ρ + 2)(dρ∂ρ + 4)(dρ∂ρ + 6)e−ρV (5.23)

=
1

48

[
−d3ρ3 V3+(3d3 + 12d2)ρ2 V2

−(d3 + 12d2 + 44d)ρV +48
]
e−ρV .

Comparing equations (5.20), (5.21) with (5.22), (5.23) the pattern becomes clearer. By

the definition of C
(d)
i it is known that

Ode
−ρV = e−ρV

nd∑
i=1

C
(d)
i

(ρV)i−1

(i− 1)!
. (5.24)

The conclusion here is that

f(N, ϵ) := O⋆
d(1− ϵ)N = (1− ϵ)N

(
C

(d)
1 +

nd−1∑
i=1

C
(d)
i+1

ϵiN(N − 1) . . . (N − i+ 1)

i!(1− ϵ)i

)
.

(5.25)

Applying this to equation (5.18) one gets the new operator

B
(d)
k (ϕ(x)) = ρ

2
d
k

(
αdϕ(x) + βdϵ

∑
y≺x

f (N(x, y), ϵ)ϕ(y)

)
. (5.26)

This new operator is actually a one parameter family of Causal Set d’Alembertians.

The original Causal Set d’Alembertian is just the spacial case of ϵ → 1 or equivalently

ρk → ρ.

In the original Causal Set d’Alembertian one sums over the first nd layers and weights

each of them with C
(d)
i . In this “smeared” d’Alembertian one sums over every layer and

gives it weight ϵf(i− 1, ϵ). Figure 5.2 shows the weights for the layers in two dimensions

for ϵ = 0.3 and ϵ = 0.05. In the un-smeared version the weights are 1 for layer 1, −2

for layer 2 and 1 for layer 3. In the smeared version the weights are “smeared” over a

wider (infinite) range of layers. One can see that for stronger smearing/smaller ϵ the

weights individual layers get are smaller, but the number of layers which give a significant

contribution increases.
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(a) ϵ = 0.3

(b) ϵ = 0.05

Fig. 5.2: Weighting for the first 26 layers in the smeared Causal Set d’Alembertian in
two dimensions for ϵ = 0.3 and ϵ = 0.05.
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When applying the same procedure to the B2(ϕ) operator one gets

B2
k(ϕ) = (ϵoρ)

2
d

(
αd

[
(ϵiρ)

(
ϕ(x) + βdϵi

∑
y≺x

f (N(x, y), ϵi)ϕ(y)

)]
+

βdϵo
∑
y≺x

f (N(x, y), ϵ)

[
(ϵiρ)

(
ϕ(y) + βdϵi

∑
z≺y

f (N(y, z), ϵi)ϕ(z)

)])
.

(5.27)

ϵo describes the smearing of the outer B operator and ϵi the smearing of the inner B

operator. If one views the necessity of smearing to get the fluctuations under control

as a hint for the existence of a physical meso-scale lk, as is often done in the literate

one would expect ϵo = ϵi. If one however views smearing as a pure mathematical tool

and additional parameter in defining the operator, they are a priori independent. The

simulation program allows for them to be set independently.

5.3 Run-time behavior

This section is a short description on how the run-time of the simulation scales when

increasing the number of causal set elements. In generating the causal set, connecting

the elements, which is done by first looping through them and checking if they are

causally related and then doing a transitive reduction on the resulting graph to only

have the direct links left, takes the longest time. This procedure scales in the order

O(N2), where N is the number of elements in the causal set. On a surface book 2

with Intel i7-8650U processor it takes about 0.3 seconds to sprinkle a causal set with

N = 600 into a two-dimensional diamond in Minkowski space and about 2.2 seconds for

N = 1500.

Calculating the value of the operators B(ϕ) and B2(ϕ) on the causal set is really fast

in the non-smeared version as only sums over the first few layers have to be performed.

But in the smeared version the sum in B goes over the entire causal past of the starting

point and for each element its layer needs to be found as this gives N(x, y) which now

enters into the formula. The calculation is therefore of the order O(N2). For B2 at each

node the operator B has to be calculated and the calculation scales in the order O(N3).

For N = 600 it took around 0.2 seconds to calculate a value for B2 with ϵ ̸= 1 and for

N = 1500 around 3.3 seconds.

When running simulations one should make use of the fact, that generating causal

sets and calculating the value of the operators on them can easily be parallelized.

