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Abstract

The interstellar medium is the birth place of stars and planets, and is thus of great interest.
Here the cold phase of the ISM called molecular clouds collapse into prestellar cores, which
in the end form the stars and planets. In the ISM small aggregates of heavier atoms exists col-
lected in either carbon, iron, silicate dominated dust grains. Dust is present in every phase of
the ISM and is of great importance in observations thought emission and absorption of light,
in astrochemistry where it acts as a catalyst for the creation of water and other molecules, and
in the formation and creation of planets in a protoplanetary disk. This happens through dust-
to-dust collisions where the dust can coagulate and grow in size until grains reach mm-sizes.
These pebbles are then collected in collective streaming instabilities in to planetesimals that
may grow further either though collisions or effective aerodynamically assisted pebble accre-
tion.

The dynamics and evolution of dust in protoplanetary disks has received massive attention
in the past decade, due to direct observations and the importance for understanding formation
o planets, comparatively the dynamics and evolution of dust in the earlier phases has received
much less attention. The goal of the thesis is to begin to understand how dust settles in a
prestellar core, to create more realistic initial conditions for dust in the protoplanetary disk
from numerical simulations of dust-gas interaction. A Larganian background model is used
for the prestellar core, in different configurations. I have investigated 12 cores with varying
mass ranging from 1 to 8M�, temperature ranging from 5 to 10K and radius ranging from
3000−7500AU. To handle the dust numerically in the cores, a set of numerical methods were
created to distribute the dust throughout the core and to couple the gas distribution described
in the Lagrangian mesh and the dust particles, whose movement is solved with a leapfrog in-
tegration scheme.

The settling of dust was found to be present for particles as small as 25µm, although it was
the smallest size tested. The velocities of the particles were also show to have an effect on the
particles, as the lower azimuthal velocities would result in more infall. Further more the dust-
to-gas ratio stops to increase further once the first Larson core form as the particles will couple
to the gas once inside. Coagulation becomes a prominent effects once inside the first Larson
core due to the increase in dust density, at least for particles around or smaller than 100µm. It
was found that if the dust particles are critically coupled to the core, then the dust-to-gas ratio
inside the proto-star can be quite high, and thus in turn have a high metalicity. Further more
the dust-to-gas ratio for the protoplanetary disk reach higher than the canonical dust-to-gas
ratio of 0.01. This shows that the dynamics of the core plays a role for both the disk and the
star, and further research into more complex simulations should be future priority.
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Introduction

Astronomers have for many millennia and across cultures looked out into the vast emptiness
of space, at first observing stars and planets. As technology improved the ability to observe
further away and in greater detail was becoming possible. Here scientists discovered that stars
were not alone but rather a medium was between them.

The Interstellar Medium or ISM for short, is the collective description for the material be-
tween the stars which includes but is not limited to Hydrogen, Helium, dust particles and
various molecules like CO, but also magnetic fields, from moving charged particles, and ra-
diation fields from stars. In other words, a mostly gaseous mass which is subject to radiative
and magnetic forces. The ISM was formed when the soup of ions formed in the Big Bang
cooled sufficiently, thus allowing atoms and molecules to form. However, the ISM is not filled
with remnants from ancient times, as stars form and die using old and birth to new material
([Schulz, 2012]). The ISM varies a lot in terms of its physical properties as the temperature
and number density various with orders of magnitude. There are 3 general phases of the ISM
with further sub-categorization. The cold ISM consistent of molecules and atomic gases with
temperatures below 100K. The warm medium consistent of mostly atomic and ionized hydro-
gen with temperature up to 104K. The hot medium which is characterized by being an ionized
shocked gas created from supernovas and stellar wind[Schulz, 2012], and can reach tempera-
tures up to 107K, coming from shocks from supernovas and stellar winds.

A sub-category of special interest in the cold ISM, is that of the cold molecular cloud. The
molecular cloud is the coldest and most dense region of the ISM with number densities over
1000cm−3, which is quite dense, and temperatures around 10-50K. Thus the molecular cloud
is a prime suspect for star formation. These low temperatures are obtained because the cloud
is in thermal balance between the heating from stars and cosmic rays, and being subsequently
cooled by interstellar dust which absorbs and scatters light. The sizes of molecular clouds
vary a lot ranging from 1 to 100pc where the larger ones are called giant molecular clouds.
The masses here naturally also varies by a great amount, ranging from 10 to 106 M� ([Schulz,
2012]). The shape of the molecular clouds is quite irregular, which also extends to the mass
distribution. These irregularities can cause fragmentation within the cloud, due to the jeans
instability given by the following:

λ j =

√
πc2

s

Gρ
(1.1)

M j =
π5/2

6
c3

s√
Gρ

(1.2)

Here λ j is called the jeans critical length, and M j is the critical jeans mass. Since both critical
parameters depend on the density, they will decrease as a local volume in the could becomes
denser, and as such it can collapse and fragment the cloud. However, observations carried out
the in recent years, thanks to the Herschel telescope, has shown that molecular clouds have
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CHAPTER 1. INTRODUCTION

a filament-like structure ([Arzoumanian et al., 2011, Palmeirim et al., 2013, Peretto et al.,
2012]). These complex structures indicate quite a dynamical system where material flows and
collect in bulk. Numerical work eq. [Nakamura and Li, 2008, Padoan et al., 2001] shows that
the filaments is a natural consequence of turbulence which can be induced by stellar feedback
on larger scales. As the filaments become more dense, the collapse due to the aforementioned
jeans instability and fragment the cloud. This fragmentation and their elongated shape give
rise to a new bound object, that of the prestellar core or dense cores in some literature. These
prestellar cores are observed to be created in bulk from in the filaments as shown in [Palmeirim
et al., 2013]. This has also been confirmed by numerical models eg. [Burkert and Hartmann,
2004]. An interesting aspect to this is that the cores are not separated from the filaments.
For it seems that there is an inflow from the filaments, which can feed material into the cores
themself. This was observed in [Kirk et al., 2013], which observed the Serpens South em-
bedded cluster. Here the researchers found that the filaments accrete around 130M�/yr from
the surrounding cloud medium, and they in turn accrete around 28M�/yr into the cluster of
prestellar cores.

The prestellar cores are the birth place of low mass stars, formed when the core collapses un-
der its own gravity. The cores are elongated along their host filament with temperatures near
10K throughout, albeit not constant ([Arzoumanian et al., 2011, Stahler and Palla, 2004c]).
The density profile of the cores can be challenging to measure since the normal tracer for
molecular clouds are optically thick for a dense core. Therefore other tracers are useful such
as NH3, CS or rare isotopes of CO ([Hartmann, 2008a]). Other techniques uses the absorption
and emission of dust though near-inferred extinction, mm to sub-mm dust emission or absorp-
tion against a bright background emission ([Bergin and Tafalla, 2007]). in a sub-mm survey
of cores it was found in [Ward-Thompson et al., 1994] that the density profile of cores are
flatten near the center, while the outer rim is described by a power-law, which fits well with
the theoretical Bonner-Ebert sphere discussed in chapter 2.

Stars are created from the gravitational collapse of an unstable prestellar core. If rotation is
present during this collapse, then a protoplanetary disk, or accretion disk is formed around the
protostar along the midplane of the rotational axis. The accretion disk transports material such
as dust and gas unto the surface of the protostar, due to transport of angular momentum. This
transport is caused by a difference in the keplarian angular velocity given by Ω = (GM/r3)1/2,
where G is the gravitational constant, M is the integrated mass at a radius r. The viscosity of
the disk will thus create a friction force between particles with different velocities. This fric-
tion will slow down material further by forcing it to drift outwards, while material further out
will increase their velocity and thus drift inwards. The dynamics of accretion disks have been
studied though numerical work eg. in [Birnstiel, T. et al., 2010]. It is in these protoplanetary
disk that planets are created.

The formation of planets are not fully understood, although it is generally understood that
dust particles play a vital role in their creations. Dust particles are aggregates made out of
various materials such as graphite, iron, silicone carbide etc.([Schulz, 2012]). Dust is of-
ten assumed consist of spherical particles, however this is far from the truth as dust particles
are mostly irregular shapes. These shapes come from the merger of dust called coagulation,
destruction from mass transfer, erossion/cratering and fragmentation ([Windmark, F. et al.,
2012]) which can form a variety of shapes. This is discussed in section 1.1. With coagula-
tion, dust can in theory grow to an infinite size and thus potentially grow, if rapid enough,
to a planet. However, fragmentation and particle bouncing can affect the growth rate quite
significantly. This is shown in figure 1.1 which is figure 8 from [Windmark, F. et al., 2012].
Here one can see that dust with sizes close to 1 cm will likely bounce off each other, which is
called the bouncing barrier or meter-size barrier, which is hard to pass. Furthermore, particles
in the meter size range will either erode or fragment, preventing growth from such interac-
tions. As presented in [Windmark, F. et al., 2012], the only way for meter-sized particles to
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Figure 1.1: Figure 8 borrowed from [Windmark, F. et al., 2012]. Here F is fragmentation, E is
erosion, MT is mass transfer, B is bouncing, and S is sticking. Here its quite clear that there
is a bounding barrier near 1 cm dust, which can prevent growth. Furthermore near grain sizes
of 1 meter there is a large region of erosion and fragmentation. This is the meter barrier, and
prevents larger dust particles to grow though interation of equally sizes particles.

growth larger is from mass transfer, which is where cratering occurs and some mass of the
smaller particle sticks to the dust grain and thus gives a net increase in size. If dust grains have
accumulated enough to be around the km-size, called a planetesimal then they can grow from
pebble accretion. pebble accretion is the idea that as a planetesimal moves though a medium
it can due to gravity collect smaller particles which then accurate unto the surface, which can
result in growth, and as such a potential planet ([Brouwers et al., 2018, Ormel et al., 2021])

When observing a galaxy or a patch in the ISM though the visible band, one will likely
observe dark patches in contrast to the potentially bright background. These patches are dust
absorbing and scattering the background light. This process is called extinction and can be
quite useful in observations since it can be linked to the column density of hydrogen though
an extinction law.

AV = 0.56NH +0.23 (1.3)

Where NH is the column density in units of 1021cm−2 ([Schulz, 2012]). In other words, dust
can through its scattering of photons be used by observers to map the hydrogen column den-
sities, and thus measure the amount of gas in eg. a cloud. Dust emits black body radiation
through absorbtion of photons, and remits them as infrared light. The extinction from dust
limits what we observe in our telescopes. Since dust tend to scatter blue light, which naturally
means that what we observe is more red.

Astrochemistry is quite interesting with respect to the ISM, since here astronomers use trac-
ers, various atoms and molecules, to measure parts of the ISM. In this case dust particles can
play an important role as they can function as a catalyst for various reactions. They do so by
absorbing atoms, ie. it clings to the surface of the dust grain, which can then collide/interact
with other molecules on the surface of the dust grain. This can happen though two mecha-
nism, the first being the Eley-Rideal mechanism, in which the atom clings to the grain and the
atom is then directly hit by another particle. This is shown below where an arbitrary atom X
is clinging to the dust, g, and X is then hit by another arbitrary atom Y.

X +Y : g→ X−Y : g→ XY +g

Master Thesis 3



CHAPTER 1. INTRODUCTION

This method is quite unlikely to occur as since the probability of directly hitting the stuck
atoms is not that big ([van Dishoeck, 1988]). Another way is that of the Langmuir-Hinshelwood
mechanism in which both atoms X and Y cling to the surface of the grain, and they can then
interact thought random walks on top of the surface given by:

X +Y : g→ Y : g : X → X−Y : g→ XY +g

Through these effects, dust can help create a larger abundance of molecules and can also help
with the creation of water [Tielens and Hagen, 1982]. Furthermore there is the possibility that
other molecules freeze out on the grain if the temperature is low enough. Here an example
could be CO freezing out and thus making it harder to use it for observations

As presented in this chapter, dust is important in all aspects of the ISM and star formation.
It is important for our understating of the universe, as it can be used to both aid and hinder
our observations. Although its is also quite important to understand the dynamics of the dust
within the different hierarchies of the ISM, as understanding the dust dynamics in the prestel-
lar core gives the initial conditions for the accretion disk, and by extension the creation of
planets.

1.1 Numerical Context

(a) (b)

Figure 1.2: a) Illustration showing the sampling idea. Here the curve is a continuous quantity,
eg. density, which is then sampled into the white circles on the arrow, with corresponding sam-
pled quantities represented by the small grey dots. b) Illustration of the spherically symmetric
mesh, where each cell is corresponds to a spherical shell.

In many fields such as biology, physics, chemistry etc., differential equation are used to a
great effect, as it may describe a variety of problems and properties. The partial differential
equation is especially useful as it can describe problems in multiple dimensions, eg. the flow
of water in two spatial coordinates and in time. However, the solutions to many differential
equations are hard to solve analytically, if solvable at all. Instead numerical methods have
been developed over many years to approximate the solutions to the problem. Solving a dif-
ferential equation numerically has become incredibly practical with the rise of the computer,
since it is now possible to solve many coupled systems of equations in a reasonable amount of
time and effort. There are a multitude of ways to develop a scheme that allows for a numerical
approximation to the system, including the Finite difference method, Finite volume method
and the Finite volume method. There do also exist methods that are outside or heavily modi-
fied versions of these like the Runge-Kutta method or the leapfrog method, the latter of which
is presented in subsection 3.4.1.

4 Master Thesis



1.2. STRUCTURE OF THESIS

The usage of these methods is normally referred to as discretising the problem, since in all of
these problems one generates a discrete set of data, referred to as a mesh or grid. This can be
thought of as a sampling of a continuous quantity in space, as illustrated in figure 1.2a. Here
the spacial or temporial discrete points are refered to as cells or bins, which can have a width
associated with them. This width describe the volume (if 3D) they govern. The transit from
one cell to another is called the interface which is shown in figure 1.2a, as the vertical black
lines between the white dots. The shape of the cells can by anything needed for the problem,
such as squares or triangles. In the case of a spherically symmetric problem, the cells can
represent spherical shell as illustrated in figure 1.2b

In order to distinguish these cells, the notation adapted in this thesis is ψ
i
n. Here the index

i refers to the current time step, hence i+1 is the next time step and i−1 is the previous time
step. This also goes for the spatial index n where its the spatial cells. The interfaces between
the cells are given a n±1/2 index, where n+1/2 is the interface between cells n and n+1

1.2 Structure of thesis

The structure is as follows:

• Chapter 2 presents how to solve the Bonnor-Ebert sphere for use in numerical work.

