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Nature aims to remain a mystery.

La Natura mira a rimanere un mistero.
(Eraclito)





Sommario

L’osservazione dell’Universo su grande scala mostra che la materia forma un
sistema complesso, spesso chiamato ragnatela cosmica (cosmic web),
contenente strutture disomogenee, come ammassi, strutture planari e
filamentari, circondate da grandi vuoti. Lo stesso scenario emerge da
simulazioni cosmologiche della distribuzione di materia oscura.
Questo tipo di aggregazione è profondamente connesso con il processo di
formazione delle strutture, in cui le strutture cosmiche risultano dalla
crescita e successiva aggregazione di piccole fluttuazioni iniziali di densità
nell’Universo primordiale. Il processo di accrescimento comporta che la
materia collassi in strutture planari e filamentari e si aggreghi per formare
gli ammassi. Gli ammassi di galassie sono quindi collocati all’intersezione di
questi filamenti e la loro parte più interna tende alla fine a raggiungere
l’equilibrio dinamico.

Come risultato di questo collasso gravitazionale, chiamato aggregazione
gerarchica, gli ammassi di galassie, gli oggetti più grandi gravitazionalmente
legati che osserviamo, dovrebbero essere le strutture formatesi più di
recente nell’Universo. Anche per questo motivo sono uno strumento
fondamentale per la determinazione dei parametri cosmologici che
descrivono il contenuto di materia ed energia dell’Universo e per lo studio
del processo di formazione delle strutture.
In particolare, la determinazione della loro massa è un punto cruciale per
un ramo dell’astrofisica chiamato Cosmologia, che studia le proprietà
dell’Universo su grandissima scala, la sua nascita e la sua evoluzione.
La misura della massa di un ammasso di galassie può essere ottenuta in
diversi modi, che sfruttano la grande varietà di componenti contenute in
questi oggetti: galassie e quindi stelle, gas caldo di↵uso e materia oscura.
Tuttavia, ognuno di questi metodi si basa su forti assunzioni riguardo lo
stato dinamico o idrodinamico dell’ammasso (ad esempio equilibrio viriale o
equilibrio idrostatico), oppure sulla sua geometria, solitamente assunta
sferica.
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Lo scopo di questa Tesi è la descrizione di un nuovo metodo per la misura
della massa degli ammassi di galassie che utilizza unicamente informazioni
cinematiche di strutture al di fuori dell’ammasso, dove la materia non ha
ancora raggiunto l’equilibrio. Questo metodo parte dall’identificazione di
gruppi di galassie distribuite in strutture planari o filamentari ed arriva alla
massa dell’ammasso di galassie modellando quanto l’ammasso stesso
perturba il loro moto dal semplice flusso di Hubble (Hubble flow), ovvero la
loro partecipazione all’espansione dell’Universo. L’identificazione delle
strutture avviene nello spazio delle fasi, ovvero il piano formato dal raggio
proiettato sul piano del cielo e dalla velocità lungo la linea di vista delle
galassie nei dintorni dell’ammasso. Una volta trovata una sovradensità in
questo spazio, il modellamento del suo profilo di velocità si basa su di un
metodo Monte Carlo che richiede in input le coordinate in tale spazio delle
fasi delle galassie all’interno del filamento, e restuisce la massa
dell’ammasso e l’orientamento tridimensionale della struttura trovata.
Questo metodo non richiede l’analisi dinamica della regione virializzata
dell’ammasso e quindi non è basato su nessuna ipotesi sul suo stato
dinamico. Tuttavia nell’assunzione di un profilo di velocità radiale viene
implicitamente assunta la simmetria sferica dell’ammasso.

Il metodo è stato testato dapprima su simulazioni cosmologiche (capitolo 4)
e poi sull’ammasso di Coma, Abell 1656 (capitolo 5).
Per ogni oggetto analizzato sono state trovate diverse strutture, che danno
ognuna un risultato leggermente diverso per la massa dell’ammasso. Queste
di↵erenze sono state usate per provare a riprodurre l’orientamento e la
forma tridimensionale dell’ammasso, in quanto strutture situate lungo assi
diversi dell’oggetto centrale dovrebbero sentire un potenziale gravitazionale
di↵erente se l’ammasso non è sferico. Ad esempio, un filamento lungo l’asse
maggiore sente un potenziale più grande (ed uno posto lungo l’asse minore
più piccolo) di quello aspettato, e questo porta ad una sovra-stima (o
sotto-stima) della massa reale. Combinando le misure di massa restituite da
filamenti diversi si dovrebbe quindi poter dedurre la forma dell’ammasso,
ed in e↵etti sono state trovate delle prime indicazioni qualitative di questo
e↵etto (capitolo 6).
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Chapter 1

Introduction

The technological improvement occurred over the last century allowed us to
explore ever deeper the Universe and to study its large scale structure.
This led to the development of a branch of astrophysics called Cosmology,
whose main purpose is the study of the Universe as a whole and of the laws
that rule its origin, evolution and fate.

The first drive to the origin of the so-called modern Cosmology was the
discovery of the expansion of the Universe, made by Edwin P. Hubble in
1929. He observed that all the galaxies are receding from us and from each
other, so the light coming from a galaxy should arrive to us with a
wavelength larger than the one originally emitted. This yielded to the
definition of redshift, one of the most used quantities for the description of
the Universe. Hubble also discovered that a linear relation exists between
the distance of a galaxy and its receding velocity, the so-called Hubble law:

v = H
0

r,

where H
0

= 100h km/s/Mpc is defined Hubble constant and qualifies the
expansion rate of the Universe at the present time. Constraining the value
of H

0

(or h, the dimensionless form of the constant) is still an important
goal in Cosmology.

Another crucial point was made in 1964, when Arno Penzias and Robert
W. Wilson found an almost homogeneous radiation, later called Cosmic
Microwave Background (CMB), existing in every direction they looked.
This discovery gave a strong confirmation to the Big Bang model for the
origin of the Universe, and made Cosmology a growing field in modern
astrophysics.

1
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The CMB radiation has a thermal spectrum very close to an ideal black body
(see Fig. 1.1) and a measured temperature of T

0

= 2.72548± 0.00057 K [21].

Figure 1.1: The first published spectrum of the CMB as measured by the
COBE satellite in the direction of the North Galactic Pole. [38]

Another important property of the CMB radiation is its small temperature
anisotropy, usually expressed as:

�T

T
(✓,�) =

T (✓,�)� T
0

T
0

⇠ 10�5

which gives the temperature fluctuation as a fraction of the mean
temperature T

0

and as a function of angular position (✓, �) on the sky. The
high level of isotropy can provide important information on the origin,
nature and evolution of density fluctuations which are thought to give rise
to galaxies and large scale structures in the Universe.
In fact the CMB should originate in the early stages of the Universe, when
matter and radiation were a hot dense plasma in thermal equilibrium
thanks to the Thomson scatters between photons and electrons. With the
expansion of Universe the temperature decreased, as well as the degree of
ionization since atoms started forming, and the scatters became less and
less e↵ective, producing the so-called decoupling between matter and
radiation, which hereafter start a separate evolution.
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The CMB is the leftover radiation of this last scatter and should bear the
imprint of the physical processes happened both during and after its
production. In fact, the anisotropies observed in the CMB are thought to
be the signs of the primordial fluctuations that are the seeds of galaxies and
clusters.

The basic assumption on which Cosmology is grounded is the Cosmological
Principle, at first introduced by Albert Einstein in its Relativity Theory.
This “principle” states that at a given time there is a scale such that the
Universe is both homogeneous and isotropic. Homogeneity is the property
of being identical everywhere in space, while isotropy is the property of
looking the same in every direction. The Universe is not exactly
homogeneous, so this definition of homogeneity is meant in an average
sense: the Universe is taken to be identical in di↵erent places when one
looks at su�ciently large scales [14].
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1.1 Large scale Universe

Despite the assumption of the Cosmological Principle, the observation of
the large scale Universe shows that the matter distribution is far from
isotropic. Instead there is a large variety of structures, such as clusters,
sheets and filaments, as well as large void spaces (see Fig. 1.2).
This kind of inhomogeneities is seen on all scales studied so far, from
galaxies to galaxy clusters, and shows the tendency of matter to
concentrate from small to large scales, where “large” means scales larger
than that of a galaxy.

Figure 1.2: A slice of the Universe from the 2dF Galaxy Redshift Survey that
maps the distribution of galaxies within a section of the sky, by combining
redshift and angular position data. The figure shows the large scale structure
of the Universe, with its clusters, filaments and voids. [15]

Among these large scale features, galaxy clusters seem to be the largest
gravitationally bound structures in the Universe. The way galaxies cluster
is approximately hierarchical: many galaxies occur in pairs or small groups
which in turn are often clustered into larger associations [14]. This put
galaxy clusters at the end of the structure formation process as the last
structures forming, with great implications for their cosmological use.
In fact, this kind of objects has become an important tool for Cosmology, in
particular since they provide a way to estimate the total mass content in
the Universe, to constrain cosmological parameters and to explore the
process of structure formation that we will address in the following sections.
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1.2 Composition of the Universe

Several observational features, such as rotation curves and velocity
dispersion of galaxies, mass measurements of galaxy clusters or angular
fluctuations in the spectrum of the CMB, suggested that the matter
content of the Universe is mostly in a form invisible to us. The expression
Dark Matter was created in order to stress this property of such unknown
kind of matter. Moreover, the Universe seems to be formed for about the
73% by an unknown kind of energy, the so-called Dark Energy, that causes
today an acceleration in its expansion. Thus, what we see is just about the
4% of the actual mass-energy content of the Universe, made of baryonic
matter (usually including neutrinos) and radiation.
The origin of this composition is a very interesting theme in Cosmology.

The equations that govern the expansion of the Universe are derived by
introducing a metric, which describes the space-time, and by using the
formalism of General Relativity. Assuming homogeneity and isotropy, the
most general space-time metric describing a universe in which the
Cosmological Principle is obeyed is of the form of the
Friedmann-Robertson-Walker (FRW) metric that can be written as:

ds2 = �c2dt2 + a(t)2


dr2

1� kr2
+ r2(d✓2 + sin2✓ d�2)

�
,

where t is the proper time, r, ✓ and � are the spherical polar coordinates,
and k is a parameter describing the curvature of the spatial hyper-surface
and can take the values 0, corresponding to a flat space, 1, corresponding to
a closed space, with finite volume and no boundary, and �1, corresponding
to an open, infinite space. a(t) is called scale factor and it is related to the
redshift by:

1 + z =
a
0

a
,

where a
0

⌘ a(t
0

) is the scale factor at the present time.

We can also rewrite the Hubble constant in terms of this scale factor:

H
0

⌘ H(t
0

) ⌘ ȧ
0

a
0

,

which derives from the present time form of the more general Hubble
parameter

H(t) =
ȧ(t)

a(t)
.
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The observational value of the Hubble constant is H
0

' 70 km/s/Mpc [52].

The General Relativity applied to the FRW metric yields two fundamental
equations [10] called Friedmann equations:

ä = �4

3
⇡G

✓
⇢+

3p

c2

◆
a, (1.1)

ȧ2 + kc2 =
8

3
⇡G⇢a2, (1.2)

where ⇢ and p are respectively the total energy density and the pressure of
the Universe and the dot represents a derivative with respect to cosmological
proper time t.
The density in the Universe is due to matter (baryonic and not baryonic)
and radiation. In order to explain the present acceleration of the expansion
of the Universe, a fluid for which gravity is repulsive has been introduced as
one of the species in the present Universe (the mentioned dark energy). This
new component is associated to a non-null cosmological constant ⇤, whose
density is:

⇢
⇤

=
⇤

8⇡G
.

Hence, the total density can be written as the sum of all these components:

⇢ = ⇢m + ⇢rad + ⇢
⇤

.

