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Abstract

Topological phases of matter have recently attracted a lot of attention in condensed matter

physics, and especially the engineering of topological superconductors. The excitations of

these highly desired materials are the exotic so-called Majorana fermions, which are their

own anti-particles and are governed by non-Abelian exchange statistics. With all these prop-

erties, Majorana fermions have been proposed to be an essential building block for topological

quantum computers.

Among the vast number of proposals for engineering topological superconductors, we will

in this thesis aim to explore and study an alternative route, with the possibility of intrinsic

topological superconductivity. Certain magnetic textures can give rise to an effective Rashba

spin-orbit coupling, which has been proven to be a crucial ingredient in engineering topolog-

ical superconductors. Additionally has the relatively new family of high-Tc superconducting

materials, namely the Iron-Based superconductors, found to have a rich phase diagram with

a broad variety of magnetic phases. Furthermore these materials have the possibility of mag-

netism coexisting with superconductivity. It might thus be possible to have an iron-based

superconductor in a magnetic phase, which generates an effective spin-orbit coupling coex-

isting with superconductivity, resulting in a topological superconductor.

In this thesis we have performed a topological classification of the iron-based supercon-

ductors in the nine proposed magnetic phases, coexisting with a general spin-singlet super-

conducting order parameter. We found that certain magnetic textures indeed support the

possibility of topological superconductivity. In the process of this classification, we also did a

symmetry point group investigation of the material in question. Specifically we investigated

the system in the incommensurate Double-Q C4-symmetric Spin-Whirl Crystal ( ) magnetic

phase, which has the possibility of harboring helical, or chiral Majorana edge modes, where

the latter are obtained by applying an external magnetic field. Since a brute-force investi-

gation of the possible topological phases of the iron-based superconductors is a formidable

task, we did a simple bottom-up approach. We started with a simple Single-band model and

extended it to two bands in order to capture nesting between distinct pockets at the Fermi

surface. We found that the low energy Hamiltonian can give rise to single-Q nested points,

effectively described by a quasi-1D model, giving rise to Majorana flat bands. Whereas other

points in the reduced Brillouin zone give rise to genuine double-Q nested points, with heli-
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cal/chiral Majorana edge modes. However, the predicted helical edge modes did not arise,

but instead generated a supercurrent by tilting the Majorana flat bands. This disagreement

might be an artifact of the low energy approximation, and needs to be investigated further.
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Preface

The search of Majorana fermions started in high energy physics, where Ettore Majorana in

1937 showed the possibility for a real solution to the Dirac equation [1]. Eight decades later

the search is still ongoing, but has now also moved to other branches of physics, namely con-

densed matter physics. The collective behavior of the high number of electrons in a solid can

lead to emergent quasiparticles, which also can include Majorana fermions (MFs). Among

the systems providing the possibility of harboring MFs, one finds the so-called topological

superconductors (TSCs). MFs are topologically protected in such systems, and their robust-

ness, together with their non-Abelian exchange statistics, render them as suitable building

blocks for quantum computers.

There has been numerous proposals to engineer topological superconductors, since they

not yet have been convincingly proven to be directly accessible in nature. In this thesis we

will study an alternative route; topological superconductivity induced by magnetism in multi-

band superconductors. Iron-Based Superconductors constitute a prominent candidate, that

exhibits a rich phase diagram where magnetism and superconductivity coexist and compete.

In presenting this work, we have structured the thesis as follows;

Chapter 1 A brief introduction to topological phases, more specifically topological super-

conductors, will be given, followed by a discussion of the possible types of Majo-

rana modes in topological systems in one and two dimensions. Additionally we

also discuss general symmetry transformations, and the scheme of topological

symmetry classification.

Chapter 2 We shortly introduce the iron-based superconductors that, by their rich phase di-

agram, could be prominent candidates for a topological superconductor. To put

further emphasis on this, we formulate a general Hamiltonian for such a system,

and topological classify the system in the different proposed magnetic phases co-

existing with superconductivity. We also perform an extensive symmetry point

group analysis.

Chapter 3 This chapter commences a bottom-up case study of a superconductor in one of

the relevant magnetic phases classified in Chap.2. We start in 1D with a one-

band model, and study how the addition of an extra band modifies our results.

Chapter 4 To obtain further insight of the possible topological phases induced by mag-

netism, we go one step up in the bottom-up approach, and study a two- and

one-band model in 2D. The Hamiltonian of these systems supports Majorana
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flat bands, but also the possibility of harboring chiral/helical Majorana modes,

depending on the symmetry class.

Chapter 5 Conclusion and outlook.
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Chapter 1

Introduction to Topological

Superconductivity

Phases of matter have always been an interesting and intriguing topic in modern physics. The

familiar solid, liquid and gas phases are accompanied by more exotic phases when quantum

phenomena become important, which leads to charge density waves, Bose-Einstein conden-

sates, spin density waves and superconductivity, just to name a few. The different phases

can be reached through varying external parameters; pressure, doping, temperature etc., and

are usually caused by the synergy of the tremendously large number of degrees of freedom in

the system in question. The underlying principle in defining phase transitions is symmetry

breaking, e.g. a paramagnet has spin rotation symmetry, unlike the ordered ferromagnetic

phase. Tied to symmetry breaking there is an order parameter (OP) that can be used in the

phenomenological Ginzburg-Landau theory. It is important to state that an OP is not nec-

essarily obvious, and it can be a challenging task to determine it, however, once determined

it can be physically measured and experimentally verified. Along side the measurable OP,

the newly established ground state is also characterized by a set of excitations referred to as

quasiparticles.

In recent decades topological phases have been attracting attention in the different com-

munities of physics. In mathematics, topology is the study of spaces, and provides a way to

classify objects that are not connected by continuous deformations. The typical example is

a coffee mug that can be continuously deformed into a doughnut, but not a coffee mug with

two handles. The two mugs are thus topologically inequivalent. To distinguish the two, one

can define a topological invariant (index) that describes the global features of the space, e.g.

the number of handles on the cup. The topological phases in physics are named so, since no

local OP can be defined, but rather a global one, a topological invariant. This indicates that

distinct physical systems, like the coffee mug and doughnut, can be topologically equivalent.

Note lastly that the topological invariant can be connected to measurable quantities, such as

the Hall conductivity in the quantum Hall effect, but a generalization to Ginzburg-Landau

theory is not straightforward.

To name a few well-established examples of systems with topological non-trivial phases

we have: the quantum Hall effect [2], quantum spin Hall effect [3] and Haldane’s Chern

insulator [4]. Where the former and the latter constitute physically distinct systems, but
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1.1. Topological Superconductivity

Figure 1.1: Illustration of the bulk-edge correspondence, where two bulk materials,

with the invariants N and N ′ respectively, lead to |N − N ′| topological protected

states located at their interface.

topologically equivalent phases. In analogy to the emergent single-particle and collective

excitations for the regular phases of matter discussed in the first paragraph, the topological

phases can also have new quasiparticle excitations. The nature of these excitations turns

out to be very unconventional and exotic. A common feature for the new exotic states is

that they are topologically protected due to the bulk-edge correspondence, stating that: At

the interface of two systems, with respectively topological invariants N and N ′, a number

of |N − N ′| topologically protected excitations will arise in the vicinity of the interface [5],

as shown in Fig. 1.1. The topological states are thus robust against any deformations and

impurities, as long the topological indices remain and can be defined.

A physical intuition regarding the robustness of the topological states is that they only

carry half the degrees of freedom compared to their bulk counterparts, and are therefore

unaffected by local impurities that interact with the full degrees of freedom [6]. We stress

here that the impurities need to be local, since a non-local impurity in principle could interact

with the full degree of freedom. Take for instance the quantum Hall effect; here each edge

has a single topological mode propagating in a single direction, often referred to as chiral

modes. The unidirectional mode is therefore, by its topological nature, prohibited to move

in the opposite direction, along which the chiral mode of the opposite edge is running. If the

system has a local impurity at the edge, the protected mode simply circumvents it, and thus

disperses without dissipation. Had the impurity instead interfered with the bulk topological

index, then the mode would have lost its topological protection, and would thus have been

scattered by the impurity.

1.1 Topological Superconductivity

The concept of obtaining topological edge modes with only half the degree of freedom com-

pared to the bulk modes, has triggered the speculations about whether it is possible to split

up the charge of an electron, and thereby make it robust against charge fluctuations and

local charged impurities. An emergent particle with such qualities could be favorable for

applications in many engineering problems. Mathematically splitting up an electron (hole)

operator in two equal parts, is straightforwardly done by introducing two Majorana fermion

(MF) operators, γα,β, in the way:

ci =
γi,α + iγi,β√

2
, c†i =

γi,α − iγi,β√
2

. (1.1)
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Chapter 1. Introduction to Topological Superconductivity

Figure 1.2: The Kitaev chain for a p-wave superconductor. (a) The fermionic

operators ci can be rewritten in terms of Majorana operators γi,α. Here the big

white circles represent electrons at the corresponding lattice sites. (b) In the limit

for µ = 0 and ∆ = t, the Hamiltonian can be diagonalized in terms of the operators

c̃i, constructed by pairing-up MF operators at neighboring sites, leaving two MFs

localized at each end.

The MF operators fulfill {γα, γβ} = δα,β, γ†α = γα and γ2
α = 1/2. Since the above only

constitutes an alternative representation, one could argue that MFs always are accessible in

condensed matter systems, however, since the pair of MFs tied to a single electron is localized

at the exact same point in space, charge fluctuations/impurities will always interact with the

full charge degree of freedom. This implies that it is desirable to separate a single electron

into two MFs over a greater distance. By inverting Eq. 1.1 we find that a MF is made up of

equal part electron and hole, and therefore is charge neutral:

γi,α =
c†i + ci√

2
, γi,β = i

c†i − ci√
2

. (1.2)

Besides confirming the charge neutrality of the MFs, Eq. 1.2 also equips us with a clue of a

possible type of systems that provide the possibility of supporting MFs, namely supercon-

ductors. A pairing potential, ∆, couples holes and electrons, as will be discussed in Sec. 2.2,

and will give eigenstates consisting of linear combinations of holes and electrons

γ =
∑
µ ν

(
uµcµ + vνc

†
ν

)
, γ† =

∑
µ ν

(
u∗µc
†
µ + v∗νcν

)
(1.3)

where µ and ν are quantum numbers containing spin, orbital, crystal momentum etc. In

order for the self-adjoined condition to be fulfilled we observe that µ = ν and uµ = v∗ν . From

the rules of adding up momenta, and the fact that the Cooper pairs are made up of spin-1/2

particles, we know the pairing either can be in a spin singlet or a triplet configuration. For

a singlet configuration, with total spin of S = 0, we can set µ = ↑ and ν = ↓, ruling out a

MF solution. Instead if the pairing is triplet, S = 1, we need to incorporate all spin indexes;

µ = {↑, ↓} and likewise for ν, which can indeed give rise to MF solutions, as seen from Eq. 1.3.

Triplet pairing is therefore desired, such an example is the so-called p-wave superconductors,

in order to get solutions of the MF type.

A MF solution does not necessarily imply spatially separated MFs, but rather that the

quasiparticle excitations in the superconducting ground state are of that type. However, when

the system resides in a topological non-trivial phase, we find a highly non-localized electron at
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1.2. Topological Superconductivity Induced by Magnetism

the boundaries of the system, i.e. two separated MFs. To make this statement transparent,

let us consider a simple spinless 1D tight-binding Hamiltonian with p-wave superconductivity,

as first proposed by A.Y. Kitaev [7]:

H = −µ
L∑
i=1

c †i ci −
L−1∑
i=1

(
tc†ici+1 −∆cici+1 + h.c.

)
, (1.4)

where ci annihilates an electron at site i. Reformulating the Hamiltonian in terms of MF

operators, see Fig. 1.2.(a), we get the Hamiltonian

H = 2it
L−1∑
i=1

γi,βγi+1,α (1.5)

where we a priori have set µ = 0 and ∆ = t. Already at this point we observe that the

operators γ1,α and γL,β are missing from the summation in the Hamiltonian. Rewriting the

Hamiltonian in the shifted fermionic operators c̃i, which pair-up MFs at neighboring sites,

diagonalizes the Hamiltonian;

c̃i =
γi+1,α + iγi,β

2
⇒ H = −2t

N−1∑
i=1

c̃ †i c̃i + const. (1.6)

By considering Fig. 1.2.(b) it becomes evident that the solution leads to localized MFs at the

ends of the chain, that can be combined into a single non-local zero energy electron

cMF =
γ1,α + iγL,β√

2
. (1.7)

We can thus confirm that topological edge states, with half an electron at each end, can be

harbored in a p-wave superconductor. Since the protected states, as we will discuss later on,

are linked to a topological invariant, these types of materials are referred to as topological

superconductors. The MFs are highly interesting due to their non-Abelian exchange statistics,

rendering them as suited building blocks for quantum computation [8].

1.2 Topological Superconductivity Induced by Magnetism

In the search of the highly coveted p-wave superconductors, and thereby the MFs, nature

seems inadequate in supporting such materials. There has been candidates such as: the

superfluid phases of 3He [9], the spin-triplet superconductor Sr2RuO4 and in Bechgaard’s

salts [10], but they are all experimental inaccessible for implementing quantum computations.

The community of condensed matter physics has therefore invested much time, and effort

to achieve the desired pairing by alternative routes, counting examples as: MFs in carbon

nanotubes [11], topological insulators in proximity to an s-wave superconductor [12], magnetic

skyrmion textures [13], etc.

A well-established procedure for achieving topological superconductivity is through a hy-

brid nanostructure, consisting of a semiconducting wire with large Rashba spin-orbit coupling

(SOC), in proximity to a bulk s-wave superconductor and an external magnetic field [14,15],
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Chapter 1. Introduction to Topological Superconductivity

see Fig. 1.3.(d). The Bogoliubov-de Gennes (BdG) Hamiltonian of such a system will be of

the form

H(k) =
1

2

∑
k

Ψ̂ †k

[
τz

(
~2k2

2m
− µ+ σxv~k

)
+Bσz + ∆τx

]
Ψ̂k (1.8)

with the spinor Ψ̂k = (ψk↑, ψk↓, ψ
†
−k↓,−ψ

†
−k↑)

ᵀ, where σ = (σx, σy, σz) and τ = (τx, τy, τz) are

Pauli matrices acting on spin and Nambu space respectively, see App. A. Note that we for

brevity have omitted all the identity matrices, and that the product between two matrices,

belonging to different spaces, should be understood as a Kronecker product, i.e. τjσi ≡ τj⊗σi.
The parameters in the Hamiltonian v, B and ∆ are the SOC coupling, magnetic field and

superconducting gap respectively. At first glance this Hamiltonian seems like an ordinary

s-wave superconductor, however, the SOC is an important ingredient and will generate an

effective p-wave pairing.

Consider at first the spectrum of the Hamiltonian with v = ∆ = 0, but B 6= 0 as in

Fig. 1.3.(a). The non-zero magnetic field lifts the Kramers degeneracy, producing a spinless

regime when the chemical potential is in the magnetic gap. However, the spinless regime is

solely governed by one spin projection, making an effective triplet pairing inaccessible, since

the superconducting gap in Eq. 1.8 only pairs up electrons with opposite spin projection.

If we instead turn on the SOC, v 6= 0, and set B = 0, the two spin bands get shifted

depending on their spin projection along the spin x-axis, as shown in Fig. 1.3.(b). Again

lifting the spin degeneracy with a magnetic field, we achieve an effective momentum dependent

spinless regime, when the chemical potential is in the magnetic gap, Fig. 1.3.(c). Due to

the momentum dependence of the spin, the singlet superconducting gap can now pair up

electrons at opposite momenta and spin in this lower band, thus creating an effective p-wave

pairing [16]. Lastly, one can make a direct mapping to the Kitaev chain in the limit of large

magnetic field, B/v � 1 and B/∆� 1, by an effective projection onto the lower band [17].

It seems that the SOC is a necessary ingredient in engineering TSCs. Since this type of

coupling originates from the broken inversion due to the substrate, it is usually material de-

termined, and not easily controlled. This led researchers to find yet another alternative route

to engineer TCSs, via an artificial SOC, that then in return could lead to an effective p-wave

superconductor. One proposal is to have a magnetic spiral texture in vicinity to a semicon-

ducting wire, which would give rise to an effective SOC [18], as displayed in Fig. 1.3.(d). To

illustrate this, let us consider the case of a simple 1D wire in a symmetric spiral magnetic

field;

H =

∫
dr ψ̂ †(r)

[
p̂2

2m
− µ+M(cos(Qr)σz + sin(Qr)σy)

]
ψ̂(r)

=

∫
dr ψ̂ †(r)e−iQrσx/2

[
eiQrσx/2

p̂2

2m
e−iQrσx/2 − µ+Mσz

]
eiQrσx/2ψ̂(r),

(1.9)

with the spinor ψ̂(r) = (ψ↑(r), ψ↓(r))
ᵀ. In the second equality we simply performed a unitary

transformation with Û = exp(−iQrσx/2), to simplify the expression. The single particle
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1.2. Topological Superconductivity Induced by Magnetism

Figure 1.3: Engineering topological superconductivity. (a)-(c) Show the spectrum

for Eq.1.8. in different scenarios. The small arrows represent spin projection for the

given band. (d) Platform for engineering TSCs, with a nanowire deposited on a bulk

s-wave superconductor and an external magnetic field. The nanowire sees a Rashba

SOC, effectively generating a p-wave superconductor. (e) Equivalently a nanowire

can be deposited on a bulk s-wave superconductor in the vicinity of a spatially

varying magnetic field, effectively generating a SOC. The arrow connecting the two

figures indicates that the two can be mapped to one another through a unitary

transformation, as see in Eq. 1.9.

6



Chapter 1. Introduction to Topological Superconductivity

Symmetry Spatial Dimensionality

AZ Θ2 Ξ2 Π2 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 1.1: The topological periodic table, from [19], shows the 10 symmetry classes.

A given symmetry class is determined by the behavior of the symmetries in Eqs.1.11.

upon squaring. In addition, the table shows the types of the possible topological in-

variants (Z, Z2, 0) that one can define for each class in a given dimension. Note that

the spatial dimension is shown up to eight, since one can employ Bott-Periodicity

for higher dimensions.

Hamiltonian, after a Fourier transformation, ends up to obtain the form

Ĥ(k) =
~2k2

2m
+

(
~2Q2

8m
− µ

)
︸ ︷︷ ︸

µ̃

−~2Q

2m
kσx +Mσz, (1.10)

where we arrive at a similar single-particle Hamiltonian as the kernel of Eq. 1.8, when s-

wave pairing is included. Not only does this allow for a tunable effective SOC through the

wave vector of the magnetic field Q, but also opens up new routes for engineering topological

superconductivity.

1.3 Topological Classification

As discussed above, physically distinct systems can give rise to the same topological char-

acteristics, so one could in principle search elsewhere for the desired TSC. To narrow down

the vast search, a more systematic procedure for identifying topological phases were carried

out [20–22]. This was done by an exhaustive classification of random matrices, and the classi-

fication is only applicable for non-interacting systems, which can be represented as matrices.

The classification scheme is based on three discrete symmetries: the anti-unitary generalized

time-reversal Θ, the anti-unitary generalized charge-conjugation Ξ and the unitary Π chiral

7



1.4. Symmetry Transformations

symmetry. The three discrete symmetries, if they are present, fulfill the following:

Θ† Ĥ(k) Θ = +Ĥ(k) [Ĥ(k), Θ] = 0, (1.11a)

Ξ† Ĥ(k) Ξ = −Ĥ(k) ⇒ {Ĥ(k), Ξ} = 0, (1.11b)

Π† Ĥ(k) Π = −Ĥ(k) {Ĥ(k), Π} = 0. (1.11c)

If both Θ and Ξ are present, it is possible to construct the unitary operator ΘΞ = ÛΘKÛΞK =

ÛΘÛ
∗
Ξ = Π, where it is clear from Eqs. 1.11.(a-b) that this operator anti-commutes with the

Hamiltonian, hence leading to the so-called chiral symmetry. There is, however, the possibility

of chiral symmetry even in the absence of Θ and Ξ, see class AIII in Table. 1.1. The three

symmetries all square to±1, and can be divided into 10 symmetry classes, shown in Table. 1.1.

Each of these classes are labeled with a set of numbers, Z, Z2 and 0, depending on the specific

spatial dimensions. These sets indicate the possible type of topological invariants that can

be defined in the given class and dimension, and reveal which systems are interesting from a

topological perspective.

If the Hamiltonian in question is not a random matrix, i.e. it has some unitary sym-

metry [Ô, Ĥ(k)] = 0, it is possible to block diagonalize, and classify each block
⊕

i Ĥi(k).

Such a unitary symmetry can originate from the relevant point group of the Hamiltonian

G, or a translation in real space [23]. As already stated, this classification only holds for

non-interacting systems, but there has recently been an increasing interest in topological

classification of interacting systems, giving rise to new phases [24].

1.4 Symmetry Transformations

We will in this section formulate how a general symmetry operator G effects the system in

question, before proceeding with a topological classification of the prototypical Hamiltonain

in Eq. 1.8 extended to two dimensions. The general formulation will be followed by examples

of symmetries that are closely related to the three in Eqs.1.11.

Consider at first the abstract symmetry operator G in a Hilbert space spanned by the set

{|n〉}, where G transforms the basis in the way

G |n〉 = |m〉. (1.12)

How is in an arbitrary operator U in the new basis {|m〉} related to the representation in the

old basis? This can be seen through the relation for the matrix elements

〈m|U |m′〉 =
∑
n′′ n′′′

〈n|G†|n′′〉〈n′′|U |n′′′〉〈n′′′|G|n′〉. (1.13)

The above indicates that in the matrix representation a symmetry acts as

U ′ = G†UG
.
= d†(G)Ûd(G) (1.14)

where the sign
.
= stands for ”represented as” [25], and where Û and d(G) are matrices defined

in the old basis {|n〉}. Note that the matrix representation for the symmetry operation here is

denoted by d(G) as it is customary in group theoretical approaches [26,27], and not by a caret
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Chapter 1. Introduction to Topological Superconductivity

as for the general operator U . The systems under consideration have translational symmetry,

making it convenient to formulate the Hamiltonian in Bloch space. Redoing the formulation

in Eq. 1.13, but now with the quantum number n replaced by a crystal momentum k, and

making the operator U diagonal in the |k〉 basis, the transformation can be represented as

G†UG
.
= d†(G)Û(Gk)d(G). (1.15)

The action on the crystal momentum is not captured by a matrix representation, but by a

transformation of the k vector. In Sec. 1.3 we referred to antiunitary symmetry operators,

which do not follow the usual unitary condition, but instead [25]

〈n′|G−1G|n〉 = 〈m′|m〉 = 〈n′|n〉∗ = 〈n|n′〉 6= 〈n′|n〉. (1.16)

Such an operator will have the general form G = UGK, where UG is an unitary operator,

and K is complex conjugation. We will define complex conjugation to reverse the crystal

momentum of the system Kk = −k, which we will address in Sec.2.1. Let us illustrate the

discussed symmetry transformation and antiunitary operators with the following examples.