41



0 1000 2000 3000 4000 5000
Nr. of causal sets

−15

−10

−5

0

5

10

15

B̄̄
1)

(a) ϵ = 0.05

0 5000 10000 15000 20000 25000 30000 35000 40000
Nr. of causal sets

−15

−10

−5

0

5

10

15

B̄̄
1)

(b) ϵ = 0.2

0 5000 10000 15000 20000 25000 30000 35000 40000
Nr. of causal sets

−15

−10

−5

0

5

10

15

B̄̄
1)

(c) ϵ = 0.5

Fig. 5.3: Evolution of B̄(1) over an increasing number of causal sets for different ϵ. Sprin-
kling performed in a two-dimensional cone with depth τ = 1 in Minkowski
space.

5.4 Influence of different parameters on the simulation

When running the simulations there are a few parameters that have to be chosen be-

forehand. This includes the type and dimension of the space-time and space-time region

one wants to sprinkle in, the number of elements in the causal set, which is in turn

determined by the causal set density and the size of the region one sprinkles in, and the

smearing factor ϵ one wants to use. To choose the right parameter for the simulations

a few tests were done. The dimension was set to two and the tests where performed in

Minkowski space.

The first test shows the impact the smearing has on the convergence. Figure 5.3

shows how the average B̄(1) of the Causal Set d’Alembertian with ϕ(x) = 1 evolves with

increasing number of causal sets for different ϵ. For a really strong smearing of ϵ = 0.05,

which would correspond to a ratio of the fundamental length scale of the causal set and
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(d) cone, τ = 1, ρ = 500, N = 500

Fig. 5.4: Evolution of B̄(1) over an increasing number of causal sets for different forms
of the sprinkling region. Type and depth of the sprinkling region as well as
density and resulting average number of elements in the causal set are stated
below the graphs. The upper row compares a causal diamond with a cone which
is the upper half of this diamond. The lower row compares a diamond with a
cone of the same volume. Sprinklings performed in 2-dimensional Minkowski
space and with smearing of ϵ = 0.2.

the meso-scale lk of l
lk

≈ 0.22, the average converges already after a few thousand causal

sets are taken into account. For ϵ = 0.2 and ϵ = 0.5 the progression is shown for the first

40 thousand causal sets each. As one can see in the case ϵ = 0.5 this is not enough for

the average to converge. Without any smearing (ϵ = 1) the fluctuations become so big

that it is not possible to show them in a graph with the same scaling. These simulations

where performed with a cone of depth 1 as sprinkling region and ρ = 500.

When checking whether a cone or a diamond are better for the simulation, no major

differences where found. Figure 5.4 shows the convergence for different causal diamonds

and cones. 5.4a and 5.4b compare the convergence in a diamond with a cone which is

just the upper half of this diamond. 5.4c and 5.4d show the convergence behavior for a
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Fig. 5.5: Simulation results for sprinkling in a two-dimensional causal diamond in
Minkowski space for different ρ. The size of the diamond was adapted such that
the average number of elements in the causal set stays at N = 500. ϵ = 0.2

diamond and a cone with the same volume.

The most crucial choice one has to make is the number of elements one wants to be in

the sprinkling. When choosing the size of the region to sprinkle in, one is constraint in

space-times which are not Minkowski, because the region should be small compared to

the curvature of space-time. Therefore the main parameter that determines the number

of elements is the density ρ.

A higher density reduces corrections to the continuum result and systematic errors.

But a higher ρ also increases the statistical fluctuations. Remember that this is the rea-

son smearing was introduced. To highlight the effect ρ has on the fluctuations, figure 5.5

shows the results of simulations where the number of elements was held fixed but ρ was

changed. It shows how the average of B(ϕ = 1) develops for an increasing number of

causal sets and how the individual values are distributed.

Increasing the number of elements leads to another problem, because, as discussed

before, it also increases computation time drastically. This gets additionally amplified

due to the increased fluctuations causing the need for more causal sets to be generated.

One therefore has to find a balance between accuracy and computation time.

The final test is aimed at finding out what the minimum number of elements is that

should be in the causal set, such that systematic errors are small. For this sprinklings

where performed in causal cones of different sizes in Minkowski space. The density ρ

was held fixed. It should be noted that for Minkowski space with a constant ϕ the

first order corrections are already zero and the systematic errors come from higher order
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Fig. 5.6: Evolution of B̄ with an increasing number of causal sets for causal cones in two-
dimensional Minkowski space with different sizes. Density and smearing fixed
at ρ = 125, ϵ = 0.2. The black horizontal line shows the expected continuum
limit.
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corrections. The results are shown in figure 5.6. For an average of just 31.25 elements

in the causal set (blue line) the systematic errors are much bigger than the fluctuations

and the simulation was stopped after ten thousand causal sets. The simulation was also

stopped at this point for cones with an average of 1125 elements in them (purple line),

because the simulation already took an amount of time deemed unpractical. Indeed such

a high number of elements is also not necessary as one can see that already for a smaller

of elements the averages converge towards the continuum limit of zero.