Conventionally, the abundance of each density component i is expressed by
the dimensionless density parameter :

⌦i ⌘
⇢i
⇢c
,

where

⇢c ⌘
3H2

8⇡G
is called critical density and it is the energy density of a flat Universe
(k = 0).

With this notation the three component parameters become:

⌦m =
8⇡G⇢m
3H2

⌦rad =
8⇡G⇢rad
3H2

⌦
⇤

=
8⇡G⇢

⇤

3H2

=
⇤

3H2

,
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so, when inserting these parameters in equation (1.2), we obtain the total
density parameter as:

⌦ = ⌦m + ⌦rad + ⌦
⇤

=
8⇡G

3H2

(⇢m + ⇢rad + ⇢
⇤

) =
8⇡G

3H2

⇢ = 1 +
kc2

a2H2

which describes the curvature of the Universe.
In fact:

8
<

:

if ⌦ > 1 ! ⇢ > ⇢c ! k > 0 closed Universe
if ⌦ = 1 ! ⇢ = ⇢c ! k = 0 flat Universe
if ⌦ < 1 ! ⇢ < ⇢c ! k < 0 open Universe

The values for the density parameters obtained from observational
constraints are: 8

>><

>>:

⌦
⇤

' 0.73
⌦m,DM

' 0.23
⌦m, bar ' 0.04
⌦rad ' 10�5,

with ⌦m = ⌦m,DM

+ ⌦m, bar.
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1.3 Structure Formation

The scenario of large scale structure formation is believed to begin from
initial fluctuations in the density of any component of matter (dark matter,
baryons) and radiation that arise in the very early Universe. Those
fluctuations have grown through gravitational instability into the structures
we observe today with a process that is thought to be hierarchical: the first
perturbations to collapse are the smallest scale ones, and then the small
scale objects merge and form larger structures through a continuous
assembly mechanism.
The initial conditions depend on the adopted cosmological model of
structure formation. The main elements involved are the background
cosmology (a choice of the parameters ⌦m, H

0

and ⌦
⇤

), an initial
fluctuation spectrum, a statistical distribution of fluctuations (often
assumed to be Gaussian) and the proportion of particle species in the
Universe (hot or cold dark matter, baryonic).

Since the Universe seems to be dominated by non-baryonic material, the
dark matter component should drive the gravitational collapse and the
hierarchical accretion of smaller systems. The first stage of the dark matter
collapse is a sheet-like configuration, and subsequently the collapse
continues toward elongated filaments, which eventually produce compact
and virialized dark matter halos. The luminous matter follows the dark
matter, so galaxies and galaxy clusters form at the centres of the dark
matter haloes by cooling and condensation of baryons. This picture gives
rise to the present observations of the cosmic web.
This process requires that the main component of dark matter is the
so-called cold dark matter (CDM), made by particles that decouple while
they are no longer relativistic. In this case the minimum value of the mass
such that a perturbation can survive and grow is around
M ' 105 � 106 M�, since smaller fluctuations are destroyed by an e↵ect
called free streaming. This leads to the hierarchical scenario that is strongly
supported by several observations.
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1.4 Galaxy clusters

In this hierarchical scenario, galaxy clusters are the most recently formed
systems in the Universe, held together by their own gravity. Their masses
cover a range from roughly 1013 M� to over 1015 M�, and their spatial size
spreads over 1 � 3 Mpc. Dark matter represents ⇠ 80% of their total
matter content while the most massive visible component is in di↵use, hot
gas (15� 20%), with stars and galaxies making up only for a few percent of
the whole mass content of clusters (3� 5%).

The large dark matter halos surrounding galaxy clusters as a first
approximation can be described as spherical and isolated from their
surroundings and their properties can be studied by performing
high-resolution cosmological simulations. An important feature that
emerges is that these systems seem to achieve a final state of equilibrium,
displaying nearly universal density profiles. Julio Navarro, Carlos Frenk
and Simon White (NFW) found that the density profiles of halos in CDM
simulations can be fitted by the same formula, independently of their mass:
[43]

⇢(r) =
⇢s⇣

r
rs

⌘⇣
1 + r

rs

⌘
2

.

This relation is parametrized by a characteristic length rs, the scale radius,
at which the logarithmic slope of the profile is d ln ⇢/d ln r = �2, and the
scale density ⇢s = ⇢(rs). Within the scale radius, the DM density goes as
⇢ / r�1, while beyond it the radial behavior is ⇢ / r�3.

After the NFW work, several other functional forms have been proposed
that can fit better the halos of higher resolution numerical simulation, both
in the very inner and in the outer regions. The majority of these di↵erent
results can be summarized in a compact universal form, the generalized
NFW profile: [13]

⇢(r) =
⇢s⇣

r
rs

⌘↵ ⇣
1 + r

rs

⌘��↵
,

where the inner and the outer slopes, ↵ and �, are not universal, but represent
free parameters that can vary from halo to halo.
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1.5 Clusters and Cosmology

As we discussed, clusters of galaxies occupy a special place in the hierarchy
of cosmic structures. They arise from the collapse of initial perturbations
having a typical comoving scale of about 10h�1Mpc. According to the
standard model of cosmic structure formation, the Universe is dominated
by gravitational dynamics in the linear or weakly non–linear regime and on
scales larger than this. In this case, the description of cosmic structure
formation is relatively simple since gas dynamical e↵ects are thought to
play a minor role, while the dominating gravitational dynamics still
preserves memory of initial conditions. On smaller scales, instead, the
complex astrophysical processes, related to galaxy formation and evolution,
become relevant. Gas cooling, star formation, feedback from supernovae
(SN) and active galactic nuclei (AGN) significantly change the evolution of
cosmic baryons and, therefore, the observational properties of the
structures. Since clusters of galaxies mark the transition between these two
regimes, they have been studied for decades both as cosmological tools and
as astrophysical laboratories [7].
Constraints of cosmological parameters using galaxy clusters have been
placed so far by applying di↵erent methods:

• the mass function of nearby galaxy clusters provides constraints on the
amplitude of the power spectrum at the cluster scale. At the same
time, its evolution provides constraints on the linear growth rate of
density perturbations, which translates into dynamical constraints on
the matter and dark energy density parameters; [46]

• the clustering properties (correlation function and power spectrum) of
the large scale distribution of galaxy clusters provide direct
information on the shape and amplitude of the underlying dark
matter distribution power spectrum. Furthermore, the evolution of
these clustering properties is again sensitive to the value of the
density parameters through the linear growth rate of perturbations;
[8] [42]

• the mass-to-light ratio (M/L) in the optical band can be used to
estimate the matter density parameter, ⌦m, once the mean luminosity
density of the Universe is known and under the assumption that mass
traces light with the same e�ciency both inside and outside clusters;
[25]

• the baryon fraction in nearby clusters provides constraints on the
matter density parameter, once the cosmic baryon density parameter
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is known, under the assumption that clusters are fair containers of
baryons [56]. Furthermore, the baryon fraction of distant clusters
provides a geometrical constraint on the dark energy content and
equation of state, under the additional assumption that the baryon
fraction within clusters does not evolve. [18]

The mass function at redshift z, n(M, z), is defined as the number density
of virialized halos found at that redshift with mass in the range [M,M +
dM ]. The original derivation of the mass function expression was deduced
by William H. Press and Paul Schechter [45] and is based on the assumption
that the fraction of matter ending up in objects of a given mass M can be
found by looking at the portion of the initial density field, smoothed on the
mass–scale M , lying at an overdensity exceeding a given critical threshold
value, �c. Under the assumption of Gaussian perturbations, the probability
for the linearly–evolved smoothed field �M to exceed at redshift z the critical
density contrast �c is:

p>�c(M, z) =
1p

2⇡�M(z)

Z 1

�c

exp

✓
� �2M
2�2

M(z)

◆
d�M .

From this expression, the number density can be obtained by:

dn(M, z)

dM
=

2

VM

@p>�c(M, z)

@M
=

r
2

⇡

⇢

M2

����
d log�M(z)

d logM

���� exp
✓
� �2c
2�2

M(z)

◆
,

where the factor 2 is a correction in order to recover the whole mass content
of the Universe if we take the limit of arbitrarily small limiting mass.
In this expression, cosmological parameters enter through the mass variance
�M , which depends on the power spectrum and on the cosmological density
parameters, through ⇢ = ⌦m⇢c, through the linear perturbation growth
factor, and, to a lesser degree, through the critical density contrast �c. The
mass function shape is dominated by the exponential tail so that it
becomes exponentially sensitive to the choice of the cosmological
parameters allowing to place tight constraints on them.
In order to pursue this analysis, we need a sample of galaxy clusters and a
method to estimate their mass. We will widely discuss this last point in the
next chapters. Concerning the identification of clusters, one of the most
used way is through their X-ray emission. First of all, the X-ray selection
has the advantage of revealing physically bound systems, because di↵use
emission from a hot intracluster medium is the direct manifestation of the
existence of a potential well within which the gas is in dynamical
equilibrium with the cool baryonic matter (galaxies) and the dark matter.
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Then, the X-ray luminosity is well correlated with the cluster mass and the
X-ray emissivity is proportional to the square of the gas density, hence the
cluster emission is more concentrated than the optical bidimensional galaxy
distribution. In combination with the relatively low surface density of
X-ray sources, this property makes clusters high contrast objects in the
X-ray sky, and alleviates problems due to projection e↵ects that a↵ect
optical selection. Another advantage of X-ray selection is the ability to
define flux-limited samples with well understood selection functions. This
leads to a simple evaluation of the survey volume and therefore to a
straightforward computation of space densities. [7]

Fig. 1.3 shows an example of mass functions of clusters at low and high
redshifts compared with predictions of a flat ⇤CDM model and an open
model without dark energy.

Figure 1.3: Measured mass functions of galaxy clusters at low (black) and
high (blue) redshift compared with a flat model with ⇤ (left panel) and with
an open model without ⇤ (right panel). [1]



Chapter 2

Mass estimation of galaxy
clusters

As said before, galaxy clusters have become an important tool for
Cosmology, in particular since they provide a way to estimate the total
mass content in the Universe, to constrain cosmological parameters and to
explore the process of structure formation.
The mass estimation of galaxy clusters is therefore a crucial point for
modern Cosmology, and can be obtained by several di↵erent techniques,
each one with its issues both theoretical and observational (first of all the
impossibility of a direct observation of dark matter that is the main
component of the matter content in a galaxy cluster).

Galaxy clusters are studied mainly in optical and X-ray bands, the first
because of their content of galaxies and thus stars, the latter because of the
di↵use hot gas that usually fills these structures. In addition, galaxy
clusters are responsible of an e↵ect predicted by Rashid Alievich Sunyaev
and Yakov Borisovich Zel’dovich in 1969, that is a perturbation of the
energy of the Cosmic Microwave Background photons when they undergo
Inverse Compton scattering with high energy cluster electrons. This allows
to study galaxy clusters also in microwaves and even to use these
observations to find new galaxy clusters.
From these observable quantities it is possible to obtain a lot of information
about the dynamics and the mass content of galaxy clusters.

13
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2.1 Mass from virial theorem

The simplest way to compute the total mass of a galaxy cluster is by using
the virial theorem, under the assumption of dealing with a virialized
structure, i.e. a system of gravitationally interacting particles that is stable
(in dynamical equilibrium). The scalar virial theorem can be expressed as
follows:

2T + U = 0,

where T is the kinetic energy and U the potential energy of the system, that
we can write for a uniform sphere of mass M and radius R [6] as:

T =
1

2

X

i

miv
2

i =
1

2
M

⌦
v2
↵

U = �3

5

GM2

R
,

whence:

2 · 1
2
M

⌦
v2
↵
=

3

5

GM2

R
�! M / R hv2i

G
.

