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Abstract

The Greenland Ice Sheet is a key component of Earth’s climate system that has been evidently
influenced by global warming. Determined by an interconnected climate system, the changes of
the ice sheet are involved in feedback mechanisms that can enhance further warming of the Earth.
The surface’s albedo marks one essential feedback mechanism. In order to better emphasize sci-
entific research of climate change impacts, it is essential to constantly monitor the Greenland ice
sheet. Two predominant sources of climate-related data about the Greenland ice sheet are auto-
mated weather stations and remote sensing products. An ongoing concern in the field is the com-
parability of the differently retrieved data. Weather stations have a limited footprint on what they
measure in situ, which might not correspond to the actual circumstances of the site. This makes it
challenging to process the data in terms of representativity. Because satellites measure way larger
footprints, a point-to-pixel comparison can disagree. A homogenous ground surface indicates sim-
ilar conditions within a certain area. A heterogeneous surface however might distort the results.
Global warming can enhance this matter by increasing the surface melt in Greenland and therefore
decreasing the amount of homogenous snow surfaces. To confront the issue, this study evaluated
the representativity of 40 automated weather stations in Greenland to detect whether they represent
their local environment well. It is expected to give further access to the aspects on (1) how repre-
sentative the individual weather stations are for their surrounding area; (2) which local conditions
occur when the station is representative or not representative and (3) how this is influenced by the
melt season. The analysis was done using Landsat 8 high resolution data in an area corresponding
to a 1km? MODIS grid pixel to approach the viewpoint of point-to-pixel comparison. The 40
weather stations were categorized into three groups, characterizing how representative they are in
terms of albedo. The results showed that stations located on a homogenous snow cover all year
around are highly representative. This occurred for all weather stations located at an altitude above
1500m. Some slightly lower elevated stations, placed further inwards on the ice sheet and thereby
characterized by stable weather conditions, revealed comparable representativity. Stations in the
ablation zone, primarily near the coast and in the Southern half of the island, were stronger affected
by changing conditions during melt season. For weather stations at sites with varying elevations
and different surfaces, a high representativity was not a given anymore. It mainly appeared during
the shift between snow-covered and snow-free land as the area partly covered in snow showed
differences in reflectance. Meltwater lakes close by influenced the albedo representativity mark-

edly. Meltwater streams and crevasses revealed deviations as well but not as strong as lakes.
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1. Introduction

The Greenland ice sheet represents an important component in the Earth’s climate system. It is a
key indicator of the past, current and future progress of global climate. Not only is it an indispen-
sable foundation for scientists to understand the changing conditions, but it also affects the Earth’s
energy balance with its highly reflecting surface and therefore the planet’s climate. By reflecting
a large proportion of incoming solar radiation, it enhances cooling of the earth. Albedo, represent-
ing the brightness of a surface and thereby its ability of reflecting incoming radiation, can be ob-
served from space by satellites as well as in situ by automated weather stations. For the reason that
both have individual footprints of investigating, it is challenging to directly compare their data.
The weather station measures a very limited area while remote sensing observations examine way
larger areas. Ryan et al. (2017) observed a significant difference in albedo results between in situ
and satellite-retrieved data. Particularly heterogeneous surfaces, that occur in summer when the
snow melts, influence the representativity. In this study, the local conditions of 40 weather stations

were observed in order to determine their representativity of the surrounding area.

1.1. Background
Impacts of Climate Change on the Arctic

After Antarctica, the Greenland ice sheet is the second largest ice sheet in the world. Located in
the polar region of the Northern Hemisphere, Greenland is part of the Arctic. In the Arctic, inter-
connected physical, chemical and biological systems are found that are directly and indirectly af-
fected by climate change and interact in the global climate system. Ecosystems, weather conditions
and human communities are impacted by the shifts. Researchers agree that the Arctic shows an
undeniable warming. Each of the past years from 2014 to 2018 showed the highest annual surface
air temperature that has been measured in the Arctic since the beginning of observational records
in 1900, which has significant ice mass loss as a consequence. Between 1971 and 2017, the annual
surface temperature in the Arctic rose by 2,7 °C; 3,1°C during the cold season and 1,8°C during
the warm season. Evidence from lake sediments, tree rings and ice cores prove that Arctic summer
temperatures have been higher in the past few decades than at any point in time in the past 2000
years. Projections as well as observations confirm that the annual warming in the Arctic is more
than twice the global mean, especially in winter. From 1971 to 2017, the warming was 2,4 times

faster than the mean of the Northern Hemisphere (AMAP, 2019).



Likewise, the temperature of the sea surface and ocean is increasing, too. Those rises in tempera-
ture result in an accelerated process of snow and ice melting. The sea ice is very vulnerable to
atmospheric warming and the influx of warmer waters from the South (AMAP, 2017). Even if the
world successfully maintains global warming near +2°C, the Arctic is expected to have a noticea-
bly different environment by mid of the 21st century. Under current trends and projections, the
melt season will start earlier and last longer. This will result in shorter snow and ice periods (Over-
land et al., 2019). The four most important cryospheric characteristics influenced by global warm-
ing are losses of sea ice, snow, permafrost and land ice. All of them are projected to occur over
the next 50 years (AMAP, 2017).

Arctic sea ice indicates a shift from multiyear to seasonal sea ice with decreased extents and thick-
ness. AMAP (2017) expects the Arctic to experience ice-free summers by the end of 2030 under
the current warming conditions. Especially during spring, snow scope has reduced in recent dec-
ades. Projected impacts in Arctic snow cover involve a 10-20% decrease of the snow cover period
in most of the Arctic by mid-century. This trend will remain as Arctic temperatures continue to
rise even when the worldwide greenhouse gas emissions stop rising. Projections predict future
precipitation to increase in the Arctic, however, with more of the precipitation falling as rain rather
than snow (AMAP, 2017).

Models show a 20% decline in near-surface permafrost area in the Arctic by 2040, with minor
dependence on the RCP scenario (Arzhanov, 2013). Land ice masses show a slow response time,
especially the Greenland ice sheet. With atmospheric and oceanic warming over the century, in-
dependent of greenhouse gas reductions, projected mass loss from land ice does not stabilize be-
fore the end of the 21st century (AMAP, 2017). Furthermore, under current temperatures (1981—
2010), Arctic glaciers should additionally lose about 35% of their volume (Mernild, 2013).

The individual seasons are affected differently by climate change: The greatest increase in surface
air temperature is seen in autumn, in regions where the sea ice is gone by the end of summer. This
indicates that the sea is absorbing more solar radiation during the summer as the ice cover de-
creases. The extra energy is being released as heat in autumn, further warming the Arctic’s lower
atmosphere. Over land, the number of days with snow cover has changed the most in spring. Early
snow melt is enhanced by earlier and stronger warming of land that is no longer snow-covered
(AMAP, 2011). Those intensifying seasonal changes have a large effect on the brightness of

Greenland’s surface and its reflectance of sunlight.



Climate influences on the Greenland ice sheet

Precipitation, sea ice loss and surface melt along with runoff are three main factors affecting the
Greenland ice sheet development. Throughout the recent climate history, statistically, over 90%
of the precipitation over the Greenland ice sheet has fallen as snow, working as the major source
of ice sheet mass gain (Ettema et al., 2009). Ice masses form when snow that falls during winter
does not melt entirely over the summer. Over thousands of years, the layers of snow pile up into
thick masses of ice, growing thicker and denser with the mass of new snow and ice layers com-
pressing the older layers. In order to remain stable, the ice sheet has to accumulate the same mass
of snow as it loses to the sea. Areas where more mass is gained than lost are called accumulation
zones. When the snow and ice ablation (melting) exceed the accumulation, the term ablation zone
is used (NSIDCa).

Since the early 1990s, several observations and modelling findings have indicated strong warming
and an increase in runoff in Greenland. High-altitude sites warmed by approximately 2,7°C over
the past 30 years (Orsi et al., 2017). Satellite measurements showed statistically significant wide-
spread surface warming over the Northern ice sheet from 2000 to 2012 (Hall et al., 2013). Ice core
analysis found the 2000-2010 decade to be the warmest for around 2000 years. The precipitation
frequency, intensity and distribution as well as humidity are increasing under the changing climate
and affect the freshwater flow into the Arctic Ocean. This influences important components like
ocean circulations, nutrient level, acidification or the biological pump, which again, interconnect
globally. Additionally, a change in precipitation affects the soil moisture influencing vegetation
growth, which has a major importance in the food chain for wildlife. Higher humidity can amplify
warming and snowmelt (AMAP, 2019).

