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Abstract

This thesis is part of the Rare decays subgroup of the ATLAS B-
Physics and Light States Working Group at CERN who aims to
measure the RK⇤0 double ratio, which through Lepton Flavor Uni-
versality (LFU) can indicate if there are physics Beyond the Stan-
dard Model present in the B0 ! K⇤0``-decay. The work of the
thesis is related to the electron channel where `` is an electron-
proton pair with the focus of separating the two species of signal:
B0 and its antiparticle: B0 from the background. This is achieved
using Gradient Boosting Decision Trees (GBDTs) trained on a mix
of Monte Carlo-generated data and ATLAS data. After hyperpa-
rameter optimization and feature engineering, the GBDT model
ended up with a total B0 signal efficiency of 72 ± 3% in Monte
Carlo and B0-mass sidebands. As the B0-mass region in the low
q2-bin (q2 2 [1.1, 6.0]GeV2/c4) is blinded at the current stage of the
analysis, the signal yield for calculating the RK⇤0 -ratio is extracted
using a c2-fit in the high q2-bin (q2 2 [6.0, 11.0]GeV2/c4). The fit
used is a composite probability function consisting of two Gaussian
probability distributions and a Bukin distribution, giving a signal
yield of NSig(B0) = 1853 ± (� 45) on Period K, Run 2 ATLAS data
with a signal significance of 20.0 ± 0.4.
This shows GBDTs are a viable approach in separating B0 and B0

from the background, and the hope is that the contribution of this
thesis will benefit the Rare decays group in the measurement of the
RK⇤0 -ratio.
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Acronyms

ALICE A Large Ion Collider Experiment.
ATLAS A Toroidal LHC Apparatus.
BSM Beyond the Standard Model.
CERN Conseil Européen pour la Recherche Nu-

cléaire / eng: European Organization for
Nuclear Research.

CKM Cabibbo-Kobayashi-Maskawa.
CMS Compact Muon Solenoid.
FCNC Flavour-Changing Neutral-Current.
GBDT Gradient Boosting Decision Tree.
GIM Glashow–Iliopoulos–Maiani.
GNN Graph Neural Network.
GSF Gaussian-sum Filter.
ISR Intersecting Storage Rings.
LEIR Low Energy Ion Ring.
LFU Lepton Flavour Universality.
LHC Large Hadron Collider.
LHCb LHC-beauty.
LINAC3 Linear Accelerator 3.
LINAC4 Linear Accelerator 4.
ML Machine Learning.
PD Pixel Detector.
PS Proton Synchrotron.
PSB Proton Synchrotron Booster.
QCD Quantum Chromodynamics.
QFT Quantum Field Theory.
ROC Receiver Operating Characteristic.
SCT Semiconductor Tracker.
SM Standard Model.
SPS Super Proton Synchrotron.
TRT Transition Radiation Tracker.
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Introduction

The matter we observe in our surrounding universe varies in its
constituent. Naively, it follows the periodic table of the 20th cen-
tury, but while this period established the atoms, it also taught
us that these were not the fundamental building blocks of matter.
Over the years, groundbreaking experiments and theoretical ad-
vancements have revealed deeper layers of complexity within the
subatomic realm. The study of particle physics has unraveled a
fascinating world where elementary particles exist, namely quarks,
leptons, and bosons - each group with its own unique properties.
The model which encapsulates this incredible world is called the
Standard Model (SM) and is one of the most influential models in
physics to this very date.

The Standard Model does not only touch upon matter, but it also
explains three of the four1 fundamental forces: the strong force, the 1 Gravitation is the force not explained

by SM; however, there has been pro-
posed an extra addition to the SM
going by the name: "Graviton" which
is the medium for gravity, just as the
other forces have particles which act as
a medium.

weak force, and the electromagnetic force. The latest addition to
the SM was the discovery of the Higgs boson discovered in 2012[54]
at CERN in a collaboration between A Toroidal LHC Apparatus
(ATLAS) and Compact Muon Solenoid (CMS).

In short, the SM treats leptons the same way independent of the
generation2 they belong to. This means the fraction of decay into 2 There are three generations.

each of the generations must be equal to one, and any deviation
from unity is a sign of physics Beyond the Standard Model (BSM).
This particular deviation is called Lepton Flavour Universality
(LFU) violation. The study of the B-meson decays, called B-physics,
is widely used for testing LFU violation since the SM predicts very
precisely how the B-mesons should behave. As B-mesons are rare,
a deviation from the standard model would be significant and
measurable.

This thesis is written as a part of a larger project under the Rare
decays group3 which is a subgroup of ATLAS B-Physics and Light

3 Throughout this thesis, the Rare
decay group will be called the RK⇤

group.

States Working Group at ATLAS, CERN. This group studies the
B0 ! K⇤0`` decay4 and according to SM and LFU the ratio of

4 `` = {e+e�, µ+µ�} such that the
decay is either: B0 ! K0⇤e+e� or
B0 ! K0⇤µ+µ�. The +/� is often
omitted.decays should be one: 1 ⇡ RK0⇤ = B(B0!K0⇤µ+µ�)

B(B0!K0⇤e+e�)
. The equation
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for the RK0⇤ can be written as a function of the efficiency corrected
yield: N

# (X) where N is the measured yield from a fit of the signal
or control decay, and # is the efficiency in selecting the signal or
control decay. The control decay used are the J/y decay with a ratio
rJ/y which are measured to statistically unity[62].

Figure 1: A historical overview
of all the RK-ratio measurements.
The red line shows the SM predicted
unity, and the blue shows the naive
weighted mean (naive; since the differ-
ent measurements are correlated). Both
systematic and statistical uncertainties
are included in the error bars. Mea-
surements are from: [34],[62], [60], [71],
[9], [63], [58] and [11] for the latest
measurement at LHCb.

The earliest measurements specifically on the RK⇤0 -ratio were done
by LHCb [62] where RK⇤0 = 0.66+0.11

�0.07 ± 0.03 for q2 2 [0.045, 1.1]Gev2/c4

5 and RK⇤0 = 0.69+0.11
�0.07 ± 0.05 for q2 2 [1.1, 6.0]GeV2/c4. The full his-

5 Branching Ratios (B) comes from
integrating the decay rate (G) over the
squared dilepton invariant mass (q2),
as different regions of q2 have different
properties.

torical overview of the different RK-rato is seen in Fig. (1) where the
latest measurements from LHCb are included. As seen, there is a
good indication of BSM physics since the naive weighted mean of
all historical measurements yields: (0.85 ± 0.28) 6= 1. It is clear that
the different experiments do not agree on the ratio. With the excep-
tion of the latest LHCb measurements from 2022, who measured
the ratio close to unity with low uncertainty.
This highlights the significance of the RK⇤ group’s contribution
as it will be crucial in either validating the LHCb measurement
and therefore indicate no BSM physics in relation to B0 decays or
the RK⇤ groups measurement will deviate from unity and hence
indicate the opposite.

This thesis focuses on the electron signal yield through the sepa-
ration of background, B0 and B0, and then the extraction of the B0

signal yield; NSig(B0) from c2-fits on the separated B0 signal. The
main focus will be on the separation driven by Machine Learn-
ing. The RK⇤ group uses two Grapth Neural Networks (GNNs)
trained on non-resonant6 MC data in the invariant B-mass re- 6 non-resonant means that the decay

is direct where a resonant decay is a
decay with an intermediate step.gion: mB 2 [4, 5.7]GeV/c2 and real data in the two sideband re-

gions: invariant B-mass mB /2 [4, 5.7]GeV/c2 or invariant B-mass
mB 2 [4, 5.7]GeV/c2 with the two tracks of same sign charge7 for 7 Tracks in this context means the

Kaon-pion pair from the K⇤0 ! Kp
decay.q2 2 [0.1, 6.0]GeV2/c4. This thesis explores the usage of Gradient

Boosting Decision Trees (GBDT) for the background vs. B0 vs. B0

selection trained on the same data. The motivation is that GBDTs
are less of a black-box model than GNNs, and the GBDT is in-
credibly fast at training while retaining their high performance in
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classification problems.
The intention is to get equal to or better performance than the GNN
approach used by the RK⇤ group. Using various tests, each model
has to be tested for its performance in selecting each of the three
classes and its ability to select a signal without introducing distor-
tion to the signal shape.

When the GBDTs have been trained, they are applied on the un-
blinded signal region mB 2 [4, 5.7]GeV/c2 of the q2 2 [1.1, 6.0]GeV2/c4-
bin8 and the best cut in the GBDTs are found using blinded a sig- 8 The low q2-bin poses a chal-

lenge in that the non-resonant in
q2 2 [0.1, 6.0]GeV2/c4 is rarer than the
corresponding resonant channel due to
the available energy in the low q2-bin.

nificance scan: Significance =
Nsigp

NSig+NBkg
. The maximum signifi-

cance GBDT cuts are then used in the final fit where the signal yield
is extracted; NSig(B0) for Period K, Run 2 ATLAS data.

The work of this thesis will contribute to the RK⇤ group by testing
out alternative machine learning through GBDTs and challenging
the already current ML approach. In addition, the idea is to test
out new ML pipeline configurations and do feature studies that can
benefit the RK⇤ group.

The thesis is structured in three main parts: Theory, Analysis, and
the Wrap-Up. The Theory contains three main theoretical areas of
this thesis: The physics behind B-physics is the first of the theory
section, then moving on to the ATLAS detector, where the different
components are explained, and then lastly, the mathematics behind
the machine learning models used. The Analysis-part starts with
the approach used, namely what data is used and a description
of the methodology. After the methodology, the analysis begins
with translating the RK⇤ GNN approach to a GBDT approach for
background, B0, and B0 selection. The last part of the analysis is
dedicated to improving the GBDTs using various techniques; Fea-
ture engennering, multiple GBDTs, etc. The Wrap-Up reviews the
analysis results, and the methodology used throughout the thesis
will be revisited for discussion along with the uncertainties related
to the experiment and analysis. The Wrap-UP is concluded with a
summary of the findings and a discussion of how this thesis’s work
will extend into the future in relation to the RK⇤ group.

In summary, this thesis aims to contribute to the extraction of the
electron yield from the B0 ! K⇤0e+e�-decays within the ATLAS
detector. This is accomplished through testing various GBDT con-
figurations, which are trained to distinguish B0, B0 events from the
background without distorting the original mass shape of B0 and
B0. Finally, the signal yield is extracted with c2 fits on the B0-mass.
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Part I

The Theory Behind
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1
The Standard Model

Our universe is made of matter, which comes in many different
sizes and shapes and has different attributes and properties. Al-
ready in early Greece, Democritus had the idea that the world is
made of tiny "atoms"[5] 1. More than 2000 years later, in the yearly 1 The ancient Greek word atomos

means uncuttable.20th century, physicists found that the universe only consists of a
handful of tiny building blocks that make up all other matter. The
knowledge of these tiny building blocks and the rules they obey
was in the 1970s formulated into the theory, now known as the
Standard Model (SM). Not only does the SM deal with matter, but
it also describes three of the four fundamental forces which act
upon matter.

Figure 1.1: A figure of the 12
fermions and five bosons which makes
up The Standard Model. Source of
figure: [49].
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1.1 Fundamental Particles

As seen in Fig. (1.1), there are 12 fermions2 which are then fur- 2 There are 24 since there is a corre-
sponding antiparticle for each fermion.ther divided into two groups: Quarks and Leptons. Fermions

come with spin3: 1
2 and obeys the Pauli Exclusion Principle[25], 3 Note that "spin" and "isospin" are two

different things. Spin is the angular
momentum, and isospin is related to
quark composition.

which states that multiple identical fermions cannot be in the same
quantum state. Say a two-particle system of particle a and parti-
cle b in state Y1(a) and Y2(b) the naive quantum state would be:
Y = Y1(a)Y2(b), however since a and b are indistinguishable the
wave-function are modified to the equation seen in Eq. (1.1).

Y = Y1(a)Y2(b) ± Y1(b)Y2(a) (1.1)

The "�" in Eq. (1.1) is required for fermions, meaning that if a = b,
the probability wave-function vanishes, and this is the Pauli Exclu-
sion Principle which means a and b follows Fermi-Dirac statistics4. 4 Where the name "Fermion" comes

from.The "+" in Eq. (1.1) is required for Bosons, which follows Bose-
Einstein statistics which dictates that there can be any number of
bosons at any quantum state.
Leptons and quarks have various intrinsic properties like electric
charge, mass, and spin, and they are acted upon by the three funda-
mental forces: gravitation, weak interaction, and electromagnetism.
Quarks also have colour charge, which means the strong interaction
also acts upon it, and hence quarks differ from the lepton.
There are six types or flavours5 of quarks and six for leptons. 5 In the SM - "flavours" are used

instead of "types"Quarks and leptons6 are split into three generations7 which are
6 Or just fermions.

7 or families.
seen in Fig. (1.1). Starting with generation I (Gen.I), which has the
smallest mass and ends with the greatest mass at Gen.III. Genera-
tion I is the most stable generation, then Gen.II and lastly Gen.III,
which has the largest mass and hence is very short-lived. The stable
elements we know from the periodic table[72] are all made of gen-
eration I leptons and quarks.8 Less stable fermions will decay into 8 Electrons are a lepton, while neutrons

which are made of one up and two
down quarks (udd) and protons which
are made of two up and one down
quark (uud).

more stable generations through weak interactions.9

9 Which also goes under the name: the
weak or weak nuclear force.

One should also note that fermions and their antiparticles differ
in some intrinsic properties by having the same magnitude but
opposite signs.

1.1.1 Composite Particles / Hadrons

The quarks are not interesting in isolation. However, the composi-
tion of quarks is of more interest, and these compositions of quarks
are called hadrons which are held together through the strong inter-
action10. The hadrons fall into two categories: Baryons and Mesons. 10 An analogy could be how molecules

need the electric force to be held
together.The rules are as follows: If a composite particle is made from an

odd number of quarks, it is a baryon; if it is made of an even num-
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ber of quarks, it is a meson. The most common baryons are the
proton and neutron, whereas the most common mesons are: Pi-
ons (p), Kaons (K), B-mesons (B), D-mesons (D) and h-mesons
(h). Note that hadrons do not contain a top quark (t) since the top
quark has a lifetime of ⇠ 0.5 ⇥ 10�24s[72, p.817] due to its heavy
mass (see Fig. (1.1)). The top quark does not have time to bind
before it decays hence the absence of top quarks in hadrons. The
hadron most interesting to this thesis is the B-meson, and a more
in-depth review of it is later in the theory section.

1.2 Fundamental Interactions

Each of the four fundamental forces can be described by a mathe-
matical vector field where gravity is described as a continuous field
by Einstein’s general theory of relativity [20] and is the only force
that is not explained by the SM and therefore is an active research
topic. The three others: Electromagnetic interactions, strong interac-
tions, and weak interactions can be described with discrete quantum
fields, and the mathematical framework is called Quantum Field
Theory (QFT).
The gauge bosons (Fig. (1.1); 4th column) are the mediators of the
different interactions. The strong interaction holds quarks in hadrons
together. The mediator for the strong interaction is the gluon with
spin 1, which is massless. The strong interaction is called the nu-
clear force in relation to binding protons and neutrons to form
atomic nuclei.
The theory which describes the strong interaction is called Quan-
tum Chromodynamics (QCD). A noteworthy part of QCD is colour
confinement. Quarks have an attribute called colour11, and colour

11 This "colour" has nothing to do with
the visible light spectrum.

confinement states that free particles must have a colour charge
equal to zero. [72, p. 149-176]
A quarks colour can be: red, green, or blue (see Fig. (1.2)), and an
anti-quark can be: anti-red, anti-green, and anti-blue. The gluons
are a mix of two colours, and baryons are made of a quark colour
combination which gives a net zero colour ("white") which is the
same for mesons. To form a baryon made of three quarks, there
needs to be all free colours or anti-colours present, and for a meson
with two quarks: a colour and its anti-colour needs to be present.

Figure 1.2: The three colours
charges quarks can take: red, green,
and blue. A mix of all gives white or
colourless. Visual color and quark
colour are not the same. This figure is
shown for pedagogical reasons only.
Source of figure: [19].

The weak interactions is the force that is the cause of radioactive de-
cay. The gauge bosons which carry this interaction are the Z0- and
W±-boson, which both have mass and spin 1. The W+ is positively
charged with 1 e, and The W� is negatively charged of �1 e, and
they are each others antiparticle. The Z0 has a neutral charge and
is its own antiparticle. The weak force has the property that it can
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change the flavour of a quark from a down-quark to an up-quark.12 12 The decay: d ! u + W�.

The electromagnetic interaction is mediated by the photon with zero
mass and spin one and is responsible for generating electromag-
netic fields which hold electrons in their orbitals at their corre-
sponding atomic nuclei. The result of an electron changing orbitals
is light-emission/absorption13.

13 The very foundation of all electrical
technologies.

Figure 1.3: A schematic over the
particle interactions in the Standard
Model. Source of figure: [61, p. 9].

The Higgs-boson i the latest addition to the SM. The Higgs-boson has
mass and no spin. This makes it a scalar boson and not a gauge bo-
son. The Higgs-boson in itself is a result of the Higgs-field, which
gives mass to all other particles via the Brout-Englert-Higgs mecha-
nism[22][27].
A schematic of how each particle in the SM interacts are seen in
Fig. (1.3) where one can see that the Higgs particles interact with all
leptons, quarks, and it interacts with itself and the W- and Z-boson.
It does not interact with the gluon and photon, hence mass-less.

1.3 Beyond the Standard Model (BSM)

As mentioned, only three of the four fundamental interactions are
explained through the SM. A "Graviton" with spin two is proposed,
which could be a candidate for fusing quantum mechanics and
gravitational theory into a quantum gravity theory. The hope is the
"Theory of Everything, " a unified theory that can explain every-
thing. [21]
The SM also fails to explain the asymmetry in the matter. Particles
have antiparticles14, and the question is why there is more matter 14 Note; some particles are their own

antiparticlesthan anti-matter15?
15 The simple question: "Why are we
here?"Then there are dark matter and dark energy, which is unaccounted

for by the SM. Dark energy is a consequence of the always-increasing
rate the universe is expanding. Linked to this, by observing the uni-
verse, one can calculate the visible mass’ trajectories and through
that, also calculate the mass needed for the movements observed.
The amount of observed mass and needed mass does not match -
the missing mass is called dark matter. Even though B-physics16 16 Particle physics in relation to the

B-meson.are not directly related to these questions, there might be a relation
with the solution of the BSM physics part of B-physics in the future.
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2
B Physics and Lepton Universality

B physics has to do with the hadrons or, more specifically, mesons
which contain a bottom quark. These mesons are called B-mesons
and are seen in Tab. (2.1) and consist of a bottom anti-quark; b and
either a down; u, down; d, strange; s or charm; c quark1. These B 1 Note that an bb is not a B meson but

a bottomonium.mesons have antiparticles composed of the anti-versions of their
respective quark composition; see Tab. (2.1).

B-meson Antiparticle Charge Isospin Mass
(MeV/c2)

Mean lifetime
(⇥10�12 s)

Neutral
B0 | db

Anti-neutral
B0 | db

0 e 1
2 5279.66 ± 0.12 1.519 ± 0.004

Charged
B+ | ub

Anti-charged
B� | ub +1 e 1

2 5279.34 ± 0.12 1.638 ± 0.004

Strange
B0

S | sb
Anti-strange

B0
S | sb

0 e 0 5366.92 ± 0.10 1.520 ± 0.005

Charmed
B+

C | cb
Anti-charmed

B�
C | cb +1 e 0 6274.47 ± 0.32 0.510 ± 0.009

Table 2.1: The four B mesons with
their antiparticles and their properties.
All mass and lifetime are from [72,
pages: 53, 59, 68 and 70]

2.1 Lepton Flavour Universality

The Standard Model (SM) treats each of the lepton flavours equally,
which means that the interaction between gauge bosons2 and any 2 With the exception of gluons.

of the three families/generations of leptons3 must be identical and 3 Electrons, muons or the tau; see Fig.
(1.1).independent of the flavour as long as the equation used for calcu-

lating the interactions accounts for the difference in masses4. This 4 In other words: The fundamental
interaction does not care which gener-
ation the leptons belong to.treatment of leptons is called Lepton Flavour Universality (LFU).

[42, p. 36-37] Branching ratios5 denoted B, can be theoretically cal- 5 Branching ratio; B is defined as as
follows: B(X ! a) means the fraction
of X decays into a out of the total
number of decays.

culated and experimentally measured to test whenever the theory
matches reality. Specifically, rare decays for B-mesons are useful in
detecting BSM physics. If there is a discrepancy with the predicted
branching ratios for the leptons, we call it LFU Violation.

Feynman diagrams are a pictorial/graphical representation of the
mathematical equations describing particles’ interaction and be-
havior. It is mainly used in Quantum Field Theory (QFT), and the
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diagrams are read the following way: input of the interaction to the
left and output to the right with time flowing to the right. A Feyn-
man diagram depicts the perturbation contribution to the proba-
bility amplitudes A associated with transitions, and according to
superposition, the particles cannot choose which of the "diagrams"
it follows; however, the total amplitude is a sum over all diagrams.
From the amplitude we can get the transition probability: P = |A|2

and this can be calculated into decay-rates G which then are related
to branching ratios by: B(X ! a) = G(X!a)

Gtotal
.

RH ⌘

Z dG(B ! Hµ+µ�)
dq2 dq2

Z dG(B ! He+e�)
dq2 dq2

(2.1)

A way to test LFU is by looking at the Flavour-Changing Neutral-
Current (FCNC) process. This happens when a lepton changes its
flavour without changing its electric charge. The SM theory states
that FCNC only occurs in Feynman diagrammatic loops and not at
the tree level.6 The looping FCNC process is highly suppressed due 6 A basic example of a tree-level

diagram is the electron-positron
interaction.to the Glashow–Iliopoulos–Maiani (GIM) mechanism7 This means
7 This mechanism is named after
Sheldon Glashow, John Iliopoulos,
and Luciano Maiani, who is credited
for the theoretical prediction of the
strange quark[24].

that transitions are rare and therefore are sensitive to new particles
/ BSM physics, and these new particles could increase or decrease
the decay rate and, thus, the branching ratios.
The ratio used for testing changes in the decay rate is seen in Eq.
(2.1) [29] where H is a hadron containing a strange quark. The
decay rate, G, is then integrated over the di-lepton invariant mass,
q2.

Figure 2.1: B0 ! K⇤0`` decay
Feynman diagrams. (Top left) are
allowed by SM and are known as an
electroweak penguin (penguin loop).
(Top right) are allowed by the SM and
are known as a box loop. (Bottom left)
shows non-compliant SM tree-level di-
agram with proposed gauge boson: Z0.
(Bottom right) shows non-compliant
SM tree-level diagram with a lepto-
quark: LQ. Source of figure: [62, Fig.
1]
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2.2 The CKM Matrix

FCNC is part of Flavour-Changing Weak Interactions, and these in-
teractions have their properties described by the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, which is a generalization done by Kobayashi
and Maskawa on the works of Cabibbo[33]. It comes from the La-
grangian seen in Eq. (2.2), which is the Yukawa interactions with
the Higgs condensate (h.c.)8[72, p. 261].

8 The Lagrangian in itself is not the
focus of the thesis and is therefore
beyond the scope.

LY = �Yd
ijQI

LifdI
Rj � Yu

ij QI
Lief⇤uI

Rj + h.c. (2.2)

Figure 2.2: Some of the lowest order
of bottom quark decays. Source of
figure: [6, Fig. 22, p. 105]

The charge-current W± interactions then couple to the up and
down quarks (u and d respectively) with couplings given by:
�gp

2
(uL, cL, tL)guW+

µ VCKM

✓
dL
sl
bL

◆
+ h.c. where the CKM matrix is

then seen in Eq. (2.3) which is a 3 ⇥ 3 unitary matrix. The CKM
matrix is usually chosen in the basis of its four independent param-
eters: The three mixing Euler angles (q1, q2 and q3) and one phase
angle; f. The three mixing angles: (q1, q2, and q3) describe the
amount of mixing between generations of quarks. The phase angle;
f is related to CP violation which is about the matter-antimatter
asymmetry in the universe.

VCKM = Vu
L Vd†

L =

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA (2.3)

The CKM matrix describes the probability Vij of a quark i transi-
tioning to quark j; i ! j which has another flavour9. The values 9 Hence the name: flavour-changing

interactions.of the CKM matrix are seen in Eq. (2.4)[72, p. 261-266]. The mixing
of different quark families is called CKM suppressed due to the high
transition rate inside each family10. 10 the diagonal

|VCKM| =

0

B@
0.97435 ± 0.00016 0.22500 ± 0.00067 0.00369 ± 0.00011
0.22486 ± 0.00067 0.97349 ± 0.00016 0.04182+0.00085

�0.00074
0.00857+0.00020

�0.00018 0.04110+0.00083
�0.00072 0.999118+0.000031

�0.000036

1

CA (2.4)

The most dominant flavour-changing decay mode for bottom
quarks is the b ! cW⇤� decay which is called tree or spectator
decays, an example is seen in the top of Fig. (2.2). Whereas the de-
cay b ! u is suppressed relative to the transition to a bottom quark
with

���Vub
Vcb

i
⇠ (0.1)2 which can be derived from the CKM matrix.

As noted before, we are interested in Flavour-Changing Neutral-
Current (FCNC) processes; however, the CKM does not allow it
through tree-processes. Hence transition: b ! s and b ! d are only
allowed through penguin diagrams(see Fig. (2.1)). All processes not
a b ! c decay are categorized as a rare decay. Note that later on,
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for control channels on the RH-ratio, J/y is a b ! c decay, and this
means the amount of decay is larger and therefore better statistics.
[72, p. 908-914]

2.3 The B0 ! K⇤0`` Decay

The "Rare Decays" group of "ATLAS B-Physics and Light States
Working Group"11 at ATLAS specifically looks at the B0 ! K⇤0`` 11 Or just RK⇤-group for short.

decay12 which are a FCNC process and therefore a promising can- 12 K⇤0 is short for the K⇤(892)0 decay
which is an excitation of the neutral K0

kaon and `` = {e+e�, µ+µ�} in our
case

didate to reveal BSM physics.

