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Abstract

The amount of distinct Fullerene molecules, a class of polyhedral, hollow carbon
molecules with spherical topology and graphene-like structure, is enormous. The
quest to find synthesizable isomers with useful properties requires fast and effective
solutions for approximation. The CARMA project, which this thesis is a part of,
tries to achieve that by describing the electronic structure of the molecules with a
two-dimensional, coordinate free surface DFT restricted to the molecule shells by
means of a graph theory-based description. This approach hopes to unify the good
accuracy of a classical, three-dimensional DFT approach with the speed benefits
of other graph-theoretical approaches. Reducing the dimension yields losses in
accuracy, no matter how good the DFT works on the surface, the reason being that
high curvature regions of the molecule can yield out-of-surface interactions of high
strength due to short distances between more or less opposing regions of the shell.

In this thesis project, a mixed-dimensional treatment is proposed to compute relevant
out-of-surface interactions by embedding high-curvature regions of the surface into
three-dimensional space. The approach aims to reach high computation speeds by
embedding only the necessary regions, based on the molecule’s graph bonds and
without taking into account further physical restrictions.

Methods are developed and implemented in software to structure these embeddings
and obtain valid geometries for any possible high-curvature region. The current
state of the implementation is discussed, including descriptions of the problems that
are still to solve. An overview is given about what work lies ahead, in terms of
concept development, improving the current implementation and also continuing
development towards the construction of molecule regions of arbitrary size.
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1. Introduction

Carbon is one of the most variable elements in existance. There are countless ways in
which it can form molecules, in combination with other elements, but also purely with
carbon atoms. When thinking about molecules made purely of carbon, what comes to
mind first is diamond. For some, it is also graphene or carbon nanotubes, as these two
structures have seen a fair bit of research in the past decades, due to their excellent
physical properties. Both graphene and carbon nanotubes have a hexagonal structure,
where each carbon atom is bonded with three other atoms. While graphene is one
big, flat sheet made of hexagons, nanotubes have a cylindrical shape, in a way they
are graphene curled up to a cylinder. Relaxing the the structural requirements a little
bit and introducing some pentagons to the hexagonal structure, one can now form
surfaces with (positive) intrinsic curvature. This leads to the molecule class of Fullerenes.
Fullerenes consist of exactly twelve faces of carbon pentagons, around these pentagons
more hexagonal carbon faces are arranged. The exact number of twelve pentagons gives
the molecules a spherical topology. In one way or the other, Fullerenes always resemble
hollow balls of carbon, although their shapes can vary greatly. The easiest example of a
Fullerene is the so-called Buckyball, chemically the molecule is referred to as C60 –Ih . It
is sometimes also called the ”football molecule”, because it has the same structure as a
football.

Figure 1.1.: Some Fullerenes, from left to right: The smallest Fullerene C20 –Ih, the
C60 –Ih Buckyball and the C440 –D3 with trihedral shape. From [13] with
permission.

But also more complicated shapes are possible, for example the trihedral C440 –D3 shown
in Figure 1.1. Fullerenes have several prospective applications, which make more extensive
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1. Introduction

research on the whole molecule class worth it. For example, they are currently used in
organic solar cells to increase the material conductivity [6], it is projected that they can
be used to store hydrogen at near-metallic density [12]. Other possible or real applications
include organic electronics [7], printable electronics [4] and asthma inhibitors [10].

This thesis is part of a research project called CARMA, which is aimed at predicting the
properties of Fullerene molecules, finding suitable candidates for synthesis and finding
ways to synthesize them. CARMA is short for CARbon MAnifolds and reflects the
approach that is taken in this project. The goal is to describe Fullerenes as a two-
dimensional surface manifold, which does not require a three-dimensional embedding
of the molecule. The existing methods for determining Fullerene properties are mostly
based on quantum chemical computations, where the full three-dimensional structure of
nuclei and electronic bonds is computed. This is very time consuming though, generally
supercomputers are needed to cut the simulation of a single molecule down to a reasonable
time span. Even with a supercomputer, computing the properties of a single molecule
can take days, depending on the level of detail that is applied.

This is in theory not a big problem when simulating a single molecule. The problem is
to find, which molecules are worth simulating on a high level of detail. The number of
Fullerene isomers for a given number of carbon atoms N scales in the order of O(N9).
The smallest Fullerene is C20, and given that the number of carbon atoms goes to the
hundreds quite quickly, the number of isomers reaches the millions very fast. For example,
there exist 285914 isomers for N = 100 and already 214127742 for N = 200 [3]. These
numbers are huge, and the question arises, what isomers to select for a more thorough
investigation. A set of methods is needed, which roughly approximate the properties of a
single isomer very quickly, such that many isomers can be run through the method quickly
and the most promising ones for a certain purpose can be filtered out. For Fullerenes,
one approach can be to reduce the dimensionality of the describing theory: Fullerenes are
hollow shells, one can assume that the interior of the molecule does not contribute a lot
to the molecular properties compared to the in-surface dynamics. Electronic interactions
will always mainly take place along the surface, as the Coulomb force scales with 1/r2 with
distance. Additionally, electrons can move quite well through the surface - in graphene-like
structures, the p-orbitals perpendicular to the surface connect to form a π-band, which
enhances the conductivity along the surface. Electron-Electron interactions along the
surface are not met by a lot of resistance. Overall, this invites to explore methods that
only include electron dynamics in the molecule surface, instead of describing it in the full
3-dimensional molecule. However, just reducing the electron dynamics to the molecule
shell does not provide enough of a speed boost to compute molecular properties in such
a huge isomer space. A big speed problem is finding an approximation of the molecule
shape itself. A method needs to be developed that drops the need for three-dimensional
coordinate-based description of Fullerenes.

The CARMA project is working on providing such a method. The approach is based on a
graph-theoretical description of Fullerenes. A graph consists of edges and vertices, which
is a good fit to represent the atoms and bonds of a Fullerene. This graph structure forms
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a two-dimensional discrete surface manifold, which can be used for electronic structure
approximation. The most common tool for the approximation of electronic multi-body
problems is a density functional theory (DFT). A part of the CARMA project is to find
a DFT that is tailored for discrete non-Euclidean two-dimensional manifolds like the
Fullerene surface manifolds. These manifolds are coordinate-free and provide a truly
two-dimensional description of Fullerene molecules.

However, no matter if there is a coordinate free two-dimensional description or if the
surface manifold is still embedded into three-dimensional space, reducing electron dy-
namics to the surface means ignoring the electronic interactions perpendicular to the
surface. If the molecule was planar like graphene, those would not be of relevance. Also
in Fullerenes, the approximation is in general still good, because many out-of-surface
interactions are over such long distances that they become irrelevant. A good example

(a) View into C240 –Ih. Short and strong (red)
versus long and weak (green) interaction.

(b) The C120 –T has pockets, where also
shorter interactions can be out-of-
surface.

Figure 1.2.: Generally, the two-dimensional description is a good approximation, because
shorter interactions are well-captured by in-surface approximations, while
longer ones are too weak to be relevant (a). However, if a molecule has
”pocket regions”, there can be relevant out-of-surface interactions (b).

for this is shown in Figure 1.2a, where the green line marks an interaction between
electrons on opposite sides of the hull, where the red line represents a much shorter
interaction. The green interaction is clearly out-of-surface and can not be represented
correctly in a surface DFT. But it is also weak, because it is very long-distance and
therefore not of great importance to the overall accuracy of the approximation. On the
other hand, the red interaction is much shorter and stronger, but also well-approximated
by the surface. The fact that the approximation of interactions becomes better the
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1. Introduction

shorter the interactions are, combined with the distance scaling of 1/r2 in the Coulomb
force makes the surface approximation more accurate, the bigger the Fullerene is, because
the interaction strengths of out-of-surface interactions steadily decrease with molecule
size.

This all sounds very promising already, yet there is another factor to be taken into account
when it comes to how good a surface DFT can approximate the electronic structure.
This factor is the distribution of curvature in the molecule surface. The icosahedral
C240 in Figure 1.2a has the most even distribution of curvature that is possible. That
is not always the case though, Figure 1.2b shows a C120 –T with several high-curvature
regions for direct comparison. In these cases, there can be situations with significant
out-of-surface interactions.

Significant Out-Of-Surface Interactions

These situations can arise two different ways: For one, they can be based on the overall
shape of the molecule. Two examples for that would be carbon-nanotube-like molecules
or very flat Fullerenes. Nanotube-shaped Fullerenes have very little distances between
between opposite surface walls and very flat Fullerenes are subject to the same, although
in a slightly less regular manner. Both cases likely need a three-dimensional treatment or
some other kind of specialized model anyway. Luckily for us, who are searching through
the isomer space of Fullerenes for useful molecules, these cases do not appear frequently
and can be awarded a special treatment.

Figure 1.3.: The C360 –D5h with a nanotube-like shape, its out-of-surface interactions
appear all over the molecule, surface DFT is not likely to be very accurate.
From [13] with permission.

The far more common case of relevant out-of-surface interactions arises from the curvature
of the molecule surface. For the great majority of isomers, the pentagons that are sources
of curvature, are not equally distributed over the molecule surface. In fact, in many
cases, they tend to group up tightly and build little ”pockets” in the molecule. No
matter the size of the molecule, there can never be more than twelve of those regions,
restricted by the fixed number of pentagon faces in the Fullerene. One could argue that
in the most important cases, it is likely that there are less than twelve, because a deep
pocket is likely to be shaped by more than one pentagon. To achieve a good accuracy
in electronic structure computations, which ultimately determines the ability to project
molecule properties, the out-of-surface interactions in the molecule’s pockets need to be
included.
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Very simplified, Figure 1.2 shows a short-distance out-of-surface interaction in a pocket
of the molecule surface, the direct three-dimensional path in red and the in-surface
interaction in blue.

(a) (b)

Figure 1.4.: View into C120 –T, where a short-distance interaction (red) is happens in
a pocket of the molecule (a). Compared to its blue in-surface equivalent,
this interaction is clearly out-of surface (b) and can not be approximated
efficiently with a surface DFT.

The red interaction can not be approximated efficiently by a purely two-dimensional
surface DFT, because the equivalent interaction through the surface is a lot longer in
comparison. This is a short-distance interaction though and it has a higher strength
than the out-of-surface interaction in Figure 1.2a, such that it can not just be omitted.
Exactly that problem is what this thesis seeks to find a solution to.

Including Short-Distance Out-Of-Surface Interactions

The ansatz for approaching the problem of out-of-surface interactions in pocket regions of
the molecule is a mixed-dimensional one. That is, to construct embeddings of the pockets
in three-dimensional space up to some size that is adequate to cut off the approximation
of out-of-surface interactions. Partly returning to a three-dimensional description does of
course yield losses in computation speed, yet the fact that there can at max be twelve
pockets means that these losses do not scale with the size of the molecule, i.e. the
computation speed still scales with the two-dimensional description of the surface instead
of the full three-dimensional simulation. Additionally, because of the inverse squared
scaling of the Coulomb-force with distance, the size of the pocket region embeddings
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1. Introduction

does not necessarily need to scale with the size of the molecule, as the size of a pocket
region can be chosen up to some cutoff-distance determined by the coulomb-interaction
strength, as long as it includes all the curvature-generating pentagon faces.

Making such an approach a reality first and foremost requires a construction method
for the pockets that satisfies certain conditions. To fit into the model, the construction
should be based on the intrinsic geometry the surface manifold. It needs to be able to
grow the embeddings of pockets to an arbitrary size that has been identified as the cutoff
size. This growing process should be somewhat symmetrical, such that the embedding
has the shape of a cone with some kind of even ”radius”, such that the cutoff is at similar
interaction strengths into every direction. The term cone emphasizes the fact that upon
growing the pocket regions, the specific arrangement of the pentagons in the center of
the cone becomes less important. On a larger scale, one can assume point curvature in
the center of the cone and a flat geometry otherwise. An important detail is that single
regions have to be embedded without computing the embedding of the full molecule,
because this would equate to a three-dimensional scaling of computation time, the very
thing that we are trying to avoid with this method. This is a crucial point that eliminates
existing methods for Fullerene shape approximation from contention and requires the
development of a new one.

In summary, this thesis introduces a method for the construction of pocket region
embeddings of Fullerene molecules, based on the intrinsic geometry information from
the bond graph of the two-dimensional surface manifold. For a regional embedding, no
information about the three-dimensional shape of the molecule is needed, and the goal is
that the embedding can be grown to an arbitrary desired size.

1.1. Organization of This Thesis

The remainder of this thesis is organized as follows: Chapter 3 and 3 address already
concepts for the theoretical description of Fullerenes. Both of these chapters do not
address research made in the course of this thesis, but build a theoretical background to
dive into the project’s content.

Chapter marks the beginning of my personal work, which fills all chapters from this
point. Here, some additional structure is introduced that is needed to describe the
embeddings of surface regions and their construction. Chapter 5 transfers this structure
to a concept for an algorithm to build the embeddings. The chapters 8, 9 and 10
describe the implementation of this algorithm, where the first two chapters are very
implementation-heavy and 10 is a little more focused on concepts in development towards
the end stages of the construction process, which yield problems that are not solved yet
or only partially solved. Finally, chapter 11 gives an overview of the capabilities that
the algorithm has in it’s current state, and where there are problems that need to be
solved.
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1.2. Contributions of this Thesis to CARMA

1.2. Contributions of this Thesis to CARMA

This thesis has given the following contributions to the CARMA project:

1. Development of a three-step method to embed surface manifold regions of Fullerenes
into three-dimensional space (chapters 4 and 5)

2. Building the first iteration of an implementation, mainly for step one (chapter 8)
and two (chapter 9). Starting to build an implementation for the last step (chapter
10).

The contents of chapter 2 and chapter 3 are background information and context to
make this thesis more understandable. Parts of these chapters are research done by the
CARMA group, parts are general research about Fullerenes. All contents of the chapters
4 to 11 describe original work by myself.

1.3. Software

All of the software that is relevant for this thesis can be found on the

folding-carbon github
under the folder PocketRegionProject. The file structure is shown below.

PocketRegionProject

src

classes.py

controller.py

functions.py

data

geometryPlotting.py

moleculePlotting.py

For most of this thesis, the most important folder is src. The file functions.py holds all
basic functions that are used globally. This file will be referred to several times during
the thesis. controller.py holds the constructionManager class, this will be important in
chapter 6 and classes.py holds the Patch and PocketRegion classes, which will be important
in chapters 6, 8 and 9.
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1. Introduction

The folder data holds Fullerene geometries that serve as source for the files geometryPlot-
ting.py and moleculePlotting.py, where one can plot three-dimensional, interactive plots of
Fullerenes, pocket regions etc.

The interested reader is invited to come back to this chapter before searching for functions
that are referenced in the text. For important functions, there will be a reference on
where to find them in the file structure.
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2. Fullerenes

In this first chapter, I want to dive into the mathematical description of Fullerenes that
the CARMA project is using. I have stated that Fullerenes are described as graphs,
where the carbon atoms are represented by vertices and the chemical bonds by edges.
I will introduce the mathematical framework of graph theory and Fullerene graphs.
There are two different ways of representing Fullerenes through graphs, I will introduce
both, address advantages and disadvantages and afterwards talk about the numerical
representation of graphs.

2.1. Combinatorial Geometry of Fullerenes

A graph G = (V, E) is a set of vertices (also called nodes) V, which are connected
by a set of edges E . Mathematically, the set E can be described as a subset of the
set of all possible pairs of vertices, given that only distinct vertices can be paired;
E ⊆ {(x, y)|(x, y) ∈ V2 ∧ x 6= y}.

Fullerene graphs are a type of graphs that is called polyhedral graphs, fulfilling two crucial
properties. Polyhedral graphs are planar, which means that they can be embedded in
two-dimensional Euclidean space with a map V → R2, such that all edges can be drawn
straight without crossing. Most importantly, a planar graph can also be embedded on
a two-dimensional sphere, which makes a lot of sense for Fullerenes with a spherical
topology. Furthermore, polyhedral graphs are three-connected; at any point in the graph,
three edges or more would have to be removed to create two disconnected graphs. Also
this makes sense, as every carbon atom in a Fullerene has three bonds with other atoms.
The combination of these two properties yiels a graph that has a unique embedding in
three dimensions, of course still with a spherical topology [13].

It is very intuitive to represent carbon atoms by nodes and their bonds by edges in a
graph. This representation, where nodes represent carbon molecules and edges represent
bonds, is characterized by each node having degree three. A graph with that property is
called a cubic graph, which is why this representation is called the cubic representation.
However, this graph can be impractical to work with, for example it is rather hard to
represent the graph in R2. A later chapter will be dedicated to addressing some problems
that arise when working with this representation in three-dimensional embeddings of the
molecule. To provide an alternative to the cubic representation, the dual representation
will now be introduced.
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2.1. Combinatorial Geometry of Fullerenes

Figure 2.1.: Cubic and dual representation of a standard hexagon grid. Cubic nodes in
black and edges in blue, dual nodes in orange and edges in black.

The dual representation of a Fullerene molecule can be constructed by placing a node
in the center of each face and then connecting nodes that represent adjacent faces. A
simple example in the two-dimensional plane is shown in figure 2.1. The green nodes
represent the vertices of the cubic representation, the black edges represent the bonds.
Placing a dual vertex in the middle of each cubic face (and continuing the grid a little
further for illustration purposes) yields the orange nodes, connected by dotted brown
edges. The edges of the dual representation represent two adjacent faces in the cubic
representation and cross the common edge of those two faces in the two-dimensional
picture. Dualizing a representation works in both directions. The dual of the dual

Figure 2.2.: Cubic and dual representation of a D3h –C224 molecule. From [13] with
permission.

representation yields the cubic representation. This immediately becomes clear when
taking another look at Figure 2.1: Each of the green nodes is in the center of a dual face
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2. Fullerenes

and a black edge connects two dual triangles.

Figure 2.2 shows the cubic and dual representation of a whole molecule. The color coding
in this figure is noteworthy: the cubic representation consists of green nodes, orange
hexagon faces and blue pentagon faces. Equivalently, the dual representation has orange
’hexagon nodes’ and blue ’pentagon nodes’, as well as green faces. This color coding will
be kept as far as possible during this thesis. Also, I want to make it clear that Figure 2.2
shows the embeddings of Fullerene surface manifolds, where the edge lengths have been
optimized such that the shape resembles the physical shape of the molecule. This is not
what the electronic structure is actually calculated on, otherwise every surface manifold
would need to be embedded before DFT calculations, losing the speed advantage of a
truly two-dimensional model. Instead, DFT calculations are made on a representation
of the surface manifold that looks much more like Figure 2.1. A unit length is chosen
for all edges, such that all faces form regular polygons (no matter which representation).
This yields a truly coordinate-free description, where distances between vertices can be
measured by the minimum amount of edges that need to be traversed to go from one
vertex to the other.

2.2. Mathematical Representation of Fullerene Graphs

With graphs consisting of vertices and edges, the intrinsic graph information can be
conveniently represented in an adjacency matrix A, a matrix of dimensions N ×N , if N
is the total number of vertices. The entry (i, j); i, j ∈ 0, ..., N − 1 in A is 1 if there exists
an edge spanning from i to j, otherwise it is zero.

Fullerenes can have anywhere between 20 and hundreds of carbon molecules. This
translates to equally as many vertices in the graph. Yet, each vertex has a connectivity of
three, so three out of potentially hundreds of entries in a single row of the matrix A will
be 1. That is why for a Fullerene graph, an adjacency matrix will always be an ineffective
way to save the information, simply because every node only has a degree of three in the
cubic representation or a maximum degree of six in the dual representation. In cases
like these, it is more efficient to define a sparse adjacency matrix. In the case of the dual
representation, this matrix has the dimensions (N × 6). Each line entry represents a
vertex and holds the indices of the six connected vertices. In the case of a pentagon node,
which only has five connections, the last entry is −1 and can be filtered out whenever
accessing the data.