5.5 Choice of parameters for the main simulation

The settings for the main simulations described in the next sections where chosen with

the following rationale. For the form of the sprinkling region causal diamonds were

chosen as this is what is mostly used in the literate and no major differences between

the use of a cone or a diamond were found in the test. Although for the Causal Set

d’Alembertian around 300 elements in the casusal set seem to be enough for the average

of the operator to converge, size of the diamond and density were chosen such that the

average number of elements will be 600. This is also because the B2-operator will likely

need more elements in the causal set as it gives higher weights to deeper layers.

The sprinkling region in Minkowski was set to a causal diamond with depth τ =
√
2

and the density to ρ = 600. The de Sitter space was set to have a curvature of R = 5.

This results in lc =

√
d(d−1)

R =
√

2
5 . For de Sitter space, this is the cosmological horizon.

To compare sprinklings from Minkowski and de Sitter space the causal set density and

the volume of the causal diamond was held constant. This results in a constant average

number of elements. The Volume of a causal diamond in Minkowski space is

2 · V(Sd−2)

∫ τ
2

0
dt

∫ t

0
dr rd−2 =

V(Sd−2)

d(d− 1)

τd

2d−1
, (5.28)

which in two dimensions is τ2

2 . The volume of a causal diamond in de Sitter space is

2 · V(Sd−2)

∫ τ
2

0
dt

∫ lc tanh
t
lc

0
dr rd−2. (5.29)

In two dimension this leads to l2c ln cosh
τ
lc
. By equating the volume for Minkowski and

de Sitter space one can calculate the necessary depth of the diamond in de Sitter space

so that the volume stays the same. The depth of the diamond in de Sitter space was set

accordingly. It’s value is approximately 1.6. The maximal radius of the diamond in de
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Sitter space is approximately 0.84lc.

This means that the diamond is not small compared to the curvature of the space-

time. Because the curvature in de Sitter is constant everywhere and the space-time is

homogeneous this shouldn’t be a big problem and is a necessary compromise as lowering

the size of the diamond would need one to increase the density ρ to keep the average

number of elements the same. This would lead to higher fluctuations in the Causal Set

d’Alembertian.

If one were to extend the simulations to Anti-de Sitter space the depth of the diamond

would be approximately 2l which is below the threshold of πl for which the maximal

radius of the diamond goes to infinity. This happens because the light cone in Anti-de

Sitter space can reach the boundary of space-time. Indeed the maximal radius in Anti-de

Sitter space with these settings would only be around 1.

The simulation will be performed for different ϵ. In the style of [43] a step of 0.1 in

the ratio between the length scale of the causal set l = ρ−
1
d and the meso-scale lk = ρ

− 1
d

k

was mainly used. Using equal steps between 0 and 1 of l
lk

instead of equal steps in ρk
ρ

relates to equal steps in d
√
ϵ and will result in the average epsilon being smaller then 0.25

which according to the tests is the region where the fluctuations become small enough

to handle.

5.6 Results and Discussion

5.6.1 Theoretical predictions

To test if the operators B(ϕ) and B2(ϕ) give the expected results, simulations where

performed in both Minkowski and de Sitter space in two dimensions. The de Sitter

space has a curvature with Ricci scalar R = 5 and the simulations where performed with

causal set density ρ = 600 in a causal diamond of volume 1.

A constant ϕ with ϕ = −2 for the B operator and ϕ = 4 for the B2 operator where

used. For these ϕ the operators’ expected values are R and R2. To test the differential

part of the operators, simulations where also performed with the scalar function Φ =

at2 + c with a = 4 and c = 12. The operators in the simulation are evaluated at the

coordinate origin. For a function of the form of Φ the continuum limit of B(Φ(0)) and
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B2(Φ(0)) in a spacetime with constant R are

lim
ρ→∞

B̄(Φ(0)) = −2a− 1

2
Rc, (5.30)

lim
ρ→∞

B̄2(Φ(0)) = −R · (−2a) +
1

4
R2c. (5.31)

The expected results for the given choice of a, c and R in the simulations are summarized

in table 5.1.

B̄(ϕ = −2) B̄(Φ(0)) B̄2(ϕ = 4) B̄2(Φ(0))

Minkowski 0 −8 0 0

de Sitter 5 −38 25 115

Table 5.1: Theoratical continnum limit for B̄ and B̄2 in Minkowski and de Sitter space
with R = 5 for constant ϕ and Φ = 4t2 + 12.