The Feynman diagrams are seen in Fig. (2.1) are the leading con-
tributions from both SM and BSM. According to LFU the ampli-
tudes from the diagrams must have equal contribution whenever
`` = {e+e�, µ+µ�}.13 13 `` = t+t� is omitted since handling

this heavy lepton is hard and e, and µ
gives enough statistics. Neutrinos are
even worse than t, so those are also
omitted in this thesis.

The B0 has a long list of decays - in fact over 500 [72, pages: 1677-
1682], and the specific decay to K⇤0`` has a branching ratio of
(1.03+0.19

�0.17) ⇥ 10�6 for `` = e+e� [72, p. 1681, G542] and (9.4 ± 0.5) ⇥
10�7 for `` = µ+µ� [72, p. 1682, G543]. 14 The choice of studying 14 Why the studies of the B0 ! K⇤0``

decay falls under the rare decays
group.the B0 ! K⇤0`` decay is a smart approach to investigating physics

Beyond the Standard Model (BSM) with its low branching ratio.
BSM reactions are expected to be rare/low amplitude; ABSM. If the
SM reactions, denoted ASM were large then |ABSM + ASM|2 would
reduce to |ASM|2, menaing the the the BSM reaction would vanish.
Therefore when B0 ! K⇤0`` has a small branching ratio the ASM,B0

is small hence the ABSM becomes detectable[72, p. 908-914]. This
introduces another challenge; lower statistics due to the rarity of the
decay.

The K⇤0 has multiple decay-channel, and the one that is of specific
interest is the decay into: K⇤0 ! K+p�. Throughout the analysis,
the Kp-pair poses a great challenge since the ATLAS detector can
not distinguish between these two mesons, and this pair is used
in the identification of the origin meson: a B0 or a B0. The LHCb
detector can, on the other hand, distinguish the Kaon from the
pion, and this is the main reason for doing multiclass classification;
simply because ATLAS can not detect the difference between Kaons
and pions, and the hope is that a machine learning model can learn
the differences.

This direct decay into a K⇤0 and two leptons are known as a non-
resonant decay. Another category important for this thesis is the
resonant decays where B0 ! K⇤0(X ! ``) where X are mesons
which then again decay into two leptons X ! ``. This could be the
J/y, or the y(2S) amongst others.
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2.4 The Double Ratio

Applying Eq. (2.1) on15 B0 ! K⇤0`` where H = K⇤0 the ra- 15 Throughout this thesis, the neutral
B0-meson will be mentioned a lot, and
B0 and B0

d (because of the down-quark)
will be used interchangeably.

tio becomes RK⇤0
16. The SM predicts that RSM

K⇤0 ⇠ 0.92 for q2 2

16 In literature this is also just known
as RK⇤ .

[0.045, 1.1]GeV2/c4[62] and RSM
K⇤0 ⇠ 1 for q2 2 [1.1, 5.0]GeV2/c4[62].

The integration of the RH is done over the limits: q2
max = [m(B0) �

m(K⇤0)]2 and q2
min = 4[m(µ)]2[29] in the rest frame. From the

definition of the branching ratio, we can rewrite Eq. (2.1) where
the total decay rate gives the quotient of one and results in the
rewritten form of RK⇤0 which is seen in Eq. (2.5).

RK⇤0 =
B(B0 ! K0

µ+µ�)

B(B0 ! K0 e+e�)
(2.5)

By multiplying RK⇤0 with the well measured rJ/y = 1.043 ±
0.006(stat.) ± 0.045(sys.)[62] from the resonant B0 ! K⇤0 J/y(! ``)

which is statistically unity, we can rearrange RK⇤0 into RK⇤0 =

RK⇤0 ⇥ 1 = RK⇤0 ⇥ r�1
J/y

which becomes what is seen in Eq. (2.6)
where N

# (X) is the efficiency corrected yield17.

17 N is the measured yield and # are
the efficiency for the signal or control
decays.

RK⇤0 =
B(B0 ! K⇤0µ+µ�)
B(B0 ! K⇤0e+e�)

⇥ B(B0 ! K⇤0 J/y(! e+e�))
B(B0 ! K⇤0 J/y(! µ+µ�))

=

Nµµ
sig

#
µµ
sig

Nee
sig

#ee
sig

⇥
Nee

control
#ee

control

Nµµ
control

#
µµ
control

=

 
#ee

sig

Nee
sig

Nee
control

#ee
control

!
⇥
 

Nµµ
sig

#
µµ
sig

#
µµ
control

Nµµ
control

! (2.6)

The reason for multiplying with rJ/y is because this will suppress
most of the systematic uncertainties, which RK⇤0 and rJ/y have in
common. The systematic uncertainties tend to cancel because the
dividing efficiencies with each other will suppress efficiency un-
certainties - this will make the difference in electron and moun
production clearer. J/y has one of the largest branching ratios for
the B0 meson decay with B(B0 ! K⇤0 J/y) = (1.27 ± 0.05) ⇥ 10�3

[72, p. 1679, G202] and consistently decays into electron and muons
with the branching ratios: B(J/y ! e+e�) = (5.971 ± 0.032) % [72,
p. 1826, G5] and B(J/y ! µ+µ�) = (5.961 ± 0.033) % [72, p. 1826,
G7] meaning that there will be high statistics for the B(J/y ! ``)

decay making the double ratio a usefull tool for finding deviations
in the SM through the B0 meson decays.

2.5 Prior Measurements

As mentioned in the introduction, there have been multiple mea-
surements of the RH ratio, some of which are seen in Tab. (2.2) and
a visualization of the same is seen in Fig. (1). Some of the mea-
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surements are pretty far from the SM-predicted RK ⇠ 1 in the
q2 2 [1.1, 6]Gev2/c4 and others are pretty close but with greater sta-
tistically and systematic uncertainty. Until 2022 the variance of the
results was quite large, and it was hard to determine if indeed there
was LFU violation and therefore BSM physics.

Colab Date Measurement q2-range
(GeV2/c4)

Deviation Ref

BarBar Apr. 2012
RK = 0.74+0.40

�0.31 ± 0.06
RK⇤

S
= 1.06+0.48

�0.33 ± 0.08
[1.10, 8.12]
[0.10, 8.12]

- [34]

LHCb Aug. 2017
RK0⇤ = 0.66+0.11

�0.07 ± 0.03
RK0⇤ = 0.69+0.11

�0.07 ± 0.05
[0.045, 1.1]
[1.1, 6.0]

2.1 � 2.3s
2.4 � 2.5s

[62]

LHCb Mar. 2019 RK+ = 0.846+0.060
�0.054

+0.016
�0.014 [1.1, 6.0] 2.5s [60]

Belle Apr. 2019
RK0⇤ = 0.46+0.55

�0.27 ± 0.13
RK0⇤ = 1.06+0.63

�0.38 ± 0.14
[0.045, 1.1]
[1.1, 6.0]

- [71]

Belle Aug. 2019
RK+ = 1.39+0.36

�0.33 ± 0.02
RK0

S
= 0.55+0.46

�0.34 ± 0.01
[1.1, 6.0]
[1.1, 6.0]

- [9]

LHCb Okt. 2021
RK0

S
= 0.66+0.20

�0.14
+0.02
�0.04

RK⇤+ = 0.70+0.18
�0.13

+0.03
�0.04

[1.1, 6.0]
[0.045, 1.1]

1.5s
1.4s

[63]

LHCb Mar. 2021 RK+ = 0.846+0.042
�0.039

+0.013
�0.012 [1.1, 6.0] 3.1s [58]

LHCb Dec. 2022

RK+ = 0.994+0.090
�0.082

+0.029
�0.027

RK+ = 0.949+0.042
�0.041

+0.022
�0.022

RK⇤0 = 0.927+0.093
�0.087

+0.036
�0.035

RK⇤0 = 1.027+0.072
�0.068

+0.027
�0.026

[0.10, 1.1]
[1.1, 6.0]
[0.1, 1.1]
[1.1, 6.0]

- [11]

Table 2.2: A Timeline of a handful
RH measurements. In the Measure-
ments columns: The first uncertainty
is statistical, and the last is systematic
uncertainty.

Then in December 2022, LHCb came with their latest result (see [11]
for paper reference) with RH ratios close to unity as predicted by
SM. This new measurement of the RK⇤0 -ratio could mean that the
premise of looking into B0 decays for physics Beyond the Standard
Model was gone. As seen in Tab. (2.2), the different measurements
do not all agree on the ratio; hence the validation of the LHCb
results is needed with either a re-verification of the LHCb results,
which indicates no Beyond the Standard Model physics or results
which deviates from unity and hence indicating BSM physics.
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3
ATLAS

3.1 CERN History
All historical references in section 3.1 are
from CERNs own history website (with
sub-pages): [64].

At the 1951 United Nations Educational, Scientific and Cultural Or-
ganization (UNESCO) 1 meeting in Paris, the decision to establish a

1 UNESCO is part of the United Na-
tions (UN) and membership for UN
automatically gives a membership for
UNESCO.

European Council for Nuclear Research laid the foundation for the
actual signed agreement that 11 countries would create what now
is known as Conseil Européen pour la Recherche Nucléaire / eng:
European Organization for Nuclear Research (CERN). The purpose
of this organization was to do non-military research in nuclear and
high-energy physics and make it publicly available.

The first draft of the CERN convention was completed in 1953, and
the first foundation for the CERN laboratory complex where laid
on the physical site on the 17th May 1954 in Geneva which were
selected in 1952 to be the location of the laboratory due to Swiss
neutral grounds in World War II. While the experimental part of
CERN would be in Geneva, the theoretical physics would be done
in Copenhagen at the Niels Bohr Institute (NBI).2 2 Already from the start NBI has been

part of the CERN history, and to this
day there are still tight connections
between NBI and CERN.

CERN were officially established in 1954 with 12 countries signing.
The first accelerator, the 600 MeV synchrocyclotron, was built in
1957. This machine was used in Nuclear Research, and in 1959 the
28 GeV beam Proton Synchrotron (PS) was built and became the
birth of high energy particle physics at CERN. The PS was used in
1965 for the discovery that electrons, neutrons, and protons all have
anti-particles[43].

Until 1971, the proton synchrotron created a beam that collided
with stationary targets; however, this changed with the Intersect-
ing Storage Rings (ISR). The idea was to feed the beams into two
storage rings and then make them collide, thus achieving higher
energies.

In 1976 the Super Proton Synchrotron (SPS)[69] were finished and
were operational up to 450 GeV. It is a 7 km ring, and this new
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collider was the main accelerator at CERN for many years. It has
contributed to many findings and, probably most noteworthy, the
discovery of the W and Z bosons [18], which in 1986 awarded Carlo
Rubbia and Simon van der Meer the Nobel Prize in physics. This
happened after the Super Proton Synchrotron in 1979 was con-
verted into a proton–antiproton collider. The collider technology
from the Super Proton Synchrotron was paving the road for the
later Large Hadron Collider (LHC) [65]3. 3 About the word: "technology" - a

lot of technologies origin at CERN.
We use the internet all the time today,
and the first webpage was written in
1990 and hosted on a CERN server at
info.cern.ch

In January 1997, the Compact Muon Solenoid (CMS) and A Toroidal
LHC Apparatus (ATLAS) were approved, and the idea behind them
was general-purpose experiments. Later in February of the same
year, A Large Ion Collider Experiment (ALICE) were approved,
which were intended to study quark-gluon plasma. In September
1998, the LHC-beauty (LHCb) was approved, designed to study the
matter-antimatter imbalance.

An important date for CERN history is the 10th of September 2008
at 10.28 am. This was the first time where the particles circulated
in the Large Hadron Collider, which is 27 km in circumference, and
this event signaled a new era for particle physics.

The LHC has been operating and measuring collisions for chunks
of time, now known as Runs. Run 1 was from 2009 to 2013 with col-
lision energies up to 7 TeV 4. In the period 2013 to 2015, there were 4 Each beam with 3.5 TeV.

large upgrades to LHC, and in 2015 to 2018, Run 2 was measuring
collisions with 13 TeV 5energies. From 2018 to 2022, there were big 5 Each beam with 6.5 TeV.

upgrades to Large Hadron Collider (LHC) named the High Lumi-
nosity6 Large Hadron Collider project [28]. This intends to increase 6 Luminosity is a word used for colli-

sion rate.the luminosity by a factor of ten. In 2022 Run 3 started and is still
running.

3.2 From Accelerator to the ATLAS Detector
All technical numbers in section 3.2 for
the following accelerators are found in
the references: Proton Synchrotron[67],
LINAC4/2[36], LINAC3[35], LHC[65],
Super Proton Synchrotron[69], LEIR[66]
and PSB[68]. For further in-depth infor-
mation on all present and past detectors at
CERN, see [2].

Before collisions are measured at the ATLAS detector, the parti-
cles have been underway through different systems. There are
two starting points for the LHC. One is the Linear Accelerator 3
(LINAC3)[35] which provides lead (82Pb) ions and sends them into
the Low Energy Ion Ring (LEIR)[66]. The lead Ions are accelerated
using conducting cavities where electric fields creates confined
waves which in turn creates a potential that accelerates the ions.
Using magnets, the beams can be focused. The LEIR strips the lead
ions from remaining electrons so only the nuclei remain before
entering the Proton Synchrotron (PS).

Another entry to the Proton Synchrotron (PS)[67] are through Lin-
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Figure 3.1: The CERN complex as
of 2022. All different components of
the accelerator complex are seen in the
figure legend below the figure. Most
notable for this thesis are the LHC and
the ATLAS detector. Source of figure:
[37]

ear Accelerator 4 (LINAC4)[36] 7, which accelerates hydrogen (00H) 7 Operational since 2020

which are negatively ionized. LINAC4 is the proton provider to
LHC and uses, like LINAC3, radio frequency cavities to accel-
erate the ions. In multiple stages the ions are accelerated from
3 MeV ! 50 MeV ! 100 MeV to finally 160 MeV. The ions have
their electrons removed before entering the Proton Synchrotron
Booster (PSB)[68]. During the upgrade in 2019, Linear Accelerator
4 (LINAC4) replaced the older version 2, which had been operating
for over 40 years. The older version provided beams at energies
equal to 50 MeV. With LINAC2 the booster accelerated the pro-
tons to 1.4 GeV before injecting them into the PS whereas LINAC4
boosts the proton beam to 2.0 GeV.8 8 Note that LINAC2 were operated

under Run 2.

The Proton Synchrotron (PS) has a circumference of 628 meters
with 100 dipole magnets and 277 electromagnets to bend the beam.
With Radiofrequency cavities, the beams are boosted to 26 GeV9. 9 In addition to protons, it has accel-

erated alpha particles (helium nuclei),
oxygen, sulfur, argon, xenon, and
lead nuclei, electrons, positrons, and
antiprotons.

The beam is then lead into the Super Proton Synchrotron (SPS),
which are at a size of 7 km circumference with boosting capabilities
up to 450 GeV10.

10 1317 electromagnets and 744 dipole
magnets are used to bend the beam.Finally, the beam is injected into LHC, which is the largest acceler-

ator at CERN with 27 km circumference. It has two beams moving
in opposite directions, and each beam is then accelerated up to
6.5 TeV 11. The LHC is exceptional in that it is a state-of-art instru- 11 A design maximum of 7.0 TeV.

ment. LHC is one of the world’s largest vacuum systems and with
its three vacuum system parts; (1) The beam vacuum, which is at
1013 atm due to avoidance of gas molecule colliding with acceler-
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ated particles. (2) The vacuum system for the cryomagnets, and
(3) the vacuum system for helium distribution. The cryogenic sys-
tem is kept at 1.9 K for super-fluid helium temperature. There are
9593 superconducting magnets bending the beams into a focused
beam 12. The LHC also consists of 2 ⇥ 8 superconducting cavities 12 A focused beam is indeed needed

when one wants to make protons
collide.with multiple functions. One is to accelerate the beam using radio

frequency, which delivers 2 MV at 400 Hz. The other function is to
pack the beam into 2808 proton bunches with consist of 1.1 ⇥ 1011

protons. These bunches are created due to the pulsing nature of the
radio frequency. It tightens the bunches so that higher luminosity is
reached, maximizing the number of collisions.

The luminosity are defined as
dR
dt

= Lsp
13 where LHC has 13 Where

dR
dt

are the events pr second,
sp are the cross-section and L are the
luminosity.

L = 1034 cm�2s�1. The integration becomes the collision which
is a cross-section area measured in inverse femtobarns, 1 fb�1 =

1039 cm�2. The speed of the protons are 0.999999991 c 14 and the 14 c is understood as the speed of light
at 299792458 m/s [45].particles have traveled the 27 km tube 11245 pr second.

The final destination for the beams is in the detector of interest,
namely the A Toroidal LHC Apparatus (ATLAS) detector, where
the number of collisions is up to 1 billion collisions per second.

3.3 The ATLAS Detector
The reference: [16, Main page and its
subpages.] are used for The ATLAS
Detector section 3.3 and the subsections:
3.3.1, 3.3.2, 3.3.3, 3.3.4, , 3.3.7.

Additionally [70, Main page and its
subpages.] are used for reference for
subsections: 3.3.7 and 3.3.5 in section 3.3.

The ATLAS detector is the largest15 particle detector in the world

15 volume-wise

with its 46 m long / 25 m diameter cylindrical shape seen in Fig.
(3.2). It is situated 100 m underground16 and weights around

16 Which utilises the earth to shield
from radiation

7000 tonnes. The detector is constructed as multiple layers, each
contributing to the detection of the results of collisions, namely
showers of particles, their individual trajectory, momentum, and en-
ergy. Over 1 billion collisions happen inside the detector, and only a
small fraction17 has the measured quality to be stored in the CERN 17 One in a million.
network.

Figure 3.2: The ATLAS detector in
2008 for Run 2 - a computer-generated
image with labels. Source of figure:
[56]
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3.3.1 The Inner Detector

The inner detector is the first part of the ATLAS detector that inter-
acts with particle-collision debris. It consists of three components:
Pixel Detector (PD), Semiconductor Tracker (SCT), and Transition
Radiation Tracker (TRT). The inner detector measures the electri-
cally charged particles’ direction, momentum, and charge.

Moving from the collision point and outward, the first is the Pixel
Detector (PD). The PD works by particles going through the detec-
tor and leaves energy in the four layers of silicon pixel where the
pixel sizes are 50 ⇥ 400 µm2 for external layers and 50 ⇥ 250 µm2

for innermost layer yielding a resolution up to 10 µm2. The detector
has 92 million pixels which is an area of ⇠ 1.9 m2, which makes it
capable of determining the origin and momentum of the detected
particle.

Moving on to the next part of the inner detector, which is the SCT
which aims to reconstruct tracks of the charged particles from the
collisions. This detector has 4088 modules of ⇠ 6 million readout
strips of silicon sensors. These are organized in layers, so particles
must go through at least four readout strips. The precision is up to
25 µm2.

The last part of the inner detector is the TRT which is made of
300000 straws18 each 4 mm in diameter with a 30 µm2 gold-plated

18 or "tubes".

wolfram (74W) wire in the center surrounded by gas. When charged
particles go through the straw, they ionize the gas and create an
electrical signal used for re-creating the tracks. In addition, it also
gives information on the particle type obtained from the transition
radiation effect19.

19 Transition radiation is when an
object with a charge moves at a con-
stant speed in a non-uniform or
non-stationary medium or near such.
An example would be a charged par-
ticle moving between two different
mediums, giving off radiation.

3.3.2 The Magnet System

The ATLAS detector has a superconducting20 magnet system which 20 Operating temperature is 4.5 K.

aims to measure the momentum and charge of charged particles.
This is done by bending the trajectories of the particle residuals
from the collisions. The magnet consists of the Central Solenoid
Magnet, which encapsulates the inner detector. This magnet aims
to measure momentum and has the dimensions: 5.3 m long and
2.4 m in diameter weighing over 5 tonnes The solenoid gives a 2 T
magnetic field storing 38 MJ which is achieved by 9 km niobium-
titanium (Nb-Ti) superconducting wire.

The Toroid Magnet System consists of one big21 barrel toroid which 21 The largest toroidal magnet ever
constructed with a length of 25.3 m.surrounds the central part of the detector. It is made of 8 coils

providing in total up to 4 T with its over 56 km superconducting
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(a) (b)

Figure 3.3: Figure (a): A cross-
section of the ATLAS detector where
the interaction of different particles are
seen. Source of figure: [46].
Figure (b): A schematic of the ATLAS
Inner Detector where each element are
located compared to the pseudorapid-
ity. Source of figure: [12].

wire, which aims to measure muon momentum. The two end-cap
toroidal magnets ensure that muons leaving the detector close to
the beamline are also measured.

3.3.3 The Calorimeters

The calorimeters are designed such that particles22 that pass through, 22 Not all types.

deposits their energy in the calorimeter (seen in Fig. (3.3)(a)). There
are two calorimeters in ATLAS. The innermost is the Liquid Argon
(LAr) Calorimeter23 which measures the energy of electrons, pho- 23 also known as the Electromagnetic

Calorimeter (ECAL) or EM Calorime-
ter.tons, and hadrons. This is done by multiple metal24 layers of that
24 Wolfram (74W), copper (29Cu) or lead
(82Pb).

absorb and convert particles into showers of lower energy-particles.
These showers ionize the liquid argon (temp: �184 �C) and give off
an electrical current. Due to the honeycomb structure of the inner
calorimeter, almost no particles escape. Therefore, retracing ener-
gies from the shower makes a reconstruction of the original incom-
ing particles’ energy possible. The inner calorimeter is specialized
for electron and photon measurements.

Surrounding the LAr calorimeter is the Tile Calorimeter25 which 25 Also known as the Hadronic
Calorimeter (HCAL).measures hadronic particle energies which do not get stopped in

the LAr calorimeter. Using layers of steel and sparkling plastic tiles,
the steel layers create showers of particles upon interacting with
incoming particles, and the plastic tiles produce photons which
are turned into electric currents. These currents are proportional
to the original particles’ energy. There are 420000 plastic tiles, and
the tile calorimeter weighs 2900 tonnes, making it the heaviest part
of ATLAS. As seen in Fig. (3.3)(a), muons and neutrinos are not
recorded in the LAr Calorimeter or the tile Calorimeter.
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3.3.4 Muon Spectrometer

To measure muons, the ATLAS detector has a muon spectrometer
that measures the momentum of muons since muons typically do
not interact with the Inner detector or the Calorimeter. The muon
spectrometer consists of 4000 individual muon champers using
four different technologies: Thin Gap Chambers, which are used for
triggering and measuring 2nd coordinate at the end of the detector.
Resistive Plate Chambers, which also is used for triggering and 2nd
coordinate measurements, is used in the detector’s central region.
Monitored Drift Tubes, which measures curved tracks and lastly,
Cathode Strip Chambers, which measures coordinates at the end of
the detector.
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Figure 3.4: Figure (a): The AT-
LAS coordinate system where the
beamlines also top of the z-axis and
with the origin as the collision cen-
ter. Source of figure: [53], the figure
is edited such the compass fits the
ATLAS detector.
Figure (b): B jet from pp-collision at
the primary vertex (PV) in the ATLAS
detector. SV is the secondary vertex
where the B meson decays. Lxy are the
distance between PV and SV. d0 and z0
are the distance between PV and SV
projected onto the x-axis and z-axis,
respectively. Source of figure: [52].

3.3.5 The ATLAS Coordinate System

The ATLAS coordinate system is the same as for the CMS detector
with the origin at the point of collisions. Following Fig. (3.4)(a),
the z-axis is the beamline, and the x-y plane is a cross-section cut
in the detector with the y-axis pointing upwards. An interesting
quantity on Fig. (3.4)(a) is the pseudorapidity; h defined in Eq.
(3.1). The reason h is used instead of q is that the difference of
pseudorapidity; Dh is Lorenz invariant26.

26 The quantity is invariant or un-
changed regardless of the observer’s
reference frame.

h = � ln [tan((theta2)] (3.1)

This quantity is then used in other factors such as in the An-
gular Distance between particles, which are defined as DR =p

Dh2 + Df2 which also are Lorentz Invariant. Another noteworthy
quantity is the radiation length X0, which is defined in Eq. (3.2)
defined according with CERN technical papers: [26].

X0 =
716.4

Z(1 + Z) ln(287 · Z�1/2)
g/cm3 (3.2)

The radiation length; X0 is the mean length in which an electron’s
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energy is reduced by a factor of 1/e 27. With these state-of-the-art 27 The physics behind is when an
electron is near an atom, it will be
affected by the electromagnetic field of
the atom. This interaction will produce
photons; hence the free electron will
loos energy. This phenomenon is
called Bremsstrahlung.

detectors, there are still sections of the detector that have better
readout than other areas. These areas can be categorized as func-
tions of pseudorapidity which are seen in Fig. (3.3)(b). Here it is
seen that inside the Inner Detector for the best readout, the values
of pseudorapidity would be: |h| <= 2.5. Another important factor
is the supporting material inside the ATLAS detector. The amount
of support structure can be quantized by the amount of radiation
length of the material. Where a peak in the material means the
signal is probably more distorted in this region. An important ex-
ample of this is seen in Fig. (3.5) in the area 1.5 < X0 < 1.75 and
especially for |h| > 3.5.

Figure 3.5: A schematic of the Run2
material budget of the ATLAS detector.
Source of figure: [47, figure 3, p.2].