• Chapter 3 shows how to model the interaction of dust with gas through drag in eg. a
Bonnor-ebert sphere, where the dust is considered as macro particles.

• Chapter 4 discusses the usage of a background sphere model, together with algorithms
for mapping dust to numerical cells of the given background model.

• The findings of the report are presented, discussed and concluded in Chapter 5, 6 and 7.

Master Thesis 5
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2
Prestellar core

As mentioned in Chapter 1, the prestellar cores are have relativley homogenous centers and
are close to isothermal. This fits with the a theoretical prestellar core called the Bonnor-
Ebert sphere. In order to model a prestallar core, and its potential collapse, the Bonnor-Ebert
sphere is often adapted as it observations approximately ([Alves et al., 2001]), and it allows
the modeller to easily create cores of varying size, mass and temperature. The Bonnor-Ebert
sphere is assumed to be spherical, however, there is some tension as of observed cores tend to
be elongated along their filaments ([Arzoumanian et al., 2011]).

2.1 Solving a Bonnor-Ebert sphere

The Bonnar-ebert sphere is a isothermal sphere in hydrostatic equilibrium. To construct a set
of equation that describe this system we can start with the conservative Eulian fluid equations

∂ρ

∂ t
+∇ · (ρv) = 0 (2.1)

∂ρv
∂ t

+∇ · (ρv⊗v) =−∇P+ρa (2.2)

∂E
∂ t

+∇ · ([E +P]v) = ρv ·a (2.3)

Here ρ is the fluid density with a velocity v. The fluid can be affected by a preassure P and
have a total energy of E. The first equation is the mass conservation equation, the second is
the momentum conservation equation and the last is conservation of the total energy density
equal to the internal and kinetic energy density E = ρeint + 1/2ρ|v|2 . For the sphere to
be in hydrostaic equilibirum we assume a steady state and no flows (v = 0). Under these
assumptions only the momentum equation, ie equation (2.2), is non-zero.

∇P = ρa (2.4)

We assume that the acceleration is due to gravity given by the gravitational potential φ .

a =−∇φ (2.5)

∇
2
φ = 4πGρ (2.6)

We can now combine equation (2.4), (2.5) and (2.6) to obtain a equilibrium equation for a
sphere.

∇ ·
(

∇P
ρ

)
−4πGρ = 0 (2.7)

Assuming that the sphere is spherically symmetric and thus only depend on the radius, one
can obtain the following.

1
r2

d
dr

(
r2

ρ

dP
dr

)
+4πGρ = 0 (2.8)
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CHAPTER 2. PRESTELLAR CORE

As we assumed that the sphere is isothermal we use the relation P= c2
s ρ , where c2

s = kbT/(µmh),
to obtain an equation that is only depended on density and thus can be solved.

1
r2

d
dr

(
r2

ρ

dρ

dr

)
+

4πG
c2

s
ρ = 0 (2.9)

This equation describe a barocentric fluid, and to solve it we need a set of boundary conditions.

ρ(0) = ρc (2.10)

dρ

dr

∣∣∣∣
r=0

= 0 (2.11)

Here we define a Dirichlet boundary where the central density is equal to a value of ρc so we
ensure that ρ doesn’t go towards infinity as r goes to 0. A Neumann boundary condition is
also defined where the gradient at the center is 0. These boundary conditions were proposed
in [Bonnor, 1956].

As the system is a simple ODE, it will be a benefit to write it in dimensionless form. To
do this we need to define characteristic parameters. The benefit of this is that we can solve
the equation once, and then scale the solution with the parameters to obtain every possible
Bonner-Ebert sphere. In the system we have the constants of π , G, c2

s and ρc. The latter which
we defined our self. From these constants we can define a characteristic length.

rc =
cs√

4πGρc
(2.12)

The inclusion of 4π in this definition is to clean up the equation by removing dimensional
constants. We know define a dimensionless density and radius given in equations (2.13) and
(2.14)

x =
r
rc

(2.13)

y =
ρ

ρc
(2.14)

These can them be substituted into into equation (2.9) to obtain equation (2.15).

1
x2

d
dx

(
x2

y
dy
dx

)
+ y = 0 (2.15)

Here we define u = ln(y) to make the equation resemble a Lane-Emden equation.

1
x2

d
dx

(
x2 du

dx

)
+ eu = 0 (2.16)

We now further define z to obtain a set of first-order coupled differential equations.

z = x2 du
dx
⇔ du

dx
=

z
x2 (2.17)

1
x2

dz
dx

+ eu = 0⇔ dz
dx

=−x2eu (2.18)

The boundary conditions defined earlier can now be redefined for the new system of equations.

ln(y(0)) = ln
(

ρc

ρc

)
= u(0) = 0 (2.19)

dy
dx

∣∣∣∣
x=0

= eu(0) du
dx

∣∣∣∣
r=0

=
du
dx

∣∣∣∣
r=0

= 0 (2.20)

Figure 2.1 shows the solution to the set of coupled ODEs which was solved with a Runge-
Kutta method. Here we see that the sphere has a constant density in the center, and goes
roughly as r−2 further out.
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STABILITY OF A BONNER-EBERT SPHERE

Figure 2.1: Solution to the Lane-Emden equation. Here we see that the center of the Bonnor
emden sphere is constant while the outer parts goes as r−2 as shown with the red dotted line.

2.1.1 Stability of a Bonner-Ebert sphere

In [Bonnor, 1956] a stability criteria was given for the sphere. Here the outer pressure gradient
should be less than 0, such that pressure perturbations in the sphere would dampen, and not
cause a run away effect.

∂P0

∂ r0
< 0 (2.21)

To find a relation between what mass, temperature and radius is needed to create a stable BE
sphere, we firstly need to find an expression for the outer pressure we can solve. We start with
P0 = P(xo) = c2

s ρ(x0) = c2
s ρ0. Here we need an expression for the outer density which can be

obtained from the mass and substituting in the adimensional parameters.

M0 = 4πr3
c ρc

∫ x0

0
x2ydx = 4π

(
cs√

4πGρc

)3

ρcη(x0) =
c3

s√
G3ρo

√
y0

4π
η(x0) (2.22)

We can now isolate ρ0 and use it to express the outer pressure P0 as function of mass.

P0 =
c8

s

G3M2
0

(√
y0

4π
η(x0)

)2

=
c8

s

G3M2
0
ηη(x0)

2 (2.23)

The above equation shows that Po only depends on xo though the adimensional mass ηη , as
the outer mass is a known constant. With this we can find the critical pressure for when a
Bonnor-ebert sphere goes from stable to unstable, ie when ∂r0P0 = 0. From figure 2.2 we find,
with the help of a root finder, that the critical mass, radius, density and pressure which are
represented in table 2.1. With these values we can now create a useful relation between mass,
temperature and radius of the sphere. First we define the stable radius of the sphere.

x0 y0 ηη(x0) P(x0) =ηη(x0)
2

6.45 1/14.04 1.18 1.40

Table 2.1: Table over the critical values for a stable Bonner-Ebert sphere.

RBE = rcx0 =
cs√

4πGρc
x0 (2.24)
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CHAPTER 2. PRESTELLAR CORE

Figure 2.2: Figure of the outer pressure as a function of the dimensionless radius xo on the
left plot and the dimensionless density y0 on the right plot. The dotted red lines indicate the
placement of the critical values

By combining this with equation (2.22), we obtain an expression that couples our stable outer
values, temperature, mass and radius.

MBE =
c2

s

G
η(x0)

x0
RBE =

c2
s

G

√
4π

y0

ηη(x0)

x0
RBE = 2.434

c2
s

G
RBE (2.25)

We can rewrite this equation in a mass-radius ratio, in units of M�, AU and K.[
MBE

M�

][
RBE

AU

]−1

≈ 1
10581

[
T

10K

]
(2.26)

This means that a if the sphere with a temperature of 10K and a mass of 1M� then to be stable
it needs to have a radius of 10581 AU. To furthere visualize the runaway effect from the
pressure one can construct a pressure-volume diagram. A volume can be define quite easily
from the radius of the critically stable Bonner-Ebert sphere and using P0 = c2

s ρ0 and equation
(2.23).

V =
4
3

πR3
BE =

√
4π

3
GM0

c2
s

x0
√

y0

ηη(x0)
= ξ

GM0

c2
s

x0
√

y0

ηη(x0)
(2.27)

Thus the P-V diagram becomes figure 2.3. The P-V diagram in figure 2.3, shows the instability
given in equation (2.21). For here the gradient of the pressure is negative when going from
infinity to x0, located near the bent. As the volume becomes small enough the pressure can
then no longer increase to counter act the collapse, as seen with the decrease in pressure to
the left of x0. This causes the collapse of the sphere as gravity will begin to dominate over the
internal pressure in the cloud.

2.2 A collapsing Bonnar-Ebert sphere

In this section some short introductions to a presteallar core collapse are represented. How-
ever the mathematical nature of the core collapse will not be more in depth than a base level
introduction, to give perspective for what effect might have been left out by the sphere data
used in chapter 5 and discussed in chapter 4. This is mostly as the collapse of a sphere can
be quite complex and could well be a master thesis in itself. The focus of this thesis is the
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THE EFFECT OF GRAVITY

Figure 2.3: P-V plot where one can easily see the instability criteria, as the pressure stops to
rise after a certain amount of compression.

dust dynamics in a collpasing core, but it is still useful to have a basic understanding and per-
spective on different forces and processes that affects the gas. If however the reader is more
curious i highly recommend The Formation of Stars by Steven W. Stahler and Francesco Palla,
and Accretion Processes in Star Formation by Lee Hartmann as they give a great inside to the
theory and observation for the presented theory.

2.2.1 The effect of Gravity

Figure 2.4: The radial gas velocity in the early stages of a collapse.

If one naively considers a collapse of a Bonner-Ebert sphere, one can easily think that
that it will collapse like a singular core (ρ → ∞ as r→ 0) with an inside out collapse. This
is due to the free fall time is inversely proportional to the square root of the density and thus
is shorter near the center. However this is not the case as the Bonner Ebert sphere collapses
from the outside and in. As seen in figure 2.4, where the velocity of the gas increases furthere
out and then falls in. Here there is an higher initial infall of mass due to the constant density
near the center, these parts have the same free fall time, and will therefor hit the center at the
same time. That a Bonner-Ebert sphere collapses might at first seem unintuitive. However if
one compares the critical jeans mass given in equation (1.2), with the bonnor-ebert mass from
equation (2.22), it easily to see that there is a factor of ∼ 2.5 difference, if one assumes the
average uniform density in the jeans mass is the outer density of a Bonnor-Ebert sphere. This
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factor difference between the two likely comes from the difference in assumption in density,
and therefor one can argue that the instability/collapse of the core is due to the jeans instability
which affects larger scales.

2.2.2 Rotations effect and creation protoplanetary disks

Rotations is a physcial effect that causes the prestellar core to form a prestellar disk. This
effect can be studied in a simple simple case. If we assume a spherical symmetric cloud, and
it rotates as a solid body. Here we will have a specific angular momentum j = r× v and a
uniform angular velocity ω = vφ/r and a fixed central mass M, then if material falls into a
keplerian orbit we will get a radius of ([Hartmann, 2008b]).

R =
j2

GM
=

r4ω2 sin2(θ)

GM
(2.28)

Here θ is the angle from the rotation axis midpoint to the particle. Here we see that if θ equals
zero then we material will just fall into the core, as their angular momentum is non-existent,
if the angle is π/2 then the material will fall to an orbit at a given radius.

rc =
r4ω2

GM
(2.29)

Figure 2.5: Here is shown the streamlines that comes as a consequence of the rotating core.
Here particles move along the trajectories and collide in the mid plane, giving birth a proto-
plantary disk

This radius is called the centrifugal radius, which dictates the maximum radius that the
material will fall into to. If one take this one step further such that a particle moves along a
plane with an angle, φ , to the rotation midplane one can find streamlines and mass contours
for the collapse. The geometry of this is shown in figure 2.6. This is done in great detail in
both [Hartmann, 2008b] and [Stahler and Palla, 2004a], and only the results will be presented
here. They both find a relationship between the spherical radius r and the centrifugal radius.

r
rc

=
sin2(φ)cos(φ)

cos(φ)− cos(θ)
(2.30)

The spherical radius can be described in terms of a cylindrical radius ξ and the height z.

r =
√

ξ 2 + z2 (2.31)

z = r cos(θ) (2.32)
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RADIATIVE EFFECT

Using these equation together with equation (2.30), one can obtain the streamline for the
infall. These streamlines are plotted in figure 2.5. Here each line represent a different value
of φ . Here it is quite clear that material that starts with a small height fall in to the centrifugal
radius and material that starts with a larger height fall into the center. From the streamlines one
can see that material falling from +z collide with material coming from −z in the mid-plane.
This will give rise to the creation of the protoplanetary disk.

Figure 2.6: Figure is drawn after figure 10.16 in [Stahler and Palla, 2004b], such that the syntax
in used in this section matched with the illustration. here the orbital plane of the particle is
illustrated by the shaded area, with the angle φ with respect to the z-axis, while the particle
has an angle θ with repspect to the z-axis

Figure 2.7: This figure shows the temperature as a function of gas density for a presteallar core,
specifically run067 shown in table 5.1. Here the collapses happens when the temperature is
near constant and adiabatic process which dictates the first and second Larson core are the
slopes where temperature increases.

2.2.3 Radiative effect

Radiative transport is a field of physics that explain how energy, eg from the sun or a hot stove
is transfered though a medium such as earths atmosphere or a dense core. For a collapsing
core it is also quite relevant and important, as under a collapse the opacity of the core can
change drastically. When a bonnor-ebert sphere starts its collapse it will be a optically thick
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(low opacity) and isothermal. As the collapse undergoes most of the energy released from
the potential energy is radiated into the cosmos. At some point the density reaches around
10−14g cm−3 ([Vaytet and Haugbølle, 2017]), and the opacity increases trapping more energy.
After a bit the sphere becomes optically thick to its own radiation, trapping the energy within
it. This creates an increase in temperature, and thus creates a radioactive pressure which stops
the collapse. Here the sphere enters a new hydrostatic equilibrium called the first Larson core.

