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Abstract

The discovery of coexisting time reversal symmetry breaking and superconductivity in the
kagome metals AV3Sb5 (A = K, Cs, Rb) have made the scientific community pour huge
efforts into understanding the nature of the materials, and a flurry of papers has been
written in the last two years. Concurrent with the onset of the time reversal symmetry
breaking, a charge ordering phase has been found in the materials that break translational
symmetry. The phase is believed to form a Tri-Hexagonal or Star-of-David bond order
in the kagome plane. In this thesis we investigate the new kagome metals starting from
two tight-binding models: One considering the bare kagome lattice, the other using a
materially specific model fitted to CsV3Sb5. We introduce interactions and decouple them
using the unrestricted Hartree-Fock approximation, such that we can minimize the free
energy using a self-consistency algorithm. In the phase diagrams for the bare kagome
lattice, we find a large region where the Tri-Hexagonal bond order is the ground state,
and regions with coexisting Tri-Hexagonal, charge density wave and spin density wave
phase. Curiously, the latter of the two phases conserves the symmetries that AV3Sb5

breaks at the onset of the charge ordering phase. In the phase diagrams for the materially
specific tight-binding model, we find a coexisting ferromagnet, imaginary spin density wave
and imaginary charge density wave phase, with a loop current configuration that matches
a previous proposal to the time reversal symmetry breaking order. With this study we
have contributed to the current discussion on how the charge bond order emerges and how
time reversal symmetry breaking might be linked to the charge bond order.
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Chapter 1

Introduction

The study of new phenomena from simple lattice models is one way for theorists to work
with condensed matter systems. The results of the studies can then be applied to materials
hosting the simple lattice structure. One of such simple lattice is the kagome lattice,
schematically drawn in Fig. 1.1, which was introduced by I. Syôzi in Ref. [1]. The lattice
consists of corner sharing triangles, which means it can be an ideal host for magnetic
frustration. If we consider three sites constituting a triangle with Ising-spins, where the
spins want to be anti-parallel, we see that when two of the three spins have been fixed,
the third spin is magnetically frustrated as it does not want to be spin-up or spin-down,
as sketched in Fig. 1.1. From the built-in magnetic frustration, the lattice is considered
to host exotic magnetic states [2].

The kagome lattice has also been found to interesting electronic properties from the
band structure. The lattice host a completely flat band, yielding essentially infinitely
heavy fermion, and a linear dispersion yielding massless Dirac fermions [3, 4]. Further-
more, at two chemical potentials other than the flat band the density of states diverges,
yielding a so-called van Hove points [5]. Finally, the materials have been predicted to host
superconductivity [6, 7].

A set of prototype kagome materials was discovered in 2019, see Ref. [8]. The com-
pounds KV3Sb5, CsV3Sb5 and RbV3Sb5, collectively called AV3Sb5 where A stands for
the alkali metal, were found to host a kagome lattice made of vanadium atoms. The resis-
tivity of the materials was found to show typical metallic behavior [8], and the resistivity
was further measured to be much larger in the plane with the kagome lattice than out-
of-plane [9]. The Fermi surface, measured by angle resolved photoemission spectroscopy

?

Figure 1.1: Schematic drawing of the kagome lattice. An example of the magnetic
frustration is shown in the lattice.
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(ARPES), revealed very small changes along the out-of-plane direction, which means the
metals are quasi two-dimensional [10]. Shortly after their discovery, AV3Sb5 were found to
be superconducting with the critical temperatures TC ≈ 2.3 K for the cesium variant [9],
TC ≈ 0.93 K for the potassium variant [11] and TC ≈ 0.75 K for the rubidium variant [12].
This has sparked an interest in the wider scientific community, as is seen research activity
regarding the kagome lattice [13–35]. With the discovery of the materials, anomalies in
the magnetization and heat capacity of the materials were detected. These anomalies
have been linked to a phase transition where the metal enters a charge ordered phase
[16, 20, 21]. The phase shows evidence of time reversal symmetry breaking, which persists
to temperatures below superconductivity [17], thus the superconducting pairing lives in a
time reversal symmetry broken state hinting at unconventional pairing mechanisms and
the exotic phenomena.