Inversion

Inversion is the operation that inverts the spatial coordinates of the system;

I† r̂ I = −r̂, I† p̂ I = −p̂, I† Ŝ I = Ŝ, (1.17)

with r̂, p̂ and Ŝ being the position, momentum and spin angular operator respectively. If

we consider a general basis state with the following quantum numbers |k, µ, σ〉, where µ is

orbital/band index and σ is spin projection, the inversion operation transforms the basis as

I |k, µ, σ〉 = | − k, Iµ, σ〉. (1.18)

The transformation of µ depends on its physical origin. If µ is an orbital index, it will

transform as the eigenfunctions of the hydrogen atom

IRnl(r)Y m
l (θ, φ) = (−1)lRnl(r)Y

m
l (θ, φ), (1.19)

as it is the case in tight-binding models (discussed in Sec. 2.1). Equivalently, one could

simply consider the nomenclature of the orbitals in question, since they have been named

after representative functions, e.g. the px orbital transforms as the function f(x) = x. Had µ

instead been a band index, we would expect it to be invariant under inversion. This is indeed

true if the system belongs to a symmetry point group with an inversion element, since Ĥ0(k)

has to transform with respect to the trivial irreducible representation, see Sec. 2.4 for details.

Here Ĥ0(k) is the free dispersion of the Hamiltonian.

Charge Conjugation

Charge conjugation, C, is the operation that transforms a particle into its charge conjugated

counterpart. In the BdG formalism (which we will discuss in Sec.2.2) this is equivalent to

transforming an electron into a hole, with reversed crystal momentum. By construction the

9
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BdG Hamiltonian has the following relation between the electron and the hole operator (see

Eq. 2.21):

Ψ̂ †k = Ψ̂ ᵀ
−kÛ

† ⇒ Ψ̂ ᵀ
−kÛ

† = Ψ̂†kK
†Û † = Ψ̂†kd

†(C). (1.20)

Where we have defined the matrix representation of charge conjugation to be d(C) = ÛK,

and used that Ψ̂†kK
† = Ψ̂ᵀ

−k. By exploiting Eq. 1.15 we obtain the transformed Hamiltonian

Ĥ′(k) = C†Ĥ(k)C .
= d†(C) Ĥ(k) d(C) = Û †Ĥᵀ(−k)Û . (1.21)

For a particle hole symmetric Hamiltonian, the latter equality will give

Û †Ĥᵀ(−k)Û = −Ĥ(k) ⇒ {Ĥ(k), d(C)} = 0, (1.22)

where we see that charge conjugation C falls into the class of generalized charge conjugation

operators in the topological classification, see Eq.1.11b.

Translation and Rotation

Translations and rotations are generated by their conjugated variables, i.e. translations are

generated by linear momentum, whereas angular momentum generates rotations. Translation

operation by a along the unit vector n̄ must act on a real space ket as [25]

tn̄a |r〉 = |r + an̄〉 = e−ian̄·p̂/~ |r〉. (1.23)

Similarly is the rotation operation defined as

Rn̄φ = e−iφn̄·Ĵ/~, (1.24)

with Ĵ = L̂+ Ŝ being the total angular momentum operator.

Time Reversal

Time reversal is, as the name states, the operation that reverses the time coordinate, T t = −t.
The operation is antiunitary, T .

= d(UT )K, and must transform the relevant operators as

follows

T † r̂ T = r̂, T † p̂ T = −p̂, T † Ŝ T = −Ŝ. (1.25)

We first note that the momentum operator in real space can be represented as p̂ = −i~∇,

which indeed is odd under the antiunitary part of the operator. Next, applying the usual

representation of the spin angular momentum operator, with Ŝy imaginary, it is clear that

one needs to do a rotation of π about the Ŝy-axis in order to meet Eq. 1.25. The general

matrix representation becomes

T .
= ÛT K = e−iŜyπ/~K, (1.26)

where we have used the rotation operator defined in Eq. 1.24. If a system has time-reversal

symmetry it fulfills the following relation

T †Ĥ(k)T = Ĥ(k) ⇒ [T , Ĥ(k)] = 0. (1.27)

Time-reversal belongs therefore to the class of generalized time-reversal operators in Eq.1.11a.

10



Chapter 1. Introduction to Topological Superconductivity

1.5 Emergent Topological Protected Edge States

After having established the theory of symmetry transformations, we can now approach the

topological classification of the prototypical Hamiltonian in Eq.1.8. Not only do the three

discrete symmetries in Eqs. 1.11 help in the search for topological non-trivial systems, but

also tell us something about the physical emergent edge states. To illustrate this, we will

consider the aforementioned Hamiltonian used for engineering TSC, Eq. 1.8-1.9, and extend

it to two dimensions in the following fashion:

Ĥ(k) = τz

(
~2k2

2m
− µ

)
+ τz (α~kyσx − β~kxσy) +Bσz + ∆τx. (1.28)

In the following, we will discuss four sub-cases of the above Hamiltonian, all with Ξ2 = 1

indicating that the emergent topological protected states are of the Majorana type. In this

classification note that Kk = −k, as will be discussed in the upcoming chapter. The distinct

topological states for the four sub-cases are illustrated in Fig. 1.4.

α 6= 0, β = 0 and kx = 0

This case is exactly the prototypical Hamiltonian discussed above, belonging to the class BDI

with the symmetries

Θ2 = (σzK)2 = +1, Ξ2 = (τyσyK)2 = +1, Π2 = (τyσx)2 = +1. (1.29)

In this symmetry class a Z invariant can be defined, which must mean that a number of Z
MFs are located at the edge of the system (assuming the system edge to be in contact with

a topologically trivial material, e.g. the vacuum). See Fig. 1.4.(a) for the real space wave

functions of the edges, as derived in [5].

α 6= 0, β 6= 0 and kx 6= 0

The corresponding two-dimensional version of the prototypical Hamiltonian Eq. 1.8 breaks

both chiral and generalized time-reversal symmetry, due two the additional component of the

Rashba SOC. The system resides in the class D, with the symmetries

Θ2 = 0, Ξ2 = (τyσyK)2 = +1, Π2 = 0. (1.30)

Table. 1.1 tell us that a Z invariant can be defined for this system, giving rise to a number

of Z modes per edge. Note furthermore that chiral symmetry has been broken, which gives

rise to chiral edge modes, similar to the quantum Hall effect. Again see Fig. 1.4.(b) and [5]

for the real space wave function and derivation, respectively.

α 6= 0, β 6= 0, kx 6= 0 and B = 0

If we consider the system above, but now turn off the magnetic field B, the system obtains

an enhanced symmetry, namely

Θ2 = (σyK)2 = −1, Ξ2 = (τyσyK)2 = +1, Π2 = τ2
y = +1. (1.31)

11
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This render the system in the class DIII, with the possibility of a Z2 invariant in 2D. A

generalized time-reversal squaring to Θ2 = −1 tell us that the emergent modes will come

in Kramers pairs, similar to the physical time-reversal operator T for spin-1/2 particles.

The emergent states are therefore helical similar to the quantum spin Hall states, see again

Fig.1.4.(c). This sub-case is an example of a Hamiltonian with the right symmetry to harbor

MFs, however, when calculating the invariant one finds that it always is zero. For a discussion

of this see Ref. [28].

α 6= 0, β = 0 and kx 6= 0

Again considering the two-dimensional prototypical Hamiltonian, but now turning off SOC

along kx, we find the symmetries

Θ2 = (σzK)2 = +1, Ξ2 = (τyσyK)2 = +1, Π2 = (τyσx)2 = +1. (1.32)

Clearly this 2D system resides in the class BDI, where no topological invariant in the given

dimensionality can be defined. One can consider the system as a stack of 1D BDI chains,

allowing us to define a kx-dependent topological invariant, since each of these can harbor

MFs. The resulting invariant is often referred to as a weak invariant, since the states are not

robust against the breaking of translational invariance along the x-direction. The emergent

modes are termed Majorana flat bands (MFBs), due to their flat dispersions along kx, as will

become clearer in later chapters. The real space wave functions, due to the flat dispersions,

are simply located at the edges, see Fig. 1.4.(d).

1.6 Topological Invariants

We have so far only mentioned the topological invariants as some abstract features of a

topological system, but we will now come up with concrete examples of how to calculate them,

and how to relate them to the bulk-edge correspondence. In topological band theory, two

sets of bands are said to be topologically equivalent if their energy spectra can be continuous

deformed into one another without closing a gap in the bulk. Once again think about the

analogy of the mug and the doughnut, the two mugs cannot be continuously connected

without gluing/cutting the space. We thus need to define a number that stays invariant under

any deformations, except to those who lead to closings of the bulk gap. At the gap closing

points the invariant is not defined while it is allowed to change across such a gap closing. We

can also make the connection to the quantum Hall effect, where it has been shown, that the

Hall conductance is proportional to an integer C, the so-called Chern number, defined as

C =

∫
dk

2π
Fxy(k). (1.33)

Here Fxy(k) is the Berry curvature, defined as

Fxy(k) = ∂kxAy(k)− ∂kyAx(k), Aµ(k) = i
∑
ν

〈ν k| ∂
∂kµ
|ν k〉, (1.34)

with Aµ being the Berry potential, and |ν k〉 being the filled Bloch states. The use and

definition of the Berry curvature/potential were established to show that the states of a
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Chapter 1. Introduction to Topological Superconductivity

Figure 1.4: Emergent topologically protected edge states of the two-dimensional

prototypical Hamiltonian of Eq. 1.8 for different sub-cases. In Figs. (b)-(d) we show

the dispersions of the Majorana modes residing at one of the two edges. All states

are of the Majorana type since Ξ2 = +1.
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Figure 1.5: (a) Profile of the parameterizing vector d̄(k) in the case of a trivial

phase with C = 0, and in a topological non-trivial phase with C = 1. In the

latter the d̄(k) wraps around the S2 sphere when k is swept across the first BZ. (b)

Winding of the parameterizing vector in 1D for a topologically trivial phase with

w = 0, and a topologically non-trivial phase with w = +1. It is evident that for

w = +1, the vector winds the S1 sphere once.

system picks up a phase, besides the usual dynamic one, when a closed loop is traced out

in parameter space [25], the so-called Berry/geometrical phase. The closed loop for Bloch

electrons is exactly the well-known Brillouin zone (BZ), which in 2D takes the form of a torus

T 2. To obtain a better intuition about the Chern number, let us consider a simple two-level

Hamiltonian

Ĥ(k) = d(k) · σ (1.35)

with σ = {σx, σy, σz} being the Pauli matrices spanning a two-dimensional Hilbert space,

e.g. spin space. For this system the Chern number can be written as [29]

C =
1

4π

∫
dk
[
∂kxd̄(k)× ∂ky d̄(k)

]
· d̄(k) (1.36)

where we have defined the normalized vector d̄(k) = d(k)/|d(k)|. Since the parameterizing

vector d̄(k) can be expressed as a vector on the S2 Bloch sphere, we see that the Chern

number is an integer counting the number of times d̄(k) covers the S2 Bloch sphere, when

k is integrated over the Brillouin torus T 2, thus an effective mapping from T 2 to S2. In

Fig. 1.5.(a) we show the configuration of the parameterizing vector d̄(k) when swept across

the whole Brillouin zone. It is clear from this figure that for C = 0, the d̄(k) does not wind

over the S2 sphere, whereas for C = +1 the vector modulates such that it exactly wraps over

the sphere once. The two phases with C = {0, 1} are connected via a region in parameter

space where the topological invariant is ill-defined. This region must be when a bulk gap

closes, where d(k) = 0, leading to a diverging d̄(k).

Equivalently systems in 1D can be studied by a winding number w, which is a mapping

from the BZ S1 sphere to the S1 sphere of the parameterizing vector. The authors of [30]
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Chapter 1. Introduction to Topological Superconductivity

developed an algebraic method to calculate the winding number for arbitrarily large matrices

with chiral symmetry in one dimension. Due to the presence of the chiral symmetry Π, we

can simultaneously diagonalize Π, and block off-diagonalize the Hamiltonian, in the way

Û †Ĥ(k)Û =

(
0 Â(k)

Â†(k) 0

)
, Û †ΠÛ = Diag {Π11,Π22 . . .ΠNN} . (1.37)

This allows us to define the normalized complex function z(k) = Det[Â(k)]/|Det[Â(k)]|, which

has its poles when the bulk gap closes, as can be seen by the relation

Det[Û †Ĥ(k)Û ] =
∏
i

Ei(k) = Det[Â(k)]Det[Â†(k)] (1.38)

where Ei(k) are the eigenenergies of the Hamiltonian. For a complex functions we can define

a winding in the complex plane, which we can parametrize with the vector

d(k) = (Re[Det[Â(k)]], Im[Det[Â(k)]], 0) (1.39)

giving us the winding that counts the number of times d̄(k) winds the S1 sphere, while

integrating over the BZ:

w =
1

2π

∫
dθ =

1

2π

∫
dk

dθ

dk
= − 1

2π

∫
dk
[
d̄(k)× ∂kd̄(k)

]
z
. (1.40)

Fig. 1.5.(b) illustrates the winding of the parameterizing vector d̄(k) when k is swept across

the BZ. It is clear that for w = 0, the vector does not wind the S1 sphere, unlike the case of

w = 1 where the vector winds once. Again note that the topological invariant is ill-defined

when a gap closes, since d̄(k) diverges, which implies that a topological phase transition can

take place.

Lastly, we make a connection to the bulk-edge correspondence stated at the beginning of

this chapter; we observe that the topological invariant is an integer, that only can change

under gap closings. Therefore must two connected materials, with different invariants N and

N ′ respectively, experience a number of |N −N ′| gap closings at the interface. This give rise

to the zero energy topological protected edge modes.
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Chapter 2

Topological Magnetic Iron-Based

Superconductors

Let alone the interesting aspects of a superconducting phase: the Meissner effect, zero re-

sistivity etc., a whole new branch of superconductors was recently discovered by Kamihara

et al. in 2008 [31], for which a plethora of magnetic, nematic and superconducting phases

are accessible. The materials are referred to as iron-based superconductors (FeSCs) or iron

pnictides/chalcogenides. Common characteristics for this family of materials is that their

parent crystallographic structure all consists of quasi-2D layers with iron atoms placed on a

square lattice, and a sublattice of As/Se above and below, as seen in Fig.2.1. Since a thorough

introduction of the FeSCs is beyond the scope of this thesis, we will refer to the reviews of

Refs. [32–34].

Particular interesting about these materials, within the context of this thesis, is the fact

that they have a diverse phase diagram, as shown in Fig. 2.2.(a), adopted from [35]. In

the diagram each colored region represents a distinct magnetic phase labeled by the phase’s

rotational symmetry, Cn, about the axes perpendicular to the quasi-2D layer. Some phases

have an additional label C/IC following the rotational symmetry label, indicating whether

the phase is commensurate/incommensurate. Lastly, at the foot of the magnetic dome, we see

a superconducting dome, leaving some of the labels with an S indicating a superconducting

phase. The occurrence of superconductivity at the foot of the magnetic dome is interesting by

itself, since it has provided indication that the pairing glue is mediated by spin fluctuations,

while it also give rise to regions where superconductivity coexists with magnetic phases. The

coexistence supplemented with a broad variety of magnetic phases, renders these high-Tc

materials as prominent candidates for TSCs.

Figure 2.1: Quasi-2D crystal structure for the FeSCs, adopted from [32].
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Figure 2.2: (a) Experimentally extracted phase diagram from [35], as a function of

temperature (T ) and Na doping. (b) Sketch of a typical Fermi surface of the FeSCs,

where the nesting of Ql (indicated by the arrows) leads to spin density waves. Here

the colors of the pockets represent the curvature of the band, with the green color

representing a hole pocket, and the gray an electron.

The development of the magnetic phases can be understood through a microscopic model

of the 2D Fe square lattice, where the electrons in the 3d orbitals are considered to be

itinerant [36]. Fitting the hopping matrix elements to DFT calculations and experiments [32],

one arrives at a Fermi Surface (FS) similar to the one sketched in Fig. 2.2.(b). The FS has

pockets with negative curvature (hole pockets) denoted by green, and pockets with positive

curvature (electron pocketes) depicted by gray. In realistic models the pockets will also carry

an orbital content, but we will keep the simple color scheme to distinguish pockets. As seen

from Fig. 2.2.(b) are the pockets connected by vectors Q1 = (π/a, 0) and Q2 = (0, π/a),

leading to a nesting of the kind

ξk+Ql = −ξk (2.1)

where ξk is the dispersion of the system. This nesting conditions leads to a Stoner-like

instability, and results in a magnetic phase, since the spin susceptibility peaks. Through a

Landau theory it has been shown that this instability leads to three stable magnetic phases

[34,37];

• Single-Q Stripe

M̂(r) = M̂ cos(Qy)σy (2.2a)

• Double-Q Charge Spin Density Wave

M̂(r) = M̂ [cos(Qy) + cos(Qx)]σy (2.2b)

• Double-Q Spin Vortex Crystal

M̂(r) = M̂ [cos(Qx)σx + cos(Qy)σy] (2.2c)
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Chapter 2. Topological Magnetic Iron-Based Superconductors

Figure 2.3: The three possible commensurate magnetic phases with Q = π
a . Note

that the dark dots in the Double-Q charge-spin density wave phase represent charge

ordering which also develops in this phase. The carets over the M below the figures

represent matrices in orbital space.

where Q = |Ql|, and the carets denote matrices in orbital space, since a general magnetic

OP will have different orbital weights. Here we have chosen an arbitrary direction for the

ordering wave vectorsQl and of the moments, but one can easily perform rotations to connect

to other spatial orientations. Note lastly that we have assumed the moments to be of equal

lengths, but they could in principle be different [37]. In Fig. 3.1 we show the three phases.

Although the pairing mechanism of the FeSCs stays controversial, predictions about the

nature of the pairing potential have already been established. The Cooper pairs consist of

two electrons, and the total spin of the pairs are thus spin singlet, S = 0, or spin triplet,

S = 1, assuming SOC to be absent. The lack of a net magnetic moment for the singlet

configuration implies that, that the uniform spin susceptibility must be vanishing for T → 0,

which is indeed shown in Knight shift experiments (discussed in [38] Sec.4.). Based on these

experimental data, it is strongly believed that the pairing truly is in the antisymmetric spin

singlet configuration.

Returning to the experimental findings of [35], shown in Fig. 2.2.(a), we see that the three

commensurate magnetic phases are insufficient to describe the broad variety of magnetic

phases. This led the authors of [39] to study the possible incommensurate magnetic phases of

a realistic five-orbital model, with a FS similar to the one depicted in Fig. 2.2.(b). Through

Landau theory they found 9 possible incommensurate phases, whereof three of these were the

extensions of the commensurate ones in Eqs. 2.2. The six new phases are shown below, and

in Fig.2.4;

• Single-Q Magnetic Helix ( )

M̂(r) = M̂ [sin(Q1 · r)σx + cos(Q1 · r)σy] (2.3a)

• Double-Q Helix with in-plane Stripe ( )

M̂(r) = M̂s cos(Q1 · r)σz + M̂x sin(Q2 · r)σx + M̂z cos(Q2)σz (2.3b)

• Double-Q Helix with out-of-plane Stripe ( )

M̂(r) = M̂s cos(Q1 · r)σz + M̂x sin(Q2 · r)σx + M̂y cos(Q2 · r)σy (2.3c)
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• Double-Q Double Parallel Helix ( )

M̂(r) = M̂x [sin(Q1 · r) + sin(Q2 · r)]σx + M̂z [cos(Q1 · r) + cos(Q2 · r)]σz (2.3d)

• Double-Q C4-symmetric Spin-Whirl Crystal ( )

M̂(r) = M̂x [cos(Q1 · r) + cos(Q2 · r)]σx + M̂⊥ [sin(Q2 · r)σy + sin(Q1 · r)σz]

(2.3e)

• Double-Q C2-symmetric Spin-Whirl Crystal ( )

M̂(r) = M̂s [sin(Q1 · r)σx + cos(Q1 · r)σz] + M̂y sin(Q2 · r)σy + M̂z cos(Q2 · r)σz.

(2.3f)

It is established that certain magnetic structures can lead to an effective SOC, which then

again could lead to an effective p-wave pairing, see Sec. 1.2. It is therefore worthwhile to

topologically classify these different phases when they coexist with superconductivity.

The FeSCs befall to be prominent candidates for topological superconductivity, due to

their intrinsic development of regions with coexistence of magnetism and superconductivity.

The troublesome procedure in engineering TSCs, discussed in Sec. 1.2, seems to be completely

circumvented in the case of the FeSCs, as long as the magnetic phase can give rise to an effec-

tive SOC. To investigate this interesting new possibility for topological superconductivity, we

will in the following formulate a general Hamiltonian for the FeSCs, which we at a later point

generalize to multi-band systems, and topologically classify each of the 9 possible magnetic

phases coexisting with certain classes of superconductivity.

2.1 General Hamiltonian for Magnetic Iron-Based Supercon-

ductors

A general Hamiltonian for a condensed matter system is typically of the type

H = He +HI +HeI, (2.4)

where He describes the dynamics of the electronic degrees of freedom, HI the ionic degrees

of freedom and HeI the interaction between the electrons and ions. We will, however, restrict

the analysis to involve only the electronic dynamics He, subjected to a periodic potential

generated by the static ions. We have here assumed the ions to have reached their equilibrium

position, and thus only serve as a periodic potential. The Hamiltonian under interest then

has the form

H = H0 +Hint

=

∫
dr ψ̂ †(r)

[
−~2∇2

2m
+ VI(r)

]
ψ̂(r)

+
1

2

∑
σ σ′

∫
dr

∫
dr′ ψ†σ(r)ψ†σ′(r

′)V (r, r′)ψσ′(r′)ψσ(r)

(2.5)
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Figure 2.4: Magnetic profiles for the six new incommensurate phases, from [39].