Mass accretes unto the core from an envelope that used to be the outer parts of the sphere.
This accretion will naturally increase the effect of gravity, and the core begins a adiabatic pro-
cess, which increase the temperature, to keep its equilibrium. Once the temperature reaches
2000K, the H2 molecules disassociate. This process is endothermic in nature, meaning it uses
energy to occur. This loss of energy will decrease the temperature increase over time meaning
that the equilibrium can no longer be satisfied, and a second collapse occurs which is also close
to isothermal [Vaytet and Haugbølle, 2017]. This collapse continues until the H2 molecules
have been almost completely dissociated, and thus enter a second hydrostatic equilibirum and
the temptureture begins to increase adiabticlly again. This is called the second Larson core,
also called a protostar. The core stays until fusion begins and the star is born.
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3
Dust dynamics and numerical methods

3.1 Choice of dust simulation approach

Generally, there are two approaches to simulating the interaction between dust and gas. The
multi-fluid approach and the Lagrangian approach (not to be confused with a Lagrangian
mesh).

1. The multi-fluid approach is where the dust particles are considered to act as a fluid.
This holds true if the dust particles are small enough to couple with the gas. With this
method one has to write out the fluid equations for the dust, and take into account its
interaction with the gas though drag. These will have a form close to equation (2.1),
(2.1) and (2.3), and has been done for a protostellar disk in [Birnstiel et al., 2010]. The
benefit of this approach is that there exist a plethora of methods and libraries for solving
hydrodynamics. This approach also scales quite nicely if one wants to include more
dust, as one just have to increase the floating point numbers per cell.

The biggest downside to this methods is, as mentioned, the particles need to be cou-
pled to the gas. This naturally puts a constraint on the grain size on a pr case basis.

2. In the Lagrangian approach one considers the dust particles as their own separate entity,
this can become quite computationally expensive as the problem size grows. One can
levitate this downside by considering Marco particles, which essentially are a "bag"
of dust that is considered one singular evolving unit. The benefit here is that one can
consider particles of larger stokes number (Section 3.3), and doesn’t need to ensure that
the particles decouple. However the downside, other than the computational expense, is
that its more programming intensive as there needs to be subroutines to map the particles
to the environment cells, distributing mass to each macro particle correctly etc.

There is nothing that makes one approach inherently better than the other. In this thesis the
Lagrangian approach was chosen. This was mostly done since what evolved into the entire
thesis was originally supposed to be a little testing program, before moving into large scale
simulations with the FORTRAN library DISPATCH.

3.2 Drag regimes regimes for dust

When dust particles move through a gaseous fluid, such as a molecular cloud, protoplanetary
disk or a prestellar core, they will experience a drag force opposite of its trajectory ([Armitage,
2007, Weidenschilling, 1977]).

FD =−1
2

Cdπs2
ρg|vdg|vdg (3.1)

Here πs2 is the cross section area of a spherical dust grain, ρg is the density of the gas, the rel-
ative velocity between dust and gas is vdg = vd−vg and CD which is the drag coefficient.The
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drag coefficient changes depending on drag regime the dust particle is in. There are 2 regimes
to consider, called the Epstein and Stokes Regime.

The coefficient of the Epstein regime is defined as

CD =
8
3

v
|vdg|

for s <
9
4

λm f p (3.2)

Here λm f p is the mean-free path of the gas and v =
√

8/πcs is called the thermal velocity
([Armitage, 2007]) . The mean free path is calculated from the number density of the gas and
the geometric cross section of a hydrogen molecule ([Birnstiel et al., 2010]).

λm f p =
1

σH2ng
(3.3)

Here the σH2 = 2 ·1015cm2 ([Birnstiel, T. et al., 2010]). By using µ = 2.42 one can find that
for this regime to hold for 1mm dust the gas density needs to be less than 1.8e-7. If this isn’t
the case, then one needs to use the Stokes regime instead. The Stokes regime is segmented
into 3 other regimes, depending on the Reynolds number.

Re =
2ρg|vdg| s

ν
=

2|vdg| s
νmol

(3.4)

Here s is the grain size and ν is the dynamic viscosity of the gas ([Weidenschilling, 1977])
and νmol = 0.5vλm f p is the gas molecular viscosity ([Birnstiel, T. et al., 2010]). The Reynolds
number describes if the flow is turbulent or Laminar. The drag coefficient are as follows
([Weidenschilling, 1977]).

CD =


24Re−1 for Re < 1

24Re−0.6 for 1 < Re < 800

4
9

for Re > 800

(3.5)

The transition form the Epstein regime to the Stokes regime is simply when the Epstein criteria
breaks.

3.2.1 Stopping times

The different regimes of drag from equation (3.5) means that a particle in two different regimes
feels 2 different forces and thus will be affected differently over different times. This can be
described by a characteristic time called the stopping time, which can be constructed by taking
the ratio between the momentum of the dust relative to the gas and the drag force of a particle
([Armitage, 2007, Weidenschilling, 1977]).

tstop =
|pdg|
FD

=
8
3

md |vdg|s
CDVdρg|vdg|2

=
8
3

ρss
ρgCD|vdg|

(3.6)

Vd = 4/3πs3 was used to get the stopping time in more usable terms. Here material density
of the dust ρs = 1.6g cm−3. By using the different drag coefficients form the two regimes,
explicit stopping times can be constructed.

tstop =



ρss
ρgv

for s <
9
4

λm f p

2
9

ρs s2

νmolρg
for Re≤ 1

20.6

9
s1.6 ρs

ν0.6
molρg|vdg|0.4

for Re ∈]1,800[

6
ρss
|vdg|ρg

for Re≥ 800

(3.7)
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3.3 Estimating a stokes number in a prestellar core

It is obvious from equation (3.7), that the stopping times for a dust particle depends on the
grain size. This naturally means that a dust size of 1mm couples to the gas on another timescale
than 1µm, and thus the timescale one considers dictates which particles will drift. The Stokes
number can be used here to indicate the coupling of a dust particle. Normally the stokes
number is taken as the stopping time over the dynamical timescale of the system.

St =
tstop

tdyn
(3.8)

The dynamical time scale is normally taken as the turn-over-eddy time also called the vortex
time, which is the case for a protostellar disk [Birnstiel et al., 2010]. However in a collapsing
prestellar core it would be more fitting to us the free-fall time of the system, as it indicate the
time for the gravitational sink to collect all the surround material.

tdyn = t f f =

√
3π

32Gρg
(3.9)

Using the defined stopping times from equation (3.7) one can obtain the stokes number for the
Epstien and Stokes regimes.

St = tstop

√
32Gρg

3π
=



√
32G
3πρg

ρss
v

for s <
9
4

λm f p

2
9

√
32G
3πρg

ρs s2

νmol
for Re≤ 1

20.6

9

√
32G
3π

s1.6 ρs

ν0.6
molρ

1/2
g |vdg|0.4

for Re ∈]1,800[√
384G
πρg

ρss
|vdg|

for Re≥ 800

(3.10)

For some context a small stokes number of eg. 1e-4 will over the timescale of a t f f act as
coupled to the gas, as the stopping time is much shorter. Inversely a larger stokes number of
eg. 5 will not couple couple that much, and will not stray from its path that much if any. The
dynamics becomes quite interesting when St ≈ 1. For here the particle will be affected enough
for its path to change, but not enough to couple to act as the gas. Dust particles will then, in
the case of a prestellar core, settle towards the center of the sphere.

The stokes number is affected by the the physical parameters of the environment. In the
case of the Epstein regime it will depends on the gas density, and the temperature though the
thermal velocity v. This means that doing a collapse where both the temperature and gas den-
sity will rise, the stokes number will fall and thus larger particles will begin to couple to the
gas.

St ∝
1√

T (r)ρg(r)
(3.11)

3.4 Solving the movement of dust under the affect of drag

To evolve the particles in time under the effects of drag, we consider newtons second law of
motion. Here we consider the perspective of a singular gas particle. We assume that only
gravity and drag act on the particle.

a =
Ftot

md
= g+

Fd

md

vdg

|vdg|
= g−

vdg

tstop
(3.12)
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Equation (3.12) can be written as a set of ODEs for the velocity and the spatial coordinates.

dxd

dt
= vd (3.13)

dvd

dt
= g−

vdg

tstop
(3.14)

The stopping time depends on time in a collapse, through quite a few parameters like gas
density. This means that equation (3.13) and equation (3.14) can’t be solved analytically. Here
the time derivatives are approximated with a first-order-accurate backwards finite difference
method.

xn+1 = xn +∆tvn+1
d (3.15)

vn+1
d −vn

d

∆t
= gn+1−An+1

d

[
vn+1

d −vg
n+1] (3.16)

To make the velocity scheme nicer to look, in terms of numerical notation, we define here A≡
t−1
stop, . Here one can see that the position of the particle can be calculated by first calculating

the next step for the velocity. This means that we just need to find an expression for the next
velocity step. To do this we define ∆vd = vn+1

d −vn
d .

∆vd

∆t
= gn+1−An+1

d

[
∆vd +vn

d−vn
g
]
⇔ (3.17)

∆vd =
∆t

1+∆tAn+1

(
gn+1−An+1 [vn

d−vn+1
g
])

(3.18)

We now insert this into our the definition for ∆vd , thus obtaining the update scheme for the
velocity.

vn+1
d = vn

d +
∆t

1+∆tAn+1

(
gn+1−An+1 [vn

d−vn+1
g
])

(3.19)

Equation (3.19) is dependent on future values of the environment. If the environment is inde-
pendent on the dust particles, then the environment can be evolved a step forward in time and
then one can update the particles. In chapter 4, we will consider if the enviorment comes from
a data set and thus comes in different time steps to the particles.

The choice of a backwards finite method for the time derivative, is largely from a stability
point of view. The backwards method is numerically stable for all time steps, meaning one
doens’t have to fear the simulation becoming numerically unstable [Heath, 2005]. The first-
order accuracy of the version used is not a big problem the choice of integrator discussed in
the next subsection, increases the accuracy of the integration to second order.

3.4.1 Leapfrog method

As the particles are affected by gravity they will have orbital motions. Due to this the sym-
plectic leaping frog (SLF) integration is chosen to evolve the particles. The benefit of the SLF
method is that i conserve the energy in an orbit to a good approximation ([Quinn et al., 1997,
Springel, 2005]). SLF works by using 2 operators. The kick (K) operator which updates the
velocity and the drift (D) opertor which updates the position. These operators are placed in a
KDK formation, where the kick is half a time step each.

K(∆t): vn+1 = vn +∆t a(xn) (3.20)

D(∆t): xn+1 = xn +∆t vn+1
n (3.21)

KDK: K(∆t/2)D(∆t)K(∆t/2) (3.22)
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Figure 3.1: Illustration of a leaping frog, KDK variant, integrating on an orbit. Here vi is the
current velocity to at time step i, vi+1/2 is the velocity at half a time step forward calculated
from a kick, vi is the velocity after a full time step, and is calculated from a second kick.

This is illustrated in figure 3.1. Here the arrows dictate the update of the velocity and spacial
coordinates. For the dust particles affected by drag as per equation (3.19) the full SLF scheme
becomes (future values are evaluated at t +∆t/2):

Kick: vn+ 1
2

d = vn
d +

∆t

2+∆tAn+ 1
2

(
gn+ 1

2 −An+ 1
2

[
vn

d−vn+ 1
2

g

])
(3.23)

Drift: xn+1 = xn +∆tvn+ 1
2

d (3.24)

Kick: vn+1
d = vn+ 1

2
d +

∆t
2+∆tAn+1

(
gn+1−An+1 [vn

d−vn+1
g
])

(3.25)

Comparing the energy conservation of the leapfrog integrator

Figure 3.2: The potential energy is blue, the kinetic energy is red and the total energy is
black. The left plot shows the relative error for the kinetic, gravitational and total energy of
the leaping frog integrator, while the left is for a standard Eulian integrator. The drop of the
Eulian integrator midway though is because the energy comes closer the the starting value,
however here it comes near 10−6 which is still larger than the leapfrog integrator

As mentioned in section 3.4.1 the SLF method is good at conserving energy, especially
for orbitals ([Quinn et al., 1997, Springel, 2005]). To compare this conservation of energy, we
compare the KDK method with a eulian update scheme seen in equation (3.19) and equation
(3.15). In both cases we initialize a system of a arbitrary object, referred to as planets, in a
circular orbit around a sun like star with a radius of 1 AU, naturally we do not consider drag
for this so A = 0. Both methods are elapsed for 1 year with a time stepping of 3156s ≈ 1hr.
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Figure 3.2 shows the relative error of the potential, kinetic and total energy for both integrators.
Here we see that the leaping frog integrator conserve energy better as the kinetic and potential
energy are of order 10−7 at worst, while for the Euler integrator it is of order 10−4. This is
even more transparent with the total energy as the leapfrog is of order 10−14 which is one
order of magnitude away from machine precision, while for the Euler its at 10−7 orders of
magnitude. We also see that even with keplarian velocity, both integrators gives an orbit that
is ever so slightly eplitical, as the energies have a bell trends. With this one can see that the
SLF methods is a good choice for integrating the particles.

3.5 Coagulation and Fragmentation

The presented dust dynamics builds on the dusts interaction with gas, though an aerodynamic
drag force. However dust can also interact with dust, and depending on the collusion it can
fragment into smaller pieces or the grains can merge, fully or partially, into larger grains.
These dynamics are quite important as larger particles can shatter into smaller pieces that will
coupled more to the gas, and thus halting the transport of mass. Inversely smaller dust grains
can growth to sizes where the coupling decrease and the mass can thus be transported more
effective. For these reasons one must consider coagulation and fragmentation to grasp the full
picture of the dynamics of dust. Sadly due to time constrains the implementation of coagu-
lation and fragmentation wasn’t implemented, so in this section the theory and discretization
will more so be discussed.

3.5.1 Coagulation

Coagulation describes when two dust particles collide with each other and combine into a
larger dust particle. To model this one uses the Smoluchowski equation, which describe how
particles coagulate upon impact ([Birnstiel, T. et al., 2010, Elimelech et al., 1995]). In contin-
uous form the equation is

∂n(mi,t)
∂ t

=
1
2

∫ i

0
K(mi−m j,m j)n(m j,t)n(mi−m j, t) dm j−n(mi,t)

∫
∞

0
k(mi, j)n(m j,t) dm j

(3.26)
Here the indexes i and j describe two different particles, where i is the one we want to find
the evolution of though interation with various j particles. n is describes the number density
of the particle, which is naturally defined as ρ/m. There first term on the RHS of the equation
describes the creations of particle i from the coagulation of particle j and k = i− j. The factor
of a half is to avoid double counting. The second term describe the removal of particle i
because it is used to create another particle though coagulation. If we have well defined grain
sizes then we can discretize equation (3.26) as a sum.