In this thesis we will study the new kagome metals on a microscopic level, focusing
on the charge ordered phase. To accomplish this, we will consider two tight binding
models: One based on the pristine kagome lattice, and a materially specific multi-orbital
tight-binding model published in Ref. [15]. We add interactions of the two the tight-
binding models and use unrestricted Hartree-Fock approximation to obtain a single particle
problem. By employing a self-consistency algorithm we obtain a phase diagram in the
space defined by the interaction strengths.

The thesis is structured as follows: In Chapter 2 the new kagome metals AV3Sb5 are
discussed, and some experimental results are presented. In Chapter 3 the kagome lattice
and the symmetries of the lattice are discussed, and the tight binding model of the kagome
lattice is solved. In Chapter 4 we introduce interactions to the system, and use mean
field theory to obtain a single-particle problem, which can be solved via a self-consistency
algorithm, also presented in this chapter. In Chapter 5 we present phase diagrams from the
solutions to the self-consistency algorithm, and discuss the obtained results. In Chapter
6 a multi orbital tight-binding model is introduced to model AV3Sb5 more closely. We
present phase diagrams of the self-consistent solutions to the tight-binding model with
mean field decoupled interactions. In Chapter 7 we summarize the findings presented in
the thesis and discuss further possible investigations of the new kagome metals.
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Chapter 2

AV3Sb5, A = K, Rb, Cs

In this chapter we give a brief non-exhaustive overview of the new kagome metals. The
focus of the overview will be the experiments relevant to the work presented in the thesis.

2.1 Lattice geometry and transport measurements

The lattice structure of AV3Sb5 is illustrated in Fig. 2.1. The materials have a hexagonal
lattice of the alkali metal, a vanadium kagome layer between the layers of the alkali metal.
This layer also has an antimony hexagonal lattice with the sites in the center of the kagome
hexagons. Between the kagome layer and the hexagonal alkali layer is a honeycomb layer
of antimony atoms. The three structural degrees of freedom are a0, the in-plane distance
between alkali sites; c0 the out-of-plane distance between alkali sites, and the z-coordinate
of the antimony site between the vanadium layer and the alkali layer [8]. The point group
of a particular point in the lattice defines the possible symmetry operations of the lattice.
The point group of AV3Sb5, choosing the on the antimony atom in the kagome plane as
the center, is D6h, meaning the system in the disordered state has a six-fold rotational

(a) (b)

Figure 2.1: The lattice structure of AV3Sb5. The purple spheres represent the alkali
atoms, the red spheres represent the vanadium atoms and the brown spheres represent
the antimony atoms. The lattice constants are indicated on the lattice. (a) seeing the
lattice structure in the out-of-plane direction (b) the lattice structure from the top,
seeing a kagome net by vanadium atoms. Figures adapted from Ref. [8].
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(a) (b)

Figure 2.2: Resistivity measurements for CsV3Sb5 at various temperatures. (a) Mea-
surements of the resistivity in the kagome plane and out-of-plane resistivity in the normal
state. (b) Resistivity measurements at low temperatures for a range of applied mag-
netic field strengths. A superconductivity transition is revealed, limited by applying a
magnetic field. Figures are from Ref. [9].

symmetry, inversion symmetry, and mirror symmetries, with mirror planes both in the
kagome plane and perpendicular to the kagome plane.

Results from the transport measurements of the resistivity of CsV3Sb5, presented in
Ref. [9], are shown in Fig. 2.2. The resistivity displays typical metallic behavior for most
temperatures, however, the in-plane resistivity is measured to be ∼ 600 times smaller than
the out-of-plane resistivity, revealing that the electrons in CsV3Sb5 primarily move in the
kagome plane. Finally, an anomaly of the in-plane resistivity is found at 94 K, which
has been linked to a phase transition into the previously mentioned charge bond order.
At low temperatures, the resistivity decreases to zero revealing a superconducting state
emerging with a critical temperature of TC ≈ 2.3 K. Similar measurements have been
presented for the rubidium variant in Ref. [11] and for the potassium variant in Ref. [12].
The temperatures of the anomalies are slightly different in the three materials (102 K for
RbV3Sb5 and 78 K for KV3Sb5), as well as the critical temperature of superconductivity
(0.93 K for RbV3Sb5 and 0.75 K for KV3Sb5).