3.3.6 The Trigger System

The LHC provides ATLAS with collisions that would take up to
60 million megabytes per second, which is impossible to store.
One way is to have a trigger system that sorts the collisions before
they are stored in CERN servers. The triggers take event data at
⇠ 40 MHz to ⇠ 100 kHz. The trigger system is made of hardware
and software triggers; the first trigger; is Level-1 Trigger (L1), which
is purely hardware based. The L1 trigger uses data-event from the
detector such as total energy in the Calorimeter, the multiplicity
of certain objects above a threshold, or topological conditions28. 28 Could be invariant mass or angular

distance.The L1 trigger takes the data direct from the detector at ⇠ 40 MHz
and ramps it down to ⇠ 100 kHz within a latency of 2.5 µs. In this
short period, 2.5 µs - the event data is in buffer storage, and if the
event passes the L1 trigger, it gets sent to the second trigger. The
L1 trigger also identifies the Region-of-Interest (RoIs) in h and f,
which also are given to the second trigger.

The second trigger stage, the High-Level Trigger (HLT) or Level-2
Trigger (L2), is software based. The L2 trigger uses ultra-fast al-
gorithms which do an early accept/reject of the data. Then more
CPU-intensive algorithms take the accepted data and do a sec-
ond filtering. These algorithms also do a basic reconstruction of
tracks and associate them with energies from the calorimeter. These
algorithms are executed on a computing farm made of ⇠ 40000
selection applications, also known as Processing Units (PUs), which
on average take an accept/reject selection within ⇠ 500 ms. The
number of events outputted by the L2 trigger is around 1000 events
per second. The software on the L2 trigger is based on the Athena
framework[10], which is developed and maintained by the CERN
collaboration. When the trigger system fully accepts an event, all
associated data is collected and the event is passed on for proper
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reconstruction.

The trigger settings used in this thesis are:
HLT_e5_lhvloose_nod0_bBeexM6000t and
HLT_2e5_lhvloose_nod0_bBeexM6000t[39].
A breakdown of the triggers: HLT means it is on the HLT/L2 trig-
ger, e5 and 2e5 means that the trigger requires at least one and two
electron(s) with transverse energy larger than 5 GeV/c2 receptively.
lhvloose means the identification and isolations criteria for the elec-
trons are "loose". nod0 means there is no d0 requirement in the
trigger (see Fig. (3.6)). Lastly, bBeexM6000t tells the trigger that the
event needs to have 2 electrons with an invariant mass lower than
6 GeV/c2.

Figure 3.6: Track coordinates
ATLAS. Source of figure: [70]

3.3.7 Track Reconstruction

Track reconstruction is an essential part of the detector system.
Since the proton-proton collisions are not one-at-a-time but come
in bunches, multiple collisions happen at each bunch crossing, i.e.,
pile-up. After proton-proton collisions, hadrons are formed by the
quarks from the hadronization process and these hadron showers
form a cone called a jet; see Fig. (3.4)(b).
Track reconstruction is not only used for the reconstruction of
charged particles. However, it is part of almost all other parts of
the reconstruction process: Reconstruct leptons, finding primary
and secondary vertices, jet flavour tagging29, and pile-up removal 29 Finding which quarks are in the jet.

for when jets are overlapping resulting in smeared signal. In Eq.
(3.3), the parameter tuple is the primary tracking parameter. For
reference, see Fig. (3.6); d0 and z0 are the distance from the primary
vertex to the closest point of the track. f and the q of the track mo-
mentum, where the primary vertex is the reference frame. q is the
charge, and p is the magnitude of the momentum of the recon-
structed track. ✓

d0, z0, f, q,
q
p

◆
(3.3)

The tracking system consists of two paths; the first is an inside-out,
which starts with nearby signals in the PD and SCT is converted to
clusters which again are converted to 3D space-points. These 3D
space points are then used to form seeds containing 3 points that
can create a track-line to the vertex of interest. Iteratively, the seeds
are being expanded into trajectories using an adaptive Kalman filter
that finds adjacent clusters and smooths the trajectory. This is not
the most precise way. However, it is fast, and this method creates
track candidates. Further refinement of the track candidates is
done with a global c2-fit followed by a Gaussian-sum Filter (GSF)30

30 GSF is based on Kalman filters takes
the non-linear effect of bremsstrahlung
into account.

After this, the other path is taken: Outside-in. This is to increase
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acceptance from particles produced in the Region-of-Interest (RoI):
|h| < 2.46 [1]. Here track candidates start from the TRT and cross-
check to be in the RoI. Then the same is done as in the other path;
seed-expansion, adaptive Kalman, and c2-fits.

3.3.8 Seed-Cluster Reconstruction

The reconstruction of the electrons is a two-step process. The elec-
tron deposits their energy in the EM calorimeter, which can be di-
vided into a grid of 200 ⇥ 256 elements (towers) of size Dh ⇥ Df ==

0.0250.025[1]. The idea is that each tower consists of three lay-
ers and a presampler31 and the energy deposited in each layer

31 The pre-sampler is a small detec-
tor in before the calorimeter which
corrects for lost energy due to non-
detector material interactions.

is summed to total tower energy and is calibrated to EM-scale.
An algorithm finds each seed cluster32 by a sliding window of 32 A seed cluster is a region in the EM

calorimeter where there is the energy
deposited above a threshold.Dh ⇥ Df = 3 ⇥ 5 by scanning over adjacent towers. The algorithm

stops when all towers have been searched. If two seed clusters
are present33 the alorithm discards the one with lowest transverse 33 overlap of Dh ⇥ Df = 5 ⇥ 9.
energy; ET . However, if the energy is within 10%, the tower with
the highest energy in the original tower is kept. This is in place to
ensure that each electron candidate is reconstructed using only a
single set of energy deposits in the EM Calorimeter; hence it will
improve the ability to measure the momentum and direction of the
electron accurately. These seed clusters are then used to determine
the electron candidates.

3.3.9 Elecron Identification

Identifying electrons34 is essential for the analysis. A combina- 34 or positrons.

tion of the energy deposited in the EM calorimeter and the track
reconstruction is used to identify if the electrons come from the
primary vertex (PV) or secondary vertex (SV) or are unrelated to
the decay of interest and hence are discarded[1]. This non-related
electron that needs to be removed could be an electron which, due
to bremsstrahlung, emits a photon, creating an electron-proton pair.
This will result in a shower of electrons, which needs to be removed
since it distorts the signal. The track-cluster matching is done by a
likelihood-based algorithm (likelihood function: Eq. (3.4)), which
can be calculated for a signal; S or background; B prompt elec-
trons35 by using their respective probability density functions for 35 Promt electron are electrons directly

from pp-collisions.each variable, Pi - extracted from simulated distributions.

LS(B)(x) =
n

’
i=1

PS(B),i(xi) (3.4)

From the likelihood, the inverse36 distriminant for each event can
36 The discriminant has a sharp peak at
0 and 1. Hence the inverse is a better
choice for computational stability.be calculated: d0

L = �15�1 ln(d�1
L � 1) where dL

LS
LS + LB

is the dis-
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criminant. The discriminant can be used to define cuts: VeryLoose,
Loose, Medium, and Tight, which are different values for how strict
the selection should be. The idea behind the LLH is that electrons
will deposit most of their energy at the front of the calorimeter.
Some other particles, like pions, tend to create broader electron
showers, extending deeper into the calorimeter. Then the LLH algo-
rithm uses this information to assign a probability that each track
is associated with each seed cluster in the EM Calorimeter. The
source of the misidentification of electrons could be multiple elec-
trons close to each other, so there will be a track-cluster mismatch.
Hence the algorithm also looks into the isolation37 of electrons and 37 Isolation means that the electron

is separated from other particles
measured in momenta and positions.adds a threshold for separation between electrons. The efficiency

of the electron reconstruction is important to this thesis due to the
RK⇤0 -ratio where the efficiency corrected yield is used.

3.4 Efficiencies

This detailed review of the ATLAS detector and its components
is not only for understanding where the data comes from; it is
also essential for estimating the efficiencies of various stages of
the detector. As the focus of this thesis is on the extraction of the
electron signal yield, the efficiency is the other part of the RK⇤0 -
ratio (Eq. (2.6)). The total efficiency is seen in Eq. (3.5), which is the
equation used to estimate the efficiencies of LHCb 2022 RK⇤0 -ratio
measurements[44].

#tot = #geo ⇥ (#MVA ⇥ #Pre�select ⇥ #Trig ⇥ #PID) (3.5)

The detector-dependent38 efficiencies are #geo, #Pre�select, #Trig and
38 or just a part of the above section on
the ATLAS detector.

#PID.
#geo is the fraction of signals generated within geometric acceptance
in the detector; h, f, etc. #Pre�select the fraction of signals which
passed various cuts based on some requirements which could be
variables based on particle identification, vertex quality, and kine-
matics, etc.
#Trig is the efficiency on the trigger system; namely the high-level
trigger and the low level trigger.
#PID is the fraction of signals correctly identified; electron or muons.
The #MVA is the efficiency of the Machine Learning selectron of B0,
B0, and background.

3.5 ATLAS Data

As mentioned in subsection 3.3.6, the data are stored, and the road
to storage is a bit different depending on the origin of the data
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if it is from Monte Carlo simulations, denoted MC or actual data
obtained from the ATLAS detector.

Monte Carlo

Data

Trigger

Reconstruction

Derivation

Analysis

Generation

Simulation

Digitization

Reconstruction

Derivation

Collisions

Figure 3.7: A diagram over the
data/MC path until it is ready for
analysis. Source of figure inspiration:
[7, p. 3]

Starting with the MC path as seen in Fig. (3.7), the generation is
the first step. This step uses a range of different MC models that
tries to encapsulate the properties of the particles. Usually, multiple
models are used in the generation process and are merged to get
as close as possible to the complex structures from Quantum Chro-
modynamics. The Simulation step is where detector-interactions are
simulated, and the digitization step is the detector output. These
steps are equivalent to the collision/trigger steps of the data path
described earlier in this thesis.

Data after the reconstruction step are stored in .root39. The raw re-

39 A storage framework which is de-
veloped by CERN. It has a hierarchical
structure like a tree in which variables
as branches and entries in the branches
are single events. Metadata can also be
stored in this format.

constructed data are stored in Analysis Object Data (AOD) and
extended with metadata and additional information to eXtended
Analysis Object Data (xAOD). Athena[10]40 are then used to take

40 A modular analysis framework
developed by CERN

the raw data and cut it down into smaller bits such that the differ-
ent groups at ATLAS don’t have to use extra computer power to
process data of no interest. This is called the derivation step. The
size of xAOD is about petabytes, and it can’t be read into memory
on regular computers as it is. The following is done in the deriva-
tion step to create Derived Analysis Object Data (DxAOD/DAOD)
based on criteria made by the ATLAS research groups who needs
the DAODs: Skimming, slimming, thinning and argumentation. Skim-
ming is the action of removing whole events. Thinning removes
objects inside the events, and slimming removes variables inside
objects. The last is argumentation, which creates new information
based on existing knowledge. The DAODs are of terabyte size.

Further, each subgroup slims, skims and thins the DOAD into n-
tuples41 which are meant for high-performance analysis where the 41 N-tuples are of megabyte/gigabyte

size.data are used with higher frequency. An example of this could be a
machine learning analysis, such as the analysis of this thesis.
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4
Machine Learning

The main component of this thesis is the implementation of Ma-
chine Learning (ML) to filter B0 and B0 from the background which
is highly nontrivial, and before heading into the analysis, review of
the ML theory is needed.

Machine Learning is the science of programming computers such
that they learn from data and is a branch of Artificial Intelligence
(AI). The spam filter was one of the first implementations of ML the
broad public met. The spam filter has learned from thousands of
flagged spam emails from users such that nowadays, spam emails
are automatically filtered. On the other hand, if the spam filters
were hard-coded1, every new attempt to make spam emails must 1 Lines after lines of if statements.

be caught by creating new rules/if-statement2. Luckily, this is done 2 And the spam filter developers have
to send out update after update for all
eternity.automatically with ML.

ML can be divided into multiple categories such as Supervised
Learning where the programmer labels the training data. These
labels can either be classes for a classification problem or the labels
are continuous, and the problem is regression. There are no labels in
Unsupervised Learning, and the algorithm has the learn with no
labeled data. A widespread algorithm in the category is clustering
algorithms. Semisupervised Learning is an approach where it is
too costly to label all data; hence, a stacked model of both a super-
vised and unsupervised algorithm is usually used. Reinforcement
Learning is a bit different from the other since here, the program-
mer defines an agent who operates inside its world with a given
rule set and a score function. Then reinforcement learning agent
tries to optimize this score function within its programmed world.

There are many advantages to using ML; however, it is not some
magic that can do everything. The programmer has to be aware of
the multiple problems with ML and how to prevent these problems
from affecting the end result. Some of these problems could be:

• Not enough data
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• Data that does not represent/correlate with the objective

• Data of insufficient quality

• Over-fitting to training data

• Under-fitting to training data

This thesis uses mainly supervised ML, and therefore, from hereon,
this chapter will use the notation of reference [51] to create a more
formal language around ML. Let T be the task of the ML algorithm;
the goal is to make the computer learn the mapping: f : (x 2
RD) ! (y 2 Y) where x is the features3, D is the dimensionality of 3 Some also use the terms: predictors.

the input and the number of features. y is the output vector, called
labels or targets. The training set; D = {(xn, yn}N

n=1 where N is the
sample size.

4.1 Gradient Boosted Decision Trees

The main ML algorithm used in this thesis is the Light Gradient
Boosting Machine (LightGBM) package managed by Microsoft (git
repository: [13]) original paper by Guolin et al. in 2017 [32].

4.1.1 Decision Trees

LightGBM is an ensemble method that uses decision trees as weak
learners and combines them into a strong learner. A decision tree
starts at the root node as seen in Fig. (4.1) and partitions the train-
ing set into smaller and smaller sets until an approximated target
value is reached.

Root Node
! "! #!, %!
"! < %!
'!, (!

Non-Leaf node
! "" #", %"
"" < %"
'", ("

Leaf node
'#, (#

Leaf node
'$, ($

Leaf node
'%, (%

FalseTrue

True False

Figure 4.1: Example of a decision
tree in training; D is input training set,
c(X) is the cost function, ti is non-leaf
threshold, Ri is the partitioned space
of D at leaf i and wi is the weight of
leaf i.

The algorithm goes as follows: Let Di = {(xn, yn) 2 Ni} be the set
that has reached node i.
Let DL

i =
�
(xn, yn) 2 Ni|yn,j  t

 
and DR

i =
�
(xn, yn) 2 Ni|yn,j > t

 

be the partitioned sets from Di dependent threshold tj for feature
j.4 A greedy method is used to find the optimal pair of (j, tj) by

4 This notation is for regression tasks.
For classification; the partitions has the
form: DL

i =
�
(xn, yn) 2 Ni |yn,j = t

 

and DR
i =

�
(xn, yn) 2 Ni |yn,j 6= t

 
.

optimizing Eq. (4.1) where Tj is the set of possible thresholds for
feature j.

(ji, ti) = argmin
{j21,...,D}

"
min
t2T

"
|DL

i (j, t)|
|D| c(DL

i (j, t) +
|DR

i (j, t)|
|D| c(DR

i (j, t)

##

(4.1)
At each node i, there is a region space defined by
Ri = {x|xi /> ti, . . .}5. By partitioning the 2D-input space, this 5 The symbol /> here just denotes

that it can either be xi  ti or xi > ti .approach creates a M-dimensional output space dependent on the
number of leaf nodes. This results in a piece-wise linear approx-
imation to the training set labels and the mapping mentioned
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prior becomes: f (x; q) =
J

Â
j=1

wjI(x 2 Rj) where the weights

wi =
ÂN

n=1 ynI(x 2 Ri)

ÂN
n=1 I(x 2 Ri)

is the output from node i at region Ri
6. 6 Which is just the mean of the training

labels of the region; Ri .
The most common cost functions; c(D) are either MSE (Eq. (4.2))
for regression problems and entropy7 (Eq. (4.4)) or Gini-index (Eq. 7 or log-loss.

(4.3)) for classification.

MSE: c(Di) =
1
N

N

Â
n=1

(yn � f (xn; q))2 (4.2)

Gini-index: c(Di) = 1 � Â
c

p̂2
ic (4.3)

Entropy: c(Di) = �
C

Â
c=1

p̂ic log(p̂ic) (4.4)

where p̂ic =
1

|D| Â
n2Di

I(yn = c) for class c

4.1.2 Boosting

Decision trees have many advantages8; however, their disadvan- 8 Intuitive and easy to interpret with
the possibility of printing the trees
and they can do both regression and
classification.

tages need to be addressed: Due to their greediness, they are inac-
curate and unstable9. A method to overcome this is by using boost-

9 Even a tiny change in the data set can
lead to an entirely different tree.

ing, which in its essence, is a sequential fitting of trees. Boosting
takes a weak learner; Fm which is a tree at stage m 2 M, then Fm+1

is trained on the residual errors of Fm resulting in strong learner after
M 2 M steps a. Since trees depend on each other by fitting the last
iteration, the boosted trees has reduced bias of the strong learner
and has greater stability than one tree [51].

Gradient boosting on decision trees is usually done on regression
trees. The weak learner at stage m 2 M; Fm(x) (see Eq. (4.5)) which
is a sum of weights (wj,m) assigned to the leaves (indexed over
1, . . . , j, . . . Jm) of the underlying decision tree.

Fm(x) =
Jm

Â
j=1

wj,mI(x 2 Rj,m) (4.5)

To obtain the weights wj,m, we use a loss function `(yi, fm�1(xi) +

w)10, where yi is the target value of the i-th training example, 10 See Tab. (4.1) for a list of loss-
functions.fm�1(xi) is the predicted value of yi at stage m � 1, and w is the

weight to be optimized which are represented by is represented by
ŵj,m = argmin

w
Â

xi2Rjm

`(yi, fm�1(xi) + w). Summarized: the boosting

process results in a sequence of decision trees where each tree is
fitted to the residuals of the previous tree. The final boosted model
(strong learner) is now a sum of these decision trees (weak learn-
ers), where each tree contributes weights to the final prediction.
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The algorithm for gradient boosting is seen in Algorithm 1 (Source:
Algorithm 10 [51, p. 612])11 11 Note that n are the learning rate.

Algorithm 1: Gradient boosting

1 Initialize f0(x) = argmin
F

N

Â
i=1

L(yi, F(xi));

2 for m = 1 : M do
3 Compute gradient residual:

ri,m = �


∂L(yi, f (xi))
∂ f (xi)

�

f (xi)= fm�1(xi)
;

4 Use weak learner to compute:

Fm = argmin
F

N

Â
i=1

(ri,m � F(xi))
2;

5 Update: fm(x) = fm�1(x) + nFm(x);

6 Return: f (x) = fM(x)

Name Loss Gradient: � ∂`(yi , f (xi))
∂ f (xi)

Squared error
1
2
(yi � f (xi) yi � f (xi)

Absolute error |yi � f (xi)| sign(yi � f (xi))
Exponential loss exp(�ỹi f (xi)) �ỹi exp(�ỹi f (xi))
Binary logloss log(1 + exp(�ỹi f (xi))) yi � pi
Multiclass logloss � Âc yic log(pic) yic � pic

Table 4.1: Table of commonly
used loss functions. For binary
classification: ỹi 2 {�1, +1} and
pi = s(2 f (xi)). For regression: yi 2 R.
Source: [48]

4.2 LightGBM

As already mentioned, the GBDT-algorithm used in this thesis is
the LightGBM algorithm maintained by Microsoft[13]. This algo-
rithm utilizes two different algorithms, which makes it different
from other boosted decision tree algorithms such as the well-known
XGBoost[8].
One of the main features of the LightGBM algorithm is that tree
growth is leaf-wise and not level-wise, which most other competi-
tors use. Leaf-wise growth finds the most optimal leaf, splits it,
and moves on to the next. This gives high precision; however, it
is a double-edged sword since it also introduces a high chance of
over-fitting.

There are three main modifications that LightGBM utilizes. The
first is histogram-based tree growth. During the growth of each indi-
vidual tree, the features are transformed into histograms, and the
(ji, ti) from Eq. (4.1) is calculated based on histograms and not the
outright values (seen in Fig. (4.2)). This makes finding the thresh-
old faster due to histogram-binning since the number of possible
thresholds, ti, is reduced. This also introduces the possibility of
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errors if the bin granularity is too coarse and the underlying distri-
bution is not correctly encapsulated.

Root Node
! "! #!, %!
"! < %!
'!, (!

Non-Leaf node
! "" #", %"
"" < %"
'", ("

Leaf node
'#, (#

Leaf node
'$, ($

Leaf node
'%, (%

FalseTrue

True False

Figure 4.2: Example of decision tree
with histogram-based tree growth.
Which is a modified version of Fig.
(4.1).

In addition to histogram-based tree growth, LightGBM also the Gradient-
based One-Side Sampling (GOSS)-algorithm. The GOSS algorithm
modifies the basic gradient algorithm by selecting the top a% gradi-
ents with the largest values. The hypothesis follows: Large gradients
are more important for learning than small gradients. The GOSS algo-
rithm also uses randomly selected b% of the remaining small gradi-
ents to avoid over-fitting and avoid a skew in gradient distribution.
The effect of downsampling the gradients is a reduced computation
time needed in training and a focus on the under-trained trees. An
important thing to note when using the GOSS algorithm; it is pri-
marily effective for large samples and many weak learners in the
ensemble. The outline of the algorithm is found in Algorithm 2.

Algorithm 2: Gradient-based One-Side Sampling

1 Input: a, b - ratio of large and small gradient respectively.;
2 for k = 1 : Iterations do
3 Compute gradients: 8i 2 N:

ri,m = �


∂L(yi, f (xi))
∂ f (xi)

�

f (xi)= fm�1(xi)
;

4 Sort gradients i descending order: A = {ri,m  rjm  . . .};
5 Pick: Atop = A[: a ⇥ N] and

Abot = Random(b% of A[a ⇥ N :];
6 Create a new tree w. weights calc from:

ri,m ⇥ 1�a
b : ri,j 2 Abot;

7 Calc. new iteration of weak learner with weights from
ri,m 2 Atop [ Abot;

The last modification LighGBM uses is the Exclusive Feature
Bundling (EFB)-algorithm. This algorithm aims to reduce the
number of features by bundling them together by chaining the
two algorithms: Greedy Bundling and Merge Exclusive Features. The
Greedy Bundling-algorithm computes the conflict matrix12, which 12 A conflict matrix measures feature-

pair conflict. For all feature pairs; (i, j),
calculate the number of samples where
both features have non-zero values:
(xi,k , xj,k) 6= (0, 0) for the same sample.

measures feature overlap. The algorithm then finds the features
with the most conflict and combines the two features into a new
feature. This is done iteratively to reduce redundancy in the fea-
ture space. The detailed pseudo-code can be seen in [32, Algorithm
3 & 4]. A summary of the Greedy Bundling is seen in Algorithm
3. The Merge Exclusive Feature algorithm is chained together with
the Greedy Bundling-algorithm since the idea behind it is to take
the low-conflict features which were not merged in the Greedy
Bundling-algorithm and bundles features together which has non-
overlapping non-zero values in the conflict matrix. This offsets the
features in the same bundle such that the original feature distribu-
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tions are not distorted, and the resulting histograms of the features
after EFB should approximately be the same as if bundling were
not implemented.

Algorithm 3: Greedy Bundling

1 Create graph; G of features with weighted edges - weight are
calculated based on feature conflict;

2 Sort features based on vertex degree -descending;
3 for i = 1 : Features do
4 if Feature Conflict < Threshold then
5 Add to existing feature bundle;

6 if Feature Conflict > Threshold then
7 Create a new feature bundle;

Figure 4.3: AUC vs. time for a
binary classification task with 10M
rows of data and 700 features columns.
xgb_exa are a pre-sorted algorithm and
xgb_his are a histogram-based algo-
rithm where xgb stands for XGBoost.
LightGBM are with the GOSS and
EFB algorithms and lgb_baseline are
without. Source: [32, Figure 1, p. 7]

The implementation of GOSS and EFB is what makes LightGBM
unique, and they give a significant speedup: For the histogram-
based tree growth, the speed goes from O(#Data ⇥ #Features) to
O(#Bins ⇥ #Features) for finding optimal leaf-split threshold.
For the GOSS algorithm, the speed-up goes as: O(#Data ⇥ #Features)
to O(#Samples ⇥ #Features) and for Exclusive Feature Bundling:
O(#Data ⇥ #Features) to O(#Data ⇥ #Bundles). The combined
speedup are then: O(#Samples ⇥ #Bundles). An example of this
speedup with comparisons is seen in Fig. (4.3), which are from the
original LightGBM paper[32].

4.3 Hyper-Parameter Optimization

This thesis uses the default setting/parameters for LightGBM[13,
Git version: 3.3.2 with Python 3.10.8] unless other is stated. The
speedups, as mentioned, are not only reliant on the number of fea-
tures and samples, It also depends on the number of cpu-cores for
multiprocessing, and all LightGBM models mentioned in his thesis
are trained and run on a High-Perfomance Computer (HPC) hosted
by the University of Copenhagen[59] which has 48 cores. This
makes it possible to achieve significant speedup. When training
a LightGBM model, the number of cores used for parallel learning
is n_jobs. Speed is not the only important parameter; the precision,
stability, and training time for LightGBM primarily depend on the
choice of hyperparameters. An example of some of the hyperpa-
rameters to choose from is found in Tab. (4.2).
Finding the best combination of hyperparameters in the hyperparameter-
hyperspace has historically been very hard since many hyperpa-
rameters can be correlated, and locating the optimal set of hyper-
parameters is highly nontrivial. Looking at Tab. (4.2), there is a
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Hyperparameter Description

num_leaves The maximum number of leaves allowed in each tree.
max_depth limit the maximum depth allowed for the trees.
num_iterations The number of boosting iterations.

early_stopping_round Parameter for stopping training if performance on validation
is not increased for #early_stopping_round.

lambda_l1 L1 (or Lasso) regularization.
lambda_l2 L2 (or Ridge) regularization.