∂ni(t)
∂ t

=
1
2

i

∑
j=0

Kk, j n j(t) nk(t)−ni(t)
N

∑
j=0

Ki, j n j(t) (3.27)

The coagulation kernel is depended on the relative velocity between particles ∆u(i, j), their
effective cross section σ(i, j) = π(si + s j)

2, and the probability of sticking togheter pc ([Birn-
stiel, T. et al., 2010]).

K(i, j) = ∆u(i, j)σ(i, j)pc (3.28)

The sticking probability will be touched more upon in section 3.5.2, together with the frag-
mentation probability
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Podalak Algorithm

When two particles coagulate and we have predefined grain bins, there is the possibly that the
newly created grain will not match them. So to conserve mass the new particle is split into the
two closest bins. This is called the podalak algorithm ([Brauer et al., 2007]). Here one defines
a collective term for interation.

Gi j = Ki jn jn j (3.29)

Where K is the coagulation kernel, and n is the number density. This dictates the creation
of a new mass m = mi +m j which we assume doesn’t perfectly match a bin. The new mass
however is between the two bins of ma and mb where ma < mb. Now we split Gi j linearly into
the two existing grain bins.

Ga = εGi, j (3.30)

Gb = (1− ε)Gi, j (3.31)

Which conserves the number density of our particles as Ga +Gb = Gi, j. To enforce the con-
servation of mass we define

Gama +Gbmb = Gi, j(mi +m j) (3.32)

By inserting equation (3.30) and (3.31) into the above, we can obtain an expression for ε as a
function of the mass or grain size.

ε =
mb− (mi +m j)

mb−ma
=

a3
b− (a3

i +a3
j)

a3
b−a3

a
(3.33)

If mi +m j = mb then ε = 0 and all the mass should be put into the mb as per equation (3.31).
A feature of this method is that ε only depends on the predefined bins, which means that in
implementation one can define a look up table for grain interation. With this new scheme one
can modify the Smoluchowski equation.

∂ni(t)
∂ t

=
1
2

i

∑
j=0

Gk jγi jk−
N

∑
j=0

Gi j (3.34)

Where gamma is defined as

γi jk =


ε if i = a for interation between k and j
1− ε if i = bfor interation between k and j
0 else

(3.35)

3.5.2 Fragmentation

Fragmentation is when two particles collide and shatter into smaller pieces, this can be a
partial destruction or a complete destruction. This process is modelled in the same way as
coagulation except the kernel is different.

L(i, j) = ∆u(i, j)σ(i, j)p f (3.36)

Which then gives the following form of equation (3.27)

∂ni(t)
∂ t

=
1
2

i

∑
j=0

Lk, j n j(t) nk(t)F(i, j,k)−ni(t)
N

∑
j=0

Li, j n j(t) where k = i− j (3.37)

When two particles collide and causes fragmentation, the result is not necessarily create a
single particle that fits into the defined grain bins, akin to the coagulation. However fragmen-
tation doesn’t necessarily create a single particles, it will likely create many various sizes at
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once. This distribution is handled by the F(i, j,k) factor. The form of this distribution will
not be talk about in this thesis, as time didn’t permit much reading into the subject. However
[Geretshauser, R. J. et al., 2011, Windmark, F. et al., 2012], could provide some great insight
as they provide models for simulating fragmentation, erosion and mass transfer process, here
[Windmark, F. et al., 2012] focuses on a grid based approach for usage in disk models while
[Geretshauser, R. J. et al., 2011]focuses on a detailed grain to grain interaction. This also
extends to the probabilities of fragmentation and coagulation, here they are defined by the
velocities of the interacting grains and can account for the the various regimes in figure 1.1.

3.5.3 Estimating Coagulation from existing data of a discrete environment

Figure 3.3: Illustration of the Galerkin approximation with liner shape functions. Here we
have 3 discrete points located at i, i-1 and i+1. The dotted lines are each points individual
shape function.

As time didn’t permit the implementation and usage of disk growth effects wasn’t tested,
however a simpler approach to estimate when growth kicks in can be found. Here we follow
the appendix in [Birnstiel, T. et al., 2010] with equation (3.38).

ds
dt

=
ρd

ρs
∆u (3.38)

Where s is the dust grain size, ρd is the dust mass density, ρs is the solid internal density in a
dust grain, ∆u is the velocity difference given by

∆uBM =

√
16kbT

πm
(3.39)

∆uRD = |ur(m1)−ur(m2)| (3.40)

∆uT M =

cs
√

2αSt for St� 1

cs

√
2α

St
for St� 1

(3.41)

Which are taken from redBauere 2010. Here the equation (3.39) is the relative velocity for
Brownian motion for two similar sized particles. Equation (3.40) is the relative velocity for
radial motion and equation (3.41) is the relative velocity based on the α viscosity model. The
α model is used to parameterize the viscosity, and here α = 1e-4 which is taken as a lower
boundary as it should be higher.

Forward from here we are gonna consider the growth in eulian bins, ie. constant cell cen-
ters and width, and all quantaties of ρd and ∆u are calculated from these either directly from
the volume or by a mean estimation. This naturally introduces some errors into the method,
in terms of scale, however it should affect when process kicks in. If we assume that the dust
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density and relative velcity are constant over time then the solution to equation (3.38) becomes
trivially simple. However this might not be the case, and we might not know the exact relation
between a quantity and time. We therefore use a Galerkin approximation which is a way of
interpolating though so called shape functions.

ψ(t) =
N

∑
i=0

Ni(t)ψ̂i (3.42)

Here ψ̂ is the discrete point of some quantity and Ni is called the shape function. This shape
function dictates the order of interpolation. For this work a linear shape function is chosen.
This shape function is illustrated in figure 3.3 and is given by equation (3.43).

Ni(x) =



x− xi−1

xi− xi−1
xi−1 ≤ x≤ xi

xi+1− x
xi+1− xi

xi < x≤ xi+1

0 else

(3.43)

With this method one can simply write a physical quantity as a sum over discrete points con-
nected by a shape function. The physical quantity of ∆u can take different forms, and thus
depend of time depended variables in different way, to find a common equation from which
most combinations of ∆u can be calculated, we assume a the velocity can be decomposition
into 3 parts. Firstly the constants collected into C, the second part is the grain size dependen-
cies,if any, collected into ξ (s) and lastly the time dependent properties, which can be seen as
a function, Y (ψ(t)), of some physical quantity ψ . Here we assume that Y is only dependent
on a single physical property.

∆u =C ξ (s)Y (ψ(t)) (3.44)

Inserting this into equation (3.38), and separating the parts depending on size and time. Fur-
thermore integration limits of a starting time t0 and arbitrary time of t is inserted.∫ s

s0

1
ξ (s′)

ds′ =
C
ρs

∫ t

t0
ρd(t ′)Y (ψ(t ′))dt ′ (3.45)

For the rest of this derivations the short hand notation of t ′ = t is used. Here ρd and ψ can
be approximated with equation (3.42) such that the integral can be evaluated. However as
the chosen shape function is not well behaved over the time domain of [t0, t ′] as the equation
(3.43) is not a continuous function on this domain. However one can utilize that integrals can
be separated into an sum of integrals over a smaller sub domain. Here one just chooses to
separate the integration domain into parts between each discrete point, eg. from i−1 to i. For
the shape function is well behaved within these sub domains.∫ t

t0
ρd(t)Y (ψ(t))dt = ∑

k=1

∫ tk

tk−1

ρd(t)Y (ψ(t))dt (3.46)

We are now going to consider a small sub domain that lies in [tα , tβ ] where the edges of the
sub domain have a corresponding ρd and ψ . The shape functions for α and β simplify in this
domain.

Nα =
tβ − t
tβ − tα

∧ Nβ =
t− tα
tβ − tα

(3.47)

Equation (3.42) and (3.47) is then inserted into equation (3.46).∫ tα

tβ

[
Nα ρ̂d,α +Nβ ρ̂d,β

]
Y (Nα ψ̂α +Nβ ψ̂β )dt (3.48)

Master Thesis 23



CHAPTER 3. DUST DYNAMICS AND NUMERICAL METHODS

The expression of ψ and ρd can be cleaned up into a linear function by inserting the shape
functions of equation (3.47).

tβ − t
tβ − tα

ψ̂α +
t− tα
tβ − tα

ψ̂β =
ψ̂β − ψ̂α

tβ − tα
t +

ψ̂αtβ − tα ψ̂β

tβ − tα
= Aψ t +Bψ (3.49)

Here ψ is used for the purpose of generalization. The sub domain integral can now be written
more neatly. Aψ ,Bψ ,Aρ and Bρ are constants, and thus can be pulled out of the integral.∫ tα

tβ

[
Aρt +Bρ

]
Y (Aψ t−Bψ) dt = Aρ

∫ tβ

tα
t Y (Aψ t−Bψ) dt+Bρ

∫ tα

tβ
Y (Aψ t−Bψ) dt (3.50)

Now equation (3.45) can be written in its final general form.

∫ s

s0

1
ξ (s′)

ds′ =
C
ρs

N

∑
i=1

(
Aρ

∫ ti

ti−1

t Y (Aψ t +Bψ) dt +Bρ

∫ ti

ti−1

Y (Aψ t +Bψ) dt
)

(3.51)

Now schemes for coagulation can be found by decomposing equation (3.39), (3.40) and (3.41).
This is done in appendix A, together with a convergence test for when the physical quantities
becomes constant. For Brownian motion we get.

sBM(t) =

(
5

2π

√
12kb

ρ3
s

N

∑
i=1

Qi + s5/2
0

)2/5

(3.52)

Qi =
2
5

Aρ

A2
T

[
(AT t +BT )

5/2
]ti

ti−1
+

(
2
3

Bρ

AT
− 2

3
AρBT

A2
T

)[
(AT t +BT )

3/2
]ti

ti−1
(3.53)

For relative velocities in the radial motion we get.

sr(t) =
N

∑
i=1

{
AρAr

3ρs

[
t3]ti

ti−1
+

BrAρ +BρAr

2ρs

[
t2]ti

ti−1
+

BrBρ

ρs
[t]titi−1

}
+ s0 (3.54)

For α model turbulence we get.

sturb =



[√
α

2ρs

(
32Gkb

24µmp

)1/4 N

∑
i=1

Qi + s1/2
0

]2

for St ≤ 13
2

√
2α

ρ3
s

(
24k3

b
32Gµ3m3

p

)1/4 N

∑
i=1

Qi + s3/2
0

2/3

for St > 1

(3.55)

Qi =
2
5

Aρ

A2
Se

[
(ASet +BSe)

5/2
]ti

ti−1
+

(
2
3

Bρ

ASe
− 2

3
AρBSe

A2
Se

)[
(ASet +BSe)

3/2
]ti

ti−1
(3.56)

Here the variable Se is given a collected physical quantity given by equation (3.57).

Se =

ρ
−1
g T 1/2 for St ≤ 1

ρ
1/2
g T 3/2 for St > 1

(3.57)

This quantity was defined as handling both the interpolation of gas density and temperature
becomes quite a mess, and way to complex.
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4
Dust dynamics in a background model

Figure 4.1: Simple illustration of a Lagrangian mesh. Here the white dots are representing the
cell centers, and the vertical black bars are the interfaces/edges of the cells. Here we can see
that the cells have moved as time integrates.

The effects of radiation and rotation on a prestellar core can be quite important as presented in
Section 2.2. Unfortunately they are quite computationally expensive to simulate, and can also
be hard to implement which would be outside the scope of this thesis. In order to have a real-
istic collapse of the presteallar core a background model is chosen. This background model is
taken from [Vaytet and Haugbølle, 2017]. This article creates a data base for a 1D spherically
symmetric, radative collapse of prestellar cores at different mass, radius and temperature for
different times.

The data are allocated in 4096 cells for a varying amount of snapshots that depends on the
formation of the second Larson core. Here interpolation is used to "fill" the space between
sphere cells. For all variables linear interpolation is used except for the mass which is inter-
polated linearly in its cubic root. This is due to us knowing that the mass in the center of the
sphere goes M = ρV 3

∝ r3 as the density is constant, and thus we know that it is linear in the
cubic root. The benefit of the having data is that each interpolation scheme can be constructed
when starting the program.

The data from [Vaytet and Haugbølle, 2017] used a Lagrangian mesh meaning that its cells
location and width is not constant, but does in fact change over time. This is illustrated in
figure 4.1. This choice of mesh needs a correction which is discussed in section 4.2.

The disadvantage of this approach is that it introduces truncation errors from the choice of
interpolation, furthermore the data only contains discrete time stepping values form which the
time stepping can be rather large.

As seen in section 3.4, the integration scheme for the particles depends on future variables.
To obtain these variables for the background model one just has to estimate the placement
of the particle position at ∆t = 1/2, with the usage of the current velocity. In other words
ri+1/2 = ri+0.5∆tvi

r. This radius can then be used to interpolate the data from the background
model.
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4.1 Integrating between snapshots

As the background model comes in snapshots, an approach is needed to handle when to switch
from eg. snapshot 41 to 42. The approach also needs to take into account the varying time
stepping that each particle can have. So in short the approach should synchronise the particles
at a given time and then switch the snapshot. Here there are 2 obvious choices, the first is
to evolve the particles from snapshot time to snapshot time. The second is to synchronise
that particles at the midpoint in time between two snapshots. One can argue that the latter
approach is more accurate as we should be close to the next snapshot at the midpoint. This
method however was not used, as it was only thought of when it was too late to change in
terms of the deadline of the thesis. So for the rest of this thesis the first approach is used.

In order to synchronise the particles to a given time one can assume that each particle has
a individual time step for their integration, usually calculated by a courant condition. Furthere
more one can assume that the snapshots are given in a set of data tn = [t0, t1, t2, ..., tN−1], where
N is the total amount of snapshot. Here a new time stepping criteria can be constructed such
that each particle will arrive at the correct snapshot time.

∆tp = min(∆tcourant , ti+1− tp) (4.1)

Here tp is the time that the particles is located at and the time index i is the current snapshot
and ti+1 is the time of the next snapshot. So if ∆tcourant is larger than the remaining time of the
snapshot, then we use the remaining time. This is illustrated in figure 4.2

Figure 4.2: This illustration shows 3 particles starting at snapshot i, and are then integrated for
snapshot i+1. Here the solid black lines before the last particle white particle indicate the the
courant time step, the black lines between the solid black dot, the white dot indicate ti+1− tp,
and the grey transparent arrows indicate where the particles would have jumped if the kept
using their courant condition.