5.6.2 Results for the B-operator

B̄(ϕ = −2) B̄(Φ(0))

Minkowski −0.07 −8.25

de Sitter 4.29 −33.19

Table 5.2: Average of the B-operator with
√
ϵ = 0.2 over 100 000 sprinklings in

Minkowski and de Sitter space for ϕ = −2 and ϕ = Φ.

The results for
√
ϵ = 0.2, which shows the best convergence behavior, are summarized

in table 5.2. In Minkowski space the results are in agreement with the theoretical expec-

tations. For de Sitter significant deviations exists. It is however positive to note that

the results for de Sitter clearly show the differences between different space-times and

the relative error is below 15% for both cases of ϕ. It would be interested to compare

the results with a more detailed theoretical prediction that takes corrections for finite

causal set density into account.

Figure 5.7 shows how the average of the operator B with ϕ = −2 evolves with an

increasing number of sprinklings taken into account. One should keeps in mind that

these kinds of graphs highly depend on the order in which the different sprinklings are

included in the average. The fluctuations increase with increasing ϵ and for ϵ = 1 one is

still far from convergence.

48



0 20000 40000 60000 80000 100000
Nr. of causalsets

−40

−30

−20

−10

0

10

20

30

40
B̄̄
−2

)
√ε

0.1
0.2
0.3
0.4
0.5
0.6
0.8
1

Fig. 5.7: Evolution of the average value of the operator B(ϕ = −2) in Minkowski space
with increasing number of causal sets for different smearing factors. The theo-
retical value of the continuum limit is shown as a horizontal black line.

In figure 5.8a and in the following figures only results for
√
ϵ ≤ 0.6 are shown. Here

one can now see that the average converges towards the theoretical value of zero as

expected. It is however still visible that the fluctuations grow with growing ϵ and that

more sprinklings need to be included in the average for all lines to converge. It is expected

that with more causal sets all curves will eventually converge towards zero.

The exception here is
√
ϵ = 0.1 (light blue line) which shows the best convergence but

has converged on a value of approximately 0.3. The stronger the smearing is, the more

layers in the causal set are needed to achieve the necessary cancellations. In the case of
√
ϵ = 0.1 the deviation from zero is therefore likely due to the smearing being too strong

to give a good result with the finite number of elements in the causal diamond used for

the simulations. This deviation for
√
ϵ = 0.1 also appears in all of the following results.

Except for this case the final average over 100 000 sprinklings gets closer to the theo-

retical value for smaller ϵ, which converge faster. The smallest deviation is achieved by
√
ϵ = 0.2 and only deviates by about 0.07 from zero.

The results for the B-operator with ϕ = Φ are shown in figure 5.8b. One should notice
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Fig. 5.8: Evolution of the average of the operator B(ϕ) in Minkowski space with increas-
ing number of causal sets for different ϵ. Theoretical limit shown as horizontal
black line.
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Fig. 5.9: Evolution of the average of the operator B(ϕ) in de Sitter space with increasing
number of causal sets for different ϵ. Theoretical limit shown as horizontal black
line.
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the different scaling of the y-axis between different plots. The fluctuations are bigger

then for the constant ϕ = −2. Again the deviations are bigger for bigger ϵ and
√
ϵ = 0.2

yields the value closest to the expectations as the average over 100 000 causal sets only

deviates from the expected value of −8 by about 0.25.

The increased fluctuations for Φ compared to ϕ = −2 are expected and can be ex-

plained as follows: Because B is linear in ϕ one can image the value of B(Φ = at2+ c) as

composed of B(at2) + B(c). The fluctuations will be a sum of the fluctuations of these

two parts and the individual fluctuations from B(at2) and B(c) can get enhanced or

cancel each other out. If one only had B(c = 12) one would expect an 6-fold increase of

the fluctuations compared to B(−2), because a constant ϕ only acts as an overall factor

for the operator. For the B(at2) part such an estimation is not possible to make so

easily, because the additional dependents of ϕ on the position of the causal set elements

will likely increase the fluctuations. When comparing the fluctuations between B(−2)

and B(Φ) as measured by the standard deviation of the values of the operator it turn

out that the increase is about 6.2-fold.

Both the results for ϕ = −2 and ϕ = Φ were always created from the same sprinklings.

In figure 5.8a and 5.8b one can see this as, except for the sign, the fluctuations look very

similar in both cases.