Table 4.2: A small sample of hyper-
parameters for LightGBM from the
LightGBM docs: [48]

6D hyperspace with infinite combinations. One way is using the
Optuna[3, Git version: 3.0.4 with Python 3.10.8] optimization frame-
work. This framework uses various smart algorithms to find the
optimal hyperparameter combination without brute-forcing all
hyperspace-parameter combinations. This is achieved by two pro-
cesses/algorithms: Sampling and pruning.

The default sampler and the one used in this thesis is the Tree-
structured Parzen Estimator (TPE) sampler[4]. The TPE sampler
takes the search space and partitions it into a tree-structured search
space. The TPE algorithm recursively partitions the search space
into a good and a bad space/tree nodes. This makes the algorithm
focus on the suitable regions of the hyperparameter space, and
computation time is decreased.
The TPE sampler uses a Gaussian kernel density estimator13:

13 Kenel Density Enstimator or Parzen
Window Density Estimator.

p(x|B) = 1
M ÂM

i=1
1p

2psi
exp � (x�x(i))2

2s2
i

to estimate the hyperpa-
rameter probability density function14. The TPE algorithm is seen

14 where M observations with set:
B = {x(1), ..., x(M)} ⇢ H, where H is
the hyperparameter space.in algorithm15: 4. If the objective is not singular, the TPE algorithm
15 The pseudo-algorithm: 4 is inspired
by [55, Algorithm 1].

is modified accordingly; see reference [4].
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Algorithm 4: TPE Sampler in Optuna

1 Require: A tree-structured search space X , An objective
function f : X k ! R (lightGBM model metric) where k is the
number of hyperparameters and a set of starting
observations: D = {(x(1), y(1)), . . . , (x(k), y(k))} where
y = f (x).

2 Select an quantile: g 2 (0, 1);
3 for niter iterations do
4 D` = {(x, y) 2 D | y 2 best-bg|D|c};
5 Dg = D \ D`;
6 for 1 to nhyper total hyperparameters do
7 With kernel density estimation; construct `(xi) where

{xi | (x, y) 2 D`};
8 With kernel density estimation; construct g(xi) where

{xi | (x, y) 2 Dg};
9 Find x⇤

i which maximizes the Expected Improvement:

EI(xi) =
⇣

g + (1 � g) g(xi)
`(xi)

⌘�1
;

10 D = D [ {(x⇤, y⇤ = f (x⇤))}, where x⇤ is the vector of the
x⇤

i s.

On top of using a sampler and not a simple grid search, the Op-
tuna library uses pruning. Pruning is a technique that discards the
models that do not perform above a certain threshold. The pruner
used in this thesis is the Median pruner, which after N finished
optimization runs calculates the median, and those models that
under-performs are discarded, and the rest are kept.

4.3.1 Verstack

LightGBM and Optuna are two libraries that integrate very well
into each other and instead of calling these two libraries individu-
ally, a very clever and well-made Python library called Verstack[73,
Git version: 3.0.4 with Python 3.10.8] combines LightGBM and Op-
tuna. The Verstack library is used for training all LightGBM models
in this thesis. Verstack cleverly searches the hyperparameter space
and has high precision and low training time. Even though this
thesis uses Verstack, a local version of Verstack is used, which is
more cluster-safe16 The Verstack python library is an ML swiss-

16 Avoiding the use of all cores since
multiple people are using the shared
48-core HPC cluster at the University
of Copenhagen.

army knife, and only the LGBMTuner17 are used for this thesis.
17 The python method which combines
LightGBM and Optuna.

Hence the branched-out version of Verstack used in this thesis only
contains the LGBMTuner-method18. This branched-out version of

18 In addition to making Verstack
cluster-safe, the logging was also
changed such it was written to a file.Verstack can be found in the git-repository of this thesis19 since it is
19 Gitlab repository: [50].not yet made into a complete pull request.
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Part II

Analysis
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5
The Aim and Previous Work

At the beginning of the thesis, the RK⇤ group focused mainly on
the electron yield; NSig(B0) of the B0 ! K⇤0e+e� decay. Efficiency
studies and the signal yield on muons and the control channel: J/y

were only in the infancy. Hence, this thesis focused on the electron
yield due to data availability.

m($+)

Main
 Cuts

m($+)

Main
 Cuts BDT1

BD
T2

Figure 5.1: A Diagram of the sep-
aration of signal (m(B0)) from the
background using various variable
cuts or GBDTs.

The analysis will focus on separating signal vs. background, where
signals are divided into B0 and B0 since the ATLAS detector can not
distinguish between Kaons and Pions. This is not an easy task since
separating the background from the signal can distort the signal
mass distribution and the remaining background such that large
uncertainties will be introduced in the fits used for the extraction of
the signal yield.

A simple diagram of the hypothesis of this thesis is seen in Fig.
(5.1). The signal and background are mixed on the left side, and
under the histogram, a 2D coordinate system with two axes is seen.
One axis is the pre-selection1 cuts and the other is the distribution 1 or Main cuts.

of m(B0) (seen in the histogram above). The hypothesis is that by
applying multiple cuts (or applying GBDTS) on different variables,
the signal would be well separated from the background (righthand
side of Fig. (5.1)) and ready for the fit for the yield extraction.

Figure 5.2: The RK⇤ group GNN
architecture. Each branch represents
the physical aspects of the B0 decay:
A B-vertex branch etc. All the vari-
ables/features can be seen in Tab.
(5.1). Source of figure: [30]
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The RK⇤ group uses two Graph Neural Network (GNN)s of the
form seen in Fig. (5.2) for their signal-background separation. The
GNN architecture represents the decay topology: a branch con-
sisting of electron one, a branch for electron two, etc. A complete
overview of the features the GNN uses can be seen in Tab. (5.1).
A GNN can be a powerful tool and is an excellent deep-learning
model when features are linked and have mutual dependencies.
The biggest downside of GNNs are their long training time. As
mentioned, the RK⇤ group uses two GNNs, and each uses ⇠ 4h
on training. Having signal/background separation algorithms that
take this long is not preferable when doing studies of variables and
trying out different feature configurations.

Figure 5.3: Efficiency of the two
GNNs from the RK⇤ group. Starting
from the left: Figure (a) GNN1, which
is trained on signal region and mass-
sideband, which shows low di-electron
(q2

low) signal efficiency and background
rejection as a function GNN output
probability. (b) Shows GNN2 trained
on signal region and same-sign charge
sideband. Again it shows signal ef-
ficiency and background rejection.
Figure (c) Shows only signal efficiency
with the difference in high and low
di-electron bands for GNN1. For the
right-most figure; (d) shows the same
as (c) with GNN2 instead. Source of
figure: [39].

These training times of ⇠ 4 h per GNN were the factor that gave
birth to the hypothesizes that signal/background separation done
by GBDTs could be a faster and just as precise. Additionally, GB-
DTS could be used to do feature studies in which features are the
most significant in separating signal vs. background.

At the 10th of August 2022 at the RK⇤ weekly meetings, the per-
formance of the two GNNs was presented and is seen in figure
Fig. (5.3). The leftmost two figures show the efficiency in selecting
signal and rejection of background for the two GNNs. The first
GNN are trained on MC signal region and real data background
in B-mass sidebands. The second GNN is trained in the MC signal
region with real data background data defined such that two tracks
(Kaon/Pion) have the same sign charge.
The benchmark seen in Fig. (5.3) will be used throughout this thesis
when a GBDT model needs to be tested and benchmarked.
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Variable Description

pT(e1), pT(e2), pT(trk1), pT(trk2) Transverse momentum

h(e1), h(e2), h(trk1), h(trk2) Pseudorapidity

f(e1), f(e2), f(trk1), f(trk2)
The angle between the particle trajectory and the
plane perpendicular to the beamline

ISOc40(e1), ISOc40(e2)
ISOc40(trk1), ISOc40(trk2)

The sum of energy from other particles in a cone
of radius=0.4

P-value(ee), P-value(Kp)
The probability that ee or Kp are produced by
background.

6 (ee � Kp|ee) � plane
6 (ee � Kp|Kp) � plane

The angle between the vector-sum of ee � Kp vs.
ee or Kp.

asig
0 , zsig

0 , Lsig
xy

These are the point closest to the primary vertex:
a0 is the distance perpendicular to the beam, z0
are along the beamline, and Lxy is the distance
between the decay vertex and primary vertex.
Significance is the distance divided by its uncer-
tainty.

c2(B), pT(B)
Transverse momentum for the B-meson and its
good-of-fit from the reconstruction.

a(ee), b(ee), dsig
vtx(B � ee)

a(ee) is the angle of the electron pair. b(ee) is the
velocity of the center of mass of the electron pair.
dsig

vtx(B � ee) is the distance between the ee and B
vertex divided by its uncertainty

a(Kp), b(Kp), dsig
vtx(B � Kp) Same as above, just with Kp instead of ee.

6 (ee|Kp) � plane, dsig
vtx(ee � Kp)

The angle between the vector-sum of ee vs. �Kp
and the significant distance between the ee and
Kp vertex.

m(K+p�), m(K�p+)
invariant mass of the kaon pion decay (and its
antiparticle)

DR(Kp), ( dE
dx )t1/( dE

dx )t2

The angular separation of Kp and the fraction
consist of dE

dx , which are the energy loss in the
detector at different layers.

Table 5.1: Features/varaibles used
in the RK⇤ GNN. To the left, the vari-
able/feature is written mathematically,
and to the left is an explanation of the
variable.
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6
Methodology

For reproducibility, the data used in the analysis and the pre-
selection cuts applied before the analysis are reviewed. These cuts
are chosen by the RK⇤ group and hence adopted for this analysis.
The Methodology is also about dealing with multiple candidates
per event, e.g., multiplicity, which is also covered in this section.
Lastly, the analysis methodology is reviewed with the ML testing
pipeline and the fitting routine.

Event
(Bunch-crossing) Luminosity Block

~1min, ~100K events

Run
~1000 Luminosity Blocks

Sub-period
~5 − 10 Runs

Periods
~5 − 10 sub-periods

LHC Runs
~20 − 30 periods

Figure 6.1: A diagram of how data
is divided by ATLAS. Figure inspired
by [7, p. 10]

6.1 Data Preparation

As mentioned, Run 3 is the current run period or "LHC Run" as
written in Fig. (6.1). This figure shows the naming convention
concerning the different periods, blocks, etc. For this analysis, LHC
Run 2 is used, and the period of interest is Period K, which is the
primary period the analysis has been used on. This is due to the
first periods ramping up in luminosity and, therefore, insufficient
quality. Later periods have better data quality. Hence period K is
the earliest used. Other periods which can be used are L, M, N, O,
and Q. [14].
The MC data used in this thesis are seen in Tab. (6.1) and Tab. (6.2).
In Tab. (6.1), one can see the MC samples and the decay, denoted
signal. The signal is separated into two parts: Non-Resonant and
Resonant, where the only difference is that there is an intermediate
J/y between the B0 and the ee. The n-tuples containing these have
truth labels, so it is possible to distinguish the decays. A simulated
MC background decays list is seen in Tab. (6.2).

Category Decay DSID

Non-Resonant B0 ! K⇤0ee 300590
Non-Resonant B0 ! K⇤0ee 300591
Resonant B0 ! K⇤0 J/y(ee) 300592
Resonant B0 ! K⇤0 J/y(ee) 300593

Table 6.1: Table of Monte Carlo
signal samples divided into Resonant
and Non-Resonant with their DSID
("Dataset Identification").
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Decay DSID Anti-Decay DSID

B+ ! p+ J/y(ee) 300718 B� ! p� J/y(ee) 300719
B+ ! K+p0(eeg) 300722 B� ! K�p0(eeg) 300723
B+ ! p+p0(eeg) 300724 B� ! p�p0(eeg) 300725
B+ ! p+h(eeg) 300726 B� ! p�h(eeg) 300727
B+ ! K+h(eeg) 300730 B� ! K�h(eeg) 300731
B0 ! K+p� J/y(ee) 300734 B0 ! K�p+ J/y(ee) 300735
B0 ! K+p�y(2S)(ee) 300738 B0 ! K�p+y(2S)(ee) 300739
B0 ! K+p�p0(eeg) 300742 B0 ! K�p+p0(eeg) 300743
B0 ! K⇤0h(eeg) 300744 B0 ! K⇤0h(eeg) 300745
B0 ! K⇤0p0(eeg) 300748 B0 ! K⇤0p0(eeg) 300749

Table 6.2: Table of Monte Carlo
background samples with their DSID
("Dataset Identification").

6.1.1 Group Designated Pre-selection Cuts

The RK⇤ group applies a series of pre-selection1 cuts to the n-tuples 1 Throughout the pre-selection cuts are
also called main cuts or group cuts.and stores the data into feather-files2. These cuts are seen in Tab.
2 feather files; .ftr are a file storage
format which stores arrays and has
high read/write speed and is ideal for
ML studies.

(6.3) with an explanation of why the extra cuts are implemented.
As mentioned, there are two signals: m(B0) and m(B0

), and the
question is which are the correct ones. The RK⇤ has used a modi-
fied B-mass feature to take this into account by using the mass of
the K0⇤-meson, which is set to 891.66 MeV/c2 and this modified mass
is seen in Eq. (6.1) and is designated: m(K⇤0

closer).

m(K⇤0
closer) =

(
m(B0) for |m(K+p�) � 891.66 MeV/c2| < |m(K�p+) � 891.66 MeV/c2|
m(B0) for |m(K+p�) � 891.66 MeV/c2| � |m(K�p+) � 891.66 MeV/c2|

(6.1)
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Variable-Cut Description

pT(e1) > 5 GeV
pT(e2) > 5 GeV

The transverse momentum (pT) for electron has to be above 5 GeV/c. This threshold is set
height enough to filter out low-energy background particles of no interest.

pT(trk1) > 5 GeV
pT(trk2) > 500 MeV

The transverse momentum (pT) for tracks has to be above 500 MeV/c. - same argumentation as
for the electrons. Just with a smaller threshold.

|h(e1)| < 2.5
|h(e2)| < 2.5

Setting the absolute pseudorapidity (h) of the two below 2.5 refers to the part of the detector
with the highest resolution and detection potential (Hit in the SCT and TRT in the inner detec-
tor).

|h(trk1)| < 2.5
|h(trk2)| < 2.5

Setting the absolute pseudorapidity (h) of the two tracks below 2.5 - same argumentation as
for the electrons.

m(ee) < 7 GeV/c2
Setting the invariant mass of the electron-pair (m(ee)) below 7 GeV/c2. This is a bit over the
double of the J/y mass which is mJ/y = 3096.900 ± 0.006 MeV/c2 such that resonant signals can
pass, and non-interesting particles are removed.

GSF(OK) = True The Gaussian-Sum Filter "OK" variable is set to True means that the electron identification and
reconstruction are of good quality

m(B0) 2 [3, 6.5]GeV/c2

AND
m(K⇤0) 2 [690, 1110]MeV/c2

This band is in both the desired range where the "true" mass of the B0 is: m(B0) = 5279.66 ±
0.12MeV/c2 and for the K⇤0 is mK0 = 895.55 ± 0.20MeV/c2 [72]. It is assumed the K0 comes from
the two tracks: K±p⌥ and the electron pair.

OR
m(B0) 2 [3, 6.5]GeV/c2

AND
m(K⇤0) 2 [690, 1110]MeV/c2

The same for the antiparticle decays. The reason for the boolean: "OR" between the decays and
anti-decays.

Quality(e1)=Loose
Quality(e2)=Loose

There are multiple cuts: Tight, medium, and loose. The quality of the electrons is set to loose
cuts.

Quality(trk1)=Loose
Quality(trk2)=Loose There are multiple cuts: Tight, medium, and loose. The quality of the tracks is set to loose cuts.

Quality(e1)-Shower=Loose
Quality(e2)-Shower=Loose

There are loose criteria for the identification quality of electrons from electron showers. There
are multiple cuts: Tight, medium, and loose.

DR(ee) > 0

Most electron pairs come from the J/y; however, another big fraction will also come from pho-
ton decays (g ! ee). Since photons have mass: 0, the electron pair will have a high probability
of having the same direction of the g. Hence the threshold of the angular separation of the
two electrons is above 0.1.

q(e1) ⇥ q(e2) < 0 The electrons need opposite charges since decay pairs are of interest.

ISOc40(e1) < 100GeV/c2

ISOc40(e2) < 100GeV/c2
the ISOc40 is the measured energy from other particles within a cone of radius: 0.4 from the
electron of interest.

Table 6.3: Table of cuts used by the
RK⇤-group which are applied to both
data and MC.
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Figure 6.2: Multiplicity of period K
data after main cuts.

Figure 6.3: Truth efficiency using
MC signal data (DSID 300590) with
different proxy features. Table from:
[39].

6.1.2 Handling Multiplicity

As seen in figure 6.2, there are, on average, 24.7 candidates per
event, with a maximum of 1650 candidates for one event for Period
K after the pre-selection. This means the candidate multiplicity
needs to be handled, or the ML model will, in its training, learn to
reject almost everything since the actual signal would get flooded
by poor candidates rather than learn to separate the signal from the
background, which is hard to distinguish.
The RK⇤ groups solution to the multiplicity-problem are by using
the six candidates in the background with the highest Lsig

xy/c2(B) (see
Eq. (6.2)) which would be most similar to the signal. The reasoning
behind this is seen in Fig. (6.3) where the truth-efficiency is seen as
a function of Lsig

xy , c2(B) and Lsig
xy/c2(B) using the MC signal dataset

with DSID: 300590 (see Tab. (6.1)). The six best Lsig
xy/c2(B) captures

both the goodness of the B-vertex (c2(B)) and the significance of
the distance between the primary- and decay-vertex by a 99.1% in
truth efficiency in MC.

NMultiplicity
Candidates = 6 best Lsig

xy/c2(B) (6.2)

The "six best Lsig
xy/c2(B)"-approach is only for training the GBDTs and

is not used for the application of the GBDTs. The MC signal is all
truth-matched for the training; hence the problem of multiplicity is
not a problem here.

MC SignalData

Sideband1
(SB1)

Sideband2
(SB2)

Signal Region
(SR)

SR ∪ SB2

Train
70%

Test
30%

Train
75%

Validation
25%

Scaling

Model/
Output:

!(#!), !( %#!), !(#&')

Train Apply

SR ∪ SB1

Train
70%

Test
30%

Train
75%

Validation
25%

Scaling

Model1
Output:

!(#!), !( %#!), !(#&')

Train Apply

Main Cuts &
Candidate 
selection

Main Cuts &
Candidate 
selection

Main Cuts &
Candidate 
selection

Figure 6.4: The ML Pipeline for
training the models.

6.2 Analysis Methodology

The approach of this thesis mirrors the RK⇤’s with a few changes
where, with the most noteworthy change: replacing the GNNs
with GBDTs. For reference, the entire training pipeline is seen
in the flow diagram in Fig. (6.4). The first step: "Main Cut and
Candidate Selection", is a Python script that takes n-tuples as input
and outputs feather files ready for the ML pipeline. The script
applies the pre-selection cuts defined by the RK⇤ group seen in
Tab. (6.3). It also does feature engennering3 and locates the six best

3 More on this later.

Lsig
xy/c2(B) in the background for training.

6.2.1 Mass Regions

The q2 ⇥ m(B0)-space is divided into multiple areas (with addi-
tional requirements; c2(B), q(e) and q(trk)) as seen in Fig. (6.5)(a).
The reason for this is that some of the data is blinded such that the
result is not overfitted. As seen in Fig. (6.5)(a), the data are divided
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Figure 6.5: Figure (a): The RK⇤

group B mass region cuts. Source of
original figure: [30], modified by the
author of this thesis.
Figure (b): Showing the Period K den-
sity in the different mass region cuts in
a combined q2

low and q2
high.

into multiple areas: Signal Region (SR), Sideband1 (SB1), and Side-
band2 (SB2), and these exist for both q2

low and q2
high. In Fig. (6.5)(b)

the event density for combined q2
low and q2

high is seen for the differ-
ent mass-region CUTS.

As seen in Fig. (6.4), the GBDTs are trained on {SRMC [ SB1data}
and {SRMC [ SB2data} for q2

low where SRMC is only containing non-
resonant truth-matched decays for the training and the SB1data/SB2data

contains the six best Lsig
xy/c2(B) for each event.

As seen in Fig. (6.6), the density for the signal is high in q2
high where

the density in q2
low for the signal is lower. This is because the energy

is significantly higher in q2
high, and the higher energy allows for the

production of heavier particles hence resonant decays which poses
as a statistical challenge in the q2

low-bin.

Figure 6.6: Density of MC Signal in
q2 ⇥ m(B0)-space (red/yellow) overlaid
over the density of Period K (grey).
It is clear that the signal is strongly
present in q2

high compared to q2
low.

The rest of Fig. (6.4) shows how the data are used with respect
to the models. Here model1 and model2 are the two GBDTs. For
scaling, many different types of scalers exist, and the one used by
this thesis is the RobustScaler of the Scikit-learn python library [17],
which are defined as seen in Eq. (6.3). This scaler does not assume
the distribution of the features is normally distributed, and the
scaling is robust against outliers. The scaling is fitted to the training
data and then applied to the test data to avoid leaking information.

x0
i =

xi � Quantile50%(x)
Quantile75%(x) � Quantile25%(x)

(6.3)

The output of each model is multiclass probabilities: P1(B0), P1(B0
)

and P1(Bkg)4 which are under the rule: P1(B0) + P1(B0
) + P1(Bkg) 4 The subscript notation can vary

depending how well the different
models are distinguished.= 1. These outputs are then used to make three decisions: Global

Candidate Selection, Local Candidate Selection, Mass Hypothesis Selec-
tion, which are described in Tab. (6.4). In Fig. (6.7), the selection
rules are visually applied to an event X.
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Figure 6.7: A visualization of how
the Global, Local, and Mass Hypoth-
esis Selection Rules are used to sort
events. The rules are seen in Tab. (6.4)

GBDT Selection Rules

Global Candidate
Selection

Classify either candidate as signal or background
whenever above/below threshold t.

P1(B0) + P1(B0
) > t1

P2(B0) + P2(B0
) > t2

Local Candidate
Selection

Find the best candidate within an event
by the maximum signal probability.

max

(
P1(B0) + P1(B0

) ,
P2(B0) + P2(B0

)

)

Mass Hypothesis
Selection

If the mass are assigned the value; m(B0) or m(B0
)

depending on the maximum of the two signal probabilities.
Take model Pi which maximizes the Local Candidate Selection

and assign mass as:

m =

(
m(B0) if Pi(B0) = max{Pi(B0), Pi(B0

)}
m(B0

) if Pi(B0
) = max{Pi(B0), Pi(B0

)}

Table 6.4: Global, Local and Mass
Hypothesis Selection Rules
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Figure 6.8: This figure depicts how
the output of the models is tested
using four different testing suites.

6.2.2 ML Testing

After each model has been trained, a comprehensive testing-scheme
are applied to ensure that the model performance is satisfying and
to monitor the different aspects of the performance. Four differ-
ent testing suites are applied to the trained GBDTs: (1) LightGBM
Testing Suite, (2) Signal vs. Background Testing Suite, (3) Sig(B0) vs.
Sig(B0) Testing Suite and lastly the (4) Mass Shape Testing Suite seen
in Fig. (6.8).

LightGBM Testing Suite
The LightGBM Testing Suite consists of three subtests to see if the
LightGBM hyperparameters are tuned correctly for the highest
performance possible. The first test is the Optimization History Plot:
which shows the objective value vs. the number of trials which
identifies stagnation periods and shows if the optimization is min-
imized. The next test is the Optimization Feature Importance. This
test shows which hyperparameters were the most important in
minimizing the objective value. The last test is the Intermediate
Non-Pruned Trials which shows non-pruned intermediate objective
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values during the optimization and indicates the absence of over-
fitting if the objective is minimized and converged.

Signal vs Background Testing Suite
The Signal vs. Background Testing Suite consists of 3(+1) tests to
quantify the model’s ability to separate combined signal; Sig =

(B0 + B0
) from the background.

Test one5: 1D response curve - Histograms of combined signal and 5 not mentioned in Fig. (6.8), so this is
the "+1".background probabilities6 on a logarithmic scale. The probability-
6 As mentioned; The model outputs a
probability (P) to be a class (P 2 [0, 1]).axis(x-axis) is logit transformed using logit(p) = ln(p/(1 � p))

where logit(p) 2 (�•, •) to enhance visibility of overlapping
densities.
Test two: ROC-curve and Precision/Recall-curve - Quantifies the com-
bined signal vs. background classification for all thresholds. The
Receiver Operating Characteristic (ROC) Curve plots the true pos-
itive rate (TPR)7 which is the probability of detection against the 7 Also called the sensitivity, recall or hit

ratefalse positive rate (FPR)8 which are the probability of a false alarm.
8 FPR is also known as fall-out.

The optimal classification is (FPR=0, TPR=1,) and the AUC-score
is the area under the curve where AUC = 0.5 is a random classi-
fier, and AUC = 1 is a perfect The Precision/Recall-curve is the
precision (PPV)9, which is the proportion of positive predictions

9 Also known as the Positive Predictive
Value

that are correct versus the Recall(TPR). The optimal classification is
(TPR=1, PPV=1), and the Average Precision (AP) is the area under
the Precision/Recall-curve where AP = 0.5 is a random classifier,
and AP = 1 is a perfect classifier.
Test three: Efficiency/Rejection - shows the efficiency of selecting
combined signal and the rejection of background as a function of
probability threshold.
Test four: Confusion matrix - Measures the model’s performance in
classifying B0, B0, and background for one specific threshold.

Sig(B0) vs Sig(B0) Testing Suite
This testing suite is used to see how well the multi-class classifier
can predict if it is a B0 or B0 given either the B0 or the B0 MC sam-
ples.