4.2 Particle interpolation in a Lagrangian mesh

Because the background model uses a Lagrangian mesh, the movement of the cells needs to be
accounted for when integrating between snapshots, as the cells also would have moved with
their velocity. Here one could do some time interpolation of the cells, and then input the time
of the particle, this however would be quite hard and time consuming to do in code as the
interpolation schemes used for the physical parameters needs to be updated which can cost in
terms of performance. Another approach would be a transformation from the perspective of
the particle to the perspective of the cells. This approach is chosen as it one would just need
to translate the particles and thus the already existing interpolation schemes can be utilized
without chance.

To construct the translation scheme we consider the linear interpolation used between two
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4.2. PARTICLE INTERPOLATION IN A LAGRANGIAN MESH

Figure 4.3: Simple illustration that shows the cells ’a’ and ’b’ where a macro particle is located
at ’p’

cells a and b, with a particle p between their centers, as illustrated in figure 4.3. A Galerkin
approximation is used, like subsection 3.5.3, for the interpolation. The interpolation part from
cell a for particle p between cell a and b is given as the following.

f =
rp,c− ra

rb− ra
=

rp,c− ra

∆r
(4.2)

This is the interpolation fraction for the rest frame of the cells, and the position of the particle
here is given by rp,c. The interpolation fraction for particles rest frame can be written as.

f =
rp− (ra +Dtva)

rb +Dtvb− (ra +Dtva)
=

rp− ra−Dt va

∆r+Dt ∆v
(4.3)

Here the positions of the cell centers are moved forward with their current snapshot velocity
at a time Dt = tp− ti, where tp is the time of the particle and ti is the current snapshot time,
the notation Dt is to not confuse the time step used in this scheme for the integration time step
of ∆t. The two interpolations fractions should be the same in both rest frames, or else the it
wouldn’t be the same interpolation.

rp,c− ra

∆r
=

rp− ra−Dt va

∆r+Dt ∆v

This can now be solved for the particles position in the rest frame of the cells.

rp,c = ra +
∆r

∆r+Dt∆v
(rp− ra−Dt va) = β rp +(1−β )ra−βDtva (4.4)

Here β can be seen as a squish or stretch factor of the cells, and when it has the value of 1, ie
the cells move at the same velocity, then the scheme collapses to a Galilean transformation.

rp,c = rp−βDtva for β = 1 (4.5)

This scheme was found from the interpolation with respect to cell a, this could also have been
with respect to the cell b where the fraction would be given as 1− f .

rp,c = β rp +(1−β )rb−βDtvb (4.6)

There are 2 edge cases at cell 0 and cell N as they have no neighbors at respectively the left
and right size. The solution for this is rather simple as one can place ghost cells as neighbors
that have the same velocity as cell 0 or cell N. This means that β = 1 thus at the boundaries a
Galilean transformation is used. This then gives the final correction scheme.

rp,cell =


rp−Dt va for cell N
rp−Dt vb for cell 0
β rp +(1−β )ra−β Dt va else

(4.7)

Here the choice of using equation (4.4) for all other points comes from that it was easier to
implement in code with the written setup.
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4.3 Depositing particles into radial cells

A useful ability to have when processing the data from the dust simulations is to map particles
to the radial cells from [Vaytet and Haugbølle, 2017], as this allows us to calculate the dust to
gas ratio of the system. The most naive way to do this is to just check if a particle is within
a cell and then just count that as completely belonging to that cell. While this works it a bit
deceiving, as the macro particles would have a volume, and thus aren’t just points in space.
This means that if we have macro particle located ever so closely to the interface then some
of its volume would be in both cell i and cell j, and thus it would be wrong to say that the
particle belongs to either i or j. Instead one could use a PIC scheme represented in [Ruyten,

Figure 4.4: Illustration for the depositing of particle mass. Here we consider the two cell
centers i and j with a particle p between them. Here we have the fraction f going to the point
j and the fraction 1− f going to the point i as it is the particle p is closer to the center i

1993]. Here we assume that the volume of the particles fills the space between cell i and j
called dr = r j− ri. We can then here define a fraction which describe how much space goes
to cell i and cell j.

f =
rp− ri

dr
where r j > rp > ri (4.8)

Here we see that if f = 0 then rp = ri, this means that we need to deposit all of rp into cell
i, while if f = 1 then we need to deposit all into cell j. To better visualize this splitting of
volume, we can look at figure 4.4. Where the particle p placed between cell i and j, here the
grey shaded area shows the area covered by 1− f , which means this is the fraction volume
belonging to cell i and the white area belongs to cell j.

With this we can now split the mass or any property of the particle between two cells, simply
my multiplying the corresponding volume fraction with the property we want to split.

mi = mi +(1− f ) mp (4.9)

m j = m j + f mp (4.10)

(4.11)

There is a boundary case for this we are in the first or last cell and we are on the side of the
center that has no neighbor. Here we simply say that if we are placed at these boundaries then
the entire particle belongs to the first or last cell.

4.4 Distribution dust in a background model

In the ISM there exist various types of dust, and they are given by a distribution of the form
below

dn
d lns

= g(s) (4.12)

This describes the number of particles n there is at a given grain size s. The grain size is
discretized into bins, such that is is easier to model on a computer. This is illustrated on figure
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(a) (b)

Figure 4.5: a) Illustration showing how one can discreize the dust distribution function into,
grain size bins. Here a focus on a center cell j, with is t wo neighbors j− 1 and j+ 1. The
edges between j and its neighbors are called l and u, while the lowest bin edge and highest bin
edge of the first and last bins are called U and L b) Here is shown the dusts spacial distribution
given by equation (4.20) for a single cell. Here the black vertical lines are the cells interfaces,
the green dots are the particles and the red dot is the center of the cell.

4.5a. The number density can be obtained for a chosen range going from L to U of dust by
integrating equation (4.12)

n =
∫ U

L

dn
d lns

d lns (4.13)

As the grains are distributed into bins one can obtain the number density in each bin by inte-
grating over the bins width.

ni =
∫ u

l

dn
d lns

d lns (4.14)

Here l and u is the lower and upper limit of the cell, so u− l is the cell width. The number
density can be linked to the dust mass density by integrating over the grain sizes. Here we take
that the mass is given by md = 4π/3 s3

ρs, where ρs is again the material dust density take to
be 1.6gcm−3. With this the dust mass density for a single grain bin is.

ρd, j =
∫ u

l
md

dn
d lns

d lns =
4
3

πρs

∫ u

l
s3 dn

d lns
d lns (4.15)

=
4π

3
ρs

∫ u

l

dn
d lns

s2 da =
4π

3
ρs

∫ u

l
g(s) s2 da (4.16)

This can also be done for a total dust mass density by going over the limits of L and U . From
the total and the bin wise density a fraction of how much density or mass each bin has can be
constructed.

f j =
ρd, j

ρd,total
=

∫ u
l g(a) a2 da∫U
L g(a) a2 da

(4.17)

Here all the constant are the same, and thus only the integrals are left. The amount of mass
the macro particles needs to be allocated a given dust to gas ratio, can found by multiplying
the fraction from equation (4.17) with the total dust mass in each of the presteallar cores cells.
This is given by the mass of the gas in each cell, and a chosen inital dust to gas ratio.

∆md,i = D∆mg,i (4.18)

∆mi, j = ∆md,i f j = D∆mg,i f j (4.19)

Here the index i refer to the radial cells of the presteallar core while the j index refer to which
grain bin we need the mass for.
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The flaw with this scheme is that ∆mg,i is located at the center of the radial cell, so the particles
need to start in the center. This is not that practical as distributing dust throughout a radial cell,
which can help smooth the simulation output. To overcome this we are gonna subdivide the
cell into smaller volumes that each particles initially governs. Here the particles are placed
eqidistantly in a cell.

rm = re +

(
k− 1

2

)
dr
N

(4.20)

Here re is the lowest interface of a radial cell. N is the total number of particles in each cell
meaning that the total amount of particles is N · #cells. k is the particle index going in the
given cell from [1,N] and dr is the width of the radial cell. This radial distribution is shown in
figure 4.5b. If there is only 1 particle pr cell,N = 1, then it will be place in the center of the
cells given by re +dr/2. These new sub cells all have a volume given by

Vm =
4
3

π

[(
rm +

dr
2N

)3

−
(

rm−
dr
2N

)3
]

(4.21)

It is assumed that each sub cell is also a spherical shell. The mass in each sub cell can be
found by taking the gas density in the center of the sub cell and multipying it with the volume.
This then give a new mass scheme

pm = D f jρg(rm)Vm (4.22)

(a) (b)

Figure 4.6: a) shows the the dust to gas ratio before and after correction from equation (4.23),
here it is obvious that the inner most cells gain more mass from the dust to the displacement
of particles. After the correction the dust to gas ratio is constant through out the cells. b)
The red line is dust-to-gas ratio for the inner most cell from a, while the black line is the
error between each iterations, here one can see that after 80 iterations the change is less than
machine precision.

The problems with the scheme is not over, for while the new mass scheme more correctly
assigns mass to cell distributed particles, it does however have a problem with how particle
mass is mapped to the radial cells described in section 4.3. Here there is a net gain to the left
of mass to the left, as can be seen on with the black line in figure 4.6a. This can however be
fixed rather easily by using a pseudo integrative method. Since we know how much dust mass
there should be in every radial cell, we can modify the deposition method described in section
4.3.

pm← (1− f )D
Mn

req

Mn
curr

pm + f D
Mn+1

req

Mn+1
curr

pm for rp > rn (4.23)
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4.5. COURANT CONDITION FOR THE PARTICLES BASED ON THE BACKGROUND MODEL

This here is an update scheme to a single particles mass based on what the mass should be in
cell n Mn

req and cell n+ 1, the current mass of a cell Mn
curr and cell n+ 1 and the split factor

into each cell with f which is assumed to be the same as discussed later in section 4.3. The
correction done by this iterative method can be seen in figure 4.6a as the flat red line. A
convergence figure can be seen on figure 4.6b, where it is one can see that the scheme fully
converges to near machine precision at around 80 iterations.

MRN dustribution

A common choice of dust distribution is the MRN distribution ([Mathis et al., 1977]).

dn
d lna

= Na−2.5 = g(x) (4.24)

Equation (4.17) can now be calculated, so the distribution can be used in code.∫ u

l
a−2.5 a2 da =

∫ u

l
a−0.5 da = 2

√
u−2

√
l (4.25)

The dust size fraction can now be constructed by inserting equation (4.25) into equation (4.17)
with the correct boundaries.

f j =

√
u−
√

l√
U−
√

L
(4.26)

For the rest of the report it is assumed that the MRN distribution is used, unless stated other-
wise.

4.5 Courant condition for the particles based on the background
model

The particles inside of a presteallar core or any environment can experience different accelera-
tions, move through cells of varying size etc. It is therefore important to take these parameters
into account when doing a numerical integration as there is a risk of eg. moving over important
cells. This can be done by calculating multiple courant conditions based on the characteristic
parameters of the system. For background model 4 courant conditions where found to govern
most situations. The first is based on the width of the cells the particle is currently located at,
and the acceleration that it fells.

∆tdr =Cdr

√
2 dr
ap

where Cdr ∈ ]0,1] (4.27)

Here the value of Cdr ∈ [0,1] is used to parameters this courant condition, such that the im-
portance of the criteria can be adjusted. Each criteria have their own parameter. This criteria
ensures that a particle cant jump or skip an entire cell.

The second criteria is based on the backgrounds models snapshot times, in otherwords the
spheres own time stepping.

∆tsnap =Csnap (ti+1− ti) where Csnap ∈ ]0,1] (4.28)

This one here ensures that the particle can’t move further than a single snapshot and thus skip-
ping and important part of its interactions.

The third conditons is basde on the keplarian velocity of the particle and the is radial posi-
tion.

∆tkep =Ckep
rp

vkep(rp)
=Ckep

√
r3

p

G Msphere(rp)
where Ckep ∈ ]0,1] (4.29)

Master Thesis 31



CHAPTER 4. DUST DYNAMICS IN A BACKGROUND MODEL

This criteria ensures that the particle can’t take a time step such that i has moved around a or-
bital. There is missing a factor of 2π , but these are somewhat rolled into the courant constant.

The last criteria is based on gravity through the free-fall time.

∆t f f =C f f t f f (rp) =C f f

√
3π

32Gρsphere(rp)
where C f f ∈ ]0,1] (4.30)

This criteria stops the particle from taking a step larger than the free-fall time, which is the
dynamcial timescale of the system. The time step for the particle then becomes the minimal
courant time step.

∆tcourant = min(∆tdr, ∆tsnap, ∆tkep, ∆t f f ) (4.31)

This can then be inserted into equation (4.1), to get the final time step that the particle can take
for the integration.

∆tp = min(∆tdr, ∆tsnap, ∆tkep, ∆t f f , ti+1− tp) (4.32)

4.6 Velocity distribution as a function of grain size

When a filament collapses into a presteallar core, there will be movement of gas and dust.
However not every dust grain is handled equally due to drag forces, so it is expected that
smaller grains that are more coupled will move at the same velocities as the gas. To create a
model for the initial conditions for dust particle velocity one consider the Zoom-in simulation
from [Kuffmeier et al., 2017]. In this article the author looks at the formation of a protoplan-
etary disk from giant molecular clouds (GMC). In here there are 2 figures of interest, that
of figure 4 and 8. These figure show respectively the density profile of their cores and their
specific angular momentum.

(a) Figure 4 from [Kuffmeier et al., 2017] (b) Figure 8 from [Kuffmeier et al., 2017]

Figure 4.7: The figures are are respectively figure 4 and figure 8 from [Kuffmeier et al., 2017].
The black dotted lines going from the x-axis to the y-axis are added in post as helping lines to
read the data used in section 4.6

Firstly a power law is fitted to figure 4.7a for the outer regions where the density goes as
ρg ∝ r−2. For the fit the following values was read off the graph 1e3AU the density is roughly
2e-17gcm−3.

ρg = ρ0(r/AU)−2⇒ ρ0 = 2 ·10−17 ·106 g
cm3 = 2∗10−11 g

cm3 (4.33)

From the fitted density a mass for can be constructed as a function of radius.