The Greenland ice sheet is the largest single source of barystatic sea-level rise (Hofer et al. , 2020).
A geodetic reconstruction indicated an annual ice sheet mass change of -186,4 = 18,9 Gt from
2003 to 2010, with the losses concentrated along the northwest and southeast coasts (Kjeldsen et
al., 2015). The combination of an increase in dynamic thinning ofthe ice and a reduction in surface
mass balance cause the ongoing mass loss of the ice sheet over recent years. The increase in surface
melting and runoff are very dominating elements in the process (Andersen et al., 2015; van den
Broeke et al., 2017).

The surface meltwater on the Greenland ice sheet, primarily caused by solar radiation, is part of a
supraglacial hydrological system. Mainly located in the ablation area, the system includes suprag-
lacial lakes, streams, crevasses, and moulins. Meltwater accumulates in the lakes and flows off
through streams and crevasses. Some goes directly across the ice sheet surface to the ocean, while

most is transported through vertical surface-to-bed hydrologic connections (moulins) and after all
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reaches the subglacial area and then the sea. The supraglacial lakes add to the negative mass bal-
ance of the ice sheet because the melting rate of the ice sheet is affected by the low albedo of the
lakes, which cause a decreased solar radiation reflectance (Yuan et al., 2020). The IPCC (2013)
declares it as likely that the annual period of surface melt on Arctic persistent sea ice lengthened
by 5,7 + 0,9 days per decade over the period from 1979 to 2012.

An ice sheet is constantly in movement as of its large mass, slowly flowing downwards under its
own weight’s pressure. Near the coast, most of the ice moves through relatively fast-moving out-
lets: ice streams, glaciers and ice shelves. The higher temperatures in the past decades however
have caused meltwater to trickle through beneath Valley glaciers that end up in the ocean, initiating
them to flow faster and increasing the rate of ablation as well as ice loss from the continent. This
results in Greenland’s ice melting even faster than expected. The rate of melting could increase
with further rising temperatures. Melting all of Greenland would increase the global sea level by

approximately 7m (Kump et al., 2014).

Greenland’s interconnection with Earth’s climate

The cryosphere is an integral part of the climate system and affects climate regionally as well as
globally. Greenland contributes essentially towards that impact (AMAP, 2017). There are several
mechanisms of the cryosphere interacting with the climate system. Essential cryospheric feedback
mechanisms involve the albedo (See chapter Ice-Albedo-Feedback) and heat storage changes from
loss of glaciers, sea ice, and snow cover. The ocean surface stores thermal energy. Sea ice prevents
a direct heat transfer from the ocean into the atmosphere. With increasing temperatures, the ice
cover is thinning and decreasing which leads to a higher heat flux from the ocean to the atmos-
phere. This results in higher temperatures and therefore creates a feedback cycle. Other important
feedback mechanisms include the increased carbon releases from permafrost; shifts in clouds and
increases in water vapor; and atmospheric and ocean transport shifts. These phenomena are not
fully understood yet but play an important role and can alter the rate or even direction of climate
change and associated changes in the cryosphere (Overland et al., 2019).

The Greenland ice sheet is one of several potential tipping elements in the Earth’s climate system,
which means it is characterized by a threshold behaviour. Models suggest that there are only cer-
tain levels of the Greenland ice sheet volume that are stable, implying that once a tipping point is
exceeded, a significant part of the ice sheet will melt, causing several meters of global sea level
rise. The exact temperature of the tipping point is uncertain. IPCC (2013) estimates it to be a
warming of somewhere between 1,9 and 4,6°C. There is also no real consensus on the timescales

implicated. Estimates range from several hundred to a thousand years, making it a slow process.
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However, if the Greenland ice sheet experiences further enhanced melting in the future, the cooler
freshwater of nearby surface waters will have major effects on the ocean circulation. The likeli-
hood of significant circulation changes is challenging to quantify, but climate models indicate that
additional freshwater, similar to current rates of Greenland melting, are enough to have measurable

impacts on ocean temperature and circulation (Steffen et al., 2018).

Another important aspect of the Greenland ice sheet is its role as a valuable source of insights for
science. Extracted ice cores from ice sheets and ice caps help scientists to understand past varia-
tions in Earth's climate. The several layers of ice contain trapped gases, water molecules and dust

that give information about the climate over the past millions of years (Kump et al., 2014).

Ice-Albedo-Feedback

Albedo is a non-dimensional, unitless quantity that indicates how well a surface reflects solar en-
ergy. The value varies between 0 and 1 (NSIDCb). With its bright white colour, snow has a very
high albedo of 80 to 90%. The high reflectivity of snow means it can have a major effect on the
regional energy balance. When solar radiation hits the snow crystals, a small amount is transmitted
to heat the snowpack while most of the radiation is reflected back to space. The heat prevents the
snow from instantly freezing into ice while the reflected sunlight keeps regional temperatures
lower than they would otherwise be (Kump et al., 2014).

With the increasing temperatures Earth and especially the Arctic is experiencing, the snow cover
of Greenland is decreasing. Hence, darker surfaces like ice, water or tundra appear, which have a
much lower albedo rate. Warmer conditions encourage snow crystal metamorphosis that, like the
presence of liquid water, reduce snow albedo to below 65%. This effect increases the absorbed
solar energy by roughly a factor of two. Impurities such as dust, black carbon or microbes can
lower glacier ice albedo beneath 30%, meaning that, when snow ablates, the impurity rich bare ice
increases absorbed sunlight by a factor greater than three (PROMICE, 2019). Surface albedo has
been labelled as an Essential Climate Variable and a Target Requirement for climate monitoring
(WMO, 2011). A reduced albedo results in a temperature rise of the surface and the air nearby.
According to IPCC (2013), in the decade previous to 2013, the surface albedo of the Greenland
ice sheet has reduced by up to 18% in coastal regions, resulting in more solar energy being ab-

sorbed with an enhanced surface melting as consequence.



Monitoring of the ice sheet

A major aspect in identifying the Arctic’s interaction with the climate is monitoring. Two im-
portant monitoring concepts are remote sensing measurements by satellites from space and in situ

measurements by automated weather stations (AWS).

Satellite Observations

Observing and monitoring the enormous, remote Greenlandic ice sheet is a challenge and often
only feasible globally from space. Commonly used are the remote sensing products of Landsat 8
and MODIS. The satellite Landsat 8§ was launched in February 2013. Its cargo consists of two
sensors - the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These pro-
vide seasonal reporting of the global landmass at a spatial resolution of 30 meters (visible, NIR,
SWIR), 100 meters (thermal), and 15 meters (panchromatic) (NASAa). MODIS (Moderate Reso-
lution Imaging Spectroradiometer) is an important instrument aboard the Terra and Aqua satellites.
They launched in 1999 and 2002. Terra's orbit around the Earth is scheduled so that it moves from
north to south across the equator in the moming, while Aqua passes south to north over the equator
in the afternoon. They are viewing the entire surface of the Earth every 1 to 2 days, acquiring data
in 36 spectral bands with a resolution of 250 meters (bands 1-2), 500 meters (bands 3-7) and 1000
meters (bands 8-36) (NASAb)

Automated Weather Stations

Automated weather stations (AWS) measure a large spectrum of different weather parameters on
a local scale. Under changing conditions, the measured data can vary a lot over time. Especially
in Greenland, major variations occur during a year due to melt season. AWS are an important tool
to give scientists ground truth of what remote sensing instruments observe. Particularly in respect
of the seasonal changes, the albedo in Greenland is expected to fluctuate significantly due to melt-
ing snow and ice. As a result, darker areas like darken ice, lakes, crevasses or land appear. De-
pending on the location of the AWS, the reflectivity can change significantly within a small area
because of elevations differences. This can conclude in wrong assumptions about an area. Along-
side of that, when measuring albedo, it is challenging to directly compare ground and satellite-
retrieved values. Only when the measured surface is homogeneous at the length-scale of both sat-

ellite pixel and in situ footprint, it is justified (Ryan et al., 2017).



1.2. Aim of the study

As 1.1. states, the Greenland ice sheet is directly affected by climate change. At the same time, the
ice sheet creates a crucial trigger point that can have a massive effect on global climate if it is
experiencing further melting. Researchers rely on automated weather stations to observe the
changes since they have the advantage towards satellite products of reporting ground truth.
Albedo plays a significant role in the interconnection of the ice sheet and the global energy bal-
ance. The albedo of a surface can drastically change within a small range, which results in a limited
representativity of an AWS site. With that in mind, the primary objective of this study is to assess
the representativity of 40 automated weather stations for their local conditions in terms of albedo.
The main information is retrieved from high resolution Landsat 8 data through the application of
Google Earth Engine. The key analysis contains the comparison of the reflectance of the pixel in
which the station is located, to the surrounding pixels within a 1km? area, on a 15m-resolution-
scale. A second additional analysis introduces data of the AWS as well as of a MODIS product to
put the key findings into context.