The difference between adjacency matrix and sparse adjacency matrix are easiest explained
with the help of a little example. Figure 2.3 shows a small triangular grid with nine
nodes labelled 0 to 8, where 5 is a pentagon node. The adjacency matrix A and sparse
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2.2. Mathematical Representation of Fullerene Graphs

Figure 2.3.: Example for a small hexagonal grid with indices, on the left side flattened
in the two-dimensional plane and on the right side embedded in three
dimensions.

adjacency matrix SA of this grid are relatively easy to define.

A =



0 1 1 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
1 0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 1 1
1 1 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1 0


; SA =



6 5 4 3 2 1
2 0 6 .. .. ..
3 0 1 .. .. ..
4 0 2 .. .. ..
7 5 0 3 .. ..
0 4 7 8 6 −1
1 0 5 8 .. ..
8 5 4 .. .. ..
6 5 7 .. .. ..


. (2.1)

The dots in the sparse adjacency matrix serve as place holders for further connections
that go beyond this example. Note that in line five of SA (counted from zero), there is a
−1 entry in the end, as stated before this is because the node only has five neighbours
and the negative one serves as a fill-up that can be filtered out by functions that use SA
for calculations.

The sparse adjacency matrix has the ability to hold more information than the normal
adjacency matrix. The reason is that the row indices are not bound to be the vertex
indices. Instead, one can order the row entries in each line however it is most convenient.
For a Fullerene graph, the connected vertices are usually ordered in counter-clockwise
order, when looking from the outside of the molecule. Sticking to that ordering is crucial
for some functionalities that are needed for the algorithm, as we will see later.
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2. Fullerenes

Figure 2.4.: Visialization of principal curvatures κ1 and κ2 on an arbitrary surface. Figure
from [5].

Going back to the previous example in equation (2.1), take a look at the ordering of lines
in the sparse adjacency matrix. Because both sketches in Figure 2.3 are shown from a
perspective that would qualify as the inside of a Fullerene molecule, the vertices in SA
are ordered in clockwise order compared to the Figures.

The sparse adjacency matrix for the dual representation is usually called the matrix of
dual neighbours. In practice, this matrix is kept at all times, together with the information
about the dual faces. Technically, this is redundant information, because the faces can
be computed from the dual neighbours and vice versa, but both data structures are used
regularly and it is beneficial to have the possibility of accessing them at any time without
computations.

2.3. Curvature Measures in Fullerene Surface Manifolds

For each point on a differentiable manifold, i.e. a manifold that is locally similar to
Euclidean space, one can define principal curvatures κ1 and κ2. These are the maximum
and minimum curvature of the plane in any direction from the point. This is illustrated
in Figure 2.4. Their product, the Gaussian curvature, is an intrinsic property of the
surface itself

K = κ1 · κ2 (2.2)

Figure 2.4 shows he principal curvatures of directions ~X1 and ~X2 on an arbitrary surface.
For a more thorough investigation of Gaussian curvature, I refer to Keenan Crane’s

introduction to differential geometry [5], which figure 2.4 is taken from. It provides a
great overview.

Gaussian curvature in a surface point can be positive, zero or negative. In Figure 2.5,
three different surfaces are shown. The cylindrical shape in part (a) of the figure does
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2.3. Curvature Measures in Fullerene Surface Manifolds

Figure 2.5.: Surfaces with zero (a), positive (b) and negative (c) Gaussian curvature.
From [13] with permission.

have extrinsic curvature, but no intrinsic curvature. One of the principal curvatures will
be zero, and no point on the surface has Gaussian curvature. The situation in the (b)
surface is different, this is a half-sphere and has positive Gaussian curvature. In surface
(c), you can see a saddle point that yields negative Gaussian curvature. In Fullerenes,
one only encounters nodes that yield a curvature of zero or higher. Negative curvature is
not allowed, Fullerenes are convex polyhedra.

The total Gauss curvature of an oriented surface defines its topology through the Gauss-
Bonnet theorem. Assume a manifold M , a surface element of that manifold dA and
χ the Euler characteristic of the manifold (more about that in a moment). Then the
Gauss-Bonnet theorem states [5] ∫

M
K dA = 2π · χ (2.3)

This statement has to be dissected a little bit. First of all, the Euler characteristic is
a topological invariant of the manifold. Because the manifolds that are treated in this
thesis are all Fullerene surfaces, their topology is that of a sphere. Therefore they are
closed and orientable, and the Euler characteristic can be computed from the genus g of
the manifolds. g is always zero for manifolds with spherical topology, so in the context of
a Fullerene surface manifold, it can be stated that

χ = 2− 2g (g=0)= 2. (2.4)

Including this statement, equation (2.3) states that the total Gaussian curvature of a
sphere is 4π.

Discrete Fullerene Surface Manifolds

Now, Fullerene surface manifolds are discrete and require a discrete form of the Gauss-
Bonnet theorem. The focus is here on simplical surfaces, which restricts the use of the
discrete theorem to the dual representation. Nonetheless, some general deductions can
be made, which will be addressed later in this chapter.
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2. Fullerenes

To be able to define a Gauss-Bonnet theorem on simplical surfaces, one needs a represen-
tation for the Gauss curvature K first. This is achieved by defining the deficit angle d of
a vertex v in the simplical surface

d(v) = 2π −
∑
f∈Fv

∠f (v). (2.5)

Fv is the set of all faces that v is contained in, and ∠f (v) is the inner angle adjacent to v
of a face f ∈ Fv [5].

Effectively, one is measuring the angle around the vertex with the sum in equation (2.5),
and then comparing it to the expected angle, which is 2π. The discrete Gauss-Bonnet
theorem relates the deficit angles of all vertices to the Euler characteristic of the surface
manifold [5]. Because the number of vertices is finite and they are the only points that
can carry curvature, the integral from equation (2.3) reduces to a sum:

∑
v∈V

d(v) = 2πχ (g=0)= 4π. (2.6)

Hereby, V is the set of all vertices in the manifold.

Addressing the manifolds at hand more concretely, one can use the dual representation
of Fullerenes as simplical surface. Equation (2.6) fixes the total deficit angle to 4π. Does
the dual representation of Fullerenes with a unit edge length condition from chapter 2
obey equation 2.6?

Because of the nature of the dual representation, the vertices can be split up into pentagon
vertices vp with five adjacent faces and hexagon vertices vh with six adjacent faces. If
one also respects the unit edge length condition, all of those faces are equilateral and
have inner angles of 2π

6 . The deficit angles of these vertices are quite easy to calculate in
this model.

d(vp) = 2π − 5 · 2π
6 = π

3 (2.7)

d(vh) = 2π − 6 · 2π
6 = 0 (2.8)

Only the pentagon vertices carry curvature. As addressed in chapter 2, there are exactly
12 pentagons in a Fullerene molecules, equating to 12 pentagon vertices in the dual
representation. The total deficit angle adds up to 12 · π3 = 4π, which is consistent with
the discrete Gauss-Bonnet theorem.
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2.4. Alexandrov’s uniqueness theorem

2.4. Alexandrov’s uniqueness theorem

A central statement for the shape of Fullerenes is made by Alexandrov’s uniqueness
theorem for convex polyhedra.

Theorem 2.4.1. Let M be a convex polyhedral metric on the sphere. Then there exists
a convex polyhedron P ∈ R3 such that the boundary of P is isometric to M . Moreover,
P is unique up to rigid motion.

A convex polyhedral metric is a polyhedral metric that does not have points of negative
curvature. This means that both the cubic and dual representation of Fullerenes define a
convex polyhedral metric on a sphere. An isometric embedding is an embedding that
conserves all distances in the surface. Due to Alexandrov’s theorem, one can always
assume that there is a unique isometric embedding with a rigid form and a total of
zero degrees of freedom for any cubic or dual Fullerene surface manifold. However,
in this project, only part of the Fullerene surface manifold is constructed, instead of
representations of a whole molecule. What value does the theorem have for this work?

In general, any part of a Fullerene surface manifold will have multiple internal degrees of
freedom left upon construction. There are exceptions for small areas around pentagon
nodes, which will be addressed extensively throughout this thesis, for the first time they
will appear in chapter 4. Considering this, one can expect that an embedding of an
arbitrary surface manifold region can have anywhere between one and infinitely many
representations, depending on the situation. It is to expect that in the case that multiple
embeddings are combined to form the whole molecule, there is only one possible way it
can be shaped.

One thing that is sure though, is that there always has to be an isometric embedding for
any Fullerene surface manifold. If a region of the manifold can not be embedded, it is
impossible to find an embedding for the whole manifold.
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3. Approximation of Electronic Structure in
Fullerenes

From Fullerene bond graph, we compute the structure of the molecule and derive a
two-dimensional manifold describing its polyhedral surface formed by hexagons and
pentagons. On this manifold, it is possible to compute an approximation of the electronic
structure of the molecule. Though the electronic structure of Fullerenes is not a topic
that will be addressed further in the process of this thesis, I will give a short introduction
because it is important for the motivation behind the work in this thesis.

A Fullerene’s electronic structure is a quantum-mechanical multi-body problem, the
behaviour of the system is governed by the multi-body Schrödinger equation [13]

− 1
2

 N∑
j=1
∇2
j −

M∑
a=1

N∑
j=1

Za · e
ri,j

+
N∑
i<j

e2

ri,j
− E

Ψ = 0. (3.1)

The problem with the multi-body Schrödinger equation is that it is basically not solvable
for molecules bigger than H, H2

+ or similar. The equation is a partial differential equation
has 3(Ne +Nn) degrees of freedom, Ne and Nn being the number of electrons and nuclei.
Generally these degrees of freedom are not separable, because the equation features
interaction terms between electrons and nuclei. A general expression for equation (3.1)
could be written as

EΨ = [T + V ] Ψ = [Te + Tn + Uee + Unn + Uen + Vext] Ψ. (3.2)

Here, T is kinetic energy and V potential energy. Vext represents an external potential,
the other three potential energies are the interactions that make the DOF inseparable.
As the CARMA project is developing fast methods that have the ability to compute
properties of many molecules in a short time, it is necessary to find approximations to
this problem that are solvable in little time.

As a first step, one can make use of a widespread approximation in quantum chemistry:
the Born-Oppenheimer approximation, declaring the nuclei, which are much heavier and
slower than the electrons, to be in fixed positions. This eliminates the kinetic term Tn,
the interaction terms Unn are eliminated, while Uen terms are now separable and are
seen as part of the external potential Vext.
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3.1. Density Functional Theory

3.1. Density Functional Theory

This section follows the DFT developed in [2]. There is still the problem of the inseparable
terms Uee and the number of DOF cannot be reduced under 3Ne. This can be attacked by
modifying the form of the problem further, such that it can be viewed in the framework
of a density field theory (DFT), based on the two Hohenberg-Kohn theorems that were
proposed in [9]. Still assuming a quantum-mechanical system of N electrons, with
Hamiltonian

H = T + Uee + Vext, (3.3)

the electron density ρ0 of a ground state Ψ is defined as

ρ0 = ρ[Ψ0](x) =
∫

dx2...

∫
dxN |Ψ0(x,x2, ...,xN )|2. (3.4)

Equation (3.4) shows, how ρ is determined by the ground state wave function of the
system Ψ. The first Hohenberg-Kohn theorem states that the inverse is also true, that is
the ground state wave function of a system is uniquely determined by the ground state
density ρ. That means that one can not only see the density as functional of the wave
function, ρ[Ψ], but that it is also possible to define Ψ = Ψ[ρ]. This consecutively leads to
a functional

A = A[ρ] = 〈Ψ[ρ]|A|Ψ[ρ]〉 . (3.5)

for an arbitrary operator A. An energy functional can be defined by

E[ρ] = 〈Ψ[ρ]|H|Ψ[ρ]〉 . (3.6)

The Hamiltonian is still the one from equation (3.3). From the first two terms of this
Hamiltonian, the functional

F [ρ] = 〈Ψ[ρ]|T + Uee|Ψ[ρ]〉 (3.7)

can be defined. The last term, the external potential, can be split up into single-electron
terms

Vext =
N∑
i=0

vext(xi). (3.8)

For the functional in equation (3.6), this yields

Vext[ρ] = 〈Ψ[ρ]|Vext|Ψ[ρ]〉 =
∫

dx ρ(x)vext(x). (3.9)

Equation (3.6) can then be rewritten as

E[ρ] = F [ρ] +
∫

dx ρ(x)vext(x). (3.10)
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3. Approximation of Electronic Structure in Fullerenes

The second Hohenberg-Kohn theorem states that the energy functional (3.10) reaches
its minimum exactly when ρ = ρ0; in other words, the variational principle can be used
to find the ground state energy from the functional (3.10) [9]. This means that now
there is a clear path to compute the ground state energy from the ground state density.
Only, the functional F [ρ] is not a known quantity and finding an approximate form
of F [ρ] is an unsolved, and possibly unsolvable problem. One can use the Kohn-Sham
approach, which proposes that for each Hamiltonian with an electronic interaction term,
like in (3.3), and ground state density ρ0, there exists a non-interacting Hamiltonian
H0[ρ] = T + V KS [ρ], which has the same ground state density ρ0. This breaks down
the many-electron Schroedinger equation into a set of single-electron equations, coupled
through the Kohn-Sham potential.

[
−1

2∇
2 + vKS [ρ](x)

]
φi(x) = εiφi(x) with ρ(x) =

N∑
i=1
|φi(x)| (3.11)

This yields the approximate kinetic energy TKS [ρ]. Taking a mean-field approach for the
electron-electron interaction Uee, one can sum up the inaccuracies that arise from the
approximations in the Exchange-Correlation energy

EXC [ρ] = F [ρ]− TKS [ρ]− Umf[ρ]
ee . (3.12)

With some more calculation, one reaches the point where the Kohn-Sham potential is

vKS(x) = vext + vH(x) + vXC(x), (3.13)

where the external potential is assumed known. vH is the Hartree potential from the
mean field approximation and vXC is the exchange-correlation potential, which is not
known.

The sense of the exchange-correlation energy is that it is much smaller compared to F [ρ]
than Uee or TKS . Nevertheless, it still needs to be approximated in order to find a good
representation of F [ρ]. This would go beyond the purpose of this chapter though, so for
now we finish the topic of DFT by writing the Kohn-Sham equations, combining (3.11)
and (3.13): [

−1
2∇

2 + vext + vH(x) + vXC(x)
]
φi(x) = εiφi(x) (3.14)

The function of a two-dimensional surface DFT is not only to be a fast approximation.
There exist fast graph-based methods for electronic structure that achieve high com-
putation speeds, for example the tight-binding model, Hückel’s method for π-orbitals
in molecules or also chemical graph theory approaches. However, these methods do
not reach the accuracy that a DFT can reach trading it off for a higher computation
speed. The goal of a two-dimensional DFT is to combine high computation speeds
of microseconds per atom and a linear size scaling with the higher accuracy that a
normal three-dimensional DFT can provide. Equipped with high computation speed and
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3.2. The Finite Element Method

a good accuracy, the goal is to predict molecule properties of many molecules in the
enormous isomer space of Fullerenes in a short time. The coming section will introduce a
finite element method to represent the equations from this DFT in two dimensions and
coordinate-free, such that the speed-benefit can be ensured.

3.2. The Finite Element Method

Some big steps have been taken to reach equations (3.14), but right now, all quantities
still depend on a global coordinate system. This would require an embedding of the full
molecule, which is exactly what should be avoided in this context. To reach a description
on the two dimensional manifold, a Finite Element Method (FEM) can be developed for
the Fullerene surface manifolds [1].

Finite element methods are based on dividing some domain Ω into multiple cells c,
defined as disjoint subdomains of Ω such that ⋃Ncells

1 ci = Ω. It is very convenient that
when choosing a Fullerene surface manifold as domain, the dual representation provides a
set of triangular cells that can be used for the purpose of FEM without having to define
a mesh by hand.

On each of these cells, functions are approximated by a set of polynomial basis functions
ei(x). Hereby, x does not correspond to the global three-dimensional coordinate system,
but to a two-dimensional coordinate system (x, y) chosen for the cell alone. The dis-
cretization of this system is done by restricting each basis function to a single node zj
on the cell, such that it effectively works as Kronecker delta ei(zj) = δij . An arbitrary
function f can then be expressed by f = ∑

i fiei with coefficients fi = f(zi). The nodes
zi are by the way not generally the same as the nodes or vertices of the surface manifold.
It depends on the order of the polynomial basis functions, how many nodes are needed.
There will be one basis function for each node. For the remainder of this chapter, I will
use nodes when referencing the reference points for the polynomial basis functions.

Figure 3.1.: Linear shape functions of a triangular cell. There are three functions, as the
cell is defined by three corner nodes. From [14] with permission.

Defining three or more basis functions for each cell sums up to quite a big amount of work,
if done separately for every cell. To avoid this, a reference cell is defined, representative
for any arbitrary cell in the mesh. On this reference cell, one can define all the nodes
needed for the polynomials of a given order, as well as a set of shape functions for the
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3. Approximation of Electronic Structure in Fullerenes

Figure 3.2.: Triangular reference cell with coordinates (ξ, η). Each individual cell can be
represented by a coordinate transformation to local cell coordinates (x, y).
From [14] with permission.

nodes, which are the basis functions of the reference cell. Let (ξ, η) be the coordinate
system of the reference cell, then the nodes and basis functions of any cell in the mesh
with coordinate system (x, y) are defined by doing a coordinate transform (ξ, η)→ (x, y)
on the reference cell and its shape functions.

Coming back to tailoring the Kohn-Sham equations to the Fullerene surface manifold, one
can take another look at equations (3.14). I have introduced how the wave functions can
be represented in terms of cell basis functions, but what about the rest of the equation?
To transform (3.14) into an equation that is completely coordinate free, one typically
brings it to the variational formulation first. This essentially means to introduce an
arbitrary test function θ by multiplying it to the equation and partially integrating the
kinetic term, such that equation (3.14) becomes

− 1
2

∫
Ω

dnx ∇θ(x)∇φ(x) +
∫

Ω
dnx veff(x) θ(x)φ(x) = ε

∫
Ω

dnx θ(x)φ(x). (3.15)

Hereby, I have summed up all potential in the effective potential veff. θ and φ can then
be expanded in terms of the mesh basis functions

θ(x) =
∑
l

θ(zl)el(x) and φ(x) =
∑
k

φ(zk)ek(x). (3.16)

Inserting the expansions of θ and φ into equation (3.15) and cancelling the terms appearing
from θ on both sides of the equation yields

∑
k

φ(zk)
[
−1

2

∫
Ω

dnx ∇el∇ek +
∫

Ω
dnx veff elek

]
= ε

∑
k

φ(zk)
[∫

Ω
dnx elek

]
. (3.17)
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3.2. The Finite Element Method

This can be written as a matrix equation

[L+ Veff]φ = εMφ, (3.18)

where the matrix elements Lkl, (Veff)kl and Mkl represent the integrals from equation
(3.17) and φ is a vector consisting of elements φk = φ(zk). These integrals can be
evaluated individually over each cell and therefore don’t depend on the global coordinates.
Also, the equation to deal with is now a matrix equation and therefore easily representable
numerically.