The colored circles are tied to the Eqs. 2.3. This figure also contains the labels

C2 and C4 representing the type of rotational symmetry preserved by the given

magnetic phase.
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where VI(r) is the periodic potential generated by the static ions, and V (r, r′) is the Coulomb

electron-electron interaction. The field operator ψσ(r) annihilates an electron at position r

with spin projection σ, and ψ̂(r) = (ψ↑(r), ψ↓(r))ᵀ. It is customary to expand the operators

in the complete set of Wannier states [40], in order to obtain a convenient tight-binding

Hamiltonian. We find the field operators in the new basis to be

ψ†σ(r) =
∑
µ

∑
i

〈i µ|r〉d †iµσ (2.6)

where i labels the position of the static ion cores Ri, and µ is the orbital/band of the

itinerant electrons at the site. In the case of FeSCs, electrons are tightly bound to the 3d

orbitals of the Fe atoms, which entitles us to make the crude approximation that the electron-

electron interaction is dominated by on-site contributions, i.e. a delta function in lattice-site

space [36,41]. With this, we arrive at the tight-binding Hamiltonian

H =
∑
i j

∑
µ ν

d̂ †iµ

[
−tµνij + µ0δi,jδµ,ν

]
d̂jν +

1

2

∑
i

∑
µ ν
µ′ν′

∑
σ σ′

d †iσµd
†
iσ′ν V

µνν′µ′diσ′ν′diσµ′ (2.7)

where we have defined the following matrix elements

µ0 =

∫
dr 〈iµ|r〉

[
−~2∇2

2m
+ VI(r)

]
〈r|iµ〉, (2.8a)

tµνij = −
∫

dr 〈iµ|r〉
[
−~2∇2

2m
+ VI(r)

]
〈r|jν〉, (2.8b)

V µνν′µ′ =

∫
dr

∫
dr′ 〈µ|r〉〈ν|r′〉V (r, r′)〈r′|ν ′〉〈r|µ′〉. (2.8c)

Here are the hopping matrix elements tµνij often fitted to experimental data, or DFT calcula-

tions [32,34,42,43]. Following the logic of App. B we can mean-field decouple the interaction

in the magnetic channel, i.e. channels of the form 〈d †iσµdjσ′ν〉. In doing so, followed by a

transformation to Fourier space, we retrieve the Hamiltonian

HMF(k) = H0(k) +Hmag(k) (2.9)

=
∑
k

∑
µν

d̂ †kµ ξ
µν
k d̂kν +

∑
k ql

d̂ †k+qlµ
Mµν

l · σ d̂k−qlν + const., (2.10)

where ξµνk are the dispersions in band space, Mµν
l are the magnetic order parameters defined

in App. B, and ql = Ql/2 are the nesting vectors of the system. The nesting vectors will in

the commensurate case be Q1 = (πa , 0) and Q2 = (0, πa ), as shown in Fig. 2.2.(b). For such

a set of nesting vectors, Ql = 2π
na with n ∈ Q\ {}, it is possible to define a magnetic unit

cell, with twice the size of the non-magnetic one. In extension to this we define a reduced

Brillouin zone (RBZ), where the momentum summation now is over k ∈ (q,−q], which forces

us to enlarge the spinor as follows

ψ̂kµ = (ψk+q2µ, ψk−q2µ)ᵀ, ψkµ = (d̂k+q1µ, d̂k−q1µ)ᵀ. (2.11)
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Let us define the operator d̂k such that it captures both spin and orbital/band degrees of

freedom. We can now write the Hamiltonian in the way

HMF(k) =
∑

k∈RBZ

(
d̂ †k+q1+q2

d̂ †k−q1+q2
d̂ †k+q1−q2 d̂ †k−q1−q2

)

ξ̂k+q1+q2 M̂1 · σ M̂2 · σ 0

M̂−1 · σ ξ̂k−q1+q2 0 M̂2 · σ
M̂−2 · σ 0 ξ̂k+q1−q2 M̂1 · σ

0 M̂−2 · σ M̂−1 · σ ξ̂k−q1−q2



d̂k+q1+q2

d̂k−q1+q2

d̂k+q1−q2
d̂k−q1−q2

 ,

(2.12)

where the carets in the matrix represent matrices in orbital/band space. As we mentioned

earlier, the six new magnetic phases are incommensurate, which means that we cannot define

a magnetic unit cell, nor a RBZ. This is due to the fact that the incommensurate wave vectors

Ql = 2π
na with n ∈ R\Q, eventually will result in an infinite long spinor in Eq. 2.12. We will,

however, do the approximation of only considering nesting close to the Fermi surface, i.e. cut-

off the momentum summation, such that we only consider the lowest order of harmonics [39].

In doing so, we obtain a closed set of equations on the same form as Eq. 2.12, but with Q

replaced by some incommensurate vector.

In order to circumvent writing the matrix in Eq. 2.12 explicitly, we employ the Pauli

matrices λ and ρ, acting on the momentum-transfer spaces Q1 and Q2 respectively, and get

HMF
low (k) =

∑
k∈RBZ

Ψ †k

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

+

(
M̂1 + M̂−1

2
ρx −

M̂1 − M̂−1

2i
ρy +

M̂2 + M̂−2

2
λx −

M̂2 − M̂−2

2i
λy

)
· σ

]
Ψk.

=
∑

k∈RBZ

Ψ †k ĥ(k) Ψk

(2.13)

with the same spinor as in Eq.2.12, and the subscript of the Hamiltonian indicating that

this is a low energy model for the incommensurate case. We have furthermore defined the

matrices ĥsi (k) in the following manner;

ĥ+
0 (k) =

ξ̂k+q1+q2 + ξ̂k−q1+q2 + ξ̂k+q1−q2 + ξ̂k−q1−q2
4

, (2.14a)

ĥ−1 (k) =
ξ̂k+q1+q2 + ξ̂k−q1+q2 − ξ̂k+q1−q2 − ξ̂k−q1−q2

4
, (2.14b)

ĥ−2 (k) =
ξ̂k+q1+q2 − ξ̂k−q1+q2 + ξ̂k+q1−q2 − ξ̂k−q1−q2

4
, (2.14c)

ĥ+
3 (k) =

ξ̂k+q1+q2 − ξ̂k−q1+q2 − ξ̂k+q1−q2 + ξ̂k−q1−q2
4

. (2.14d)

To understand the meaning of the superscripts s of the matrices ĥsi (k), we first need to discuss

the action of complex conjugation K. The single-particle Hamiltonian ĥ(k) in Eq. 2.13, is

defined by the basis states |k, ql, µ, σ〉. The momentum dependence turns out to be an

important property when considering complex conjugation, as can be seen by projecting the
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2.2. Bogoliubov-de Gennes Formalism

basis onto real space (where we for brevity have dropped all quantum numbers, except for

crystal momentum);

〈r|k〉∗ =
(
uk(r)eik·r

)∗
= u∗k(r)e−ik·r ⇒ u∗−k(r)eik·r = 〈r| − k〉∗ ≡ K〈r|k〉, (2.15)

where we used the Bloch wave-function 〈r|k〉 = uk(r) exp(ik · r). We can see from the

expressions above, that we can capture the action of K by reversing the crystal momentum,

and taking the complex conjugation of uk(r). The ordering wave vectors will also be reversed

under complex conjugation, however, since we have incorporated the star of the ordering

wave vectors in the basis |k, ql, µ, σ〉, the complex conjugation can be captured in the matrix

representation

K .
= λxρxK′, (2.16)

with K′ not acting on the ordering wave vectors, but only on k. To confirm the validity of

this representation consider the relation

K


〈r|k + q1 + q2〉
〈r|k − q1 + q2〉
〈r|k + q1 − q2〉
〈r|k − q1 − q2〉

 =


〈r| − k − q1 − q2〉∗

〈r| − k + q1 − q2〉∗

〈r| − k − q1 + q2〉∗

〈r| − k + q1 + q2〉∗

 .
=


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



〈r| − k + q1 + q2〉∗

〈r| − k − q1 + q2〉∗

〈r| − k + q1 − q2〉∗

〈r| − k − q1 − q2〉∗



= λxρxK′


〈r|k + q1 + q2〉
〈r|k − q1 + q2〉
〈r|k + q1 − q2〉
〈r|k − q1 − q2〉

 . (2.17)

Alas, the superscript of the matrices ĥsi (k) is simply the symmetry under complex conjugation;

K† ĥsi (k)K .
= λxρxK′† ĥsi (k)K′λxρx = s ĥsi (k). (2.18)

2.2 Bogoliubov-de Gennes Formalism

As it is clear from the preceding sections, the Hamiltonian of the FeSCs has to include

the possibility for a superconducting order parameter. Although the pairing mechanism is

controversial, it is adequate to describe the gap function through the usual BdG formalism.

After a mean-field decoupling in the Cooper channel, of an effective attractive interaction,

see App. B, the Hamiltonian obtains the form

HMF
sc (k) =

∑
k

Ψ†k ĥ(k) Ψk +
1

2

∑
k q

(
Ψ †k+q/2 ∆̂kq Ψ †−k+q/2 + h.c.

)
+ const. (2.19)

where the total momentum of the Cooper pairs, as usually, is set to zero, q = 0, since we

are here not concerned with a superconductor in a large magnetic field with the possibility

of a Fulde-Ferrell-Larkin-Ovchinnikov phase (for an example see [44]). The matrix ĥ(k) and

the spinor Ψk are defined to be the same as in Eq.2.13. The Hamiltonian is now bilinear in
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Chapter 2. Topological Magnetic Iron-Based Superconductors

creation (annihilation) operators, but to rewrite it on a matrix form we need to double the

degrees of freedom, and thereby include the single-hole behavior, therefore

H(k) =
1

2

∑
k

(
Ψ †k Ψ ᵀ

−kλxρx

)(ĥ(k) ∆̂k

∆̂†k −λxρx ĥᵀ(−k)λxρx

)(
Ψk

λxρx

(
Ψ †−k

)ᵀ)+

�
���

���1

2

∑
k

Tr[ĥ(k)]

=
1

2

∑
k

Ψ̂†k Ĥ(k) Ψ̂k. (2.20)

The trace over ĥ(k) originates from the inclusion of the single-hole behavior, −λxρxĥᵀ(−k)λxρx,

and is simply a constant shift of the eigenenergies and can therefore be dropped. Here we

again see the matrix representation λxρx that reverse the ordering wave-vectors, as seen in

Eq. 2.17, which is necessary since a hole has the opposite crystal momentum compared to its

electronic counterpart.

The BdG formalism has the advantage that certain symmetry transformations obtain a

simplified form, as will become clear later in this chapter. Consider at first the relation for

the spinor

Ψ̂†k = Ψ̂ᵀ
−kτxλxρx (2.21)

inserting this in Eq. 2.20. gives the powerful relation

Ĥ(k) = −τxλxρxĤᵀ(−k)τxλxρx, (2.22)

which will be used throughout in the upcoming sections. Furthermore it reflects the antisym-

metry of the pairing potential ∆̂k = −∆̂ᵀ
−k. This restriction on the pairing potential, helps

in formulating a general superconducting OP.

Superconducting Order Parameter

As mentioned above, we know that the pairing potential needs to be antisymmetric under

quantum number exchange of the electrons; ∆̂k = −∆̂ᵀ
−k. We also know that this matrix is

defined in orbital/band, spin and Bloch space. Thus all combinations generating an antisym-

metric pairing function are allowed. Based on this, we can have the following combinations

for spin singlet pairing

• Symmetric in Bloch space and orbital/band exchange.

• Antisymmetric in Bloch space and orbital/band exchange.

Which generates a general singlet pairing OP on the form

∆̂k = i
(

∆̂+
orbf(k) + i∆̂−orbd(k)

)
σy, (2.23)

where we have defined the even/odd functions, f(k) = f(−k), d(k) = −d(−k), and the

matrices in band/orbital space ∆̂s
orb, with the property(

∆̂s
orb

)ᵀ
= s∆̂s

orb. (2.24)
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2.2. Bogoliubov-de Gennes Formalism

Notice that we here have defined the odd orbital/band matrices as complex matrices, similar

to the usual representation of spin operators with Ŝy being imaginary. For a five-orbital

model the orbital space would be spanned by the SU(5) matrices defined in App. A, where

we have used the same definition with the antisymmetric orbitals being imaginary. Lastly we

include the possibility of a complex pairing by splitting ∆̂k up into real and imaginary parts,

so that

∆̂k = ∆̂ Re
k + i∆̂ Im

k . (2.25)

With a general singlet pairing potential established in Eq.2.23, we observe that a convenient

rotation of the hole component of the spinor can be performed

Ψ̂ †k =
(

Ψ†k,−iΨ
ᵀ
−kλxρxσy

)
(2.26)

which results in a pairing potential diagonal in spin space, and a convenient representation

of the magnetic OPs. The BdG relations in Eq.2.21., and Eq.2.22. get modified to

Ψ̂ †k = Ψ̂ ᵀ
−kτyλxρxσy, Ĥ(k) = −τyλxρxσy Ĥᵀ(−k) τyλxρxσy. (2.27)

The final single-particle BdG Hamiltonian thus becomes

Ĥ(k) = τz

(
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

)
+

(
M̂1 + M̂−1

2
ρx −

M̂1 − M̂−1

2i
ρy +

M̂2 + M̂−2

2
λx −

M̂2 − M̂−2

2i
λy

)
· σ

+ τx

(
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

)
− τy

(
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

)
(2.28)

where we have defined the matrices ∆̂
sRe/Im
i (k) in a similar way as in Eqs.2.14, but with ξ̂k

replaced by ∆̂k.

Symmetries in BdG Formalism

To incorporate the symmetry operation, defined in Eq. 1.15, in the BdG formalism, we

should also include the transformation of the hole sector. By means of the fermionic anti-

commutation relations, we arrive at the matrix representation of G in the BdG formalism

as

D(G) =
d(G) + λxρxσy d

ᵀ(G)λxρxσy
2

1τ +
d(G)− λxρxσy dᵀ(G)λxρxσy

2
τz. (2.29)

The BdG Hamiltonian in the symmetry transformed basis is related to the old basis through

the relation

G† Ĥ(k)G
.
= D†(G) Ĥ(Gk)D(G). (2.30)

Let us revisit the aforementioned symmetries in Sec. 1.4 now that the basis |k, ql, µ, σ〉 of

the single-particle Hamiltonian ĥ(k) has been established, and that we know how the BdG

Hamiltonian transforms.
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Chapter 2. Topological Magnetic Iron-Based Superconductors

Inversion

We have the relation for the inversion transformed basis

I|k, ql, µ, σ〉 = | − k, −ql, Iµ, σ〉. (2.31)

The systems under consideration either have µ as a band index, i.e. invariant under inversion

if the inversion is an element of the symmetry point group, or as 3d-orbitals. Theses orbitals

have orbital angular momentum l = 2, which means Iµ = µ (see Eq. 1.19). We are thus only

concerned with the transformation of the wave vectors. In order to reverse the ordering wave

vectors we have, see Eq. 2.17

d(I) = D(I) = λxρx. (2.32)

The BdG Hamiltonian in the transformed basis is related to the old in the way;

I† Ĥ(k) I .
= λxρxĤ(I k)λxρx = −τyσyĤᵀ(k)τyσy, (2.33)

where Eq.2.27. was used in the last equality.

Charge Conjugation

From Eq.2.27 we find the matrix representation of charge conjugation to be

d(C) = D(C) = τyλxρxσyK′. (2.34)

The BdG Hamiltonian will transform as follows

D†(C) Ĥ(k)D(C) = τyλxρxσyĤᵀ(−k)τyλxρxσy = −Ĥ(k) (2.35)

where we made use of Eq.2.27 in the latter equality. One notes that this antiunitary charge

conjugation coincides with the generalized charge conjugation, Ξ = D(C), discussed in

Chap. 2.3, for classes that can harbor MFs. This generalized charge conjugation operator

renders the Hamiltonian in one of the three Majorana classes; BDI, D or DIII.

Translation

How do translation operations now modify the basis of our system? To answer this question,

let us for now drop the quantum numbers: ql, µ and σ for clearance, and consider a translation

by a single lattice constant a along n̄

tn̄a |k〉 =

∫
dr tn̄a |r〉〈r|k〉 =

∫
dr |r + n̄a〉〈r|k〉 =

∫
dr |r〉〈r − n̄a|k〉

=

∫
dr |r〉uk(r − n̄a)eik·(r−n̄a) =

∫
dr |r〉〈r|k〉e−ik·n̄a = |k〉e−ik·n̄a,

(2.36)

where the Bloch wave function 〈r|k〉 = uk(r) exp(ik · r), and the periodicity uk(r + n̄a) =

uk(r) were used. The translation thus acts as a U(1) rotation on the basis states. By

including the ordering wave vectors in the basis, the following translations have the matrix

representations

D(tx̄a) = τzρz, D(tȳa) = τzλz, D(t(1,1)
a ) = λzρz. (2.37)
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2.2. Bogoliubov-de Gennes Formalism

The overall U(1) phases have been removed in the matrix representations above, since they

leave the Hamiltonian inert.

Lastly it is possible to define, in a similar way, a translation in momentum space. Consider

the basis state, where we again have dropped the remaining quantum numbers for clarity,

translated by the momentum p along n̄

tn̄p |k〉 = |k + pn̄〉. (2.38)

If the translation coincides with the ordering wave-vectors, we must have the following matrix

representations

D(tx̄Q) = ρx, D(tȳQ) = λx, D(t
(1,1)
Q ) = λxρx. (2.39)

Note that a translation of Q(1, 1) is used in defining the complex conjugation operator K =

t
(1,1)
Q K′ .= λxρxK′, since this translation changes the sign of all the ordering wave-vectors.

Time Reversal

For spin-1/2 particles we retrieve the following matrix representation

T .
= ÛT K = e−iŜyπ/~K = −iσyK = −iλxρxσyK′, (2.40)

which transforms the Hamiltonian as

Ĥ′(k) = λxρxσyK′†Ĥ(k)K′λxρxσy = λxρxσyĤᵀ(−k)λxρxσy = −τyĤ(k)τy (2.41)

where Eq. 2.27. again was exploited in the latter equality.

Simplification of Magnetic Order Parameters

On physical grounds we would expect the magnetic OPs to transform in certain ways under

symmetry transformations. Let us denote the terms of the Hamiltonian with magnetic OPs

as Ĥmag. We have therefore the following restrictions

C † Ĥmag C = −Ĥmag, T † Ĥmag T = −Ĥmag. (2.42)

To see the effects of the two symmetry operations, let us consider the magnetic OPs with

ordering wave vector Q1 from Ĥmag;

ĤQ1
mag =

[
M̂1 + M̂−1

2
ρx −

M̂1 − M̂−1

2i
ρy

]
· σ. (2.43)

The magnetic OPs are clearly odd under time-reversal, see Eq.2.41. The particle hole sym-

metry puts a restriction on the OPs, as can be seen from the relation

C† ĤQ1
mag C = C†

[
M̂1 + M̂−1

2
ρx −

M̂1 − M̂−1

2i
ρy

]
· σ C

= −

[
K′† M̂1 + M̂−1

2
Kρx −K′†

M̂1 − M̂−1

2i
Kρy

]
· σ.

(2.44)
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and similarly for an magnetic OP with Q2. Since K′ does not act on the ordering wave vector,

we must have the relation K′†M̂lK = M̂∗
l , compared to the full complex conjugation which

would act as K†M̂lK = M̂∗
−l. Consider the complex conjugation K′ on the OP, as follows

K′†
[
M̂l + M̂−l

2

]
K′ =

[
M̂l + M̂−l

2

]∗
=

[
M̂l + M̂ †

l

2

]∗
=
M̂∗

l + M̂ᵀ
l

2
=

[
M̂l + M̂−l

2

]ᵀ
⇓[

M̂l + M̂−l
2

]ᵀ
=
M̂l + M̂−l

2
(2.45)

with the latter equation true for a magnetic OP odd under charge conjugation, as dictated

in Eq.2.42. Applying the same analysis to the second OP in Eq.2.43, we get similarly

K′†
[
M̂l − M̂−l

2i

]
K′ =

[
M̂l − M̂−l

2i

]∗
=

[
M̂l − M̂ †

l

2i

]∗
= −

M̂∗
l − M̂

ᵀ
l

2i
=

[
M̂l − M̂−l

2i

]ᵀ
⇓[

M̂l − M̂−l
2i

]ᵀ
=
M̂l − M̂−l

2i
. (2.46)

Since both matrices are symmetric under complex conjugation, i.e. real matrices, one might

as well define the following compact notation

M̂Re
l =

M̂l + M̂−1

2
, M̂ Im

l =
M̂l − M̂−1

2i
. (2.47)

The superscript nomenclature is appropriate due to the fact that the matrices are real. This

results in the compact single particle Hamiltonian

Ĥ(k) = τz

(
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

)
+
(
M̂Re

1 ρx − M̂ Im
1 ρy + M̂Re

2 λx − M̂ Im
2 λy

)
· σ

+ τx

(
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

)
− τy

(
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

)
(2.48)

2.3 Topological Classification of Iron-Based Superconductors

With the low energy Hamiltonian for the FeSCs established, it is now possible to classify

the different magnetic phases coexisting with superconductivity. Since the procedure for

classifying the Hamiltonians is somewhat cumbersome, only a single classification scheme

is shown here. The interested reader is encouraged to study all the classifications in detail

in App. C. Classification tables summarizing the results of this section are to be found in

Table. 2.1-2.2.
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Topological Classification of Double-Q C4-symmetric Spin-Whirl Crystal ( )

The Fourier components of the Double-Q C4-symmetric Spin-Whirl ( ) magnetic OPs from

Eq. 2.3e are

M̂1 =
1

2

(
M̂x, 0,−iM̂⊥

)
, M̂2 =

1

2

(
M̂x,−iM̂⊥, 0

)
. (2.49)

The magnitudes of the fields are related through the Landau parameter Λ [39], in the way

M̂x =
M̂ sin(Λ)√

2
, M̂⊥ =

M̂ cos(Λ)√
2

. (2.50)

After insertion in Eq. 2.48 we obtain the Hamiltonian to be classified:

Ĥ(k) = τz

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

]
+
M̂xρxσx + M̂⊥ρyσz

2
+
M̂xλxσx + M̂⊥λyσy

2

+τx

(
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

)
−τy

(
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

)
.

(2.51)

We will first in the classification consider a real superconducting order parameter, followed

by a more general complex one. We will also assume the matrices in orbital/band space to

be without any symmetries, hence not leading to any unitary symmetries. We obtain the

following classification for the different gap functions

• Real Superconducting OP:

For a strictly real superconducting order parameter, i.e. ∆̂s Im
i (k) = 0, the system ac-

quires a chiral symmetry, along with a generalized time-reversal and charge-conjugation

symmetry;

Θ2 =
(
λyρyσyK′

)2
= −1, Ξ2 =

(
τyλxρxσyK′

)2
= +1, Π2 = (τyλzρz)

2 = 1. (2.52)

The Hamiltonian thus belongs to the class DIII, with an Z2 invariant in 2D. The

magnetic texture in question cannot be defined in 1D, due to the double-Q nesting,

and the topological invariant in 1D should therefore not be considered. We further-

more observe that the generalized time-reversal operator can be rewritten in the form

Θ = D(t
(1,1)
a )D(T ), constituting a hidden symmetry [23], with a translation of one

lattice constant in x and y-direction, followed by a time-reversal operation.

• Complex Superconfucting OP:

By setting ∆̂s Im
i 6= 0, the presence of all Nambu matrices breaks chiral symmetry and

generalized time-reversal. However, charge conjugation is still present;

Θ2 = 0, Ξ2 =
(
τyλxρxσyK′

)2
= +1, Π2 = 0. (2.53)

It is clear that the system resides in the class D, where a Z invariant can be defined in

2D.