After reviewing former research papers on this topic, it is expected to see a higher representativity
on albedo further inwards on the ice sheet, increasing with more consistent weather and the there-
fore smaller seasonal fluctuations. This explanation also justifies the hypothesis about stations in
the North having a higher chance of representativity. Ryan et al. (2017) gives information on how
comparable albedo data retrieved by satellite-imagery and in situ are, especially during the melt
season that occurs in summer. Their results revealed, that compared to satellite-retrieved values,
the in situ measurements overestimate albedo by up to 0,10 at the end of the melt season. These
disagreements are caused by the individual footprints capturing the spatial heterogeneity of the ice
insufficiently. The occurrence of these differences was discovered for almost half of the 21 ob-
served weather stations in the study.

This study is expected to give further valuation on how representative the individual weather sta-
tions are for their surrounding area. Connected prospects to this main research question include
which local conditions occur when being representative or not representative and how it is con-
nected to the melt season. It can bring information on whether a point-to-pixel comparison between
MODIS and AWS data seem reasonable as well as indicate on how valuable satellite and AWS

data occur when addressing albedo observations.



2. Methodology

2.1. Study area and time span

Covering an area of over 2,1 million km?, Greenland is the world’s largest non-continent island,
located between the Arctic and Atlantic oceans, very close to the geographically north pole. About
75% of the island is covered in ice. It is situated between the latitudes 59°N and 83°N and the
longitudes 11°W and 74°W (Rasmussen, 2021). It is therefore placed within the Arctic circle. A
consequence of that is the missing sunlight during winter. For that reason, most stations’ locations
do not have data available in winter. All available months have been included as it is an individual
analysis for each station’s representativity. With Landsat 8 having launched in February 2013, the
study’s timespan was chosen to start just then and run until December 2020, which creates a time
span of 8 years. For a clearer understanding of the results, a familiarity with the individual year’s
climate is of advantage:

Allin all, 2013 demonstrated a large melting from both the Greenland ice sheet and the Arctic sea
ice. The surface mass balance was lower than normal with a gain of 166 Gt (average since 1990:
368 Gt) The sea ice extent was 21% lower than the 1981-2009 average. Record temperature in late
July triggered strong ice sheet surface melting (Polar Portal, 2013).

2014 showed a melting of the ice sheet above the average (since 2002). Nevertheless, was the
Arctic sea ice strengthened that year. The surface mass balance of the Greenland ice sheet was
lower than normal. The increased melting concluded in a below average reflectance of sunlight. A
new warmth record was established in west Greenland in June 2014 (Polar Portal, 2014).

In 2015, the melt season in Greenland ended with a surface melting larger than usual, even though
the beginning of the summer was cold and snowy, and the melting season began late. Overall, the
summer was relatively cold but featured a heat wave in July in the north and northwest (Polar
Portal, 2015).

2016 revealed early melting due to record high temperatures in Greenland and the largest loss of
glacier area since 2012. The extend of the melt season was high but not record-high. The albedo
of the ice sheet was the fifth lowest in 17 years (Polar Portal, 2016).

2017 was characterized by a mild summer: fairly cool with a weak and short melt season. The
surface mass balance in 2017 was above the average of 1981-2010, mostly resulting from high
amounts of snow during winter. The reflectance however was not higher than the long-term aver-

age (Polar Portal, 2017).



2018 had an extremely cold summer. The surface mass balance aligned with the average from
1981-2010 up until summer, when it started to increase as a result of the lowest recorded average
melting degree since the observations have started in 2008. The unusually cold and snowy summer
caused the albedo of the ice sheet to reach the historical high in May, June, and the beginning of
August since the reflectance of sunlight has been observed from 2000 (Polar Portal, 2018).

2019 was characterized by a warm, dry, and long summer. It forced the surface mass balance to a
level well below the average of the period 1981-2010. It was lower than the all-time low year in
2010 throughout the period from February until mid-June. The enormous melting event decreased
the ice sheet albedo to an extraordinary low level, marking a record minimal value in late summer
2019 (Polar Portal, 2019). The average surface broadband albedo over the Greenland ice sheet was
77.7% in summer 2019, classified as the second lowest value in the period of 2000-2019. Spring
was generally above average at all sites (PROMICE, 2019).

2020 was once again a warm year in the Arctic. However, there were huge regional differences.
In Greenland, the temperatures were close to normal. The extent of the Arctic sea ice was very
low, concluding in new monthly records for low coverage of sea ice in July and October (Polar

Portal, 2020).

2.2. Data
Landsat 8 TOA reflectance

The processed Landsat 8 data is a calibrated top-of-atmosphere (TOA) reflectance collection (Tier
1), provided by Google Earth Engine (Gorelick et al., 2017), with a TOA computation according
to Chander et al. (2009). TOA radiance represents every light that is reflected off the planet as
seen from space, including the impact of the atmosphere. It has the advantages of removing the
cosine effect of different solar zenith angles due to the time difference between data acquisitions;
compensating for different values of the exoatmospheric solar irradiance caused by spectral band
differences and lastly, the correcting for the variation in the Earth—Sun distance between different
data acquisition dates. These variations can be significant geographically and temporally (Chander
& et al,, 2009).

This study used the data of the panchromatic band (Band 8) in order to receive high resolution data
and to collect the full reflectivity. Instead of capturing visible colours separately, the panchromatic
band combines them into one channel. Therefore, the sensor can see more light at once. The cov-

ered wavelengths extend from 0,52 to 0,90pm (NASAa).



To rank the representativity of a locally measuring AWS, it was assumed that it corresponds to the
ratio between the B8 reflectance at the AWS location p s and the mean reflectance of the sur-
rounding pixels § within a 1km? area just as the albedo ratio between those two is expected to

occur (equation 1). For that reason, this study used the panchromatic band as a proxy for albedo.

Equation 1: Ratio proxy panchromatic band and albedo

B85 _ (Zﬁ

B8 (paws) E(paws)

With a resolution of 15 meters, it is double as sharp as the other bands which is very valuable for

a local analysis of the AWS location.

Investigation area and MODIS Daily Albedo

Around each AWS, a polygon corresponding to a 1km? pixel of the actual MODIS grid was cut
out as the investigation area Ay pp;s- It was determined manually but since the resolution of the
replicated MODIS is 1km and GEE allows to zoom in onto a small scale, the rate of deviation to
the actual grid as a consequence of this manually proceeded step is very limited.

In a second analysis, MCD43A3 V6 Albedo Model dataset, also provided by GEE, was used. It is
a daily 16-day product that delivers both directional hemispherical reflectance (black sky albedo)
and bihemispherical reflectance (white sky albedo) for each of the MODIS surface reflectance
bands (B1 - B7) as well as 3 broad spectrum bands (visible, near infrared, and shortwave) (Schaaf
& Wang). The actual albedo is a value which is interpolated between black sky and white sky
albedo. Since this research focused on the reflectance ratio between a certain pixel and the mean
of the area (see Landsat 8 TOA reflectance) and its course in a year rather than the value itself, the
selection was simplified. The white-sky albedo for the shortwave broadband was processed.
White-sky albedo is defined as the albedo in the absence of a direct component and is independent
of solar zenith angle (Lucht et al., 2000). The variable representing the MODIS Daily Albedo
product in this study is ap0pys-

It is important to remember that other than the weather station, which calculates a daily mean
value, the MODIS and Landsat products are centred variables using snapshots (Schaaf & Wang,

2015). This also means that images on different days are taken to different times of the day.
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Automated Weather Stations

Located across the Greenlandic continent, a network
of automated weather stations track temperature, at-
mospheric pressure, humidity, wind speed, and the
downward and upward components of solar
(shortwave) and terrestrial (longwave) radiation
among other parameters. The automated weather
stations in Greenland are handled by PROMICE
(Program for Monitoring of the Greenland Ice
Sheet), GC-Net (Greenland Climate Network) and
IMAU (Institute for Marine and Atmospheric Re-
search, Utrecht University). The AWS locations are
displayed in figure 1. Their exact location as well as
later assigned representativity category (see 3.1.) are
shown in table 1. The majority of the stations is lo-
cated on the ice sheet. The stations are primarily
spread over eight melt regions of the Greenland ice
sheet. In most regions, one station is situated in the

lower ablation zone close to the edge of the sheet,

® e LU
® j lumboldt
® TUNUN
® CEN. GITS
( J
THUL. U
® NASAEG
NASA U
®
® ypEL.U °
SCOL,U
elP ®
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KAN B.&\I. u ARASR
pYL® o9 :{111'
NUK N 3
% AS AL L, U KULU
NUK K@®NUK .. U
@5outh Dome
®0asa.L.U ESRI, FAO, NOAA

Figure 1. The locations of the investigated automated

weather stations in Greenland

while one or two are found in the middle and/or upper ablation zone. That way, comparable values

of different altitudes are received. Exceptions are the weather stations KAN U (located in the lower

accumulation area), MIT and NUK K (on independent glaciers), and KAN B (on tundra, one kil-

ometre from the ice sheet margin).