In summary, the introduction of this finite element method reduces the previously
developed DFT, which is a high accuracy approximation for the electronic structure of
Fullerenes, from describing the molecule in a three-dimensional state to describing the
electronic structure purely on the surface of the molecule. This yields significant speed
benefits, as the new theory is only two-dimensional and also coordinate-free. However it
comes with costs in the accuracy due to significant out-of-surface interactions, for example
in the high-curvature areas of the molecule. That leads us back to this thesis project: To
capture the most significant out-of-surface interactions, a mixed-dimensional approach
is suggested. High-curvature regions in Fullerenes are constructed with a high-speed
method in approximate shape, to increase the accuracy of the surface DFT. The first
challenge is to develop a construction method for high-curvature ”pocket regions” in
Fullerene molecules, starting from the graph bonds that are used for two-dimensional
coordinate-free description
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Constructing a Local Embedding
Algorithm
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4. Structure of Embeddings

This chapter marks the beginning of the method development that has been done in
the course of this thesis. Chapter 1 has shown that a construction process for single
pocket region embeddings of surface manifolds has to fulfill a set of different requirements.
This chapter will focus on introducing basic mechanisms for describing the construction
process, such it respects these requirements. The main focus will first be to find a way of
describing the small, very local embeddings that are created initially. The sections 4.1
and 4.2 address this in dual and cubic representation. Afterwards, the transfer to bigger
structures that can describe pocket regions of a molecule will be planned in section 4.3.
This chapter focuses on the structure of the single embeddings, how the construction
can be linked is the focus of chapter 5, which completes the method development. From
chapter 6, the implementation will be the focus.

4.1. Dual Structure

In a dual surface manifold embedding with equilateral triangles, pentagon nodes cause a
cone structure that will be very useful in construction. To compare embedded regions
around hexagon nodes and around pentagon nodes, embeddings of a pentagon node and
a hexagon node with their adjacent faces and neighbour nodes are shown in Figure 4.1.
Hexagon nodes do not infer very specific shape constraints. Even when all triangles can
only be equilateral, there are three edges along which the embedding in Figure 4.1b
can be bent, without actually introducing any curvature to the center vertex. These
three axes are the three pairs of edges crossing the center node in a straight line. This
embedding can be shaped in many ways.

Contrary to that, every pentagon node creates an embedding with cone shape. The shape
in Figure 4.1a is the same for every pentagon node. This means that, while a region
of the surface manifold that consists of hexagon vertices can in general be shaped in
different ways, a region that contains a pentagon vertex, always contains that specific
shape.

Because of the importance of these small regions around pentagon nodes, they are
named.

Definition 4.1.1 (Minimal Size Patch). An embedding of a pentagon node, its five
neighbour nodes and the corresponding faces and edges is called a minimal size patch.
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4. Structure of Embeddings

(a) Embedding of pentagon node (blue)
and neighbours.

(b) Embedding of a central hexagon
node surrounded by neighbours.

Figure 4.1.: Comparison of hexagon and pentagon nodes in embeddings: 4.1a is a rigid
object, while 4.1b can still be re-shaped.

More generally, embeddings that evolve around a single pentagon node, are called patches.
A specific definition for that will follow later.

Constructing Embeddings from Minimal Size Patches

Pentagon nodes do not only generate minimal size patches around them, they also have
great influence on the shape of the embedding beyond the minimal size patch. An
embedding with a pentagon in the center keeps the cone shape. A good way to build up
bigger embeddings is to do a layered construction around a minimal size patch. This
concept is extremely important for the construction method because it is not only applied
for growing a patch, but also for the cone structure that the whole pocket region will
have later, which also has to be grown in layers from a center. More about that in later
chapters. Figure 4.2 shows the construction of two more layers of nodes, marked by the
thick red and blue lines, around a minimal size patch that is marked in green. With each
layer of nodes comes a set of new faces, marked in the same colors. A layer of nodes can
be defined as follows:

Definition 4.1.2 (Node Layer). A layer of nodes is a set of nodes, which can be reached
by traversing a single edge from any node of the previous layer, while not being in any
existing layer of nodes in the same embedding.

That means that some set of nodes needs to be defined as the initial layer, which is equal
to the center of the object that is being grown. For patches like in Figure 4.2, the center
is always the pentagon node. Therefore the first layer is the boundary of the minimal
size patch (thick green line), and from there on, one can count the layers to obtain the
radius of the patch. For example, the patch in Figure 4.2 has a radius of r = 3.
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4.1. Dual Structure

Figure 4.2.: Minimal size patch (green) with two more layers of nodes (marked by red
and blue lines).

This layered construction, which gives the patch a radius, is highly important for the
structure of a patch. Therefore, the term patch is defined as follows:

Definition 4.1.3 (Patch). A three-dimensional embedding of a region in a Fullerene’s
surface manifold in dual representation is called a patch, if it fulfills the following properties:
A patch has to be centered around a pentagon node and be built in layers, such that
a radius can unambiguously be defined for the patch by counting the number of edges
traversed from the center pentagon to any node in the boundary of the patch. Except
for the center pentagon node, a patch can not contain any further pentagon nodes.

Sectors and Corners

The description of patches requires some more structure than layers. This is especially
important for the technical description of pocket regions and their cone shape in the
late stages of the algorithm (this is addressed in detail in the chapters further down this
chapter). Therefore, it is useful to introduce corners and sectors.

On the example patch from Figure 4.2, it is quite intuitive to introduce the concept of
corners and sectors. In a patch like that, the corners, which are marked in red in Figure
4.3, run along the actual physical corners of the cone-shape. The sectors are the areas
between the corners. The nodes in an embedding can be split into two groups: Nodes
that are on a corner and nodes that are in a sector, that is sector nodes and corner nodes.
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4. Structure of Embeddings

Figure 4.3.: A patch with radius r = 3, the three layers are marked in green lines. The
corners of the patch are marked in red and divide the faces into five sectors.

While sectors and corners can be told intuitively in the previous example, there will be
situations where a more mathematical definition is necessary. At this point, the layer
structure that was defined above comes in handy: In Figure 4.3, all corner nodes in a
layer are only connected to the previous layer by a single edge. This edge will always
be one of the edges marked in red, which build the corners. Contrary to that, all sector
nodes are connected to the previous layer by two edges. Therefore corner nodes and
sector nodes can be defined as follows.

Definition 4.1.4 (Corner Node). A corner node in an embedding is a node that is only
connected to the previous layer by a single edge. A corner is therefore made of a set of
corner nodes, each in their own layer, and their connecting edges.

Definition 4.1.5 (Sector Node). A sector node is a node that is connected to the
previous layer by two edges. Following that, a sector is a collection of neighbouring sector
nodes, bounded by corners.

The patch structure of layers, nodes and sectors being in place, makes it possible to revisit
the process of adding layers to a minimal size patch. A detail that I quietly ignored is
how to obtain the coordinates of the new nodes. These nodes are in general not fully
determined, so some decisions need to be taken. The patches in Figures 4.2 and 4.3 are
built after the simple principle of continuing corners straight and keeping the sectors flat.
This is what is called a standard shaped patch. A detailed method for the construction of
standard shaped patches is addressed in chapter 8.4.
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4.2. Cubic Embedding Structure

Figure 4.4.: A minimal size patch in cubic representation.

4.2. Cubic Embedding Structure

Compared to the dual embeddings, it is harder to obtain a nice structure for cubic
embeddings. The advantage of the cubic representation is of course that it is the physical
form of the molecule. Therefore it can never be fully forgotten, because the end result of
a dual embedding needs to be representable in the cubic form as well. Considering how
easy it is to change between cubic and dual embeddings though, obtaining the result in
the dual representation and then transferring it to the cubic representation does not pose
a huge challenge.

Nevertheless, the following paragraphs will show some examples for embeddings in the
cubic representation and why it is harder to work with. The beginning can be made by
the minimal size patch of the cubic embedding. An example is shown in Figure 4.4, where
all faces are regular polygons and therefore all edges have the same length. So far, no
problems arise with the construction of the cubic representation embedding. This changes
when adding another layer to the cubic minimal size patch though. It is not possible
to construct a second layer without either bending some faces or giving up the regular
polygon shape. Figure 4.5 shows both situations. In the left embedding, five of the ten
faces in the second layer have been bent to continue the corners of the cone. In the right
embedding, the second layer is not fully constructed, instead only the five faces that
were bent in the left embedding, are constructed flatly instead. This yields non-regular
hexagons, and theoretically a second set of differently shaped irregular hexagons to
complete the second layer. Both options would already make a three-dimensional
embedding more difficult than it is in the dual representation. Additionally, it is not as
easy to construct a nice structure for the patches. Layers can of course be constructed,
but the connections between nodes in a layer don’t always correspond to edges in the
mesh, like they do in the dual representation. Sectors and corners can only be defined in
the model with bent faces, although only based on the cone shape and not based on the
amount of connections to the previous layer. In summary, while the cubic representation
is the more physical representation, its practicality lacks in a model with a global rule
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4. Structure of Embeddings

Figure 4.5.: Patch of cubic faces embedded around a center pentagon face in two different
approaches. Once, bent faces were allowed (left) and once they weren’t
(right).

for edge lengths and therefore working with the dual representation is advantageous.

4.3. Combining Patches - The Pocket Region

From the cubic representation, we go back to the dual representation embeddings. Earlier
in section 4.1, the structure of patches was built up. This structure needs to be transferred
to embeddings that can hold more than a single pentagon node. In the introductory
chapter, such structures were referred to as ”pockets” or ”pocket regions”, and this name
will now get a formal definition.

Definition 4.3.1 (Pocket Region). A three-dimensional embedding of a region in a
Fullerene’s surface manifold in dual representation is called a pocket region, if in consists of
1-6 pentagon nodes and an arbitrary number of hexagon nodes, carrying Gauss curvature
of less or equal to 2π.

A pocket region can contain at minimum one patch, which is the minimum to justify
an embedding, and up to a maximum of six patches, which is the case for the ends of
nanotube-like Fullerenes like in Figure 1.3. This already implies that the patches can
not be selected arbitrarily; grouping patches to build a pocket region from them has to
fitted to the actual distribution of pentagon nodes in the molecule. An easy example for
selection of pocket regions is shown in Figure 4.6. The C120 –T in this figure has a very
regular structure and there are four clear groups of three pentagon nodes each. In the
Figure, each of those groups is bordered in red; in the shape that is built by the minimum
size patches of the three pentagon nodes. This is the only valid way to group patches
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4.3. Combining Patches - The Pocket Region

Figure 4.6.: C120 –T molecule in dual representation. It has four groups of three pentagon
nodes, where the coombined minimum size patches of these groups have been
circled in red.

to pocket regions in this molecule. In other molecules, the selection process might not
always be as clear, but generally there is an optimal solution.

Now, how does one build and structure pocket regions? The pocket region build can
not be started by building a single patch and then including additional pentagon nodes
on the way. Otherwise, the shape influence of those nodes on the molecule is not given
in all radial directions around the nodes. Similarly, construction can not be started by
choosing a center node for the pocket region and doing a layered construction around it.
Instead, the patches need to be constructed first up to a radius where they overlap with
at least one full face, and then they can be combined to form the raw shape of a pocket
region. In the case of the C120 –T molecule from above, to reach an overlap between the
three patches, one patch has to be constructed with a radius of r = 2, its boundary is
shown in red in Figure 4.7, and the other two with a radius of r = 1 (blue and yellow
boundaries). It is not necessary that the blue and yellow patch also overlap, as both can
just be combined with the red patch.

Furthermore, pocket regions can essentially carry all the structure that patches also carry
- that is cones, edges and layers. For this, the only precondition is that a fitting center has
been selected. Contrary to patches, this can not always be a single node. Returning to
the C120 –T molecule one last time, the center of every pocket region in this group would
be the hexagon node in the middle of three pentagon nodes. Starting from this center
node, one can compute the layers and find the corners, as it is shown in Figure 4.8. The
layered structure also gives the pocket region a radius, and somewhat of a cone structure.
This structure was already mentioned in the introduction chapter as a requirement, and
therefore it is strictly required to check this structure in all pocket regions. Corners and
layers will be discussed in greater detail in chapter 10.
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4. Structure of Embeddings

Figure 4.7.: C120 –T molecule in dual representation. The necessary patch radii to
combine three patches in a group to a pocket region, are r = 2 (marked in
red) and twice r = 1 (blue and yellow).

Figure 4.8.: C120 –T molecule in dual representation. The corners (red) and first two
layers(blue) of one of the four identical pocket regions in this molecule.
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After a lot of introduction and many theoretical considerations, it is necessary to stop
for a moment and summarize the important points, such that they can be used to draw
a concept sketch of what this thesis is trying to construct.

In chapter 3 the basics of an electronic structure theory are laid out, designed to work
in two-dimensional Fullerene surface manifolds. Developing such a theory is desirable,
because it is computationally fast and can be applied to many Fullerene isomers in short
time. However, the two-dimensionality that makes a theory like that fast, also comes
with a caveat: The precision of the approximation decreases because of the reduced
dimension. This becomes relevant when ignoring out-of-surface interactions that appear
already in relatively short distances, such that they can not be neglected due to the 1/r2

scaling of the Coulomb force. Excluding special cases with very flat or nanotube-like
molecules, out-of-surface interactions have the hightest relevance in the high curvature
regions of a surface manifold. The distance measured for an interaction in these regions
can vastly differ from the actual three-dimensional distance between two interacting
particles, rendering the strength of the interaction smaller than it should be.

An approach to improve the accuracy of the approximation can be to - partly - return to
a 3d-ified representation of the molecule by embedding parts of the surface manifold in
three dimensions. While a 3d-ified representation of the surface manifold to approximate
interactions more accurately sounds great, one might ask if that does not exactly nullify
the computation speed gained by reducing the dimensionality of the problem in the first
place. To avoid building a method that might turn out too computationally heavy at a
later stage, I want to stick to two main concepts:

1. The embedding is built only under use of geometrical constraints, using the bond
graph given from the coordinate-free surface manifold.

2. Single regions of the surface manifold can be constructed, without having to
construct the remainder of the molecule.

The use of concept number one potentially increases the speed compared to for example
Force Field Optimization which uses, as the name says, approximations of the forces
acting on nuclei and electrons in the molecule to compute the optimal length of every
edge and determines the molecule structure this way. Concept number two is strictly
necessary to ensure that the the computation speed for bigger molecule sizes continues to
scale with the two-dimensional surface manifold, instead of in a three-dimensional way.
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5.1. General Construction Requirements

Over the course of the first few chapters, many details of the description of Fullerenes
have been discussed, containing useful information for the draft of a construction method
for pocket regions. This section aims to summarize this information and provide some
structure for discussing the decisions that have to be taken.

The introduction chapter is arguably the most important source for construction concepts
and requirements. The concepts drawn for this chapter are fundamental to the design of
the method Just before the beginning of this section, two general concepts were already
noted with respect to computation speed: that the method is based on the bond graph
and that it can embed single regions independently. A more physical requirement is
the even shape of the end product, which should resemble a cone-like structure with
an even radius, to ensure that the cutoff for the interaction strength of out-of-surface
interactions can be even. This immediately sets a requirement for the late stage of this
thesis: An approach to bring embeddings to an even shape, and to obtain embeddings in
any desired size is needed, such that the cutoff can be chosen freely due to criteria that
are independent from the method itself.

Before getting to that, the construction needs to be started though. The easiest approach
would be to simply choose a point on the surface manifold that has a very central position
w.r.t the pentagons in the region. This point can serve as the center of the cone shape
for the late stage embedding from above, it might as well serve as starting point for the
construction and one can construct the whole cone layer by layer. However, this approach
neglects important shape features stemming from pentagons coming along during the
construction. Chapter 4 demonstrated the shape influence of pentagons in a bond graph
based construction. This influence needs to be respected for a good approximation of the
physical molecule shape.

The assumption that pentagons or pentagon nodes shape the manifold, but specifically
their immediate surroundings, does not only require to start constructing from one or a
few pentagon nodes. A surface region has to be constructed around every single pentagon
node that is supposed to be in an embedding, and only as a second step, bigger regions
can be built as combinations of smaller ones.

In summary, these requirements guide the overall structure of the method to consist
of three main steps: First, embeddings need to be constructed around pentagons, then
combined to form a pocket region, and at last the pocket region has to be brought to an
even cone shape and there has to be the opportunity to grow it further, beyond the size
provided by the combination process.

Another requirement for construction is to choose suitable edge lengths for the embedding.
Embedding the coordinate-free two-dimensional surface manifold into three-dimensional
space requires a clear specification of edge lengths. In other construction methods, the
edge lengths in a surface manifold might be calculated due to certain protocols, for
example Force Field Optimization optimizes edge lengths to minimize forces inside the
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molecule. This requires to take into account physical forces, in order to decide on the
lengths of individual edges, an option that doesn’t exist for the method that is being
built in this thesis.

Instead, a global rule for all edges in a manifold has to be drafted. There are various
options. So far, only the easiest one has been touched on, which is to have only regular
polygons as faces, yielding unit length edges. Choosing an appropriate set of edge length
constraints should not be done without being clear about which representation is chosen
for the embedding. Requiring regular polygon faces in the cubic grid does not mean
the same as in the dual grid, therefore the next sections will compare, how well dual
and cubic representation can be used for three-dimensional embedding and which edge
lengths to choose.

A Short Note about Edge Lengths

So far in this thesis, all examples of embeddings were drafted assuming equilateral
triangles in the dual representation and regular polygons in the cubic representation,
both of which have as a result that all edges have the same length. This is both the
easiest method and, in the case of the cubic representation, also the straightforward
continuation of the coordinate-free, two-dimensional Fullerene surface manifold used in
the CARMA project, which assumes equilateral triangles. There exist other possible
rules for the edge lengths though. In the dual representation, edges connect hexagon
and pentagon nodes, which gives the three combination options hxg-hxg, hxg-ptg and
ptg-ptg. In the cubic representation, it is the same, only that a hxg-hxg edge is shared
by two faces, instead of connecting nodes of some type.

Considering that chapter 4 showed that the dual representation works very well with
equilateral triangles and there is no reason to change the model. The requirement of
equilateral triangles can be dropped at any time if needed, so it is always better to go
with the condition first.

For the sake of completeness I want to mention that in the cubic representation, choosing
other edge length conditions does not seem to change the practicality of embeddings in any
way. Therefore, after some initial approaches to make a cubic representation embedding
work, the focus of this thesis project was put exclusively on dual representation surface
manifolds.

5.2. Towards an Algorithm Concept

Building up a surface embedding for Fullerene surface manifolds takes many small steps
and it is quite easy to get lost in the method that is proposed in this thesis. This chapter
serves as a description of the algorithm concept, that is the structure of the algorithm
based on the theoretical foundation from recent chapters.
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The comparison of representations and edge length conditions has a pretty clear outcome.
It is most promising to develop a model for embedding surface manifold regions in
three-dimensional space based on

1. The dual representation of the surface manifold and

2. Equilateral triangles as faces.

For process itself, the coarse structure is the result of the considerations made in chapter
5.1, consisting of three main steps.

The Construction Step

First, the embeddings around single patches need to be constructed from the bond graphs.
Because one needs to know, which pentagon nodes belong to which pocket region, this
step will at first group all the pentagon nodes into pocket region groups. If pentagon
nodes are grouped together, that means that their patch embeddings are supposed to
be combined to a pocket region embedding. Both of these concepts will be addressed in
great detail in chapter 8. After the radii for all twelve patches are known, the key piece
of this construction step begins: The patches are constructed. Figure 5.1 show a visual
overview of what happens in the construction step. Note that this procedure happens

Figure 5.1.: Visualization of the Construction Step: From the bond graph, first minimal
size patches are constructed and then grown to the radius that is needed for
combination.

for all twelve patches in a molecule. What is not shown are the more abstract operations
of grouping patches and determining their radii, which happen before the embeddings
are generated. These are also important parts of the construction step.
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The Combination Step

Next, the single patches have to be combined to form pocket regions. This is quite an
intricate process as well. In a first step, one of the existing patches is selected to begin
the pocket region embedding. Then all patches that have an overlap with this pocket
region can be merged into the embedding. This process is continued until all patches are
merged, which can be a maximum of six patches in total.

The first step of the merging process is to place a patch by simply selecting one of the
overlapping triangles between patch and pocket region and then use translation and
rotation operations on the patch coordinates, such that the positions of the three nodes
defining the overlap triangle coincide. Sometimes, this generates a valid geometry directly,
meaning that upon adding the new nodes and edges to the pocket region, all geometrical
constraints are still obeyed. In other cases, an edge length or some node positions are
not correct and the geometry of the pocket region is invalid. Then a geometry fixing has
to be executed, which basically adjusts the position of the patch, such that the geometry
becomes valid again. The details on this are addressed in section 9.2.