Regarding an overall magnetic structure both neutron scattering experiments [8] and
muon spin relaxation experiments [34] have detected no long range magnetic order in
the materials [8, 34]. The muon spin relaxation experimental technique is discussed in
Section 2.4

2.2 Band structure and density functional theory

One method of calculating ground state properties of a many-body system is using density
functional theory (DFT). This method is based on the fact that the ground state properties
can be written as a functional of the ground state density. Finding the wave function is
thus not necessary, if one knows how the Hamiltonian depends on the ground state density.
While the kinetic term and the electron-electron interaction have a known dependence on
the ground state density, how the so-called exchange-correlation potential depends on
the ground state density is not generally known, but can be approximated using various
methods and algorithms [36]. One application of DFT is calculations of the band structure
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Figure 2.3: DFT calculated band structure of CsV3Sb5, along the high symmetry
path. Γ is the center of the Brillouin zone, M is the center of an edge, K is at the vertex
where kz = 0. A, L and H, are equivalent to Γ, M and K at kz = π/c. The in-plane
part of the high symmetry path can be seen in Fig. 3.2. The Fermi energy is indicated
along with the Fermi energy after deintercalation of cesium atoms (EF(-e)). The plot is
taken from [8].

and the Fermi surface, which has been done for the new kagome metals. In Fig. 2.3 the
DFT calculated band structure of CsV3Sb5 are shown, following the high symmetry path
around the Brillouin zone (see Fig. 2.4 for the path at kz = 0). We notice here that the
band structure has locally flat bands close to the Fermi energy at the M point (the center
of an edge of the Brillouin zone). These parts of the bands yields a diverging density
of states and are called van Hove points [5]. The van Hove points at M is a feature of
the band structure of the kagome lattice, which will be shown in Section 3.2, when the
band structure of the kagome lattice is found. Noticeably the bands around the Fermi
energy are dominated by electrons of the vanadium orbitals, hinting at the importance
the vanadium kagome layer has for the physics of the new kagome metals.

ARPES measurements have been conducted for the new kagome metals measuring the
Fermi surface and the band structure [9, 10]. We present the ARPES measurements of
the Fermi surface measured in Fig. 2.4. The surface at the center of the vanadium orbital
comes from the antimony orbitals, where the bands closer to edge of the Fermi surface
comes from the vanadium orbitals [10, 15]. Furthermore, the Fermi surface changes little
when varying kz [10], yielding us to describe the metal as quasi two-dimensional.

To qualitatively estimate the accuracy of the DFT calculations one can compare the
band structure to ARPES measurements. Such a comparison was made in Ref. [9] for
CsV3Sb5, where the calculations were seen to closely match the experimental results, see
Fig. 2.5.

One application of DFT is to make a minimal tight-binding model fitted to the DFT
calculated band structure. In this way the tight-binding model is made materially specific,
capturing the physics of the real material, while being simple enough to be implemented
effectively. Two of such minimal tight-binding models were presented in Ref. [15], where
the focus was on capturing the van Hove points close to the Fermi surface, and calculate
the impact of spin orbit coupling in the materials. We will discuss the tight binding models
in greater detail in Chapter 6.
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Figure 2.4: ARPES measurement of CsV3Sb5 at the Fermi energy for kz = 0. Where
the first Brillouin zone is indicated by the white lines. Figure is from Ref. [9]

Figure 2.5: Band structure from ARPES measurements (left) and DFT calculations
(right) for CsV3Sb5, following the high M -K-Γ-K-M path around the Brillouin zone.
Excellent agreement is seen between the experiment and the calculations. Figure is from
Ref. [9].

2.3 Charge bond order

The topographic images of scanning tunneling microscopy (STM) measurements of AV3Sb5

revealed a new superlattice structure of the materials, which breaks translation symmetry.
The Fourier transform of the images of the STM, revealed that the phase breaks transla-
tional symmetry by doubling of the size of the unit cell along both in kagome plane lattice
directions (2a0 × 2a0), as is shown in Fig. 2.6. The order is not believed to break the
rotational symmetry in the kagome plane [18]. The anomalies in the resistivity, seen in
Fig. 2.2, heat capacity and magnetization have been linked to the phase transition to the
new superlattice structure [37], meaning the critical temperature of the new order TCBO

is 78 K, 94 K and 103 K for KV3Sb5, CsV3Sb5 and RbV3Sb5 respectively [16, 20, 21].
Due to the band structure of the kagome lattice, see Section 3.2, the order in the

kagome metals is thought to be a charge bond order. Such an order adds an effective term
to the Hamiltonian HCBO = ∆ijc

†
icj , which is summed over neighboring sites i and j. This

term means the effective hopping strength between two sites is modulated throughout the
lattice, yielding to the conclusion that some sites are coupled more strongly to each other,
and some sites are coupled more weakly to each other. The symmetry requirements of the
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(a) (b)

Figure 2.6: (a) The topographic image of the charge order in KV3Sb5 taken at 4.2 K
and (b) its Fourier transform. A peak at the 2a0 × 2a0 superlattice structure is clearly
seen in the Fourier transform. Figures are from Ref. [16].