For classification of the remaining magnetic phases coexisting with superconductivity, see the

Tables. 2.1-2.2.
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Real Superconducting OP

Phase Class 1 2

Single-Q Stripe BDI⊕BDI Z 0

Double-Q Charge-Spin Density Wave CI⊕CI - 0

Double-Q Spin-Vortex Crystal BDI⊕BDI - 0

Complex Superconducting OP

Phase Class 1 2

Single-Q Stripe D⊕D Z2 Z
Double-Q Charge-Spin Density Wave C⊕C - Z
Double-Q Spin-Vortex Crystal D⊕D - Z

Table 2.1: Table summarizing the topological classification for the commensurate

magnetic phases, carried out in App. C. Each table considers distinct superconduct-

ing order parameters. The possible types of invariants are also shown in the table,

for a given dimensionality. Certain magnetic textures can not be defined in 1D, and

are indicated by a minus instead of the usual type of invariant.
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Real Superconducting OP

Phase Class 1 2

Single-Q Magnetic Helix ( ) BDI⊕BDI Z 0

Double-Q Helix with in-plane Stripe ( ) AIII⊕AIII - 0

Double-Q Helix with out-of-plane Stripe ( ) DIII - Z2

Double-Q Double Parallel Helix ( ) AIII⊕AIII - 0

Double-Q C4-symmetric Spin-Whirl Crystal ( ) DIII - Z2

Double-Q C2-symmetric Spin-Whirl Crystal ( ) DIII - Z2

Complex Superconducting OP

Phase Class 1 2

Single-Q Magnetic Helix ( ) D⊕D Z2 Z
Double-Q Helix with in-plane Stripe ( ) A⊕A - Z
Double-Q Helix with out-of-plane Stripe ( ) D - Z
Double-Q Double Parallel Helix ( ) A⊕A - Z
Double-Q C4-symmetric Spin-Whirl Crystal ( ) D - Z
Double-Q C2-symmetric Spin-Whirl Crystal ( ) D - Z

Table 2.2: Table summarizing the topological classification for the commensurate

magnetic phases, carried out in App. C. Each table considers distinct superconduct-

ing order parameters. The possible types of invariants are also shown in the table,

for a given dimensionality. Certain magnetic textures can not be defined in 1D, and

are indicated by a minus instead of the usual type of invariant.
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2.4 Point Group Symmetry for the FeSCs

Point group theory is an important tool in understanding phase transitions, predicting pos-

sible order parameters and selection rules [26, 27, 45–48]. Even more one needs to have in

mind point group symmetries when doing topological classifications. Before discussing and

applying the tools of point group theory on the FeSCs, we will first briefly introduce some

relevant concepts and derivations based on Ref. [26,27].

Point Group Symmetry

A symmetry point group is a finite group consisting of symmetry operations, where the given

operation leaves at least one point invariant. The symmetry operations include rotations,

mirror reflections, improper rotations etc., which leave the physical, or abstract, object in-

variant. The fact that these operations form a finite group G = {G0, G1, G2 . . . GN−1}, with

N being the order of the group, apply us with the following usable knowledge:

The group is stable, i.e. the product of any two elements in G is itself contained in G;

if Gi, Gj ∈ G, then Gk = GiGj with Gk ∈ G. (2.54)

a)

The associative law is true

Gi (GjGl) = (GiGj)Gl, for all alements Gi, Gj , Gk ∈ G. (2.55)

b)

The set G has an identity (also called unit) element satisfying

EG = GE = G, for all elements G ∈ G, (2.56)

where it is customary to define the identity element as the first element in the set G,

i.e. G0 ≡ E.

c)

For every element G ∈ G, there exist an inverse element G−1 such that;

G−1G = GG−1, for all elements G ∈ G. (2.57)

d)

Point a) allows for a multiplication table, which tells us how the combination of elements

are interrelated. Additionally such a table can illustrate whether a group is Abelian, i.e.

[Gi, Gj ] = 0, or not. Point d) informs that every symmetry operation has an inverse operation.

Another important aspect of group theory is that the group G can be divided further into

disjoint conjugation classes Ki. Such classes are defined by all the elements G′ that are

connected to G ∈ G in the following way, see Fig.2.5.;

G′ = U GU−1, for U ∈ G. (2.58)

The physical system under consideration is governed by the BdG Hamiltonian in momen-

tum space Ĥ(k), which we know transforms under a symmetry transformation as shown in

Eq. 2.30. It is therefore desirable to represent the symmetry operations G through matrix

representations D(G), that has be chosen such that D(GiGj) = D(Gi)D(Gj).
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2.4. Point Group Symmetry for the FeSCs

Figure 2.5: Representation of the group G that has been divided into disjoint

conjugation classes. Each element in a class Ki has, by construction, the same

character χ(G).

The matrix representations are not unique, since a matrix D(Gi) equivalently could have

been represented though the similarity transformed matrix U−1D(Gi)U , or as a direct sum

of representations D(Gi)⊕D(Gj). To circumvent this issue it is customary only to consider

irreducible representations (IRs), i.e. matrix representations that can not be further block

diagonalized and reduced. A matrix representation for the element Gi in the IR Γj is usually

denoted DΓj (Gj). Tied to these IRs are the traces of the matrices, also known as characters,

χΓj (Gi) = TrDΓj (Gi), since these remain invariant under a change of basis. Note that

elements in the same class by construction have the same character (they are all connected

by similarity transformations), see again Fig.2.5.

Without specifying the matrix representation, it is possible to construct a character table

that includes all the characters for the possible IRs of the group, and how the IRs transform

under the symmetry elements. In order to construct this table we will introduce some essential

tools. First of all, it can be shown that the dimensionality li of the irreducible matrix DΓi(G)

has the property ∑
i

l2i = N (2.59)

where N is the order of th group. Next, a theorem of great importance is the ”Wonderful

Orthogonality Theorem” for Character,1 which states the following:∑
G

χΓj (G)χΓi(G−1) = NδΓi,Γj , (2.60)

according to which inequivalent IRs are orthogonal.

In order to exemplify the somewhat abstract statements from above, let us construct the

character table for the point group C4v with the elements

C4v =
{
E,C4, C4, C2, σxz, σyz, σx=y, σx=−y

}
. (2.61)

Here E is the identity operator, Cn is the rotation of 2π/n about the z-axis, and σb is the

reflection in the mirror plane b. For visualization of the elements see Fig. 2.6.(a). We first

1Which follows directly from the ”Wonderful Orthogonality Theorem” named by Van Vleck [27].
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IR E 2C4 C2 2σv 2σd Linear, Rotations Quadratic

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 -1 -1 Rz

B1 1 -1 1 1 -1 x2 − y2

B2 1 -1 1 -1 1 xy

E 2 0 -2 0 0 (x, y), (Rx, Ry) (xz, yz)

Table 2.3: Character table for the point group C4v, with the IRs in the first column,

and the classes along the first row. We also show polynomial functions transforming

according to the IRs.

find the five classes

K1 = E, K2 =
{
C4, C4

}
, K3 = C2, K4 = {σxz, σyz} , K5 = {σx=y, σx=−y} , (2.62)

which implies that there exists five IRs. Exploiting the fact that the identity element always

can be represented as the identity matrix 1, which can be reduced to a 1 × 1 matrix, we

know that at least one of the IRs has to be one-dimensional. We thus get the relation for the

remaining dimensions of the IRs from Eq.2.59.:∑
i

li = 12 + l22 + l23 + l24 + l25 = 8, ⇒ l2 = l3 = l4 = 1, and l5 = 2 (2.63)

revealing that we have four one-dimensional IRs and one two-dimensional. The trivial IR,

usually denoted A1, is easy to construct since it by definition is invariant under the action of

all elements, and we therefore get the gray row in Table.2.3. Furthermore, the character for

the identity element has to satisfy χΓi(E) = li, leading the gray column in the same table.

By insertion of χA1(G−1) in the ”Wonderful Orthogonality Theorem for Character”we arrive

at the useful relation ∑
G

χΓi(G)χA1(G−1) =
∑
G

χΓi(G) = 0, (2.64)

that, after some combinatorics and orthogonality checks, reveals the final character table seen

in Table.2.3. Not all groups are as simple as the C4v, and additional steps might be necessary

in the determination of character tables. For a nice stepwise manual see [27] Chap. 3. Note,

however, that literature often supplies already determined character tables, see e.g. [49].

With the character table and matrix representation established for the given group, it

is possible to rewrite the Hamiltonian in IRs, and classify each term. Let us consider the

Hamiltonian

Ĥ(k) = ĥA1(k) + ĥΓ(k), (2.65)

where ĥΓi(k) is a matrix transforming as the IR Γi. If Γ is anything but the trivial IR A1,

the system no longer belongs to the given point group, but some subgroup of it, since the

Hamiltonian is not invariant under all the elements. For an extensive symmetry breaking

scheme see Ref. [45].
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2.4. Point Group Symmetry for the FeSCs

Figure 2.6: (a)-(b) Illustrate the decomposed point group D4h = C4v ⊗ {E, I}
used in the point group analysis. It is clear that the two decomposed cases, C4v and

C4v ⊗ I can be combined to the group D4h in (c). The elements inversion, I, and

improper rotation, S4, are not illustrated but simply included as text. The figures

were greatly inspired by Ref. [45].
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IR E 2C4 C2 2C ′2 2C ′′2 I 2S4 σh 2σv 2σd Linear, Rot. Quadratic

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 -1 -1 1 1 1 -1 -1 Rz

B1g 1 -1 1 1 -1 1 -1 1 1 -1 x2 − y2

B2g 1 -1 1 -1 1 1 -1 1 -1 1 xy

Eg 2 0 -2 0 0 2 0 -2 0 0 (Rx, Ry) (xz, yz)

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1 z

B1u 1 -1 1 1 -1 -1 1 -1 -1 1

B2u 1 -1 1 -1 1 -1 1 -1 1 -1

Eu 2 0 -2 0 0 -2 0 2 0 0 (x, y)

Table 2.4: Character table for the point group D4h, with the IRs down the first

column, and the classes along the first row. The figure also shows the representative

rotations and functions to quadratic order.

Iron-Based Superconductors

After having established the concepts of point groups, the theory will know be applied to the

Hamiltonian in Eq.2.48. Where we both will consider µ to be an orbital index, and a band

index. The FeSCs belong to the point group D4h. For unified formalism, we will also consider

the Hamiltonian, where µ defines a band index, to be D4h invariant as well.

By considering Fig.2.6. is is clear that the point group can be decomposed in the way

D4h = C4v⊗{E, I}, with E and I being the identity and inversion element respectively. The

two S4 elements are improper rotations consisting of a rotation of π/2, followed by a mirror

reflection in the plane perpendicular to the rotation axis. Since the matrix representation of

the inversion element already is established in Eq.2.33., we only need to formulate the matrix

representation for the elements of C4v. Table.2.3. shows the character table of the group D4h.

Matrix Representation of Group Elements

With the group elements and their physical effects on the system known, as illustrated in

Fig. 2.6, it is straightforward to define the matrix representations as done in Sec. 2.2, followed

by a classification of the generators of the Hamiltonian. In doing so, one needs to consider

the following degrees of freedom for the general Hamiltonian in Eq. 2.48;

• Spin

• Orbital/Band

• Momentum Transfer

• Nambu.

The Hamiltonian has no SOC term, since it is here considered negligible, and the group

elements thus leave the spin space inert. Therefore the matrix representation of the point

group elements in the identity matrix in spin space. Additionally is the transformation in

Nambu space already known from Eq. 2.29, leaving us only with the determination of the
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2.4. Point Group Symmetry for the FeSCs

transformation of the wave-vectors and orbitals/bands. However, since the band space has

to transform as the trivial IR, since Ĥ0(k) has to transform as A1g, we can assume the bands

to be invariant under all the elements of the group. Thus leaving us with the task of defining

the transformations in orbital space, and the effect on the crystal momenta. Starting from

the wave-vectors, we know that these transform as vectors;

Ek = k, C2k = −k,

C4k = (−ky, kx) , C4k = (ky,−kx) ,

σxzk = (kx,−ky) , σyzk = (−kx, ky) , (2.66)

σx=yk = (ky, kx) , σx=−yk = (−ky,−kx) ,

and similar for the ordering wave-vectors ql. However, since the basis includes the star of the

ordering wave-vectors2 the effects can be captured in the following matrix representations

d̂λρ(E) = 1λ1ρ d̂λρ(C2) = λxρx,

d̂λρ(C4) =
ρx + λx + iλzρy − iλyρz

2
, d̂λρ(C4) =

ρx + λx − iλzρy + iλyρz
2

,

d̂λρ(σxz) = λx d̂λρ(σyz) = ρx, (2.67)

d̂λρ(σx=y) =
1λ1ρ + λxρx + λyρy + λzρz

2
, d̂λρ(σx=−y) =

1λ1ρ + λxρx − λyρy − λzρz
2

.

Note that the two momentum-transfer spaces λ and ρ are interrelated and can not be con-

sidered separately.

Assuming the band space to transform trivially under all symmetry operations, the re-

sulting matrix representation must simply be D(G) = 1, for G ∈ C4v. In orbital space,

however, one needs to consider the transformation of each orbital. Exploiting the suggestive

nomenclature of the orbitals, it is straightforward to see how each one of the orbitals trans-

forms. Exemplifying this by considering the itinerant 3d electrons of the FeSCs, we arrive at

the matrix representation (using the basis
{
xz, yz, xy, x2 − y2, z2

}
)

d̂κ(E) = 1κ d̂κ(C2) =
1

5
1κ −

2√
3
κ8 +

4√
15
κ24,

d̂κ(C4) = −1

5
1κ − iκ2 +

1√
3
κ8 − κ23 +

1√
15
κ24, d̂κ(C4) = −1

5
1κ + iκ2 +

1√
3
κ8 − κ23 +

1√
15
κ24,

d̂κ(σxz) =
1

5
1κ + κ3 +

1√
3
κ8 +

4√
15
κ24 d̂κ(σyz) =

1

5
1κ − κ3 +

1√
3
κ8 +

4√
15
κ24,

d̂κ(σx+y) =
1

5
1κ + κ1 −

1√
3
κ8 − κ23 −

1√
15
κ24, d̂κ(σx−y) =

1

5
1κ − κ1 −

1√
3
κ8 − κ23 −

1√
15
κ24.

Where κ denote the SU(5) generators acting in orbital space, defined in App. A. The repre-

sentation in terms of κ is compact, but unfortunately not transparent. Due to this, we have

included the explicit matrix form of the representations in App. D, to get a better physical

intuition of each transformation. We are now entitled to combine all the above to get the

2The set of wave vectors that are obtained by applying all the point group elements to the fundamental

wave-vector.
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final matrix representation of the elements of the group C4v;

D̂(E) = 1,

D̂(C2) =

[
1

5
1κ −

2√
3
κ8 +

4√
15
κ24

]
λxρx,

D̂(C4) =

[
−1

5
1κ − iκ2 +

1√
3
κ8 − κ23 +

1√
15
κ24

]
ρx + λx + iλzρy − iλyρz

2
,

D̂(C4) =

[
−1

5
1κ + iκ2 +

1√
3
κ8 − κ23 +

1√
15
κ24

]
ρx + λx − iλzρy + iλyρz

2
,

D̂(σxz) =

[
1

5
1κ + κ3 +

1√
3
κ8 +

4√
15
κ24

]
λx, (2.68)

D̂(σyz) =

[
1

5
1κ − κ3 +

1√
3
κ8 +

4√
15
κ24

]
ρx,

D̂(σx+y) =

[
1

5
1κ + κ1 −

1√
3
κ8 − κ23 −

1√
15
κ24

]
1λρ + λxρx + λyρy + λzρz

2
,

D̂(σx−y) =

[
1

5
1κ − κ1 −

1√
3
κ8 − κ23 −

1√
15
κ24

]
1λρ + λxρx − λyρy − λzρz

2
.

By replacing the matrices in orbital space by identity matrices we retrieve the representation

for µ being a band index. We can know take each possible generator of the Hamiltonian, and

see how it transforms under the elements of the group. In doing so, we also need to check if

the given generators are irreducible or not. We arrive at the table of single IRs in Table.2.5.

The IR of combined generators is retrieved from the product table, shown in Table.2.6., e.g.

κ22λyρy transforms as the IR B1g ⊗ B1u = A1u. Had the generators been accompanied by

a scalar field transforming as the IR Γ, i.e. fΓ(k)κ22λyρy, the resulting IR would similarly

be Γ ⊗ A1u. It is now possible to classify all possible terms arising in the Hamiltonian, and

investigate which terms break a symmetry.
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2.4. Point Group Symmetry for the FeSCs

Generators E 2C4 C2 2σv 2σd I I.R.

τx, τy, τz 1 1 1 1 1 1 A1g

κ2, κ18, (λyρz − λzρy) 1 1 1 -1 -1 1 A2g

κ22 1 -1 1 1 -1 1 B1g

κ20, (λyρz + λzρy) 1 -1 1 -1 1 1 B2g

(κ5, κ7), (κ10, κ14), (κ12, κ16),
2 0 -2 0 0 2 Eg

(λy, ρy), (λxρy, λyρx)

κ17 1 1 1 -1 -1 -1 A1u

κ8, κ23, κ24, (λx + ρx), λxρx 1 1 1 1 1 -1 A2u

κ1, κ19, λyρy, λzρz 1 -1 1 -1 1 -1 B1u

κ3, κ21, (λx − ρx) 1 -1 1 1 -1 -1 B2u

(κ4, κ6), (κ9, κ13), (κ11, κ15),
2 0 -2 2 0 -2 Eu

(λz, ρz), (λxρz, λzρx),

Table 2.5: The possible IRs in the Hamiltonian. The IRs of combined generators

can be found by the means of the product table in Table. 2.6.

⊗ A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu

A1g A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu

A2g A2g A1g B2g B1g Eg A2u A1u B2u B1u Eu

B1g B1g B2g A1g A2g Eg B1u B2u A1u A2u Eu

B2g B2g B1g A2g A1g Eg B2u B1u A2u A1u Eu

Eg Eg Eg Eg Eg
A1g ⊕A2g

Eu Eu Eu Eu
A1u ⊕A2u

⊕B1g ⊕B2g ⊕B1u ⊕B2u

A1u A1u A2u B1u B2u Eu A1g A2g B1g B2g Eg

A2u A2u A1u B2u B1u Eu A2g A1g B2g B1g Eg

B1u B1u B2u A1u A2u Eu B1g B2g A1g A2g Eg

B2u B2u B1u A2u A1u Eu B2g B1g A2g A1g Eg

Eu Eu Eu Eu Eu
A1u ⊕A2u

Eg Eg Eg Eg
A1g ⊕A2g

⊕B1u ⊕B2u ⊕B1g ⊕B2g

Table 2.6: Product table for the point group D4h. This table can be used to see

how two IR generators in Table. 2.5 can be combined into a single IR.
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Chapter 3

Topological Phases in 1D Magnetic

Superconductors

After having throughly performed the topological classification for the wide variety of possible

magnetic phases in a magnetic superconductor, Eq. 2.48, see Table. 2.1-2.2, the focus will in

the proceeding be aimed at the Double-Q C4-symmetric Spin-Whirl Crystal ( ) phase:

M̂(r) = M̂x [cos(Q1 · r) + cos(Q2 · r)]σx + M̂⊥ [sin(Q2 · r)σy + sin(Q1 · r)σz] . (3.1)

This magnetic texture is interesting since it can render the system in of the three Majo-

rana classes, BDI, D and DIII, where the former is achieved through dimensional reduction

resulting in a magnetic helix phase ( ). The system belongs to the classes DIII (D) for a

real (complex) superconducting order parameter. However, as we will discuss later, the class

D is also accessible for a real superconducting order parameter by inclusion of a magnetic

field. We can thus limit our analysis to real superconducting OPs, and still achieve the three

Majorana classes.

Since a brute-force study of the topological phases of the five-orbital Hamiltonian, Eq. 2.48,

in an incommensurate phase is a demanding task, a bottom-up approach will be applied. We

will thus start from a simple Single-Band Model (1BM) in 1D, followed by the extension to

a Two-Band Model (2BM). The extension to two bands is in order to capture the essence of

nesting between different pockets, as will become more clear in the 2D models in Chap.4. A di-

mensional reduction of Eq.3.1 leaves the magnetic texture as a general isotropic helix( ). The

simplest commensurate ordering wave-vector that supports such modulation is Q = 3π
2a ≡

−π
2a ,

with a periodicity of four lattice sites. A ordering wave vector of the usual commensurate

type, Q = π/a will simply result in the usual single-Q magnetic stripe phase. The simpli-

fication of assuming a commensurate ordering wave-vector allows us to consider the system

exactly, since we do not need to make any approximations in order to get a closed set of

equations, as it is the case for the incommensurate phases in Chap. 2. This simplification

does not violate the topological properties of the system, since these are solely determined by

the magnetic texture, and not the magnetic ordering wave-vector, as can be seen from Eq.1.10

which belongs to the class BDI for an, in general, incommensurate wave-vector. Lastly we

will in the following keep the superconducting OPs at the minimal s-wave form, in order to

make the whole process simple and transparent.
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3.1. Single-Band Model

Figure 3.1: (a) Real space representation of the Single-Band Model introduced in

Eq. 3.2. (b) The system can be viewed as a ring of atoms when imposing periodic

boundary conditions. (c) Shows the band structure in the first BZ, with the nesting

vectors indicated by yellow arrows. (d) Shows the RBZ after foldings with respect

to Q. The nested points, kNP, are indicated by yellow dots.

3.1 Single-Band Model

For the simple 1BM consider the tight-binding Hamiltonian of an electron with nearest neigh-

bor hopping, moving in an anisotropic helical magnetic field:

H =
∑
i j

d̂ †i [−tδj,i±a + µδi,j +Mx cos(QRi)δi,jσx +M⊥ sin(QRi)δi,jσy] d̂j (3.2)

where a is the lattice constant, and d̂i = (di↑, di↓)
ᵀ. This Hamiltonian is nothing but a

lattice version of the Hamiltonian in Eq.1.9., with an anisotropic magnetic helix. If we were

to define the Hamiltonian in Bloch space, we need to define the momentum transfer spaces

in 1D, similar to the formalism in Eq. 2.48. Additionally, since the RBZ will reign from

k ∈ (−q, q], we would need to include an extra momentum transfer space in the way

η : {k, k − 4q} , ρ : {k + q, k − q} (3.3)

to cover the old BZ. The single-particle Hamiltonian in Bloch space becomes

ĥ(k) = h+
0 (k) + h+

1 (k)ηz + h−2 (k)ρz + h−3 (k)ηzρz +
Mxρxσx +M⊥ρyσy

2

+ηx
Mxρxσx −M⊥ρyσy

2
,

(3.4)

where hsi (k) is, as usual, linear combinations of ξk shifted by appropriate momenta. Note

that a rotation in spin space can be performed in order to connect to the dimensional re-

duced system in the perpendicular direction. We have in Fig. 3.1.(a) shown the real space

representation of the hopping matrix elements. When imposing periodic boundary conditions

the chain of atoms can be viewed as a ring, Fig. 3.1.(b). In Fig. 3.1.(c) we show the band

structure, ξk = −2t cos(k) + µ, in the first BZ. Here the chemical potential has been tuned

such that nesting takes place at the Fermi level, µ =
√

2t, as indicated by the yellow arrow. It

is evident from this figure, that nesting also takes place at finite energy (note that 3Q ≡ −Q).