The albedo generated by the automated weather stations is calculated from the tilt-corrected up-

and downwards shortwave radiation using values obtained for solar zenith angles below 70°. The

AWS stores all parameters locally at a ten-minute time interval (PROMICE, 2019). The variable

used in analysis 3.2. is the daily mean product and termed as a .
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Table 1. Automated weather stations in Greenland, their location and the in 3./. assigned representativity category

(GC-Net, PROMICE, IMAU)

Station Name Location Representativity
| Latitude Longitude Elevation [m] Category
CEN 77,1826 -61,1127 1886 Al
CPI1 69,87975 -46,98667 2022 Al
CP2 69,87968 -46,98692 1990 Al
DYE 2 66,48001 -46,27889 2165 (A1)
FA 66,3618 -39,3086 1661 Al
GITS 77,13781 -61,04113 1887 Al
Humboldt 78,5266 -56,8305 1995 (A1)
JAR 694,98358 -49,68156 962 A2
JAR 2 69,42 -50,0575 568 A2
KAN B 67,1252 -50,1832 350 B
KANL 67,0957 -49,9485 680 A2
KANM 67,0667 48,8327 1270 A2
KAN U 67,0003 -47,0243 1840 Al
KAR 69,69942 -33,00058 2579 Al
KPCL 79,9108 24,0832 370 Al
KPCU 79,8345 -25,1665 870 Al
KULU 65,75845 -39,60177 878 A2
MIT 65,6923 -37,8277 450 B
NASA E 75 -29,99972 2631 Al
NASA SE 66,4797 -42,5002 2425 Al
NASAU 73,84189 -49,49831 2369 Al
NUKK 64,1623 51,3587 710 B
NUKL 64,4822 -49,5325 540 A2
NUKN 64,9452 -49,885 920 A2
NUKU 64,511 -49,2663 1130 A2
QA4S A 61,243 46,7328 1000 A2
04SL 61,0308 -46,3438 280 A2
{ 04AS U 61,1758 46,819 900 A2
SCO L 72,224 -26,818 470 A2
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SCOU 72,3937 -27,2383 980 A2

South Dome 63,14889 -44,81717 2922 (A1)
Swiss Camp 69,56833 -49,31582 1149 A2
TAS A 65,7797 -38,9008 890 A2
TAS L 65,6403 -38,8987 260 B
TASU 65,6978 -38,8668 570 A2
THUL 76,3998 -68,2662 570 A2
THUU 76,4197 -68,146 770 A2
TUNUN 78,01677 -33,99387 2113 Al
UPEL 72,8932 -54,2953 220 Al

| UPEU 72,8883 -53,5715 940 Al

()A§t_ations‘<_lid not show a sufficient amount of data

2.3. Data processing

The data was processed using Google Earth Engine (Gorelick et al., 2017). GEE is a platform to
geospatially analyse Earth’s surface. It contains several satellite imagery data as well as geospatial
datasets with planetary-scale analysis capabilities and is available for scientists of all kinds. The

used datasets of Landsat 8 and MODIS imagery was provided in GEE.

Analysis 1

To evaluate the environment around an AWS location, the area within a 1km? MODIS pixel
(Amopis) was observed, corresponding to four 500m-resolution MODIS pixels. By using the pan-
chromatic band of Landsat 8, a resolution of 15m was given. Therefore, the Landsat pixel repre-
senting the station’s value p,ys in this analysis captured an area of 225m?. The 1km? large area
of Amopis around p 4 Was taken as a reference area to compare the variability and therefore the
representativity of AWS monitoring to MODIS products, that provide one value for the entire area.
A corresponding approach is realised in Arnalysis 2.

By applying a cloud mask (bit 4), images declaring the station’s location as cloudy were not gen-
erated. Furthermore, images of data points with an extraordinarily deviation compared to its neigh-
bouring values have been manually observed and excluded when clouds missed by the cloud mask
were detected. To avoid night images with strongly differing values, the Worldwide Reference
System row has been set to less than or equal to 122. The output of this process was cloud-free
data of daylight images for each AWS location between 2013 and 2020, including the B8 reflec-
tance at the station p 475, the mean p and standard deviation g, of the B8 data within the MODIS
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polygon Ay;p;s and information about the cloud cover rate for each image for further alignments.
Figure 2 demonstrates this study’s case. The individual Landsat 8 pixels are displayed within the
Apopis polygon and show a variability of reflectance. The red point represents the location of an
AWS.

Figure 2. Inspection of high-resolution Landsat 8 pixels (panchromatic band, resolution of 15 m) within a polygon

corresponding to the shape of a 1km* MODIS pixel

To classify the representativity into categories, the Root Mean Square Deviation (RMSD) (equa-
tion 2) between p, s and p was calculated over the entire time span for each location. The pa-
rameter d; represents the difference between p s and p over time. The variable n represents the

number of dates showing useful data.

Equation 2. Root Mean Square Deviation

¥d?
n

It describes the overall differences between the values. Based on the RMSD result, the automated
weather stations were classified into three different categories. Figure 3 in the third chapter of this
paper, Results, displays the RMSD value of each station. Three major clusters in the chart deter-
mined the three categorization groups. Category Al captures all AWS that were surely representa-
tive for their close surrounding area (RMSD <0,001). Category A2 covers AWS that showed rep-
resentativity with some deviations (RMSD 0,001-0,005). The stations that clearly indicated large
deviations were grouped into category B (RMSD >0,005). To analyse the differences within the
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area, plots showing the station’s value p s and the mean p as well as the standard deviation g,

were created to display the results.

Analysis 2

For two stations, one showing minimal and one showing a rather large variability within the pol-
ygon, the MODIS Daily Albedo data (ayop;s) and the Albedo data of the weather station (a4 s)
were generated. MODIS Daily Albedo is using a resolution of 500m. The pixel in which the AWS
is located was evaluated. For each day when accessible Landsat 8 data was generated, the daily
product of MODIS Daily Albedo was extracted. This comparison shows more about the accord-
ance of the MODIS Daily Albedo to the AWS albedo product, even though they measure different
footprints. Furthermore, it can support the previous analysis of high-resolution data. The stations

NUK K (high variability) and CEN (small variability) were chosen for this analysis.
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3. Results

The following figure shows the outcome of the Root Mean Square Deviation categorizing. The
RMSD for each station can be found in Appendix A. The figure reveals that all automated weather
stations located at a level above 1500m, were grouped into category Al. A few lower located
stations reached the same category but most <1500m situated stations resulted to be grouped in

A2. Four stations that showed a rather high deviation, were placed into category B.

Ratio elevation RMSD

0,016
0,015 L4
0,014
0,013
0,012
0,011
0,01
0,009
0,008 °
0,007
0,006
0,005
0,004
*®
0,003 ° °
0,002 ®
0,001 e o
0 [
0 500 1000 1500 2000 2500 3000
Elevation (m}

RMSD

A2

S . o2

Figure 3. The ratio between elevation and RMSD of AWS

3.1. Landsat 8 Analysis

The amount of data varied extremely between the stations depending on their location. While
some provided several hundreds of data points for the observed time span, a few stations pre-
sented less than a handful of dates per year. If the latter was the case, it is stated in the station’s
results description. Furthermore, it was detected that the year 2013 generally had a very limited
number of images available, which results in missing information for that year’s summer. It is
still displayed to represent the available dates of the year.

To represent each category, one station’s analysis is exhibited in detail with the corresponding
generated diagrams. The charts of the remaining stations can be found in Appendix B of this pa-

per.
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Category Al — always representative

AWS grouped in this category barely exhibited any deviations and therefore were representative

for their location all throughout the year. Their RMSD summarizing all years stayed below 0,001.

Representativity of CEN AWS
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Figure 4. Panchromatic reflectance at CEN weather station for the years 2013-2020

Figure 2 illustrates the ratio of the value at the station p,4y s in blue, the mean of the area p in

orange and its shaded, here minimal, standard deviation g, within A p,s for the years 2013-2020
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for CEN weather station. CEN is located further inwards on the ice sheet at an elevation of 1886m
which concludes in it being snow-covered throughout the year.

The accordance of p,yys and o was very high. Throughout the year the rate of reflectance varied
but the difference between the two values was continuously low. The changes in reflectance were
probably caused by images taken at different times during the day. Especially towards the begin-
ning and end of the year, the reflectance showed a lower rate than for the rest of the year. The
change in solar illumination influences the rate of reflectance. Small deviations that can be found
in the graphs (April 2015 for instance) were caused by small atmospheric disturbances, like a veil
of clouds or small variations in the snowpack. The observation of the images confirmed that the
site was always coated by a homogenous bright snow cover, which is why it rarely showed any

fluctuations.