M(r) = 4π

∫ r

0
r2

ρg(r)dr = 4πρ0AU2r (4.34)
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4.6. VELOCITY DISTRIBUTION AS A FUNCTION OF GRAIN SIZE

From this the keplarian velcoity for the core can be estimated.

vkep =

√
GM(r)

r
=
√

4πGρ0AU2 ≈ 613m/s (4.35)

This will be used a bit later to parameters the azimuthal velocity from the specific angular
momentum.

To estimate the azimuthal velocity from the angular momentum we assume that r and vφ

is orthogonal thus j = rvφ . From figure 8 in [Kuffmeier et al., 2017] one can read that

j(100AU)≈ 2 ·1018 cm2

s−1

j(1e4AU)≈ 2 ·1020 cm2

s−1

Which resaullts in the following azimuthal velocities.

j = rvφ ⇔ vφ =
j
r
≈

{
13.36ms−1 for r = 100AU
13.36ms−1 for r = 1e4AU

(4.36)

This means that the azimuthal velocity is constant throughout the outer parts of the sphere for
coupled particles. To apply this to other spheres we parameterize the azimuthal velocity with
the keplarian velocity.

vφ

vkep
=

13.36ms−1

613ms−1 ≈ 2.2%⇔ vφ = 2.2%vkep (4.37)

This means that coupled particles should be initialized with 2.2% of their keplarian velocities.
To expand this to potentially lesser coupled particles one can consider finding the critically
coupled grain sizes for the ISM through the larson relations.

n = 2000cm−3 1pc
L
⇔ nL = 2000cm−3 pc (4.38)

Here nL is the column density. The number of gas particles, and by extention the gas mass,
inside the cross section of a dust particles can then be found, in other words how many gas
particles are in the way of the dust particles as it move in a straight line.

Ngas = AsnL = 2000cm−31pc πs2⇒ (4.39)

Mgas = Ngasµmp = 2000cm−31pc πs2
µmp (4.40)

The mass of a dust particle is

Ms = ρs
4
3

πs3

For a dust particle to come to a stop, it needs to hit an amount of gas equal to its own mass.
So by setting the dust mass and the gas mass equal, a critically coupled particle size can be
found.

Ms = ρs
4
3

πs3 = 2000cm−31pc πs2
µmp = Mg⇔ (4.41)

s =
3
4

2000cm−3µmp

ρs
1pc≈ 117µm (4.42)

Here µ = 2.42 and ρs = 1.6g/cm3. This means that a grain size of 117µm is on the border of
coupling in the phases before the prestellar core formation. Because of this we choose that a
size of ∼ 117µm gets a inital azimuthal velocity equal to its keplerian velocity. Now that an
upper and lower bound on the velocity have been found, one can use linear interpolation to get
a distribution of initial azimuths velocity.
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CHAPTER 4. DUST DYNAMICS IN A BACKGROUND MODEL

(a) The region below the evaporation line of 0.65 AU for the last snapshot

(b) The region between the evaporation line of 0.65 AU to 100AU for the last snapshot

(c) The region between 100 AU and 1000 AU for the last snapshot

(d) The region over 1000 AU to end of sphere for the last snapshot

Figure 4.8: Panels (a) - (d) show the dust content in different regions of the protostellar core for run067
taken at the last snapshot, in which the protostar has been born. The x-axis is the initial keplarian
velocity percentage. (a) corresponds to the reservoir of material that is used for very early star. (b) is
the region where the protolanetary disk is formed. (c) is the region of corresponding to the early mass
reservoir accreted during the embedded Class 0 while (d) corresponds the out skirts of the prestellar
core, which are low in base and large in volume. Material in this region is only accreted between Class
1 and 2 after ∼ 500 kyr, where the star is becoming a main sequence star
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5
Results

As discussed in chapter 4 a background model from [Vaytet and Haugbølle, 2017] is used for
the prestellar core. Here multiple initial conditions were chosen of varying size, mass and
temperature. They are listed in table 5.1. The dust was initialized with a MRN distribution
and a keplarian velocity, given by the equation below, in the azimuthal direction with zero
radial velocity.

vinitial =C

√
GM(rp)

rp
where C ∈ [0,1] (5.1)

The value of the parameter C changes depending on two configurations used in this work,
which are presented in section 5.1 and 6.2. The number of dust particles in both configu-
rations were taken to be 4 of the same size pr radial cell of the prestellar core as in section
4.4. This was done to help smooth the final simulation data. The initial dust-to-gas ratio was
initialized for each radial cell to be D = 0.01, resulting in a flat initial dust-to-gas ratio. Only
the Epstein regimes was implemented as it breaks for particles over 1mm in size near the sec-
ond Larson core, which is located behind the dust evaporation line, given by a temperature of
1550K.

The results presented in this chapter is mostly focused on a full presentation of run067, with
some cherry picked plots from the other runs which have some unique features. This is done
to stop repetition of data and features, as some of the runs are quite similar in features, with
the exception of maybe looking a little more super or sub linear, as an example. However all
the plots for configuration 1 and configuration 2 are available in Appendix B, together with a
coagulation due to Brownian motion for run067.

5.1 Configuration 1: Constant initial Kepler velocity

In this dust configuration the constant C in equation (5.1) is set to a constant for all dust sizes.
This varies from 0 to 0.9, so from no azimuthal velocity to 90% of the keplarian velocity. The
dust size were defined to be 25µm, 63µm, 158µm, 398µm and 1mm as to have a great variety
of stokes numbers and due to recent obeservations ([Pagani et al., 2010]). The various plots
in figure 4.8 are segmented into 4 regions of the prestellar disk. The first region, refered to as
region 0, is from the center to the evaporation line, 0.67AU for run067. This region is where
the protostar is formed. The dust-to-gas, from now on refered to as the ratio, for this region is
plotted in figure 4.8a.

Here the total ratio is is in the left plot. The lower the azimuthal velocity gives a larger ratio,
peaking at 0.22 for 0% keplarian velocity, meaning there is a equivalent of 22% of the gas
mass in this region as dust, and at lowest becomes 0.08 for 90%. The left figure is the ratio for
the individual grain sizes. Here it is quite clear that the 1mm dust is the most abundant grain
size within this region, with a ratio ∼ 40 times larger than its initial value. As the grain size
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Run
RBE
[AU ]

MBE
[M�]

TBE
[K]

tcollapse

[kyr]
snapshots
[count]

revap(tcollapse)

[AU ]
ε = MBE/Msphere

006 3000 1 10 16 789 0.70 0.28
009 3000 1 25 28 745 0.89 0.71
038 5000 1 10 42 803 0.66 0.47
067 7500 1 10 113 813 0.65 0.71
068 7500 2 5 41 898 0.68 0.18
069 7500 2 10 47 803 0.70 0.35
070 7500 2 15 58 792 0.76 0.53
071 7500 2 20 79 766 0.87 0.71
072 7500 2 25 146 763 0.92 0.89
074 7500 4 10 28 791 0.80 0.18
080 7500 6 10 21 782 0.88 0.12
086 7500 8 10 18 774 0.96 0.09

Table 5.1: Table over the different spheres used from [Vaytet and Haugbølle, 2017]. Here
the value of ε is the fraction between the mass of the data sphere compared to the critical BE
mass, it should have for the given temperature an radius. If its smaller than 1, then there is less
pressure support, and the collapse is very dominated by gravity.

go down we can also see the ratio go down, eg. for 25µm which only reaches ∼ 1.3 times its
initial value. Interestingly enough, the 398µm and 1mm dust have almost the same gain for
90%. In this region all dust particles of 158µm and under have a flat ratio trend, while the
larger particles drops off at higher velocities.

The second region, refered to as region 1, is where the protoplanetary disk might be present
going from the evaporation line to 100AU , and is plotted in figure 4.8b. The left plot shows a
different structure where the peak is located near 30% with a value of 0.029 and 0% is the third
lowest point with a value. The minimum here is still given by 90% with a value of ∼ 0.022.
The right plot shows that the 1mm dust particles is quite low as its abundance is in the range
of the 63µm dust. The abundances in this region is quite lower than the inner most one. Here
the maximum abundance is around 5 times the initial values for 398µm. The particles lower
than or equal to 158µm have not changed much, eg. as 158µm dust have gone from around
4.3 as a maximum to a 3.66. Interestingly only the 1mm dust have the higher abundance of
dust in the 20−60% range, as the others are still decreasing with increased velocity.

The third region,refered to as region 2, is a potential envelope to the protoplanetary disk lo-
cated at 100AU to 1000AU and is shown in figure 4.8c. This region very much follows the
same structure as the previously presented region. Here, on the left plot, the maximum is also
near the 30% however 50% is close as the ratio is around 0.0128. The minimum is still 90%
which has a ratio of 0.01 which is the initial dust-to-gas ratio used for the experiment. The
right hand side plot is rather interesting here as the 1mm dust is under its initial value with
50% being close to 1. Here the most abundant grain size is 158µm which hovers around a
maximum of 2.17 for 0% and a minimum of 1.67. 398µm for all velocities dropped below
158µm and have even for 90% dropped below the initial value. The smallest grains have
barely changed from the previous region.

The final region is the rest of the system, ie. everything over 1000 AU which is shown in
figure 4.8d. This regions is refered to as region 3. Here the trend in the left plot is reversed as
the largest ratio is located at 90% with a value of 0.008 and the smallest located at 0% with a
value of 0.004. Both the maximum and minimum is under the initial ratio of 0.01. The right
plot is interesting as all dust grains are under their initial value with 1mm dust being emptied
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the most with an abundance of 0.2 for 0%. The most abundant grain is the 25µm with an
abundance of 0.92 for all velocities. Interestingly dust 1mm with 90% is near in abundance to
25 and 63µm.

5.1.1 Outer region of Run069

Figure 5.1 shows region 3 for run069.There is an interesting feature which it also shares with
run006. Here the ratio on the right plot increases as the velocity increases like run067. How-
ever when the velocity reaches 90%, there is quite a a quite a drop to 0.0093 which is close
between the values of 30% and 50%. This is mimicked on the right plot by all grains although
at varying degrees. except 25µm. Here the effect is largest for 1mm and becomes less and less
potent as the grain size decreases.

Figure 5.1: The dust-to-gas ratio as a function of the initial keplarian velocity percentage for
the outskirts of run069. In this region we have a large volume and low gas mass. The left plot
is the total dust-to-gas ratio, while the right plot is the grain specific dust-to-gas ratio. This
region is what will eventually be accreted during the transition from Class 1 to Class 2, when
the star transitions to a main sequence star.

5.2 Configuration 2: Velocity distribution given by grain size

In this configuration the value of C is determined by the scheme found in 4.6. To recap,
a velocity distribution was found where the smallest particle has C = 2.2% and the largest
particle has C = 100%. The critically coupled grain size for a molecular cloud was found to
be around 117µm, and for this simulation it was chosen to be 100µm. The value of C for
the grains in between are calculated from linear interpolation between the two. The remaining
grain sizes are 36µm, 50µm and 71µm. The same regions defined in section 6.2 are used here.
All the regions are shown in figure 5.2a, where the size specific abundances are shown for the
last snapshot.

Here one can see that for region 0, the largest particle have the most infall, despite having
the larger velocity. The abundances then go down seemingly linearly with grain sizes here
after. The 100µm dust have an abundance of around 2.50 times the initial value, and the
smallest grain, 25µm has a abundance of a bit over 1.25. Regions 1 shows a nearly identical
trends, except there is a drop off in abundance for the larger grain sizes, as 100µm is not
around 2.25, while 25µm is nearly identical. In region 2, we see a different trends as 71µm
and 100µm are nearly identical in abundance, hovering around 1.60. The almost linear trends
continues for grain sizes under 71µm and we again see a very little difference for the 25µm
dust. Region 3 is different from the others as all grain sizes have abundances lower than their
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(a) Dust-to-gas ratio for a velocity distribution (b) Example of Brownian motion

Figure 5.2: a) The dust-to-gas ratio for run067 with a velocity distribution based on grain size.
Here the maximum size is 100µm. The 4 defined regions are represented by their own lines.
b) The coagulation due to brownian motion for configuration 2, in region 0. The growth due
to Brownian motion is next to zero for the entirety of the collapse for the given grain sizes

initial values. Further more here the 100µm dust has the lowest abundance, which hovers
around 0.75, with 71µm close by hovering a bit lower 0.75

(a) The dust-to-gas ratio over time (b) The dust mass over time

Figure 5.3: The shaped area in both plots shows the formation of the first Larson core. (a) The-
dust-to-gas ratio various regions in the prestellar core as a function of time till the formation
of the second Larson core. The first being for the region that will become the reservoir for the
protostar which goes from the 0 to revap. The second region going from revap to 100 AU is the
region where the protoplaneary disk is formed, and is this important for planet formation. The
third region is what will accrete unto the embedded Class 0 star. This region goes from 100
AU to 1000 AU. The last region is that of the our edge of the core which will accrete unto the
star doing the its transition to the main sqeuence. (b) shows the same as (a) but with the dust
mass instead of the dust to gas ratio.

5.2.1 Dust-to-gas ratio as a function of time

Figure 5.3a shows the ratio for 100µm as a function of time for the various regions, while
5.3b show the same but for dust mass. However the regions defined by the evaporation line,
also changes with time,starting at 0 when there is no line, to 0.65AU for the last snapshot.
The shaded area outlines the a rough beginning of the first adiabatic phase of the first Larson
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core for run067 and starts around when there is 1kyr left. Figure 5.3a shows the ratio in the
region 3 decreases over time, while the others increase. Further more it seems that the ratio
for region 1 and 2 seems to drop off after or near the adiabatic phase. Further more one can
see that region under the evaporation line comes into being when there is roughly 0.01kyr
left. Further more the ratio seems to become constant a short time after the adiabatic process
begins. These features are mimiced by the dust mass shown in figure 5.3b. Although here its a
bit more apparent that when we introduce a new region. Here we there is only a drop in mass
for region 2 and 3.