Lastly the RBZ is shown in Fig. 3.1.(d) where the yellow points are the nested points kNP ∈
RBZ.
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Single-Band Model in the Isotropic Helix Phase

Adopting the relation for the magnetic moments magnitudes, see Eq. 2.50, we must be in

the isotropic phase when Mx = M⊥ = M/2. A peculiar feature for this phase is that the

Hamiltonian easily can be simplified through a unitary transformation, as seen in Eq. 1.9 and

Fig. 1.3.(b)-(c). The Hamiltonian takes the form

H =
∑
i j

d̂ †i

[
−tδj,i±a + µδi,j +

Mδij (cos(QRi)σx + sin(QRi)σy)

2

]
d̂j

=
∑
i j

d̂ †i e
−iqRiσz

[
−eiqRiσz tδj,i±ae−iqRjσz + µδi,j +

Mδijσx
2

]
eiqRjσz d̂j ,

(3.5)

allowing us to avoid the use of the momentum transfer spaces ρ and η when transforming to

Bloch space. The single particle Hamiltonian, after the inclusion of an s-wave superconducting

OP, takes the following form in Bloch space

Ĥ(k) = τzξk−qσz +
Mσx

2
+ ∆τx

= τz
(
ξ+
k + ξ−k σz

)
+
Mσx

2
+ ∆τx,

(3.6)

where the spinor has been extended to the BdG spinor Ψ̂†k = (d̂ †k ,−id̂
ᵀ
−kσy), with the spin-

rotated hole component. Note that the latter equality is true since the dispersion ξk is even

under inversion, and can be split up as follows

ξk−qσz = ξ+
k + ξ−k σz (3.7)

with the superscripts indicating the symmetry under inversion. The Hamiltonian belongs

to the class BDI as expected from Table. 2.2 and Chap. 1, with the symmetries Θ = σxK,

Ξ = τyσyK and Π = τyσz. As discussed in the beginning of this chapter, a complex super-

conducting order parameter can render the Hamiltonian to be in the class D. But, as it is

clear from the given symmetries, the Hamiltonian can make the same transition by including

a magnetic field Ĥz = B · σ, which breaks Θ and Π.

The presence of chiral symmetry allows us to calculate the winding invariant through the

procedure discussed in Sec. 1.6. The unitary operator Û = (τyσz + τz)/
√

2 brings Eq. 3.6. on

the desired off diagonal form

Û †Ĥ(k)Û =

(
0 Â(k)

Â†(k) 0

)
, Â(k) = −i

(
ξ+
k σz + ξ−k

)
− Mσy

2
−∆. (3.8)

The parametrizing vector d(k) thus becomes

dx(k) = Re
[
Det[Â(k)]

]
=
(
ξ+
k

)2 − (ξ−k )2 − M2

4
+ ∆2 (3.9a)

dy(k) = Im
[
Det[Â(k)]

]
= 2ξ−k ∆. (3.9b)

From the parametrizing vector we can extract an important relation for the nested points

kNP, fulfilling ξkNP±q = ξkNP∓q, and the gap closing points kGC, namely that they coincide,

kNP ≡ kGC (the yellow dots in Fig. 3.1.(d)). In order to show this, we know that gap closings
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3.1. Single-Band Model

must occur whenever d(k) = 0, since the unit vector d̄(k) will diverge, resulting in an ill-

defined topological invariant. We observe that the component dy(k) is vanishing for ξ−k = 0,

since the superconducting s-wave gap always is non-zero. We thus find that gap closings take

place at the wave-vectors fulfilling

ξ−kGC
= 0. (3.10)

These wave-vectors are exactly the same satisfying the condition for nesting, as can be seen

in the relation

ξkGC±q = ξkGC∓q ⇒
�
��ξ+
kGC
∓ ξ−kGC

=
�

��ξ+
kGC
± ξ−kGC

, (3.11)

which yields kGC ≡ kNP. Now that the gap closing points are known, we can determine the

criteria for gap closing by solving dx(kNP) = 0, leaving us with

M = ±2
√

∆2 + (ξ+
kNP

)2 ≡ ±2
√

∆2 + ξ2
NP. (3.12)

We have defined ξNP = ξ+
kNP

= ξkNP±q as the energy at the nested point. For the 1BM

the energies at the nested points are ξNP =
{

0, 2
√

2 t
}

, as indicated by the yellow dots in

Fig. 3.1.(d). The knowledge of the nested points can furthermore be used to linearize d(k)

about the nested points, since the main contributions of the winding number stem from these.

For our 1BM we have kNP = {0, π/a} for k ∈ BZ, obtained from Eq.3.11. After a linearizion

we arrive at

dx(k) ≈ ξ2
NP −

M2

4
+ ∆2, dy(k) ≈ 2∆vNPk. (3.13)

where the expansion coefficients are defined as

ξ+
k ≈ ξNP, ξ−k ≈ vNPk, (3.14)

where it is clear that ξNP and vNP both are functions of the nested points kNP. The winding

is then easily found to be

w =
∑

kNP∈BZ

Sign [∆vNP]
Sign

[
M2

4 −∆2 − ξ2
NP

]
2

. (3.15)

Finally inserting the parameters for the 1BM, with Sign [vNP] = {+1,−1}, one arrives at

w = Sign [∆]
Sign

[
M2

4 −∆2
]
−
[
M2

4 −∆2 − 8t2
]

2
. (3.16)

The invariant reveals that the system is in a topological non-trivial phase for 2∆ < M <

2
√

∆2 + 8t2, with a single Majorana fermion per end when opening the ring in Fig. 3.1.(b).

Single-Band Model in the Anisotropic Helix Phase

Extending the analysis from the section above to a more general magnetic phase, namely the

anisotropic magnetic helix, one can not perform the unitary transformation of Eq. 1.9 in real

44



Chapter 3. Topological Phases in 1D Magnetic Superconductors

space, and therefore needs to fold to the RBZ and include the additional momentum transfer

spaces defined in Eq. 3.3,

Ĥ(k) = τz
(
h+

0 (k) + h+
1 (k)ηz + h−2 (k)ρz + h−3 (k)ηzρz

)
+
Mxρxσx +M⊥ρyσy

2
+ ηx

Mxρxσx −M⊥ρyσy
2

+ ∆τx
(3.17)

with the following spinor of the system

Ψ̂†k =
(

Ψ†k,−iΨ
ᵀ
−kρxσy

)
, Ψ†k =

(
d̂ †k+q, d̂

†
k−q, d̂

†
k−3q, d̂

†
k+3q

)
. (3.18)

In this formalism complex conjugation acquires the form K = ρxK′, in correspondence to a

dimensionally reduced complex conjugation operation defined for Eq. 2.48. The single particle

Hamiltonian acquires the unitary symmetry ρzσz, which allows for a block diagonalization

by means of the operator Ô = (ρzσz + σx)/
√

2

Ô†Ĥ(k)Ô = τz
(
h+

0 (k) + h+
1 (k)ηz + h−2 (k)ρz + h−3 (k)ηzρz

)
+ρx

Mxσ −M⊥
2

+ ηxρx
Mxσ +M⊥

2
+ ∆τx,

(3.19)

where σ = ±1 are the eigenvalues of σx. The block diagonal Hamiltonian Ĥσ=1(k)⊕Ĥσ=−1(k)

belongs to the symmetry class BDI⊕BDI with the symmetries Θ = ρxK′, Ξ = τyρyK′ and

Π = τyρz. It is now possible to classify each block and define its corresponding invariant wσ.

The chiral symmetry allows for the block off-diagonalization through Û = (τyρz + τz)/
√

2

Û †Ĥσ(k)Û =

(
0 Âσ(k)

(Âσ(k))† 0

)
, (3.20a)

with the matrix

Âσ(k) = −i
(
h+

0 (k)ρz + h+
1 (k)ηzρz + h−2 (k) + h−3 (k)ηz

)
−ρy

Mxσ −M⊥
2

− ηxρy
Mxσ +M⊥

2
−∆.

(3.20b)

If we next consider the 1BM, we see that we have a single gap closing point at kNP = 0 for

k ∈RBZ, as seen in Fig. 3.1.(d). We can thus once again linearize about this point to get

h+
0 (k) ≈

√
2 t, h+

1 (k) ≈ −
√

2 t, (3.21a)

h−2 (k) ≈ 0, h−3 (k) ≈ −
√

2 t k. (3.21b)

This results in the parametrizing vector dσ(k) with the components

dσx(k) =
(
M2
x −∆2

) (
M2
⊥ −∆2

)
+ 2t2

(
4∆2 − [Mx − σM⊥]2

)
(3.22a)

dσy (k) = −16
√

2t3∆k, (3.22b)

with the resulting invariant for each block

wσ = Sign [t∆]
Sign

[(
M2
x −∆2

) (
M2
⊥ −∆2

)
+ 2t2

(
4∆2 − [Mx − σM⊥]2

)]
2

. (3.23)

The invariants wσ can now be combined into one single invariant w, which has to coincide

with Eq. 3.16 obtained for an isotropic helix in the limit Mx = M⊥ = M/2. There are several
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3.1. Single-Band Model

Figure 3.2: The winding of the parameterizing vectors d̄σ(k) of k. This figure

clearly illustrates that the parameterizing vectors can not be compactified. We have

in the figure assumed Sign [dσx(k)] = +1 and Sign [t∆] = +1.

routes to determine the combination of the windings: one can plot the windings in parameter

space in the isotropic helix limit, and see how these should be combined to coincide with the

parameter space of Eq. 3.16. Alternatively one can approach this algebraically, again in the

isotropic helix limit;

wσ=+1 ± wσ=−1 =

Sign

[(
M2

4 −∆2
)2

+ 8t2∆2

]
± Sign

[(
M2

4 −∆2
)2

+ 8t2∆2 − 2t2M2

]
2

=
1± Sign

[(
M2

4 −∆2
)(

M2

4 −∆2 − 8t2
)]

2

=
Sign

[
M2

4 −∆2
]
± Sign

[
M2

4 −∆2 − 8t2
]

2
,

(3.24)

where we have assumed t∆ > 0. Lastly one could include an infinitesimal term, which breaks

the unitary symmetry ρzσz, and do a determination of the invariant of the total Hamiltonian

Ĥ(k). Followed by letting the infinitesimal symmetry breaking term go to zero, and see how

this result is related to the winding of the two blocks wσ. It is of great importance that the

infinitesimal symmetry-breaking term only breaks the symmetry ρzσz, and not any other.

From the algebraic method shown, it is clear that the total winding must be

w = wσ=+1 − wσ=−1. (3.25)

The unintuitive combination of windings is due to the fact that the parametrizing vectors

d̄σ(k) do not have the same value at the RBZ boundaries, i.e. they are not compactified. This

means that the winding of each block does not constitute a topological invariant, since they

cannot cover the S1 sphere alone, but only in combination [50]. To illustrate the behavior of

the parametrizing vectors, we have illustrated the winding of d̄σ(k) in Fig. 3.2, as a function

of momentum, with k ∈ [−∞,+∞), since d̄σ(k) has been linearized. This figure clearly

illustrates that d̄σ(k) cannot be compactified, and their respective windings are therefore not

topological invariants.

We have plotted the topological phase diagrams for different values of Λ in Fig. 3.3.(a),

where Λ connects the two magnitudes in the way

Mx = M sin(Λ)/
√

2, M⊥ = M cos(Λ)/
√

2. (3.26)

For the yellow regions in the phase diagram we find w = 1, and thus we expect one MF

localized at each end of the open system. In Fig. 3.3.(b) we show the gap closings and re-

openings of the bandstructure for a path in parameter space (I-VI), in the case of anisotropic
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Chapter 3. Topological Phases in 1D Magnetic Superconductors

magnetic helix with Λ = π
8 . Lastly, Fig.3.3.(c) depicts the absolute square of the real space

Majorana wave functions for an asymmetric spiral with Λ = π/8.

Low Energy Projection of Single-Band Model

The calculations carried out in the above sections are exact, since the Hamiltonian has the

simple form in Eq. 3.17. Had the Hamiltonian been of a more complicated structure, or

simply of greater dimensionality, one could do a low energy projection. Such a projection is

not necessary in this chapter, however, we will simply outline the procedure, so it is clearer for

more complicated systems discussed later. As we know, gap closings take place at the nested

points kNP, where the 1BM has the following energies at the nested points ξNP =
{

0, 2
√

2t
}

.

It is desired to get an effective low energy Hamiltonian, which describes the nested points

at the Fermi level ξNP = 0, without including the higher energy contributions. This can be

done by finding the bands that partake in the nesting at the Fermi level, and project the

Hamiltonian onto these, i.e. the states fulfilling

Ĥ0(kNP)|ν kNP〉 = 0. (3.27)

For the given 1BM the low energy state is |ηz = +1〉, resulting in the low energy Hamiltonian

Ĥ′σ(k) = τz

(
ξk+q + ξk−q

2
+
ξk+q − ξk−q

2
ρz

)
+ ρx

Mxσ −M⊥
2

+ ∆τx. (3.28)

We find the winding number to be

wσ = Sign [∆]

Sign

[(
Mxσ−M⊥

2

)2
−∆2

]
2

. (3.29)

The above result simply tells us that, in the isotropic helix case, the system is in a topological

non-trivial phase whenM > 2∆. This coincides with the exact invariant calculated in Eq.3.16,

however, we do not capture the upper bound of the topological phase, i.e. M < 2
√

∆2 + 8t2,

since the gap closing driving the system into a trivial phase has been projected out. This

approximation scheme is of course only valid for M/(2
√

2t)� 1, i.e. magnetic gaps less than

the high energy at the nested point. If M ∼ 2
√

2t the high energy nested bands start to

generate gap closings.
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3.1. Single-Band Model

Figure 3.3: (a) Shows the topological phase diagram for different magnetic helices

for different Λ. (b) Depicts the gap structure and how it changes for a sweep in

parameter space from I-VI. (c) Shows a real space calculation of the Majorana wave

functions in the topological non-trivial phase. The length of the chain is L = 1000 a,

where a is the lattice constant.
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Chapter 3. Topological Phases in 1D Magnetic Superconductors

Figure 3.4: (a) Real space representation of the Two-Band Model introduced in

Eq.3.30. (b) The system can be viewed as a ring of atoms when imposing PBCs.

(c) Shows the band structure in the first BZ, with the nesting vectors indicated by

yellow arrows. (d) Shows the RBZ after a folding with respect to Q. The nested

points, kNP, are indicated by yellow dots. Note that we in (c) only have shown

one set of nested points, even though the system also has nested points that are

connected by inversion to the ones shown.

3.2 Two-Band Model

With the theory for the 1BM in 1D established, we are now ready to extend to the 2BM in

1D, and see how an additional band modifies the symmetries and topological phases of the

system. The inclusion of an additional band results in the real space Hamiltonian

H =
∑
i j

d̂ †i

[
t̂

2
δj,i±a + t̂ ′

(
δj,i±2a

2
+ δi,j

)
− ε̂δi,j + κxMx δi,j cos(QRi)σx

+κxM⊥ δi,j sin(QRi)σy

]
d̂j

(3.30)

where the hopping parameters, magnetic order parameters and on-site energies now are ma-

trices in band space spanned by {1κ, κx, κy, κz};

t̂ =
te + th

2
+
te − th

2
κz, t̂′ = t′h

1κ − κz
2

, ε̂ =
εe + εh

2
+
εe − εh

2
κz. (3.31)

with e and h labeling the two bands. We have chosen the magnetic order parameter to be

strictly inter-band, since the inclusion of the additional band is done so to capture the effect of

nesting between different pockets in a 2D system, similar to Fig.2.2.(b). In order to generate

nesting at the Fermi level, we have tuned the parameters as shown in Table.3.1. The choice

of the 2BM seems rather arbitrary, but reproduces a FS in 2D somewhat similar to the FS

of the five-orbital model in [39]. It has the desired electron pockets at the high symmetry

points X and Y , and hole pockets at Γ and M , as will become evident for the 2BM in 2D. A

transformation to Bloch space gives a Hamiltonian of the form in Eq.3.4, but with the terms

being matrices in band space, and with the two band dispersions

ξek = te cos(k)− εe, ξhk = th cos(k) + t′h [cos(2k) + 1]− εh. (3.32)

49



3.2. Two-Band Model

Parameter Value [te]

th 2.86

t′h 1

εe -0.92

εh -0.80

Table 3.1: Values of parameters in units of te, in order to achieve nesting at the

Fermi level.

Fig.3.4.(a)-(b) show the real space representation of the hopping matrix elements with PBCs.

In Fig. 3.4.(c) we have shown the band structure for the two distinct bands; green for the

band labeled by h, and gray for the band labeled by e. The nested points are indicted by

arrows, and we note that the inclusion of an extra band allows yet another set of nested

points, namely the inversion transformed counterparts of the ones shown in the figure. Lastly

is the folded band structure shown in Fig.3.4.(d), where we again have illustrated all the set

of nested points by yellow dots.

Two-Band Model in the Isotopic Helix Phase

Once again the isotropic helix allows for the unitary transformation as in Eq. 3.5;

H =
∑
ij

d̂ †i e
−iqRiσz

[
eiqRiσz

(
t̂

2
δj,i±a + t̂ ′

(
δj,i±2a

2
+ δi,j

))
e−iqRiσz − ε̂ δi,j

+
Mκxσx

2
δi,j

]
eiqRjσz d̂j

(3.33)

where we have used the spinor d̂i = (d̂ie, d̂ih)ᵀ = (die↑, die↓, dih↑, dih↓)
ᵀ. Including the pairing

potential, followed by a transformation to Bloch space, we arrive at

Ĥ(k) = τz

[
ξe+
k + ξh+

k

2
+
ξe+
k − ξh+

k

2
κz

]
+ τz

[
ξe−k + ξh−k

2
+
ξe−k − ξh−k

2
κz

]
σz

+
Mκxσx

2
+ ∆τx.

(3.34)

where Eq.3.7. was applied to the dispersions ξµk , with µ = {e, h}. We already see here that, the

band degree of freedom allows for the symmetry κzσz, which splits the Hamiltonian into the

two blocks labeled by σ, after a unitary transformation with the operator Ô = (κzσz+σx)/
√

2;

Ĥσ(k) = τz

[
ξe+
k + ξh+

k

2
+
ξe+
k − ξh+

k

2
κz

]
+ στz

[
ξe−k + ξh−k

2
κz +

ξe−k − ξh−k
2

]

+
σMκx

2
+ ∆τx.

(3.35)

The momentum transfer spaces are not included, and complex conjugation operation must

be the usual K. We observe that the second term in the Hamiltonian breaks the generalized

time-reversal symmetry Θ, and the generalized charge conjugation symmetry Ξ, but leaves a

chiral symmetry Π = τyκz, resulting in the class AIII⊕AIII. By inspection of Table.2.2, one
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Chapter 3. Topological Phases in 1D Magnetic Superconductors

would be surprised that this symmetry class emerges, but this is simply because the system

has a symmetry due to the band degree of freedom, whereas in the classification in Sec. 2.3

it was assumed that the band/orbital matrices had a random form. Even though each block

of the Hamiltonian do not support MFs, a combination of the two does. As we will see

later in this section, the Hamiltonian has a symmetry ensuring the occurrence of a pair of

topologically protected states at each edge when the system is in the topologically non-trivial

phase. These two states can be combined into two real wave functions, i.e. MFs.

Once again the chiral symmetry allows for block off-diagonalization, through the unitary

operator Û = (τyκz + τz)/
√

2

Û †Ĥσ(k)Û =

(
0 Âσ(k)

(Âσ)†(k) 0

)
, Âσ(k) = −i

(
εσk, 0 + εσk, 1κz

)
− σMκy

2
−∆, (3.36)

where, for brevity, the following was defined

εσk, 0 =
ξe+
k − ξh+

k

2
+ σ

ξe−k + ξh−k
2

, εσk, 1 =
ξe+
k + ξh+

k

2
+ σ

ξe−k − ξh−k
2

, (3.37)

which leads to the parametrizing vector d(k), with the components

dσx(k) =
(
εσk, 1

)2 − (εσk, 0)2 − M2

4
+ ∆2 dσy (k) = 2∆εσk, 0. (3.38)

We can confirm that gap closings for the 2BM also takes place at the nested points, since

dy(k) = 0 when

εσkGC, 0
= 0 ⇒ ξe+

kGC
+ σξe−kGC

= ξh+
kGC
− σξh−kGC

⇒ ξekGC−σq = ξhkGC+σq, (3.39)

with the last equality being the criteria for nesting between the two bands, i.e. kGC ≡ kNP.

The equation above also indicates that each block has a separate set of nested points, kσNP.

The nested points in one σ-block is connected to the other through inversion, as discussed in

the figure text of Fig.3.4.(c). This can be seen through the relation

I ξekNP−σq = I ξhkNP+σq ⇒ ξe−kNP+σq = ξh−kNP−σq. (3.40)

We thus find kσNP = −k−σNP. Solving dσ(kσNP) = 0 leaves us with the criteria for gap closing

M = ±2
√

∆2 + (εσkσNP, 1
)2 = ±2

√
∆2 + (ξe+

kσNP
+ σξe−kσNP

)2 = ±2
√

∆2 + ξ2
NP, (3.41)

where ξNP = ξekσNP−σq
= ξhkσNP+σq is the energy at the nested point. It is clear that the criteria

is similar to the criteria obtained for the 1BM in an isotropic helix phase in Eq. 3.12. To

calculate the winding number for each block, we can once again linearize about the nested

points

εσk, 0 ≈ ασNP k, εσk, 1 ≈ ξNP + βσNP k (3.42)

where ασNP and βσNP are functions of the set of nested points kσNP. The expansion coefficients

of the two blocks are connect in the way

ασNP = −α−σNP, βσNP = −β−σNP, (3.43)
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as can be seen from the inversion symmetry of εσk, 0 and εσk, 1 upon differentiation. To make

this statement more transparent, take the relation for ασNP

ασNP = ∂k ε
σ
k, 0

∣∣
k=kσNP

= ∂k

[
ξe+
k − ξh+

k

2
+ σ

ξe−k + ξh−k
2

] ∣∣∣∣∣
k=kσNP

=

[
∂k
ξe+
k − ξh+

k

2︸ ︷︷ ︸
Odd

+σ ∂k
ξe−k + ξh−k

2︸ ︷︷ ︸
Even

]∣∣∣∣∣
k=kσNP

= −α−σNP,

(3.44)

where a similar logic can be applied for the other expansion coefficient βσNP. The components

of the parametrizing vector thus becomes

dσx(k) = ξ2
NP + 2ξNPβ

σ
NPk −

M2

4
+ ∆2, dσy (k) = 2∆ασNPk, (3.45)

which results in the winding for each block of the Hamiltonian

wσ =
∑

kσNP ∈BZ

Sign [ασNP∆]
Sign

[
M2

4 −∆2 − ξ2
NP

]
2

. (3.46)

From the relation in Eq.3.43. the winding of the two blocks are related in the way

wσ = −w−σ. (3.47)

Once again due to the non-compactified d̄σ(k) vector, we need to combine the two windings

in a right manner. A straight forward guess would be to subtract the two, i.e.

w = wσ=+1 − wσ=−1 = 2wσ, (3.48)

since the other possible combination would result in w = wσ=+1 + wσ=−1 = 0, see Eq.3.47.