Under the assumption of spherical symmetry of the system and of a Gaussian
velocity distribution, we can replace the mean squared velocity with the
velocity dispersion: ⌦

v2
↵
= 3�2

r

so:

M / R �2

r

G
.

The radial velocity dispersion of a galaxy distribution is due to the di↵erent
velocity that each galaxy in the cluster has, and can be obtained from the
width of spectral lines of the cluster.
The first to apply this method was Fritz Zwicky in 1933 who came to the
mass of the Coma cluster, observing only 8 galaxies [58].
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2.2 Mass from Jeans equation

From the collisionless Boltzmann equation, that describes the time and space
evolution of the distribution function of a system, we can obtain the spherical
Jeans equation [5]:

d(⇢�2

r)

dr
+ 2

�

r
⇢ �2

r = �⇢(r)
d�

dr
, (2.1)

where ⇢(r) is the number density of the particles in the system, �r is the radial
velocity dispersion, � is the gravitational potential and � is the anisotropy
parameter defined by:
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�
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r

(2.2)

that quantifies the system’s degree of radial anisotropy (�✓ and �� are the
longitudinal and azimuthal velocity dispersions, equal if there is spherical
symmetry).
Since we have

d�

dr
=

GM(r)

r2
, (2.3)

introducing equation (2.3) in (2.1) gives us:
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where M(r) is the mass responsible for the gravitational potential �, that is
the total mass of the cluster (including gas and dark matter).
Even in this case the assumptions to make in order to obtain the expression
for the mass and to assess the density profile and the radial velocity dispersion
are sphericity and equilibrium of the system.
There is also an issue in the estimation of the anisotropy parameter, since
� is allowed to be a free function of the radius, so a wide variety of mass
profiles are consistent with given dispersion and density profiles [6]. So to the
previous ones we have to add assumptions in order to characterize �.
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2.3 Mass from hot gas emission

Galaxy clusters are immersed in a hot gas halo, at a temperature of T ⇠
107 � 108 K. This gas emits by Bremsstrahlung in X-rays, providing a way
to actually discover a cluster and, from the obtained spectrum, to compute
its mass.
The assumption to do in this case is of hydrostatic equilibrium, that expresses
the balance between the pressure tendency to expand the gas and the gravity
tendency to collapse it:

dP

dr
= �GM(r)

r2
⇢ .

Moreover, for an ideal gas the state equation is

P =
⇢

µmH

kT

so:
dP

dr
=

k
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✓
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◆
.

Combining these two equations we can obtain:
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We can see how the dependence on the gas temperature is much stronger
than that on the gas density.
Anyhow we need to know T (r) and ⇢(r), that can be derived from X-ray
imaging data. The X-ray emission "X in each point in the cluster is in fact
sensitive to the number density n in that point. So azimuthally averaging
the X-ray emission it is possible to obtain the density profile of the gas.
In fact we have:

⌃X(b) =

Z
"X dl =

Z 1

b

ne ni ⇤(T )
2rdrp
r2 � b2

,

where b is the projected radius and ⇤(T ) is the cooling function.
This can be “Abel inverted” to obtain:

"X = � 1

2⇡r

d

dr

Z 1

r2

⌃X(b) db2p
b2 � r2

.
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Since the emissivity is given by "X / n2

e ⇤(t), knowing it we can come to
the density profile [17].

In Fig. 2.1 is shown the X-ray surface brightness for the galaxy cluster
Abell 2319 (Cygnus) whence we can find the density n.

Figure 2.1: (Left panel): Roentgen Satellite X-ray Image of Galaxy Cluster
Abell 2319. (Right panel): X-ray surface brightness as a function of the
distance from the cluster center (red points) with a so-called �-model to fit
the data (blue line). [12]

So the steps to arrive to the density profile are:

- choosing a center for the cluster;

- azimuthally averaging the X-ray emission (right panel of Fig. 2.1);

- fitting this emission to model the X-ray profile;

- calculating the implied density profile.

Then, to know T (r), it is necessary taking spectra from di↵erent locations in
the cluster (typically along rings around the cluster center) and looking at
the shapes of these spectra, as shown in Fig. 2.2.
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Figure 2.2: Rings around the center of the cluster (left) and corresponding
possible spectra (right) to infer the temperature profile. [12]

The spectral features, like lines and cut-o↵, are in fact sensitive to T .
If we have a gas with T ⇠ 107 K the Fe-L lines are particularly important
(red spectrum). Instead, for a gas at T ⇠ 108 K the continuum shape and the
Fe-K↵ line become more relevant (yellow spectrum). Even for this method
the main complication is its relying on the assumption of spherical symmetry.
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2.4 Mass from gravitational lensing

According to the weak equivalence principle from General Relativity theory,
if we look at the free fall motion of a body inside an enclosed room it’s not
possible to discern whether that body is under the influence of a
gravitational field or of an inertial force. This leads to the fact that a
gravitational potential is able to bend light.
Orest Chowlos and Albert Einstein predicted that if a background object is
directly aligned with a point source mass, the light rays will be deflected
into a ring (the so-called Einstein Ring). Then, Zwicky predicted that it
could be possible to study the mass distribution in clusters by studying
background galaxies that are lensed by the matter in the cluster. This
wasn’t observationally feasible until the mid-90’s, but it is now a well
known method to derive the mass of galaxy clusters.

Consider a photon moving past a point mass M . From classical Newtonian
Gravity the photon will undergo an acceleration perpendicular to the
direction of its motion:

dv?
dt

=
GM

r2
sin ✓ .

Integrating along the path we can find the deflection of the photon (Fig. 2.3):

v? =
GM

c

Z 1

�1

1

x2 + ⇠2
⇠

(x2 + ⇠2)1/2
dx =

GM

c
⇠

Z 1

�1
(x2 + ⇠2)�3/2 dx ,

where dx = cdt. The solution is:

v? =
2GM

⇠c

so the deflection angle is:

↵Newt =
v?
c

=
2GM

⇠c2
.

Figure 2.3: Deflection in the path of a photon created by a point mass M .
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In General Relativity, gravity influences also the time component of the
photon’s path, so the deflection angle becomes:

↵GR =
4GM

⇠c2
.

From the law of sines on the triangle OSI (see Fig. 2.4):

sin(180� � ↵)

Ds

=
sin(✓ � �)

Dds

and since �, ✓ and ↵ are very small, we can use the small angle approximation
sin(✓ � �) ⇠ ✓ � � and sin(180� � ↵) = sin↵ ⇠ ↵, whence:

� = ✓ � Dds

Ds

↵ .

Whereas ✓ ⇠ sin ✓ = ⇠/Dd and we know ↵, we have:

� = ✓ �
✓
4GM

c2
Dds

DdDs

◆
1

✓
.

Figure 2.4: Schematic view of the image I of a source S see by an observer
o if the photons of the source pass nearby a point mass M .

When � = 0 the source S is directly behind the lens M , so we have the
Einstein Ring at an angle [22]

✓E =

r
4GM

c2

r
Dds

DdDs

and we can define a critical surface density [22] such that lensing occurs:

⌃crit ⌘
c2

4⇡G

Ds

DdDds

1

(1 + zL)2
,

so that we have lensing if:

M(< ⇠E)

⇡⇠2
> ⌃crit .
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The resulting source image is characterized by two quantities, the shear,
that quantifies the gravitational field of the lensing mass distribution and is
responsible for the image distortion, and the convergence, that causes the
image contraction.
The convergence k is related to the surface mass density ⌃ of the lens by [2]:

k ⌘ ⌃

⌃crit

,

while the shear has two components, related to the potential by [2]:
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A measure of the convergence and the shear allows to recover the lens
potential, and so the cluster mass.
There are two kinds of lensing that can be observed with a cluster, the so
called strong and weak lensing.
When ⌃ > ⌃crit the presence of a distant source, such as a galaxy,
produces elongated curves, called giant arcs. The strong lensing is usually
characterized by the production of multiple images from a single source. In
this case of the strong lensing, the location of an arc provides a measure of
the cluster mass within the circle traced by the long arc. Since it requires a
high density of the lens, the strong lensing is suited for the study of the
cluster density profiles in the inner regions (< 0.1h�1 Mpc).
In addition to the giant arcs, a cluster can also produce weakly distorted
images of a large number of background galaxies. These images are called
arclets. The weak lensing is instead caused by any density fluctuation, and
therefore it can be used for the determination of the mass profile also in the
outer regions of galaxy clusters. However, the weak signal from individual
arclets needs to be statistically averaged over several sources. This feature
limits the precision with which masses are determined.
The weak lensing methods su↵er from the important problem of the mass
sheet degeneracy. This means that the projected mass profile can be
determined only up to a degeneracy addition of an arbitrary constant, due
to the projection e↵ects. Assumptions on the mass distribution are needed
in order to constrain the constant value. The advantage of these methods is
that, in contrast to other dynamical techniques for probing gravitational
fields, no assumption needs to be made on the dynamical state of the
matter.
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If we have an extended source, such as a cluster, the geometry becomes
much more complex but it can still be modeled so that we can find the
mass distribution of the cluster. The arcs are formed near the critical curve
✓ = ✓E (with small �) and from the radius of these arcs we can derive the
enclosed mass [22].
Gravitational lensing preserves surface brightness, but changes the solid
angle subtended by a source. Thus, the total flux is magnified so this
method can be used to find sources that without lensing would be too faint
to be seen. The magnification is given by the ratio of the areas of the
source and of the lensed image:

µ =
✓

�

d✓

d�
.

However, the weakness of the lensing method is its high sensitivity to the
resolution of the instrument and to projection e↵ects.
In Fig. 2.5 there is a representation of the way we see a source whose light
is perturbed by the gravitational potential of a galaxy cluster, depending on
the angle of the line of sight, while in Fig. 2.6 there are images of Abell 2218
and SDSS J1050+0017 that clearly show lensing arcs.

Figure 2.5: Schematic view of the perturbed wavefronts. [22]



2.4. MASS FROM GRAVITATIONAL LENSING 23

Figure 2.6: Lensing arcs in Abell 2218 (left) [image from NASA/ESA] and
SDSS J1050+0017 (right) [image from Subaru/Suprime-cam].
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2.5 Mass from Sunyaev-Zel’dovich e↵ect

As told before, the intracluster medium is gas at a temperature kBTe from
5 to 15 keV, rarefied, with peak electron number density ne ' 10�3cm�3,
that cools mainly via thermal Bremsstrahlung in the X-ray band. We
observe a distortion of the Cosmic Microwave Background radiation, due to
Inverse Compton scattering of the cool photons of the CMB o↵ these hot
Intra Cluster Medium (ICM) electrons, called Sunyaev-Zel’dovich e↵ect
(SZE) [53].
At frequencies smaller than ⇠ 218 GHz the intensity of the CMB is reduced
because the photons are scattered at higher energies, so the SZE is
manifested as a brightness temperature decrement towards the cluster, with
a correspondent increment for frequencies above 218 GHz, where the
photons are scattered. This variation is proportional to the Compton
parameter:

�TSZE

TCMB

= f(x)y ,

where

y ⌘ kB �T

me c2

Z
ne(l)Te(l)dl

is the Compton parameter, which for an isothermal cluster equals the
optical depth ⌧e times the fractional energy gain per scattering. �T is the
Thomson cross-section, ne is the electron number density, Te is the electron
temperature, kB is the Boltzmann constant, mec

2 is the electron rest mass
energy, and the integration is along the line of sight.
In Fig. 2.7 is shown a representation of the distortion in CMB spectrum
caused by a galaxy cluster.