Other automated weather stations crouped in this catecory:

CPI and CP2 are only a few meters apart from each other. This concluded in the same outcome
of this study for both stations. They are located at a very consistent site that was covered in snow
all year and therefore any remaining fluctuations in the data ratio or deviation were produced by

thin cloud layers or other external disturbance.

FA is another station on the ice sheet that presented a snow cover all year around. It is not exces-
sively far from the margin of the ice sheet which might conclude on more intensely reflectance
changes when observing it on a bigger scale. On the local scale that was observed, the AWS was

very representative.

GITS is in the north of the Greenlandic West-Coast. Because of the high latitude, the station was
on snow-covered ice throughout the year. It was very representative for the region and barely

showed any fluctuations within the MODIS footprint area.

KAR weather station can be found in the Southern half of the Greenlandic East Coast. The obser-
vations showed that the site is very unchanging. The disparity between p 45 and p was constantly

low while the rate of reflectance was relatively stable.

KAN U presented very steady conditions due to an evenly snow-covered site throughout the year.
Very occasionally, minor deviations were found that are likely caused by snowstorms or other

external short-term influences.
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Statistically, KPC L station was representative for the location but near the boundary value to
category A2. It is located right at the edge of the ice sheet with an area of tundra nearby. This,
however, makes it a site that constantly showed slight variations between p4,s and g as the sur-
face changes drastically within a small area. Most years showed a similar pattern: compared to the
mean, g s Was slightly larger throughout the year with the exception in summer when it turned
into being smaller, especially noticeable for 2016, 2017 and 2018. 2019 showed the same pattern,
just not as clear and intense. When exactly the ratio turned, varied from year to year. 2013, 2014
and 2015 shared the higher trend of p s outside the melt season but in summer, 2014 showed a
relatively alignment of the two variables. During melt season in 2015, it switched between an over-
and underestimation as the pixel’s representativity several times. With a mean of 0,029 and a me-
dian of 0,027 for all years, the standard deviation during the year was relatively steady. This
seemed to be due to its position at a slightly elevated location which was snow-covered for longer
than other areas close by. A great quantity of data was available for this location which resulted in
a higher number of fluctuations. Nevertheless, a pattern is recognizable and overall, a high repre-
sentativity is provided. Outside of Amopis, however very close, accumulations of meltwater on the

ice sheet as well as on tundra were located (figure 4).

Figure 5. KPC L on July 14™, 2017 (Landsat 8 TOA. USGS/Google)

UPE U indicated a representative pattern, especially outside of the melt season. With 940m, it is
located at a higher elevation than UPE L and about 20km further inwards on the ice sheet. The
increasing temperatures in summer resulted in the ablation of snow, causing deviation in the data.
The AWS is situated in an area with changing elevations. It was noticed that in summer, some

areas had a thinner snow cover than others which raised changes in the reflectance. Considering
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the Amopis area, the values were relatively stable. 2020 demonstrated the highest deviations. 2014
and 2018 showed one outlier value each. The other years showed minor differences in the ratio.

Some images revealed small meltwater lakes in the larger surroundings outside of Amopis.

The automated weather stations DYE 2, Humboldt, South Dome and TUNU N were covered with
a very limited number of images which concluded in a small data range for the sites. The available
data showed very consistent values without any deviation because of a homogenous snow cover
all year. For the location of NASA U and NASA4 SE the number of cloud-free Landsat images was
even smaller. The available values showed a p4y,s/p ratio very close to 1 because it was a homog-
enous ice ground. However, the amount of data was not sufficient to make a confident statement

about the station’s representativity.

Category A2 - representative with limited deviations

Stations in this category demonstrated an overall representative performance. However, some
years or months differed from that behaviour which distinguished them from the stations classified
in category Al. Their RMSD lay between 0,001 and 0,005. QAS U is one of the stations that met
those conditions. Figure 6 illustrates the B8 reflectance from 2013-2020 for QAS U. Before July,
sometimes August, of each year, the reflectance was very consistent due to the snow-covered sur-
face. A clear decrease in the rate was noticed in summer when the melt season occurred. Some
years, like 2019, showed a higher decrease in reflectivity while others, like 2015 or 2018, displayed
a very small amplitude in summer. The change of reflectance comes along with slightly increasing
deviations. Overall, QAS U indicated a relatively high representativity of the area. As can be seen
in the figure, in 2015 the weather station was accurately representative for the area without any
exceptions. Other years showed a high representativity in the winter month while the summer ratio
within Amopis was not completely balanced. The local conditions of the site are shown in figure

7a.
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Figure 6: Panchromatic reflectance at QAS U weather station for the years 2013-2020

Other automated weather stations grouped in this category:

The site of JAR was characterized by snow-covered winters and appearing meltwater streams in
summer (7b) along with varying elevations. In general, the AWS and the mean were relatively in
synchrony, but it changed with the seasons. Mostly in spring as well as in autumn, the mean was
slightly higher than the AWS. This ratio switched to the opposite in summer when the station’s
location showed a slightly higher value. Until June, the disparity between the AWS location and
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the mean was mostly between 0,2 and 0,3 with 2014 and 2019 differing (latter around 0,5). The
standard deviation in spring occurred to be the lowest compared to the rest of the year. The rate of
Paws agreed with the course of the maximal negative standard deviation of the mean. The highest
standard deviation was seen when the melt season started. p4y,¢ and g slightly drifted apart and
showed disagreements of up to 1,2 (summer 2019). The images showed meltwater streams, that
initially were covered by a layer of snow, followed by the revelation of the darker ice underneath.
The ice might contain impurities like dust or algae which could be an explanation for the pattern
shown in figure 7b. When more of the snow was melted, the disparity became smaller again, In
contrast, summer 2017 showed a surprisingly high deviation for that time of the year. In Septem-
ber, when the colder temperatures returned, the mean showed a higher value than the AWS pixel’s
reflectance for all years but 2018. The standard deviation increased again. 2020 showed an overall
stable course throughout the year, with barely any large differences but it must be considered that

there were less useful images, due to clouds, especially in summer.

JAR 2 showed a general pattern of a slightly higher reflectance at the AWS’ pixel in spring, that
turned into a lower reflectance when the snow melt started, before returning to its previous state.
The individual years demonstrated different performances of that pattern, some stronger while
others revealed the disparity barely. The higher value in spring remained in a scope of maximum
+0,02 while the differences in summer were spotted to be not larger than -0,05. In some summers,

ponds of meltwater were seen close to Amopis (figure 7¢).
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Figure 7. Seasonal occurrences at the sites of QAS U, JAR and JAR 2 (Landsat 8 TOA, USGS/Google)
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KAN L is the one out of the three KAN weather stations that is the closest to the coast. This was
represented in the variability of the results. In general, a slightly larger standard deviation in com-
parison to the other two stations was seen, especially in autumn and early spring. A possible reason
might be differences in elevations, as a result some areas took longer to be snow-free. The station
did not show any extraordinary occurrences nearby but the surface it is placed on is very hetero-
geneous ice. When some spots were covered in snow in autumn, the contrast between circum-
stances at the different altitudes was even larger. It resulted in a high standard deviation. In general,
it was doubtful to say the location showed a certain pattern. 2014 and 2019 showed the AWS
having a higher value than the mean in summer, while 2015 and 2017 showed a lower value. 2016

and 2018 revealed the AWS to be very representative and accurate in summer.

KAN M showed a relative representativity of the surface reflectance throughout the year. In the
years 2013, 2019 and 2020, p 45 and p corresponded almost perfectly with a few exceptions. The
other years showed larger differences between the two variables, especially 2014 and 2018, latter
with a standard deviation of up to 0,07 in August. When considering the station’s location, shown
in figure 8, the representativity of the surface reflectance can be identified as restricted to the 1km?
polygon in this analysis because a larger scale would result in a significantly change of surface
and reflectance. Lakes that appeared a few kilometres away from the station in summer would

influence the analysis.

Map data €2021  1kmb— 3

Figurc 8. The location of KAN M weather station on June 17" 2019 (Landsat 8 TOA, USGS/Google)
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Furthermore, in late August 2019 and late July 2020, cre-
vasses were spotted close to the weather station (figure 9),
however outside of the observed polygon. Therefore, they are

not included in this analysis.

© ' The automated weather station KPC U is generally a stable
weather station site. It is situated in Northern Greenland, on a
slope on ice, close to the edge of the ice sheet. In winter, the

Mepdsia@2021 1kmi————  representativity was high in all years because of a homoge-
Figure 9. Crevasses showing up close

to KAN M station in August 2019

nous snow cover. With rising temperatures in summer, the
snow melted and the images revealed multiple meltwater
streams (figure 10). Those, as well as areas of snow saturated with water brought fluctuations in
the ratio and standard deviation throughout summer. 2015 and 2019 were affected the most by

these occurrences and showed the highest deviations.