!(#!)

!(#!)

Sculping in signal and 
background shape

Figure 6.9: An example of the
worst-case scenario of mass sculpting.
The blue line is the background, and
the red is the signal. The top figure is
the raw background + signal. When
cuts are applied to the data, the worst-
case scenario is a peaking background
and a smeared signal (bottom figure).
This makes the fitting and hence the
extraction of the yield a hard task and
introduces larger errors in the yield,
and in the end, the RK⇤0 -ratio will have
a larger error.

Mass Shape Testing Suite
The Mass Shape Testing Suite is used to see if the mass distributions
get distorted when GBDT cuts are applied. The importance of this
test is significant since the end goal is the extraction of the signal
yield. If the signal gets smeared or the background starts peaking
in the signal region due to GBDT cuts will introduce large errors
in the signal yield and in the worst-case scenario; the extraction of
the signal yield will not be possible. An example of the worst-case
scenario is seen in Fig. (6.9).
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6.2.3 Feature Engineering

All features used in this thesis originate in the n-tuples, and all n-
tuple features which are not modified start with "BeeKst". A full
review of the feature engennering calculations is seen in Tab. (6.5).
The symbol of each part and the feature name are present, along
with the equation for calculating the specific feature. To compare
the result of this thesis with the RK⇤-group, the values have to be
the same though they might not be the most up-to-date values from
PDG-group values[72].

Some of the equations in Tab. (6.5) use various vertexes derived
from BeeKst features. The equations to calculate the vertexes are
found in Appendix A.1; equations Eq. (A.1) - Eq. (A.24). Some
calculations in Tab. (6.5) use the significant distance between two
vertices, the equation for calculating this is seen in Eq. (6.4)

dsig(vtx1, e(vtx1), vtx2, e(vtx2)) =
|(vtx2 � vtx1)|vuuuut

2

64
(vtx2x � vtx1x)2

(vtx2y � vtx1y)2

(vtx2z � vtx1z)2

3

75 ·

2

64
(e(vtx2)x � e(vtx1)x)2

(e(vtx2)y � e(vtx1)y)2

(e(vtx2)z � e(vtx1)z)2

3

75

(6.4)

6.2.4 Feature Importance

For any Ml model, it is standard procedure to do feature impor-
tance to see which features impact the model the most. This thesis
uses tree feature importance techniques and then combines the
feature importance into one.
Native LightGBM Feature Importance
LightGBM uses the "split" to determine feature importance. The
GBDT algorithm splits each tree based on a feature to minimize the
loss function. Split-feature importance is the total number across
the ensemble the GBDT has used a specific feature to split a tree.
The idea is the features used frequently are important to the model.
Permutation Feature Importance
The algorithm for permutation feature importance is:
(1) apply a trained model; Model on a chosen set: X. Then one uses
a chosen metric: METRIC to benchmark the performance; P.
(2) Shuffles a single feature randomly and re-apply Model again.
X Shuffle feature i��������! X0, METRIC(MODEL(X’)) = P’.
(3) Compare increase/drop in performance: P-P’. Step 2 is done n
times to reduce statistical fluctuations.
This method is very computationally expensive. However, this
feature importance shows a direct correlation between outputted
increase/decrease for any feature for any chosen Metric. The metric
mainly used in this thesis is the AUC score.
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pT(e1): positron_pT = BeeKst_electron0_pT
pT(e2): electron_pT == BeeKst_electron1_pT
pT(trk1): trackPlus_pT = BeeKst_meson0_pT
pT(trk2): trackMinus_pT = BeeKst_meson1_pT
h(e1): positron_eta = BeeKst_electron0_eta
h(e2): electron_eta == BeeKst_electron1_eta
h(trk1): trackPlus_eta = BeeKst_meson0_eta
h(trk2): trackMinus_eta = BeeKst_meson1_eta
f(e1): positron_phi = BeeKst_electron0_phi
f(e2): electron_phi == BeeKst_electron1_phi
f(trk1): trackPlus_phi = BeeKst_meson0_phi
f(trk2): trackMinus_phi = BeeKst_meson1_phi
ISOc40(e1): positron_iso_c40 = BeeKst_electron0_iso_c40
ISOc40(e2): electron_iso_c40 == BeeKst_electron1_iso_c40
ISOc40(trk1): trackPlus_iso_c40 = BeeKst_meson0_iso_c40
ISOc40(trk2): trackMinus_iso_c40 = BeeKst_meson1_iso_c40
c2(B): B_chi2 = BeeKst_chi2
m(Kp): diMeson_Kpi_mass = BeeKst_kaonPion_mass
m(pK): diMeson_piK_mass = BeeKst_pionKaon_mass
m(Kp) � m(pK): diMeson_Kpi_piK_mass_di f f = (diMeson_Kpi_mass � diMeson_piK_mass
Mean(m(Kp), m(pK)): diMeson_Kpi_piK_mass_avg = (diMeson_Kpi_mass + diMeson_piK_mass)/2
pT(B): BpT = vtx_Bd_p4.pt, (

q
p2

x + p2
y)

asig
0 : a0_signi f icance = BeeKst_a0_minA0/dBeeKst_a0_minA0_err

zsig
0 : z0_signi f icance = BeeKst_z0_minA0/dBeeKst_z0_minA0_err

Lsig
xy : Lxy_signi f icance = BeeKst_Lxy_minA0/dBeeKst_Lxy_minA0_err

P � value(ee):
diElectron_pvalue = 1 � CDFc2 (c2 = BeeKst_diElectron_chi2, nDoF =
BeeKst_diElectron_nDoF)

P � value(Kp): diMeson_pvalue = 1 � CDFc2 (c2 = BeeKst_diMeson_chi2, nDoF = BeeKst_diMeson_nDoF)

dsig
vtx(B � Kp): d_B_diMeson_signi f icance =

dsig(vtx_Bd_vtx, vtx_Bd_vtx_err, vtx_diMeson_vtx, vtx_diMeson_vtx_err) Eq. (6.4)
dsig

vtx(B � ee): d_B_diElectron_signi f icance =
dsig(vtx_Bd_vtx, vtx_Bd_vtx_err, vtx_diLepton_vtx, vtx_diLepton_vtx_err) Eq. (6.4)

dsig
vtx(ee � Kp): d_diMeson_diElectron_signi f icance =

dsig(vtx_diMeson_vtx, vtx_diMeson_vtx_err, vtx_diLepton_vtx, vtx_diLepton_vtx_err) Eq. (6.4)

DR(Kp): dR_trackPlus_trackMinus =
p

((Df)2 + (Dh)2), Df = (vtx_m0_K_p4 � vtx_m1_pi_p4)f and
Dh = (vtx_m0_K_p4 � vtx_m1_pi_p4)h

a(Kp): diMeson_angle_alpha_sym =| p

2
� cos�1

✓
vtx_n1 · vtx_Kpi_p4

|vtx_n1| |vtx_Kpi_p4|

◆
|

b(Kp): diMeson_angle_beta_sym =|| p

2
� cos�1

✓
vtx_n3_pmm · vtx_B2diMeson

|vtx_n3_pmm| |vtx_B2diMeson|

◆
| � p

2
|

a(ee): diElectron_angle_alpha_sym =| p

2
� cos�1

✓
vtx_n1 · vtx_diLepton_p4

|vtx_n1| |vtx_diLepton_p4|

◆
|

b(ee): diMeson_angle_beta_sym =|| p

2
� cos�1

✓
vtx_n3_pee · vtx_B2diLepton

|vtx_n3_pee| |vtx_B2diLepton|

◆
| � p

2
|

( dE
dx )t1/( dE

dx )t2: tracks_dEdx_ratio =
BeeKst_meson0_pixeldEdx
BeeKst_meson1_pixeldEdx

( dE
dx )t1 � ( dE

dx )t2: tracks_dEdx_di f f = BeeKst_meson0_pixeldEdx � BeeKst_meson1_pixeldEdx
6 (ee � Kp|ee)-plane: angle_vtxplane_ee_plane = cos1

✓
vtx_n1 · vtx_n2_ee

|vtx_n1| |vtx_n2_ee|

◆

6 (ee � Kp|Kp)-plane: angle_vtx_plane_mm_plane = cos1
✓

vtx_n1 · vtx_n2_mm
|vtx_n1| |vtx_n2_mm|

◆

6 (ee|Kp)-plane: angle_vtx_plane_mm_plane = cos1
✓

vtx_n2_ee · vtx_n2_mm
|vtx_n2_ee| |vtx_n2_mm|

◆

6 (Q(ee, Kp)|Kp)-plane: angle_pp_plane_mm_plane = cos1
✓

vtx_n1_pp · vtx_n2_mm
|vtx_n1_pp| |vtx_n2_mm|

◆

6 (Q(ee, Kp)|ee)-plane: angle_pp_plane_ee_plane = cos1
✓

vtx_n1_pp · vtx_n2_ee
|vtx_n1_pp| |vtx_n2_ee|

◆

Table 6.5: Engineered features used
in Analysis.
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SHAP Feature Importance
SHAP values or (SHapley Additive exPlanations) is a way to mea-
sure feature importance which comes from cooperative game the-
ory[38]: The concept is as follows: The Shapley value for a player
(a feature) is a measure of the average marginal contribution for
a player to all possible coalitions (coalitions are the subsets of fea-
tures) that could be formed in the game.
If X is a feature vector, f (X) is the output of the model and S ⇢ X
with indices {1, 2, . . . , n} so which means f (S) is the output of the
model only with features contained in S. SHAP value for feature i
is calculated the following way: The SHAP values are calculated as
seen in Eq. (6.5) where one sums over all subsets S where feature i
is possible to be in. One then does a linear regression between the
original model: f (x) and g(x0), which has the features alternated
such that f (x) ⇡ g(x0) = f0 Âi SHAP-valueiz0

i where z0
i is the

coefficient for feature i.

SHAP-valuei(X) =
1

(2n � 1) Â
S,i2S

( f (S) � f (S \ i)) (6.5)

Lastly, in this thesis, the SHAP values were used to find global
interpretability by taking the mean of the absolute value of the
SHAP-valuei values: Eq. (6.6). The hypothesis is that large absolute
Shapley values mean that the feature has a big contribution and is
important.

Importance of feature J =
1
n

n

Â
i

| SHAP-value(i)
J | (6.6)

Summed Feature Importance
A summed feature importance is created by scaling10 each of the 10 The actual feature importance value

is not interesting, only the order of the
important features and the difference
between them.

three feature importance between [0, 1]. The scaled features are then
summed feature-wise into a summed feature importance.

6.2.5 Fitting Routine

Since SRdata in q2
hig is un-blinded at the current stage of the RK⇤

analysis, the extraction of the signal yield is done the following
way:
Different background mass-cut candidates are scaled to SB1data in
q2

high to indicate which are the most similar. After this, different
background probability function candidates are fitted to the just-
found background distribution, and the best candidate is selected;
PDFBkg.
A signal probability distribution are fitted to the SRMC in q2

high;
PDFSig. The combined Signal and Background PDF; PDFSig +

PDFBkg are then blindly fitted to a grid of different GBDT thresh-
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olds in the un-blinded SRdata q2
hig and the set of GBDT cuts which

maximizes: Significance =
Nsigp

Nsig+NBkg
is used. Then PDFBkg is fitted

to maximum significance GBDT-cut background distribution, and
the same is done for the PDFSig on maximum significance GBDT-
cut SRMC in q2

high. At last, the combined signal and background fit;
PDFSig + PDFBkg on maximum significance GBDT-cut SRdata q2

high,
and the signal yield is extracted.
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7
GNN to GBDT

The first configurations used with GBDTs are the "2GNN to 2GBDT"-
approach which is a translation of the GNN approach used by the
RK⇤ group where the GNNs are substituted with GBDTs. The num-
ber of training samples used is seen in Tab. (7.1). The total amount
of truth-matched signals is 20000 where each sideband contains
700000 event candidates1.

1 This number of events for both signal
and background are also used for the
GNNs.

Number of Events used in training
Number of Events Data-set Info

10000 Non-Resonant B0
d , q2

low (DSID: 300590)
10000 Non-Resonant B0

d, q2
low (DSID: 300591)

700000 Sideband1 (Period K, q2
low)

700000 Sideband2 (Period K, q2
low)

Table 7.1: Configurations for "2GNN
to 2GBDT"

The training of the two GBDTs was executed using: Verstack[73]2 2 LightGBM integrated with Optuna.

and the number of trials trained was the default 100 for each GBDT,
and the training time for 25-35 CPU cores was about ⇠ 10 min.
The input features used for training have the distributions seen
in Fig. (7.1), which are log-scaled and normalized. The data are
separated into SRMC, SB2data, and SB2data. This is so it is possible to
see the features normalized with no y-xis log-scale in Fig. (A.1) in
appendix A.2.
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Figure 7.1: Normalized, log-scaled features used in "2GNN to 2GBDT". The plotted features are all separated into Signal Re-
gion; SRMC, Sideband1; SB1data, and Sideband2; SB2data.

The training of the 2 GBDTs is initialized with multi-log loss. For
reproducibility, the specific parameters for the LightGBM classi-
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fication boosters (both GBDT1 and GBDT2) are seen in Tab. (A.1)
in appendix A.2. If nothing else is stated, the default values in
LightGBM and Optuna are used along with the initialization of
seed-value= 42 when it is possible to provide a seed.

After training, the LightGBM Testing Suite was applied on both
GBDTs, which are seen in Fig. (7.2) and Fig. (7.3), as Fig. (7.3) is
small a larger version can be seen in Fig. (A.3) in appendix A.2.
The main takeaway is that the Optimization History Plot for both
GBDTs has its objective lowered3 as well as the Intermediate Values 3 Note that for GBDT1, the #Trials stop

at 50 since it found a minimum and
early stopping were triggered to avoid
over-fitting.

plot also has nice convergences. From this, it can be concluded
that GBDT1 and GBDT2 on "2GNN to 2GBDT" both converged
to a minimum, and training was successful with num_leaves and
min_sum_hessian_in_leaf as the most important hyperparameter for
both GBDTs during hyperparameter optimization.

Figure 7.2: LightGBM Testing
Suite on "2GNN to 2GBDT"-GBDT1
which shows the training of GBDT1 is
succesfull.

Figure 7.3: LightGBM Testing
Suite on "2GNN to 2GBDT"-GBDT2
which shows the training of GBDT2 is
succesfull.

For both GBDTs, the Signal vs. Background is applied on the test
set (see Fig. (7.4) and Fig. (7.5)). Since it is the test set and later
this test will be applied to all events where all selection rules are
applied, only a few notes on these figures: The separation is quite
good overall with AUC = 0.993 and AP = 0.901 for GBDT1 and
AUC = 0.996 and AP = 0.956 for GBDT2 with GBDT2 slightly
better overall that GBDT1 in the test set.
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Figure 7.4: Signal vs Background Testing Suite on "2GNN to 2GBDT"-GBDT1 in {SRMC [ SB1data} test set. The GBDT1 shows a
good performance in separating Signal(B0+B0) vs. Background with AUC = 0.993 and AP = 0.901.

Figure 7.5: Signal vs Background Testing Suite on "2GNN to 2GBDT"-GBDT2 {SRMC [ SB2data} test set. The GBDT2 shows a good
performance in separating Signal(B0+B0) vs. Background with AUC = 0.996 and AP = 0.956.

The next test on the test-set is the Sig(B0) vs. Sig(B0) Testing Suite.
The figures are seen in Fig. (7.7) and Fig. (7.8). Please refer to Fig.
(7.6) for an interpretation of the 2D response curves.
For both Fig. (7.7) and Fig. (7.8), there are high-density spots at
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(0, 0), (0, 1) and (0, 0), (0, 1) which means both GBDTs predicts
with high precision, however, the events which are in (0, 0) signifies
that the GBDT does not capture all aspects of the signal properties
so some signal is strongly classified as background with ⇠ 100%
probability.
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Figure 7.6: An interpretation of 2D
Response Curves with Sig(B0): Fig.
(7.7)(left-most) as an example. Source
of figure inspiration: [39].

Figure 7.7: Sig(B0) vs Sig(B0) Testing
Suite on "2GNN to 2GBDT"-GBDT1
with density on log-scale. The figure
shows good B0 and B0 selection for
GBDT1 in MC.

Figure 7.8: Sig(B0) vs Sig(B0) Testing
Suite on "2GNN to 2GBDT"-GBDT2
with density on log-scale. The figure
shows good B0 and B0 selection for
GBDT2 in MC.

The last use-case for the test set is feature Importance, and these
are seen in Fig. (7.9) and Fig. (7.10). Both the train- and test sets are
used for SHAP and Permutation Importances since it is interest-
ing to see if they align in the train and test sets. At the same time,
the training-set feature importance is for seeing which features are
important under training, and the test-set is purely a measure of
feature importance under prediction, which are the main feature
importance of interest and also the one that the summed feature
importance is based on. The most important features for both
GBDT1 and GBDT2 are: [L_xy_significance, diMeson_Kpi_mass,
diMeson_piK_mass].
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Figure 7.9: 20 of the highest scoring feature importances on "2GNN to 2GBDT"-GBDT1 for both training-set and test-set. The
five most important features in the summed feature importance are: [L_xy_significance, diMeson_Kpi_mass, diMeson_piK_mass,
B_chi2, trackMinus_pT]

Figure 7.10: 20 of the highest scoring feature importances on "2GNN to 2GBDT"-GBDT2 for both training-set and test-set. The
five most important features in the summed feature importance are: [L_xy_significance, diMeson_Kpi_mass, diMeson_piK_mass,
trackMinus_pT, trackPlus_pT]

The "2GNN to 2GBDT"-GBDTs pass all testing suites for the train
set. However, the "real" test is in the actual {SRMC [ SB1data} and
{SRMC [ SB2data} sets where MC is not truth-matched, and all
candidates for sidebands are preset. This means the next test needs
to check for the performance of the Global Candidate Selection, Local
Candidate Selection, and Mass Hypothesis Selection. The number of
data used in the "real" test is seen in Tab. (7.2).

Number of Events after main CUTS and region-mass cuts.
Data-set Number of Events Data-set Info

SR = 803317 ALL MC Signal Files| main CUTS | SR-cut | q2
low

SB1 = 2036874 ALL Period K Files| main CUTS | SB1-cut | q2
low

SB2 = 2036874 ALL Period K Files| main CUTS | SB2-cut | q2
low

Table 7.2: Configurations for apply-
ing "2GNN to 2GBDT"-GBDTs after
they have been tested on the test set.

The Signal vs. Background Testing Suite and Sig(B0) vs. Sig(B0) Test-
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ing Suite are applied on the SRMC, SB1data, and SB2data} to check
the classification ability of the two GBDTs which now have to do
Local Candidate Selection on top of Global Candidate Selection.
The Signal vs. Background Testing Suite for both GBDTs in Fig. (7.11)
and Fig. (7.12) shows good separation for both GBDTs and they
both handle the Local Candidate Selection with AUC = 0.974 and
AP = 0.947 for GBDT1 and AUC = 0.981 and AP = 0.965
for GBDT2. Again GBDT2 has better performance than GBDT1;
however, the background rejection is significantly worser for both
GBDTs compared to the test set.

Figure 7.11: Signal vs Background Testing Suite with "2GNN to 2GBDT"-GBDT1 on non-train {SRMC [ SB1data}. The GBDT1
shows a good performance in separating Signal(B0+B0) vs. Background with AUC = 0.974 and AP = 0.947.
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Figure 7.12: Signal vs Background Testing Suite with "2GNN to 2GBDT"-GBDT2 on non-train {SRMC [ SB2data}. The GBDT2
shows a good performance in separating Signal(B0+B0) vs. Background with AUC = 0.981 and AP = 0.965.

Sig(B0) vs Sig(B0) Testing Suite are seen in the margin figures: Fig.
(7.13) and Fig. (7.14). If the reader wants to inspect these on a larger
scale, they are found in appendix A.2; Fig. (A.4) and Fig. (A.5).
The takeaway from the testing suite is that the density at (1, 0) and
(1, 0) for B0

d and B0
d respectively in both Fig. (7.13) and Fig. (7.14) is

very high with respect to the rest of the plot. Just as for the train-set
Sig(B0) vs. Sig(B0)-test, again, there are signals strongly classified as
background at (0, 0) just as with the test-sets.

Figure 7.13: Sig(B0) vs Sig(B0)
Testing Suite on "2GNN to 2GBDT"-
GBDT1 with density on log-scale.

Figure 7.14: Sig(B0) vs Sig(B0)
Testing Suite on "2GNN to 2GBDT"-
GBDT2 with density on log-scale.

The last of the testing suite is the Mass Shape Testing Suite, which
is an application of all three candidate selections: Global-, Local-
, and Mass Hypothesis Candidate Selection. As seen in Fig. (7.15),
a distortion of the signal is present as a drop in efficiency which
is seen in the lower part of the plot due to a threshold-cut scan.
The shape at the peak for both GBDT1 and GBDT2 for B0

d-decay
has nearly no distortion. However, the sides have a more signifi-
cant drop in efficiency - especially in the upper part of the B mass:
m(B) > 5300 MeV/c2. There is also a drop in efficiency on the right
side: m(B) < 5000 MeV/c2; however, the drop-off is less steep. The
result for both GBDTs is that the tighter the cut is in the Global
Candidate Selection, the sharper the peak is for the Signal.
For the background in Fig. (7.16), there is no sculpting seen. This
means the GBDTs do not learn any particular shape in the back-
ground, and it stays flat in efficiency.
For m(ee) in 7.17, there is also a very flat efficiency line hence no
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distortion for m(ee) in q2
low-bin.

Figure 7.15: Mass Shape Testing Suite for Signal on "2GNN to 2GBDT". As seen, the signal distribution shape is retained around
m(B0) 2 5250 MeV/c2 and then falls off as seen in the efficiency in the lower part. Especially in the upper part of the B-mass, there is
a sharp drop-off. This distortion is not dire, however, it could lead to a larger error in the extracted signal yield.

Figure 7.16: Mass Shape Testing Suite for background on "2GNN to 2GBDT". As seen, there is little to no background sculpting
which is seen in the efficiency spread in the lower plot for the different cuts.
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Figure 7.17: Mass Shape Testing Suite for m(ee) on "2GNN to 2GBDT". As seen in the efficiency, there is no sculpting in the
m(ee)-shape.

As the GBDT are trained on non-resonant decays, it is important
to see if there is a discrepancy between resonant and non-resonant
in monte carlo. This is seen in Fig. (7.18), which depicts that both
efficiency lines are almost on top of each other; this means GBDTs
have not learned a difference in the two q-bins. For a larger image
of Fig. (7.18), please see Fig. (A.6) in appendix A.2.

Figure 7.18: Resonant vs Non-
Resonant signal efficiency plots for
both the q2

low and q2
high bin for both

GBDTs in "2GNN to 2GBDT".

7.0.1 Benchmarking

For benchmarking, Fig. (7.18) and the benchmark signal efficiency
plot: Fig. (5.3)(c-d) are overlaid, and the result is seen in Fig. (7.19).
The figure shows that the "2GNN to 2GBDT"-approach has better
signal efficiency than the GNNs except for probabilities over 0.92.
From [0.92, 1.00], the GNNs beats the GBDTs in signal efficiency.
In the following section, efforts are made to get a higher efficiency
than the GNNs for all probabilities.
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Figure 7.19: Benchmark efficiency comparison between the 2GNN vs the "2GNN to 2GBDT"-approach. The thin lines are
the GNNs and the thick line is the GBDTs. The GBDTs have higher signal efficiency for all probability thresholds except for
P 2 [0.92, 1.00].

7.0.2 Fitting and the Signal Yield

The following fitting steps are used to extract the B0-signal yield in
the un-blinded SRdata, q2

high for Period K data.

(1): Scale potential backgrounds to blinded SB1data, q2
high and find best c2.

(2): Find the best probability distribution that fits the background, which scales best to SB1data.
(3): Fit signal probability distribution to SRMC, q2

high.
(4): Do blinded Sig+Bkg fit significance scan over a grid of GBDT cuts in SRdata, q2

high Period K data.

Locate the GBDT cuts which maximize: significance =
NSigp

NSig+NBkg
.

(5): Redo individual background probability distribution fit and signal probability distribution fit on
their respective distributions where the distributions are cut with the GBDT cuts, which maximizes the
significance. The SR range are reduced from [4000, 57000] to [4250, 5700] and is denoted SR⇤ for more
precise fits.
(6): Fit the total Sig+Bkg to the maximum GBDT cut on SRdata, q2

high Period K data in and extract the
signal yield: NSig.

The fit-routine is by the Iminuit Python library[15] where the
MIGRAD-routine[31] is called twice to do c2-fits. The data used
in the fitting are seen in Tab. (7.2). 4 After the two MIGRAD min-

4 All histograms has Poisson errors.imization routines have been used to minimize the c2, the HESSE
algorithm is run to calculate the Hessian matrix at the minimum c2

to get accurate uncertainties on the fitting parameters.
For step (1), the different potential backgrounds are scaled by multi-
plying the distributions with a scaling parameter, a, and then doing
a c2-fit. The idea is to find the background which looks most like
the background in SB1data, q2

high, and the lowest c2 value quantifies
the best fit. As seen in Fig. (7.20), the lowest value is c2 = 2439.14,
which is the SB2data in data. This means the fitting of the back-
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ground distribution is done on SB2data, q2
high.

Figure 7.20: Background scaling to SB2data, q2
high using c2 fit with a single scaling parameter: a. The righthand side is the un-

scaled distribution. The lefthand side is the scaled distributions where the SB2data, q2
high is the distribution which comes closest to

SB1data, q2
high with chi2 = 2449 and a = 1.098 ± 0.002.