Figure 2.7: SZE spectral distortion of the CMB spectrum for a fictional
cluster 1000 times more massive than a typical massive galaxy cluster. [9]
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A very important feature of this e↵ect is that �TSZE/TCMB is independent
of redshift, so this makes the SZE a potentially powerful tool for
investigating the high-redshift Universe [9].
From observations of the SZE, once the electron temperature is known
(from the SZE itself [28] or for example from X-ray emission), it is possible
to directly measure the gas mass in the cluster. The total gravitating mass
can be determined by assuming hydrostatic equilibrium and modeling the
distribution of the gas and the electron temperature. Using a spherical
isothermal �-model for the ICM, the resulting total mass of the cluster
within radius r is:

M(r) =
3kTe�

Gµmp

r3

r2c + r2
,

where µmp is the mean molecular weight of the gas, usually calculated
assuming solar metallicity for the gas and that µ is constant throughout the
gas. rc (the core radius) and � are fit parameters that enter in the electron
number density [27].
The cluster gas mass fraction can also be measured by comparing
SZE-derived gas masses and weak lensing-derived total masses. In this way
gas mass fraction can be derived without assuming neither a model for the
cluster structure nor hydrostatic equilibrium, so that there is no need to
parametrize the ICM distribution.
Moreover, the gas mass fraction is believed to be a reasonable estimate of
the baryonic mass fraction of the cluster, which should also be a good
approximation of the universal baryonic mass fraction:

fB ⌘ ⌦B

⌦M

.

Figure 2.8: Strength of the SZ
e↵ect for two clusters with di↵erent
total masses (dashed lower than
solid). On the vertical axis there
is the di↵erence between the Cosmic
Microwave Background signal and the
SZ signal. This clearly shows that the
SZ e↵ect depends directly on the total
cluster mass. [9]
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2.6 Mass from caustic technique

Looking at the outskirts of galaxy clusters, where the usual assumption of
dynamical equilibrium is not valid, it is possible to develop a mass
estimator that relies on kinematic data only [16].
In fact the sphere of influence of a cluster extends well beyond the virial
radius drawing the galaxies around the clusters to detach from the overall
Hubble expansion of the Universe and slowly fall towards the cluster,
forming a coherent infall pattern extending out to 10 � 20 Mpc from the
cluster. As they fall inwards they are accelerated by the gravitational
potential of the cluster, reaching a maximal velocity as they pass through
the cluster for the first time. They then ultimately become virialized
members, orbiting on bound orbits around the cluster. This behavior
produces the characteristic “trumpet”-shaped caustic profile of galaxies
infalling and orbiting around a massive cluster when we look them in the
redshift space.
This caustic profile allows the identification of all those galaxies within the
sphere of influence of the cluster (including the ones beyond the virial
radius) as those lying within the caustic itself.
The width of the caustic profile is a function of cluster-centric radius and
can be used to measure the mass profile of the cluster, not just within the
virial radius, but beyond. The width of the profile at a given radius can be
associated to the escape velocity a galaxy would have at that distance from
the cluster.

Half of the redshift space distance between the upper and the lower caustic
at projected separation r from the cluster center defines the amplitude
A(r). Assuming spherical symmetry, A(r) is a measure of the gravitational
potential �(r).
The escape velocities of galaxies are in fact deeply connected to the
gravitational potential of the cluster, as we can see by:

v2e(r) = �2�(r) .

From the estimation of the caustic amplitude from the phase space, we can
therefore arrive to relate it to the gravitational potential, and thus the mass,
of the cluster:

GM(< r) =

Z r

0

A2(R)F�(R)dR ,

where F� is related to the anisotropy profile � and to the potential � by [16]:

F�(r) = �2⇡G
⇢(r) r2

�(r)

3� 2�(r)

1� �(r)
.
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� is the velocity anisotropy parameter defined by eq. (2.2).
In a hierarchical clustering scenario F� is a slowly changing function of r and
so can be assumed constant. Moreover the value of 1/2 provides accurate
mass profiles in N-body simulations and also in real clusters, when compared
with masses obtained with other methods.
In this way the mass resulting from the caustic method can be written in a
very simple way:

GM(< r) =
1

2

Z r

0

A2(R)dR .

So the advantage of this method is that it only requires the galaxy
positions and velocities in and around the cluster.

In Fig. 2.9 there is an example of the diagrams used in the caustic method.

Figure 2.9: (Top panels) Galaxy distribution in the redshift diagram of
Coma for three galaxy samples of increasing size. The bold lines indicate
the location of the caustics. (Middle panels) Half of the distance between
the caustics, that defines the amplitude A(r). (Bottom panels) The bold lines
are the caustic mass profiles. The two error bars show the range of the X-ray
mass estimates. Short-dashed and long-dashed lines are the cumulative mass
profile for a softened isothermal sphere and a NFW density profile. Shaded
areas in the middle and bottom panels indicate the 2� uncertainty. [24]

The correct determination of the caustic curve is a crucial point for the
accuracy of this method, so it is necessary to be very careful in the
definition of the cluster borders and in the identification of the infalling
galaxies in the phase space.
A precise caustic surface amplitude is achieved when a large number of
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galaxy members, in and outside clusters, is available. So the method could
be a↵ected by uncertainties when applied to poorly populated clusters.
Moreover, a crucial role is played by the selection of members and the
interlopers removal. Thus, the main uncertainty is introduced by projection
e↵ects.

Another issue resides in the approximation of F� with a constant. Although
it is very useful to make the analysis independent of the anisotropy profile,
the parametrization of F�, and so �(r), with a function which changes with
r might improve the results on the clusters mass estimation.

However, the caustic method relies only on assumptions about the shape of
the cluster, not about its dynamical state. Svensmark et al. (2014) [54]

perform an interesting analysis about the validity of these assumptions.
They demonstrate the e↵ect of spatial anisotropy of galaxy clusters on the
inferred caustic mass profiles of N-body simulated samples. They find that
a line of sight along the major axis overestimates the caustic mass of galaxy
clusters, as well as a line of sight along the minor axis underestimates it,
and this discrepancy between major and minor axis mass estimates can
arrive to a factor of ⇠ 2 within the virial radius, an up to ⇠ 3 within 3R

v

.
So, the caustic method of mass estimation performs well when the
condition of cluster sphericity is met. If however some spatial anisotropy is
present in the form of cluster elongation of filamentary structures, the
caustic masses are strongly dependent on the line of sight through the
cluster, even within the virial radius.
We will come back on this point in the last chapter of this work.



Chapter 3

A new method to measure the
mass of galaxy clusters

As we saw in the previous chapter, every method to estimate the mass of
galaxy clusters relies on strong assumptions about the dynamical or
hydrodynamical conditions of the cluster, or about its geometry.
In order to develop a way to estimate the mass of a cluster which is
detached from all these assumptions, it’s necessary to find a tool which is
independent of a model for shape, state or content of the structure but only
relies on the actual gravitational potential, and so the total mass, of the
cluster.

Falco et al. (2014) [20] proposed a completely new method that infers the
total cluster mass from the knowledge of the kinematics of the outskirts,
where the matter has not yet reached equilibrium. They analyze the
filamentary and sheet-like structures outside the cluster and see how the
gravitational potential of the cluster perturbs their Hubble motion with the
expanding Universe.
They characterize the radial velocity profile of these structures and use it to
estimate not only the virial mass of the cluster, but also the
three-dimensional orientation of the structures they find, providing an
interesting method to explore the properties of the cluster even in the
three-dimensional space.

The purpose of this thesis is to improve the method they developed,
particularly in the way of finding these structures, and then to try to use it
to explore the three-dimensional orientation and shape of simulated haloes
and real clusters.

29
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3.1 Radial infall velocity profile

There is a region where the matter in the cluster is approximately in
dynamical equilibrium. The radius of this virialized region r

v

is the
distance from the center of the cluster within which the mean density is �
times the critical density of the Universe ⇢c:

⇢(r
v

) = �⇢c ,

so the virial mass is given by

M
v

=
4

3
⇡r3

v

�⇢c

with

⇢c =
3H2

8⇡G
,

where H is the Hubble constant and G the universal gravitational constant.
The circular velocity at r = r

v

is defined as:

V 2

v

⌘ GM
v

r
v

and is called virial velocity.

Galaxy clusters are surrounded by galaxies and groups of galaxies outside
the virial radius, which are not part of the virialized cluster but are still
gravitationally bound to it, so that they fall towards the cluster center.
This region in which the infall motion is predominant extends up to three
or four times the virial radius, while beyond six to ten r

v

the radial motion
of galaxies is dominated by the Hubble flow.
In between, the cluster still expresses its gravitational influence, perturbing
the flowing of the galaxies away from it, and leading to a deceleration of
these structures.
So the total mean radial velocity of galaxies outside the cluster is given by
these two e↵ects:

vr(r) = Hr + vp(r) ,

where the term Hr represents the pure Hubble flow and vp(r) is a mean
negative infall term that takes into account the perturbation from the Hubble
relation.
The more massive the cluster is, the stronger will the perturbation be, so we
can explicitly write this dependence inside the equation:

vr(r,Mv

) = Hr + vp(r,Mv

) . (3.1)
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Thus, we need to find the relation between vp(r,Mv

) and M
v

in order to
infer the virial mass of the cluster from the perturbed motion of the
structures outside.

From simulated halos we saw a quite universal trend for the radial mean
velocity profile when normalized to the virial velocity and to the virial
radius. This can be seen in Fig. 3.1 which shows the profiles of three
simulated halos and the simultaneous fit to them.

Figure 3.1: Mean radial velocity profiles for three simulated halos (dashed
lines) and simultaneous fit to them (solid line). The virial masses of these
halos are: M

v

= 0.8 ·1014M� (blue triple-dot dashed line), M
v

= 1.1 ·1014M�
(green dot dashed line), M

v

= 4.7 · 1014M� (red dashed line). [20]

It is now necessary to parametrize this infall profile. We use just the
information that it must reach zero at large distances from the halo, so, in
the region where the Hubble flow starts to dominate and the total mean
radial velocity becomes positive, the infall term is given with good
approximation by:

vp(r) ⇡ �v
0

✓
r

r
v

◆�b

⇡ �aV
v

✓
r

r
v

◆�b

. (3.2)

Fitting the universal shape of the simulated halos profile with this equation,
and taking a and b as free parameters, the result is the black solid line in
Fig. 3.1, corresponding to the following value of the parameters:

⇢
a = 0.80
b = 0.42 .
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We now need to obtain a two-dimensional projected equation from the
three-dimensional radial equation (3.2), since the observations give us a
two-dimensional map of clusters and their surroundings through the
component of the galaxies velocity along line of sight vlos and their
projected distance on the sky R.
Consider the galaxies belonging to a filamentary structure outside the
cluster: if we call ↵ the angle between their 3D radial position (r) and the
2D projected distance (R), the relations between quantities in the physical
space and in the so-called redshift space are:

⇢
R = r cos(↵)
vlos(R) = vr(r) sin(↵) .

Inserting equation (3.1) in the transformation of the velocity we obtain:
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Using the model discussed before for the infall term that is equation (3.2),
the line of sight velocity becomes:
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Using this equation it’s possible to obtain the cluster virial mass M
v

and the
orientation angle of the structure ↵ just knowing the phase-space coordinates
(R, vlos) of the galaxies in a filament or sheet, with (M

v

,↵) as free parameters.
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3.2 Identification of filaments and sheets

An observation of a galaxy cluster with its outskirts gives us the positions
and velocities of the galaxies projected on the sky, that is: x, y, vz.
From this information we need to find structures that have a filamentary or
sheet-like shape in this (x, y) plane.
Indeed we are looking for an overdensity of galaxies, so we need to compare
our part of the sky with a background; to do this, we split the spatial
distribution of galaxies into eight two-dimensional wedges, and we look at
each of them in the (R, vlos) space where we look for overdensities.