Map data ©2021 1km b1

3]
KULU is only a few kilometres away from the ice sheet margin. In the analysis, it demonstrated a
very stable state of representativity at the AWS’ location throughout the year with small deviations
in the summer months. It showed the pattern to slightly overestimate the mean at the station’s
location in early summer, what then changed into a slight underestimation in late summer when
the snow was melted. This was a result of topographically height differences and snow accumu-

lating at the lower parts (figure 11a). At the start of the melt season, the station’s location was

covered in snow before it became snow-free as well, while small parts within the polygon still
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showed snow-cover. Some years demonstrated this pattern stronger than others. 2015 did not show

the p ws lying below p , while 2020 showed the opposite.

NUK L is located on a glacier tongue (figure 11b). The observations showed a constant small
standard deviation from the mean for all years with a median of 0,046. Most often, p s dealt
with slightly smaller rates than p in spring and autumn. In summer, the exact period depending
on the year’s climate circumstances, the two rates happened to be very close to each other stating
a higher representativity. 2018 was an exception with p4y,s being at a lower rate in summer as
well. 2015 also showed a disagreement with the pattern: in spring the AWS’ location was reflecting
more than the mean. In February and November, an increased standard deviation was noticed,

caused by shadows of the mountains situated next to the station.

NUK N showed a varying surface reflectance in the course of a year. During melt season, the
reflectance decreased enormously. Being located at the edge of the ice sheet, the station is highly
affected by the changing seasons. Located on a heterogenous surface with different elevation, as
can be seen in figure 11c, the surface had changing local conditions and therefore displayed a
constant slight standard deviation within the polygon. In most years, the value at the AWS met the
mean of Amoprs during winter seasons which resulted in a high representativity of the station. 2018
showed slight variances. When melt season started, all years indicated the same systematic change.
The melt season mostly started in the beginning of July and ended in September or October. In
2018 it was significantly shorter, whereas in 2019 it started earlier. The snow started melting and
the underneath appearing ice revealed a much smaller reflectance. The station seems to be located
on an elevation that was snow-free ahead of its close surrounding. The standard deviation within
Apopis increased during that time compared to the colder months. Snow events brought individual
peaks during the melting season. Also, right next to the ice sheet, lakes of meltwater formed (Fig-

ure 11¢).
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Figure 11. Seasonal occurrences at the sites of KAN L, KULU and NUK L (Landsat 8 TOA, USGS/Google)

NUK U resulted in a high representativity during the colder month with a synchrony of the AWS
location and the mean, only showing small deviations within the MODIS area. However, in the
summer months, the deviation within Amopis increased for the reason that the first snow melted,
and lakes appeared (figure 13a). These have a lower reflectance due to a darker surface. Especially
2014, 2015, 2016 and 2019 revealed large distinctions between pwsto p as well as within
Awmoprs, the standard deviation reaching from 0,09 to 0,17. 2018 as a cold year showed its maxi-
mum deviation in summer with 0,06. Individual snow events displayed in form of onetime peaks

in the graph.

QAS A did not show a recurring pattern over the years. It is located on the ice sheet in the South
of Greenland. All years showed a representative trend for spring and autumn when the ice sheet
was snow-covered. In summer, the individual graphs differed in their behaviour. In 2015 for ex-
ample, paws Was constantly representative for Amopis. The reflectance barely decreased during
year. When examining the satellite images, it was noticed that the area was still covered in snow
in August 2018 (figure 12a). It did not melt completely like it did in other years. In 2016, a larger
deviation was noticed when the melt period started. The reflectance decreased and variations in
the ratio between p 45 and p appeared. Figure 12b explains that it was caused by the snow being
partly ablated. At that point, the location of the AWS was snow-covered and showed a higher
reflectance than the mean, which included dark areas as well. Shortly afterwards, it shifted to p4ys
being below the mean. The same phenomenon was spotted in 2019 (figure 12¢). When the snow
melt was further in progress, most of the snow was melted, resulting in the appearance of bare ice
with a limited number of snow spots. The ice underneath showed a darker ground at the AWS’

location. This could be caused by a depression with impurities like dust or soot.
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The station showed a pattern of a differing summer, nevertheless, could not be resulted in a clear
recurring pattern because the individual years showed overestimations, underestimations as well
as a representativity at the AWS’s location compared to the mean of the polygon, depending on

how much of the snow-cover melted.
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Figure 12. Differences in mell season at QAS A station for 2015, 2016 and 2019 (Landsat 8 TOA, USGS/Google)

At QAS L, the value of the AWS pixel often lay below the mean of the polygon but represented it
well during the summertime when the snow had already melted. Larger differences were found
outside of the melting season because of a varying combination of snow, ice and rock surface
(figure 13b). The station site seemed to be situated at a topographically low, close to a slope which
contained a thicker snowpack that formed the end of the ice range before it switches to coastal
rocks. This explained the lower rate of p4y/s. Because of the location so close to the coast as well
as in the South of the country, the melting season started rather early. 2014 revealed a relatively

good representativity throughout the whole year.

The representativity of SCO L was relatively accurate. With small deviations, the graphs of paws
and p were found to run very close to each other. In spring, paws showed a slightly higher rate in
most years, followed by a lower rate in summer. The years 2015 and 2019 made exceptions. 2015
constantly showcased p s below the mean while 2019 displayed an accordance of the values in
spring. The variations throughout the year were caused by the uneven surface of the glacier the
AWS is sitting on. Shadows increased the standard deviation in the beginning and ending of the
year. With the location being on a glacier tongue (figure 13c), the representativity is very local and

not for a broader area since it is bordered by mountains.
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Figure 13. Seasonal occurrences at the sites of NUK U, QAS L and SCO L (Landsat 8 TOA, USGS/Google)

Generally, the analysis of SCO U showed the AWS pixel being slightly under the mean most of
the time. When analysing the images, the station was found in the middle of a glacier tongue
(figure 14a) just like SCO U, characterized by rills due to melting and refreezing in the different
seasons. Topographically, those grooves are lower and therefore reflect less. The AWS is seemed
to be located in one of those. Sometimes, the station was covered by the shadow of the mountains
nearby, which displays an important consideration when measuring the reflectance. It showed in
the beginning and end of the graphs by displaying sudden lower values, or a high deviation when
only part of the polygon was shadowed. Just like SCO L, the AWS sitting on a glacier tongue

limits the representativity, so it is not accurate for a broader area.

The site at Swiss Camp appeared to be characterized by lakes showing in summer, which are cov-
ered by snow in winter. For all years, the reflectance varied a lot in the course of a year. The lakes
appeared in summer when the snow started melting, however, right outside of Amopis (figure 14b).
Therefore, the decreasing standard deviation during the melt season as well as p 45 and p drifting
apart is caused by differences in surface elevation and not by the lakes. Further into the melt sea-
son, the accordance of p4y s and p decreased. The analysis showed a very representative result
for the rest of the year. When the lakes occurred, they were encircled by the still snow-covered

ice. An analysis on a larger scale would therefore result in significantly higher deviations.

TAS A was representative for its surrounding area in some years while in other years, the summer
indicated a slight deviation when the ice sheet is partly covered in snow and partly snow-free
(figure 14c). Most of the time, the AWS was in a darker snow-free spot and therefore measured a

slightly smaller reflectance compared to the mean, reaching from a difference of 0,14 in 2019 to
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over 0,2 in 2018. Some years showed this effect stronger than others, while 2014, 2015 and 2020
barely had any deviation within Amobis. p4ws and p aligned almost perfectly. The AWS is located
at the edge of the ice sheet on a surface with small height variations. When analysing the images,
the differences in the behaviour were always caused by the snow distribution within the polygon.
The years without noticeable deviations did not show any images where Amopis was half covered

in snow. Either the snow cover or the ice dominated.
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Figure 14. Seasonal occurrences at the sites of SCO U, Swiss Camp and TAS A (Landsat 8 TOA, USGS/Google)

TAS U barely showed any deviations. The years (2013), 2016, 2018 and 2020 proved a significant
representativity. In some years however, especially in 2017 and 2019, p,ys demonstrated a
slightly higher rate than the mean § caused by the snow melt. The maximum variation between
the two was 0,07 in June 2019. Mostly however, it was a homogenous surface and all values within

the polygon were very similar.