All background fits are done within the SR-m(B0) window, and
each function used is individually normed such they are truncated
distributions in the SR-m(B0) window. The distributions tested are
Eq. (7.1), Eq. (7.2), Eq. (7.3), Eq. (7.4), Eq. (7.5) and Eq. (7.6) and
this are seen in Fig. (7.21).

tan�1(x) + Pol1(x) = w tanh�1(x0) + (1 � w)(a(x00) + b) where: x0 =
x � µtan

1000
, x00 =

x � µPol1
1000

, w 2 [0, 1]

(7.1)

tanh(x) + exp(x) = w(tanh(x0) + s) + (1 � w)l exp(�lx00) where: x0 =
x � µtanh

1000
, x00 =

x � µexp

1000
, w 2 [0, 1]

(7.2)

tan�1(x) + exp(x) = w(tanh�1(x0) + s) + (1 � w)l exp(�lx00) where: x0 =
x � µtanh

1000
, x00 =

x � µexp

1000
, w 2 [0, 1]

(7.3)

Pol3(x) = a(x0)3 + b(x0)2 + c(x0) + d where: x0 =
x � µ

1000
(7.4)

Pol4(x) = a(x0)4 + b(x0)3 + c(x0)2 + d(x0) + e where: x0 =
x � µ

1000
(7.5)

Erf(x) + exp(x) = w
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Z z
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e�t2
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◆

+ (1 � w)le�lx00
where: x0 =

x � µerf
1000

, x0 =
x � µepx

1000
, w 2 [0, 1]

(7.6)

In Fig. (7.21), one can see all the background proposed background
distributions, and the PDF with the lowest c2 is the Erf(x) + exp(x)

background distribution (see Eq. (7.6)). In addition, one can see
shape parameters with their errors along with the Goodness-of-Fit
(GoF) parameters in Fig. (7.21).
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Figure 7.21: Background distribution fits on B0: SB2data, q2
high. The best fit is a Er f (x) + Exp(x) function. Note that SB2 is re-

duced into the range: m(B0) 2 [4000, 5700]MeV/c2.

The RK⇤ group had already proposed signal distribution: a combi-
nation of two Gaussian distributions and a Bukin distribution with
a shared peak for both Gaussian and the Bukin PDF. The signal
PDF is defined in Eq. (7.7) where the Gaussian component is seen
in Eq. (7.8) and the Bukin component in Eq. (7.9). Both are indi-
vidually normed and truncated to the SR-m(B0) window. The fit
of the signal pdf is seen in Fig. (7.22). With a p-value of 0.13 and
the MIGRAD-routine returning a convergence report; the fit can be
concluded to fit the SRMC, q2

high well.

DoubleGauss(x) + Bukin(x) =

w2 ⇥ ((w1 ⇥ Gauss1(x; µPeak, s1)) + (1 � w1) ⇥ Gauss2(x|µPeak, s2)) + ((1 � w2) ⇥ Bukin(x|µPeak, sp, x, r1, r2)

(7.7)
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Bukin(x; µPeak, sp, x, r1, r2) =

8
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:
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Figure 7.22: Signal fit: Double Gauss + Bukin PDF fit on B0
d ; SRMC in the q2

high-bin.

Following the RK⇤ fitting group procedure, the total fit: Signal PDF
+ Background PDF has some shape parameters floated, and some
are fixed. For the signal PDF: The shared peak; µPeak are floated.
The sigmas (s1, s2, sp) are also floated; however, their ratios are
fixed. All other shape parameters are fixed to the MC fit, see Fig.
(7.22) for fixed shape parameter values). For the background PDF,
all shape parameters are floated.

Step (4) is about the blinded signal+background fit on SRdata period
K data in the q2

high-bin iteratively creating a significance scan by

extracting Significance =
NSigp

NSig+NBkg
. The significance scan is seen

in Fig. (7.23) and note that if the scan value is set to zero, the fit
did not converge and is a white space on the plot. The blinded
significance scan gave the following cuts in the GBDTs: GBDT1 =

0.1 and GBDT2 = 0.7 with a significance value of NSigp
NSig+NBkg

=

25.6.

Step (5) and step (6) are seen in Fig. (7.24) and Fig. (7.25) where
the GBDT cuts, which maximize the found significance (GBDT1,
GBDT2)=(0.1, 0.7), are applied to the distributions before the fits.
As noted in the Signal Range are reduced unto SR⇤: m(B0) 2
[4250, 5700]MeV/c2 for better fits. This smaller fit range is still com-
pliant with the RK⇤ group approach.
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Figure 7.23: Blinded Significance
scan on B0

d q2
high SRdata Period K

data with fixed signal PDF shape
parameters and free background PDF
shape parameters (except the weight).
The Grid used are M ⇥ M where
M =[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95].

Figure 7.24: Background distribution fits on B0 SB2data, q2
high with (GBDT1,GBDT2)=(0.1, 0.7). The best fit is again the

Erf(x) + Exp(x) function. Note that SB2 is reduced into the range: m(B0) 2 [4250, 5700]MeV/c2.
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Figure 7.25: Signal fit: Double Gauss + Bukin PDF fit on B0
d ; SR⇤MC in the q2

high-bin with (GBDT1,GBDT2)=(0.1, 0.7).

The final fit is a fit of the type: NSig ⇥ PDFSig + NBkg ⇥ PDFBkg such
that the number of signals can be extracted and used in the RK⇤0 -
double ratio. Again - as in the significance scan, the Signal PDF
(Eq. (7.7)) has its shape parameters fixed with floated mean and
sigmas, whereas the background PDF has free shape-parameters
except for the weight between the Erf(x) and Exp(x)5. The total 5 The fixing of the background fit

weight is a deviation from the RK⇤

procedure, however, it made the c2-fit
converge.

fit is seen in Fig. (7.26). The fit converged with GoF-parameters:
p � value = 1 � c2

CDF(c2 = 66.2, Ndo f = 48) = 0.04, which is
just short of the standard rejection threshold of 0.05. As seen in Fig.
(7.26), something is wrong with the error of µer f = 35 ± (61 ⇥ 109).
This indicates the challenges when fitting combined6 background. 6 background consist of many different

decays.The final signal yield is: NSig = (58 ± 9) ⇥ 10.
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Figure 7.26: Full fit (Sig+Bkg) on B0
d period K, q2

high. The threshold cuts for both GBDTs come from the maximum significance
scan in Fig. (7.23). The fit is just short of the standard p-value threshold of: 0.05. This might be due to the signal shape distribution
going up again for m(B0) > 5600 MeV/c2 which is not ideal.

Looking back, each of the Signal vs. Background Testing Suite fig-
ures (Fig. (7.11) and Fig. (7.12)) they show the maximum signifi-
cance scans GBDT cuts/thresholds: (GBDT1, GBDT2)=(0.1, 0.7). For
GBDT1, the specific cut on the ROC and Precision/Recall curve at
GBDT1-cut: 0.1 are (FPR, TPR, PPV)=(0.08, 0.92, 0.86). This means
for a GBDT1-cut at 0.1, the GBDT correctly identifies 92% of the
signals (TPR); however, it also incorrectly classifies 8% of the back-
ground events as signal (FPR). Lastly, 86% of the classified signals
are actually true signals (PPV).
For the GBDT2-cut at 0.7, the (FPR, TPR, PPV)=(0.03, 0.85, 0.95)

means the GBDT correctly identifies 85% of the signals (TPR); how-
ever, it also incorrectly classifies 3% of the background events as
signal (FPR). Lastly, 95% of the classified signals are actually true
signals (PPV).
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This concludes the "2GNN to 2GBDT" approach and the above
analysis shows that it is a viable approach however not satisfactory
enough hence it can be further developed.
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8
The Search for Better Performance

This chapter focuses on improving the performance of the "2GNN
to 2GBDT" approach. There are many paths to take when a model,
such as "2GNN to 2GBDT", needs to be improved. The chosen
paths used in this thesis are seen in Fig. (8.1), which shows a
roadmap of different approaches tried out to achieve better perfor-
mance. The ( ) marks that the approach works, and the (X) denotes
the approach does not work. Firstly the two approaches: "2GNN to
3GBDT" and the "2GNN to 2GBDT w. enriched MC background"
which failed, will be shown in the next section. However, only an
explanation of how it was done and where it failed will be pro-
vided. Please see appendix A.3 for each of the various testing suites
from the "2GNN to 3GBDT" approach and see appendix A.4 the
testing suites of the "2GNN to 2GBDT w. enriched MC background"
approach. After exploring the two failed approaches, the "2GNN
to 2GBDT" approach is expanded to extra features, thus ending the
analysis with a final improved "2GNN to 2GBDT" approach.

2GNN to 2GBDT

RK* Group GNN
Approach

2GNN to 3GBDT

2GNN to 2GBDT
w. MC enriched 

background

2GNN to 2GBDT
w. extra features

(✓) The Search

m(!!"#$%&' ) -
correlation

One-component 
PCA branches

Full n-tuple 
Feature Search

(X)

(X)

(✓)

Figure 8.1: A roadmap to better
performance for the GBDT model.

8.1 2GNN to 3GBDT

The "2GNN to 3GBDT" is a modification of the "2GNN to 2GBDT"
approach, which only does two-class classification where the two
first GBTs are trained as the original "2GNN to 2GBDT" approach



b-physics and gradient boosted decision trees 69

with the exception of the B0 and B0 is not distinguished. Lastly,
a third GBDT is trained in selecting either B0 or B0, substituting
the Mass Hypothesis Candidate Selection. The two GBDTs, which are
trained on {SRMC [ SB1data} and {SRMC [ SB2data} respectively
with normal binary log-loss. The last GBDT; GBDT3 are training
against 80000 truth-machted MC signal in SRMC with 50% B0 and
50% B0. The GBDT parameters are seen in Tab. A.2 in appendix
A.3.

All three GBDTs are trained and signal efficiency benchmarks are
seen in Fig. (8.2), the signal efficiency is higher for GBDT1 and
GBDT2 relative to the "2GNN to 2GBDT" approach. This might
be because the GBDTs can focus on learning the pure combined
signal properties and do not have to predict multiple signal species.
The other tests from the testing suite1 can be seen in Fig. (A.3) in 1 Except for the Sig(B0) vs. Sig(B0)

Testing Suite since there is only one
signal.appendix A.3 for the interested reader.

Figure 8.2: Resonant vs Non-
Resonant signal efficiency plots for
both the q2

low and q2
high bin for both

GBDTs in "2GNN to 3GBDT". Both
GBDT1 and GBDT yields good classi-
fying performance.

Figure 8.3: Signal vs Background
Testing Suite on "2GNN to 3GBDT"-
GBDT3 test-set which shows good
performance on test set in separating
B0 and B0.

In the roadmap (Fig. (8.1)), there is an (X) under. The reason for
this is when it comes to the prediction of Sig(B0) vs. Sig(B0) for
GBDT3. In Fig. (8.3), the GBDT3 does a great job separating the two
signals. This is quantified with AUC = 0.962 and AP = 0.963.

However, when applying GBDT3 on the non test-set SRMC, it does
not detect the differences in the Sig(B0) vs. Sig(B0) which is seen in
Fig. (8.4). The AUC score is below 0.5 and this is worse than a ran-
dom classifier. The AP score is a bit better but still not satisfactory.
This implies that the GBDT3 could be over-fitted to the training set
(Fig. (8.3)).



b-physics and gradient boosted decision trees 70

Figure 8.4: Signal vs Background Testing Suite on "2GNN to 3GBDT"-GBDT3 which shows that GBDT3 does does not classify B0

vs. B0 well on the non-test set. Specifically seen in the AUC and AP quantities (AUC < 0.5).

This implies a dead end for the "2GNN to 2GBDT" in the analysis
(X), and the following approach tested is the "2GNN to 2GBDT w.
enriched MC background"-approach.

8.2 2GNN to 2GBDT w. enriched MC background

The "2GNN to 2GBDT w. enriched MC background" approach or
from now on; the "Enriched 2GNN to 2GBDT" tries to do the same
as "2GNN to 2GBDT"; however, this approach uses MC background
data in the signal region to make the GBDTs better at separating
signal since the background it trains on has events from the signal
region and not only the sidebands. Whereas the "2GNN to 2GBDT"
approach uses 700000 sideband events, the "Enriched 2GNN to
2GBDT" approach uses 400000 sideband events and 300000 MC
backgrounds.
This means the GBDTs are trained on: {SRMC [ SB1data [ BkgMC}
and {SRMC [ SB2data [ BkgMC} where the same BkgMC are used in
the enrichment of the both sidebands. The parameters used for the
two GBDTs are seen in Tab. A.3 in appendix A.4.
Another testing suite was developed for this approach: the Sideband
vs. MC Background Testing Suite, which is closely related to the
Signal vs. Background Testing Suite. This modified testing suite
can be seen in Fig. (A.23) and Fig. (A.25) in appendix A.4 for the
two GBDTs. The idea behind this test was that even though the
GBDTs would train to be good performing classifiers, there was a
problem if the GBDTs also learned the difference in sideband and
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MC background - hence the test.

This approach ended with the performance on the signal efficiency,
which is seen in Fig. (8.5). The lack of performance stopped this
direction, and the focus was reverted to the simple "2GNN to
2GBDT".

Figure 8.5: Resonant vs Non-
Resonant signal efficiency plots for
both the q2

low and q2
high bin for both

GBDTs in "Enriched 2GNN to 2GBDT".
It is clear the drop in signal efficiency
for both GBDTs.

8.3 The Search

With both "2GNN to 3GBDT" and "Enriched 2GNN to 2GBDT"
approached as dead ends, which were approaches where either the
machine learning framework was altered or the training set was
changed, the approach became the search for new features to add
to the already good performing "2GNN to 2GBDT" model with
the hypothesis: A GBDT model is only as good as the features it is
given. The search for new features was a threefold process with the
m(B0

closer)-correlation very tightly connected to the Full n-tuple Feature
Search.

8.3.1 m(B0
closer)-correlation

The m(B0
closer)-correlation is about finding which features in the n-

tuples correlate the most with the B-mass and then remove them
from the list of potentially interesting features which could be
added to the "2GNN to 2GBDT"-model for leakage avoidance. The
standard approach would be using Pearson’s Correlation Coef-
ficient to find the features mostly correlated with m(B0

closer). The
correlation matrix is seen in Fig. (8.6) where the white lines repre-
sent non-numeric features.

Figure 8.6: Pearson Correlation
Coefficient for all 627 n-tuple features
and extra added experimental features.

There are 627 features either directly un-altered from the n-tuples
or feature-engineered features, shown in Fig. (8.6). After removing
m(B0

closer) along with duplicates, non-numeric features and highly
m(B0

closer) Pearson correlated features; the feature search space
ended up with 403 features2. 2 Some extra features were removed

simply by "visually seeing" the MC
samples were not aligned with the
actual data.
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An RMSE Regressor with the Verstack Python library[73] with 100
defualt trials and 70%/30% train/test-set scaled with Scikit-Learn’s
Robust Scaler (Eq. (6.3)) are applied with the m(B0

closer) as the target
of the regression.
The idea is to apply the feature Importance ranking explained
earlier3 for the regressor. This is another approach in calculating 3 The only change is on the permuta-

tion Importance, which has the AUC
score substituted with RMSE.correlations and hopefully, it would pick up the deeper correlations

of the features. The regressor is applied on 70000 events from the
SRMC, SB1data, and SB2data mass regions with the standard pre-
selection cuts. The parameters and result from the training are seen
in Tab. A.4 in appendix A.5. The 15 most important features for
each of the three mass-cuts: SRMC, SB1data, and SB2data are seen in
Fig. (A.35), Fig. (A.36) and Fig. (A.37) in appendix A.5 respectively.
These importances are used in the step of cycling through all 403
features to find the best features to add to the "2GNN to 2GBDT"
model.

8.3.2 Full n-tuple Feature Search

The strategy for finding the best features is outlined in Fig. (8.7),
which are the "2GNN to 2GBDT" model over and over again, slowly
cutting away the too-good-to-be-true features which would train
GBDT1 and GBDT2 into perfect classifiers. The AUC and AP scores
are used to quantify a perfect classifer by values: AUC = 1 and
AP = 1.

Full n-tuple 
Feature Search

2GNN to 2GBDT
w all* features

LightGBM Testing Suite

Signal vs Background Testing Suite
(focus on AUC- and AP-score)

Feature Importance Testing

Visual check for most important 
features in SR, SB1 and SB2

Remove 
bad 

features

Repeat N 
times

Figure 8.7: The full n-tuple fea-
ture search strategy is displayed as a
looping diagram starting at "2GNN to
2GBDT w. all⇤ features" where the all⇤

means that some are discarded during
the iterations.

Starting with 403 features, the most leaking features are seen in Fig.
(A.38) in appendix A.6. These features mainly consist of B masses
and info-features along with obvious leaking4 features.

4 Leaking means that the classifier
knows information about the B mass,
this means "leaking" and "correlated
with m(B0

closer)" are in this context
used for the same.

The strategy of Fig. (8.7) is then carried out for N = 6 times where
each time the features removed are seen in: Fig. (A.39), Fig. (A.40),
Fig. (A.41), Fig. (A.42) and Fig. (A.43) in appendix A.6. The 6th run
of the "2GNN to 2GBDT" with the additional features are found in
appendix A.6 where the figures of the LightGBM Testing Suite, Sig-
nal vs. Background Testing Suite and the Sig(B0) vs. Sig(B0) Testing
suite are applied. In addition the best 35 features for SRMC [ SB1data

and SRMC [ SB2data are seen in Fig. (A.50) and Fig. (A.51) in ap-
pendix A.6.

The result of the search is the five features seen in Fig. (8.8), which
are the five most important non-leaking features in the n-tuples/feature-
engineered features:
tracks_dEdx_diff, diMeson_Kpi_piK_mass_avg,
diMeson_Kpi_piK_mass_diff, angle_vtx_plane_mm_plane, an-
gle_vtx_plane_ee_plane, and the explanation/calculations of these
features are found in Tab. (6.5).



b-physics and gradient boosted decision trees 73

Figure 8.8: Best features with no leaking properties after iteration 6 of the full n-tuple feature search: [tracks_dEdx_diff, diMe-
son_Kpi_piK_mass_avg, diMeson_Kpi_piK_mass_diff, angle_vtx_plane_mm_plane, angle_vtx_plane_ee_plane]. Note that the
explanation/calculations of these features are found in earlier shown Tab. (6.5)

8.3.3 One-component PCA branches

Another way to introduce new features is through Principal Com-
ponent Analysis (PCA). This dimensionality reduction technique
compresses multi-dimension data into smaller dimensions by pro-
jecting the data onto the eigenvectors with the most contributing
eigenvalues. The steps are the following for one-component PCA:

• Scale data: X since PCA are sensitive to data-scale.

• Calculate covariance matrix: Cov(X) = E[(X � E[X])((X �
E[X])T ]

• Solve for eigenvalues: | Cov(X) � lI |= 0

• For eigenvalues: l1, l2, . . . find maximum eigenvalue: l0 =

max{l1, l2, . . .} l0

• Calcualte corresponding eigenvector v: (Cov(X) � l0I)v = 0

• Project X onto v: X0 = Xv

Figure 8.9: A translation of
the GNN architecture to 11 one-
component PCA. Circles represent
which features are bundled together to
form a one-component PCA. There are
11 circles.

The idea is that the GNN architecture is created based on the decay
topology hence each of the 11 branches would be perfect for One-
component PCA analysis, which is seen in Fig. (8.9) (color-coded).
The new features are made by the Scikit-Learns PCA method and
are fitted to the training set and applied to the rest of the data5. The

5 The same way the scaler is applied.
fit and transform of the PCA are done after the Robust Scaler(Eq.
(6.3)) has scaled the data.

8.4 The Final Model

In total, the "2GNN to 2GBDT" is extended with 16 extra features,
namely eleven "GNN branch" one-component PCAs and five non-
leaking features seen in Fig. (8.8). The name of this extended fea-
ture approach is dubbed: "2GNN to 2GBDT w extra features".
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"2GNN to 2GBDT w extra features" uses the exact same approach
as the original "2GNN to 2GBDT" hence not much explanation is
needed. The "2GNN to 2GBDT w extra features" approach passes
all testing suites, which are seen in appendix A.7 with the classify-
ing performance for GBDT1 of AUC = 0.978, AP = 0.951 and for
GBDT2: AUC = 0.982 and AP = 0.964 on the non test-set. This
means both classifiers perform as they should (this is also seen in
figures Fig. (8.10) and Fig. (8.11).

Figure 8.10: Signal vs Background Testing Suite with
"2GNN to 2GBDT w extra features"-GBDT1 on non-train
SRMC [ SB1data. The figure in big format is seen in Fig. (A.60)
in appendix A.7. The main takeaway is the classifying perfor-
mance for GBDT1 of AUC = 0.978, AP = 0.951.

Figure 8.11: Signal vs Background Testing Suite with
"2GNN to 2GBDT w extra features"-GBDT2 on non-train
SRMC [ SB2data. The figure in big format is seen in Fig. (A.61)
in appendix A.7. The main takeaway is the classifying perfor-
mance for GBDT2 of AUC = 0.982 and AP = 0.964.

Figure 8.12: Efficiency comparison between the 2GNN (thin/blurred lines) vs the 2GBDT w extra features (upper lesser-blurred
thick lines) and the original 2GBDT (middle blurred thick lines). The figure shows that the "2GNN vs the 2GBDT w extra features"
approach has better signal performance for all probabilities and beats the original 2GNN vs the 2GBDT" approach.

The performance of "2GNN to 2GBDT w extra features" is seen in
Fig. (8.12) where it both surpasses the RK⇤’s GNN approach and
also beats the "2GNN to 2GBDT" approach in signal efficiency. All
three are plotted on Fig. (8.12) (on top of each other) where the two
(orange and blue) less blurred thick lines are the performance of
"2GNN to 2GBDT w extra features" whereas the other thick lines
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are the "2GNN to 2GBDT" with the thin lines the GNN approach.
The "2GNN to 2GBDT w extra features" approach is also perform-
ing better in [0.92to1.00] (which the "2GNN to 2GBDT" failed to do)
such that now it has higher signal performance for all probabilities.

Steps (1)-(3) of the fitting routine are the same for "2GNN to 2GBDT
w extra features" hence refer to section 7.0.2 for a detailed view
of the first step of the fitting process. The Significance scan for the
"2GNN to 2GBDT w extra features" gives the cuts: Significance(GBDT1 =

0.1, GBDT2 = 0.3) = 24.2 which are seen in Fig. (A.67) in appendix
A.7.

Step (5) and step (6) is seen in Fig. (8.13) and Fig. (8.14) where with
(GBDT1, GBDT2)=(0.1, 0.7) in reduced signal range: [4250, 5700]. It
is seen in Fig. (8.13) that again the best background PDF is Erf(x) +

Exp(x) with a p-value of 0.13. The shape of the signal after GBDT
cuts: (0.1, 0.3) has some distortion by a factor such that the double
Gaussian + Bukin PDF (Eq. (7.7)) does not fit as well (p-value of
0.002) as before introducing cuts.

Figure 8.13: Background distribution fits on B0
d SB2data, q2

high with (GBDT1,GBDT2)=(0.1, 0.3). The best fit is again the
Erf(x) + Exp(x) function. Note that SB2 is reduced into the range: m(B0) 2 [4250, 5700]MeV/c2.
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Figure 8.14: Signal fit: Double Gauss + Bukin PDF on B0
d SR⇤MC, q2

high with (GBDT1,GBDT2)=(0.1, 0.3).

The combined signal and background fit for GBDT cuts (0.1, 0.3)

is seen in Fig. (8.15). Again the double Gaussian + Bukin shape
parameters are fixed to the MC signal fit in Fig. (8.14) where the
common mean (µpeak) and sigmas (s1, s2, sp) are floated with the
ratio between the sigmas are fixed. The background PDF has all
its shape parameters floated except the ratio between Erf(x) and
Exp(x). The fit converges with GoF-parameters: p � value = 1 �
c2

CDF(c2 = 32.0, Ndo f = 48) = 0.96, which means the probability
distribution fitted to the data represents the data to a very high
degree. The final signal yield is NSig = (1853 ± 2).
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Figure 8.15: Full fit (Sig+Bkg) on B0
d period K, q2

high. The threshold cuts for both GBDTs; (GBDT1,GBDT2)=(0.1, 0.3) comes
from the maximum significance scan in Fig. (7.23). The combined signal and background PDF fit the data with GoF-parameter:
p-value= 0.96 which means the fit agrees with the data. From this fit the signal yield can be extracted: NSig(B0) = 1852 ± 2.

The "2GNN to 2GBDT w extra features" has less strict GBDT cuts
than the "2GNN to 2GBDT". Looking to figures: Fig. (8.10) and
Fig. (8.11) the GBDT cuts: (GBDT1, GBDT2)=(0.1, 0.3) gives a clas-
sifier with (FPR, TRP, TPR) = (0.08, 0.95, 0.86) which means GBDT1
correctly identifies 95% of the signals (TPR); however, it also incor-
rectly classifies 8% of the background events as signal (FPR) and
86% of the classified signals are true signals (PPV).
For GBDT2: with (FPR, TRP, TPR) = (0.06, 0.94, 0.90) it identifies
94% of the signals (TPR), and it incorrectly classifies 6% of the
background events as signal (FPR) and 90% of the classified signals
are true signals (PPV).
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Part III

Wrap Up
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9
Discussion

The following section discusses the results and the general ap-
proach used to reach those results. Some subjects for discussion are
the fitting routine, the Kaon Pion mass tails, and uncertainties.

9.1 The Results

The main result of the analysis is the results of the "2GNN to
2GBDT w extra features" approach, which has the highest signal
efficiency. The signal yield is NSig(B0) = 1853 ± 2, which is from the
combined signal and background fit seen in Fig. (8.15).
The estimated error on the yield: ±2, which is a relative error of
#rel

NSig(B0)
= 0.11% indicated that the uncertainty is underestimated.