3.2.1 Cells

For each wedge the purpose is to compare the galaxy number density with
the same quantity averaged on the rest of the wedges. To this aim, Falco et
al. (2014) confine the velocity field to the box vlos = [�4000, 4000] km/s
and R = [4, 20] Mpc, and divide this box into 50 cells, 4 Mpc large and 400
km/s high. We can see an example of one of these wedges both in the (x, y)
plane and in the (R, vlos) plane in Figs. 3.2 and 3.3.

Figure 3.2: 2D projection of the simulation box, centered on the selected
simulated halo. The black triangles represent the particles inside the virial
radius of the halo. The orange points belong to one of the eight wedges
they select in the (x, y) plane. The background for the selected wedge is
given by the green crosses. The two wedges adjacent to the selected wedge,
gray diamonds, are excluded from the analysis. In the selected wedge, they
identify a sheet that is represented by the red circles. The blue squares
correspond to the total overdensity found in the wedge. [20]



34 CHAPTER 3. A NEW METHOD TO MEASURE THE MASS

Figure 3.3: Line of sight velocity vlos as function of the projected distance
R from the center of the simulated halo. (Upper panel) Background region
(green crosses) obtained from the superposition of all the wedges but the
selected one and the two adjacent ones (gray diamonds). (Bottom panel)
Signal region (orange points) i.e. the selected wedge. The blue points
correspond to the overdensity in the wedge while the red circles represent
the filamentary-like structure they identify as a sheet, that is the only almost
straight inclined line. The black triangles are all the particles within the virial
radius of the halo. [20]

Then they count the number density of galaxies ni in each cell i, and
compare it to the same quantity computed for the rest of the wedges in the
same cell. This is actually the average of the galaxy number density over all
the wedges but the selected one. This quantity acts as the background nbg

i .
The two wedges adjacent to the selected one are excluded from the
background since a possible structure sitting in the selected wedge might
stretch even to the closest wedges.
Given these two quantities, they evaluate the overdensity as:

mi =
ni � nbg

i

nbg
i

(3.4)

and then they calculate the probability density p(mi) for the given wedge.
They use this probability density to decide if keeping the value of mi found
as an overdensity or not. They in fact take only the cells in the top 1�
region of the probability density distribution where the integrated
probability is above (100� 16.8)% in order to reduce the background noise.
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There is another criterion they use to choose the structures: among the
galaxies belonging to the selected cells, they take just the ones lying on
inclined lines within a small scatter, while they remove the groups which
appear as blobs or horizontal strips in the phase-space. This because their
(and our) only interest is in extended structures with a coherent flow
relatively to the cluster.
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3.2.2 Rectangles

As we said before, we are interested in finding filamentary and sheet-like
structures. So we can develop a more sophisticated method to identify
them in the redshift space. Instead of splitting the phase-space in small
cells, looking for overdensities in each cell, and selecting the overdense
regions that form the elongated structure, we identify the overdensities
taking into account the fact that we need long quasi-linear structures.
So we build a rectangle around each galaxy in the (R, vlos) plane, and we
vary width, length and orientation of this rectangle by generating random
numbers. For each of these rectangles, we evaluate the overdensity by
comparing the number galaxy density in the rectangle to the same number
in the background region, using the same relation as before:

mi =
ni � nbg

i

nbg
i

, (3.4)

thus, we look for the rectangle which maximizes mi.

Fig. 3.4 shows an example of possible rectangles built around a galaxy. It is
evident that they contain a di↵erent number of galaxies, even though this
number has to be compared with the background.

Figure 3.4: Schematic view of a galaxy outside a cluster and possible
rectangles with variable width, length and orientation.

So, for each galaxy in the wedge we are considering, we have a maximized
value of mi and a rectangle that identifies a filamentary structure in the
phase-space. Now we need a method to discern between all these rectangles
(from all the di↵erent galaxies), because not all of them correspond to an
actual overdensity. We use several criteria to do this. First of all we
consider just the overdensities above 3� in the distribution N(mi). In this
way we select only the overdensities above a given threshold, likewise Falco
et al. (2014) do with the grid method.
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As example we show this distribution for one of the simulated halos we will
analyze in the next chapter, so that we can see the histogram with the
overdensities (Fig. 3.5).

s

Figure 3.5: Distribution of the overdensities for a simulated halo. The full-
colored bins are the ones above 3� of the distribution, which we keep in our
analysis.

Then, we can use the fact that if we have an overdensity, the rectangles
corresponding to the galaxies belonging to this overdensity should overlap
and have similar orientations. So we look at the distribution of these
angles, and we search for the peaks in this distribution. These peaks
represents the fact that a lot of rectangles have the same angle, and thus
they show the orientation of the overdensities. We select just the rectangles
with an angle that has a peak above 3� the average value of the
distribution. The 3 bins around the angle ✓ = 0 are removed, since they
correspond to horizontal structures that we want to exclude. Fig. 3.6 shows
this selection for the same halo of the previous histogram.

The last information we use, is the fact that we are looking for structures
with a coherent motion toward the cluster. So the galaxies in these
structures should lie on inclined lines in the (R, vlos) space, and thus if we
extend the rectangles corresponding to these galaxies they should cross the
line vlos = 0 somewhere quite close to the cluster center. So, we select the
rectangles with a crossing point between 0 and 8 Mpc, in order to exclude
all these horizontal structures. Fig. 3.7 clarifies this property.
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Figure 3.6: Distribution of the orientation angles of the rectangles in a
wedge. The gray central bins are the removed ones. The green horizontal
line corresponds to the value hN(✓)i+ 3 �N(✓) and the red bins are the same
of Fig. 3.5. Only one of them is above the threshold line, so it represents the
orientation of the structure we are looking for.

Figure 3.7: Crossing point for two rectangles with di↵erent inclinations. The
rectangle almost flat crosses the line vlos = 0 in a point with a negative value
of R, and thus would be excluded from our analysis. Instead the other one
crosses the horizontal line quite close to the cluster center and in a point
with R > 0, so could contain an actual structure falling toward the cluster.

Matching these three selection methods, we end with overdensities that
should represent the physical process we want to explore.
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3.3 Mass and orientation

Having identified a sheet around a cluster, it is possible to extract the
cluster mass using the standard Monte Carlo (MC) fitting methods. In
particular, we apply the Monte Carlo Markov Chain (MCMC) to the
galaxies belonging to every sheet.
The code we use for this analysis is from Falco et al. (2014) [20].

The Monte Carlo methods are a family of probabilistic methods that can be
used to solve elaborate problems by exploring the parameter space, even in
high-dimensional problems. These methods make use of random numbers
to extract a sample from a large system, choosing it in a way so that it will
be representative of the entire system.
Taking random steps led by a probability function, this technique goes
around in the parameter space and decides whether to accept the step or
not to by evaluating its probability: if it’s higher than the probability of the
current position, the step is taken, otherwise the step can be accepted with
probability P (new)/P (old).
This jumping process is called Markov Chain and describes a random path
where the probability distribution at each step only depends on the present
position and not on the way we arrived there. The guide for the random
steps is the likelihood function.
This chain starts from a point set by the user, and then the algorithm runs
for several steps until the initial state is forgotten. These initial points,
called burn-in, are usually discarded and after them the chain approaches a
stationary distribution where the set of accepted values represents a sample
from the probability distribution. The quality of the sample improves as a
function of the number of steps.
The great convenience of the MC methods is that we can include a lot of
parameters even with a quite small computational time.

In our case, we run 5000 combinations of parameters and then remove the
burn-in points. The likelihood used for this analysis is:

L(↵,M
v

|vlos) =
NY

i=1

exp

✓
(vlos i � vlosmodel(Ri))2

2�2

◆
,

where the model is given by equation (3.3) and the free parameters are ↵
and M

v

. We set � = 93.8 and H
0

= 73 km/s/Mpc, as these are the values
set in the cosmological simulation used to test the method.
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The scatter of the model, indicated as � in the likelihood expression, is
fixed for every sheet and it’s evaluated by measuring the velocity dispersion
of the sheet in the (R, vlos) space. This velocity dispersion results from a
combination of the radial and the tangential velocities.

The MCMC analysis gives us the resulting value for the virial mass and for
the three-dimensional angle of the sheet, with their errors.
The value obtained for the orientation ↵ of a sheet corresponds to the mean
angle of all the galaxies in the sheet. However we can use it to calculate the
corresponding coordinate along the line of sight for all the galaxies and thus
to reconstruct a 3D map of the structures we find.



Chapter 4

Results on cosmological
simulation

As in Falco et al. (2014), we first test the method on cluster-size halos from
a cosmological N-body simulation of pure Dark Matter (DM). The
simulation is based on the 3-year Wilkinson Microwave Anisotropy Probe
(WMAP3) cosmology.
The cosmological parameters are ⌦m = 0.24 and ⌦

⇤

= 0.76, and the
reduced Hubble parameter h = 0.73. The particles are confined in a box of
size 160h�1 Mpc. There are 10243 particles in the box each one with mass
3.5 · 108 M�. The evolution is followed from the initial redshift z = 30 using
the MPI version of the ART code [32] [26]. The algorithm used to identify
clusters is the hierarchical friend-of-friends (FOF) with a linking length of
0.17 times the mean inter-particle distance. The cluster centers correspond
to the positions of the most massive substructures found at the linking
length eight times shorter than the mean inter-particles distance. The virial
radius of the haloes is defined as the radius containing an overdensity of
� = 93.8 relative to the critical density of the Universe [57].

We apply the method on four simulated haloes selected at redshift z = 0
with the virial quantities shown in Tab. 4.1:

halo number of particles M
v

[1014M�] r
v

[Mpc] V
v

[km/s]
29 723 618 2.516 1.630 815.117
30 673 289 2.341 1.592 795.766
42 382 480 1.330 1.318 659.068
50 498 399 1.733 1.440 719.858

Table 4.1: Haloes from a N-body simulation used as test for the method

41
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These four halos have been chosen because of the richness of their outskirts,
in order to have a good sample to start testing the method.

We treat the DM particles in the haloes as galaxies from observations, so
the first step is to project the three-dimensional haloes in 2D, as we would
see them on the sky. We consider the z direction as possible line of sight,
and we account the galaxies in the box x = [�20, 20] Mpc and y = [�20, 20]
Mpc centered on the halo, where x and y are the two directions
perpendicular to the line of sight. We assume that the infall velocity profile
for the DM particles is the same as the infall profile for galaxies,
assumption justified by the fact that the bias resulting from this approach
is not expected to be significant. In fact, it has been shown that the ratio of
the galaxy velocity dispersion to that of the DM particles in cosmological
simulations is likely to be very small (bv ⇡ 1) [19]. Moreover, it should be
even smaller in this work since our analysis extends to regions very far from
the halo center.
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4.1 Halo 29

Using the method described in section 3.2.2 we identified several structures
in the simulated haloes. Consider the halo 29, shown in Fig. 4.1.

Figure 4.1: Halo 29 projected along the z direction. The black circle shows
its virial radius.

The halo is the overdensity we can see in the middle of the plot (its virial
radius is 1.630 Mpc), and is surrounded by a large number of structures.
However, from this representation it is not clear whether these structures
have or not a coherent motion toward the center.
As said before, the first step is to cut the (x, y) plane into 8
two-dimensional wedges, so that we can have a region to analyze and a
background one. This cut is shown in Fig. 4.2, where the black points in
the middle represent the cluster inside the virial radius, and the two



44 CHAPTER 4. RESULTS ON COSMOLOGICAL SIMULATION

di↵erent colors and symbols are used to distinguish the 8 wedges.
The numbers show the numeration used henceforth to discern among the 8
wedges.

Figure 4.2: The 8 wedges used in the analysis. The red crosses are the
particles in the odd wedges, while the green x’s are in the even ones.