The corresponding results for de Sitter space are shown in figures 5.9a and 5.9b. The

results show a clear tendency towards the expected values, they converge however on

values which clearly deviate from them. For ϕ = −2, where the theoretical limit is 5, the

averages (except for
√
ϵ = 0.1) converge at approximately 4.3 and for the field Φ where

the theoretical limit is −38 they converge at approximately −33.2.

It would be interesting to calculate the first order finite ρ corrections to the Causal

Set d’Alembertian in de Sitter space and compare their value with these deviations. For

this both the integral in the near region and in the light cone region would need to be

evaluate in more detail for this space-time.

The deviations are in the same direction as those for
√
ϵ = 0.1, which can be seen as

an indication that they at least in part come from the finiteness of the sprinkling region.

Including more sprinklings to see the convergence for higher ϵ could tell how much the

results improve when the operator is less smeared.

The fact that the averages for bigger ϵ converge from a specific direction has no

meaning, because this depends on in which order the average is taken. This can be seen

in figure 5.10, which shows the same results as figure 5.9a but the values of B on the

individual causal sets were included in the average in a different order.
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Fig. 5.10: Evolution of the average of the operator B(ϕ = −2) in de Sitter space with
increasing number of causal sets for different ϵ. Theoretical limit shown as
horizontal black line. This figure shows the same results as 5.9a but the
average was taken over the values in a different order.

The fluctuations are bigger for de Sitter space then Minkowski space. Overall they

show the same tendencies as in Minkowski-space, in the sense that the fluctuations and

the number of causal sets needed for convergence get smaller for smaller ϵ with the

exception of
√
ϵ = 0.1, and that the fluctuations for B(Φ) show a similar pattern but

increases magnitude compared to B(−2).

5.6.3 Results for the B2-operator

B̄2(ϕ = 4) B̄2(Φ(0))

Minkowski 11.3 72.6

de Sitter 43.0 187.0

Table 5.3: Average of the B2-operator with
√
ϵ = 0.2 over 100 000 sprinklings in

Minkowski and de Sitter space for ϕ = 4 and ϕ = Φ.

The results for the B2-operator are summarized in table 5.3. Smearing was applied

to both the inner and the outer B operator in B2 equally. The fluctuations are much
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Fig. 5.11: Evolution of the average of the operator B2(ϕ) in Minkowski space with in-
creasing number of causal sets for different ϵ. Theoretical limit shown as
horizontal black line.
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Fig. 5.12: Evolution of the average of the operator B2(ϕ) in de Sitter space with increas-
ing number of causal sets for different ϵ. Theoretical limit shown as horizontal
black line.
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Fig. 5.13: Evolution of the average of the operator B2(ϕ) in Minkowski and de Sitter
space with increasing number of causal sets for
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56



bigger than for the B-operator and the average after 100 000 sprinklings deviates much

more from the expected values. It is likely that due to the higher fluctuations much

more causal sets need to be included into the average before a real convergence can be

seen.

The fluctuations show the same pattern as before in the sense that the errors get

smaller for smaller ϵ with the exceptions of
√
ϵ = 0.1, which again converges at a value

away from the predicted result. The best result is again achieved with
√
ϵ = 0.2. Also

one can again see that the fluctuations behave similar for different ϕ when the results

were generated from the same sprinklings.

The exact increase in the size of the fluctuations compared to the B-operator as

measured by the standard deviation depends on ϵ and is bigger for bigger ϵ. In Minkowski

space it reaches from around 130-fold to around 1120-fold for
√
ϵ between 0.2 and 0.5

and for de Sitter from around 67-fold to around 630-fold for the same range of ϵ.

B2 is effectively like applying the B-operator twice. Therefore also the systematic

errors get amplified as can be seen from increasing deviations for
√
ϵ = 0.1 from the

theoretical result. The average increase is 23.4-fold.

The convergence of the average in Minkowski space is shown in figures 5.11a and

5.11b. Only the results for
√
ϵ ≤ 0.5 are drawn, because of the high fluctuations for

bigger ϵ. The final result for
√
ϵ = 0.2, which is closest to the theoretical value of zero,

is approximately 11.3 for ϕ = 4 and approximately 72.6 for ϕ = Φ. The evolution of the

average for
√
ϵ = 0.2 is shown again in figure 5.13a and 5.13b.

For de Sitter space the results are shown in figure 5.12a and 5.12b as well as in 5.13c

and 5.13d for
√
ϵ = 0.2. The average for

√
ϵ = 0.2 over 100 000 sprinklings is 43 (vs

25 expected) for ϕ = 4 and 187 (vs 115 expected) for ϕ = Φ. The fluctuations are

again bigger in de Sitter space than those for Minkowski space. Also one can see from

figure 5.13c and 5.13d that the average has still not converged yet.