The c2-fit matches the data with a p-value of 0.96, which might
explain the underestimated error. It is not p-value= 1. However, it
is still very high, as there might be too many free parameters.
As seen in both Fig. (8.13) and in Fig. (8.14), the sculpting of back-
ground is not present, and it drops off nicely off as the m(B0) in-
creases. However, the signal gets distorted when the cuts are ap-
plied and are probably the bigger contributor to the error.

As this is a Poisson process, NSig(B0) must have at least errors ofq
NSig(B0) = 1853 thus: NSig(B0) = 1853 ± (

p
1853 ± 2 ± ssys) and

omitting the systematic error notations; the result is NSig(B0) =

1853 ± (� 45) (also reported in Eq. (10.1)) where the "�" refers to
the fact that this is the smallest uncertainty for the signal yields and
the uncertainty is without a doubt, bigger.

The significance for the signal and background fit of the "2GNN to
2GBDT w extra features" Fig. (8.15) approach is SignificanceSig(B0) =

20 ± (� 0.4) calculated using the Poisson errors and the fit errors.
The uncertainty is by standard error propagation with poison errors
and fit errors. The result is also seen in Eq. (10.5).

The efficiency of the GBDTs is performing better than hoped. How-
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ever, background rejection is also essential for fitting. Since a better
performance in background rejection, the better the combined sig-
nal and background fit will be since the background will behave
nicely. The significance scans indicate this since they only have
maximums in the lower end instead of strict (high GBDTs) cuts. As
seen in Fig. (9.1), the signal efficiency, as discussed earlier, performs
excellently for all selection probabilities.

However, the background rejection is underperforming for all
probabilities for both GBDTs. The gained signal efficiency boost
from the "2GNN to 2GBDT w extra features"-approach compared
with the GNN benchmark from [39] are approximate: ⇠ +15% for
GBDT1 vs. GNN1 and ⇠ +10% for GBDT2 vs. GNN2.

However, as seen in Fig. (9.1), the background rejection is worse
for the GBDTs with ⇠ �5% for GBDT1 vs. GNN1 and ⇠ �5% for
GBDT2 vs. GNN2. This lack of background rejection indicates that
the error on the yield is underestimated due to more background
events leaking into the combined fit. Lack of background rejection
will also pose a problem in the low q2 bin since the statistics here
are low. The RK⇤ group estimates that 28 true signal events and 581
true backgrounds in the resonant channel (q2

low) can be extracted
for the 2018 Run2-data[39]. With these low statistics in signals, it is
essential to reject as much as possible of the background. Figure 9.1: Signal efficiency and

background rejection with the Signal vs
Background Testing Suite with "2GNN
to 2GBDT w extra features" GBDT1 on
{SRMC [ SB1data} (top subfigure) and
GBDT2 on {SRMC [ SB2data} (Lower
subfigure). The thick lines are the
GBDTs, and the thin lines are GNNS.
Note that the thick blue GBDT line
will be compared with the thin orange
line for signal efficiency and vice versa
for the background rejection.

On top of the signal yield, an estimate of the GBDTs total efficiency
can be extracted from the confusion matrices for MC samples (Fig.
(8.10) and Fig. (8.11)) where the errors on the signal efficiency; #B0

is binomial: D#B0 =
q

#B0 (1�#B0 )
N where N is the total number of

entries in the matrix. The efficiencies are calculated on {SRMC [
SB1PeriodK

Pre�sel } and {SRMC [ SB2PeriodK
Pre�sel } since the MC data is labeled1

1 Note that SB1PeriodK
Pre�sel just means that

Period K data is used in the SB1-region
after pre-selections.

hence the possibility of estimating the efficiency.

The resulting efficiencies are #
{SRMC[SB1PeriodK

Pre�sel }
GBDT1(B0|cut:0.1)

= 0.854 ± 0.001 and

#
{SRMC[SB2PeriodK

Pre�sel }
GBDT2(B0|cut:0.3)

= 0.848 ± 0.001 for GBDT1 and GBDT2 respec-
tively. The total efficiency of the combined GBDT is #GBDT|tot =

0.72 ± 0.03, calculated using standard error propagation. These
results are also reported in Eq. (10.2), Eq. (10.3), and Eq. (10.4).
This efficiency is only an indicator of the composite GBDTs’ perfor-
mance, and the actual efficiency studies are yet to be done in the
RK⇤ group. The main takeaway with the calculation of the com-
bined efficiency of the two GBDTs is that the GBDT approach is a
viable ML method for separating B0, B0 and background, which is
also seen in all the separation tests applied throughout the analysis.
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9.1.1 The Fitting Routine

Even though the fitting is an essential part of extracting the signal
yield, it has not been a priority of this thesis since the focus was
on developing a machine learning framework for separating B0,
B0, and background. Other RK⇤ group members have the fitting
routine as their specialty, and hence a lot of the fitting is done using
their recommended approach2. 2 such that the fits can be compared.

The use of the Erf(x) + Exp(x) function for the background fitting
is purely motivated by the lowest c2 value. The RK⇤ fitting group
also uses this background PDF; however, all the fitting functions
were viable in capturing the background. As the RK⇤ suggested,
the two polynomials are not the best option for fitting since they
can almost fit everything3, hence it is better to use PDFs, which 3 They are like a Swiss-army knife for

fitting.have some restrictions in their shape.

The reason for restricting the signal range to m(B0) 2 [4250, 5700]MeV/c2

after GBDTs are applied in the fitting routine at step (5) is due
to the distortion of the background shape. In the range m(B0) 2
[4000, 4700]MeV/c2 in Fig. (7.21) the background is increasing whereas
in m(B0) 2 [4700, 5700]MeV/c2 the background shape is decreas-
ing. It seems as if the GBDT background rejection is stronger for
higher m(B0)-values. This means after the cuts are applied, the
background shape increases in m(B0) 2 [4000, 4250]MeV/c2 and
then decreases in the rest: m(B0) 22 [4250, 5700]MeV/c2. Since
m(B0) 2 [4000, 4250]MeV/c2 is far enough from the peaking of m(B0),
it can be discarded in the fitting routine to achieve higher stability
in the fits4. 4 Note that the RK⇤ group restricts

the fit range even further to m(B0) 2
[4500, 5700]MeV/c2.The fitting routine used in this thesis is a c2 fit through the Python

library: Iminuit[15]. The first fit routine applied to the selected data
was binned maximum likelihood (MLLH) with bootstrapping for
error estimation5 however, the approach was abandoned since the 5 An example of the MLLH fit is seen

in Fig. (A.68) with the bootstrapped
errors in Fig. (A.69) in appendix A.8.c2-fit can directly estimate errors, thus making it faster. Typically

the unbinned MLLH is a better choice since it fits directly using the
likelihood function, whereas the c2-fit uses the residuals.

Bin-width is also one thing to consider when using c2-fits; for the
background and total fit6 the bin-width is 25MeV/c2 such that each 6 after GBDT cuts.

bin had enough statistics for a reasonable fit. Since the MC samples
are quite large, the bin-width was 10MeV/c2 as were the background
fit before GBDT cuts due to statistics. The discussion of bin width
can be tricky. However, the key is consistency such that the p-value
is not fitted to the bin width, and hence the results can be reliable
(this is the idea with the blinded significance scan).
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9.1.2 The ML Pipeline

The analysis methodology used in this thesis is mainly adopted
from the RK⇤s methodology for making the results comparable.
Some of the elements in the approach that were changed from
the GNN to GBDT were the substitution of the scaler in the ML
pipeline. The GNN approach uses the standard scaler, and the GB-
DTs have used the robust scaler. The main differences are that the
standard scaler assumes the existence of the first two moments.
In contrast, the robust scaler does not rely on any distribution as-
sumption other than the set is finite7. The robust scaler was chosen 7 Thus, the existence of quantiles.

since no prior assumptions are needed on the feature distributions8. 8 The standard scaler will not work
on a Cauchy distribution where the
moments are undefined.The number of training and test samples and the percentages

used for training, validation, and test-set is also up for discus-
sion. The percentages used are not out of the ordinary and are
compliant with standard ML train/test splitting[23]. The event
numbers used for training in the analysis: 700000 background
events and 20000 signal events are the same used in the RK⇤ GNN
analysis. The RK⇤ local candidate selection which looks like:

max

8
<

:
P1(B0) + P1(B0

) ,

P2(B0) + P2(B0
)

9
=

; and are found in Tab. (6.4) could

potentially also have another form and as the same for the Mass
hypothesis selection.9 9 As shown, the "2GNN to 3GBDT"

approach was an alternative Mass
hypothesis selection strategy with the
use of a GBDT for selecting the mass
however with no success.

The Verstack[73] library also supports multiple metrics for opti-
mization and multi-logloss10 might not be the best even though

10 which has been used on all models.this metric is used during the Optuna optimization of the Light-
GBM classifier in the training of all classifiers in the analysis. One
has to be careful when selecting these metrics since the dataset is
highly unbalanced. The advantage of multi-logloss11 is that it pe- 11 or cross-entropy.

nalizes the classifier if it confidently predicts wrongly - especially
on the minority classes. However, other metrics could also be used:
f1, AP, balanced accuracy etc., which all are suitable for imbalanced
datasets. The number of trials in the optimization was set to 100 for
all GBDT models. This could also be changed; however, as seen in
all LightGBM Testing Suites, the loss functions converge to a mini-
mum for all GBDT models.

9.1.3 The Choice of the ML Testing Suite

The metrics used in the four testing suites (+ the feature impor-
tance) are not the only ones that could be used, and the way of
testing the GBDTs could also be changed. As the RK⇤ group also
uses some of these tests, they are also used in this analysis. These
tests are the Efficiency/Rejection in the Signal vs. background testing
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suite, the 2D Response Curve in the Sig(B0) vs. Sig(B0) testing suite,
and all the mass shape testing suites. The main idea is to open the
"black box" of the ML to see how well they perform on different
datasets and if they have learned some less-ideal tendencies, like
the sculpting in the background and signal.

The Permutation Importance and Shapley values are calculated
on 25% of the train and test set. The reason for not using the
whole dataset is that the important trends are already encaptured
in 25% of the data; hence using more would be redundant. The
permutation importance is repeated ten times which should be
enough to even out statistical fluctuations; however, one could al-
ways argue that it is insufficient, and the bottom line is that it is a
precision/computing-time trade-off. The Permutation Importance
also uses AUC as a score. As mentioned in the discussion of the
ML pipeline, other metrics could be used here, like the ones men-
tioned. It all depends on the goal of the permutation test, and the
AUC score serves that purpose. 6.8

9.1.4 KaonPion and PionKaon Mass Tails

The RK⇤ group has weekly meetings, and in December, the prelim-
inary results of this thesis were shown. At this meeting, it was
pointed out that the shape of the Kaon-Pion/Pion-kaon mass;
m(Kp)/m(pK) had a discontinuity, and it was decided that this
discontinuity was not ideal since it does not represent the real
physical distributions of m(Kp) and m(pK). The cuts in the dis-
tribution are seen in Fig. (9.2) at m(Kp) = 1110 MeV/c2 or m(pK) =

1110 MeV/c2. The reason for the discontinuity is the OR in equation
Eq. (9.1), which are the RK⇤ group pre-selection cuts from Tab. (6.3)
for the m(Kp) and m(pK).

⇣
m(B0) 2 [3, 6.5]GeV/c2 AND m(Kp) 2 [690, 1110]MeV/c2

⌘

OR (9.1)
⇣

m(B0) 2 [3, 6.5]GeV/c2 AND m(pK) 2 [690, 1110]MeV/c2
⌘

The reason for the OR is that the ATLAS detector can not distin-
guish between Kaons and pions; hence there are multiple cases,
and those cases are solved with the pre-selection cut since an event
can be either in one of the brackets or in both. However, at the
December meeting, it was decided to search for an approach that
takes the OR into account to smooth out the input m(Kp), m(pK)-
distributions.

The reason for using GNNs for the analysis in the first place was
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Figure 9.2: SRMC, SB1data, and
SB2data distribution for m(Kp) and
m(pK) after pre-selection cuts are
applied along with the mass-region
cuts.

their ability to create an architecture where features could be linked
into branches. This way, the branches can represent physically
motivated correlations between features that mimic the B0 decay
topology. This is the extent of exploitation of the original RK⇤ GNN
architecture; however, the solution to the m(Kp)/m(pK) discon-
tinuity was solved with a unique solution utilizing the GNN ar-
chitecture. The original GNN architecture is seen in Fig. (5.2) in
chapter 5; however, this architecture was changed such that it could
handle the following three cases:

CASE1: m(Kp) 2 [690, 1110]MeV/c2 AND m(pK) 2 [690, 1110]MeV/c2,
CASE2: m(Kp) 2 [690, 1110]MeV/c2 AND m(pK) /2 [690, 1110]MeV/c2,
and
CASE2: m(Kp) /2 [690, 1110]MeV/c2 AND m(pK) 2 [690, 1110]MeV/c2.

Figure 9.3: Signal efficiency for
GNN1 in the SR region for the up-
dated GNN architecture which handles
the three Kaon-pion mass-cases.
Source of figure: [41, p.11]

The new GNN architecture is seen in Fig. (9.4), where each case is
handled by switching a branch on/off depending on the three cases
above. If an event has the conditions of CASE1, the GNN graph
looks like it does in Fig. (9.4).

If an event has conditions of CASE2, the branch/node:
"�1/2m(Kp)m(pK)" and all its edges are removed. For CASE3, it
is the branch/node: "+1/2m(Kp)m(pK)" and its edges that is re-
moved, and this resulted in the smoothing of the training distribu-
tions as seen in Fig. (9.5). The implementation of the updated GNN
architecture also improves the difference in signal efficiency for q2

low
and q2

high such that it gets lower, see Fig. (9.3) where differences are
almost vanishing for all probability thresholds.
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Figure 9.4: The RK⇤ group GNN
architecture which can handle the
three cases: CASE1: m(Kp) 2
[690, 1110]MeV AND m(pK) 2
[690, 1110]MeV,
CASE2: m(Kp) 2
[690, 1110]MeV AND m(pK) /2
[690, 1110]MeV, and
CASE2: m(Kp) /2
[690, 1110]MeV AND m(pK) 2
[690, 1110]MeV. Branch
+1/2m(Kp)m(pK) represents CASE2,
branch �1/2m(Kp)m(pK) represents
CASE3 and both branches together
represents CASE1. Source of figure:
[41, p.7]

Figure 9.5: An example of how the
updated GNN architecture handles
the m(pK)/m(Kp) mass distributions
in training. As seen, the m(pK) are
smoothed where the m(Kp) mass
distribution is unsmoothed according
to the CASE2 scenario: m(Kp) 2
[690, 1110]MeV AND m(pK) /2
[690, 1110]MeV. Source of figure: [40,
p.21]

The three case-handling of the m(Kp) and m(pK) mass distribu-
tions are not as straightforward for GBDTS since the RK⇤ groups
approach is a special utilization of the very structure of how GNN
works.
One approach is to replace the OR with an AND in the cut; how-
ever, the group abandoned this approach due to a significant sta-
tistical loss. A way to handle the three cases with the GBDS could
be by mimicking the GNN approach by splitting data before the
GBDTs by which case they belong to.
This would result in one GBDT for each of the three cases.12 This

12 This was also a proposed solution
with the GNNs however the downside
would be the training of six GNNs
with a training time of 4h hence
abandoned.

means that GBDT1 and GBDT2 both consist of three GBDTs, each
applied to one of the cases. This approach would still be valid with
the training-time argument since 6⇥ ⇠ 10min are still less than
2 ⇥ 4h.

This 2 ⇥ 3 GBDT approach should be tested since GBDTS does not
have equal signal efficiencies for q2

low and q2
high for both GBDTs.

This is seen in 8.12, especially for GBDT1. This is now fixed for
the GNN approach with the handling of the three: m(Kp),m(pK)

mass handling cases, and it also gave higher signal efficiency for the
GNNs as seen in Fig. (9.3).

9.1.5 Feature Engennering and GBTDs

The question of "Which ML model is the best for classifying B0, B0

or background" is not straightforward. As seen above, the RK⇤s
GNN are currently utilizing some of the unique features a GNN
model can have. One advantage of using a Neural Network (NN)13

13 Which GNNs are a special case for.
is that NN can capture non-linearity between the input and output.
This means by design, a deep enough14 NN can capture a lot more

14 No one knows when a neural net-
work is "Deep enough".of the feature-correlated complexity than a more shallow model like

a GBDT.
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This leads to the topic: feature engineering. A deep and complex NN
can capture the relation between raw input and output without fea-
ture engineering. In the end, feature engineering is another way of
applying weighting functions to the original raw data. With enough
computational power and a deep and well-crafted NN, the one who
uses the NN only needs little to no domain15 knowledge. The NN 15 Feature engineering needs knowl-

edge on the subject to which the
functions are applied.also are very robust to outliers and noise. Some NN disadvantages

are the computational power required to train and hyperparameter
optimization.

Although GNNs have many advantages, the GBDTs also have an
advantage. As shown, their training speed outperforms the GNNs
significantly. They are also robust to outliers due to boosting and
one of their main appealing features: interpretability. The tree(s)
can be printed, and every decision process mapped out. One of
their disadvantages is the inability to capture the non-linearity be-
tween input and output. This has to be done with feature engineer-
ing, and it puts quite a difficult task on the user of GBDTs. The user
needs to have strong domain knowledge and understand how to
encode all relationships16 between features into new features. This 16 Both linear and non-linear.

means for GBDTs to get better performance, they need better fea-
tures hence feature engineering. This is already seen from "2GNN
to 2GBDT" to the "2GNN to 2GBDT w extra features", where the
main difference is the added features/feature engineering.

Even though PCA might capture some of the feature relationships,
it is still a linear dimensionality reduction method. The question
becomes how to compute the non-linear relationship since these
relations are not captured anywhere in the feature engineering ap-
plied in this thesis. This means further improvements to the GBDT
model are possible. One way to capture the non-linearities is by
combining NNs and GBDTs. The NN part could be an autoen-
coder. The idea behind an autoencoder is that it is an unsupervised
ML approach made of two parts: An encode and a decoder. The
encoder maps the input data into a lower dimension - a so-called
bottleneck. The decoder maps it back to the original dimension.
The encoder is used the say way as the PCA: dimensionality reduc-
tion. The advantage of the encoder is that it is based on a neural
network17, enabling it to capture non-linear relationships of the 17 No domain knowledge is needed.

features. This usage of the autoencoder is called feature extraction.
This approach might be better than PCA since it captures the non-
linear, and the PCA algorithm assumes that the parts are linearly
separable. Unfortunately, autoencoders have the same disadvan-
tages as GNNs/NNs, making them computationally expensive and
complicated to optimize hyperparameters.
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Another way could be using Polynomial Features[23]: which takes
features and raises them to the power of a. This is a way to capture
non-linearly. Another way could be using Kernel PCA[23], which
maps the data to higher dimensionality and then takes the most
important components like normal PCA. By using non-linear ker-
nels like RBFkernel(X1, X2) = exp(�kX1�X2k2

2s2 ) the kernel PCA can
capture the non-linearity between features.
This is to say that the GBDT’s performance can still be improved,
and in the end: the time used with GNNs goes to the construction
of the network and hyperparameter tuning, whereas for the GBDTs,
the time is spent on feature engineering.

9.2 Uncertainties

As mentioned in Tab. (2.2), the LHCb presented their newest mea-
surements of RK⇤0 in december 2022[11] with values:
RK⇤0 = 0.927+0.093

�0.087
+0.036
�0.035 for q2 2 [0.10, 1.1]GeV/c2 and RK⇤0 =

1.027+0.072
�0.068

+0.027
�0.026 for q 2 [1.1, 6.0]GeV/c2[11]. A full overview of

their analysis methodology can be seen in reference [44], and the
different contributions to systematic uncertainties in their analysis
are seen in Fig. (9.6).
As the RK⇤ group focus’ on the B0 decay and not B+, the main fo-
cus of Fig. (9.6) is the two rightmost subfigures. The calculation of
the RK⇤0 -ratio Eq. (2.6) is calculated using the measured yield: N
for the signal/control channel and the efficiency; # for the signal/-
control channel. The uncertainties related to the estimated yield
are denoted (fit), and the uncertainties related to the efficiency are
denoted (#) in Fig. (9.6).

Figure 9.6: LHCb systematic uncertainties for the RK+ and the RK⇤0 ratios in the q2
low and q2

high bin. The (fit) means the uncer-
tainty is related to the yield of the fit, and the # means the uncertainty is related to the efficiency. Source of figure: [57, p.48] and
the numbers originate from [44, Table 9, p.54].
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The uncertainties mention here, even though the figure and order
originate from the LHCb measurements, are also valid for the RK⇤

group measurement of the RK⇤0 -ratio.

(fit) Misidentified backgrounds: This is a critical uncertainty to
consider since this uncertainty comes directly from the ML effi-
ciency in rejecting background while still keeping the signal. On
top of this, the sculpting of the background and signal needs to be
avoided, or this uncertainty will blow up. Since the ratio of signal
and background events is highly unbalanced, this is a major part
of the uncertainty for the RK⇤ analysis, just as it is for the LHCb
measurement.

(fit) Partially Reconstructed Backgrounds: The analysis is about
measuring the result of the B0 meson decay particles: K, p, e, and
µ however, sometimes not all of these particles are reconstructed
correctly (partially rec.) the event will still go through as a signal
hence contaminating the signal. It is hard to estimate these uncer-
tainties for ATLAS. However, the uncertainty is higher for ATLAS
than LHCb since LHCb is designed for B-physics. ATLAS is an all-
purpose detector and can not distinguish between Kaons and pions;
hence not specialized for these experiments.

(fit) Combinatorial Modelling: The background consists of a com-
binatorial of different decays, and the background modeling can
be tricky since the choice of background probability function leads
to systematic uncertainties. In relation to this, the choice of side-
bands also introduced uncertainties since this affects the shape of
the background. This is one of the bigger uncertainty contributions
for LHCb and the RK⇤ experiment, which is even visible in the
analysis of this thesis which is seen when introducing GBDT cuts in
the background and the need for a smaller fit-range after the cuts.

(fit) Fixed fit paramters: LHCb, like the RK⇤ group, uses fixed
shape parameters for their fits. It is estimated that the errors from
fixed parameters are not a significant contributor, which is the same
for ATLAS.

(# + fit) Modeling of mCorr: The modeling of the correlated features
to the B-mass are used in the separation of background and signal
at LHCb - hence the relation to (#). This error also leaks into the
fitting since the separation also comes into play for the fit hence a
systematic error for the (fit). This is a small uncertainty for LHCb
and hence also for ATLAS.

(#) Stability if rK,K⇤
J/y

: This has to do with the control (J/y-part of
the Eq. (2.6). The double ratio is used to correct discrepancies in
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signal(ee) and signal(µµ). Given there are imperfections in the cal-
ibration of the rK,K⇤

J/y
due to discrepancy in data and simulation

uncertainty, they are propagated to the final double ratio hence
systematic errors. This is quite a large error for RK⇤ in q2

low; this is
because the signal to background ratio is higher in q2

high and hence
the q2

low is more sensitive to systematic errors. The relative impor-
tance of this uncertainty is the same for the ATLAS RK⇤ analysis.

(#) Trigger: The Trigger (low and high-level trigger) is used to filter
events such that the ones with the highest potential for interesting
physics passes. All events pass the trigger. Hence this source of
uncertainty is essential to control and keep low since errors will
propagate to all other parts of the analysis. The error here is rel-
atively low for ATLAS as well; however bigger than LHCb since
LHBC, as mentioned, is designed for B-physics.

(#) Kinematics and multiplicity: The re-weighting of kinematic
variables and dealing with multiplicity are also essential for the
analysis. For LHCb, this is a somewhat important factor in total
uncertainty. The probability of selecting the best candidates is an
ongoing part of ATLAS RK⇤ since it is related to the performance of
the GNNs/GBDTs. For the relative size of the kinematic re-weighting,
uncertainties are estimated to be the same for ATLAS RK⇤.

(#) Particle ID & factorization: PID, just as the trigger is, so is the
particle identification algorithm active before the analysis. Hence,
the systematic uncertainties from this step are propagated through
the analysis. Factorization is about the assumption that the compo-
nents of the decay process are independent; however, in reality, they
might be correlated, hence the introduction of systematic uncertain-
ties.

(#) q2 migration: This has to do with events that are produced in
one q2-bin and, due to uncertainties in the reconstruction, ends
up in another q2-bin. This means the efficiency of a bin will have
uncertainties.

(#) Form factors: A Form factor is a function that describes the tran-
sition amplitudes between the initial state B0 and the end state and
takes the dynamics and the particle structures involved in the decay
process into account. They are used to calculate the decay rate, and
the uncertainty in form factors is propagated to the efficiency of se-
lecting the signal. The uncertainty here is the same for ATLAS and
LHCb.

As shown, multiple areas in the analysis introducing uncertainties;
some are more significant than others.
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The idea behind using the double ratio 2.6 is that it handles theoret-
ical and systematic uncertainties such that they cancel out.

It is expected by the RK⇤ group that the main uncertainties arise
from the most dominant statistical uncertainties in the combined
analysis. The statistical uncertainties come from the measured
signal/background yield of the fits, which are fitted on limited
statistics after the ML cuts are applied to the data.
The RK⇤ groups estimate the uncertainty by generating toy Monte
Carlo by randomly sampling from the background part and the
signal part of the composite Signal+Background PDF, such they
have three toy MC data histograms of Signal S, Background B, and
S+B. Then the composite PDF is fitted to the three histograms. This
is repeated with a slight change: no signal: S=0. The combined
PDF is again fitted to the histograms. The amount of signal gained
where there is no signal is called spurious signal, and it is possible
from this to estimate the statistical uncertainty. Using the expected
28 true signal and 581 true background, it is estimated by the RK⇤

group that the uncertainty at the moment is ⇠ 50%[39] for now and
can further be improved is a work in progress.