(a) Region 0 (b) Region 1

(c) Region 2 (d) Region 3

Figure 5.4: Panels (a) - (d) shows the the growth of various grain sizes due to radial coagu-
lation for 4 different regions. The start of the shaded area indicates the formation of the first
Larson core, and its end (if any) dictates when the temperature increases past the evaporation
line given by a temperature of 1550 K. (a) corresponds to the reservoir that will accrete unto
the very early star. (b) corresponds the to region in which the protoplanetary disk would be
formed in the case of prestellar core rotation. (c) is the region that will accrete unto the em-
bedded Class 0 star while (d) is the outskirts of the prestellar core where the mass is low, and
the volume is large. These will accrete unto the star doing its transition to becoming a main
sequence star

5.2.2 Coagulation estimation

Coagulation can be estimated from the schemes found in section 3.5.3 for similar sized parti-
cles. Here schemes for Brownian, radial and turbulent motions where found. However only
Brownian and radial will be presented. This is because of an uncertainty that the turbulence
scheme was done entirely correctly both in implementation and derivation, and due to time
constrains it was opted from a proper analysis. Figure 5.4a shows the estimated growth due to
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coagulation for the various dust sizes from configuration 2, in region 0. The start of the shaded
area, indicates the formation of for the first Larson core, and if it ends then the temperature is
over the 1550K goes over the evaporation line. In this figure its quite clear that the coagulation
due to radial effects come into effect after the creation of the first Larson core. The numbers
here are to a gain of 105 might be bloated due to the region approach described in section 3.5.3.

The growth due to coagulation is also present in the region 1 to a lesser extend as the gain
is around 3 seen in figure 5.4b. For the region between region 2 and region 3, there is little to
no gain as the highest is for region 2 is roughly 1.025 times the original size. Also in these
regions it seems to start growing from the start of the simulation. For Brownian motion there
isn’t any change any where in the sphere, as we can see an example of in figure 5.2b

5.3 Dust-to-gas ratio as a function of sphere parameters

Figure 5.5 shows the dust-to-gas ratio over the prestellar cores physical properties of mass,
initial temperature and initial core radius for configuration 2. Here the core only 1 property
varies pr plot, so if the mass changes then the temperature and radius is the same.

Figure 5.5a shows normalized ratio for varying mass is shown for region 0. Here there is
a clear trend that the lower mass cores result in the most gain, however it seemingly converge
around 4M� and flatten quite out to a ratio around 1. Figure 5.5b shows the ratio in region 3.
Here a mass of around 1M� seems to give a large drop in the ratio while the rest of the masses
seemingly have a close to flat/linear trend with little to no variation. The other regions are
presented here as they have little to no change in terms of form from the inner most region.

Figure 5.5c shows how the dust-to-gas ratio in region 0 changes with changes size of the
prestellar core. There is a increase in the ratio as the pretellar core radius increases. Figure
5.5d shows the same but for region 3. Here its the same as for the mass, where the smaller
radius has the most ratio, while the larger ones have decreased quite a bit. Again the regions
between the inner and out most regions are the same structure as the inner most.

Figure 5.5e shows region 0 with varying temperature. Here we see a steady increase as tem-
peratures increase, and then a more drastic increase going from 20K to 25K. Figure 5.5f shows
region 3 with varying temperatures. Here we see a trend similar to mass and radius, where
the smallest value, have the largest increase. However this is not the case for 100µm, which
seems to is lower for 5K that for 10K.
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5.3. DUST-TO-GAS RATIO AS A FUNCTION OF SPHERE PARAMETERS

(a) Dust-to-gas over core mass (b) Dust-to-gas over core mass

(c) Dust-to-gas over initial core radius (d) Dust-to-gas over initial core radius

(e) Dust-to-gas over initial core temperature (f) Dust-to-gas over initial core temperature

Figure 5.5: Panels (a), (c) and (e) shows the dust to gas ratio as a function of varying core
parameters for various grain sizes. These are all in the region from the center to the evaporation
line (1550 K) for their last snapshot. This region will accrete unto the star doing the embedded
class 0 phase. (b), (d) and (f) shows the same but for the outskirts of the prestellar core going
from 1000 AU to the end of the sphere. This region is what will accrete unto the star as it
begins its transition into the main sequence. (a) is the dust-to-gas ratio as a function of the
initial core mass for the inner region while (b) shows the same but for the outskirts. (c) shows
the dust-to-gas ratio for the inner region as a function of initial core radius, while d shows the
same but for the outskirts of the sphere. (e) shows the ratio for the inner region for varying
initial core temperatures while (f) shows the same but for the outskirts of the sphere.
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6
Discussion

During the preceding chapters the theory, numerical framework, the background fluid models
have been presented. Furthermore in chapter 5 the results for how dust settles in a prestellar
core both with varying initial velocities, as a function of time and as a function of prestellar
core properties. I will now process with discussing and interpret my results.

6.1 Configuration 1

When looking at figure 4.8 one can clearly see that the lower the azimuthal velocity the larger
increase in dust-to-gas ratio is. This is expected, since the friction force first has to deplete the
azimuthal velocity before the dust grains can settle into the center. Furthermore the particles
need to not couple hard to the gas. This is likely the reason why the 1mm dust is the most
effective at settling in the grain set, as its stokes numbers in the center is around 1.8 and in the
the outer most radial cell is around 3. The particles smaller than this are more coupled to the
dust which naturally limits their settling as they adapt faster to the gas.

If the velocity of the dust is high enough while being decoupled from the gas, we can risk
the loss of mass, as the core collapses to quickly. This is what we observe in figure 5.1 with
the bend around 70% to 90% where 1mm dust has a stokes number around 0.5. If we correct
extend region 3 to be everything outside and not just yup to end of the sphere we get figure 6.1,
which like 4.8d with no bend. However the stokes number is for 1mm dust in run069 is lower
than in run run067 where we don’t see the bend. The reason for this is likely the difference in
pressure support, as run067 has a higher ε value.

Figure 6.1: Both plots are for outskirts and outside the core of run069 going from 1000 .
This region is what will eventually accrete unto the star as it enters the main sequence. The
left plot is the total dust-to-gas ratio as a function of the initial keplarian velocity percentage,
ie. the constant C in equation (5.1). While the right plot shows the same but for the specific
grain sizes, where the dust-to-gas ratio as been normalized with its initial value. This figure is
companion plot to figure 5.1, as we here have accounted for the mass lost doing the collapse.
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The ratio in figure 4.8a is quite large, as 0% has a value of 0.22. This implies that the
metalicity of the protostar is equally high, as an equal of 22% of the gas mass lies in "metals",
eg. graphite compared to the solar metallicty of 0.0134. This high metalicity would have
some heavy effects on the opacity of the star, which can have some unforeseen consequences.
Naturally we have rather large particles in high bulk in this simulation, but recent observations
indicate that they might not be unrealistic ([Pagani et al., 2010]). These large metalicity are
also present for the other velocities as the lowest for this region is 0.08 which around 8 times
larger than the solar metalicity.

Another aspect of figure 4.8 is that we can see that small dust grain do not settle efficiently to
the center of the prestellar core, and their partial dust-to-gas ratio is therefore not enhanced.
For 25µm have roughly the same gain of material in all regions except region 3. This implies
that if have particles near the nm then we would likely have no gain at all in the system

The region 1 for run067 which can contain a protoplanetary disk shows an increase of gain,
although not as high as the star region. However it is still a total gain of roughly 2-3 times the
initial. This shows that the disk might have a dist to gas ratio that is higher than the canonical
value of 0.01, given the particles are larger or near 25µm. Further more if we want to maxi-
mize the dust to gas ratio for the disk, we need to have a velocity in the 50% range. This might
also have some implications for a rotating core, as the dust would then be dragged along the
rotational axis, which would reduce the transformation of the azimuthal velocities into radial
velocities.

6.2 Configuration 2

Configuration 2 shows what one would expect from the plots in section 5.1, as eg. figure 5.4a
is essentially just sampled sampled data for a grain size as a velocity in figure 4.8a. However
the coagulation results are quite interesting for here one can clearly see eg. in figure 5.4a, that
comes into effect after the formation. This seems to happens because as the dust density also
increases, likely do to particles are more coupled in the center of the core than further out, and
as such when the core is formed, movement of dust is is slowed within the core while it side
the core, particles still move less coupled, and thus the dust accumulates more. Brownian mo-
tion is not shown to be of much concern for the particles used in the simulation. This however
is likely a boundary from the sizes for if the particles where smaller eg. in nm size, then Brow-
nian motion would likely be have a bigger effect. The plots in figure 5.3 are quite interesting,

Figure 6.2: Figure here illustrates the size reduced stokes number for the center of the core as
a function of time till the creation of the second Larson core. The drop around 1 kyr indicates
the formation of the fist Larson core.
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6.3. VARYING CORE PARAMETERS

as it is quite clear that that when the core begins its first adiabatic phase, the particles will stop
their movement as they couple strongly to the gas. This coupling seems to happen because
the density and temperature in the first Larson cores increases by several magnitudes, which
the Epstein regime is inversely proportional to the square root of the these parameters. This
is exemplified in figure 6.2, which shows the size reduced stokes number at the center cell of
all cores. Here there is the drop comes from the increase doing the adiabatic phase. What
this means is that after the initial drop, we need a grain size of roughly 104cm for the stokes
number order of unity. This means that all grain sizes, even the 1mm from configuration 1
couples at this point. In figure 5.3a the drop in ratio right before the adiabatic phase for the
evaporation region and the up to 100 AU region. For region 2, its seems to be because of a
lesser infall of material from outer regions as region 3 empties out. However the decrease in
for region 1, is rather curious, for the drop here implies either that the gas mass is increasing
after this point in time, or dust mass is lost. The latter doesn’t seems to be the case there is
no drop at this point in the mass for figure 5.3b, and when looking at the mass change over
time for the dust and gas, the dust seems to gain more for a period, and then the gas takes over.
The reason for this could be a numerical remedy, since the particles are not run in concurrently.

An interesting consequence of the dust coupling of the adiabatic phase, is that the coagu-
lation of dust begins as discussed, at this time. This means that small dust particles, trades
their radial dynamics for coagulation and the two doesn’t exist at the same time (Although for
1mm dust it begins before hand as seen in appendix figure B.14. However this coagulation
might not give rise to any additional radial settling as we need to create quite large particles to
settle as shown in figure 6.2.

6.3 Varying core parameters

In section 6.2 we discussed that dust grain couple tightly to the gas when the core begins
its first adiabatic phase which happens roughly at 1kyr before the formation of the second
Larson core. As each core as a different collapse time as seen in table 5.1 there is a bias in
dust settling for cores with a long collapse time. This is exemplified by figure 5.5e which
shows an increase in the ratio for larger temperatures, which essentially means more settling
for more coupled dust. However the largest temperature also has the longest collapse time as
it has more pressure support, so this seems to indicate that the collapse time is at least more
important than the coupling. However this might only be if the particles are coupled enough,
for in figure 5.5f which is for the region 3, the lowest temperature of 5K for 100µm has the
lowest ratio. This seems to indicate there might be coupling point where the collapse time
becomes less important. If we look at the stokes number as a function of temperature for these
regions as shown in figure 6.3b, we can see that 100µm has a stokes number of 0.7 in the out
most radial cell, while other particles that are showing a more collapse orientated trend have at
most a stokes number for 5K of 0.5. With this it seems that if the stokes number is higher than
0.7 the collapse time becomes a little less important. Sadly this indication can not be seen in
with the core mass and radius in figure 6.3a and 6.3b, for here the larger mass has the smallest
collapse time and the smallest stokes number and for the radius the largest core has the largest
collapse time and the largest stokes number. This is shown in figure 6.3c and figure 6.3d
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CHAPTER 6. DISCUSSION

(a) For the centre of the core (b) For the edge of the core

(c) For the centre of the core (d) for the edge of the core

Figure 6.3: Panel (a) and c are for the center of the cores while panel (b) and (c) are for the
edge of the cores. (a) shows the stokes number as a function of initial core temperatures, while
(b) shows the same but for the edge of the core, which results in the change of stokes number.
(c) shows the stokes number for the center as a function of initial core mass while (b) shows
the same but for the edge of the sphere.
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7
Conclusion and outlook

In this work we set out to understand how dust settles in a prestellar core, in order to find
or test new initial conditions for the protoplanetary disk. For this we developed a postpro-
cessing framework in python that allow macro particles to be evolved through prestellar core
simulation data sets, which can help computation time as complex core simulations can take
quite a long time to compute. The underlying prestellar core simulations are from [Vaytet and
Haugbølle, 2017].

Here it was found that the inital azimuthal velocity of dust particles plays quite a big role,
as the lower azimuthal velocity present the more effective settling, as less velocity needs to
be transformed into radial velocity. However this is only if the core collapses radially. In-
terestingly here if the particles are decoupled enough, the higher velocities, around 50% of
the initial keplarian velocity, will result in a higher dust-to-gas ratio for the region where a
protoplanetray disk is formed. Here a dust-to-gas ratio for the disk would be larger than the
canonical value of 0.01, for at least particles around the 25µm range. This naturally is under
the assumption that the core starts with the Canonical ratio 0.01. However, the most interest-
ing and surprising thing is that the dust-to-gas ratio for coupled particles with a stokes number
around unity, is really large in the region where the protostar is formed. This means that the
metalicity of the star will be quite large, to the point that it would be hard to imagine how such
a star would look.

The settling of dust was found to be limited in terms of time, as all particles except for sizes
larger than a few meters, couple hard to the gas when the first Larson core enters its adiabatic
phases. This is naturally only a prospect for particles inside the first Larson core, however,
dust further out seems to empty out rather quickly as the dust effectively settles in this region.
Interestingly for particles smaller than 1mm, there is a switch of dynamics as this point in
time, since when the particles couple, coagulation seems to kick in allowing for a potentially
significant growth in dust, although the estimations are rough, and were done to have an idea
of where it might be effective.

The beginning of the adiabatic process of the prestellar core happens for all cores nearly
at the time relative to their second core formation. Here all cores start the process roughly
around 0.5kyr from the second core formation, meaning it is independent of collapse time.
Consequently there is more settling of dust if the core as a long collapse time. However, if the
particles are not heavily coupled to the data, eg. with a stokes number of 0.7, then there can
be quite a lot more effective settling.

The results of this thesis shows that the that the dynamics of dust in a prestellar core are
quite important for not only the protoplanetary disk but also for the star itself though high
metalicities.
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CHAPTER 7. CONCLUSION AND OUTLOOK

7.0.1 Future work

In this thesis the focus was mostly the the radial infall of dust in a 1D radiative prestellar
core. However there is still plenty needed to be done to fully understand the settling of dust
in a prestellar core. The first and most obvious would be to run the current setups including a
framwork for dust grain size evolution, e.g. coagulation and fragmentation. For while it seems
to become important for large grain in the late stages of the first Larson core, it can potentially
still give a increase in certain dust sizes. Luckily fellow master student Martin Jan Sandberg,
have as a part of his thesis developed such a module. Here it could also be interesting to do
simulations with particles smaller than 25µm to identify when the dust-to-gas ratio stays con-
stant over the collapse. Furthermore one can then look into when Brownian motion becomes
important and if it can give a lower barrier for dust present in the disk.