Now we can analyze each of the selected wedges by looking at them in the
(R, vlos) space and comparing the galaxy number density with the same
quantity in the rest of the wedges, as in equation (3.4). To do this, we take
one wedge, for instance the 4th, and we exclude from the background the
two adjacent ones, so in this case the 3th and the 5th, as explained before.
Fig. 4.3 shows this selection: the red crosses are the particles in the
selected wedge, the green open circles are the ones in the adjacent wedges,
so the ones excluded from the analysis, while the green x’s are the
background we choose.
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Figure 4.3: Example of signal (red crosses) and background (green x’s)
regions in the (x, y) plane. The gray open circles are the particles in the
excluded wedges.

The identification of the overdensities occurs now in the phase-space, where
we build a rectangle around every particle and we count the galaxy number
density ni inside the rectangle. We compare this number with the galaxy
number density in the same rectangle but in the background region nbg

i .
There is another possibility, that is to use as background the same wedge,
considering the rectangle in the opposite side of the (R, vlos) plot with
respect to the line vlos = 0. In this way we use the same wedge for the
signal and for the background (see Fig. 4.4). We used both these kinds of
background, in order to compare the results in the two cases.
In Fig. 4.5 we show this wedge as we see it in the phase-space (top panel)
and the background made by the other wedges (bottom panel).
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Figure 4.4: Schematic view of the background region if taken from the same
cut of the signal region. The rectangle with same R and opposite vlos acts as
background in this case.

Figure 4.5: (Top panel) Wedge 4 in the phase-space. (Bottom panel)
Background region made by wedges 1-2-6-7-8.
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We can now analyze the particles in the wedges and proceed with the
analysis described before, that is constructing the rectangles around each
particle, evaluating the overdensity, change rectangle, and so on. We also
have to select the resulting rectangles using the three criteria based on
overdensity and angles distributions and crossing point with vlos = 0.
In Fig. 4.6 there is an example of how the method works: in the top panel
we show all the rectangles that passed the selection criteria, while in the
bottom panel we show all the particles inside these rectangles, i.e. the
actual overdensity. We will use the (R, vlos) coordinates of these particle to
reconstruct the infall profile from which obtaining the mass of the halo.
From this figure it is also possible to see the overlapping of the rectangles
that yielded to the selection method through the distribution of the
rectangles orientations.

Figure 4.6: (Top panel) Final rectangles for the 4th wedge. (Bottom panel)
Galaxies belonging to the rectangles and forming the overdensity.
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The resulting mass given by this overdensity is 2.30 · 1014 M� with a 2�
uncertainty of ±0.68 · 1014 M�, so in very good agreement with the true
virial halo mass that is 2.516 · 1014 M�, while for the orientation of the
structure we obtained cos(↵) = 0.51 ± 0.01 when the true mean value for
these particles angle is cos(↵) = 0.52.
From the cosine of the angle we extract ↵ by inverting the function, while
�↵ has been computed through the propagation of uncertainty, so:

�↵ =

����
@ arccos(cos(↵))

@ cos(↵)
�
cos(↵)

����

=
1p

1� cos2(↵)
�
cos(↵) .

Fig. 4.7 shows the result of the Monte Carlo analysis, with the scatter plot of
the two free parameters (cos(↵), M

v

) and the two histograms which represent
the probability density function of these two parameters.

Figure 4.7: Result of the MCMC applied to the sheet in the 8th wedge

In this halo we found other two overdensities, and the results for mass and
orientation are listed in the following table.

HALO 29 - M
v

= 2.516 · 1014 M�
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
4 2.30 0.91 0.51 0.01 1.04 0.01
7 4.15 2.21 0.74 0.02 -0.74 0.04
8 2.82 0.95 0.72 0.04 -0.76 0.06

mean value for the mass: (2.68± 0.63) · 1014M�

One of the three sheets we have in this halo (wedge 4) is behind it (so with
positive vlos and ↵) while the other two (wedges 7 and 8) are between the
halo and us (so with negative vlos and ↵); we find them with both kinds of
background.
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Fig. 4.8 shows the results for the mass normalized to the true value of the
halo virial mass, while the corresponding overdensities are in Fig. 4.9.

Figure 4.8: Masses with 2 � errors obtained from the sheets normalized to
the true value of the halo mass (halo 29).

From Fig. 4.9 we can see how di↵erent the sheets can be for length, width
and orientation; in general we saw that the more the overdensity is thin and
elongated, the more accurate is the result of the mass.
If we take for example the wedge 7, we notice that the overdensity in it is
very disperse and thick, and even not very oblique. The resulting mass is
actually the worst estimation we have for this halo. The value of the mass
is still correct within 2�, but the error is much larger, and the central value
quite far from the real one. If we now look at the best estimation we have,
that is given by the overdensity in wedge 4, we have a first confirmation of
the fact we mentioned, that is this tendency of long, thin overdensity to give
better results for the mass.
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Figure 4.9: Sheets in three wedges of halo 29.
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4.2 Halo 30

We carried out the same steps for the other simulated halos.
The results we obtained for mass and orientation are listed in the following
table with their 2� errors.

HALO 30 - M
v

= 2.341 · 1014 M�
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
1 3.77 1.86 0.68 0.04 0.82 0.06
2 (1) 2.55 1.47 0.34 0.02 1.23 0.02
2 (2) 2.63 1.70 0.33 0.07 -1.24 0.07

mean value for the mass: (2.90± 0.95) · 1014M�

They are in good agreement with the true value of the mass as we can see in
Fig 4.10, and again the best estimation is given by the most thin and definite
overdensity (central panel in Fig. 4.11).

Figure 4.10: Masses with 2 � errors obtained from the sheets normalized to
the true value of the halo mass (halo 30).

In this halo we found two overdensities in the same wedge, one behind the
halo (central panel in Fig. 4.11), the other one between the halo and us
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(bottom panel in Fig. 4.11). This doesn’t a↵ect our analysis because the two
structures are treated separately, and the fact that we see them in the same
cut is just a projection e↵ect.
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Figure 4.11: Sheets in three wedges of halo 30.
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4.3 Halo 42

In order to prove that our method is independent on the projection of the
cluster, for halo 42 we consider both the z-projection (as we did for the
previous ones) and the x-projection, with the results shown in the following
table.

HALO 42 - M
v

= 1.330 · 1014 M�
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
2 (1) 2.77 1.49 0.31 0.07 1.26 0.07
2 (2) 2.63 2.06 0.54 0.17 -1.00 0.20
3 1.52 1.06 0.42 0.04 1.14 0.04
4 1.64 1.26 0.46 0.02 -1.09 0.02

mean value for the mass: (1.93± 0.67) · 1014M�

HALO 42 (x projection) - M
v

= 1.330 · 1014 M�
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
4 1.86 1.38 0.51 0.01 1.04 0.01
5 1.42 1.21 0.54 0.01 1.00 0.01
6 3.97 3.62 0.64 0.13 -0.88 0.17
8 1.82 1.20 0.69 0.09 0.81 0.12

mean value for the mass: (1.76± 0.71) · 1014M�

We can see that within the uncertainties the method works for both the
projections without significant di↵erences.
Figs. 4.12 and 4.13 show the normalized results for the two projections of
the halo.
These plots point out even more the di↵erent results among the sheets, and
also here we can see from Fig. 4.14 how the sharpness of a sheet a↵ects the
corresponding value for the mass.
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Figure 4.12: Masses with 2 � errors obtained from the sheets normalized to
the true value of the halo mass (halo 42).

Figure 4.13: Masses with 2 � errors obtained from the sheets normalized to
the true value of the halo mass (halo 42, x projection).
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Figure 4.14: Sheets in halo 42.



4.4. HALO 50 57

4.4 Halo 50

In halo 50 we found three di↵erent sheets, which gave for the mass the results
listed below and shown in Fig. 4.15:

HALO 50 - M
v

= 1.733 · 1014 M�
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
1 (1) 1.68 1.30 0.40 0.25 -1.16 0.27
1 (2) 2.91 1.70 0.73 0.07 -0.75 0.10
3 3.59 2.22 0.69 0.09 0.81 0.12

Figure 4.15: Masses with 2 � errors obtained from the sheets normalized to
the true value of the halo mass (halo 50).
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Figure 4.16: Sheets in three wedges of halo 50.
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4.5 Discussion

With this method we identify a total of 17 sheets in the four halos we
analyzed, with a remarkable improvement in the detection of these
structures compared to the method used by Falco et al. (2014).
The mass measurements that our sheets led are generally in very good
agreement with the corresponding true masses, confirming that this
kinematical analysis can e�ciently be used to measure the virial mass of a
halo, and also the orientation angle of the sheets is inferred with good
accuracy. We obtain the same sheets with the two kinds of background;
usually the ones obtained using the same cut as background look a bit more
definite, but the estimation of mass and orientation of the sheet is very
similar (see Fig. 4.17).

Figure 4.17: Same sheet found outside halo 42 with two di↵erent
backgrounds: from the other wedges (left) and from the same one (right).

As in Falco et al. (2014), the method seems to be more sensitive to sheets
which are inclined with an angle not bigger than ↵ ⇠ 2/3 ⇡ with respect to
the sky plane, i.e. closer to be faced-on.
We can also note that our method usually tends to overestimate the true
value of the mass, even though it is correct within the errors.
A possible source of uncertainties could reside in the assumption of
universality of the infall velocity profile. Falco et al. (2014) try to replace
the median radial velocity of the three samples they analyze with the fit to
the real radial velocity profile of the halo. This gives them an improvement
in the estimation of the mass.
By looking at the real infall profile for one of the sheets in our simulated
halos (see Fig. 4.18), we find that the universal profile fits quite well the
actual one, so that the analysis performed shouldn’t be very a↵ected by the
approximation used.



60 CHAPTER 4. RESULTS ON COSMOLOGICAL SIMULATION

Figure 4.18: Real infall velocity profile for a sheet in halo 30 (wedge 2)
compared to the universal fit (black line)

Though, the little shift we observe could be the source of the
overestimation we usually find in the mass values; we tried to correct this
e↵ect (that is possible only for simulated samples in which we have the real
positions and velocities of all the particles) in order to compare the results
in the mass estimation.
Fig. 4.19 shows the fit to the real infall velocity profile.

Figure 4.19: Fit to the real infall velocity profile (blue line) for a sheet in
halo 30 (wedge 2) compared to the universal fit (black line).

The fit has been performed using eq. (3.3) and the parameter obtained
instead of the universal ones are:

⇢
a = 1.00
b = 0.99 .
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Using the real profile we obtain the mass and angle estimations shown in
the following table.

HALO 30 - M
v

= 2.341 · 1014 M�
wedge 2 - sheet with ↵ = 1.21 rad

M
v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
universal profile 2.55 1.47 0.34 0.02 1.23 0.02
real profile 2.36 0.79 0.34 0.02 1.23 0.02

So there is an actual improvement using the real infall profile, and the
correction of this e↵ect is one of the aims to improve our method.

After this test on simulated halos, we can now try to apply it to a real
cluster; the analysis and the results we obtain are presented in the following
chapter.
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Chapter 5

Results on Coma cluster

The Coma galaxy cluster (Abell 1656 ) is a very studied system of galaxies,
as it’s the most regular, rich and well observed one in our neighborhood. Its
galaxies are mostly elliptical and lenticular with just a few younger spirals,
as typical for this kind of rich galaxy clusters.
The Coma cluster is one of the systems where for the first time were
observed gravitational anomalies which were considered indicative of an
unknown kind of mass. In 1933 Zwicky showed that the galaxies in the
cluster were moving too fast for the cluster to be bound together by the
visible matter of its galaxies only. Today it is believed that about 90% of
the mass of the Coma cluster is in the form of Dark Matter.
Its two brightest members are NGC 4889 and NGC 4874, two giant
elliptical galaxies at least 2 or 3 times larger than the Milky Way, well
visible at the center of Fig. 5.1.