(a) (b)

Figure 2.7: Schematic drawings of the (a) Star-of-David (b) Tri-Hexagonal bond
orders on the kagome lattice. The gray dots are the sites in the kagome lattice, the thick
black lines represent strong bonds, and the thin gray lines represent weak bonds.

phase yield to two candidate phases: The Tri-Hexagonal and Star-of-David. Both phases
are schematically drawn on the bare kagome lattice in Fig. 2.7.

The exact spatial modulation of the CBO is still under some debate, especially regard-
ing how translational symmetry is broken along the out-of-plane direction and whether the
global six-fold rotational symmetry is reduced to a two-fold rotational symmetry. For the
potassium and rubidium variants it is generally accepted that the charge order breaks ro-
tational symmetry and that the unit cell is doubled in the out-of-plane direction, yielding
a combined 2a0×2a0×2c0 phase [19, 25, 30, 31, 35]. Some experiments see a quadrupling
of the unit cell in CsV3Sb5 in the out-of-plane direction (2a0×2a0×4c0), where the order
conserves the six-fold rotational symmetry of the disordered state [18, 32]. Other stud-
ies have found the order is similar to the order in the potassium and rubidium variants,
meaning the new unit cell has the size 2a0×2a0×2c0 and reduces the rotational symmetry
to a two-fold rotational symmetry [20, 26, 30, 31, 35].

Proposals for the microscopic modulations of the full charge bond order have appeared.
Two propositions for a 2a0×2a0×2c0 phase can be seen in Fig. 2.8, where one phase reduces
to a two-fold rotational symmetry, while the other conserves six-fold rotational symmetry.
Propositions for the 2a0×2a0×4c0 phase, consists of one Tri-Hexagonal layer followed by
three layers with either the Star-of-David configuration or no bond configuration [18, 32].

Finally, in CsV3Sb5, a different in-plane CBO has been reported by STM measure-
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Staggered Tri-Hexagonal

(a)

Alternating Tri-Hexagonal Star-of-David

(b)

Figure 2.8: Schematic drawings of the (a) staggered Tri-Hexagonal (b) alternating
Tri-Hexagonal Star-of-David. While the staggered Tri-Hexagonal reduces to a two-fold
rotational symmetry, the alternating Tri-Hexagonal Star-of-David conserves rotational
symmetry. Both break translational symmetry of the form a new unit cell of the size
2a0 × 2a0 × 2c0. Figures are from Ref. [13].

ments, with a critical temperature between 50 K and 60 K. This charge bond order
quadruples the unit cell in one primary direction (4a0) yielding a rotational symmetry
breaking order[20]. However, bulk probe x-ray diffraction measurements did not detect
the ordered phase, instead linking the 4a0 order to how the surface was cleaved and small
shifts in the bonds between antimony and vanadium atoms [26].

2.4 Time reversal symmetry breaking

Muon spin relaxation experiments have revealed a time reversal symmetry breaking order
in the new kagome metals. The muon spin relaxation experimental method consists of
implanting spin-polarized muons into the studied materials. The muon’s spin will then
rotate due to local magnetic fields. After some time the muon will decay into a positron
among other particles. The direction of the radiated positron depends on the direction of
the muon’s spin. By fitting the decay rates, one can estimate the effective local magnetic
field felt by the muons. A sudden change in the relaxation rates, can hence be linked to
the emergence of magnetic fields, yielding a time reversal symmetry broken state.