5.6.4 Increase of fluctuations with ϵ

It was evident in the results that the fluctuations drastically increase with increasing
√
ϵ. It was therefore interesting to ask weather there is a relationship between these

two. Indeed the standard deviation of the values of an operator on different causal sets

seems to increase polynomially with
√
ϵ. This can be seen in the log-log-plot of these

two quantities for the B operator in Minkowskispace in figure 5.14.

Doing the same analysis for the other simulations showed that this relation between
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Minkowski space. The linear regression line has a slope of ca. 3.86
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the size of the fluctuations and the ϵ parameter does only depend on the operator and

not on the space-time or on the function of ϕ. The average power of
√
ϵ with which the

fluctuations increase for the B-operator is approximately 3.7 and for the B2 operator it

is approximately 5.9.

When dividing the values by the standard deviation the convergence of the average is

similar for all ϵ as can be seen from figure 5.15. Therefore knowing the relations between

smearing and the fluctuations could help to predict how many causal sets are needed

until the average of the operator converges to a certain precision for a given ϵ.
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Chapter 6

Conclusion and Outlook

In order to be able to better describe the emergent space-time from causal sets and to

connect the theory with other Quantum Gravity approaches it is important to find op-

erators which provide information about the curvature of the emergent manifold beyond

the Ricci-scalar R. This thesis uses the Causal Set d’Alembertian to work towards this

goal.

First an extended a proof of the continuum limit for the Causal Set d’Alembertian

B(ϕ(x)) in general curved space-times of arbitrary dimension was presented in chapter 3,

which extends the current proofs of the Causal Set d’Alembertian in the literature.

The Causal Set d’Alembertian was then used to define a new operator B2(ϕ(x)) for

causal sets in chapter 4. The new operator resembles the composition of two Causal Set

d’Alembertians and contains both R2 and □R in its continuum limit.

For both the Causal set d’Alembertian and the new operator numerical simulations

have been performed in two-dimensional Minkowski and de Sitter space-time. The sim-

ulations show some deviations from the expected result in the average of the value of

these operators over multiple sprinklings. It is expected that this divergence between

theory and simulations can be resolved by averaging over more causal sets and taking

corrections to the continuum result into account. It would be interesting to see if this

in indeed the case.

Nonetheless, the averages seem to generally converge towards the theoretical values,

which can be taken as a sign for the correctness of the predictions in the limit of high

density ρ. Yet, the convergence is plagued by high fluctuations of the operator values,

which have to be tamed using smearing. Arbitrary strong smearing is however not

possible as this increases systematic errors from the finiteness of the sprinkling used. A

possible future line of research for this kind of simulations is to find the optimal balance

for the density ρ and the smearing parameter ϵ.

Further possible extensions of the simulations include simulations in higher dimensions

and in other space-times, for example Anti-de Sitter space. It would also be useful to
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be able to sprinkle causal sets in arbitrary space-times, but this is difficult, because one

has to calculate for each pair of elements if they are space-like or causally separated.

The new operator B2 can be used to get a value for the combination of R2−2□R and

generalizations of it in the form of Bn = B◦B◦ . . .◦B yield higher order combinations of

R and □. To disentangle R2 and □R another operator has to be used. It is expected that

from an operator of the form [B(ϕ)]2 one can extract R2 directly [61]. First simulations

indicate that this is indeed the case. With this it would be conceivable to build an action

for causal sets that contains terms for R,R2 and □R separately. A more general action

would allow for new possibilities in the search of a second order phase transition in the

space of couplings in Causal Sets. Such a phase transition would have implications for

Quantum Gravity outside of Causal Sets and would make a case for Asymptotic Safety

in a Lorentzian setting.

It would also be interesting to find a way of attaining other components of the Ricci- or

Riemann-tensor from causal sets and compare results for different curvature quantities

from different methods to get a criterion for the manifold-likeness of a causal set. In

[18] an alternative method to extract R and R00 from a causal set was presented. It

seems also possible to use the construction of space-like distances for causal sets in [21]

to construct a causal diamond out of a geodesic ball and use the results from [62] for

this “geodesic ball causal diamond” and the usual Alexandrov interval causal diamond,

defined through the time-like distance from its start- to endpoint, to get a measure for R

and R00. With the simultaneous construction of a geodesic ball and Alexandrov interval

causal diamond it would also already be possible to get some information about the

Weyl tensor in flat space-times [62].