Figure 5.1: Optical image of the Coma cluster [image from HST].
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The Coma cluster has been studied in several wavelengths, from radio to
X-rays, in order to characterize its properties. All the mass estimation
methods we discussed in chapter 2 have been applied to it, and the results
of these studies are listed in Tab. 5.1, where M

100

corresponds to a density
contrast � = 100 while M

200

corresponds to � = 200.

method M [1014M�]
Virial theorem M

v

= 9.5± 1.5 [55]

X-ray hot gas emission M
v

= 13± 2 [29]

Dynamical analysis M
100

= 15± 4.5 [37]

Caustic method M
200

= 15± 4.1 [24]

Weak lensing M
200

= 18.8+6.5
�5.6

[33]

Sheets M
v

= 9.2± 2.4 [20]

Table 5.1: Coma cluster mass estimation

We can note that there is a quite large uncertainty about the mass of
Coma, and that the method applied by Falco et al. (2014) tends to
underestimate the Coma virial mass compared with previous measurements
which either assume equilibrium or sphericity.
However, they based their analysis only on the two sheets they found in the
outskirts of the cluster. We try to apply the method using the rectangle
selection hoping to find more structures and thus have a more accurate
analysis.
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5.1 The sample

Using the SDSS data base we apply our analysis to the system. We take as
the center of the cluster the galaxy NGC 4874 [31], whose coordinates are:

⇢
RA = 12h 59m 36s

DEC = +27� 570 3300 .

We select galaxies within 18� from the position of the center corresponding
to approximately 20 Mpc, with velocities between 3000 and 11000 km/s. The
sample contains 9000 galaxies (see Fig. 5.2).

Figure 5.2: Map of the Coma galaxy cluster with its outskirts.

We cut this sample in the usual 8 wedges to analyze them separately, and
then we shift this division in order not to lose structures that could eventually
lie on the intersection between two wedges (see the scheme below). For each
of these configurations we apply the method as we did on the simulations,
searching for filaments in the phase-space.
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5.2 Identification of the sheets

We apply the rectangle method for each wedge using both kinds of
background and in the two di↵erent wedge configurations. The structures
we found are shown in Fig. 5.3.

Figure 5.3: Structures outside Coma galaxy cluster

We can see that with one exception (light blue structure) we found the
same sheets in both configurations. In Fig. 5.4 there are the same
structures as we see them in the phase-space, where the identification
occurs. The left panels correspond to the normal wedges while the right
ones correspond to the shifted ones. The colors are the same we used in
Fig. 5.3.
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Figure 5.4: Sheets outside Coma.
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5.3 Analysis and results

The sheets shown in the previous section are now used to infer the total mass
of Coma by the Monte Carlo analysis. The results are shown in Tab. 5.2 for
the usual kind of wedges and in Tab. 5.3 for the shifted ones.

Coma cluster - normal wedges
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
1 6.75 1.89 0.62 0.02 0.90 0.02
2 5.28 2.71 0.56 0.01 0.97 0.01
4 9.49 1.09 0.45 0.01 1.10 0.01
6 8.97 5.32 0.58 0.03 0.96 0.04
8 12.01 5.83 0.46 0.03 1.09 0.03

mean value for the mass: (8.36± 0.85) · 1014M�

Table 5.2: Mass and angles for normal wedges

Coma cluster - shifted wedges
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
1 11.37 2.96 0.59 0.02 0.94 0.02
2 5.62 2.69 0.56 0.01 0.97 0.02
3 9.40 4.72 0.64 0.06 -0.87 0.08
4 10.16 1.31 0.39 0.01 1.17 0.01
8 12.24 2.86 0.51 0.03 1.04 0.03

mean value for the mass: (9.89± 1.00) · 1014M�

Table 5.3: Mass and angles for shifted wedges

We can see how even within the errors each sheet gives a quite di↵erent
estimation of the mass. We will discuss this discordance in the next chapter.
Anyway in some cases there is a very good agreement between the mass and
the angle returned from the same sheet in the two di↵erent configurations
(look for example at the sheets 2 and 8).
All the sheets shown are obtained from taking the background from the same
wedge where we look for overdensities, since in this way, as for the simulated
halos, the resulting overdensities are much more well defined.
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The mean values are also in good agreement with the mass that Falco et al.
(2014) [20] found with their two sheets (that correspond to sheets 1 and 8 in
this work): ⇢

M
v

= (9.7± 3.6) · 1014M� sheet 1
M

v

= (8.7± 3.3) · 1014M� sheet 2

that leads to the mean value of M
v

= (9.2± 2.4) · 1014M�.

We found these mean values using the weighted average of our results:

x =
NX

i=1

xi

�2

i

/

NX

i=1

1

�2

i

� =

vuut1/
NX

i=1

1

�2

i

Fig. 5.5 shows the masses from the sheets normalized to the mean mass
obtained by Falco et al. (2014).

Figure 5.5: Value of the masses obtained from the sheets outside Coma with
3 � error bars. The normalization corresponds to the mean value found by
Falco et al. (2014): Mnorm = 9.2 · 1014M�.
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Chapter 6

Shape and alignment of galaxy
clusters

As we mentioned before, the observations of galaxy clusters show that most
of them look elliptical in the sky, even if their 3D structure is usually
approximated to a simple spherical model. Moreover, it is believed from
both theoretical and observational probes that the best approximation for
the shape of galaxy clusters is a triaxial ellipsoid.
From the observational side, the non-circular projection of galaxy clusters
emerges in several di↵erent analyses: in the optical wavelength, from the
density map of galaxy clusters [11] [4]; in X-rays, from the surface brightness
map [35]; in microwaves, from the Sunyaev Zel’dovich pressure map [48];
from strong [51] and weak [44] gravitational lensing; from the azimuthal
variation of galaxy kinematics detected recently in a SDSS sample [50]

where it has been found that the line of sight velocity dispersion of galaxies
lying along the major axis of the central galaxy is larger than the one of
those that lie along the minor axis.
On the theoretical side, numerical simulations show that haloes form with a
triaxial shape, with a preference for prolateness over oblateness [3] [23]. Some
of these simulations also predict that low mass haloes appear more
spherical than high mass ones (even if there are di↵erent conclusions in
other works [47]) and that for a given mass, lower redshift haloes should be
more spherical than high redshift ones.
Despite these evidences, the majority of the studies on clusters use the
spherical assumption, mainly due to the fact that the quality of the data
may not allow a triaxial model to be constrained. However, issues like the
mass discrepancy found between, e.g. lensing and X-ray data when
spherical symmetry is assumed, suggest the growing need for non-spherical
models.
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6.1 E↵ect of asphericity in caustic mass

estimates

There are a few works trying to trace the real shape of galaxy clusters, for
instance using the caustic technique.
Svensmark et al. (2014) analyze a sample of galaxy clusters generated from
cosmological simulations and show how the dynamical mass estimation
from the caustic technique depends on the orientation of galaxy clusters
with respect to the line of sight. They investigate the e↵ect of spatial
anisotropy caused by the elongation of the cluster itself or by the
surrounding large scale structures such as filaments, walls and voids. To
this purpose, they create three di↵erent stacks in order to isolate the
morphological features of the halos [54]:

• ellipsoidal stack : where halos were modeled as ellipsoidal structures
and rotated so that the three principal axes of each halo were aligned;

• filamentary stack : where the direction of the largest filament associated
with each halo was aligned;

• spherical stack : for reference with arbitrary orientation of each halo.

The three configurations made it possible to choose any line of sight
through the anisotropic stacks and compare mass estimates from caustics
with those of the spherical stack. The stacks di↵er only in the orientation
of individual halos, so they have the same true cumulative mass profile
M(< r), and thus any di↵erence in caustic mass estimation between the
non-spherical (ellipsoidal and filamentary) stacks and the spherical one
expresses an anisotropy bias in the caustic method of mass estimation.

They perform this analysis for two mass bins: one in the range of

1 · 1014 h�1 M� < M
v

< 2 · 1014 h�1 M� (low-mass bin)

which yielded 230 distinct halos in the catalog they use, and the other one
in the range of

M
v

> 2 · 1014 h�1 M� (high-mass bin)

which yielded 101 distinct halos.
The results of this work are shown in Tab. 6.1.
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mass bin stack triaxiality parameter max/min mass
T 1 R

v

2 R
v

3 R
v

low
ellipsoidal 0.69 1.72 1.95 2.44
filamentary 0.81 1.22 1.49 1.71
spherical - 1.03 1.06 1.13

high
ellipsoidal 0.70 2.06 2.22 2.95
filamentary 0.81 1.21 1.32 1.38
spherical - 1.04 1.06 1.11

Table 6.1: Values of triaxiality and mass estimates for the di↵erent stacks
and mass bins. [54]

Here they evaluate the “max/min mass” that is the ratio of the maximum
mass estimate to the minimum one they obtained, normalized by the mass
of the spherical stack. The triaxiality parameter is defined as follows:

T ⌘ a2 � b2

a2 � c2
,

where a, b and c are the three ordered semi-axes of the ellipsoid.
From the values in Tab. 6.1 we can see how the e↵ect is larger for the high
mass bin.
The mass estimates achieved in this way can be used to correct the caustic
mass estimate when the cluster orientation is known. Even within the virial
radius the mass estimates may vary by a factor or ⇠ 2 for massive clusters.

Svensmark et al. (2014) credit this dependence of the caustic mass on the
cluster orientation with respect to the line of sight to the anisotropy of the
spatial and velocity distribution of galaxies in clusters. Thus, they expect
that this e↵ect is a generic feature of all kinematical methods for the cluster
mass determination, such as the methods based on the virial theorem, on
the scaling relation between cluster mass and line of sight velocity
dispersion, on the Jeans analysis of the velocity moments profiles, on the
infall velocity profile like the one described in our work.
However, the discrepancy between the measured and the actual cluster
masses may di↵er among the di↵erent methods, so the results they show
cannot be regarded as a general prediction for all of them [54].
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6.2 Combining di↵erent data sets

As example of a di↵erent way to deduce the shape of a cluster we describe
the analysis performed by Limousin et al. (2013) [36]. They combine and
simultaneously fit X-ray, SZ and gravitational lensing data sets in order to
constrain the 3D properties of DM halos and Intra Cluster (IC) gas.
This method is applied to the following clusters: MACS 1423, Abell 1689,
Abell 383 and Abell 1835.

Their methodology is based on the fact that both the lensing e↵ect and the
X-ray/SZ emission depend on the properties of the DM gravitational
potential well, the former being a direct probe of the two-dimensional mass
map via the lensing equation, the latter an indirect proxy of the
three-dimensional mass profile through the hydrostatic equilibrium
equation applied to the gas temperature and density.
In order to infer the model parameters of both the IC gas and the
underlying DM density profile, they perform the following steps:

• modeling the DM density using a generalized Navarro-Frenk-White
triaxial model:

⇢(R) =
�c ⇢c,z

(R/Rs)� (1 +R/Rs)3��
,

where Rs is the scale radius, �c is the dimensionless characteristic
density contrast with respect to the critical density of the Universe
⇢c,z at redshift z, and � is the inner slope of the density profile [30];

• recovering the gravitational potential and two-dimensional surface mass
⌃ of a DM halo with this triaxial density profile:

⌃ =

Z
+1

�1
⇢(R) dz [40] ;

• solving the generalized hydrostatic equilibrium equation (including the
non-thermal pressure) for the density of the intracluster gas

rPtot = �⇢gasr� [34] [39]

to infer the theoretical three-dimensional temperature profile T ;

• calculating the SZ temperature decrement map

�T (⌫)

Tcmb

=
�T

me c2

Z
Pe(r) f(⌫;T (r)) dz

[36]
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and the surface brightness map

SX =
1

4⇡(1 + z)4
⇤(T ⇤

proj, Z)

Z
nenp dz

[36]

related to the triaxial intracluster medium halo;

• comparing T with the observed temperature, SX with the observed
brightness image, �T (⌫) with the observed SZ temperature decrement,
and ⌃ with the observed two-dimensional mass map, in order to obtain
the parameters of the triaxial intracluster medium and DM density
model [41].