In Ref. [17] a muon spin relaxation experiment for KV3Sb5, and some results of the
experiments are shown in Fig. 2.9. At the onset of the charge bond ordered phase, a
change is seen in the relaxation rates both with and without transverse magnetic fields.
The change of the relaxation rates in the zero field experiment could come from the
change in where the muons stop in the material after the charge bond order sets in.
However, the experiments with a transverse magnetic field indicates that an effective
magnetic field has appeared in the material, thus a time reversal symmetry broken order
exists. The size of the effective magnetic field can be estimated from the relaxation rates,
yielding Beff = 0.3 G. Furthermore, during the transition to the superconducting state,
no change in the relaxation rates of the muons were found, meaning superconductivity
exists in a time reversal broken state. For the cesium variant, similar experiments have
revealed time reversal symmetry breaking, however the critical temperature of the time
reversal symmetry breaking has been reported both at a lower temperature the onset of
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(a) (b)

Figure 2.9: Muon spin relaxation rates for KV3Sb5. T ∗ indicates the onset of the
charge bond ordered phase. (a) Zero transverse magnetic field has been applied, where
Γ12 is the rate for the out-of-plane direction, and Γ34 is the direction in the kagome
plane. (b) Transverse magnetic field has been applied, with the strengths indicated.
The relaxation rates are in the kagome plane. Figures are from Ref. [17].

(a) (b)

Figure 2.10: Schematic drawings of current orders proposed in (a) Ref. [17] and (b)
Ref. [29]. As can be seen form the drawings both current orders conserve the rotational
symmetry, and (a) translational symmetry is conserved in (a) and broken in (b).

the charge bond order [27] and as having the same critical temperature as the charge
bond order [33]. In the rubidium variant the muon spin relaxation experiments reveal
a time reversal symmetry breaking at the same temperature as the charge bond order
[24]. Magneto optical Kerr effect experiments on all three compounds have revealed time
reversal symmetry breaking in with the same critical temperature as the charge bond order
[31].

As discussed in Section 2.1, the materials show no overall magnetic structure. An
explanation of the time reversal symmetry breaking comes with the charge bond order
parameter taking complex values. Such a phase would yield loop currents in the ground
state. Various proposals for loop currents in the kagome lattice have been presented, with
two of them schematically drawn on the kagome lattice in Fig. 2.10.
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Chapter 3

The kagome lattice and
tight-binding model

From the discussion of the band structure, Fermi surface and the transport measurements
in Sections 2.1 and 2.2, we know that AV3Sb5 is quasi two-dimensional with the kagome
layer made of vanadium atoms constituting the important bands around the Fermi energy.
We thus start by modelling the kagome metals with a single orbital pristine kagome lattice.

3.1 The kagome lattice geometry

The kagome lattice is schematically drawn in Fig. 3.1. It is a two-dimensional hexagonal
lattice with the primitive lattice vectors

t1 = a
(
1 0
)
, t2 = a

(
1
2

√
3

2

)
, (3.1)

where a is the distance between unit cells. For the remainder of the thesis we set a = 1.
The unit cell consists of three sites, denoted A, B and C, and they are labelled in Fig. 3.1.
The basis vectors, i.e. positions of sites in the unit cell, are

dA =
(

1
2 0
)
, dB =

(
1
4

√
3

4

)
, dC =

(
0 0
)
, (3.2)

where we note that 2dα is a lattice vector [3, 6, 38].
We consider the spatial symmetries of kagome lattice, as we want to examine what

possible symmetries an ordered phase can break. By definition a lattice has translational
symmetry, which in this case is given by the primitive lattice vectors in Eq. (3.1). The
point group of the kagome lattice is D6 [39]. Each group is defined by its generators, i.e.
the symmetry operations from which all other symmetry operations of the point group
can be generated by repeated application, and D6 has two generators: A six-fold rotation
(C6) and a reflection (σ). An example of the axis of rotation and the median plane of
reflection are shown in Fig. 3.1.

For systems with continuous translational symmetry, the momentum space becomes a
better basis to work in as states are defined by their momentum. For systems with discreet
translational symmetry in real space, there exist a translational symmetry in momentum
space as well, called the reciprocal lattice. This means that two spatial modulations with
momenta k and k + G, where G is a reciprocal lattice vector, will be indistinguishable on
real space lattice. The primitive vectors of the reciprocal lattice gn are defined such that
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t1

t2

dA

dB

×

B

C A

Figure 3.1: The kagome lattice, where the dots represent the different lattice sites. On
the figure we show our definition of the sublattice indices. The primitive lattice vectors
are shown together with the unit cell indicated by the black parallelogram, the primitive
lattice vectors, the basis vectors and an example of the axis with six-fold rotational
symmetry, symbolized by ×, and a mirror plane indicated by the dashed line.