Since we do not have a benchmark to compare the total winding number with, as for the

isotropic helix in the 1BM, we could include an infinitesimal symmetry breaking term and

calculate the winding of the total Hamiltonian Ĥ(k). We will instead assume Eq. 3.48 to

hold, and verify this through real space calculations later in this section.

Each block has two nested points kNP, one with low energy, and one with high energy, as

seen in Fig.3.4.(c). The energies at the nested points are respectively ξNP = {0, 1.88 te}, and

the sign of the expansion coefficients are Sign [ασNP] = {+1,−1} for each point respectively.

This gives us the total winding number of the Hamiltonian

w = Sign [∆] Sign

[
M2

4
−∆2

]
− Sign [∆] Sign

[
M2

4
−∆2 − (1.88 te)

2

]
. (3.49)

This result tells us that we get two topological protected states at each end of the system,

whenever 2∆ < M < 2
√

∆2 + (1.88 te)2. We observe that the inclusion of an additional band

imposes an inversion symmetry connecting d̄σ(k) of the two blocks, and thereby insures the

occurrence of a pair of modes at each end, when opening the ring in Fig.3.4.(b). Thus every

time a gap closes at kσNP, the connecting inversion symmetry ensures a similar gap closing at

−kσNP. This confirms that we obtain a pair of topological protected states at each edge, which

can be combined into two real MF solutions even though we are in the class AIII⊕AIII.
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Two-Band Model in the Anisotropic Helix Phase

Once again, extending the above analysis to a general anisotropic helix phase requires the

inclusion of the momentum transfer spaces, as in Eq.3.17. The Hamiltonian thus becomes

Ĥ(k) = τz

(
ĥ+

0 (k) + ĥ+
1 (k)ηz + ĥ−2 (k)ρz + ĥ−3 (k)ηzρz

)
+κx

Mxρxσx +M⊥ρyσy
2

+ κxηx
Mxρxσx −M⊥ρyσy

2
+ ∆τx

(3.50)

with the spinor

Ψ̂ †k =
(

Ψ †k ,−iΨ
ᵀ
−kρxσy

)
, Ψ †k =

(
ψ †ke, ψ

†
kh

)
, ψ†kµ =

(
d̂ †k+qµ, d̂

†
k−qµ, d̂

†
k−3qµ, d̂

†
k+3qµ

)
(3.51)

The matrices ĥsi (k) are now linear combinations of ξ̂k = Diag
{
ξek, ξ

h
k

}
shifted with the ap-

propriate momenta, similar to the ones defined in Eq.2.48. Firstly we note the Hamiltonian

enjoys the symmetry ρzσz, as for the 1BM in an anisotropic helix phase. We block diagonalize

with Ô = (ρzσz + σx)/
√

2, to get the Hamiltonian of the two sectors as

Ĥσ(k) = τz

(
ĥ+

0 (k) + ĥ+
1 (k)ηz + ĥ−2 (k)ρz + ĥ−3 (k)ηzρz

)
+κxρx

Mxσ −M⊥
2

+ κxηxρx
Mxσ +M⊥

2
+ ∆τx.

(3.52)

Additionally we find the symmetry κzρz, which results to additional block diagonalization

with Ô = (κzρz + ρx)/
√

2, resulting in the Hamiltonian for each block

Ĥρσ(k) = τz

(
ĥ+

0 (k) + ĥ+
1 (k)ηz + ρκzĥ

−
2 (k) + ρκzĥ

−
3 (k)ηz

)
+ρκx

Mxσ −M⊥
2

+ ρκxηx
Mxσ +M⊥

2
+ ∆τx.

(3.53)

With the chiral symmetry present Π = τyκz, we find the matrix Âρσ(k) by off diagonalizing

the Hamiltonian with the unitary operator Û = (τzκz + τy)/
√

2;

Âρσ(k) = −i
(
ĥ+

0 (k)κz + ĥ+
1 (k)κzηz + ρĥ−2 (k) + ρĥ−3 (k)ηz

)
+ρκy

Mxσ −M⊥
2

+ ρκyηx
Mxσ +M⊥

2
−∆.

(3.54)

The symmetry giving rise to the σ block structure was the same as for the 1BM, which

indicates that the winding for each of these should be subtracted to constitute a topological

invariant. We also know from the 2BM in a isotropic helix phase that, the inclusion of an

additional band gave rise to two blocks connected by inversion, which for the given case,

seems to be the two ρ-sectors. This would immediately give us the following combination of

the windings

w =
(
wρ=+1σ=+1 − wρ=+1σ=−1

)
−
(
wρ=−1σ=+1 − wρ=−1σ=−1

)
. (3.55)

To check the equation above, let us write the block Hamiltonians ĥρσ(k) explicitly on matrix

form, when excluding Nambu space;

ĥρ=1σ(k) =


ξek+q 0 Mxσ−M⊥

2
Mxσ+M⊥

2

0 ξek−3q
Mxσ+M⊥

2
Mxσ−M⊥

2
Mxσ−M⊥

2
Mxσ+M⊥

2 ξhk−q 0
Mxσ+M⊥

2
Mxσ−M⊥

2 0 ξhk+3q

 , (3.56a)
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3.2. Two-Band Model

and

ĥρ=−1σ(k) =


ξek−q 0 −Mxσ−M⊥

2 −Mxσ+M⊥
2

0 ξek+3q −Mxσ+M⊥
2 −Mxσ−M⊥

2

−Mxσ−M⊥
2 −Mxσ+M⊥

2 ξhk+q 0

−Mxσ+M⊥
2 −Mxσ−M⊥

2 0 ξhk−3q

 . (3.56b)

We observe from the matrices, that ρ indeed describes the two blocks connected by inversion

I ξekNP−ρq = I ξhkNP+ρq, ⇒ ξe−kNP+ρq = ξh−kNP−ρq, (3.57)

in equivalence to the two σ-sector for the 2BM in the isotropic helix phase. This tells us that

wρσ = −w−ρσ. We also observe that in the isotropic helix limit, Mx = M⊥ = M/2, only

certain bands are nested in each σ-sector. For σ = +1 we get the matrix

ĥρ σ=+1(k) =


ξek+ρq 0 0 ρM2

0 ξek−ρ3q ρM2 0

0 ρM2 ξhk−ρq 0

ρM2 0 0 ξhk+ρ3q

 . (3.58)

We have the following nestings: ξek+ρq = ξhk+ρ3q and ξek−ρ3q = ξhk−ρq, which do not have a

solution in the RBZ, i.e. kNP 6∈ RBZ, and we can thus simply concentrate on the single

σ = −1 block, and the winding number can thus be found through

w = 2wρ σ=−1. (3.59)

It is now straightforward to linearize the dispersions about the nested points in the σ = −1

block, and calculate the winding. This procedure is as in the preceding sections, but the

result is long and unintuitive, so we have instead plotted the winding in parameter space for

different values of Λ, see Fig.3.5.(a). In Fig.3.5.(b) we show how the band structure develops

as we make a sweep in parameter space from I-VI (Λ = π/8). Here we see that the inversion

symmetry that connects the two blocks of the Hamiltonian, indeed ensures gap closings at

±kρNP, giving rise to two topologically protected states at each end, as seen from Fig.3.5.(c),

where we have plotted the absolute square of the obtained wave functions in real space. A

state γiµ and γ̃iµ are degenerate, and will always come in pairs. We see that the guess in

Eq.3.48 indeed was a good guess, since the edge states did arise. Furthermore we see that

the inclusion of an extra band modifies the phase diagram, but most drastically makes the

topologically protected edge states to come in pairs.

Low Energy Projection of the Two-Band Model

We can also for this model carry out a projection onto the low energy states, to get an effective

model describing gap closings at the Fermi level. Again using Eq. 3.27, on the free part of

the Hamiltonian in Eq.3.53, we find that the low energy model is obtained by projection the

Hamiltonian onto the states |κz = ±1, ηz = −1〉.

H′ρσ(k) = τz

(
ξek−ρ3q + ξhk+3ρq

2
+
ξek−ρ3q − ξhk+3ρq

2
νz

)
+ ρνx

Mxσ −M⊥
2

+ ∆τx (3.60)
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Chapter 3. Topological Phases in 1D Magnetic Superconductors

where ν is acting on the nested bands. This low energy model carries the resemblance of

the low energy model of the 1BM but with an additional band index. We find the winding

number for each σ block to be

wσ = Sign [∆] Sign

[(
Mxσ −M⊥

2

)2

−∆2

]
(3.61)

where we have used the fact that wρ σ = −w−ρ σ. Note that the Hamiltonian in this low

energy basis has nested points in both σ-sectors, resulting in the topological invariant w =

wσ=+1−wσ=−1. This approximation scheme is valid as long as the magnetic gap is less than

the energy at the upper nested point, i.e. M/(1.88 te)� 1.
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3.2. Two-Band Model

Figure 3.5: (a) Shows the topological phase diagram for different magnetic helices

distinguished by Λ. The narrow blue region seems to be an numerical error, and

could not be detected in real space simulations. (b) Depicts the gap structure and

how it changes for a sweep in parameter space from I-VI. (c) Shows a real space

calculation of the topological states’ wave functions in the topological non-trivial

phase. The length of the chain is L = 1000 a, where a is the lattice constant. One

obtains two MFs per edge due to the band doubling.
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Chapter 4

Topological Phases of 2D Magnetic

Superconductors

After having carried out the studies of the possible topological phases of the 1BM and 2BM

in 1D, we will now extend our analysis to 2D, in order to obtain a deeper insight in the

topological phases of the FeSCs. The approach will be the same as in the previous chapter,

i.e. we will start from the 1BM and proceed with the 2BM.

In the process of determining the phases of the 2D models, we found out that the low

energy Hamiltonian can be described by expanding about single-Q and double-Q nested

points. The former is similar to the single-Q magnetic helices discussed up to this point,

with gap closings at the set of nested point kNP. The physics of the double-Q nested points

are arising with the increase in dimensionality, and allow for gap closings to take place at the

set of double-Q nested point kDN. The single-Q nested points can effectively be described as

quasi-1D systems, which give rise to Majorana flat bands (MFB) (see Sec. 1.5), whereas the

double-Q nested points produce either chiral or helical modes, depending on the symmetry

class (see Sec.1.5). To clarify the above, we will start from a 2D system in the magnetic helix

phase, reminiscing the behavior of the single-Q nested points for a 2D model in a Double-Q

C4-symmetric Spin-Whirl Crystal ( ) phase. Thus we get an effective quasi-1D model, as

discussed below.

4.1 Quasi-1D Single-Band Model

As stated above we will here pursue a better understanding the single-Q nested points in the

full 2D model. To do this, we consider the extension of the 1BM to 2D in a helix magnetic

phase. The real space Hamiltonian is therefore simply

H =
∑
i j

d̂ †i

[
− t

2

∑
u

δRj ,Ri+u +

(
µ+Mx cos(Q ·Ri)σx +M⊥ sin(Q ·Ri)σy

)
δRi,Rj

]
d̂j ,

(4.1)

where u connects next nearest neighbor sites, as shown in Fig.4.1.(a). The magnetic texture

is only modulated in one direction Q, and the system can therefore be considered as a stack

of 1D BDI chains. If the ordering wave-vector is along, say, the kx-direction Q = (Q, 0),
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4.1. Quasi-1D Single-Band Model

Figure 4.1: (a) Real space representation of the hopping matrix elements for the

2D 1BM. (b) Imposing periodic boundary conditions along the direction perpendic-

ular to the ordering wave-vector, in this case along the y-direction, the system is

equivalent to a cylinder. (c) Fermi surface for the 1BM in 2D with nesting along

Q = (Q, 0), as indicated by the yellow arrows. As we know from the 1D case,

nesting can also take place at finite energy away from the FS (not shown). (d) The

folded FS in the RBZ, where the yellow dots represent the nested points at the FS.

Note again that we must have points at finite energy, since nesting also takes place

away from the FS.

as shown on the FS in Fig.4.1.(c), we can impose periodic boundary conditions along the y-

direction, as in Fig.4.1.(b), and have ky as a parameter of the system. By explicitly performing

the transformation in y, we get the Hamiltonian for each ky

H(ky) =
∑
i j

d̂ †i ky [−tδj,i±a cos(ky) + µδi,j +Mx cos(QRi)δi,jσx

+M⊥ sin(QRi)δi,jσy
]
d̂j ky ,

(4.2)

where the summation over i and j are lattice sites for each 1D BDI chain. We see that the

Fourier transformation simply renormalizes the hopping matrix element t → t cos(ky). The

Hamiltonian for ky = 0 connects to the 1BM in 1D, as desired. By a transformation to Bloch

space in both direction, followed by a folding of the FS along Q, we arrive at the FS in the

RBZ in Fig.4.1.(d), with the yellow dots indicating the nested points kNP at the FS. We

know from the 1D 1BM that nesting also takes place at finite energy away from the FS (not

shown).

Quasi-1D Single-Band Model in the Isotropic Helix Phase

Since ky constitutes a parameter of the quasi-1D model, we can perform the exact same

calculations as for the 1D 1BM in a isotropic helix phase, but with the renormalized hopping
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

matrix element. The straightforward calculation yields the ky-dependent winding

wky =
∑

kNP∈BZ

Sign [∆vNP cos(ky)]
Sign

[
M2

4 −∆2 −
[ ξNP(ky)︷ ︸︸ ︷√

2t−
√

2t cos(ky) cos(kNP)
]2]

2
,

where the energy at the nested points now is a function of ky, as indicated by ξNP(ky). It is

straightforward to find the nested points for each ky value by solving, see Eq.3.10;

ξ−kNP
(ky) = 0 ⇒ sin(kNP) sin(q) cos(ky) = 0 ⇒ kNP = {0, π/a} . (4.3)

Note that we have omitted the solution ky = π/(2a) as will be discussed later. Clearly we

have nesting for every ky-value, however, these do not take place at the FS, but at finite

energy away from the FS, as can be seen from the relation for the energy at the nested point

ξNP(ky). The latter indicates that we have a whole continuum of nested points above the FS.

By inserting the values for the nested points kNP we retrieve the winding number

wky = Sign [∆ cos(ky)]
Sign

[
M2

4 −∆2 − 2t2[1− cos(ky)]
2
]
− Sign

[
M2

4 −∆2 − 2t2[1 + cos(ky)]
2
]

2

= Sign [∆]
Sign

[
M2

4 −∆2 − 2t2[1− cos(ky)]
2
]
− Sign

[
M2

4 −∆2 − 2t2[1 + cos(ky)]
2
]

2
(4.4)

with ky ∈
(
−π
a ,

π
a

]
\
{
− π

2a ,
π
2a

}
, since ky = ±π/(2a) removes all hopping elements and breaks

the symmetry, i.e. no winding number can be defined. We thus have one MF at each end

whenever

2

√
∆2 + 2t2 [1− cos(ky)]

2 < M < 2

√
∆2 + 2t2 [1 + cos(ky)]

2 (4.5)

which clearly coincides with the result for the strictly 1D case with ky = 0. Observe that

the maximum span for a topological nontrivial window is for ky = 0, thus the strictly 1D

model sets the threshold for the topological non-trivial phase, but also the threshold for the

reentrance of the trivial phase. In the region in parameter space spanned by the thresholds

for ky = 0, MFs occurs and disappears at different ky values, which generates MFB.

Quasi-1D Single-Band Model in the Anisotropic Helix Phase

By performing the transformation in both direction, i.e. also in x, and employing the mo-

mentum transfer Pauli matrices ρ and η, as shown in Fig. 4.1.(d), we arrive at the defining

matrix for each σ-block

Âσ(k) = −i
(
h+

0 (k)ρz + h+
1 (k)ηzρz + h−2 (k) + h−3 (k)ηz

)
−ρy

Mxσ −M⊥
2

− ηxρy
Mxσ +M⊥

2
−∆.

(4.6)

We remember that the matrix was block diagonalized to Ĥσ=+1(k)⊕ Ĥσ=−1(k), due to the

symmetry ρzσz. Once again we linearize the functions hsi (k), which now has renormalized
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4.1. Quasi-1D Single-Band Model

hopping matrix elements, about the nested point kNP = 0, see the yellow dots in Fig.4.1.(d).,

and keep ky as a free parameter:

h+
0 (k) ≈

√
2t, h+

1 (k) ≈ −
√

2t cos(ky) (4.7a)

h−2 (k) ≈ 0, h−3 (k) ≈ −
√

2t cos(ky) kx, (4.7b)

which results in the parametrizing vector components

dσx(kx) = 4t2 cos2(ky)
(
∆2 +M⊥Mxσ + t2 cos2(ky)− 2t2

)
+
(
M2
⊥ − 2t2 −∆2

) (
M2
x − 2t2 −∆2

) (4.8a)

dσy (kx) = 16
√

2t3∆ cos2(ky) kx. (4.8b)

This results in the winding number for each block:

wσ ky = Sign [t∆] Sign
[
4t2 cos2(ky)

(
∆2 +M⊥Mxσ + t2 cos2(ky)− 2t2

)
+
(
M2
⊥ − 2t2 −∆2

) (
M2
x − 2t2 −∆2

) ]
/2.

(4.9)

As expected from the strictly 1D 1BM, are the vectors dσ(kx) not compactified, and only

combined can they constitute a topological invariant;

wky = wky σ=+1 − wky σ=+1

=
Sign [t∆]

2

(
Sign

[
4t2 cos2(ky)

(
∆2 +M⊥Mx + t2 cos2(ky)− 2t2

)
+
(
M2
⊥ − 2t2 −∆2

) (
M2
x − 2t2 −∆2

) ]
− Sign

[
4t2 cos2(ky)

(
∆2 −M⊥Mx + t2 cos2(ky)− 2t2

)
+
(
M2
⊥ − 2t2 −∆2

) (
M2
x − 2t2 −∆2

) ])
.

(4.10)

To illustrate accessible values of the above topological invariant we have shown in Fig.4.2.

the topological phase diagram for different values of ky, in the anisotropic helix phase with

Λ = π/8 (see Eq.3.26. for the relation of the magnitudes of the moments and Λ). Certain

regions in parameter space harbor MFs for a whole range of ky, unlike the usual case with

a single k-value. This range of ky-values indicates that we get MFs with flat dispersion,

i.e. MFBs, and we would expect the width of this flat band to be dependent on where

in parameter space the system resides. To verify this, we opened the system along the x-

direction, and plotted the energy dispersions as a function of the parameterizing ky in Fig.4.3.

We clearly see that when entering the topological non-trivial phase flat bands at zero energy

occurs. Additionally we see that the width of the flat bands increases to a certain point, and

decreases upon approaching the trivial zone.
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

Figure 4.2: Display of topological phase diagrams for ky ∈ [−π
a ,

π
a ) in steps of π

8a .

We have here shown them for the magnetic anisotropic case with Λ = π
8 . The figure

clearly shows that no topological phase can be obtained for ky = ± π
2a .

Figure 4.3: We show the flat energy dispersions for the MFBs at different points

in parameter space, with Λ = π
4 . Note that the topological non-trivial regime

is spanned by the topological regime in the strictly 1D case, i.e. 2∆ < M <

2
√

∆2 + 8t2. Clearly the width of the flat bands increase to a certain point in

parameter space, and starts shrinking again when approaching the trivial regime.

We have shown the 100 lowest eigenvalues for each value of ky, for a system of

Lx = 500 a, ∆ = 2.5 t, and a step size of π
128a in ky.
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4.2. Quasi-1D Two-Band Model

Figure 4.4: (a) Real space representation of the hopping matrix elements, with

the colors depicting the two flavors of electrons generating the two bands. (b)

By imposing periodic boundary condition along the y-direction, the system can

be viewed as a cylinder, allowing for a transformation to Bloch space along this

direction. (c) Fermi surface of the 2BM in 2D with nesting along Q = (Q, 0), as

indicated by the yellow arrows. We have here only shown one set of nesting vectors,

but nesting also takes place with the inversion transformed counterparts of the ones

shown. (d) Fermi surface after a folding along Q, here the yellow dots represent all

nested points at the FS.

4.2 Quasi-1D Two-Band Model

Next, to explore the single-Q nested behavior for the 2BM model in 2D, we find the real-space

quasi-1D Hamiltonian

H =
∑
i j

d̂ †i

[
t̂

4

∑
u

δRj ,Ri+u +
t̂ ′

2

∑
u′

δRj ,Ri+u′ − ε̂δRi,Rj

+κxMx δRi,Rj cos(Q ·Ri)σx + κxM⊥ δRi,Rj sin(Q ·Ri)σy

]
d̂j ,

(4.11)

with the matrices defined in Eq.3.31. The vectors u and u′ connect next nearest, and next

next nearest neighbor sites, respectively, as illustrated in Fig.4.4.(a). Let us, once again, focus

on nesting taking place along the x-direction, allowing for a Fourier transformation along y,

as in Fig.4.4.(b). The resulting Hamiltonian becomes

H(ky) =
∑
i j

d̂ †i ky

[
t̂

2
δj,i±a cos(ky) + t̂′

(
δi,j±2a

2
+ cos(2ky)δi,j

)
− ε̂δi,j

+κxMx cos(Rxi)δi,jσx + κxM⊥ sin(QRi)δi,jσy

]
d̂j ky

(4.12)

again with the summation running over the lattice sites for each 1D chain. The Hamiltonian

coincides with Eq.3.30 when ky = 0. Similar to the quasi-1D 1BM we see that this transfor-

mation simply renormalizes the hopping parameter t̂→ t̂ cos(ky), but also the on-site energy

ε̂ → ε̂ − t̂ ′ cos(2ky). A full transformation to Bloch space in both directions, followed by a

folding of the FS along the nesting direction Q, results in the FS shown in Fig.4.4.(d).
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

Figure 4.5: (a) Set of nested points for each parameterizing ky-values projected

onto the FS generated in the σ = −1 sector. It is sufficient to only study one sectors,

since the two are connected by inversion. (b) The topological phase diagrams for

different values of ky. Certain regions supports MFs for a range of ky-values, and

would generate MFBs. Note also that the winding in the topological non-trivial

regions is wky = 2, meaning that the inversion symmetry connecting the two σ-

blocks once again ensures a pair of MFs to occur at each edge.