The results of this method are listed in Tab. 6.2.

Abell 1835 Abell 383 Abell 1689 MACS 1432
c
200

4.32 ± 0.44 4.76 ± 0.51 5.27 ± 0.46 3.97 ± 1.0
Rs [kpc] 891.0 ± 114.3 511.2 ± 73.6 683.1 ± 84.7 644.7 ± 162.1

� 1.01 ± 0.06 1.02 ± 0.06 0.92 ± 0.07 1.06 ± 0.1
⌘DM,a 0.59 ± 0.05 0.55 ± 0.06 0.56 ± 0.07 0.62 ± 0.04
⌘DM, b 0.71 ± 0.08 0.71 ± 0.10 0.75 ± 0.08 0.72 ± 0.06

Table 6.2: Best-fit model parameters for the four clusters. Error bars
correspond to 1� confidence level. The shown parameters of the DM halos
are: c

200

(concentration parameter), Rs (scale radius), � (inner DM slope),
⌘DM,a (minor-major axis ratio), ⌘DM, b (intermediate-major axis ratio). [36]

With this analysis combining di↵erent kinds of observations they obtain
good results in measuring the geometric parameters of galaxy clusters
following a triaxial model. A triaxial ellipsoid is still an approximation,
since both observations and simulations show for instance the presence of
substructures which are not accounted for by a triaxial model for galaxy
clusters. If the substructures are small compared to the main cluster halo,
then the triaxial approximation may be accurate enough. On the other
hand, unrelaxed halos often have shapes that are not adequately described
by ellipsoids, making shape parameters ill-defined. Indeed, if there is no
clear dominant halo but a superposition of sub-halos with comparable
masses, the triaxial approximation may be questionable [49]. However, this
work constitutes a step forward with respect to the rough spherical analysis.
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6.3 Preliminary considerations on the

“sheets method”

As we discussed in the previous chapters, the method we use to find the
mass of galaxy clusters gives us some not negligible di↵erences in the
estimations. We think that these di↵erences could be related to an intrinsic
e↵ect and not only to statistical errors.
As Svensmark et al. (2014) pointed out, the mass estimation methods
based on kinematical analyses could be influenced by the e↵ect of
asphericity of the cluster, giving under or over estimates depending on the
alignment of the cluster with respect to the line of sight.

Working on cosmological simulations, for which we know the exact mass
and shape of the halo, we also noted this trend: sheets located along the
minor axis of the halo tend to give a lower value for the mass than sheets
along the major axis.
Besides the uncertainties of the method, we impute this discrepancy to the
fact that the cluster is not spherical, so a sheet sited along the minor axis
should feel a slightly lower gravitational potential than one sited along the
major axis, and so give a lower mass estimation. A di↵erent potential leads
to a di↵erent velocity, that a↵ects the mass estimation in our method; in
fact the escape velocity of a gravitationally bound system of particles is
related to its gravitational potential by:

v2e(r) = �2�(r) ,

where r is the distance from the center of the system.
So, if one is able to find at least three sheets oriented along di↵erent lines
around the cluster, in order to be sure that they don’t lie on the same axis
of the cluster, it is possible to proceed with this analysis and try to
constrain the real shape of the cluster.
As shown before, we find 3 or 4 sheets for each halo we analyzed, so we can
try to investigate this aspect.
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6.3.1 Looking at simulated halos in 3D

Let’s consider the x-projection of halo 42 where we found 4 well defined
sheets. These structures gave us the following results for the mass:

HALO 42 (x projection) - M
v

= 1.330 · 1014 M�
cut M

v

�M cos(↵) �
cos(↵) ↵ �↵

[1014M�] [1014M�] [rad] [rad]
4 1.86 1.38 0.51 0.01 1.04 0.01
5 1.42 1.21 0.54 0.01 1.00 0.01
6 3.97 3.62 0.64 0.13 -0.88 0.17
8 1.82 1.20 0.69 0.09 0.81 0.12

The sheets in wedges 4, 5 and 8 are in very good agreement among them,
while the one in wedge 6 returns a quite large overestimation of the real mass,
even though the error bar is considerably large.
If we look at this halo (see Fig. 6.1) we can see that it is not spherical, but
it’s quite elongated along the y direction.

Figure 6.1: Projections of halo 42 inside its virial radius. The red line shows
the major axis of the halo.
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We plot in Fig. 6.2 the cluster with the surrounding sheets we found before
(see Section 3.3).

Figure 6.2: Halo 42 with the sheets found in its outskirts.

From the (x-y) projection in Fig. 6.3 we can see that the sheet in wedge 6,
that is one with the biggest estimate for the mass, is also the one lying along
the major axes of the cluster.

Figure 6.3: (x-y) projection of halo 42 with the sheets surrounding it. The
black lines show the direction of the major and minor axes of the halo.

This is a first hint of what we expected, even though it’s just a qualitative
consideration, but it could be the starting point for a more accurate analysis
of this e↵ect.
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6.3.2 Color maps

We then try to pursue this aspect by analyzing another halo (#29), that is
shown in Fig. 6.4 with an ellipsoidal model to fit its shape.

Figure 6.4: 3D view of halo 29 inside its virial radius with the ellipsoidal
model that best fit its shape.

We cut the outskirts of the halo in 48 wedges, and in each of them we select
a pseudo-sheet in order to apply the mass method estimation and generate
a color map, which shows the values of the mass in the (✓, ↵) distribution,
where ✓ is the angle of the structure in the (x, y) plane and ↵ is the angle
between the structure and its projection in the (x, y) plane, i.e. the same
angle we find with the MC analyis (see the scheme below).

We do this to see (in a qualitative way) if there are significant di↵erences in
the value of the mass, and to possibly relate them to the shape of the halo.
The map is shown in Fig. 6.5.
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Figure 6.5: Map of the distribution of the halo virial mass found with the
MC analysis applied to pseudo-sheets in the surroundings of the halo. (Left
panel) Each point represents a particle and the color shows the value of the
mass normalized to the true virial mass. (Right panel) Each square represents
a pseudo-sheet with the corresponding value of the mass it returned and the
size of the squares is inversely related to the error in the mass estimation.
The black line shows the direction of the major axis of the halo.

We clearly see the di↵erences in the mass distribution, up to a factor ⇠ 3 in
the overestimation. To see if there is some kind of correlation between them
and the shape of the cluster, in Fig. 6.6 we plot the same map but in the 3
projected planes (x, y), (y, z) and (z, x), together with the projection of
the halo modeled as in Fig.6.4.
In these three panels we can see an indication that the highest values of the
mass actually correspond to the wedges sited along the major axis of the
halo (particularly evident in the middle and bottom panels). This can be
taken as a further hint of this correlation even if it is again just a
qualitative analysis.

However, it could be very interesting to carry on this way of exploring the
three-dimensional shape and orientation of galaxy clusters, perhaps with an
improvement in the mass estimation method and also supporting this
research with a more quantitative approach.
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Figure 6.6: Color maps in the three projected planes with the ellipsoid used
to model the halo.
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Chapter 7

Conclusions

The main purpose of this thesis was to explore the properties of clusters of
galaxies, dark matter halos and large scale structures. In particular, we
investigated the dynamics of galaxies in the outskirts of clusters, using both
a theoretical and observational approach. We proposed a new method for
measuring the total mass of galaxy clusters within the virial radius which
has been tested on cosmological simulations and then applied to the Coma
cluster data. This method involves the detection of extended filaments and
sheets, which are typically sitting at 5� 15 Mpc from the virialized cluster.

The idea is to infer the mass only from the kinematical data of these
structures in the cluster outskirts. In the hierarchical scenario of structure
formation, galaxy clusters are located at the intersection of filaments and
sheets, and the motion of such non-virialized structures is thus a↵ected by
the presence of the nearest massive cluster. We found that modeling the
kinematic data of these objects leads to an estimation of the neighbor
cluster mass. The gravitational e↵ect of the cluster is to perturb the pure
Hubble motion of the filaments, leading them to a deceleration, and thus
the measured departure from the Hubble flow of those structures allows us
to infer the virial mass of the cluster.
We have developed a technique to detect the presence of structures outside
galaxy clusters, by looking at the phase space (chapter 3). The proposed
technique doesn’t aim to map all the objects around clusters, but it is
limited to finding those structures that are suitable for the virial cluster
mass estimation. Our method doesn’t require the dynamical analysis of the
virialized region of the cluster, therefore it is not based on the dynamical
equilibrium hypothesis. However, it relies on the assumption of spherical
symmetry of the system by the fact that we assume a radial velocity profile.
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Moreover, our method is biased by fixing the fit to the radial infall velocity
profile of simulations, as a universal infall profile.
From the practical point of view, this technique requires gathering galaxy
positions and velocities in the outskirts of galaxy clusters, up to few tens of
Mpc, and looking for overdensities in the (R, vlos)-space that correspond to
filaments or sheets. Once a structure is detected, the fit to its line of sight
velocity profile has to be performed. The fitting procedure involves only
two free parameters: the virial mass of the cluster and the orientation angle
of the structure in 3D.

We analysed halos from cosmological simulations first, in order to test both
the technique to identify structures outside clusters and the method to
extract the cluster mass (chapter 4). We analyzed four halos in which we
found a total of 17 sheets and we obtained for these sheets the following
values for the mass, normalized to the true halo virial mass:

- halo 29 M/Mtrue = 1.06± 0.25

- halo 30 M/Mtrue = 1.24± 0.41

- halo 42 M/Mtrue = 1.44± 0.51

- halo 42x M/Mtrue = 1.33± 0.53

- halo 50 M/Mtrue = 1.38± 0.54

We then applied our method to the Coma cluster (chapter 5). We analyzed
the SDSS data of projected distances and velocities, up to 20 Mpc far from the
Coma center. Our work led to the detection of six sheets in the environment
of the cluster which carried to the following estimation of the Coma cluster
mass:

- M
v

= (8.36± 0.85) · 1014 M� for the usual cutting of the outskirts

- M
v

= (9.89 ± 1.00) · 1014 M� for a slightly di↵erent division, in which
the wedges are a little shifted.

These values are in agreement with previous results from other standard
methods (chapter 2) based on the dynamical analysis of the cluster member
galaxies (virial theorem method or Jeans equation), on the X-ray emission
of the di↵use hot gas, or on e↵ects like the gravitational lensing or the
distortion of the CMB (SZE). We note however that our method tends to
underestimate the Coma virial mass, compared to previous measurements
which either assume equilibrium or sphericity.
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The next step of this work should be to apply this method to a sample of
clusters of galaxies, in order to make a statistical test on its e�ciency.
Moreover, this technique shows to have promising possible developments.
For example, one could look at large distances from the cluster along the
line of sight, instead of along the projected radius on the sky. This would
mean to analyze galaxies within a larger redshift range around the cluster.
Another useful analysis could be combining our mass estimation technique
with di↵erent methods, such as the ones based on X-ray observations,
gravitational lensing or SZE, since each method is biased in a di↵erent way.
Using a combined analysis could help to reduce these biases and the errors
on the masses, in order to reach a more accurate estimation.

Within this work, we also constrained the spatial orientation of the
detected structures and tried to use it to deproject the orientation of galaxy
clusters in the three-dimensional space. A first, qualitative approach
showed that there is a correlation between the values of the mass returned
by di↵erent sheets and their orientation with respect to the major or minor
axes of a triaxial ellipsoidal halo. Therefore, another future perspective is
to deepen the analysis we started (chapter 6) in order to test whether our
method can actually be used as an e↵ective tool to extract information
about the three-dimensional shape and orientation of galaxy clusters.
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