In the third step of the merging process, the new triangles and edges are added to the
pocket region and the patch is added to the pocket region. In the end of this step, the
raw pocket regions with all shape-defining elements are done, but they generally are not
in a cone shape with intact layers yet. Returning to the example of C120 –T, which has
already been used for the pocket region structure in chapter 4.3, Figure 5.2 shows the
main steps. The input from the construction step is one patch with r = 2 (red) and two

(a) (b) (c)

Figure 5.2.: Visualization of the construction step on the example of a C120 –T pocket
region featuring three patches. The central patch is the r = 2 patch in (a),
blue and yellow are being positioned in (b) and geometry-fixed. Finally, the
three patches are merged and the pocket region geometry is shown in (c).

patches with r = 1 (yellow, blue). How those patches look in the molecule, is shown in
Figure 5.3. In the combination step, the patches are placed according to selected overlap
triangles first. These triangles are marked in light red in the middle step of Figure 4.7.
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Figure 5.3.: C120 –T molecule in dual representation. The three patches that combine to
a pocket region in 9.1, are marked.

After this patch placement, the patches can not be merged into the pocket region yet,
as there is a geometry flaw: The two nodes in the black circle have the same index in
the bond graph, i.e. they are the same node after the merge. Therefore their positions
need to coincide. This means that the position of the patches needs to be adjusted in
a geometry fixing, and then the merge can happen. After all of that, the raw shape
pocket region is done, it is now ready to be brought into cone shape. The details of the
combination step, especially concerning types of merges and methods for geometry fixing,
are discussed in chapter 9.

The Growing Step

The last crucial step of the method is the Growing step. Here, the raw pocket regions
generated in the combination step need to be brought to cone shape, meaning that a
center for the patch is selected and then layers are built around that center. After that,
there has to be an option to add layers to a pocket region if needed. The current state
of the implementation is that single hexagon nodes can be added to the pocket region,
if three neighbour nodes’ positions have already been clearly decided. In the C120 –T
example, that is just a single node. Figure 5.4 shows the raw pocket region which was
the end result in the previous step on the left side. A center node has been selected,
colored in black. Around it the first layer is also indicated in black. To complete the
second layer, one node needs to be added. Three of its neighbours are already in the
embedding, so it’s position can be determined. The three edges, which provide three
quadratic equations for the position of the new node, are indicated in dotted red lines.

Computing the position of the node yields the right embedding in Figure 5.4, and the
second layer can be constructed. However, there are still three nodes on the bottom end
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(a) (b)

Figure 5.4.: Bringing the pocket region from Figure 5.3 to cone shape. A single node is
missing, its position can be determined from three existing neighbours (a).
Afterwards, the second layer is completed (b).

of that pocket region, which are not in a layer. Therefore the cone shape is not reached
and one more layer needs to be constructed. This can not be solved by computing the
position for one node at a time, as none of those three nodes has three fixed neighbours.
A solution is needed to construct a whole layer at a time. This is a work-in-progress
though, currently there exists no implementation, but a concept for constructing the
coordinates of whole layers. Chapter 10 discusses the challenges and concepts around
growing pocket regions, as well as the computation of single node positions, given that
there can be obtained three equations.

Figure 5.5.: Overview of the main algorithm steps.

Summary

In summary, this algorithm consists of three main steps. Their names and purposes are
shown once more in Figure 5.5. The flow of the algorithm is very linear, many steps
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have to be executed after each other. Chapters 8 to 10 describe the whole process from
beginning to end.
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The beginning of this chapter marks the start of the more technical part of this the-
sis. Now that the theoretical background is summarized and the algorithm concept
is worked out, the next focus point is the implementation of the necessary processes.
The following chapters will mix a mathematical style of description - equations etc. -
with a more implementation-focused one, including some snippets of code. I chose to
use object-oriented programming for this framework, simply because there are so many
interconnected kinds of information that it would be very hard to keep a good structure
otherwise. But that also means that many kinds of information are collected in a few
object classes. Introducing these will be the main point of this chapter.

6.1. Patches and Pocket Regions

Patches and pocket regions have already been defined as geometrical objects in chapter
4. In this chapter, they will also be defined as the two big data structures used to hold
all the necessary information, except for the bond graph, which is global information and
can not be attributed to a single patch or pocket region. Patches are generated first,
this is mainly what happens in the construction step of the algorithm (see Figure 5.5),
whereas pocket regions are created by combining patches in the combination step and
grown in the growing step. A patch is initialized as instance of the object class Patch(),
the structure of the object class is shown in Table 8.2.

Patch

Attribute Dimension Type Description
positions nf × 3 float Node positions
global index nf int Global index of each node
triangles ntri × 3 int Triangles in patch indexing
dual neighbours nf × 6 int Sparse adjacency matrix of dual graph
rigid nf bool Boolean array to mark fixed nodes

Method Description
addLayers Constructs additional layers around minimal size patch

Table 6.1.: Class diagram of the patch class.
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Patch Attributes

We will now tentatively address all attributes (and also the methods) of the class. How
the data is generated that is saved in these attributes, is a topic for a later chapter,
the interest lies in the attributes’ purpose as data structures right now. There are four
relevant attributes.

positions is the array that holds the coordinates of all nodes in the patch. At the same
time, it defines the patch index layer: If the patch has nf nodes and a specific node’s
coordinates are saved in positions[u], then this node will be referred to as u in the
framework of the patch.

global_index is an array that ensures identification of the patch indices with the global
index layer. This is necessary not only for knowing, which patch node corresponds to
which graph node but also to identify patch nodes with pocket region nodes. The index
layers are adressed in-depth in chapter 6.2, where the purpose of this array will become
more clear. The shape of the array is N × 1, and each node u in the patch index layer
gets an equivalent value U = patch.global_index[u] corresponding to its index in the global
index layer that describes the whole molecule and is the input data to the algorithm.

Then there are triangles and dual_neighbours. They are the standard graph data structures
used throughout this project, identifying the triangles and the edges of the graph structure
of the patch.

The last attribute is an N × 1 boolean array called rigid, true for each node that is fully
determined by other fixed nodes in the region. To understand why this is necessary,
several other things have to be worked out first, rigid nodes will be addressed again in
the chapters 8.3 and 9.4 for a more detailed description of this attribute’s purpose.

Pocket Region Attributes

As definition 4.3.1 states, a pocket region is an embedding of a Fullerene’s surface manifold
region. It combines multiple patches to a single embedding coherently. Therefore, one
can find all attributes that patches also have in a pocket region object. The class diagram
is shown in Table 6.2.

The first five attributes are equivalent to the patch attributes. Hereby, triangles and
dual_neighbours hold the graph structure, positions holds the node coordinates and
global_index identifies the pocket region index layer with the global index layer. The pur-
pose of PocketRegion.rigid is equivalent to the one of Patch.rigid and therefore explained
in detail in the chapters 8.3 and 9.4.

The last attribute of the pocket region is a list called patches, which simply holds references
to all the patches that are part of the pocket region.
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Pocket Region

Attribute Dimension Type Description
positions nf × 3 float Node positions
global index nf int Global index of each node
triangles ntri × 3 int Triangles in pocket region indexing
dual neighbours nf × 6 int Sparse adjacency matrix of dual graph
rigid nf bool Boolean array to mark fixed node positions
patches npatches patch List of patches in the pocket region

Method Description
addPatches Adds one ore multiple patch objects to the patches attribute
positionByFace Initial patch positioning for merging
fixGeometry Patch position adjustment to fix geometry flaws for merging
mergeFaces Merges a patch into the pocket region.

Table 6.2.: Class diagram of the PocketRegion class.

6.2. Indexing

Counting the bond graph, pocket regions and patches, there are three different layers of
indexing. The latter two are layers of description for the three-dimensional representation
of the molecule, the bond graph serves as global index layer and ”construction manual” for
the local embeddings. In the tables 6.1 and 6.2, the attributes PocketRegion.global_index

and Patch.global_index are defined. These arrays link each of the indices in a pocket
region or patch to the global layer.

Take for example the smallest Fullerene, C20 –Ih . Its dual embedding is shown in Figure
6.1a. Let us now take a look at an arbitrary pocket region from that molecule, indicated
by red edges in the same figure. The black indices are global indices from the bond graph.

The pocket region is shown again in 6.1b. The black indices are the same as before, only
now there is a set of blue indices from 0 to 7 for the eight nodes of the pocket region.
This is the pocket region’s index layer, which is used inside the PocketRegion class for
identification. It is connected to the global index layer by the PocketRegion.global_index

array, which is in this case [10,11,7,5,4,9,8,0].

The pocket region consists of two minimal size patches. The edges of these patches are
indicated red and blue in Figure 6.1b, where the overlapping edges of both patches are
magenta colored. These patches are described with patch layer indices inside the Patch

objects. These indices are indicated in red in Figure 6.2. As in the pocket region, the
patch objects’ attribute Patch.global_index connectes the red indices to the black global
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(a) C20 –Ih molecule with red pocket region.
The black indices are global indices from
the bond graph

(b) The same pocket region as before. This
time the colouring of the edges indicates
two patches: One red, one blue, the
magenta edges are overlapping edges of
both patches. The blue indices are from
the pocket region index layer.

Figure 6.1.: Global index layer (black) and pocket region index layer (blue) visualized on
a C20 –Ih dual embedding.

(a) The blue patch from 6.1b, with patch
layer indices in red.

(b) The red patch from 6.1b, with patch
layer indices in red.

Figure 6.2.: Both patches from the pocket region in Figure 6.1b. The global (black) and
pocket layer (blue) indices are still the same, only red patch layer indices
have been added.
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layer. These arrays are [7,9,4,5,11] (blue patch) and [4,7,9,8,0,5] (red patch) for the
current example.

This structure means that when searching for overlap faces of, for example, a pocket
region and a patch, the indices are compared in the global layer with the help of the
global_index arrays and then the overlap nodes can be transferred back to the patch and
pocket region layers to access coordinates, faces, etc., which are all saved in the local
index layers.

Saving the Bond Graph

Because the bond graph (global index layer) is global, it is not suitable to save it inside
a pocket region or patch object. Therefore, a new object class is defined.

1 class constructionManager ():
2 def __init__ (self , triangles , dual_neighbours , name=’’):
3 self. triangles = triangles
4 self. dual_neighbours = dual_neighbours
5 self.name = name
6 self. pockets = []

Listing 6.1: constructionManager class constructor. The original can be found in the file
controller.py (see chapter 1.3).

To hold the graph information from the input data, it has the known attributes
self.triangles and self.dual neighbours. The class uses this information to create an
index identification systems that is always coherent. Earlier in this chapter, when the
data structures Patch and PocketRegion were defined, the global_index arrays could not be
filled, because the bond graph information was not available anywhere in that framework.
The construction manager can do this task. That also makes this class the best option
for automatizing the generation of patches and pocket regions, such that all pocket
regions of a molecule can be generated automatically. On the way, the manager class
can chain together all the necessary steps, keep track of important information like the
pocket region grouping or the overlaps and transfer it between different parts of the code,
and also keep the access to all pocket regions easy by simply saving them in the list
constructionManager.pockets.
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This chapter explains some methods that are widely used throughout the algorithm and
can not be attributed to a single process.

7.1. Measuring Distances and Identifying Layers

There exist types of algorithms to compute distances in graphs. In this case, it is rather
easy because all edges are of unit length and the graph is planar. Distance can be
established by finding a path between two nodes that requires the minimum amount of
edges to be traversed.

Because the graph is planar and the manifold has spherical topology, a function that
calculates layers of nodes around a single vertex in a circular fashion, can be used as
metric. The distance between two points is then calculated by drawing circles around
one of the points and seeing, which one the second point is in. This is similar to the
construction method itself, which also constructs patches in what one could call circles or
layers (a concept sketch of this was shown in Figure 4.2). A function that can calculate
layers characterized by their distance d to a starting point can be used for distance
measurement in the discrete Fullerene surface manifold, but is also important for the
patch building process, specifically for building a working index identification.

This function can be built from the principle ”The next layer consists of all nodes, which
can be reached by traversing one edge from any node in the current layer. This excludes
nodes that have already been assigned to a layer.”

In all current applications, the starting layer is a single node. In that case, the next layer
will just be all neighbour nodes. This situation is shown in Figure 7.1, where the red
edges indicate the first layer that can be constructed from a single node in their middle.
The bigger challenge is to continue with the next layer. Assume that we want to use

the principle we defined on the green node in Figure 7.1. This yields three new nodes
for the next layer, indicated by the green arrows. In order to select the correct nodes
automatically, the function can use the ordering of the dual_neighbours array. Assume
that the surface manifold region in Figure 7.1 is drawn from the inside of the molecule.
Then the current layer indicated in red has clockwise ordering, because the neighbours of
the center node are organized in a sparse adjacency matrix with clockwise ordering (this
was addressed in chapter 2.2). This makes it possible to select a left and right neighbour
of the green node in the current layer, indicated with the blue letters L and R in Figure
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Figure 7.1.: Illustration of one iteration of the nextLayer function. From selected node
(green) in the current layer (red), we take all neighbour nodes, which are
between the left neighbour node (L) and the right neighbour node (R) in
the current layer.

7.1. Because the neighbours of the green node are also in clockwise order in the sparse
adjacency matrix, one can select all nodes between L and R, that is when passing L, one
starts selecting the nodes and when reaching R, one stops.

Then it only has to be made sure that the layer that we are constructing is in clockwise
order. That is already implied, given that the candidate nodes stemming from a single
node in the red layer are in clockwise order. Then one can just go around the current
(red) layer in clockwise order and select each node’s neighbours between the respective L
and R nodes to obtain a fully clockwise ordering for the new layer.

1 def nextLayer ( dualNeighbors , curLayer ):
2 potNodes = []
3

4 if curLayer .shape [0] == 1:
5 nodes = dualNeighbors [ curLayer [0]]
6 nodes = nodes[nodes != -1]
7 return nodes
8

9 else:
10 for i in range( curLayer .shape [0]):
11 c = dualNeighbors [ curLayer [i]]
12

13 l = curLayer [(i -1)% curLayer .shape [0]]
14 r = curLayer [(i+1)% curLayer .shape [0]]
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15

16 #Dead end protection
17 if not l in c or not r in c:
18 continue
19

20 # Circle through neighbors
21 j = 0
22 append = False
23

24 while True:
25 if append and c[j%6] == r:
26 break
27 elif c[j%6] == l:
28 append = True
29 elif append :
30 potNodes . append (c[j%6])
31

32 j += 1
33

34 # Select unique entries
35 nodes = []
36 for x in potNodes :
37 if not x in nodes and not x in curLayer :
38 nodes. append (x)
39

40 nodes = np.array(nodes)
41 nodes = nodes[nodes >= 0]
42

43 return nodes

Listing 7.1: Essential parts of the nextLayer. The original can be found in the file
functions.py (see chapter 1.3).

Listing 7.1 shows the essential parts of the corresponding function nextLayer, which
implements that methid. First, note the inputs: only the sparse adjacency matrix of the
surface manifold (region) and the current layer are needed. Line 4 to 7 are executed, if the
current layer is a single node. In this case, the next layer are simply all the neighbours,
as it was also described in connection to Figure 7.1.

From line 9, the more general case for any closed layer is executed. The for loop in line
10 runs over all nodes in the current layer, in clockwise order when seen from the inside
of the molecule. When a node is selected, its neighbours are saved in c, R and L are
defined as the next and previous node in the current layer (we can verify that this is
correct by looking at the example in Figure 7.1 and remembering the clockwise ordering).
Then the candidate nodes for the next layer (the ”green arrowed” nodes) have to be
found. For that, the function circles through c in line 24. When L is reached, the second
condition is fulfilled and the append parameter is set to True. From here on, the third
condition is fulfilled in every iteration and the entries of c are filled into the potNodes
array that holds the candidate nodes. This happens, until R is reached. Then the first
condition is fulfilled and the loop is stopped.
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Many nodes get selected multiple times in this process, simply because they are neighbours
of multiple nodes in curLayer. Therefore, one selects the unique entries in potNodes in
lines 35 to 38. As a last manipulation, the −1 entries are filtered out in line 41, as it was
discussed in chapter 2.2.

7.2. Patch and Pocket Region Movement

Patches and pocket regions need to be repositioned from time to time. To reach any
possible position in three-dimensional space, it is necessary to code two operations:
translations and rotations. The original functions can be found in the file functions.py
(see chapter 1.3).

Translations

The way these operations are coded, they require two inputs: the object that is to be
translated and a vector that represents the translation. The only condition for the object
is that it has a object.positions attribute, which both patches and pocket regions have.

1 def translate (obj , tVec):
2 obj. positions [: ,0] = obj. positions [:, 0] + tVec [0]
3 obj. positions [: ,1] = obj. positions [:, 1] + tVec [1]
4 obj. positions [: ,2] = obj. positions [:, 2] + tVec [2]

Listing 7.2: The translate function for patches and pocket regions.

With these initial conditions fulfilled, each of the node positions simply gets shifted by
the translation vector.

Rotations

To rotate a whole patch or pocket region, a few more inputs are needed. The system is
the same, so a object to rotate is one of the inputs. Then, a point to rotate around, a
rotation vector for the direction of rotation and a rotation angle are needed to complete
the inputs.

1 def rotate (obj , rVec , refP , angle):
2 #first , translate grid such that refP is origin
3 translate (obj , -refP)ting
4

5 # rotate around origin
6 for i in range(obj.nodes.shape [0]):
7 obj.nodes[i] = rotateVector (obj.nodes[i], rVec , angle)
8

9 # translate back
10 translate (obj , refP)

Listing 7.3: The rotate function for patches and pocket regions
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The function first translates the reference point of rotation to the origin. Then all node
coordinates can be treated as vectors and rotated around the rotation vector by the
specified angle, which is executed by the rotateVector function in line 7 of Listing 7.3.
After all rotations are completed, the sytem is translated back to its original position.

7.3. Generating Dual Neighbours From Triangles

The bond graph of the whole molecule, but also the graphs of patches and pocket
regions are always kept in two different data structures: the dual_neighbours array and the
triangles array. Generally the program updates triangles during operations on patches
and pocket regions, but doesn’t update the dual neighbours. Instead the dual neighbours
can always be generated from the updated faces array. The function computing the dual
neighbours is called generateDualNeighbours.

1 def generateDualNeighbours ( triangles ):
2 nMax = np.amax( triangles ) + 1
3

4 dual_neighbours = np.ones ((nMax , 6), dtype=int) * -1
5

6 for i in range(nMax):
7 nb = neighbours (i, triangles )
8

9 for j in range(nb.shape [0]):
10 dual_neighbours [i, j] = nb[j]
11

12 return dual_neighbours

Listing 7.4: The generateDualNeighbours function that computes the dual neighbours
from the faces

The function is printed in Listing 7.4. It starts out in line 2 by computing the amount
of nodes nMax in the triangles array. Then the dual_neighbours array is defined with
the shape nMax × 6 to hold six neighbours for each node. All values of this array are
set to −1. This way, pentagon nodes automatically have −1 as their last neighbour
node. A little reminder about that: basically −1 is easy to filter out when using the
dual_neighbours array for computations. It is also noteworthy that this array does not
describe a full molecule in the vast majority of cases, but rather a patch or pocket region,
which have an outer boundary. Boundary nodes will also have multiple entries of the
value −1, where their neighbours are not specified.