Quasi-1D Two-Band Model in the Isotropic/Anisotropic Helix Phase

Since ky now enters as a parameter, and the fact that the Fourier transformation simply

renormalizes the hopping parameters and on-site energies, we can perform the exact same

calculations as for the 2BM in 1D, an get the ky dependent winding number when the system

is in the isotropic spiral phase

wky σ =
∑

kσNP ∈BZ

Sign [ασNP∆ cos(ky)]
Sign

[
M2

4 −∆2 −
[ ξNP(ky)︷ ︸︸ ︷
te cos(ky) cos(kσNP − σq)− εe

]2]
2

.

(4.13)

We remind ourself that the Hamiltonian in 1D has the symmetry κzσz, leaving it on the form

Ĥσ=+1(k)⊕Ĥσ=−1(k). The two blocks are connected by inversion, and have to be combined

in the following way to give rise to a topological invariant

wky = wky σ=+1 − wky σ=+1 = 2wky σ. (4.14)

As it is known from Sec.3.2. gap closings take place at the nested points kNP, which can be

found via the relation

ξekσNP−σq
(ky) = ξhkσNP+σq(ky), (4.15)
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4.2. Quasi-1D Two-Band Model

where we remember that the dispersions have been renormalized, and now are dependent on

ky. The locations of the nested points for this more complicated band structure become a

function of ky, i.e. k
σ
NP(ky), and is not as simple as the quasi-1D 1BM. To illustrate this, we

have numerically found the set of nested points for each ky-value, in the σ = −1 block, and

project them onto the FS generated by ξek+q and ξhk−q, see the yellow points in Fig.4.5.(a).

With the nested points known for a given σ-block, one can retrieve the ky-dependent winding

given in Eq.4.13. We show in Fig.4.5 the topological phase diagrams for different values of

the parametrizing ky. Again we see that some regions have several ky-values supporting MFs

resulting in MFBs, similar to the 1BM. Note once again that the threshold for the topological

nontrivial phase is determined by the strictly 1D case, i.e. 2∆ < M < 2
√

∆2 + (1.88te)2.

The inversion symmetry that connects the two σ-blocks ensures the occurrence of two MFBs

at each edge, as for the 1D 2BM. We have, as for the 1BM, shown the flat dispersions for

the MFBs, see Fig.4.6. We see that the width of the bands increases to a certain point, and

decreases when approaching the trivial regime (compare to Fig.4.5.(b)). Each flat band is

four times degenerate, in agreement with the winding number wky , with two MFs located at

each end when the system is opened in the x-direction.

For the system in the anisotropic helix phase the procedure is the same, i.e. insert

the renormalized hopping matrix elements and on-site energies, and calculate the winding

numbers. Remember that the Hamiltonian in the anisotropic helix in 1D gets on the block

form Ĥρσ(k), where ρ now is the two sectors connected by inversion, and that only the σ = −1

block constitutes nested points. We thus obtain the total winding number

wky = 2wky ρ σ=−1. (4.16)

Again is the final result long an unintuitive, and therefore not include. It is, however, a simple

manner to calculate when all the nested points are know, as shown in Fig.4.5.
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

Figure 4.6: MFBs in different regions in parameter space, with increas-

ing/decreasing width of the flat energy bands. Similar to the 1BM we have

L = 500 a, ∆ = 2.5 te and a step size of π/(128a) in ky. Again we can confirm

that the threshold for the topological non-trivial phase is given for the strictly 1D

2BM, i.e. for ky = 0. Lastly is each flat band four times degenerate, meaning that

we get two MFs at each edge, due to the inversion symmetry connecting the two

blocks of the Hamiltonian.
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4.3. 2D Single-Band Model

Figure 4.7: (a) The FS of the 1BM with nesting along both Q1 and Q2. (b)

We can project the Hamiltonian onto the nested bands at the FS in order to get

an effective low energy Hamiltonian. The parts of the band structure that are not

nested at the FS are colored yellow. (c) After a folding of the FS, we can project

it onto either the high (bottom), or low energy (top) sector. Clearly only the low

energy sector has nesting at the FS. (d) The yellow lines show all the nested points

kNP, where we have a double-Q nested point at the center of the FS, kDN, indicated

by the black dot.

4.3 2D Single-Band Model

When we now focus on the Double-Q C4-symmetric Spin-Whirl Crystal ( ) magnetic phase,

the real space Hamiltonian takes the form

H =
∑
i j

d̂ †i

[
− t

2

∑
u

δRj ,Ri+u + µδRi,Rj +MxδRi,Rj [cos(Q1 ·Ri) + cos(Q2 ·Ri)]σx

+M⊥δRi,Rj [sin(Q1 ·Ri)σz + sin(Q2 ·Ri)σy]

]
d̂j ,

(4.17)

with nesting taking place along the x and y-direction, as indicated by the yellow arrows

in Fig.4.7.(a). With the magnetic texture in question, we cannot perform the usual unitary

transformation of the real space Hamiltonian, and therefore we need to employ the momentum
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

transfer spaces η and ρ as defined in Eq.3.3. However, these only take care of momentum

transfer in the direction of Q1, so additionally we employ the following momentum transfers

ζ : {k,k − 4q2} , λ : {k + q2,k − q2} , (4.18)

and extend Eq.3.3. to its 2D analog. The single particle Hamiltonian in Bloch space, with a

singlet s-wave superconducting order parameter, takes on the form

Ĥ(k) = Ĥ0(k) +
Mxρxσx +M⊥ρyσz

2
+
Mxλxσx +M⊥λyσy

2

+ηx
Mxρxσx −M⊥ρyσz

2
+ ζx

Mxλxσx −M⊥λyσy
2

+ ∆τx,

(4.19)

where Ĥ0(k) is the dispersion of the system, consisting of the appropriate combinations of

hsi (k) and the momentum transfer matrices {ζz, ηz, λz, ρz}. In this formalism we find the

complex conjugation operation to be K = λxρxK′, since the new momentum transfer spaces

η and ζ are invariant under complex conjugation, 4ql ≡ −4ql. The topological classification

in Eq.2.52 is preserved for this Hamiltonian, and the system therefore resides in the class

DIII. An external magnetic field can reduce the symmetry of the system, and leave it in the

class D, similar to the 1BM in 1D. The class DIII, due to a generalized time-reversal operator

squaring to −1, has Majorana Kramers pairs, whereas class D has chiral Majorana modes,

since this class has broken chiral symmetry (see Sec.1.5).

We show in Fig. 4.7 the FS of the 1BM with nesting along Q1 and Q2, as indicated by

the yellow arrows. Upon folding in both nesting directions, we obtain the seemingly simple

FS in Fig.4.7.(c). The RBZ shows two nested points at the FS (yellow dots), whereas the

FS in the full BZ, Fig. 4.7.(a), has four (yellow arrows). The folded FS in the RBZ does, in

fact, have four nested points, but the folding puts these at the exact same points. The reason

for this is that the two pockets in the first BZ are connected by the reciprocal lattice vector

G = 2Q1 + 2Q2 of the RBZ. Bloch’s theorem thus tells us that the two pockets at Γ = (0, 0)

and M = (πa ,
π
a ) must be located at the same point in the RBZ.

Low Energy Sector

To achieve a physical understanding and intuition about the topological physics arising from

the single- and double-Q nested points, we will in the following project the Hamiltonian onto

the low energy sector, similar to the low energy projections of Sec.3.1-3.2. By inspection of

Fig. 4.7.(b) we see that nesting at the FS, which by definition is the low energy sector, takes

place in the vicinity of Γ and M . The spinor for these low energy systems must be either

ψ†k =
(
d̂ †k+q1+q2

, d̂ †k−q1+q2
, d̂ †k+q1−q2 , d̂

†
k−q1−q2

)
(4.20a)

or

ψ†k =
(
d̂ †k−3q1−3q2

, d̂ †k+3q1−3q2
, d̂ †k−3q1+3q2

, d̂ †k+3q1+3q2

)
. (4.20b)

This indicates that the low energy sector is achieved by projecting the Hamiltonian onto the

states |ζz = ±1, ηz = ±1〉. We have illustrated this low energy projection in Fig.4.7.(c). This

figure also shows the effect of a projection onto the high energy states, |ζz = ±1, ηz = ∓1〉,
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4.3. 2D Single-Band Model

which does not result in a FS, but only nesting at finite energy. Conveniently, the low energy

projection also decouples the two pockets in the first BZ, Fig. 4.7.(a), since these only are

connected by nesting at finite energy (see the magnetic OPs proportional to ηx or ζx in

Eq. 4.19). This low energy projection is valid as long as Mx⊥/Elim � 1, with Elim ≈ 1.4 t,

which is the energy at the nested point connecting the low and the high energy sectors.

We learned from the quasi-1D case, that nesting not only takes place at the FS, but also at

finite energy away from it. For nesting along Q1 we know that the nested points are kxNP = 0

for each quasi-1D subsystem labeled by ky. By a C4 rotation we achieve the nested points

for the quasi-1D system with nesting along Q2, i.e. with each sub-system, labeled by kx, and

the nested point being kyNP = 0. Evidentially the nested points from both single-Q systems

will intersect at kDN = (0, 0), giving rise to a point of double-Q nesting, see Fig.4.7.(d).

Majorana Flat Bands in Single-Band Model

By focusing on the block of the low energy Hamiltonian, which describes the pocket located

at Γ, we find the effective Hamiltonian of the form

Ĥ′(k) = τz
(
h+

0 (k) + h−1 (k)λz + h−2 (k)ρz + h+
3 (k)λzρz

)
+
Mxρxσx +M⊥ρyσz

2

+
Mxλxσx +M⊥λyσy

2
+ ∆τx,

(4.21)

with hsi (k) defined as in Eq. 2.14. We can further expand the low energy Hamiltonian about

the single-Q nested points kNP by projecting it onto the states that partake in the nesting,

obtained through the relation

Ĥ′0(kNP)|ν, kNP〉 = ξNP|ν, kNP〉. (4.22)

By projecting the Hamiltonian onto the above obtained states, we find the effective quasi-1D

single-Q nested Hamiltonian;

Ĥeff.(k) = τz

(
ξk+ql−ρq⊥ + ξk−ql−ρq⊥

2
+
ξk+ql−ρq⊥ − ξk−ql−ρq⊥

2
νz

)
+

Mxνxσx +M⊥νyσy
2

+ ∆τx,

(4.23)

with ν acting on the nested bands, with ρ = ±1 depending on the nested points, and ql is

the nesting direction, whereas q⊥ is the direction perpendicular to it. Due to rotational spin

invariance, we have picked the magnetic moments to be along the spin x and y axis. Let us for

instance take a nested point at kNP = (0,±q/8), here the nesting direction must be Q1, since

the kyNP labels the given quasi-1D system. For this nested point the ordering wave vectors

takes the form ql = q1 and q⊥ = q2. Lastly ρ = +1 describes the nested point for positive

kyNP, and ρ = −1 for the negative nested ky-values. The above Hamiltonian thus describes

all single-Q nested points in the low energy sector. We observe that the Hamiltonian has the

symmetry νzσz, which allows us to block diagonalize in the usual way, to obtain

Ĥeff. σ(k) = τz

(
ξk+ql−ρq⊥ + ξk−ql−ρq⊥

2
+
ξk+ql−ρq⊥ − ξk−ql−ρq⊥

2
νz

)
+

νx
Mxσ −M⊥

2
+ ∆τx.

(4.24)
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

The observant reader notices that this Hamiltonian is nothing but the 1D 1BM low-energy

projected Hamiltonian in Eq.3.28. extended to quasi-1D. Let us in the following focus on the

nested point kNP = (0,±ky). Since the gap closing takes place at kx = 0, we can linearize the

above Hamiltonian about this point, and keep ky as a free parameter labeling the quasi-1D

systems (as long ky 6= 0). The linearized Hamiltonian gets on the form

Ĥeff. σ(k) ≈ τz (ξNP(ky) + vNP(ky)kxνz) + νx
Mxσ −M⊥

2
+ ∆τx, (4.25)

with ξNP(ky) =
√

2 t (1− cos(ky)), and vNP(ky) = −
√

2t cos(ky). By means of the chiral

symmetry Π = τyσz, we block off-diagonalize the Hamiltonian, and find the ky-dependent

winding

wky σ = Sign [vNP(ky)∆]

Sign

[(
Mxσ−M⊥

2

)2
−∆2 − ξ2

NP(ky)

]
2

, (4.26)

which indicates that the system will exhibit MFBs, in a certain range in parameter space, as

long as M/Elim � 1. We have shown in Fig. 4.8.(a) the predicted topological phase diagram

obtained from the winding number in Eq.4.26. Each gray line represent the threshold for the

topological phase for different ky-values. In order to verify that the emergent MFs indeed are

of the flat band type, we Fourier transformed the real space Hamiltonian in Eq. 4.17 along

the y-direction, followed by a folding to the RBZ. The resulting Hamiltonian becomes

H(ky) =
∑
i j

d̂ †i ky

[
− tδi,j±a [h0(ky) + h1(ky)ζz + h2(ky)λz + h3(ky)ζzλz]

+µδi,j +
Mxλxσx +M⊥λyσy

2
+ ζx

Mxλxσx −M⊥λyσy
2

(4.27)

+Mxδi,j cos(QRi)σx +M⊥δi,j sin(QRi)σz

]
d̂j ky ,

with the summation running over the lattice sites of the quasi-1D chain, and where the

functions hi(ky) are linear combinations cos(ky) shifted with the appropriate momenta. We

have shown in Fig.4.8.(b) the energy dispersions of the above Hamiltonian for a open system

along the x-direction, i.e. like the cylinder in Fig.4.1.(b). We observe that upon going from

the trivial region (I), to the topologically non-trivial regime (II) the system exhibits MFBs

centered at the RBZ boundaries ±q. Additionally we obtain a feature at ky = 0, which looks

like a Dirac cone, however, when we plot the corresponding wave functions, we find them to

be highly delocalized, i.e. not topologically protected edge modes. This unexplained feature

can be some effect from the high energy sector that we do not capture in our approximation,

and needs further investigation in a non-approximative manner. Note lastly that the flat

bands are four times degenerate, since a Kramers pair occurs at each edge, due to Θ2 = −1.

Majorana Current in Single-Band Model

Let us now in the following apply the same method, but now for the double-Q nested point.

We use the following relation to find the low energy states of the Hamiltonian at kDN;

Ĥ′0(kDN)|ν kDN〉 = ξDN|ν kDN〉. (4.28)
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4.3. 2D Single-Band Model

Figure 4.8: (a) Predicted single-Q phase diagram obtained from the winding num-

ber in Eq.4.26 for a set of ky-values. (b) The energy dispersion of the Hamiltonian

in Eq.4.28 upon going from the topologically trivial phase (I), to the topologically

non-trivial one (II), as seen in (b). We obtain MFBs centered at the RBZ boundary

ky = q, and unexplained features at ky = 0.

All bands in the low energy sector partake in the nesting at this point, and the resulting low

energy Hamiltonian, upon linearization about kDN, is simply

Ĥeff.(k) ≈ τz (ξDN − [kyλz + kxρz]) +
Mxρxσx +M⊥ρyσz

2

+
Mxλxσx +M⊥λyσy

2
+ ∆τx.

(4.29)

The Hamiltonian has the following eigenvalues

E = ±Mx

2
± 1

2

√
2M2
⊥ +M2

x + 4∆2 + 4ξ2
DN ± 4

√
2M2
⊥∆2 +M2

x∆2 + 2M2
⊥ξ

2
DN +M2

xξ
2
DN

(4.30)

where each energy is double degenerate, and one should consider all the combinations of ±.

In the following we will for clarity consider the isotropic case, i.e. Λ = π
4 , which apply us

with a simpler criteria for gap closings at kDN

M = ±2
√

2

√
2∆2 + 2ξ2

DN ±
√

3(∆2 + ξ2
DN). (4.31)

Note that this criteria is not the topological invariant, but can give us knowledge of when a

gap closes, which could lead to a topological non-trivial phase.

With the criteria for gap closings at kDN in Eq.4.31, we have shown the modified predicted

phase diagram in Fig.4.9.(a). Alongside this diagram we show the energy dispersions of

Eq.4.28 centered at q, for the three points in the phase diagram (I-III). When approaching

what we expect to be the helical region in the phase diagram (yellow), we see that the flat

bands get tilted, and thereby acquire a velocity, and eventually split up into double degenerate

bands (III). By finding the corresponding wave functions, we find that each band has a mode

located at opposite edges. Had the velocity of one of the bands been of opposite sign, we
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

Figure 4.9: (a) Shows the expected phase diagram, with the gray regions indicating

a MFB phase, whereas the yellow region is the expected helical phase. (b) The

energy dispersion as a function of ky for the three points (I-III) in parameter space

in (a). As the system approaches the helical phase, the flat bands acquire a velocity,

but do not become helical since the velocities have the same sign. The system

instead carries a supercurrent, as illustrated in (c), where the magnitudes of the

arrows indicate the velocity of the modes, i.e. the yellow modes originate from the

band with the steepest slope.

would indeed obtained the predicted helical edge modes. However, since all the modes have

the same sign of the velocity, we conclude that the system experiences a supercurrent, as

illustrated in Fig.4.9.(c).

As touched upon earlier, it is possible to make the transition from DIII to D by inclusion

an external magnetic field, say ĤZ = Bσx. We get the low energy Hamiltonian expanded

about the double-Q nest point to be

Ĥeff.(k) ≈ τz (ξDN − (kyλz + kxρz)) +
Mxρxσx +M⊥ρyσz

2

+
Mxλxσx +M⊥λyσy

2
+Bσx + ∆τx

(4.32)

where we from this equation can find the new established criteria for gap closings, followed by

a newly established expected topological phase diagram. We will instead take the Hamiltonian

of Eq.4.28, and adiabatically turn on the external magnetic field, and inspect how the energy
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4.3. 2D Single-Band Model

dispersions change. We show in Fig.4.10.(a) the dispersions at different strengths of the

magnetic field B. In the simulation M = 0.4 t and ∆ = 0.25 t. We see that the field lifts

the degeneracy of each band, and makes the bands cross, such that states localized at the

same edge become degenerate, and upon B ∼ 1 t obtains chiral dispersions. In order to make

the transition to chiral modes more transparent, we have sketched the development of the

dispersion in Fig. 4.10.(b). Lastly are the topologically protected edge modes illustrated in

Fig.4.10.(c) for no magnetic field, and B ∼ 1 t.
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Chapter 4. Topological Phases of 2D Magnetic Superconductors

Figure 4.10: (a) Shown is the development of the energy dispersion at different

magnetic fields. (b) We show a sketch of the development of the energy dispersion,

in order to make the transition to chiral modes more transparent. (c) An illustration

of the resulting MF modes for B = {0, 1 t}.
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Chapter 5

Conclusions and Outlook

In this thesis we have discussed and explored an alternative method of obtaining topological

superconductors, namely through magnetic superconductors. We first established the theory

of topological superconductivity, and how it can be induced through magnetic textures. We

formulated a general Hamiltonian for the iron-based superconductors, and multi-band su-

perconductors in general, and performed an exhaustive topological classification of the nine

predicted magnetic phases coexisting with a general spin-singlet pairing. We found that in-

deed some of the magnetic textures give rise to topological superconductivity. Furthermore

we explored the symmetry point group aspects of the FeSCs, and band models in general,

belonging to the group D4h.

We performed a bottom-up approach on the simple single/two-band model in the Double-

Q C4-symmetric Spin-Whirl Crystal ( ) magnetic phase. We first studied the system in

1D, where the magnetic texture in question gets reduced to a magnetic helix, and studied

the possible topological phases, and how the inclusion of an additional band changed our

results. We found that the 2BM has an inversion symmetry connecting different blocks of the

Hamiltonian, which ensured the occurrence of pairs of MFs at the edges. In two dimensions

we found that the low energy Hamiltonian expanded about the nested points (gap closing

points), can give rise to quasi-1D systems with single-Q nesting, and genuine 2D double-Q

nesting. The single-Q nested points give rise to Majorana flat bands, whereas the double-Q

were expected to give rise to helical edge modes. However, when simulating the 2D system in

the predicted non-trivial helical region, we found instead Majorana currents. These current

do come in pairs of two, but these were not helical Majoranas. Upon applying an external

magnetic field we found two species chiral Majorana edge modes, since the field reduced the

symmetry of the system DIII→D. The discrepancy between the predicted helical edge modes,

and the actual Majorana current needs to be studied further, in a non-approximate manner.

In future prospects we would like to study the helical case in greater depth, to see where

our approximation fails. Furthermore the 2D analysis should be carried out be defining

topological invariants, as for the 1D and quasi-1D cases, instead of simple gap closing crite-

ria. Next natural step is of course to carry out the analysis in 2D for the 2BM, which was

commenced but not terminated, and therefore not included here. The two-band model is of

paramount importance in understanding the topological physics of multi-band superconduc-

tors, since the low energy Hamiltonian in this model can give information about the relevant
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pairing functions favoring topological superconductivity. Lastly we would like to apply the

obtained knowledge in this thesis, on a more realistic five-orbital model [42], and see for which

criteria (intrinsic) topological superconductivity can arise.
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Appendix A

SU(N) Generators

SU(2) Pauli Matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (A.1)
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SU(5) Generators

κ1 =


0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , κ2 =


0 −i 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , κ3 =


1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (A.2)

κ4 =


0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , κ5 =


0 0 −i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , κ6 =


0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (A.3)

κ7 =


0 0 0 0 0

0 0 −i 0 0

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0

 , κ8 =
1√
3


1 0 0 0 0

0 1 0 0 0

0 0 −2 0 0

0 0 0 0 0

0 0 0 0 0

 , (A.4)

κ9 =


0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

 , κ10 =


0 0 0 −i 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

 , κ11 =


0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

 , (A.5)

κ12 =


0 0 0 0 −i
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

 , κ13 =


0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

 , κ14 =


0 0 0 0 0

0 0 0 −i 0

0 0 0 0 0

0 i 0 0 0

0 0 0 0 0

 , (A.6)

κ15 =


0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

 , κ16 =


0 0 0 0 0

0 0 0 0 −i
0 0 0 0 0

0 0 0 0 0

0 i 0 0 0

 , κ17 =


0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

 , (A.7)

κ18 =


0 0 0 0 0

0 0 0 0 0

0 0 0 −i 0

0 0 i 0 0

0 0 0 0 0

 , κ19 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

 , κ20 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i
0 0 0 0 0

0 0 i 0 0

 , (A.8)

κ21 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

 , κ22 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i
0 0 0 i 0

 , κ23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 −1

 (A.9)

κ24 =
1√
15

Diag {−2,−2,−2, 3, 3} . (A.10)
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Appendix B

Mean-Field Decoupling Approach

This appendix will give a short review on mean-field decoupling of a general interaction,

followed by a decoupling in the magnetic channel of the interaction in Eq.2.7. We also show

how an effective attractive interaction for the FeSCs can be decoupled in the Cooper channel.