Other interesting work include the study of capturing dust particles from filament flows. This
could give rise to more dust in the prestellar core at various regions, and thus might help kick
start coagulation, or maybe dust of the correct sizes can settle efficiently into the center of the
core.

Pebble accretion could also be studied to see if it plays a role in growth doing the early stages
of star formation or if it just present in the protoplanetary disk. If it is present it could lead
to even more growth of dust sizes, and can thus give a better understanding of the dust sizes
present in the protoplanetary disk.

Once these aspects have been understood, we can move onto larger spatial dimensions, where
we can include the effect of magnetism and rotation as they can likely affects the infall of
dust quite significantly. This can likely be achieved with the DISPATCH library for FORTRAN,
although the process might need to be separated due to computational cost.

In this thesis we assumed a initial dust-to-gas ratio of the canonical value of 0.01. This how-
ever might not be correct as the initial dust-to-gas ratio for the prestellar core is dictated by
the dust dynamics in the prestellar core. So to obtain more physically correct representation of
both the core and the disk we also need to understand the dynamics in the molecular clouds.
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Derivation of coagulation rate

Brownian Motion

The decomposition for Brownian motion is obtained from equation (3.39).

C =

√
12kb

π2ρs
∧ ξ = s−3/2 ∧ Y =

√
T (A.1)

When inserting this into equation (3.51), one obtains the following.
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The integral on the LHS is trivially easy to solve.∫ s
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Both integrals on the RHS can be solve by using the same substitution. For the substitution
the following variables are defined:
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(A.4)

Interesting this into
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For
∫ ti
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√
AT t +BT dt the substitution yields:
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Then by inserting the solved integrals into equation (A.2), one obtains the final scheme.
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To test this scheme we can compare it with the appendix of [Birnstiel, T. et al., 2010], where
it is assumed that ρd and T is constant. To test this we take the limit of equation A.7 where
we let ρd and T converge towards a constant in time, eg. letting Ti→ Ti+1. By doing this we
get that AT and Aρ goes towards 0 and BT → Tc and ρd → ρd,c. Here the c subscripts means
a constant. By using this we can see that there is a problem with AT → 0 as we will get 0/0.
Here we use L’Hôpital’s rule to see how the expression convergence. We start with the term
of (AT t +BT )

5/2.

lim
AT→0

(AT ti +Tc)
5/2− (AT ti−1 +Tc)

5/2

A2
T

=
15
8

T 1/2
c (t2

i − t2
i−1) (A.9)

Here we see that it convergence towards a finite non-zero term. The same goes for the 3/2
over A−2

T term.

lim
AT→0

(AT ti +Tc)
3/2− (AT ti−1 +Tc)

3/2

A2
T

=
3
8

T 1/2
c (t2

i − t2
i−1) (A.10)

Lastly we have the 3/2 term over AT .

lim
AT→0

(AT ti +Tc)
3/2− (AT ti−1 +Tc)

3/2

AT
=

3
2

T 1/2
c (ti− ti−1) (A.11)

With this we can see that all the temperature terms converges towards something finite when
we converge towards a constant temperature. For the dust density we never divide with Aρ so
all terms with this becomes zero. So equation (A.7) becomes

sBM =

(
5
2

ρd,c

ρs π

√
12kbTc

ρs

N

∑
i=1
{ti− ti−1}+ s5/2

0

)2/5

(A.12)

The sum here will cancel all mid terms out, thus we gain the difference between the last point
and the first point.

sBM =

(
5
2

ρd,c

ρs π

√
12kbTc

ρs
{tN− t0}+ s5/2

0

)2/5

(A.13)

This is exactly what would have been obtained if solving equation (3.38), for a constant dust
density and system temperature.

Relative Velocities in the radial and azimuthal direction

Radial and Azimuths relative velocities is given by equation (3.40). This form is not that ap-
plicable the Galerkin approximation, there it is black boxed and thus assumed that the relative
velocity difference is the physical variable where nothing is known. This gives the following
decomposition.

C = 1 ∧ ξ = 1 ∧ Y = ∆v j (A.14)

For this section j refer to either the radial velocity or the azimuthal velocity. With these
equation (3.51) becomes the following

s− s0 =
1
ρs

N

∑
i=1

(
Aρ

∫ ti

ti−1

t (A j t +B j) dt +Bρ

∫ ti

ti−1

A j t +B j dt
)

(A.15)
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The integrals on the RHS are trivial to solve as they are just various orders of polynomials.
The first integral becomes.∫ ti

ti−1

t (A j t +B j) dt =
A j

3
[
t3]ti

ti−1
+

B j

2
[
t2]ti

ti−1
(A.16)

The second integral becomes.∫ ti

ti−1

A j t +B j dt =
A j

2
[
t2]ti

ti−1
+B j [t]

ti
ti−1

(A.17)

Then by inserting these integrals into equation (A.15) and solving for s one obtains.

s j(t) =
N

∑
i=1

{
AρA j

3ρs

[
t3]ti

ti−1
+

B jAρ +BρA j

2ρs

[
t2]ti

ti−1
+

B jBρ

ρs
[t]titi−1

}
+ s0 (A.18)

To check that the scheme is calculated correctly we once again let the physical variables go
towards constant. In the case of the relative velocities, there is no diving by a Aψ factor
therefore the convergence is straight forward, as terms with the Aψ goes towards zero.

lim
A j,Aρ→0

{
AρA j

3ρs

[
t3]ti

ti−1
+

B jAρ +BρA j

2ρs

[
t2]ti

ti−1
+

B jBρ

ρs
[t]titi−1

}
=

ρd

ρs
∆v j(ti− ti−1) (A.19)

Thus one obtain a scheme for a constant dust density and relative velocity.

s j(t) =
ρd

ρs
∆v j {t− t0}+a0 (A.20)

This is exactly the what would have been obtained if solving equation (3.38), for a constant
relative velocity.

Turbulent Motion

The relative velocity due to turbulent motion can described by equation (3.41). Here we take
the stokes number to be of the Epstein regime, equation (3.10) only as it is what is used in the
thesis and is quite easier to handle, than most of the stokes regimes. For the Epstein regime
the decomposition’s becomes.

C =


√

2αρs

(
32Gkb

24µmp

)1/4

for St ≤ 1√
2α

ρs

(
24k3

b
32Gµ3m3

p

)1/4

for St > 1

(A.21)

ξ =

s1/2 for St ≤ 1

s−1/2 for St > 1
(A.22)

Y =

ρ
−1/4
g T 1/4 for St ≤ 1

ρ
1/4
g T 3/4 for St > 1

(A.23)

These decomposition is makes the integrals from equation (3.51) incredibly hard to solve
analytically. To avoid series expansion or numerical integration, we are gonna cheat a little
and assume that we know that how the stokes number depends on grain size s, and then we
will collect all the time-dependent parameters into a single new parameter that is linearly
interpolated. This will naturally be more inaccurate, but as the purpose of this estimation is to
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see if coagulation is efficient, and give an idea of the grain growth, such an approximation is
acceptable. With this new perspective your time dependent parts become.

Y =
√

Se =


√

ρ
−1/2
g T 1/2 for St ≤ 1√

ρ
1/2
g T 3/2 for St > 1

(A.24)

Here Se is the new parameter that will be linearly interpolated, and thus the scheme for St ≤ 1
and St > 1 will have the same integral form from the interpolation in equation (3.51). This
will give the same integrals as for Brownian motion seen in equation (A.6) and equation (A.5).
Therefore the scheme for turbulence can be constructed for both ranges, as their LHS integral
is trivial.

sturb =



[√
α

2ρs

(
32Gkb

24µmp

)1/4 N

∑
i=1

Qi + s1/2
0

]2

for St ≤ 13
2

√
2α

ρ3
s

(
24k3

b
32Gµ3m3

p

)1/4 N

∑
i=1

Qi + s3/2
0

2/3

for St > 1

(A.25)

Qi =
2
5
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A2
Se
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(ASet +BSe)

5/2
]ti

ti−1
+

(
2
3

Bρ

ASe
− 2

3
AρBSe

A2
Se

)[
(ASet +BSe)

3/2
]ti

ti−1
(A.26)

As this scheme is the same in form as the Brownian motion when looking at the interpolation
constants, then it will converge in the same manor. Thus the scheme for a constant ρg, T and
ρd becomes.

sturb =



[√
α

2ρs

(
32Gkb

24µmp

)1/4

ρdSe1/2 {tN− t0}+ s1/2
0

]2

for St ≤ 13
2

√
2α

ρ3
s

(
24k3

b
32Gµ3m3

p

)1/4

ρdSe1/2 {tN− t0}+ s3/2
0

2/3

for St > 1

(A.27)

Here we get a linear function inside the outer parenthesis which corresponds to constant phys-
ical parameters. The results are in accordance with [Birnstiel, T. et al., 2010], but can be
applied to radially dependent data.
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Evolution and state for other initial conditions

Some runs are not available at certain configuration as time didn’t permit their execution, so
if they are missing its likely due to this.

Run006 with a velocity distribution

Figure B.1: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.
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Run009 with a velocity distribution

Figure B.2: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.

Run038 with a velocity distribution

Figure B.3: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.
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Run068 with a velocity distribution

Figure B.4: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.

Run069 with a velocity distribution

Figure B.5: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.
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Run071 with a velocity distribution

Figure B.6: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.

Run072 with a velocity distribution

Figure B.7: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.
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Run074 with a velocity distribution

Figure B.8: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.

Run080 with a velocity distribution

Figure B.9: The-dust-to-gas ratio various regions in the prestellar core as a function of time
till the formation of the second Larson core. The first being for the region that will become
the reservoir for the protostar which goes from the 0 to revap. The second region going from
revap to 100 AU is the region where the protoplaneary disk is formed, and is this important for
planet formation. The third region is what will accrete unto the embedded Class 0 star. This
region goes from 100 AU to 1000 AU. The last region is that of the our edge of the core which
will accrete unto the star doing the its transition to the main sequence.
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Configuration 1 run006

(a) The region below the evaporation line of 0.70 AU for the last snapshot

(b) The region between the evaporation line of 0.70 AU to 100AU for the last snapshot

(c) The region between 100 AU and 1000 AU for the last snapshot

(d) The region over 1000 AU to end of sphere for the last snapshot

Figure B.10: The panels here are identical to figure 4.8, but here its for run006 and goes over the
same regions. To summarize, the x-axis for all panels is initial keplarian velocity percentage. The y
axis on the right plot is the total dust-to-gas ratio, while the right plot is the grain specific dust-to-gas
ratio. Each panel is a represent a different region at the last snapshot. (a) is from the center and up
evaporation line, (b) is from the evaporation line to 100 AU, (c) is from 100 to 1000 AU, and (d) goes
from 1000 AU to the end of the core.
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Configuration 1 run038

(a) The region below the evaporation line of 0.66 AU for the last snapshot

(b) The region between the evaporation line of 0.66 AU to 100AU for the last snapshot

(c) The region between 100 AU and 1000 AU for the last snapshot

(d) The region over 1000 AU to end of sphere for the last snapshot

Figure B.11: The panels here are identical to figure 4.8, but here its for run038 and goes over the
same regions. To summarize, the x-axis for all panels is initial keplarian velocity percentage. The y
axis on the right plot is the total dust-to-gas ratio, while the right plot is the grain specific dust-to-gas
ratio. Each panel is a represent a different region at the last snapshot. (a) is from the center and up
evaporation line, (b) is from the evaporation line to 100 AU, (c) is from 100 to 1000 AU, and (d) goes
from 1000 AU to the end of the core.
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Configuration 1 run069

(a) The region below the evaporation line of 0.70 AU for the last snapshot

(b) The region between the evaporation line of 0.70 AU to 100AU for the last snapshot

(c) The region between 100 AU and 1000 AU for the last snapshot

(d) The region over 1000 AU to end of sphere for the last snapshot

Figure B.12: The panels here are identical to figure 4.8, but here its for run069 and goes over the
same regions. To summarize, the x-axis for all panels is initial keplarian velocity percentage. The y
axis on the right plot is the total dust-to-gas ratio, while the right plot is the grain specific dust-to-gas
ratio. Each panel is a represent a different region at the last snapshot. (a) is from the center and up
evaporation line, (b) is from the evaporation line to 100 AU, (c) is from 100 to 1000 AU, and (d) goes
from 1000 AU to the end of the core.
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Configuration 1 run074

(a) The region below the evaporation line of 0.80 AU for the last snapshot

(b) The region between the evaporation line of 0.80 AU to 100AU for the last snapshot

(c) The region between 100 AU and 1000 AU for the last snapshot

(d) The region over 1000 AU to end of sphere for the last snapshot

Figure B.13: The panels here are identical to figure 4.8, but here its for run074 and goes over the
same regions. To summarize, the x-axis for all panels is initial keplarian velocity percentage. The y
axis on the right plot is the total dust-to-gas ratio, while the right plot is the grain specific dust-to-gas
ratio. Each panel is a represent a different region at the last snapshot. (a) is from the center and up
evaporation line, (b) is from the evaporation line to 100 AU, (c) is from 100 to 1000 AU, and (d) goes
from 1000 AU to the end of the core.
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Coagulation for run067 large grains

For the region under revap for the last snapshot

Figure B.14: The growth due to radial coagulation over time to second Larson core formation.
The start of the shaded area shows when the first adiabatic phase of the core begins, and when
the shaded area ends shows when the temperature exceeds the dust evaporation temperature of
1550K. This is for the region under the evaporation line, which is what will accrete unto the
very early star

For the region between revap and 100 AU for the last snapshot

Figure B.15: The growth due to radial coagulation over time to second Larson core formation.
The start of the shaded area shows when the first adiabatic phase of the core begins. This is for
the region between the evaporation line and 100 AU, which is where the protoplanetary disk
is formed.
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For the region between 100 AU and 1000 AU for the last snapshot

Figure B.16: The growth due to radial coagulation over time to second Larson core formation.
The start of the shaded area shows when the first adiabatic phase of the core begins. This is
for the region between the 100 and 1000 AU, which is what will eventually accrete unto the
embedded Class 0 object.

For the region between 1000 AU and the edge of the core for the last snapshot

Figure B.17: The growth due to radial coagulation over time to second Larson core formation.
The start of the shaded area shows when the first adiabatic phase of the core begins. This is
for the region between 1000 AU to the end of the prestellar core. This is was will accrete unto
the star when it begins to transition to the main sequence
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