In the lines 6 to 10 of Listing 7.4, the neighbour values for each node are calculated and
filled into the dual_neighbours matrix. The function neighbours is the center piece of this
process and deserves a closer look. It is easiest to explain how this function works with
a simple example: A minimal size patch with a center pentagon node and five nodes
around it. The shape of the embedding is for example shown in Figure 4.1a and a sketch
on the index assignments of the nodes as well as the corresponding triangles array is
provided in Figure 8.3.
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
1 2 0
3 0 2
0 3 4
4 5 0
1 0 5

 (7.1)

Figure 7.2.: Index assignment for embedding of pentagon node and neighbours (left) with
the corresponding triangles array in matrix form (right).

Neighbourstakes a single vertex and the complete triangles array as input. In line 3,
triangles is filtered, only faces containing the single node from the input are of interest.
In the example, let’s will choose 0 as vertex. Then the filter keeps all faces, because each
face has an entry of value 0.

In line 6 to 8, the np.roll function is used to bring vertex to the first position in the
row. np.roll shifts the index of every entry of a one-dimensional array by a specified
integer number. Arrays can be rolled ”to the right” using positive integers and ”to the
left” using negative integers. An entry on the last index of the array is taken to the first
index when being rolled to the right and vice versa. Take for example one row from the
SAM in Figure 7.2:(

3 0 2
) np.roll(1)→

(
2 3 0

) np.roll(-2)→
(
0 2 3

)
(7.2)

Equation (7.2) shows two example operations for rolling a row, the first one rolling ”to
the right” by one and the second one rolling ”to the left” by two. The reason for using
this function is that, other than simple permutations, it preserves the ordering of the
faces it is applied to.

1 def neighbours (vertex , faces):
2 # choose all faces that vertex is a part of
3 nb = faces[np.sum(faces == vertex , axis =1) > 0]
4

5 #roll the vertex to pos 0 in the row
6 for k in range(nb.shape [0]):
7 n = np.where(nb[k] == vertex ) [0][0]
8 nb[k] = np.roll(nb[k], -n)
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9

10 #take the edges that do not contain 0
11 linkEdges = []
12 for i in range(nb.shape [0]):
13 linkEdges . append ([nb[i,1], nb[i ,2]])
14

15 linkEdges = np.array( linkEdges )

Listing 7.5: The neighbours function returns the dual neighbours of a single input vertex.

In line 7 of Listing 7.5, the index of the vertex entry is found and in line 8, that index is
used to roll the array to the left, until vertex is the first entry in the row. After this step,
the example matrix from Figure 8.3 will look like this:

0 1 2
0 2 3
0 3 4
0 4 5
0 5 1

 (7.3)

From every row in this matrix, the edges that do not contain vertex are selected and
saved in the linkEdges list. This happens in the lines 11 to 13. Going back to the example
again, these edges can be written in matrix form like this:

1 2
2 3
3 4
4 5
5 1

 (7.4)

Searching for these edges in Figure 8.3, you see that these are all edges that contain
direct neighbours of the vertex 0. Additionally, they are all oriented in clockwise order.
This is crucial for keeping the additional ordering information in the sparse adjacency
matrix for the dual neighbours. The only challenge left is to extract the unique neighbour
nodes in the correct order from the list of edges.

When beginning with an arbitrary edge, for example (2, 3), 2 and 3 can be added to the
list of neighbours of 0. Thereby, 3 is the ”end node”. To find the next node in order, one
simply has to find the edge that starts at 3, in this case (3, 4). Then 4 can also be added
to the neighbours. In the end, the full array of neighbours reads (2, 3, 4, 5, 1), which is a
representation with correct ordering.

Now the example that I chose was a very basic case. The edges are building a closed
loop and are already well-ordered. The neighbours function is also prepared for vertices,
whose neighbours don’t build a closed loop. This is for example the case for vertices on
the boundary of the embedding. Take for example 5 as vertex of the neighbour function
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in the embedding from Figure 8.3. Then the matrix of edges is(
1 0
0 4

)
(7.5)

and the neighbours in correct ordering are (1, 0, 4). The process of selecting neighbour
nodes from the edges is handled by the neighbour function in its entirety, it is quite
lengthy to analyse the code though, so I refer the interested reader to the original code
documents for the second part of that function, they can be found in the file functions.py
(see chapter 1.3).

In the end, the neighbours function will always return an array of all neighbour nodes that
it found to the input vertex. This array is called nb in the function generateDualNeighbours

and used to fill the dual_neighbours SAM in lines 9 and 10 of Listing 7.4. With that, the
generation of dual neighbours from the triangles of an embedding is finished and the
SAM can be returned.
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The first step of the sub-divided algorithm is the construction step. This step is all about
the patch objects. Before constructing the patches themselves (i.e. the embeddings), it
is necessary to know the size of each patch, such that patches do not have to be grown
after the initial construction process. How big a patch has to be, depends greatly on the
distance of the pentagon node in the patch’s center to the closest other pentagon node.
Computing the right size for each patch requires two things:

1. It has to be decided, which patches are grouped into a pocket region and therefore
need to be overlapped

2. The patch radii inside a pocket region have to be distributed such that the influence
of pentagon nodes on the pocket region’s shape is as even as possible.

Only after this can the instances of the patch class be generated.

Figure 8.1 shows the complete overview of the construction step. The output of this part
of the algorithm consists of two things: first, there are the patch objects in correct size,
and then there are the pocket region groups, which come from the grouping algorithm.
These are just lists holding the information about which patch belongs to which pocket
region, which will be needed again when instantiating pocket regions.

Figure 8.1.: Construction step algorithm overview.
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8.1. Grouping Pentagon nodes

As first real step of the algorithm, the sparse adjacency matrix can be used to determine,
which pentagon nodes should be combined to a pocket region. This can be a little tricky
to do in some cases, as Fullerenes can have vastly different distributions of pentagons.
One of the more difficult cases is for example the C60 –Ih Buckyball (see Figure 1.1),
which has a totally even distribution of pentagons. In this case the desirable outcome of
the algorithm is two pocket regions with 6 pentagon nodes each. One would want the
same outcome for a carbon-nanotube-like molecule like the C360 –D5H (see Figure 1.3),
though in this case it is much easier to decide, because there exist two clearly separated
groups of six pentagons, one in each end of the nanotube.

The Distance Matrix

To sort the twelve pentagon nodes in a Fullerene dual surface manifold into groups, we
simply compare their distances to each other. For that purpose, a distance matrix D
is of dimension 12 × 12 is defined. The matrix entry Du,v holds the distance between
pentagon node u and pentagon node v. u and v are integer numbers, as in the bond
graph, the distance between u and v is defined by the minimum amount of edges that
have to be traversed to get from u to v. In chapter 7.1, it was demonstrated how to
measure this distance in a Fullerene surface manifold using the nextLayer function. With
this function, a distance matrix can easily be computed by scanning the whole molecule
for pentagon nodes, starting from a single pentagon node, and then filling up the rows of
the matrix.

Implementation

The grouping mechanism is quite a rudimentary piece of code. This should definitely
be replaced in the future by a more sophisticated method, for example a hierarchical
clustering based on the same distance matrix. For the purpose of this thesis, I stuck
with what worked for me, simply because there were more pressing problems to solve.
The process is handled by a function called groupPtgNodes and printed in listing 8.1. It
takes the distance matrix defined above and the sparse adjacency matrix of the surface
manifold as inputs.

1 def groupPtgNodes (dist , dual_neighbours ):
2 groups = []
3 active = np.ones (12, dtype=bool)
4

5 #Step 0: Decide on where to start: on the nodes with minimal distance
connections .

6 distMin = np.amin(dist[dist > 0])
7 current = np.any(dist == distMin , axis =1)
8
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9 #Step 0.5: Order nodes by minDist connections
10 order = orderByMinCount (dist)
11

12

13 #Step 1 : Get initial disjoint groups from ordered indices
14 for index in order:
15 #Take only nodes that we currently want to look at
16 if not current [index] == True:
17 continue
18

19 group = nodeCluster (index , dual_neighbours , distMin )
20

21 if np.sum( active [group ]) == group.shape [0]:
22 #Now append the group and set the indices inactive
23 groups . append (group)
24

25 for x in group:
26 active [x] = False
27

28

29 #Step 2: Take care of leftover active indices
30 groups = undecidedIndices (groups , dist , active )
31

32 #Step 3: order the groups from center to outer nodes
33 groups = sortGroups (groups , dist)
34

35 return groups

Listing 8.1: The function that groups the pentagon nodes and therefore decides about
the configuration of pocket regions. The original can be found in the file
functions.py (see chapter 1.3).

The first two parameters are the list groups, which holds the current groups, as well as
active, a boolean array which holds information about which nodes are grouped and
which aren’t (if a node is active, it is not grouped).

The most important parameter in this function is called distMin and defined in line 6.
It represents the minimal distance between any two pentagon nodes in the manifold.
Wherever this minimal distance between two nodes appears, it is pretty clear that they
need to be grouped together. The advantage is that many Fullerenes have a clear minimal
distance that will appear for many pentagon node pairs.

It is often predictable what the minimal distance between pentagon nodes will be. A
coarse subdivision is possible between Fullerenes that have minimum distance of 1, and
those with minimum distance of at least 2. A distance of 1 means that the molecule has
adjacent pentagon faces in the cubic representation. Generally, it has been found that
Fullerenes with isolated pentagons (a minimal distance d ≥ 2) are more stable. This is
referred to as the Isolated Pentagon Rule (IPR). An IPR-Fullerene is a Fullerene with a
minimal distance between pentagon nodes of larger than one in the dual representation.

If it is a non-IPR Fullerene, the minimal distance can be 1. Then this distance will also
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frequently appear. For small IPR Fullerenes, the minimal distance is two, we will see
that frequently as well. The boolean array current marks all nodes that are in minimal
distance to at least one other node. The array order holds the indices of all nodes, ordered
from a high amount of minimal distance neighbours to the lowest amount of minimal
distance neighbours.

The crucial part of the function begins in line 14. Step one is to create disjoint groups
of only minimal distance neighbours. The if-statement in line 16 only comes into effect,
when the algorithm gets to the point where it looks at nodes that don’t have any minimal
distance neighbours, so by then step 1 is effectively finished. In line 19, the function
nodeCluster generates the initial groups. The way this works is that starting with the
node index that was selected from order, all minimal distance neighbours of the selected
node are added to the group. Afterwards, the minimal distance neighbours of all new
nodes in the group are also added to the group until no new minimal distance neighbours
are found.

After the order array, each node is selected and a grouped with its minimal distance
neighbours by nodeCluster. If this group is disjoint to all other existing groups, it will
be added to groups and all contained indices set inactive, such that they can not be in
another group.

A little example can help understand this function better. Figure 8.2 shows a cluster of
pentagon nodes, where the minimal distance neighbours are marked with dashed lines
between them. Running groupPtgNodes on this cluster will put the green node first in
order, because it has most minimal distance neighbours. For the this node, the group as

Figure 8.2.: Minimal distance neighbours of a group of pentagon nodes indicated by the
dotted lines. In the first step of groupPtgNodes, the marked groups are selected
for the red and green node. Because the red node has the higher number of
minimal distance neighbours, the group of the green node will not be added
to groups and the green node is handled in step 2 of the function

indicated by the green loop will be selected and added to groups. All nodes nodes in the
group are set inactive. The only node left ungrouped is the red node. It is grouped with
its only minimal distance neighbour, but that neighbour is inactive and therefore this
group is not added to groups. The red node is then handled in step two of groupPtgNodes.

In general, there will be pentagon nodes in a molecule that do not have any minimal
distance neighbours. These nodes will not be grouped during step 1, therefore the
algorithm takes a look at them during step 2. For each ungrouped node, it has to be
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decided if the node should start a new group or if it should be added to an existing group.
This is the more complicated part of the algorithm, because individual decisions need to
be taken for every situation. I went with a little bit of a trial-and-error approach to find a
method that works for as many molecules as possible. In the current implementation, an
ungrouped node is assigned to an existing group, if the following conditions are fulfilled.

1. The group has the smallest distance to the node (measured by average distance of
group members).

2. The group contains at maximum five nodes.

3. At least one of the group member nodes is a closest neighbour1 to the ungrouped
node.

4. The average distance from group members to ungrouped node does not exceed 30%
of the maximum distance of any two pentagon nodes in the surface manifold.

All four of these conditions serve a purpose. Condition one is to ensure that no other
group is closer, condition three ensures that no other node is closer. Condition two makes
sure that a group cannot grow to big. And condition four is a decider for when a single
node is too far away from all other groups to be added to any.

As a last step, the nodes are sorted by average distance to other nodes in their group.
This will come in handy later, when for each group a center node has to be selected,
and the average distance to all other group members is a good parameter to decide, how
central a node is placed. More about this later in chapter 9.3.

8.2. Determining Patch Radii

When the pentagon nodes are grouped, their radii can be computed. There are several
conditions that one has to think about when doing this, the overall goal is to make sure
that patches overlap consistently, such that they can be merged, and that the radii are
as even as possible to ensure an even pocket region shape.

Radius Conditions

Pentagon nodes are the shape-defining objects of dual Fullerene surface manifolds. From
that it follows that one has to start constructing from all pentagon nodes simultaneously,
in order to respect the influence of each pentagon node on the shape of the embedding.
But then one also has to make sure that the patch radii are distributed as evenly as
possible, that is if there are two patches close to each other, it is necessary to choose the

1A closest neighbor is not equivalent to a minimal distance neighbour. A minimal distance neighbour is
a closest neighbour, with the additional condition that the distance between the nodes is equal to the
minimum distance in the distance matrix of pentagon nodes. On the other hand, a clostest neighbour
can be in any distance of a node, as long as there is no other node closer.
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most even radii possible. Basically it is assumed that the shape a of a surface region
region determined by its closest pentagon node.

The radii of patches also have to be big enough to guarantee overlap to other patches in
the group. This can be expressed in a simple equation. Assume that two pentagon nodes
labelled with indices 1 and 2 have a distance of d. In order to have overlapping triangles,
their radii have to fulfill the equation

d+ 1 = r1 + r2. (8.1)

The combined radii have to be one bigger than the distance to ensure an overlapping
face. An overlapping edge or vertex is not enough, because we need three overlapping
nodes to position the patches correctly with respect to each other. An equation of the

(a) (b)

Figure 8.3.: Two examples of overlapping patches (patch layers drawn in red and green),
both situations with d = 2 between the blue pentagon nodes, rred = 2 and
rgreen = 1, such that equation (8.1) is satisfied. This causes an overlap of 3
(a) and 2 (b) triangles.

form (8.1) can be written down for every pair of pentagon nodes in a pocket region. In
theory, this can build a system of equations with n ∈ {2, ..., 6} unknowns r1, ..., rn and
(n− 1) + (n− 2) + ...+ 1 = n·(n−1)

2 equations for n patches in a group.

Every equation of the form (8.1) has two unknowns. One degree of freedom is left in
the system and the equation has multiple possible solutions. However, the even radii
equation from above selects a solution out of all possible ones, based on how even the
radii are. Therefore the radius of a patch is fixed as soon as a single equation based on
distance to a neighbour has been written for it.
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(a) A very simplified visualization of three
patches, built around pentagon nodes 0, 1
and 2. The red patches have radii r = 1 and
r = 2, the green one r = 4; the distances
between pentagon nodes are indicated with
d.

(b) A similar situation to the one in Figure 8.4a,
only that there is one more node. This com-
bination of nodes can not overlap and build
a pocket region.

Challenges

There are some inconsistencies that arise with this method. How to deal with them can
be explained using some very theorized examples. First, in the case of an even d, the
two radii r1 and r2 added up will have to give an uneven number and the condition to
have them as even as possible dictates to choose r1 = r2 + 1 or r1 = r2 − 1, two possible
solutions. This can be solved by taking a look at how central each of the nodes is.

It is possible to encounter situations like in Figure 8.4a. It features two pentagon nodes
with a distance of d = 2 to each other (the red nodes) and the green node that has a
distance of d = 5 to the red node labelled 1. That means that equation (8.1) computes
radii of 1 and 2 for the red nodes, no matter which node actually has which radius. On
the other hand, computing radii for node 1 (red) and node 2 (green), a radius of 3 is
required of both. These two results are cannot be fulfilled at the same time.

In that case, green node needs a bigger radius than what the even radius condition
selects. A workaround for this problem is to assign a radius to nodes with a closer nearest
neighbour first and then go to the ones that are further away afterwards, when selecting
their nearest neighbour, the algorithm can check if there is already a radius assigned to
this node. That is, if the red nodes are assigned radii first, equation (8.1) becomes easily
solvable for the green node’s radius.

Lastly, there are situations that can appear with four or more pentagon nodes in a pocket
region, where it will not be possible to find a combination of radii that enables the
construction of a connected pocket region. An example is shown in Figure 8.4b. The
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only solution to this type of problem is to split up the pentagon node grouping, such
that the result is two pocket regions instead of one.

Implementation

The concept worked out above can be implemented with the following structure: First,
select a group and from that group, select a node to start with. That will usually be the
node with most minimal distance neighbours in the group. Use the minimal distance
to compute the radius of the center node from equation (8.1). This also computes the
radii of the minimal distance neighbours, which cascades to their neighbours by using
equation (8.1) once again. The original function can be found in the file functions.py (see
chapter 1.3).

8.3. Generating a Minimal Size Patch

Now, patch construction can be started. The class of patches was already introduced
in chapter 6.1, addressing the data structures patch objects consist of. Now the focus
shall lie on filling the data structures with the fitting information. All attributes will
be addressed in the order that they are defined in Listing 8.2. This listing shows the
constructor of the patch class, which constructs object instances. All crucial attributes
are generated in this function.

1 class Patch ():
2 def __init__ (self , pos =(0 ,0 ,0)):
3 self. positions = fcs. generateDual (pos)
4 self. global_index = np.zeros(self.nodes.shape , dtype=int)
5

6 self. triangles = np.array ([[0 ,1 ,2] ,[0 ,2 ,3] ,[0 ,3 ,4] , [0,4,5],
[0 ,5 ,1]])

7 self. dual_neighbours = fcs. generateDualNeighbours (self. triangles )
8

9 self.rigid = np.zeros(self.nodes.shape [0], dtype=bool)
10 self.rigid [0:6] = True

Listing 8.2: Patch class constructor.

The most important attribute is the first one: self.positions saves the positions of all
nodes in the patch. In the initialization process, every patch is created as minimal size
patch. The patch can be increased in size right after the initialization process (The
class diagram in table 6.1 shows that the method addLayers does exactly that). For now
the focus lies on assigning coordinates to the first six nodes. The function generateDual

creates a minimal size patch, the input parameter pos determines the position of the
center pentagon node. The patch cone is then built opening towards positive z direction,
such that all edges are of unit length. For that, the remaining five nodes are simply
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constructed as regular pentagon in a plane parallel to the x-y-plane with z-coordinate

xpos +
(

0, 0,
√

1− 1/(4 sin
(
π
5
)2)
)T

.

Figure 8.5.: Minimal size patch with indices from positive z-direction

The next attribute in the initialization process in Listing 8.2 is self.global_index, which
is only being filled with zeros because the reference to the graph information can not be
added from inside the class. This has to be handled from the outside, the corresponding
processes were addressed in chapter 6. Generally, the nextLayer can be used to find the
global indices of all layers for the patch.

In the minimal size patch, there are five triangles being saved in the self.triangles array.
When looking at the patch from positive z (that is, from the inside of the molecule), the
nodes that define these triangles are saved in clockwise ordering. The convention is to
use counter-clockwise ordering when looking from outside the molecule, which implies
the clockwise ordering from inside the molecule. From the triangles, the dual neighbours
information can be generated by the generateDualNeighbours function that was introduced
in chapter 7.

Finally, I will introduce the rigid property for nodes in a patch. The background of
this property is that it will be necessary to change the shape of patches in the merging
process. There are certain nodes in a patch that should not be used for changing the
patch shape though. For patches, this is specifically the center node and all other nodes
contained in the minimal size patch. This requirement is less due to geometrical reasons,
because geometrically it is definitely possible to change the shape of a minimal size patch
and still keeping all triangles equilateral. Changing the minimal size patches simply did
not seem to be necessary in any case, therefore it would be unnecessarily complicated to
do it. However, there showed to be a possible exception to this rule, which still is an
unsolved problem and addressed in chapter 11.1.