THU L is situated close to the Western end of the ice sheet. Apart from summer, the representa-
tivity of the station was quite accurate for all years. During that time, it was snow-covered and
therefore presented a homogenous surface. The location seemed to be influenced by topograph-
ically altitude differences and gradients. Over the seasons, certain areas were conspicuous because
they constantly were the first to be snow-free (see figure 15b). This occurred in several images,
causing higher deviations. On the images, those areas showed a certain pattern on the ice surface.
It might indicate sub-surface meltwater streams or a band of either flatter and smoother ice where
less snow accumulates in winter due to winds, or a band of darker ice that, when the snowpack
becomes thin enough, decreases the albedo and causes the snow to melt faster. It caused large
shifts in the summer month because of the varying surface brightness. Each pixel exhibited a dif-
ferent reflectance. Especially in the beginning of summer, the disagreements of p, s and o was
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high, when only part of the area’s snow was melted. Therefore, some sections had a high reflec-
tivity while others presented a darker surface of ice undemeath. Darker parts of the ice could also
include impurities like mineral or dust that were moved into depressions by meltwater. At the start
of the melt season, some years exhibited a slight overestimation at the station’s pixel compared to
the mean because other parts within the polygon were snow-free before the station’s location.
However, some years demonstrated this occurrence while others did not. Because THU L is lo-
cated right at the edge of the ice sheet, the representativity only speaks for the local area within

Awmopis. A wider radius would include darker reflecting tundra.

THU U showed to be representative for the area in spring and autumn. The standard deviation was
minor while p 4 and p ran very accurate. From June, the latest July, on, summer rates decreased
while showing a separation of the values because snow ablation began. The AWS is right at the
margin of the ice sheet, not far from the coast. Influenced by that, many images revealed Amopis
partly covered in snow while a large part was already snow-free. This resulted in deviant values
in several years, especially 2014, 2016, 2017, 2019 and 2020. The location of the AWS was cov-
ered in snow for longer than its surroundings in most years and therefore p 4y s was at a higher rate
than the mean. 2018 was a rather cold year, a large deviation was not seen. Another reason for that
might be that images in the beginning of August, when other years indicated a lower representa-
tivity, were too cloudy to process. For that reason, it cannot confidently be said that 2018 did not
show the same pattern as the other years. 2015 also did not show the large deviation in summer.
The analysis of the images revealed a very fast melting. It therefore shifted from one representative
state (fully covered in snow) to another (snow-free darker ice). As can be seen in figure 15¢, THU

U is covered in snow for longer than THU L.
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a) TAS U, June 16™ 2019 b) THU L, August 9" 2020 ¢) THU U, August 9™ 2020

Figure 15. Seasonal occurrences at the sites of TAS U, THU L and THU L (Landsat 8 TOA, USGS/Google)
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Category B — large deviations

This category represents weather stations with a RMSD > 0,005. They are characterized by large
deviations between p s and p . An example for it is NUK K. Figure 16 illustrates the processed
surface reflectance for NUK K weather station from the years 2013 to 2020. The year 2013 only
had a very limited number of images which is why no significant connections between the different
dates were made and the standard deviation is displayed differently. NUK K has a unique location
on a small glacier on top of a mountain in the coastal area surrounded by fjords (figure 17a).
Because of this varying region, the reflectance fluctuated a lot. In early spring and late autumn,
the mountain was covered in snow which brought a more homogenous surface. However, because
of the low solar altitude, shadows of surrounding mountains fell onto the station’s position, which
caused a high deviation in contrast to the snow-covered surroundings. It resulted in p,y s lying
below p in winter, In spring, most values did not show the reflectance of the surface but a cloud
that was located on top of the mountain but nowhere around it. This was a repeatedly occurring
event in several images. In late spring and early summer, the snow started melting and increased
the difference between the two components enormously. The glacial ice has a colder surface than
rocks, which caused the snow around to melit earlier than on the ice. Therefore, p,ys was much
higher reflecting than the mean when the melt season started. Once the snow was melted, the
differences decreased as ice surface is much darker than snow, however, still brighter than rock.
All years showed the same pattern over the year. 2019, which was a very warm year, showed the

smallest standard deviation within Amopis.

MIT station is located on a surface of ice on top of a mountain on an island, separated from the ice
sheet. It is surrounded by tundra (figure 17b) on a smaller scale and certainly by water on a bigger
scale. In the analysis, it displayed a similar pattern within the years, depending on if it was a rather
warm or cold year. In summer, when the snow melted, the deviation was increasing. The AWS
pixel constantly displayed a higher value than the mean because the AWS is located at a point that
is steadily covered in snow when the season is changing from spring to summer. As exceptions, in
2014 and 2017, p 45 Were representative for the MODIS area in summer, while 2016 had a slight
underestimation at the station’s spot when comparing p4ws to p . In late summer, when the AWS

location was snow-free as well, the difference decreased again.
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Figure 16. Panchromatic reflectance at NUK K weather station for the years 2013-2020

The individual years all behaved similar at 74S L site. In spring, p 45 Was slightly below p~ with
only small deviation, resulting in being relatively representative. With the start of the melt season,
the two values drifted apart. The deviation increased significantly with p repeatedly laying outside
of the standard deviation range because it was reflecting much less. The reason for this behaviour
was the surface partly being covered in snow while other parts were already melted and the bare

ice appeared (figure 17c). Around August, slightly differing between the individual years, p4ps

32



and p settled down at a lower rate now that the ice was snow-free. The representativity was given

again, just before the surface reflectance increased towards winter.
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Figure 17. Seasonal occurrences at the sites of NUK K, MIT and TAS L (Landsat 8 TOA, USGS/Google)

3.2. Accuracy of albedo proxy

This analysis was done to support the assertions from the previous analysis as well as compare the
automates weather station data to a MODIS albedo product. The following results represent one

representative site (CEN) and one site showing a recurring pattern with large deviations (NUK K).

Representative site

For CEN weather station, data was available from mid-2017 on. The station’s albedo a4y is
represented by dark yellow triangles in the graph (figure 18). The albedo data of MODIS ap0p;s
is represented by green star-symbols. The data was available for all observed years. The compari-
son showed apop;s to be very stable throughout the years, just like expected. It was the same
behaviour as the Landsat 8 analysis in 3./. revealed for CEN. apop;s showed less fluctuations
than the band 8 reflectance values, probably caused by MODIS’ larger footprint. That the different
parameters do not match in values was to be expected because they are different products. They
should however show the same trend as they all depend on the surface reflectance. The weather
station did not run as accurate, but also had less data to compare. Still, especially in 2020 and 2019,
expect for the two outliers in the beginning, a,;,, s demonstrated the same trend as the satellite data.
2017 and 2018 did not have many records but the ones available supported the assumption. The

values of apop;s and a,ws lay close to each other, always below the Landsat data.
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Figure 18. Comparison of Landsat 8 analysis, AWS data and MODIS albedo product for CEN

Varying site
Figure 19 shows the comparison of different albedo data products of NUK K. Except for 2013,
each year can be compared. AWS data was available from mid-2014 and MODIS albedo data for

all years. 2013 only had very few data points but the available records agreed immensely to the
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course of ayopis and p . apygp;s followed the trend of the decreasing values during the melt season
for all years. Some individual data points, like June 2017, were slightly off but that was rarely
seen. As displayed in figure 19, apop;s followed the movement of p, while the weather station
data followed p 45 very well. Especially 2014, 2016, 2018, and with a few exceptions 2019, dis-
played a high agreement between the two variables. In 2020, they demonstrated the same trend,
but the weather station data was smaller in value than p 4. 2017 showed a few outliers in August,
so did 2015 in April.
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Figure 19. Comparison of Landsat 8 analysis, AWS data and MODIS albedo product for NUK K
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4. Discussion

Several papers have discussed the albedo variability of the Greenland ice sheet, especially with
regard to the melt season (Beggild et al., 2010; Moustafa et al., 2017). For homogenous surfaces,
studies declare remote sensing products to operate well (Ryan et al., 2017). It also implies that in
situ and MODIS albedo data perform similar under those conditions (Moustafa et al., 2017). For
non-homogenous surfaces, this is not the case. To compare automated weather station data and
remote sensing products, single ‘point-to-pixel’ methods alone can be insufficient in characteriz-
ing and validating the variation of surface albedo. As Moustafa (2017) stresses, high-resolution
imagery is needed to resolve high sub-pixel variability in the ablation zone, and therefore, further
improve the characterization of Greenland's surface albedo. This is what this study aimed for. By
examining the spatial differences around each weather station over time, using high-resolution
imagery, local variability was revealed that gave important prospect for the representativity of an
AWS location compared to the nearby area, which then again can be adjusted for ‘point-to-pixel’

comparisons.

When evaluating the previous presented results, 40% of the
automated weather stations proved to be significantly rep-
resentative for their location with a RMSD below 0,001.
Meaning that not only the AWS data provided a decent de-
scription of the site but also that MODIS products will as- .
sess a similar albedo for the area. When considering the lo- .
cation of the representative stations (figure 20), the hypoth- +

esis that locations further inwards on the ice sheet are more

stable as well as the ones further North can be confirmed.