9.3 Outline of the Next Step of the RK⇤ Analysis

As of the time of writing the thesis, the current status of the RK⇤-
group analysis is as follows: The B0 ! K⇤0µµ analysis has begun
with the separation of B0, B0 and background with both GNNs and
GBDTs. Preliminary fits are also done to extract the estimated yield
on the muon side.

Furthermore, the estimation of efficiencies is begun along with the
estimation of uncertainties. This is quite a task as the efficiency is
a product of a long list of other efficiencies: #tot = #geo ⇥ (#MVA ⇥
#Pre�select ⇥ #Trig ⇥ #PID) (from Eq. (3.5)).

The work on the J/y-control channel is also a work in progress. In
addition to calculating the RK⇤0 ratio, efforts are also being made
to improve the current n-tuples, specifically enhancing the B-mass
through improved feature engineering.
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10
Conclusion and Outlook

With the analysis and discussion in mind, it can be concluded that
GBDTs is a viable method in separating B0, B0 from background in
the RK⇤0 -ratio analysis for the electron channel.

With the "2GNN to 2GBDT w extra features" approach yielding
a superior signal efficiency in the two q2-bins: q2

low and q2
high in

SRMC for all threshold probabilities. Not only a good signal ef-
ficiency, but the GBDT model is also ⇠ 24 times faster at train-
ing and hyperparameter optimizing. With GBDT cuts at (GBDT1,
GBDT2) = (0.1, 0.3): The signal yield is NSig(B0) = 1853 ± (� 45) in
{SRPeriodK}, q2

high Period K data extracted from a c2-fit with GoF-
parameter of p-value of 0.96 and significance at: SignificanceSig(B0) =

20 ± (� 0.4) in the electron channel. The total estimated GBDT
signal efficiency in {SRMC [ SB1PeriodK [ SB2PeriodK}, q2

low are
#GBDT|tot = 0.72 ± 0.03 for the (GBDT1, GBDT2) = (0.1, 0.3) cut.

NSig(B0) = 1853 ± (� 45) (10.1)

#
{SRMC[SB1PeriodK

Pre�sel }
GBDT1(B0|cut:0.1)

= 0.854 ± 0.001 (10.2)

#
{SRMC[SB2PeriodK

Pre�sel }
GBDT2(B0|cut:0.3)

= 0.848 ± 0.001 (10.3)

#GBDT|tot = 0.72 ± 0.03 (10.4)

SignificanceSig(B0) = 20 ± (� 0.4) (10.5)

This means that GBDTs have the potential to be used in separat-
ing B0, B0, and background and hence to be adopted by the RK⇤

group for further analysis. With that said, the GNNs still have bet-
ter background rejection even though the signal efficiency of the
GBDTs is superior; this means that the GBDTs might not be the best
solution as a complete substitution with the GNNs at their current
stage. As the Signal/Background-ratio is small, just a few percentages in
background rejection would have a large impact on the number of
unfiltered backgrounds.
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This suggests that the GBDT models do not capture the deeper
facets of the background event properties, and improvements in
this area need to be pursued.

Even though the GBDTs are inferior in background rejection, they
could still be used as an analysis tool to discover new features
since the training time is low. This means the time from feature
engineering to a trained model is very short, and many iterations
can be applied in a relatively small timeframe.

The main goal remains ahead of the RK⇤ group, which is the cal-
culation of the RK⇤0 -ratio, and this includes the calculating of the
signal yield from the J/y control channel for both electron and
muons and the signal yield for B0 decay on the muon side as well.
Efficiency studies and estimation of uncertainties are also areas yet
to be done1. 1 Note that the mentioned approaches

used by the RK⇤ group are still a work
in progress and may be subject to
change in the future. For the current
methodology used, please get in touch
with the RK⇤ group directly.

As the thesis is concluded, the next step is to apply the B0
d, B0

d, and
background selection on the Muon channel. This work has already
begun with other members of the RK⇤ group applying the GBDT
approach shown in this thesis on the muon channel. In addition
to the contribution of the GBDT approach, codebase changes are
suggested to the RK⇤-group, which entails the implementation
of multiprocessing in the n-tuple to feather-file step along with
faster pre-selection schemes[50]; these will be reviewed for the next
iteration of the RK⇤ codebase.

In addition to the muon channel, new n-tuples for the electron
channel will provide better-calibrated features. This will result in
even better GBDT models due to better features. On top of that,
when Run2 data has been analyzed, the analysis can be applied
to Run3, with has much higher luminosity which will provide the
RK⇤ group with more statistics and hence much better RK⇤0 -ratio
measurements. It will be an exciting paper to read the day it is
published.
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A.1 Feature Engineering

Here is a list of functions with their explanations above. Every
function can be retraced to the n-tuples with the BeeKst at the be-
ginning of the variables.

Four-momentum vector for electron X:

vtx_eX_p4 =

2

66664

pT = BeeKst_electronX_pT
h = BeeKst_electronX_eta
f = BeeKst_electronX_phi

m = 0.551 MeV/c2

3

77775
where X 2 [0, 1] (A.1)
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Four-momentum vector for the K-meson at meson X:

vtx_mX_K_p4 =

2

66664

pT = BeeKst_mesonX_pT
h = BeeKst_mesonX_eta
f = BeeKst_mesonX_phi

m = 493.677 MeV/c2

3

77775
where X 2 [0, 1]

(A.2)

four-momentum vector for the p-meson at meson X:

vtx_mX_pi_p4 =

2

66664

pT = BeeKst_mesonX_pT
h = BeeKst_mesonX_eta
f = BeeKst_mesonX_phi

m = 139.57 MeV/c2

3

77775
where X 2 [0, 1]

(A.3)

Four-momentum vector for di-electron system:

vtx_diLepton_p4 = vtx_e0_p4 + vtx_e1_p4 (A.4)

Four-momentum vector for the K-p system:

vtx_Kpi_p4 = vtx_m0_p4 + vtx_m1_p4 (A.5)

Four-momentum vector for the B-meson

vtx_Bd_p4 = vtx_diLepton_p4 + vtx_Kpi_p4 (A.6)

3D position vector of the primary vertex (PV) from which the B-
meson is produced:

vtx_Bd_pv =

2

64
x = BeeKst_PV_minA0_x
y = BeeKst_PV_minA0_y
z = BeeKst_PV_minA0_z

3

75 (A.7)

The 3D error position vector of the primary vertex (PV) from which
the B-meson is produced:

vtx_Bd_pv_err =

2

64
x = BeeKst_PV_minA0_x_err
y = BeeKst_PV_minA0_y_err
z = BeeKst_PV_minA0_z_err

3

75 (A.8)

The 3D position vector of the B-meson decay vertex:

vtx_Bd_vtx =

2

64
x = BeeKst_x
y = BeeKst_y
z = BeeKst_z

3

75 (A.9)
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The 3D error position vector of the B-meson decay vertex:

vtx_Bd_vtx_err =

2

64
x = BeeKst_x_err
y = BeeKst_y_err
z = BeeKst_z_err

3

75 (A.10)

The 3D position vector of the two mesons decay vertex:

vtx_diMeson_vtx =

2

64
x = BeeKst_diMeson_vtx_x
y = BeeKst_diMeson_vtx_y
z = BeeKst_diMeson_vtx_z

3

75 (A.11)

The 3D error position vector of the two mesons decay vertex:

vtx_diMeson_vtx_err =

2

64
x = BeeKst_diMeson_vtx_x_err
y = BeeKst_diMeson_vtx_y_err
z = BeeKst_diMeson_vtx_z_err

3

75 (A.12)

The 3D position vector of the two-electron decay vertex:

vtx_diLepton_vtx =

2

64
x = BeeKst_diElectron_vtx_x
y = BeeKst_diElectron_vtx_y
z = BeeKst_diElectron_vtx_z

3

75 (A.13)

The 3D error position vector of the two-electron decay vertex:

vtx_diLepton_vtx_err =

2

64
x = BeeKst_diElectron_vtx_x_err
y = BeeKst_diElectron_vtx_y_err
z = BeeKst_diElectron_vtx_z_err

3

75

(A.14)

The displacement vector between the primary vertex (PV) and the
two meson vertex:

vtx_B2diMeson = vtx_diMeson_vtx � vtx_Bd_vtx (A.15)

The displacement vector between the primary vertex (PV) and the
two lepton vertex:

vtx_B2diLepton = vtx_diLepton_vtx � vtx_Bd_vtx (A.16)

The direction of the plane (normal vector) that contains the trajec-
tories of the two leptons and two mesons produced in the B meson
decay:

vtx_n1 = vtx_B2diLepton ⇥ vtx_B2diMeson (A.17)

The direction of the plane (normal vector) that contains the trajecto-
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ries of the two leptons and the K-p pair:

vtx_n1_pp = vtx_diLepton_p4 ⇥ vtx_Kpi_p4 (A.18)

The direction of the plane (normal vector) that contains the trajecto-
ries of the two leptons and is orthogonal to the plane described by
vtx_n1.:

vtx_n2_pee = vtx_n1 ⇥ vtx_diLepton_p4 (A.19)

The direction of the plane (normal vector) that contains the trajecto-
ries of the two electrons:

vtx_n2_ee = vtx_e0_p4 ⇥ vtx_e1_p4 (A.20)

The direction of the plane (normal vector) that contains the trajec-
tories of the K-p pair and is orthogonal to the plane described by
vtx_n1.:

vtx_n2_pmm = vtx_n1 ⇥ vtx_Kpi_p4) (A.21)

The direction of the plane (normal vector) that contains the trajecto-
ries of the K and p:

vtx_n2_mm = vtx_m0_K_p4 ⇥ vtx_m1_pi_p4 (A.22)

The direction (normal vector) that is orthogonal to both the plane
containing the trajectories of the two leptons and the plane de-
scribed by vtx_n1:

vtx_n3_pee = vtx_n2_pee ⇥ vtx_n1) (A.23)

The direction (normal vector) that is orthogonal to both the plane
containing the trajectories of the K-p pair and the plane described
by vtx_n1:

vtx_n3_pmm = vtx_n2_pmm ⇥ vtx_n1) (A.24)
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A.2 2GNN to 2GBDT

Figure A.1: Normalized features used in "2GNN to 2GBDT". The plotted features are all separated into Signal Region (SR),
Sideband1 (SB1), and Sideband2.
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GBDT1 GBDT2
Traning time 8min, 10.2sec 9min 20,4sec
task train train
learning_rate 0.05 0.05
num_leaves 73 190
colsample_bytree 0.856116 0.798722
subsample 0.849546 0.668812
bagging_freq 1 1
max_depth -1 -1
verbosity -1 -1
reg_alpha 0.000003 0.000001
reg_lambda 0.001103 0.000019
min_split_gain 0.0 0.0
zero_as_missing False False
max_bin 255 255
min_data_in_bin 3 3
random_state 42 42
device_type cpu cpu
num_classes 3 3
objective multiclass multiclass
metric multi_logloss multi_logloss
num_threads 42 42
min_sum_hessian_in_leaf 1.862499 2.497306
n_estimators 246 104

Table A.1: "GNN to GBDT"
Best values for the LightGBM
models

Figure A.2: LightGBM Testing Suite on "2GNN to 2GBDT"-GBDT1. Showing that GBDT1s training has converged.

Figure A.3: LightGBM Testing Suite on "2GNN to 2GBDT"-GBDT2. Showing that GBDT2s training has converged.
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Figure A.4: Sig(B0) vs. Sig(B0) Testing Suite on "2GNN to 2GBDT"-GBDT1 with density on log-scale showing good classifica-
tion.

Figure A.5: Sig(B0) vs. Sig(B0) Testing Suite on "2GNN to 2GBDT"-GBDT2 with density on log-scale showing good classifica-
tion.



b-physics and gradient boosted decision trees 113

Figure A.6: Resonant vs. Non-Resonant signal efficiency plots for both the q2
low and q2

high bin for both GBDTs in "2GNN to
2GBDT". The plot shows the resonant and non-resonant has similar performance.
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A.3 2GNN to 3GBDT

GBDT1 GBDT2 GBDT3
Training time 7min 18.5sec 5min 36.4sec 2min 32.4sec
task train train train
learning_rate 0.05 0.05 0.03
num_leaves 245 224 91
colsample_bytree 0.980572 0.802162 0.96863
subsample 0.663678 0.818206 0.50196
bagging_freq 1 1 1
max_depth -1 -1 -1
verbosity -1 -1 -1
reg_alpha 0.01227 0.000003 0.00224
reg_lambda 0.000014 0.000519 0.039626
min_split_gain 0.0 0.0 0.0
zero_as_missing False False False
max_bin 255 255 255
min_data_in_bin 3 3 3
random_state 42 42 42
device_type cpu cpu cpu
num_classes 1 1 1
objective binary binary binary
metric binary_logloss binary_logloss binary_logloss
num_threads 30 30 30
min_sum_hessian_in_leaf 5.93633 3.673439 0.040701
n_estimators 237 163 237

Table A.2: "2GNN to 3GBDT" best values for the LightGBM models.

Figure A.7: LightGBM Testing Suite on "2GNN to 3GBDT"-GBDT1. Showing that GBDT1s training has converged.

Figure A.8: LightGBM Testing Suite on "2GNN to 3GBDT"-GBDT2. Showing that GBDT2s training has converged.
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Figure A.9: LightGBM Testing Suite on "2GNN to 3GBDT"-GBDT3. Showing that GBDT2s training has converged.

Figure A.10: Signal vs. Background Testing Suite on "2GNN to 3GBDT"-GBDT1 test-set with an overall good classification perfor-
mance.
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Figure A.11: Signal vs. Background Testing Suite on "2GNN to 3GBDT"-GBDT2 test-set with an overall good classification perfor-
mance.

Figure A.12: Signal vs. Background Testing Suite on "2GNN to 3GBDT"-GBDT3 test-set with an overall good classification perfor-
mance in separating B0 from B0.
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Figure A.13: Signal vs. Background Testing Suite with "2GNN to 3GBDT"-GBDT1 on non-train SR, SB1.

Figure A.14: Signal vs. Background Testing Suite with "2GNN to 3GBDT"-GBDT2 on non-train SR, SB2.
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Figure A.15: Signal vs. Background Testing Suite with "2GNN to 3GBDT"-GBDT3 on non-train SR, SB2. This plot shows that
the "2GNN to 3GBDT" is not viable, since GBDT3 can not distinguish between B0 and B0. This is seen both in the plot and with
AUC < 0.5.

Figure A.16: Mass Shape Testing Suite for Signal on "2GNN to 3GBDT".
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Figure A.17: Mass Shape Testing Suite for background on "2GNN to 3GBDT".

Figure A.18: Mass Shape Testing Suite for m(ee) on "2GNN to 3GBDT".
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A.4 2GNN to 2GBDT w. Enriched MC Background

Figure A.19: Normalized features used in "Enriched 2GNN to 2GBDT". The plotted features are all separated into Signal Re-
gion SRMC, SB1data, SB2data, and BkgMC}
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GBDT1 GBDT2
Training time 12min 25.1sec 14min 7.6sec
task train train
learning_rate 0.05 0.05
num_leaves 114 131
colsample_bytree 0.914813 0.894935
subsample 0.738661 0.599724
bagging_freq 1 1
max_depth -1 -1
verbosity -1 -1
reg_alpha 0.000002 0.00013
reg_lambda 1.504215 0.000842
min_split_gain 0.0 0.0
zero_as_missing False False
max_bin 255 255
min_data_in_bin 3 3
random_state 42 42
device_type cpu cpu
num_classes 3 3
objective multiclass multiclass
metric multi_logloss multi_logloss
num_threads 30 30
min_sum_hessian_in_leaf 9.931649 9.198197
n_estimators 215 185

Table A.3: "Enriched 2GNN to 3GBDT" best values for the LightGBM models.

Figure A.20: LightGBM Testing Suite on "Enriched 2GNN to 2GBDT"-GBDT1. Showing that GBDT1s training has converged.

Figure A.21: LightGBM Testing Suite on "Enriched 2GNN to 2GBDT"-GBDT2. Showing that GBDT2s training has converged.
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Figure A.22: Signal vs. Background Testing Suite on "Enriched 2GNN to 2GBDT"-GBDT1 test-set with suboptimal signal effi-
ciency.

Figure A.23: Modified Signal vs. Background Testing Suite (MC vs SB1) on "Enriched 2GNN to 2GBDT"-
GBDT1. A good indication that the GBDT2 model does not see the difference in SB1data} and BkgMC} is
seen in the AUC score.
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Figure A.24: Signal vs. Background Testing Suite on "Enriched 2GNN to 2GBDT"-GBDT2 test-set with suboptimal signal effi-
ciency.

Figure A.25: Modified Signal vs. Background Testing Suite (MC vs SB2) on "Enriched 2GNN to 2GBDT"-
GBDT2. A good indication that the GBDT2 model does not see difference inSB2data} and BkgMC} is seen
in the AUC score.
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Figure A.26: Sig(B0) vs. Sig(B0) Testing Suite on "Enriched 2GNN to 2GBDT"-GBDT1 test-set with density on log-scale.

Figure A.27: Sig(B0) vs. Sig(B0) Testing Suite on "Enriched 2GNN to 2GBDT"-GBDT2 test-set with density on log-scale.
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Figure A.28: 20 of the highest scoring feature importances on "Enriched 2GNN to 2GBDT"-GBDT1 for both train- and test-set.
The rightmost subfigure: Permutation importance on separating SB1 and MC background. The worse the AUC score, the better
feature.

Figure A.29: 20 of the highest scoring feature importances on "Enriched 2GNN to 2GBDT"-GBDT1 for both train- and test-set.
The rightmost subfigure: Permutation importance on separating SB1 and MC background. The worse the AUC score, the better
feature.
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Figure A.30: Signal vs Background Testing Suite with "Enriched 2GNN to 2GBDT"-GBDT1 on non-train {SRMC [ SB1data [
BkgMC} with suboptimal signal efficiency.

Figure A.31: Signal vs Background Testing Suite with "Enriched 2GNN to 2GBDT"-GBDT2 on non-train {SRMC [ SB2data [
BkgMC} with suboptimal signal efficiency.
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Figure A.32: Mass Shape Testing Suite for Signal on "Enriched 2GNN to 2GBDT".

Figure A.33: Mass Shape Testing Suite for background on "Enriched 2GNN to 2GBDT".
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Figure A.34: Mass Shape Testing Suite for m(ee) on "Enriched 2GNN to 2GBDT". The sculpting in m(ee) is present or high cuts
in the GBDTs (see grey lines in top and bottom subfigure).
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A.5 m(B0
closer)-correlation

GBDT(SR) GBDT(SB1) GBDT(SB2)
Training Time 29min 41sec 1h 38min 48sec 38min 42sec

RMSE
31.098

95%CI [31.112, 31.085]
30.970

95%CI [30.983, 30.956]
23.340

95%CI [23.350, 23.330]
learning_rate 0.03 0.03 0.03
num_leaves 66 255 66
colsample_bytree 0.916221 0.65591 0.916221
subsample 0.590912 0.954889 0.590912
verbosity -1 -1 -1
random_state 42 42 42
device_type cpu cpu cpu
objective regression regression regression
metric rmse rmse rmse
num_threads 25 25 25
reg_alpha 0.000005 0.000001 0.000005
min_sum_hessian_in_leaf 0.005415 1.04371 0.005415
reg_lambda 0.000528 0.0 0.000528
n_estimators 10000 10000 10000

Table A.4: "m(B0
closer)-correlation" best values for the LightGBM models.

Figure A.35: Feature Importance for GBDT-regressor model on SR against m(B0
closer)
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Figure A.36: Feature Importance for GBDT-regressor model on SB1 against m(B0
closer)

Figure A.37: Feature Importance for GBDT-regressor model on SB2 against m(B0
closer)
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A.6 Full n-tuple Feature Search

Figure A.38: Features removed from iteration 1 of the full n-tuple feature search.

Figure A.39: Features removed from iteration 2 of the full n-tuple feature search.
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Figure A.40: Features removed from iteration 3 of the full n-tuple feature search.

Figure A.41: Features removed from iteration 4 of the full n-tuple feature search.
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Figure A.42: Features removed from iteration 5 of the full n-tuple feature search.

Figure A.43: Features removed from iteration 6 of the full n-tuple feature search.
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Figure A.44: LightGBM Testing Suite on "2GNN to 2GBDT full search"-GBDT1 test set for iteration 6 of the full n-tuple feature
search. Showing that GBDT1s training has converged.

Figure A.45: LightGBM Testing Suite on "2GNN to 2GBDT full search"-GBDT2 test-set for iteration 6 of the full n-tuple feature
search. Showing that GBDT2s training has converged.
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Figure A.46: Signal vs. Background Testing Suite on "2GNN to 2GBDT full search"-GBDT1 test-set for iteration 6 of the full n-
tuple feature search. The AUC and AP score shows that there are still some leaking features.

Figure A.47: Signal vs. Background Testing Suite on "2GNN to 2GBDT full search"-GBDT2 test-set for iteration 6 of the full n-
tuple feature search. The AUC and AP score shows that there are still some leaking features.
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Figure A.48: Sig(B0) vs. Sig(B0) Testing Suite on "2GNN to 2GBDT full search"-GBDT1 test-set with density on log-scale for
iteration 6 of the full n-tuple feature search.

Figure A.49: Sig(B0) vs. Sig(B0) Testing Suite on "2GNN to 2GBDT full search"-GBDT2 test-set with density on log-scale for
iteration 6 of the full n-tuple feature search.
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Figure A.50: 35 of the highest scoring feature importance’s on "2GNN to 2GBDT full search"-GBDT1 for both train- and test-set
for iteration 6 of the full n-tuple feature search.

Figure A.51: 35 of the highest scoring feature importance’s on "2GNN to 2GBDT full search"-GBDT2 for both train- and test-set
for iteration 6 of the full n-tuple feature search.
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A.7 2GNN to 2GBDT w Extra Features

Training Time 10min 4.119sec 8min 43.533sec
task train train
learning_rate 0.05 0.05
num_leaves 133 85
colsample_bytree 0.915007 0.715973
subsample 0.85014 0.805926
bagging_freq 1 1
max_depth -1 -1
verbosity -1 -1
reg_alpha 0.00026 0.000004
reg_lambda 3.801479 0.00002
min_split_gain 0.0 0.0
zero_as_missing False False
max_bin 255 255
min_data_in_bin 3 3
random_state 42 42
device_type cpu cpu
num_classes 3 3
objective multiclass multiclass
metric multi_logloss multi_logloss
num_threads 35 35
min_sum_hessian_in_leaf 2.637486 0.003614
n_estimators 235 234

Table A.5: "2GNN to 2GBDT w
extra features" best values for the
LightGBM models.

Figure A.52: LightGBM Testing Suite on "2GNN to 2GBDT w extra features"-GBDT1 test-set. Showing that GBDT1s training has
converged.

Figure A.53: LightGBM Testing Suite on "2GNN to 2GBDT w extra features"-GBDT2 test-set. Showing that GBDT2s training has
converged.
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Figure A.54: Signal vs Background Testing Suite on "2GNN to 2GBDT w extra features"-GBDT1 test-set which shows good classi-
fication performance overall.

Figure A.55: Signal vs Background Testing Suite on "2GNN to 2GBDT w extra features"-GBDT2 test-set which shows good classi-
fication performance overall.
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Figure A.56: Sig(B0) vs Sig(B0) Testing Suite on "2GNN to 2GBDT w extra features"-GBDT1 test-set with density on log-scale
which shows good classification performance on the different signal species.

Figure A.57: Sig(B0) vs Sig(B0) Testing Suite on "2GNN to 2GBDT w extra features"-GBDT2 test-set with density on log-scale
which shows good classification performance on the different signal species.
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Figure A.58: 20 of the highest scoring feature importances on "2GNN to 2GBDT w extra features"-GBDT1 for both train- and
test-set.

Figure A.59: 20 of the highest scoring feature importances on "2GNN to 2GBDT w extra features"-GBDT2 for both train- and
test-set.
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Figure A.60: Signal vs Background Testing Suite with "2GNN to 2GBDT w extra features"-GBDT1 on non-train SR, SB1 which
shows good classification performance overall when the global and local selection rules are applied.

Figure A.61: Signal vs Background Testing Suite with "2GNN to 2GBDT w extra features"-GBDT2 on non-train SR, SB2 which
shows good classification performance overall when the global and local selection rules are applied.
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Figure A.62: Sig(B0) vs Sig(B0) Testing Suite on "2GNN to 2GBDT w extra features"-GBDT1 with density on log-scale.

Figure A.63: Sig(B0) vs Sig(B0) Testing Suite on "2GNN to 2GBDT w extra features"-GBDT2 with density on log-scale.
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Figure A.64: Mass Shape Testing Suite for Signal on "2GNN to 2GBDT w extra features". Just as for the "2GNN to 2GBDT" ap-
proach: no distortion around the signal peak, however, the distortion increases as m(B0) increases and decreases around the peak.

Figure A.65: Mass Shape Testing Suite for background on "2GNN to 2GBDT w extra features". The distortion of the background
is close to the "2GNN to 2GBDT" approach meaning there i little to no sculpting in the background.
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Figure A.66: Mass Shape Testing Suite for m(ee) on "2GNN to 2GBDT w extra features". No significant distortion is seen in
m(ee) for any GBDT cuts.
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Figure A.67: Blinded Significance on B0
d q2

high MC signal with the "2GNN to 2GBDT w extra features".
The signal PDF shape parameters are fixed, and background PDF shape parameters are free. The Grid
used are M⇥M where M =[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95].

A.8 MLLH Fits

An example of the fits done with the binned MLLH-fit routine
before transitioning to the c2-fit routine.
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Figure A.68: MLLH test fit (sig+Bkg) on m(B0
d), q2

high period K data
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Figure A.69: Finding errors for the MLLH fit in Fig. (A.68) with bootstrapping.