When merging patches into pocket regions, the rigid property is transferred from patch
to pocket region and will become gradually more important towards the growing step.
For now though, all nodes of the minimal size patch are rigid, while the rest of the
standard shape patch is not.
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(a) Computing corner nodes. (b) Computing sector nodes (c) Filling up with triangles.

Figure 8.6.: Schematic overview of the three steps taken to add a layer to a sector with
two layers.

8.4. Additional Layers

The minimal size patch coordinates are constructed, so now an arbitrary amount of layers
is to be added. This can be done by constructing single sectors and then combining the
new nodes from all sectors and corners. The structure of layers and sectors was discussed
in chapter 4.1.

Growing a Sector

Patches are constructed in standard shape, where the corners are straight lines, which
makes it easy to construct the position of new corner nodes. Figure 8.6 shows a sector of
radius two, which is grown to size three in three steps. The vectors ~A and ~B defining
the new corner nodes can be calculated from the previous corner node positions. In this
example, the vectors are computed as

~A = ~p3 − ~p1 and ~B = ~p5 − ~p2. (8.2)

Hereby, pn is the position vector of the vertex labelled with n. The new corner node
positions are then

~p6 = ~p3 + ~A and ~p9 = ~p5 + ~B (8.3)

When adding a complete layer to a patch, all five sectors have to be calculated, but they
share corners, so it is only the case for the first sector that both corner nodes have to be
calculated. But that is a detail that the algorithm needs to deal with.

When the corner node positions are computed, it is quite easy to infer the sector node
positions. The number of sector nodes in a layer depends on the layer index l, which
starts from zero. In Figure 8.6, the 0’th layer is the node 0, the first layer are the nodes
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1 and 2, etc. Then a rule for the number of sector nodes s in a layer can be put as
follows:

s = l − 1 (8.4)

The logical process behind this is the following: The number of edges in a sector that
belong explicitly to one layer is the same as the layer index l. Because a layer is not
closed inside a single sector, the total number of nodes in a layer k can be written as
k = l + 1 (the number of edges plus one). Of those k nodes, there are always two corner
nodes and the rest are sector nodes, therefore s = k − 2 and equation (8.4) holds.

To get the positions of the s sector nodes, one can once again define a vector C that
spans between the two new corner nodes.

~C = ~p9 − ~p6 (8.5)

The positions of the sector nodes are then computed by taking

~pi = ~p6 + i · ~C ∀i ∈ 1, ..., s (8.6)

This is the second step of the whole process and visualized in Figure 8.6b.

With these coordinates, all node positions for the new layer are known. What is missing
is the information about new triangles that needs to be added to the patch.triangles

array. These can be specified as follows: Assume that a new layer of nodes has already
been computed. To specify the triangles, it is best to start with the previous layer l − 1.
That layer has l− 1 edges and l− 2 sector nodes in a single sector (see equation (8.4) and
after). Each of the edges builds a triangle with one of the sector nodes in the new layer,
and each of the sector nodes in the old layer builds a triangle with an edge in the new
layer. The end result for the example sector is shown in Figure 8.6c. The triangles are
constructed as follows: The previous layer is [3, 4, 5], the new layer is [6, 7, 8, 9]. For each
node in the old layer, one selects a pair of nodes to obtain the triangles [3, 6, 7], [4, 7, 8]
and [5, 8, 9]. Then, one selects pairs of nodes from the previous layer, and each of those is
combined with one of the sector nodes to obtain [7, 4, 3] and [8, 5, 4]. Here it is important
to keep the ordering clockwise when looking at the sector from inside the molecule.

Implementation

As this is a pretty straightforward implementation, the code is not shown here. Basically
all one has to do is compute the five new corner nodes and then the sector nodes for
each sector, add them to the patch and check that the corner nodes are not added twice.
The original function is called pocket.addLayers and can be found in the file classes.py (see
chapter 1.3).
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Exiting the construction step and entering the combination step, the full patch objects
(twelve per molecule) and information on which pocket region they belong to are the
current state of computation. The construction step uses the grouping information to
merge single patches to pocket regions. An overview of the necessary steps is given
in Figure 9.1. The algorithm consists of three main steps. First, a center patch is
selected which serves as the first version of the pocket region. Then, adjacent patches
are placed by overlapping triangles. This initial placement of patches is not coherent in
some situations and geometry flaws can arise. That is when a geometry fixing becomes
necessary. Finally the merging process takes place and the patch becomes part of the
pocket region. These three steps have to take place for each patch, except for the patches
that have been selected as center patch of a pocket region.

Generally, one can roughly distinguish between two types of merges, one of which requires
geometry fixing, while the other doesn’t. Before getting into the details of the three
operations required to execute on each patch, taking a look at the more theoretical side
of merging is beneficial.

9.1. Pentagon distance and types of merges

In the following section, the basic types of merges for close distances will be worked out.
For now, the focus lies on merges with a pentagon node distance of one and two. Merges
can be divided into two distinct types, which will be introduced first.

Figure 9.1.: Combination step algorithm overview.
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Terminology

First, some terminology and structuring to make the description of the merge types
easier. A standard shape patch has a shape that could be described as a wide open cone.
In this cone, five sectors can be identified (see chapter 4.1). A sector corresponds to one
of the flat regions that emerge from one of the five triangles in the first layer around the
pentagon node. The sectors are separated by the corners of the cone.

If all overlap triangles are in the same sector in at least one of the two patches, then
the merge is called a sector merge. When talking about small and medium sized pocket
regions (i.e. patch radii not bigger than two), this type of merge is always associated
with a three-face overlap.

On the other hand, when the overlap includes triangles from two sectors for each of
the patches, the merge type is corner merge. In corner merges, the edges that define
the corner in each patch, overlap after the patch positioning process. For all sizes of
molecules, a corner merge is associated with an overlap of two triangles in total.

D = 1 merge

Figure 9.2.: Corner merge of minimal size patches (one blue, one yellow). The overlap
triangles are colored in light red.

The first possible case is to merge two minimal size patches. This qualifies as a corner
merge, a sector merge does not exist for patches of that size. As the previous description
has mentioned, corner merges have two overlapping triangles, which are marked in light
color in Figure 9.2. The pocket region in that Figure is also free of geometry flaws. This
merge plays an important role in all non-IPR Fullerenes. C20 –Ih , the smallest Fullerene,
can be completely constructed using this merge. Another example is the pocket regions
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of C1140 –Td , which also feature adjacent pentagon faces. Both molecules are shown in
Figure 1.1 in the introduction.

D = 2 merges

For d = 2, there are two possible cases to look at. Both feature one patch of radius
two and one minimal size patch, governed by equation (8.1). The first option is that
two pentagons are connected by sharing a single adjacent hexagon face in the cubic
representation. This situation is shown in Figure 9.3a. The corresponding dual nodes are
also drawn in the figure, together with dotted lines representing the edges. There are
two edges in a straight line, and the only way to implement this with patches is a corner
merge as shown in Figure 9.3b. As it is a corner merge, this does not need geometry

(a) 2 pentagons connected by a shared adjacent
hexagon, d = 2. This leads to a corner merge
as shown in 9.3b.

(b) Corner merge of red r = 1 patch
into black r = 2 pocket region. The
geometry is intact, overlap triangles
are shown in light red.

Figure 9.3.: A d = 2 corner merge, in (a) the constellation of the involved pentagon faces
in the cubic representation, in (b) the positioning of the two corresponding
dual embeddings.

fixing. This is also visible, as all overlap triangles coincide perfectly and the red patch
can flawlessly be merged into the black pocket region.

On the other hand, two pentagons can be separated by two adjacent hexagons, as sketched
in figure 9.4a. In that case, one has to merge along a flat area in one sector of the pocket
region. Figure 9.4b shows that situation. Again, the overlap triangles are painted in red
for both the patch and the pocket region. Not all nodes overlap in this merge: there
are of course nodes from the patch that don’t have an equivalent in the pocket region.
But most importantly, there are two nodes in the patch, which are part of the overlap
triangles and their pocket region equivalents have different coordinates. When nodes that
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9. The Combination Step

(a) For a sector merge, the cubic pentagons need
to have two common triangles.

(b) Sector merge of a r = 1 patch (red) into a
r = 2 pocket region (black). The overlap
triangles on both embeddings are coloured
in light red.

Figure 9.4.: Similarly to above, here a r = 2 sector merge is shown, in (a) the cubic grid
formation which is typical for this merge type and in (b) the dual embeddings
that are to be merged.

define an overlap face don’t overlap for patch and pocket region, then there are always
pairs of nodes that have the same global index, that means that a decision has to be
made about which coordinates to keep. Here, the case is pretty clear: The red patch is a
minimal size patch. In chapter 8.3 when introducing rigid nodes, it was made clear that
those can not be moved to adjust the shape of the patch. Meanwhile, the second layer
nodes of the black pocket region is not rigid and can be moved.

D = 3 and higher merges

For d = 3 merges, there are multiple possible scenarios. Working out all the situations
goes beyond the scope of this thesis and there were no molecules encountered where this
was needed (I generated pocket regions up to a molecule size of C120). However, working
out merges with bigger distances between pentagon nodes is definitely a task for the
future.
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9.2. Geometry Fixing of Pocket Regions

Pocket regions are in general not in a state that allows a merging process, after all patches
have been positioned. The r = 2 sector merge needs geometry fixing. Because this is the
most frequent merge for IPR Fullerenes andrelevant to some non-IPR molecules, it needs
to be given some thought. Based on the situation, there are different methods that one
can apply to get the desired result.

In general, geometry fixings solve issues that arise when one attempts to merge patches
that have been positioned by face overlaps. That can for example be an edge length shorter
or longer than unit length, or two nodes that should be overlapping but aren’t. The
question to ask is ”If the given patches were to be merged now, would any inconsistencies
in the geometry arise?”. If the answer is yes, geometry fixing is needed.

In the following, three methods will be worked out to handle different situations.

The edgelength method

A good point to start is a sector merge of two patches with radii r1 = 2 and r2 = 1, which
was already used as example for sector merges in Figure 9.4. It is the easiest possible
situation that involves a flat merge, and all other situations involve more complicated
embeddings or more patches.

Figure 9.5.: Execution of a sector merge: The black circled node in the black patch is
replaced by the black circled node in the red patch. The thick black edge
becomes the thick red edge, which is shorter than unit length. The patch
needs to be rotated outwards, the thick blue edge is the rotation axis.

Figure 9.5 illustrates what leads to a geometry problem when merging these two patches.
The black and red patch both have a black-circled node. This is one of the node pairs
from above that do not overlap, yet they have the same global index. The red patch is a
minimal size patch and therefore rigid, which means that there is no choice but to select
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Figure 9.6.: Two patches (red and blue) placed in adjacent sectors of a third patch
(black). They have common nodes, which need to have the same position
(black circle). To achieve that, they are rotated outwards symmetrically,
using the thick red and blue edge as rotation edges.

the coordinates of the red patch’s node for the combined embedding. The edge that is
indicated as a thick black line in Figure 9.5 becomes the thick red edge, which is shorter
than unit edge length. That is what necessitates a geometry fixing. Because this is a
symmetric problem, there is also a shorter-than-unit-length edge on the other side of
the sector that the merging takes place in. The solution to this problem also has to be
symmetric in the same way.

The solution is to rotate the red patch outwards along a rotation axis that is marked
blue. Because the whole patch red patch is rotated and the rotation only changes the
position of overlap triangles in the black patch, but not their shape, no new geometry
problems arise while solving the existing one. As we will see momentarily, rotations can
solve all the geometry problems that arise in sector merges.

The pointdist and symm_pointdist methods

The merge of two grids with radius r2 = r3 = 1 into a pocket region with radius r1 = 2
produces a situation that requires the simultaneous adjustment of two patch positions.
The situation is quite similar to the one in Figure 9.5, only that there are merges in two
adjacent sectors of the center patch, it is shown in Figure 9.6.
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Again, the geometry problem is caused by two nodes having the same global index, but
not the same position. Only that here, both nodes are part of a minimal size patch and
can not be moved, which means that deciding to pick one of the two positions would
cause another geometry flaw. Figure 9.6 shows an example, where the two nodes are
circled in black. Instead of choosing one node position, both patches have to be rotated
outwards along their rotation edges, which are marked in thick red and blue respectively.
The implementation of this method below will show that there is indeed a rotation angle,
at which the node positions coincide.

Now, what if one wants to do another sector merge in an adjacent sector to those two
geometry-fixed patches, which have just been rotated such that their common nodes
overlap? The red and blue patch from above do not have any degrees of freedom left,
as any movement would cause a geometry flaw again. Therefore, a third geometry
fixing method can be introduced, combining the comparison of node positions from the
symm_pointdist method with the single-patch rotation from the edgelength method. The
condition is the same as for symm_pointdist, the absolute distance of two nodes that have
identical global indices is minimized. This time though, only the new patch is rotated
and the other one serves as comparison. This is for example needed when computing a
pocket region for C60 –Ih , each of the five sectors is subject to a d = 2 sector merge, of
which the first two are executed with symm_pointdist and the last three with pointdist.

Method Summary

In summary, three methods were defined to deal with geometry flaws arising from merging
patches:

1. edgelength: Optimize single patch position such that edge lengths connecting to
pocket region are one.

2. symm_pointdist: Optimize 2 adjacent patches symmetrically, such that their overlap-
ping nodes have the same coordinates.

3. pointdist: Optimize a single patch, such that a node that overlaps with the pocket
region, has the same coordinates as the respective pocket region node.

9.3. Numerical Implementation

We now turn to the more technical part and describe the most important parts of the
code that executes all the necessary steps, as well as the concepts that are used for the
computations. At this point, I would like to point towards the overview sketch in Figure
9.1 for and overview of what is to come. The more theoretical part above focused a lot
on the geometry fixing, but the first two parts of the combination step are the selection
of a center patch and the initial placement of the other patches.
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9. The Combination Step

Center Selection and Initial Patch Placement

Even though the center selection is a part of the combination step, the decision for the
center patch has implicitly already been taken in the patch grouping section 8.1. It was
mentioned there that the groups are sorted after how ”centered” the pentagon nodes are.
In the same way that patches are constructed from the inside outwards, one chooses to
construct pocket regions starting at the most ”centered” patch, in terms of how central
it is in relation to all other patches in the pocket region. Therefore, for each group, the
0’th entry is selected as center patch.

Next, let’s take a quick look at the constructor of the pocket region class. It works very
similar to the class constructor of the patch class in Listing 8.2, with the difference that
it takes the patch object as input that has been selected as center patch and just copies
all of its attributes. At this point, the pocket region is identical to the center patch.

1 class PocketRegion ():
2 def __init__ (self , cPatch ):
3 self. positions = cPatch . positions
4 self. triangles = cPatch . triangles
5 self. dual_neighbours = cPatch . dual_neighbours
6 self. global_index = cPatch . global_index
7

8 self.rigid = np.zeros(self.nodes.shape [0], dtype=bool)
9 self.rigid [0:6] = True

10

11 self. patches = [ cPatch ]

Listing 9.1: PocketRegion class constructor.

However, at this point the other patches in the pocket region have not yet been added to
the patches list. If you remember the class diagram of PocketRegion from Table 6.2, there
was a method called addPatches. Using this method, the other patches are added to the
list.

At this point, the initial placement of the first patches in the pocket region is possible.
This is where the overlap triangles become useful, so I will give a short summary to
connect the dots and refresh the memory. Overlap triangles were mentioned first when
drafting a concept for the algorithm, as a tool to combine embeddings. The mechanism for
patch radius calculation ensures an overlap between neighbouring patches (see equation
(8.1)). Chapter 9.1 showed that for merges with a distance between pentagon nodes of
d = 1 or d = 2, the overlap is always either two or three triangles, and the number of
overlap triangles is specifically bound to the type of merge. Corner merges have two
overlap triangles, while sector merges have three.

Now, because the construction is done in three dimensions, to determine the position
of any rigid object uniquely, the coordinates of three points on the object are needed.
Therefore it is ideal to position a patch by specifying the position of a single triangle,
which consists of exactly three nodes. If only one triangle is needed, which of the two or
three overlap triangles is best chosen? For corner merges, it doesn’t matter. Because
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9.3. Numerical Implementation

there are no flaws in the geometry arising, one can arbitrarily choose one of the two
triangles. For sector merges, that is different. It is strictly necessary to choose the central
of the three overlap triangles for initial positioning to ensure the symmetry of the merging
process. This is quite intuitive when looking at the overlap triangles for example in
Figure 9.4b.

When the overlap triangle has been identified, two sets of coordinates are necessary for it:
The triangle’s coordinates in the pocket region, and the coordinates in the patch. Then
a three-step algorithm overlaps the triangles in three dimensions using the translate()

and rotate() functions defined in chapter 7.2:

1. Choose a node from the triangle (node with identical global index, once from patch
and once from pocket region) and translate the patch such that both nodes have
identical coordinates.

2. Calculate the normal vectors of both triangles, then rotate the patch, such that
the normal vectors align.

3. Choose a triangle edge that starts at the node from step 1 (both triangles). Then
rotate the patch, such that the patch version of the edge aligns with the pocket
region version.

Golden Section Search

To overlap the points in pointdist and symm pointdist or get to the correct edge length
in the edgelength method, one could in theory write down equations and solve them
numerically. This is unnecessarily complicated though. Each of these problems has one
condition and one unknown.

The conditions are to overlap the coordinates of two input nodes, or to optimize an edge
length. Because an edge is defined by it’s two end points, the conditions look very similar
when expressed mathematically. Let ~p1 and ~p2 be the two points to have an identical
global index (symm_pointdist, pointdist) or to define the edge that is too short (edgelength).
Then they must fulfill the condition

‖~p1 − ~p2‖ = 0 or (9.1)
‖~p1 − ~p2‖ = 1 (9.2)

for a method that optimizes point distance or edge length respectively.

The unknown for any of the methods is the angle that the patch(es) has (have) to
be rotated, in order to fulfill the condition. Even when using symm_pointdist, there is
only one unknown, because the patches always get rotated by the same angle to ensure
symmetry.

With a system like this, it is easiest to use one-dimensional optimization methods to find
the optimal patch position. I decided to go with the golden section search, because it
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is easy to implement and the given problem has a deciding property called unimodality
that is required for the golden section search [8].

Definition 9.3.1. Let f : R → R be a function. f is called unimodal on the interval
[a, b], if there is a unique x∗ ∈ [a, b], such that f(x∗) < f(x)∀x ∈ [a, b] and for any
x1, x2 ∈ [a, b] with x1 < x2

x2 < x∗ ⇒ f(x1) > f(x2) and x1 > x∗ ⇒ f(x1) < f(x2) (9.3)

If the problem is described by a unimodal function, the golden section search can be used
to identify the minimum x∗. In the case of the three methods introduced above, there is
no function can be mathematically defined, but numerically, f is a function that takes
the rotation angle of the patch(es) as an argument and returns the distance of the two
nodes.

d = f(θ) (9.4)

And while there is no way of proving that this function is unimodal without a mathematical
definition, it is quite intuitive to see the unimodality. An example is shown in Figure
9.7, the exact configuration is two r = 1 patches being merged into an r = 2 pocket
region with the symm_pointdist method (see Figure 9.6). The red plot shows the absolute
distance between the comparison points. The minimum around an angle of 0.2rad is on
an absolute distance of 0, just like it should be. The vertical black line indicates the
distance at the starting point of the optimization process, after the initial placement
of the patches. It is clearly visible that this function is unimodal and therefore golden
section search can be applied to find the minimum.