General Mean-Field in Electron-Hole Channel

Let us start with a general interaction represented in second quantization, with the quantum

numbers α, β, γ and δ

Hint =
∑
αβγδ

V αβγδc†αc
†
βcγcδ, (B.1)

where cα annihilates an electron with quantum number α.Furthermore we have the matrix

element

V αβγδ = 〈α, β|V̂ |γ, δ〉 (B.2)

where V̂ is some two body operator. With this interaction we will perform a mean-field

decoupling in the electron-hole channel, i.e. channels of the form 〈c†αcβ〉. To do this we

assume that the operators deviate only little from their expectation values

c†αcβ ≈ 〈c†αcβ〉+
{
c†αcβ − 〈c†αcβ〉

}
︸ ︷︷ ︸

Small deviation

, (B.3)

where the second term is the fluctuation, and is only taken to linear order. From this we get

the direct term

HMF
Hartree =

∑
αβγδ

V αβγδ
(
c†αcδδβ,γ − 2c†αcγ〈c

†
βcδ〉+ 〈c†αcγ〉〈c

†
βcδ〉

)
(B.4)

and the Fock term

HMF
Fock =

∑
αβγδ

V αβγδ
(
−c†αcγδβ,δ + 2c†αcδ〈c

†
βcγ〉 − 〈c

†
αcδ〉〈c

†
βcγ〉

)
, (B.5)

where we have used 〈α, β|V̂ |γ, δ〉 = 〈β, α|V̂ |δ, γ〉, since |α, β〉 = 1√
2

(|α〉 ⊗ |β〉 − |β〉 ⊗ |α〉),
which is clearly anti-symmetric under quantum number exchange.
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General Mean-Field in Cooper Channel

When formulating a general mean-field decoupling in the Cooper channel, i.e. channels of

the form 〈c†αc†β〉, we again start with the general interaction in Eq.B.1. However, now V̂

represents a general effective electron electron interaction, which is attractive near the Fermi

Surface, resulting in an instability of the Fermi gas. We therefore end up with

Hint = −
∑
αβγδ

V αβγδc†αc
†
βcγcδ, (B.6)

and assume that the operators can be described by their expectation values,

c†αc
†
β ≈ 〈c

†
αc
†
β〉+

{
〈c†αc

†
β〉 − 〈c

†
αc
†
β〉
}

︸ ︷︷ ︸
Small deviation

, (B.7)

and thereby produce an effective Hamiltonian bilinear in creation and annihilation operators.

After the decoupling we obtain the Hamiltonian

HMF
BCS = −

∑
αβγδ

V αβγδ
(
c†αc
†
β〈cγcδ〉+ cγcδ〈c†αc

†
β〉 − 〈c

†
αc
†
β〉〈cγcδ〉

)
. (B.8)

For later purposes we will also here define a general superconducting order parameter in the

way

∆αβ = −
∑
γδ

V αβγδ〈cγcδ〉, ∆∗αβ = −
∑
γδ

V δγβα〈c†δc
†
γ〉. (B.9)

Where we have used 〈α, β|V̂ |γ, δ〉∗ = 〈δ, γ|V̂ †|β, α〉, and in order for the two-particle operator

to be an observable with real eigenvalues we must have V̂ † = V̂ . Notice again, that if

we interchange two quantum numbers we get a minus, due to the fermionic nature of the

particles, i.e. ∆αβ = −∆βα. So we arrive at the well-known BCS Hamiltonian

HMF
BCS =

∑
αβ

(
c†α∆αβc

†
β − cβ∆∗βαcα

)
+
∑
αβγδ

∆∗δγ
(
V −1

)γδαβ
∆αβ. (B.10)

The Case of Iron-Based Superconductors

The 3d-electrons of the Fe-atoms are assumed to be localized at each atom, and we can there-

fore simplify the interaction to be the on-site Coulomb-interaction. Inserting this interaction

in the general expression in Eq.B.1, and by doing the following transformation

c†α =
∑
i

∑
µ

∑
σ

〈iµσ|α〉d†iµσ, (B.11)

we obtain the interaction

Hint =
1

2

∑
σσ′

∑
µνν′µ′

∑
i

d†iµσd
†
iνσ′V

µνν′µ′diν′σ′diµ′σ (B.12)

where we have the matrix element defined as (after inserting four resolutions of identity

1 =
∫
dr |r〉〈r|)

〈µ, ν|V̂ |ν ′, µ′〉 =

∫
drdr′ 〈µ|r〉〈ν|r′〉V (r, r′)〈r′|ν ′〉〈r|µ′〉. (B.13)
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Appendix B. Mean-Field Decoupling Approach

The main contributions come from matrix elements involving only two different orbitals [51].

With this at mind we can rewrite the interaction in four distinct terms; the intra-orbital

Coulomb interaction, the pair-hopping, the inter-orbital Coulomb interaction and the Hund’s

coupling interaction, as respectively shown below

H
(1)
int =

∑
i

∑
µ

Uniµ↑niµ↓ (B.14a)

H
(2)
int =

1

2

∑
i

∑
µ6=ν

∑
σ

J ′d†iµσd
†
iµσdiνσdiνσ (B.14b)

H
(3)
int =

1

2

∑
i

∑
µ6=ν

∑
σ

U ′
(
niµσniνσ + niµσniνσ

)
(B.14c)

H
(4)
int = −1

2

∑
i

∑
µ6=ν

∑
σ

J
(
niµσniνσ − d

†
iµσd

†
iνσdiµσdiνσ

)
, (B.14d)

where we have redefined the matrix elements as follows

U = 〈µ, µ|V̂ |µ, µ〉, J ′ = 〈µ, µ|V̂ |ν, ν〉, U ′ = 〈µ, ν|V̂ |ν, µ〉 J = 〈µ, ν|V̂ |µ, ν〉. (B.15)

We assume rotational invariance, and thereby have the conditions J = J ′ and U ′ = U − 2J

[37,51,52]. Since we are interested in the development of magnetic instabilities, and thereby

the possible topological phases, we will only consider the term

H
(4)
int =−

∑
i

∑
µ 6=ν

∑
σ

J

2

(
niµσniνσ − d

†
iµσd

†
iνσdiµσdiνσ

)

=−
∑
i

∑
µ 6=ν

J

(
Sµi · S

ν
i +

∑
σ

1

4

(
niµσniνσ + niµσniνσ

))
. (B.16)

Magnetic Channel for Fe-Pnictides

We will here do the mean-field decoupling on the Hund’s coupling, i.e. first term in Eq.B.16,

and get

HHund
int = −

∑
i

∑
µ6=ν

JSµi · S
ν
i =−

∑
i

∑
µ6=ν

∑
αβγδ

J

4
d†iµασαβdiµβ · d

†
iνγσγδdiνδ

=−
∑
i

∑
µ6=ν

∑
αβγδ

J

4
d†iµαdiµβd

†
iνγdiνδ (2δα,δδβ,γ − δα,βδγ,δ)

(B.17)

where we have used the relation σαβ · σγδ = 2δα,δδβ,γ − δα,βδγ,δ. Now we simply need to

apply the general expression for the mean-field decoupling from above. Starting with the

Hartree-term

HMF
Hartree =

∑
i

∑
µ 6=ν

∑
αβγδ

J

4

(
〈d†iµαdiµβ〉〈d

†
iνγdiνδ〉 − 2d†iµαdiµβ〈d

†
iνγdiνδ〉

)
(2δα,δδβ,γ − δα,βδγ,δ)

=
∑
i

∑
µ 6=ν

J

4

(
〈d̂ †iµσd̂iµ〉 · 〈d̂

†
iνσd̂iν〉 − 2d̂ †iµσd̂iµ · 〈d̂

†
iνσd̂iν〉

)
,

(B.18)
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with d̂ †iµ = (d†iµ↑, d
†
iµ↓). And similar for the Fock-term

HMF
Fock =

∑
i

∑
µ6=ν

∑
αβγδ

J

4
(2δα,δδβ,γ − δα,βδγ,δ)

×
(
−〈d†iµαdiνδ〉〈d

†
iνγdiµβ〉+ 2d†iµαdiνδ〈d

†
iνγdiµβ〉 − d

†
iµαdiµβδδ,γ

)
.

(B.19)

To get this expression on a form similar to the last line in Eq.B.18, we interchange the spin

indices δ and β, and split the expression up as follows

HMF
Fock =

∑
i

∑
µ6=ν

∑
αβγδ

J

4

[
1

2

(
〈d†iµαdiνβ〉〈d

†
iνγdiµδ〉 − 2d†iµαdiνβ〈d

†
iνγdiµδ〉

)
(2δα,δδγ,β − δα,βδδ,γ)

− 3

2

(
〈d†iµαdiνβ〉〈d

†
iνγdiµδ〈−2d†iµαdiνβ〈d

†
iνγdiµδ〉

)
δα,βδδ,γ + d†iµαdiµδδγ,δ (δα,δδγ,β − 2δα,βδδ,γ)

]
.

(B.20)

If we know evaluate the Kronecker deltas, and define the charge density operator nµν =∑
σ d
†
iµσdiνσ we get the Fock term on the form

HMF
Fock =

∑
i

∑
µ6=ν

J

4

(
1

2
〈d̂ †iµσd̂iν〉 · 〈d̂

†
iνσd̂iµ〉 − d̂

†
iµσd̂iν · 〈d̂

†
iνσd̂iµ〉

−3

2
〈nµν〉〈nµν〉+ 3nµν〈nνµ〉 − nµµ

)
.

(B.21)

For the topological classifications later on, we will only consider the magnetic order param-

eters, and hence not focus on the charge density orders. This results in the total magnetic

Hamiltonian

Hmag =
∑
i

∑
µ 6=ν

J

(
− 1

2
d̂ †iµσd̂iµ · 〈d̂

†
iνσd̂iν〉 −

1

4
d̂ †iµσd̂iν · 〈d̂

†
iνσd̂iµ〉

+
1

4
〈d̂ †iµσd̂iµ〉 · 〈d̂

†
iνσd̂iν〉+

1

8
〈d̂ †iµσd̂iν〉 · 〈d̂

†
iνσd̂iµ〉

)
.

(B.22)

At this point we will now define the magnetic order parameters in the way

Mµµ
i = −J

2
〈d̂ †iνσd̂iν〉, Mµν

i = −J
4
〈d̂ †iνσd̂iµ〉 (B.23)

and get the Hamiltonian

Hmag =
∑
i

∑
µ6=ν

(
d̂ †iµM

µµ
i · σd̂iµ + d̂ †iµM

µν
i · σd̂iν +

Mνν
i ·M

µµ
i + 2|Mµν

i |2

J

)
(B.24)

We transform to Bloch-space, since the system is considered to be translational invariant,

and introduce the transformed operators between Bloch and Wannier space

d†kµσ =
1√
N

∑
i

eik·Rid†iµσ, ⇐⇒ d†iµσ =
1√
N

∑
k

e−ik·Rid†kµσ (B.25)

and thereby get

Hmag(k) =
∑
k ql

∑
µ6=ν

(
d̂ †k+qlµ

Mµµ
l · σd̂k−qlµ + d̂ †k+qlµ

Mµν
l · σd̂k−qlν

)

+
∑
ql

∑
µ 6=ν

Mµµ
l ·M

νν
−l + 2

∣∣Mµν
l

∣∣2
J

.

(B.26)
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Appendix B. Mean-Field Decoupling Approach

Note here that the ql-sum runs over all the nesting vectors, Ql = 2ql, on the Fermi surface.

We have in the above used the Bloch representation of the magnetic order parameters

Mµν
l =

1

N

∑
i

Mµν
i e−iQl·Ri , ⇐⇒ Mµν

i =
∑
Ql

Mµν
l eiQl·Ri . (B.27)

Cooper Channel for Fe-Pnictides

Through the same procedure, but now with a general effective electron electron interaction,

V̂eff, we obtain the BCS Hamiltonian in Wannier-space

HBCS = −
∑
ij

∑
µνλκ

∑
αβγδ

V µνλκ
ij,αβγδd

†
iµαd

†
jνβdjλγdiκδ, (B.28)

with the matrix element defined as

V µνλκ
ij,αβγδ = 〈iµα, jνβ|V̂eff|jλγ, iκδ〉 =

∫
drdr′ 〈αµ|r〉〈βν|r′〉Veff(r, r′)〈r′|λγ〉〈r|κδ〉 (B.29)

where {α, β, γ, δ} are spin labels, and {µ, ν, λ, κ} the orbital labels. Notice that we have

such a matrix element, since the interaction could be spin, orbital and lattice dependent.

After a mean-field decoupling, using the general expression in section.B, we end up with the

Hamiltonian

HMF
BCS =

∑
ij

∑
µν

∑
αβ

(
d†iµα∆µν

ij,αβd
†
jνβ + h.c.

)
+
∑
ij

∑
µνλκ

∑
αβγδ

(
∆κλ
ji,γδ

)∗ (
V −1

)λκµν
ij,γδαβ

∆µν
ij,αβ,

(B.30)

with the following order parameters

∆µν
ij,αβ = −

∑
λκ

∑
γδ

V µνλκ
ij,αβγδ〈djλγdiκδ〉,

(
∆µν
αβ

)∗
= −

∑
λκ

∑
γδ

V κλνµ
ij,δγβα〈d

†
iκδd

†
jλγ〉. (B.31)

Again we would like to go from Wannier to Bloch spaces through the definitions in in Eq.B.25.

For simplicity we will not include the constant term, and thereby obtain the final BCS

Hamiltonian in reciprocal space

HBCS(k) =
∑
kq

∑
µν

∑
αβ

(
d†k+q/2µα∆µν

kq,αβd
†
−k+q/2 νβ + h.c.

)
, (B.32)

where the total momentum of the Cooper pair q, usually is zero. Note we have defined the

Bloch representation of the pairing potential as

∆µν
kq,αβ =

1

N

∑
ij

∆µν
ij,αβe

−ik·(Ri−Rj)e−iq·
Ri+Rj

2 , ⇐⇒ ∆µν
ij,αβ =

∑
kq

∆µν
kq,αβe

ik·(Ri−Rj)eiq·
Ri+Rj

2

(B.33)

Where we see that q is the momentum of the center of mass of the cooper pair, and k is

simply the relative momentum.
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Appendix C

Topological Classification of FeSCs

We will in this appendix carry out all the topological classifications for the nine magnetic

phases discussed in Chap. 2 coexisting with superconductivity. All the magnetic profiles are

listed in Eqs. 2.2 and Eq. 2.3. In order to obtain the BdG Hamiltonian, one should Fourier

transform the magnetic profiles and insert them in Eq. 2.48, as done in Sec.2.3. When a

Hamiltonian has a symmetry Ô, i.e. [Ĥ(k), Ô] = 0, we can simultaneously block diagonalize

the two matrices and label each block by the eigenvalues of Ô.

Single-Q Stripe Phase

Since this magnetic phase is single-Q nested, we only need to do the folding along the nesting

wave vector Q. Additionally we find the Hamiltonian to have the symmetry σy. The block

diagonalized Hamiltonian thus takes the form

Ĥσ(k) = τz

[
ĥ+

0 (k) + ĥ−2 (k)ρz

]
+ σ

M̂zρx
2

+τx

[
∆̂+ Re

0 (k) + ∆̂−Re
2 (k)ρz

]
− τy

[
∆̂+ Im

0 (k) + ∆̂− Im
2 (k)ρz

]
.

(C.1)

In this basis complex conjugation is defined as K = ρxK′, with K′ not acting on q1, but k.

Let us study the following cases:

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyρz. Additionally we find Θ = ρxK′ and Ξ = τyρyK′,
resulting in the class BDI⊕BDI.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class D⊕D with Ξ = τyρyK′.
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Double-Q Charge Spin Density Wave

This system only has the symmetry σy, if the profile is defined as in Eqs. 2.2. The Hamiltonian

gets on the block form

Ĥσ(k) = τz

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

]
+ σ

M̂zρx + M̂zλx
2

+τx

[
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

]
−τy

[
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + +̂ ∆
Im
3 (k)λzρz

]
.

(C.2)

Since the Hamiltonian maintains its structure in the momentum transfer spaces, one retrieves

the usual complex conjugation K = λxρxK′.

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyλzρz. Additionally we find Θ = λxρxK′ and Ξ = τyλyρyK′,
resulting in the class CI⊕CI.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class C⊕C with Ξ = τyλyρyK′.

Double-Q Spin-Vortex Crystal

In this magnetic phase the Hamiltonian enjoys the symmetry λzρzσz. The moments are

assumed to be in the (x, y)-plane in spin space. The Hamiltonian is block diagonalized

through the unitary operator Ô = (λzρzσz + σx)/
√

2, where we obtain

Ô†Ĥ(k)Ô = τz

[
ĥ+

1 (k) + ĥ−2 (k)λz + ĥ−3 (k)ρz + ĥ+
4 (k)λzρz

]
+
σM̂xρx − M̂yλxρz

2

+τx

[
∆̂+ Re

1 (k) + ∆̂−Re
2 (k)λz + ∆̂−Re

3 (k)ρz + ∆̂+ Re
4 (k)λzρz

]
−τy

[
∆̂+ Im

1 (k) + ∆̂− Im
2 (k)λz + ∆̂− Im

3 (k)ρz + ∆̂+ Im
4 (k)λzρz

]
.

(C.3)

The usual representation of complex conjugation is conserved K = λxρxK′.

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyλzρz. Additionally we find Θ = λyρxK′ and Ξ = τyλxρyK′,
resulting in the class BDI⊕BDI. Note that the magnetic texture in 1D cannot be defined,

since it takes the form of the magnetic helix.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class D⊕D with Ξ = τyλxρyK′.
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Appendix C. Topological Classification of FeSCs

Single-Q Magnetic Helix ( )

Since this specific magnetic texture is single-Q nested, we only need to do the folding along

the nesting direction Q. Additionally the Hamiltonian has the unitary symmetries ρzσy,

allowing for a unitary transformation with the operator Ô = (ρzσy + σx)/
√

2:

Ô†Ĥ(k)Ô = τz

[
ĥ+

0 (k) + ĥ−2 (k)ρz

]
+ M̂

σ − 1

2
ρy

+τx

[
∆̂+ Re

0 (k) + ∆̂−Re
2 (k)ρz

]
− τy

[
∆̂+ Im

0 (k) + ∆̂− Im
2 (k)ρz

]
.

(C.4)

Clearly we are only interested in the σ = −1 block, which results in a Single-Q magnetic

stripe phase. We therefore get the same classification.

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyρz. Additionally we find Θ = ρxK′ and Ξ = τyρyK′,
resulting in the class BDI⊕BDI.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class D⊕D with Ξ = τyρyK′.

Double-Q Stripe with in-plane Helix ( )

The magnetic texture has the unitary symmetry λzρzσy. This symmetry allows for a block

diagonalization with the unitary operator Ô = (λzρzσy + σz)/
√

2, as such

Ô†Ĥ(k)Ô = τz

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

]
−σM̂sρx

2
+
−M̂xλxρz + σM̂zλx

2

+τx

[
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

]
−τy

[
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

]
.

(C.5)

We obtain the usual representation of complex conjugations K = λxρxK′.

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyλzρz. Additionally we find Θ = 0 and Ξ = 0, resulting in

the class AIII⊕AIII.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks chiral symmetry, due to the presence

of all Nambu matrices. The Hamiltonian is therefore left in the class A⊕A.
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Double-Q Stripe with out-of-plane Helix ( )

The Hamiltonian in this magnetic phase has the unitary symmetry λzσz, allowing for a

unitary transformation with the operator Ô = (λzσz + σx)/
√

2, which results in the block

Hamiltonian

Ĥσ(k) = τz

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

]
+
σM̂sλzρx

2
+
M̂xλyσ + M̂yλy

2

+τx

[
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

]
−τy

[
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

]
.

(C.6)

We find the topological classification to be the following:

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyλzρz. Additionally we find Θ = λxρyK′ and Ξ = τyλyρxK′,
resulting in the class DIII.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class D with Ξ = τyλyρxK′.

Double-Q Double Parallel Helix ( )

The Hamiltonian enjoys the symmetry λzρzσy, allowing for a block diagonalization with the

operator Ô = (λzρzσy + σx)/
√

2:

Ô†Ĥ(k)Ô = τz

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

]
+ M̂ρy

σ − λz
2

+ M̂λy
σ − ρz

2

+τx

[
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

]
−τy

[
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

]
.

(C.7)

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyλzρz. Additionally we find Θ = 0 and Ξ = 0, resulting in

the class AIII⊕AIII.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class A⊕A.
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Appendix C. Topological Classification of FeSCs

Double-Q C4-symmetric Spin-Whirl Crystal ( )

The system has no unitary symmetries, and obtains therefore the form

Ĥ(k) = τz

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

]
+
M̂xρxσx + M̂⊥ρyσz

2
+
M̂xλxσx + M̂⊥λyσy

2

+τx

(
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

)
−τy

(
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

)
.

(C.8)

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyλzρz. Additionally we find Θ = iλyρyσyK′ and Ξ =

τyλxρxσyK′, resulting in the class DIII.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class D with Ξ = τyλxρxσyK′.

Double-Q C2-symmetric Spin-Whirl Crystal ( )

Similar to the phase described above, this Hamiltonian has now unitary symmetries, and gets

on the form:

Ĥ(k) = τz

[
ĥ+

0 (k) + ĥ−1 (k)λz + ĥ−2 (k)ρz + ĥ+
3 (k)λzρz

]
+M̂s

ρyσx + ρxσz
2

+
M̂yλyσy + M̂zλxσz

2

+τx

[
∆̂+ Re

0 (k) + ∆̂−Re
1 (k)λz + ∆̂−Re

2 (k)ρz + ∆̂+ Re
3 (k)λzρz

]
−τy

[
∆̂+ Im

0 (k) + ∆̂− Im
1 (k)λz + ∆̂− Im

2 (k)ρz + ∆̂+ Im
3 (k)λzρz

]
.

(C.9)

• Real Superconducting OP:

By setting the imaginary part of the pairing potential equal to zero, the system obtains

the chiral symmetry Π = τyλzρz. Additionally we find Θ = iλyρyσyK′ and Ξ =

τyλxρxσyK′, resulting in the class DIII.

• Complex Superconducting OP:

The inclusion of a complex pairing potential breaks both chiral and generalized time-

reversal symmetry, due to the presence of all Nambu matrices. The Hamiltonian resides

in the class D with Ξ = τyλxρxσyK′.
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Appendix D

Matrix Representation of C4v

Elements

Matrix Representation in Orbital Space

d̂κ(E) = 1κ d̂κ(C2) =


−1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 ,

d̂κ(C4) =


0 −1 0 0 0

1 0 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1

 , d̂κ(C4) =


0 1 0 0 0

−1 0 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1

 ,

d̂κ(σxz) =


1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1

 d̂κ(σyz) =


−1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1

 , (D.1)

d̂κ(σx+y) =


0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1

 , d̂κ(σx−y) =


0 −1 0 0 0

−1 0 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1

 .
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