Extensions towards other components of the Ricci-tensor are not possible within the

framework of the Causal Set d’Alembertian alone. Such components could come from

higher orders in the metric expansion in Riemann Normal Coordinates, but such terms

of the corrections to the Causal Set d’Alembertian would be of at least the same order

in ρ as the corrections from the light-cone region. There an expansion of volume V(x, y),
needed to calculate the contributions from this region, is not yet as easily possible. A

possibly exciting way to continue research in this direction would be to check if other

curvature components can be extracted from higher order expansions in the other two

methods of attaining R from the causal set.

In summary it can be said that the results from this thesis open the path to further

research in the direction of curvature operators for Causal Set Theory. Especially the

prospect of construction more complex actions for Causal Set dynamics could lead to
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important findings in the context of Quantum Gravity.
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Appendix

Appendix A

Application of Od on ρl−λγ (λ, bρ)

In this section the result

O2n
γ(λ, bρ)

ρλ−l

=
1

2n+1(n+ 1)!

[
Aλ,l(n)

γ(λ, bρ)

ρλ−l
+

n∑
k=0

(−1)kBλ,l(k + 1, n)d1+kbλ+kρl+ke−bρ

]
(A.1)

with

Aλ,l(n) :=
n∏

j=0

(d(l − λ) + 2j + 2) , (A.2)

Bλ,l(m,n) :=


Aλ,l(n), if m = 0

1, if m = n+ 1

Bλ,l(m,n− 1) (d(l +m− 1) + 2n+ 2) +Bλ,l(m− 1, n− 1), otherwise

(A.3)

will be proven by induction. For this first check the correctness of equation (A.1) for

n = 0:

O0
γ(λ, bρ)

ρλ−l
=

(dρ∂ρ + 2)

2

γ(λ, bρ)

ρλ−l
. (A.4)

Using

∂

∂ρ
γ(λ, bρ) = bλρλ−1e−bρ (A.5)
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this gives

1

2

[
(d(l − λ) + 2)

γ(λ, bρ)

ρλ−l
+ dbλρle−bρ

]
(A.6)

=
1

2

[
Aλ,l(0)

γ(λ, bρ)

ρλ−l
+Bλ,l(1, 0)db

λρle−bρ

]
. (A.7)

Next follows the induction step to show that when equ. (A.1) is true for n it is also true

for n+ 1. The differential operator for n+ 1 is given by

O2(n+1)
γ(λ, bρ)

ρλ−l
=

(dρ∂ρ + 2) · · · (dρ∂ρ + 2(n+ 1) + 2)

2n+2(n+ 2)!

γ(λ, bρ)

ρλ−l
. (A.8)

The order of the terms of the operator O2n can be interchanged. After moving the term

with n+ 1 to the front one has

(dρ∂ρ + 2(n+ 1) + 2)

2(n+ 2)
O2n

γ(λ, bρ)

ρλ−l
(A.9)

=
(dρ∂ρ + 2(n+ 1) + 2)

2(n+ 2)

1

2n+1(n+ 1)![
Aλ,l(n)

γ(λ, bρ)

ρλ−l
+

n∑
k=0

(−1)kBλ,l(k + 1, n)d1+kbλ+kρl+ke−bρ

]
.

(A.10)
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Now applying the last differential and thereafter using the definitions for Aλ,l(n) and

Bλ,l(m,n) this becomes

1

2n+2(n+ 2)!

[
Aλ,l(n)

(
(d(l − λ) + 2(n+ 1) + 2)

γ(λ, bρ)

ρλ−l
+ dbλρle−bρ

)
+

n∑
k=0

(−1)kBλ,l(k + 1, n)d1+kbλ+k (d(l + k − bρ) + 2(n+ 1) + 2) ρl+ke−bρ

] (A.11)

=
1

2n+2(n+ 2)!

[
Aλ,l(n+ 1)

γ(λ, bρ)

ρλ−l
+Bλ,l(0, n)db

λρle−bρ

+Bλ,l(1, n)db
λ (dl + 2(n+ 1) + 2) ρle−bρ

+

n∑
k=1

(−1)k [Bλ,l(k + 1, n) (d(l + k) + 2(n+ 1) + 2) +Bλ,l(k, n)] d
1+kbλ+kρl+ke−bρ

+(−1)n+1Bλ,l(n+ 1, n)d2+nbλ+n+1ρl+n+1e−bρ
]

(A.12)

=
1

2n+2(n+ 2)!