Unimodality can be used in the context of one-dimensional optimization to narrow down
the interval which the minimum of a function can be in further and further until the
desired accuracy is reached. Two points x1 and x2 can be chosen and then equation (9.3)
can be used. If f(x1) > f(x2), x1 < x∗ is necessarily implied and therefore x∗ can not be
in the interval [a, x1). On the other hand, if f(x1) < f(x2), x2 > x∗ follows, therefore the
interval (x2, b] can be excluded [8]. The golden section search does not only utilize that,
it also does it in the most consistent way possible, by using the golden ratio τ = (1+

√
5))/2

to select x1 and x2 in the beginning of each iteration [8].

x1 = a+ (1− τ)(b− a) and (9.5)
x2 = a+ τ(b− a) (9.6)

With these selections, either [a, x1) or (x2, b] is excluded from the interval by setting
a = x1 or b = x2 and then starting the next iteration.
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Figure 9.7.: Return values of the opt function (i.e. absolute distance of comparison points)
for a situation like the one shown in 9.6, where the symm_pointdist method is
applied.

Algorithm Outline

With the golden section search, all three algorithms can be described in a very similar
manner:

1. Input: rotation axis of grid(s), 2 points for condition: Either overlapping points or
edge endpoints.

2. Setup of golden section optimization: implement function that rotates grid(s) and
returns condition value (distance between points).

3. Find ideal rotation angle around rotation axis with golden section due to condition.

4. Rotate grid(s) by ideal angle. Grid(s) is/are now ready to be merged into the
pocket region.

To make rotations possible, there has to be an automatized decision on the rotation
edge. As the sector merge always has three overlapping triangles between two grids, the
selection of the rotation edge is made according to two rules:

1. The rotation edge has to be part of the central triangle, which was used for initial
patch placement.

2. An edge that lies on the boundary of the minimal size patch, has to be selected as
rotation edge.

These two conditions make a unique selection of the rotation edge possible.
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The Optimization Function

Next, the function f for the golden section search has to be implemented.
1 def opt(angle):
2 #Make rotation and extract coordinate data for the edge length .
3 fcs. rotate (patch , rotVec , refP , angle)
4

5 # Compute edge length :
6 re = np. linalg .norm( refPatch .nodes[ compareRef ] - patch.nodes[

comparePatch ])
7

8 # Revert rotation , such that we are back at the original point
9 fcs. rotate (patch , rotVec , refP , -angle)

10 return re

Listing 9.2: opt corresponds to the function f that is optimized by the golden sector
search. This specific example is from the pointdist method.

As it is required (see equation (9.4)), the function takes an angle as argument and
returns a distance. The angle input tells the function, how much to rotate the patch.
Zero-point of the rotation is always the standard position that the patch is in after
the positioning-process. The rotation interval is fixed to [−π

2 ,
π
2 ]. This interval covers

half of all the possible rotations. Given that the initial positioning is quite close to the
fixed geometry and only rather small corrections are needed, the solution will always be
covered in this interval.

The opt function is defined only for the golden section search and therefore inside of
either of the three geometry fixing methods. First of all, there are two patches involved,
they are called patch and refPatch. patch is always the patch being rotated, and as the
name refPatch indicates, that is the reference patch for the distance computation. In
the edgelength example in Figure 9.5, the reference patch is the patch with black edges.
In the opt function for the symm_pointdist method, there is no reference patch. Instead,
there are two patches, both being rotated by the same angle.

There are also two variables called compareRef and comparePatch. These hold the indices
of the nodes that are used for the distance computation. The indices are defined in the
index layers of the patch and refPatch objects. Last but not least, there are the inputs
of the rotate functions. For a summary of how the rotate functions work and what the
purpose of all the inputs is, I refer to chapter 7.2. I do want to point out though, that
the rotVec parameter corresponds to the rotation edge of patch.

So what does the opt function actually do? The procedure consists of three main steps:

• Line 3: patch is rotated around its rotation edge, from the zero-point that is defined
by patch positioning and by an angle in the interval [−π

2 ,
π
2 ].

• Line 6: The distance between two specified nodes is computed. This is what the
function returns as output.
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• Line 9: patch is rotated back to the zero-point position

The opt function in the edgelength method has a small addition in the second step, after
line 6 in the listing above.

1 re = np. linalg .norm(re - 1)

The return parameter is not the pure distance, instead its difference to 1. The reason for
that is that the target distance in the edgelength method is d = 1 instead of d = 0, as it
is in the other methods. This way, it is made sure that opt is a unimodal function.

With this function, the golden section search can be executed to find the optimal rotation
angle for a patch. When this angle has been found, a final rotation can be made to bring
the patch into optimal position, and then the geometry is fixed.

9.4. Rigid Nodes and Remnant Geometry Flaws

In certain situations, inconsistencies in the geometry of the pocket region embedding can
arise that are not solved in a geometry fixing. The most common of these situations is
two adjacent flat merges of r = 1 patches on a r = 2 pocket region. This is a recurring
example, shown again in Figure 9.8.

This configuration is the prime example for using symm_pointdist as geometry fixing
method. Theoretically, it is also possible to use the edgelength method for fixing both
patches separately. The optimization conditions for these two paths are independent
from each other. The edges circled in dotted blue in 9.8a would be used for edgelength, If
the geometry of the pocket turns out to be consistent after the merging process, these
approaches would have equivalent results. However, this is not the case. This causes a
remnant geometry flaw, two edges in the embedding are to short.

The situation, this time with the already merged pocket region, is shown in Figure 9.8. The
edges that would have been optimized by the edgelength method, are marked in thick blue
in both the left and the right pocket region. When merging with the symm_pointdist method,
these edges that would be used for the edgelength method optimization, are too short.
The other way around, the common node of the green and red patch that symm_pointdist

uses to optimize the geometry (that node is marked with a black circle in 9.8a) are not
overlapping correctly. The methods are not fixing the geometry consistently.

9.8b shows the rigid and non-rigid nodes in this pocket region. Rigid are right now all
nodes that are in a minimal size patch, these are rigid from the moment the patches are
generated and the rigid property is copied from patches to pocket regions when merging.
The node fixed by symm_pointdist already has the rigid property. Therefore it is crucial
that this geometry flaw is fixed before the merging, i.e. in the geometry fixing step.

On the other hand, the shortened edges which would need to be fixed by the edgelength

method connect a rigid and a non-rigid node. This means, their length can still change
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(a) The black circled node was used for
the symm_pointdist method, leaving the
shortened edges circled in blue.

(b) Rigid (black) and non-rigid (light grey)
nodes marked.

Figure 9.8.: C120 –T pocket region after geometry fixing and merging. The geometry
fixing with symm_pointdist leaves two shortened edges circled in dotted blue
lines (a). This is not a problematic situation though, because the nodes in
the lower ends of those edges are not rigid yet (b).

by changing the position of the non-rigid node, even after the merging. This happens in
the fill-up algorithm, when layers of the pocket region are completed, which means that
the positions of all nodes in a layer are unanimously determined and their status can
therefore be set to rigid. Because all edge lengths to existing rigid nodes are checked and
corrected in that process, the fill-up algorithm automatically takes care of the geometry
flaws.

9.5. Patch Merging Process

Only now, after all patches are in position, comes the actual merging operation. This
part of the algorithm fully includes the new patch(es) into the pocket region, by adding
the positions of all new nodes, changing the positions of existing nodes if necessary and
including new triangles. All of this is done in a single method of the pocketRegion object,
which is called mergeFaces and relies on identifying patch and pocket region nodes through
the global index layer, in order to add all new nodes from the patch to the pocket region,
as well as the new triangles. Another important transfer is the information on which
nodes are rigid and which aren’t.

The merging process is quite a tedious and organizational task that is necessary, but going
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through it does not yield great benefits in the understanding the algorithm. Therefore,
the code is not addressed in this section and instead explained in appendix A.
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Now the combination step is finished and all pocket regions have their main shape-building
features set up. For some pocket regions, this might be the end result already, if there is
an intact layer structure and no need for growth. For most pocket regions, at least the
layer structure needs to be set up.

What Does it Mean to ”Grow” a Pocket Region

”Growing” a pocket region in this algorithm means that more hexagon nodes are added
around the central embedding of the pocket region. Still, it can only be hexagon nodes
that are added in layers, such that the shape influence of all pentagon nodes is respected.
If the embedding has to be so big that additional pentagon nodes would have to be
added when growing from a single pocket region, then merging multiple pocket regions
instead is the better way to go. The reason is once again that the pentagon nodes are
shape-defining in areas close around them and building into a pentagon node does not
respect that concept.

But growing pocket regions is best done in a structured way. Chapter 4 discussed the
necessity to give pocket regions a layered structure. This layered structure can then be
continued by adding full layers of hexagon nodes. A layered structure depends greatly
on selecting a center to start from. For patches, this was trivial: the pentagon node is
the obvious center of each patch. For pocket regions, the decision is not quite as easy.
Selecting a center for the layer structure will be the first point addressed.

After selecting a center, a pretty clear path emerges: Continue the layered structure.
With the help of the nextLayer function, the next layer can always be computed in the
bond graph and in the pocket region. Then, both layers can be compared. If there are
nodes and triangles missing in the pocket region, they can be added. This is done, until
the pocket region has reached the desired radius.

This process is split up in two parts: The ”Fill-Up” part refers to the construction of
layers that already exist in part. That is, in a pocket region that has one or more outer
layers which are not finished, nodes are added until the layer(s) is/are finished.

The fill-up part always has to be completed, such that the pocket region has a layered
structure in the end. When this is done though, the ”Growing”, which adds entirely new
layers, is optional.
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10.1. Center Selection for Pocket Regions

Figure 10.1.: Overview of the last major step of the algorithm, the growing step.

About The Purpose of This Chapter

This chapter reaches the point, where in many stages, there does not exist an implemen-
tation for what is described. In some cases, there is also not a concept for how to solve
problems. For that reason, this chapter will mostly discuss the approaches that could
be taken or are in development. Where it is possible, there will also be a discussion of
implementations.

10.1. Center Selection for Pocket Regions

Even though, one can not simply select one of the pentagon nodes to be the center of
a pocket region, it is still the deciding factor of selecting a center to look at how the
pentagon nodes are arranged. In chapter 4.3, the example of a three-patch pocket region
was mentioned, with a highly symmetric node in the middle of all three pentagon nodes
that can be chosen as midpoint. It is quite easy to write a function that finds this node:
One can select the node that has the least average distance to all pentagon nodes. This
was also used to select the center patch in the combination step, only that the selection
was restricted to pentagon nodes back then, whereas now any node can be selected.

However, there are cases where no node can be selected that is the symmetric center of a
pentagon node constellation. In Figure 10.2, several constellations of pentagon nodes
are shown. All of these can not have a center that is on a single node. The four-node
constellation can either have the two inner triangles or an imaginary point in the middle
of the four nodes as center. The best choice for centers in the middle figure is the
connecting edge, and in the right constellation it is the central triangle. Currently, there
is no concept that clearly determines a center for each possible constellation. However,
for the pocket regions that have a node as center, as in the case of C120 –T from chapter
4.3, the fill-up algorithm can be started. We will come back to that example later.
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10. Growing Step

Figure 10.2.: Three examples for pentagon node constellations in Non-IPR pocket regions.
The centers of these constellations are the two triangles (left), the edge
between the nodes (middle) and the single triangle (right).

10.2. Node DOF’s

Growing a pocket region means to determine the positions of new nodes, such that all
restrictions from the geometry are satisfied. A node’s position corresponds to three
unknowns, because the embedding is in three dimensions. In other words, the node’s
position has three degrees of freedom (DOF). There are also constraints on a node’s
position; connections to other nodes, edges with a fixed length. If a node has position ~r
and an edge leads to another node of position ~c, the edge between the nodes introduces
an equation of the form

‖r − c‖ = 1. (10.1)

Because only the positions of rigid nodes are unchangeable, fixing the position of any
node requires three edges that end at rigid nodes, then the system of three equations can
be solved for the three unknown coordinates. Solving this system of three equations of
the form (10.1) for a single node position will be addressed in detail in section 10.4.

Single nodes with no degrees of freedom are solvable without too many problems. But in
general, one can not expect a node to be connected to three fixed nodes and have zero
degrees of freedom. Instead, one will have to assume that a whole new layer is added to
a patch or pocket regions, where all existing nodes are rigid. What amount of DOF do
the new nodes have in that scenario?

The easiest example that can illustrate this is a simple patch with radius r = 2. Figure
10.3a shows what amount of DOF adding a second layer yields for each patch. Now of
course the patches are generated in standard shape and the DOF are not important, but
this still yields a useful insight: Corner nodes always have two degrees of freedom when
being added in a new layer. Sector nodes always have one degree of freedom. This is
absolutely logical, because all DOF-reducing equations come from the previous layer,
where all nodes are assumed to be rigid. As corner nodes are defined to be connected to
the previous layer by one edge, their total DOF are 3− 1 = 2. Sector nodes’ DOF can
be calculated similarly with two connections to the previous layer. Now, there are also
edges between the freshly generated nodes, which means that they are not independent
from each other. Fixing a single node reduces the degrees of freedom of the adjacent
nodes. In fact, it is very beneficial to fix corner nodes with whatever method is possible.
Figure 10.3b shows an example in a single sector of a 3-layer patch. The left corner
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10.2. Node DOF’s

(a) DOF (red) for all nodes in a new layer.
The corner nodes have always 2 DOF,
the sector nodes 1.

(b) One corner node is fixed in position, its
DOF being reduced from 2 to 0 (green),
this cascades along the sector.

Figure 10.3.: Two examples from patch building. In (a), the second layer of a patch is
added, in (b) a corner node is fixed in position, the reduced DOF cascade
through the adjacent sectors.

node is fixed, the DOF are reduced from two to zero (indicated in green). This gives the
adjacent sector node one additional rigid neighbour, so its DOF are reduced by one to
zero, it is rigid too now. This cascades through the whole sector, until the next corner
node stops it. It is crucial that this is not one big system of equations being solved, it is
a series of single-node problems being solved.

All of this yields one big takeaway: The corner nodes are the key to solving the problem.
If the DOF of corner nodes can be reduced to zero, the sector nodes in adjacent sectors
will follow. In fact, the amount of corner nodes in a layer seems to be identical with the
excess amount of DOF in the system of equations in this case, as the new greyed out
layer in Figure 10.3a consists of ten nodes, which equates to 30 DOF in total. These are
reduced by the edges interconnecting the layer nodes, which is of course the same amount
as the nodes themselves, 10. And then there are two additional equations per sector node
(2 · 5 in total) and one additional equation for each corner node (1 · 5 in total), therefore
we end up with 30 − 10 − 10 − 5 = 5, which is exactly equal to the amount of corner
nodes. Let’s keep this in mind throughout the next section, after which it makes sense to
define a more general rule.
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10. Growing Step

10.3. Sectors and Corners in Pocket Regions

In chapter 4.3 it was stressed that the same structure can be introduced to pocket regions
as to patches, i.e. layers as well as corners and sectors. However, while layers have seen
quite some attention in pocket regions due to the cone structure that is required in a
pocket region build, sectors and corners have not been addressed beyond the C120 –T
example from the very same chapter. This will be done now.

In Figure 4.8, it was shown that a pocket region with three pentagon nodes only has three
corners. It is therefore beneficial to take a look at a few more situations to see, if there is
a system behind the amount of corners emerging from a pocket region. Figure 10.4 shows
four example pocket regions, where 10.4a is the known C120 –T constellation. The other
three pocket regions yield two, five and six pentagon nodes and have varying amounts of
corner nodes and corners. These and other examples seem to follow the following rule:

Proposition 10.3.1. Let Cl be the amount of corner nodes in a pocket region layer l
and P the amount of pentagon nodes enclosed by l. Then the following equation holds:

Cl = 6− P (10.2)

There is of course no theoretical proof for this statement yet, and it might have to be
investigated more thoroughly in the future.

Excess DOF in Pocket Regions

We can now come back to the amount of excess DOF not accounted for by equations in
a layer. This was discussed for the example of a two-layer patch in the end of the last
section. Now, a more general case for pocket regions can be investigated. Let l be a layer
consisting of Nl nodes, of which Cl are corner nodes. Let K be the excess amount of DOF
in a layer. This quantity is defined by the difference between the summed up DOF for
all nodes and the amount of equations E:

K = 3Nl − E (10.3)

How big is the excess amount of DOF? One can compute E by writing

E = Nl + 2(Nl − Cl) + Cl (10.4)

Hereby, the first term on the RHS are the edges that interconnect the layer nodes, the
second term are the edges going from the old layer to sector nodes in the new layer and
the third term are the edges going from the old layer to corner nodes in the new layer.
With this, equation (10.3) becomes

K = 3Nl − [Nl + 2(Nl − Cl) + Cl] = Cl (10.5)
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10.3. Sectors and Corners in Pocket Regions

(a) (b)

(c) (d)

Figure 10.4.: Four examples of pocket regions, layers marked green and the flow of corner
nodes marked with red arrows. The examples yield 3 (a), 2 (b), 5 (c) and 6
(d) pentagon nodes.

89



10. Growing Step

Therefore, it is indeed the case that the amount of excess DOF in a layer is determined
by the amount of corner nodes, and therefore, through Proposition 10.3.1 directly by the
amount of pentagon nodes enclosed in a layer.

Reducing Corner Node DOF’s

The use that one can draw from these results is that, if each corner node’s DOF can be
reduced by one, the amount of equations is equal to the amount of unknowns, and each
node exactly has one DOF. This system is then definitely solvable, one approach could
be to start with one of the nodes and fix its last DOF. Then this fixing cascades around
the whole layer, because the cascade is not stopped by the corner nodes anymore.

10.4. The Single Node Solver

A central piece of the growing step is the single node solver (SNS). This piece of code
can be applied to nodes which have three rigid neighbours and therefore zero degrees of
freedom. Their positions can be computed from the distance equations that arise from
the edges.

The SNS is not my work, my colleague Nikolai, who is working on curvature smoothing
and mesh refinements in Fullerene surface manifold embeddings, has written almost all of
it, I have changed a few things to fit it to the needs of my program [11]. In the following,
I will explain how the solver works theoretically.

When writing about degrees of freedom in this thesis, we refer to the effective degrees of
freedom of a node. Each node has 3 DOF initially, and they get reduced by one for each
connection to a rigid neighbour node. Let the positions of the rigid neighbour nodes
be p0, p1 and p2; with pi = (xi, yi, zi). When there are three connections, the three
equations

(x′ − xi)2 + (y′ − yi)2 + (z′ − zi)2 = l2i for i ∈ 0, 1, 2 (10.6)

have to be solved. We will solve the equations for general edge lengths li here, albeit the
edge lengths in my model are all 1. Shifting the coordinate system (x′, y′, z′)→ (x, y, z)
with x = x′ − x0, y = y′ − y0 and z = z′ − z0, the first equation reduces to

x2 + y2 + z2 = l20, (10.7)

for the other two equations, the coordinate change is absorbed in the positions of the
points p1 and p2. With the help of equation (10.7), the two other equations in the system
can be linearized. In matrix form, this yields

(
x1 y1 z1
x2 y2 z2

) x
y
z

 =
(
c1
c2

)
(10.8)
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10.4. The Single Node Solver

The two constants on the right hand side of this equation are c1 = 1
2(p2

1 + l20 − l21) and
c2 = 1

2(p2
2 + l20− l21). After a few manipulations, the system of equations in (10.8) yields

(
1 0 z′1
0 1 z′2

) x
y
z

 =
(
c′1
c′2

)
(10.9)

The new constants in this equation are:

c′2 = x1c2 − x2c1
x1y2 − y1x2

and z′2 = x1z2 − z1x2
x1y2 − y1x2

, (10.10)

c′1 = c1 − y1c
′
2

x1
and z′1 = z1 − y1z

′
2

x1
(10.11)

(10.12)

The equations for x and y are now decoupled and therefore these two equations can be
used to make equation (10.7) a quadratic equation of z:

0 =
[
c′1 + c′2 − l20

]
− 2

[
c′1z
′
1 + c′2z

′
2
]
z +

[
1 + (z′1)2 + (z′1)2

]
z2 = α+ βz + γz2 (10.13)

The solutions for z are now calculated by

z1/2 = −β ±
√
β2 − 4αγ

2α (10.14)

The last step is now to select the fitting solution of the two. When looking at both of them
visually, this is usually an easy choice, because one o the solutions will cause an inwards
dent in the embedding, while the other one is nicely directed outwards. Computationally,
one can compare the x- and y- coordinates of the solutions and, because every layer lies
approximately in a plane parallel to the x-y-plane, the coordinate with bigger ‖(x, y)‖
is selected. An example for this is shown in Figure 10.5, which picks up the C120 –T
example pocket region from chapter 5.2 again. The pink node’s position is computed by
the SNS when applying the fill-up algorithm, which completes the layers that are marked
in black. The two solutions that the SNS finds are shown in 10.5a and 10.5b. It is pretty
intuitive to find the correct solution, and mathematically it can be perfectly done by
choosing the solution with the bigger ‖(x, y)‖-value.