It is caused by the more stable climate in the accumulation :; = :
zone compared to the ablation zone. The inner ice sheet pre- o i

sents higher elevations, is less influenced by the marine cli-

mate and therefore offers colder and steadier temperatures. : :; : ::;::::?;::,:mw

. ESRI, FAG, NOAA'
® B - large deviations

Furthermore, the ice sheet’s high reflectance of solar radi- _
Figure 20. The location of AWS grouped

ation brings additional cooling (Kump et al.,, 2014). Each . Fepresentativity categories
station at an altitude above 1500m showed to be highly representative. This report supports the
statement by Ryan et al. (2017) that homogenous surfaces bring a higher spatial as well as temporal

representativity at the AWS location, especially with the respect to seasonal variability.
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As mentioned, predominantly stations further inwards on the ice sheet, that do not experience
strong melting in summer, showed the highest representativity. But also stations located at the
margin like UPE L indicated a high representativity in the analysis when they shift from snow-
covered to snow-free surface was relatively rapid. UPE L, located at a height of 220m, is situated
in the ablation zone but the representativity over the year dominated over the small variations
during melt season. The albedo data of Al weather stations can confidently be used without ad-
justments.

The ice underneath is darker than fresh or old snow which concludes in a lower albedo. However,
AWS can still be representative when the surface is homogenous. This assumes that there is a
consistent surface undemeath and no unregular pattern of less reflecting impurities like mineral
dust, soot or ice algae within the ice. Ice darkens with increasing impurities. When the location
demonstrates a varying surface and experiences snow melt on a degree that at least parts of the
surface become snow-free, a deviation can be expected. It is caused by the darker reflecting ice,
tundra or other phenomena that occur once the snow melts. Potentially some patches of old snow
survive that show brighter reflectance in analysed images.

Depending on the location of the AWS, higher or lower rates, compared to the mean, arose for the
period of the melt season due to those occurrences. The positions where snow melts first, and
where the snow may survive longer, depend on the exposure to sunlight and snow depth. In topo-
graphic lows, the snow is usually thick because of an accumulation by wind and its potential loca-
tion in the shade for part of the day. On hills, the thin snowpack is exposed to more sun and melts
faster. Previous mentioned impurities are moved by the meltwater, which rinses off ice bumps and
accumulates impurities in depressions. In these cases, the location’s reflectance has a strong sea-
sonal dependence. The stations are mainly representative during the winter months while in sum-
mer, variations must be considered when working with the albedo data.

In the case of an automated weather station positioned right next to tundra or on a mountain peak,
like it is the case at NUK K, it is difficult to get an impression of the surrounding’s albedo. It
should be seen as a limited albedo representing a very restricted area. In this case, dominantly
arising for category B, it needs to be considered whether the AWS albedo product proves as useful
for planned investigations. The ratio between p 4,5 and p must be observed when working with
the station. The four largely varying stations in category B are all situated in Southern Greenland,
which supports the assumption about a generally higher chance of representativity when moving

northward.
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Considering the outcomes of this study, they correspond to the findings observed in Ryan et al.
(2017). A comparison of three weather stations in the K transect (KAN L, KAN M and KAN U)
showed an annual bias between MODIS and in situ observations in their study. The deviation
decreased with moving towards the centre of the ice sheet. This paper’s results observed the same
variability, with KAN L showing the highest annual deviation out of the three, placed in category
A2. Ryan et al. proved that variability is changing during summertime, melting of the snow in-
creasing the deviation between the location of the AWS and the surroundings. Their paper con-
cluding similar results for these three stations, obtained with other methods and data, supports the
confidence of this study. Ryan’s comparison of AWS and MODIS data performed similar to the
approach of a high-resolution imagery method used in this study.

With an evaluation of each individual weather station, showing the exact seasonal course for each
of the past 8 years, a lot of valuable information about the location’s local conditions is given. The
images help to understand why we see these variations and what the occurrence of certain events
means for albedo reflectance.

It is important to be cautious that the results of this study might be affected by the manually deter-
mined MODIS pixels, where subsequently manual sorting had to be performed, as well as by the
simplicity of the applied cloud mask. Future development may include the exact coordinates of
the MODIS grid and a more precise cloud mask. The comparison between high resolution, AWS
and MODIS data can be continued in further research to build up confidence in the results and
discover further outcomes. Additional data, with regards to the stations that were poorly covered
by the processed Landsat 8 data, can be included. This study revealed a few locations showing
occurrences, lakes for instance, just next to the examined Amopis, which therefore were not in-
cluded in the analysis. With that in mind, a study with an extended investigating area could find
great interest. Furthermore, each season can be observed individually to discover more details
about recurring patterns. Establishing corresponding adjustment coefficients for weather stations
form additional potential benefit for the future.

Albedo measurements carried out by weather stations are often considered as ground truth. This
report’s analysis discovered whether an automated weather station‘s albedo can confidently be
used because it is representative for the area, or whether it has to be adjusted. The study proposes
a simple derivation for a representativity analysis. In a defined arca of the surrounding region,
representing a 1km? resolution MODIS pixel, the stations can now be classified on their repre-
sentativity in terms of albedo reflectance. Furthermore, it eases comparisons between different
albedo products, whether they are satellite-retrieved or stationary origin. The analysis in 3.2. sup-

ports the confidence of the study. The MODIS albedo showed a behaviour similar to the mean of
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the Landsat 8 data ( p ) while the AWS’ albedo ran close to Landsat’s p 4y 5. Ithelped to understand
that the in 3./. received ratio was truthful and functioning as a proxy. However, when a precise
representation of the area is wanted, the standard deviation needs to be considered to know if the
mean is simply the average of the area or a representative of what is seen in the region. The stand-
ard deviation explains whether p4 s and p are truly corresponding or only accidently happen to
meet. The strength of this report is the broad application on 40 weather stations situated in Green-
land, which helps future research studies to justify a weather station’s performance in terms of

albedo and better classify their approaches into context.
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5. Conclusion

The albedo representativity of automated weather stations in Greenland is strongly dependent on
the characteristics of its surroundings. Particularly during the melt season, large shifts can occur.
To confidently use the AWS data in scientific research, an evaluation of the albedo data is neces-
sary to know if it is sufficient to represent the area. It is an important advantage for research on
the Greenlandic ice sheet, as the investigation is mainly realized by remote sensing. Remote sens-
ing products cannot simply be compared to AWS data when inconvenient circumstances are given.
While homogenous surfaces create a high representativity, AWS locations featuring lakes, cre-
vasses or ice impurities, as well as those situated close to tundra or rock, demonstrate a hetero-
genous surface and therefore variations in albedo. For those stations, the data is to be used with
caution. The increasing global warming causes longer melting periods and therefore an extended
time of darker incidents being revealed instead of being covered under a homogenous snowpack.
Generally, it is concluded that weather stations on high elevations (>1500m) are very likely to
represent the albedo of the region well. Stations at a lower altitude and closer to the coast must be
treated individually depending on local occurrences.

The graphs created within this research help to precisely detect variations throughout the year
while the satellite imagery reveals which events occur in the environment of a station. Based on
this report, future studies can rely on individual adjustment information for each of the 40 weather
stations. This research leads to a more secured evaluation of AWS albedo data to improve further
examinations of the Greenland ice sheet. To have all stations confidently covered without gaps,

further research is firmly encouraged.
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Appendices

Appendix A

The table below displays the Root Mean Square Deviation between p 435 and g for the 40 inves-

tigated automated weather stations in Greenland.

AWS RMSD AWS RMSD
CEN 0,00055 NUK K 0,0151
CP1/CP2 0,0005 NUK L 0,00348
DYE 2 0,00079 NUK N 0,0025
FA 0,0002 NUK U 0,00329
GITS 0,00018 0AS A 0,00212

Humboldt 0,00066 QAS L 0,003
JAR 0,00313 QA4S U 0,00146
JAR 2 0,00148 SCOL 0,00196
KAN B 0,00549 SCOU 0,0018 ]
KANL 0,00241 South Dome 0,00046
KANM 0,0016 Swiss Camp 0,00145
KANU 0,00071 TAS A 0,00344
KAR 0,00027 TASL 0,0081
KPCL 0,00081 TAS U 0,00227
KPCU ) 0,00044 THUL 0,00273
KULU 0,00238 THU U 0,00269 ]
MIT 0,0054 TUNU N 0,00044
NASAE 0,00034 UPE L 0,00097
NASASE 0,00097 UPEU 0,00099
NASA U 0,00051
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Appendix B

Appendix B contains graphs for the representativity of the weather stations that were not illustrated
in the main report. It displays data of the panchromatic band of Landsat 8. The reflectance at the
weather station’s location (p4ys) is shown in blue, the mean of the surrounding pixel’s data (5 )
is illustrated in orange. The standard deviation within the area is demonstrated by the orange-

shaded section.
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