[
Aλ,l(n+ 1)

γ(λ, bρ)

ρλ−l
+Bλ,l(1, n+ 1)dbλρle−bρ

+

n∑
k=1

(−1)kBλ,l(k + 1, n+ 1)d1+kbλ+kρl+ke−bρ

+(−1)n+1Bλ,l(n+ 2, n+ 1)d2+nbλ+n+1ρl+n+1e−bρ
]

(A.13)

=
1

2n+2(n+ 2)!

[
Aλ,l(n+ 1)

γ(λ, bρ)

ρλ−l
+

n+1∑
k=0

(−1)kBλ,l(k + 1, n+ 1)d1+kbλ+kρl+ke−bρ

]
.

(A.14)

This is obviously the same as

1

2n+1(n+ 1)!

[
Aλ,l(n)

γ(λ, bρ)

ρλ−l
+

n∑
k=0

(−1)kBλ,l(k + 1, n)d1+kbλ+kρl+ke−bρ

]
(A.15)

when n→ n+ 1. ■
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Appendix B

Solving the integral (3.42) for general

µ ≥ κ > −1

This section is concerned with the solution to integral (3.42) from section 3.4. One has∫ a

0
dy

∫ a

0
dx yµxκOdρ

le−ρcdxy (B.1)

and µ ≥ κ > −1.

The first step is to move the operator Od outside the inner integral and then perform

the integration over x to get

c−κ−1
d

∫ a

0
dy yµ−κ−1Od

γ (κ+ 1, ρcday)

ρκ+1−l
. (B.2)

Using the result from appendixA this gives, with Od = O2n, n =
⌊
d
2

⌋
,

c−κ−1
d

2n+1(n+ 1)!

∫ a

0
dy yµ−κ−1

[
Aκ+1,l(n)

γ (κ+ 1, ρcday)

ρκ+1−l
+

n∑
ι=0

(−1)ιBκ+1,l(ι+ 1, n)d1+ι (cday)
κ+1+ι ρl+ιe−cd⊣ρ

]
.

(B.3)

For the second term this integral can be performed straightforwardly giving another

γ-function. For the first term one has to write the integral with y = at as∫ a

0
dy yµ−κ−1ρl−κ−1γ (κ+ 1, ρcday) (B.4)

=aµ−κ

∫ 1

0
dt tµ−κ−1ρl−κ−1γ

(
κ+ 1, ρcda

2t
)

(B.5)

=aµ−κ
(
cda

2
)κ+1

∫ 1

0
dt tµρl

κ+ 1

κ+ 1

(
cda

2tρ
)−κ−1

γ
(
κ+ 1, ρcda

2t
)
. (B.6)

Now one can use [52]

s

zs
γ(s, z) = F1 1

(
s

s+ 1

∣∣∣∣∣ −z
)

(B.7)

66



to write this as

aµ−κ
(
cda

2
)κ+1 1

κ+ 1

∫ 1

0
dt tµρl F1 1

(
κ+ 1

κ+ 2

∣∣∣∣∣ −ρcda2t
)
. (B.8)

After expanding as

aµ−κ
(
cda

2
)κ+1

κ+ 1
ρl
Γ(µ+ 1)Γ(1)

Γ(µ+ 2)

Γ(µ+ 2)

Γ(µ+ 1)Γ(1)

·
∫ 1

0
dt t(µ+1)−1(1− t)µ+2−(µ+1)−1 F1 1

(
κ+ 1

κ+ 2

∣∣∣∣∣ −ρcda2t
)
,

(B.9)

one can directly apply Euler’s integral transformation [63] to solve the integral and gets

aµ−κ
(
cda

2
)κ+1

κ+ 1
ρl
Γ(µ+ 1)Γ(1)

Γ(µ+ 2)
F2 2

(
κ+ 1, µ+ 1

κ+ 2, µ+ 2

∣∣∣∣∣ −ρcda2
)

(B.10)

=
aµ+κ+2cκ+1

d

(κ+ 1)(µ+ 1)
ρl F2 2

(
κ+ 1, µ+ 1

κ+ 2, µ+ 2

∣∣∣∣∣ −ρcda2
)
. (B.11)

So the final result of equation (B.3) is

1

2n+1(n+ 1)!

[
Aκ+1,l(n)

aµ+κ+2ρl

(κ+ 1)(µ+ 1)
F2 2

(
κ+ 1, µ+ 1

κ+ 2, µ+ 2

∣∣∣∣∣ −a2cdρ

)

+c−µ−1
d aκ−µρl−µ−1

n∑
ι=0

(−1)ιBκ+1,l(ι+ 1, n)d1+ιγ
(
µ+ ι+ 1, a2cρ

)]
.

(B.12)
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