Additional Conditions

For this method to work in all situations, two safety measures are taken. First, the
positions p1 and p2 can not be colinear in the coordinate system (x, y, z). In the
applications of this thesis, this should never be the case anyways, because the three edges
build equilateral triangles between them. The second, more important precaution is to
check for linear dependency of p1 and p2 in the x− y − plane.This corresponds to the
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10. Growing Step

(a) Correct position of the light red node (b) Wrong position of the light red node

Figure 10.5.: Pocket Region From the C120 –T molecule after fill-up algorithm. The
light red node’s position has been determined by the SNS from the three
connected neighbour nodes.

denominator of the constants in equation (10.10), x1y2 − y1x2 being zero. In that case,
the coordinates can be permuted, i.e. (x, y, z)→ (z, x, y) and the algorithm tries again
with the new coordinates.

I will not show any code from the single node solver algorithm here, as it is essentially
just computing all the coefficients and then solving for z, and with the solution for z
computing x and y. The original function is called calc_vertex_positions can be found in
the file functions.py (see chapter 1.3).
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11. Results and Discussion

The beginning of this chapter marks the finish line for the description of all concepts
and implementations that were worked out in the course of this thesis. Although in
some way, the algorithm itself is the result of the thesis, it is interesting to discuss
its capabilities. This chapter will, by going through a few example constructions, try
to give a small overview of what types of pocket regions can be constructed by the
current implementation and where problems arise. Thereby, the focus lies mostly on the
construction and combination step, as the growing step is merely more than pieces of a
concept and an initial implementation yielding the single node solver as only tool. The
discussion will be split between IPR and non-IPR pocket regions.

11.1. Non-IPR Pocket Regions

One to Three Pentagon Nodes

For non-IPR pocket regions, the only type of merges is the d = 1 corner merges. These
are quite trivial in the sense that there is no geometry fixing that can go wrong, and up
to a pocket region size of three pentagon nodes, they work flawlessly. Figure 11.1 shows
all three possible examples for two and three pentagon nodes. These constructions are

(a) (b) (c)

Figure 11.1.: Possible non-IPR pocket regions with less than four pentagon nodes. With
two nodes, there is only one option (a), while three pentagon nodes can
build a triangle (b) or a line (c).
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11. Results and Discussion

quite straight forward, but a good indicator for several processes working well. A quick
check shows that all triangles are equilateral and the curvature in the pentagon nodes
of all is π

3 as intended. This indicates that the standard patch construction works well
and second, moving and merging patches does not impact the geometry and works as
intended as well. The index structure is intact after merging and the triangles are saved
correctly. Overall, these smaller pocket regions seem to be constructed correctly with the
method.

Four to Six Pentagon Nodes

Having the choice of four to six pentagon nodes, more options for arranging the pentagon
nodes open up. Figure 11.2 shows three examples of four-pentagon pocket regions.
Construction runs smooth on all of these as well. There are also some pocket regions

(a) (b) (c)

Figure 11.2.: Three selected non-IPR pocket regions made from four minimal size patches.
The pentagon nodes form a rhombus (a), a triangle with one outlier (b)
and a zig-zag line (c).

that the first implementation of the fill-up algorithm with the single node solver can be
used on. This situation arises, when there are single nodes in a layer that have three
rigid neighbours. Figure 11.3 shows two example pocket regions First of all, the geometry
of these two embedding is correct, all triangles are equilateral and deficit angles sum up
to 2π − κ. Yet, it is visible that the shapes are not as smooth as one would expect from
an optimized model, a result of the rigid edge length constraints. These embeddings
are still perfectly valid w.r.t. the geometry constraints. However, because there exists
no implementation for a growing algorithm, it couldn’t be tested if these shapes can be
grown without problems.

The simplest pocket region from six pentagon nodes is the most symmetric one, which is for
example a part of non-IPR nanotube-like Fullerenes. Figure 11.4 shows the corresponding
embedding, which can also be constructed without geometry flaws. What most of the
examples that have been shown so far from four pentagon nodes and upwards have in
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11.1. Non-IPR Pocket Regions

(a) (b)

(c) (d)

Figure 11.3.: (a) shows the zig-zag four-pentagon pocket region from 11.2b and (c) a
maximally symmetric five-pentagon pocket region. To both, the fill-up
algorithm can be applied, which yields (b) and (d).

Figure 11.4.: Maximally symmetric 6-pentagon pocket region
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11. Results and Discussion

common, is that the arrangement of pentagons is very compact. This is most apparent in
Figure 11.4 for six pentagon nodes, whereas the zig-zag line of four pentagon nodes from
11.2c is the exception. If the pentagon nodes are arranged in the pocket region in a less
compact way, it is more likely that the construction of a geometry flaw-free embedding
does not succeed. There are examples for this in four-, five- and six-pentagon pocket
regions.

Cases of Flawed Construction

Pocket Regions that feature four to six pentagon nodes can have serious problems with
shape. Here an example with six pentagon nodes is shown where the arrangement of
pentagon nodes is changed from the maximally symmetric case (see figure 11.4) to a less
symmetric arrangement. There are a few good examples in C60 nanotube-like Fullerenes,
because those are all Non-IPR molecules.

Figure 11.5 shows the pocket region from three different angles. In 11.5a, the arrangement
of pentagon nodes is in the focus. Instead of having a center pentagon node surrounded
by five more pentagon nodes, as regular nanotubes have, one of the nodes surrounding
the nanotubes is a hexagon node and the last pentagon node is further out. This leads

(a) (b) (c)

Figure 11.5.: Comparison of this special form of a 6 pentagon pocket region to the
standard version.

to a smaller opening of this pocket region, as 11.5b shows. In fact, this looks like the
Gaussian curvature carried in the pocket region is higher than 2π, because there is more
curvature than in a half-sphere. The reason for why it looks like this is the focus of
11.5c. The hexagon node circled in black is the node that was also the focus of 11.5a;
it replaces the sixth pentagon node in what would be a regular, symmetric 6-pentagon
pocket region. This node has five triangles around it in a shape that looks exactly like a
minimal size patch around a pentagon node. There is one face missing here. In fact, the
face is not constructed yet, because it is not part of any minimal size patch. But it is
not possible to construct it properly, because the two nodes that are needed to span it
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11.2. IPR Pocket Regions

up, coincide in their positions. This is what is shown as a single hexagon node in a blue
circle in 11.5c.

This poses a serious problem. The pocket region does not have any obvious degrees of
freedom, by which the geometry can be changed easily, and construction can not be
continued with the fill-up algorithm, because the triangle that is supposed to be spanned
between the node in the black circle and the coinciding nodes in the blue circle, can not
be equilateral. At the same time, there are no violations of the geometry rules in other
parts of this embeddings. All triangles and deficit angles are correct.

Alexandrov’s uniqueness theorem guarantees that there must be an embedding for this
pocket region though, so a solution must exist. One of the next steps to investigate this
could be to take another look at the minimal size patches. So far, changing their shape
was avoided, as it was not necessary and too complex for a quick construction. However,
there are some degrees of freedom in a minimal size patch, so that could be the next
approach.

11.2. IPR Pocket Regions

Pocket Regions with isolated pentagons are of great interest, because they make up the
majority of pocket region in bigger Fullerenes. As this thesis started with small and
medium-sized Fullerenes up to C120 isomers, not a huge selection of pocket regions was
actually generated. Still, they were investigated thoroughly, mainly the ones that needed
sector merges and geometry fixing.

One to Three Pentagon Nodes

Similarly to non-IPR pocket regions with this amount of pentagon nodes, there are
no construction problems with small pocket regions. Pocket regions with under four
pentagon nodes can not make use of the pointdist method (one needs at least one center
patch and two patches positioned with symm_pointdist before that makes sense), the other
method to look at is edgelength. Two examples which the edgelength has been used on
are shown in Figure 11.6. 11.6a shows a simple sector merge of two patches, which an
edgelength geometry fixing. Afterwards, the pocket region has a flawless geometry. The
pocket region in 11.6b is very similar to that, only that one additional minimal size patch
is merged on the left side by corner merge. In the course of this thesis, a three-pentagon
IPR pocket region from a C120 –T Fullerene has been used for several examples. This
pocket region is constructed using the symm_pointdist geometry fixing method, which
works out flawlessly, and can also be used to test the SNS/fill-up algorithm. Both cases
are drawn once again in Figure 11.7. This case has been addressed extensively, for
example in the course of the fill-up algorithm SNS discussion in section 10.4 or in the
chapter about geometry fixing and remnant geometry flaws in section 9.4, where it was
discussed that this pocket region does actually not have a flawless geometry, as two edges
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11. Results and Discussion

(a) (b)

Figure 11.6.: Two-pentagon IPR pocket region, the r = 2 patch in black and the r = 1
patch in red. The edges marked by the dotted blue lines were optimized by
edgelength (a). In (b), the right patch has been positioned the same way,
the left patch by a corner merge.

are to short. However this is not a problem, because a fully implemented fill-up algorithm
would automatically fix the edge lengths without causing any more geometry problems.

Four to Six Pentagon Nodes

Only a few examples of IPR pocket regions with four to six pentagon nodes were generated.
Three interesting examples are shown in Figure 11.8. First, 11.8a is the IPR-equivalent
to the rhombus-shape arrangement that we encountered in Figure 11.2a, made fully of
corner merges. 11.8b is the IPR-equivalent to the six-pentagon non-IPR pocket region in
11.4, in the sense that both are constructed with corner merges. Meanwhile, 11.8c offers
a new possibility of constructing a maximally symmetric six-pentagon pocket region,
using only sector merges. All of these pocket regions have flawless geometry.
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11.2. IPR Pocket Regions

(a) (b)

Figure 11.7.: Symmetric IPR 3-pentagon pocket region from two sector merges, geometry
fixed by symm_pointdist (a). Fill-up algorithm can be applied to obtain one
additional node position (b).

(a) (b) (c)

Figure 11.8.: Three IPR pocket regions featuring four pentagons arranged in a rhombus
with three corner merges (a), a six-pentagon maximally symmetric pocket
region from five corner merges (b) and its equivalent from flat merges (c).
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12. Conclusion

This thesis project started developing a method for embedding Fullerene surface manifold
regions into three-dimensional space. The purpose of such embeddings is to enable a
mixed-dimensional treatment of the electronic structure in the molecule surface, combining
a two-dimensional, coordinate-free surface DFT with three-dimensional embeddings to
improve the accuracy of the model. The achievements of this thesis concerning the
construction of embeddings can be summarized by two main points:

1. Developing a method to embed surface manifold regions in three main steps, mainly
done in chapters 3 and 5, some directions for future work were explored in 10.

2. Writing an implementation and testing its capabilities for small Fullerenes. The
implementations of the three steps were adressed in chapters 8, 9 and 10, chapter
11 presented an overview of the resulting geometries.

It was found that the embeddings are most easily constructed in the dual representation,
which consists of equilateral triangles, each representing a node of the surface’s graph
structure or atom in the physical molecule, and given a 3D embedding of the dual
representation, the cubic representation’s embedding is easily recovered. Compared to
the cubic representation of the molecule, this is easier to work with, but in turn further
away from the physical reality.

The construction of embeddings needs to be started simultaneously from all twelve
pentagon nodes, which have been divided in groups of close neighbours that build a high
curvature region. The simultaneous start ensures an even shape of the pocket region
embeddings later on. By constructing the patches around each pentagon node in the
construction step with radii such that there are overlaps, the merging was prepared. The
combination step handles patch merging, where each patch group are merged together
into a single pocket region. The geometry fixing mechanism makes sure that there are no
geometry flaws in the pocket regions after this step. As last one of the three main steps,
the growing step is responsible for finishing the shape of each pocket region, such that
has a layered structure and can be grown to any desired size.

Status of The Implementation and Concept

Neither the method development nor the implementation are finished. The missing piece
is the growing step, which was only implemented in parts, such that the single node
solver could be applied to a few fitting situations. Also the method development did not
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get to the end stages of the growing step. Here, the corner and sector structure of pocket
regions, which were discussed in chapter 10 needs to be investigated. This structure can
potentially be the key to elegantly solving, or at least reducing the dimension of the
systems of equations connected to adding new nodes and new layers to a pocket region.
Connected to this is also the center selection for pocket regions, which is needed to define
a layer structure on a pocket regions. An initial implementation, selecting the node most
centered w.r.t. all pentagon nodes in the pocket region, exists, but it has shown that a
single node can not always be the fully symmetric center of a pocket region. Therefore, a
more general method that includes centers interior to edges or triangles will be necessary
to complete the method. The same holds for the pentagon grouping algorithm and some
other parts of the current implementation.

Overall, I would say that the goals that were set in the beginning of this thesis were not
completely reached, as a full initial implementation including the growing step would
have been the optimal outcome. However, a full implementation of the growing step
could in theory be a very powerful tool, for example w.r.t. creating full embeddings of
the molecule. It is therefore beneficial to invest more time investigating a well thought-
out solution. Creating full molecules could also give an insight on how to construct
isometric embeddings of convex polyhedral metrics. Alexandrov’s theorem predicts such
an embedding to exist for each of these metrics, but finding the embedding for an arbitrary
metric is an unsolved problem.

Outlook

Constructing pocket region embeddings is just the first one of a series of problems to
solve, if one wants to make a mixed-dimensional treatment of electronic structure on
Fullerene surfaces a reality. Assuming that the embeddings can be constructed, the next
steps are to compute which embeddings are necessary and which size they should have.
Then, it is necessary to connect the three-dimensional embeddings to the two-dimensional
surface-DFT, such that the contributions of out-of-surface interactions can be added to
the initial calculations to increase the accuracy of the model.
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A. Merging Operation

The complete merging process is done by mergeFaces, which is shown in listing A.1. The
interior of this function will be analyzed now.

1 def mergeFaces (self , newPatchID , overlap ):
2

3 newPatch = self. patches [ newPatchID ]
4

5 # extract the necessary raw data that is to be modified
6 newPos = newPatch . positions .copy ()
7 newTriangles = newPatch . triangles .copy ()
8

9 # indexShift : map patch index to pocket index
10 indexShift = np.zeros( newPatch . Positions .shape [0]). astype (int)
11 nNew = 0
12

13 for i in range( indexShift .shape [0]):
14 graphNode = newPatch . global_index [i]
15

16 if graphNode in self. global_index :
17 pocketNode = fcs. reverseID (graphNode , self. global_index )
18 indexShift [i] = pocketNode
19 else:
20 #Else , create new index
21 fmax = np.max(self. triangles ) + 1
22 imax = np.max( indexShift ) + 1
23 indexShift [i] = np.max ([fmax , imax ])
24

25 nNew += 1
26

27 # Update the newTriangles array with the index mapping
28 for i in range( newTriangles .shape [0]):
29 for j in range( newTriangles .shape [1]):
30 idx = newTriangles [i,j]
31 newTriangles [i,j] = indexShift [idx]
32

33 # Extend nodes array and self.fixed array
34 positions = np. vstack (( self.positions , np.zeros ((nNew ,3))))
35 fixed = np. hstack (( self.fixed , np.zeros(nNew , dtype=bool)))
36 global_index = np. hstack (( self. global_index , np.zeros(nNew , dtype=int

)))
37

38 # Compute new values
39 for i in range( indexShift .shape [0]):
40 positions [ indexShift [i]] = newPos [i]
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41 global_index [ indexShift [i]] = newPatch . global_index [i]
42

43 newRigid = fcs. transferRigidity (indexShift , newPatch .rigid)
44 rigid[ newRigid ] = True
45

46 # Update original arrays
47 self. positions = positions
48 self.fixed = fixed
49 self. global_index = global_index
50

51 # Update triangles
52 delete = np.zeros( newTriangles .shape [0]). astype (int)
53 for i in range( overlap [: ,0]. shape [0]):
54 idfier = np.any( newTriangles == overlap [i,0,0], axis =1) * \
55 np.any( newTriangles == overlap [i,0,1], axis =1) * \
56 np.any( newTriangles == overlap [i,0,2], axis =1)
57 delete = delete | idfier
58

59 newTriangles = newTriangles [1- delete == 1]
60

61 self. triangles = np. vstack (( self.triangles , newTriangles ))
62 self. dual_neighbours = fcs. generateDualNeighbours (self. Triangles )

Listing A.1: pocketRegion.mergeFaces is the method that merges node positions and
triangles of a new patch into the pocket region.

Before starting on the computations, it is necessary to take a look at the inputs. This
is a method of the pocketRegion object, so the self reference in the input creates access
to all of the pocketRegion object. The actual inputs are newPatchID and overlap. The
latter is known already from the patch positioning chapter and rotation edge selection.
The newPatchID parameter references, which patch is to be merged. All patches that
are grouped into a pocket region, have been added to the pocketRegion.patches list, and
newPatchID references a patch by its index in that list.

The first important step is creating an array that holds the pocket region layer indices for
the patch nodes. That happens from line 10 to 22 and the array is called indexShift. The
index i represents the patch index layer, whereas shiftIndex is filled with indices from
the pocket region index layer. As pointed out in chapter 6.2, to connect these layers, one
has to go through the global graph layer, which can be done through the global_index

attributes of patch and pocket region. Therefore, the global index corresponding to i

computed in line 14 of the method and saved in graphNode.

Now there are two possibilities: If graphNode appears in global_index of the pocket region,
accessed by self.global_index, the corresponding pocket region index must be filled into
indexShift[i], which is done by the reverseID function in line 17. Otherwise, if graphNode

doesn’t appear in self.indexID, a new index has to be created for the pocket region.
This happens in line 21, where the algorithm decides between fmax and imax. fmax is the
maximum value of the self.triangles matrix plus one, in other words it is the maximum
index of the pocket region index layer plus one. As long as the current new node is the first
new node that has been added to the pocket region, this will be selected. However, if the
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current node is not the first new node added, then fmax is not the correct index, because
self.triangles is not updated yet. The only array that is updated, is indexShift. And
because there has been a new node added to this array before, indexShift is guaranteed
to have the maximum node as value somewhere. That is when imax is chosen as new
index. The last thing I want to stress is that in line 25, you can see that the parameter
nNew counts the amount of newly added nodes. This will be needed later.

In the next block of code from line 28 to 31, the newTriangles array, which holds the
patch’s triangles in the patch index layer, has to be transferred to the pocket region
index layer. The direct tool for that is the indexShift array, and the index changes are
done in line 30 and 31. After all arrays that describe nodes have been extended in line
34 to 36, such that they are able to save information about all the new nodes, it is
time to fill in that information. positions, fixed and rigid are updated in lines 39 to 49,
triangles afterwards. For triangles, the overlapping triangles are already known through
the overlap array and just need to be deleted from newTriangles. Afterwards, newTriangles

can be added to self.triangles.
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