M K

Figure 3.2: The first Brillouin zone of the kagome lattice. The high symmetry points
Γ, M and K are marked. The high symmetry path of the lattice is shown with the red
line.

tm · gn = 2πδmn. The primitive vectors of the reciprocal lattice of the hexagonal lattice
are

g1 = 2π
(

1 − 1√
3

)
, g2 = 2π

(
0 2√

3

)
. (3.3)

We can from this partition momentum space in zones, where each zone contains all the
momenta creating unique spatial modulations, called Brillouin zones. The Brillouin zone
formed by the momenta closest to the origin is the first Brillouin zone, and the first
Brillouin zone of the kagome lattice is shown in Fig. 3.2. The symmetries of the lattice is
captured in momentum space, meaning we can consider certain points of high symmetry,
that are invariant under symmetry operations: Γ, the center of the Brillouin zone; M, the
center of an edge, and K, the vertex.
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3.2 Tight-binding model

To consider how electrons forms ordered phases on the kagome lattice, we need to consider
how electrons behave in the lattice. We consider the simplest form of the tight-binding
model, where electrons can hop between neighboring sites defined by t > 0. All sites in
the kagome lattice have four neighboring sites: The two other sites in the same unit cell,
and two sites in different unit cells. The intra-unit cell contribution to the tight-binding
Hamiltonian is

H intra
TB = −t

∑
Rσ

∑
α6=β

c†RασcRβσ, (3.4)

where we have introduced the creation (annihilation) operator c†Rασ (cRασ), which creates
(annihilates) a spin-σ particle at the α site located in the unit cell at R. While this
notation looks daunting, it allows us to separate the translationally invariant part, i.e.
the lattice vector, from the sublattice index, which is convenient for the coming Fourier
transform.

The inter-unit cell contribution is not found as trivially, since we need to be certain
what unit cell the neighboring site is in. To accomplish this, we define the vector from
site α to site β in the same unit cell

aαβ ≡ dβ − dα (3.5)

which trivially fulfill the relation aαβ = −aβα. The vector connecting site α to its nearest
neighbor β site in a different unit cell is −aβα. Hence, the nearest neighbor β site of the α
site in the unit cell at lattice vector R, is located at R + dα−aαβ, which can be rewritten
as R− 2aαβ + dβ. Since 2aαβ is a lattice vector, R− 2aαβ is the lattice vector of the unit
cell with the β site. Hence, we can write inter-unit cell contribution to the tight-binding
Hamiltonian

H inter
TB = −t

∑
Rσ

∑
α 6=β

c†RασcR−2aαββσ, (3.6)

yielding the combined tight-binding Hamiltonian in the real space basis

HTB = −t
∑
Rσ

∑
α 6=β

(
c†RασcRβσ + c†RασcR−2aαββσ

)
. (3.7)

As we know from Bloch’s theorem, the wave functions of the states in a periodic potential,
like a lattice, are modulated plane waves, where the modulation has the same period as the
potential. This means that the solution to the tight-binding Hamiltonian is most easily
obtained in the momentum space basis. We consider a system of N unit cells, and assume
that the system has periodic boundary conditions, meaning we can Fourier transform the
annihilation operators

cRασ =
1√
N

∑
k

eik·Rckασ, (3.8)

where we have chosen to let the position in real space associated with each operator be
the position of the unit cell. This choice of gauge is convenient as it is invariant under a
translation in momentum space with any reciprocal lattice vector G, i.e. ckασ = ck+Gασ.
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Figure 3.3: (a) The band structure of kagome lattice. The inset shows the Fermi
surface at the van Hove points. (b) The density of states at the different energies. The
two gray regions marks the upper and lower van Hove points, as can be seen by the
diverging density of states.

The tight-binding Hamiltonian can now be written in the momentum space basis

HTB = −t
∑
kασ

∑
β 6=α

(
1 + e−2ik·aαβ

)
c†kασckβσ, (3.9)

where the sum over momenta is over the first Brillouin zone. All sums over momenta
will have this property unless otherwise specified. This tight-binding Hamiltonian is block

diagonal, meaning if we define a vector of the creation operators c†kσ =
(
c†kAσ, c

†
kBσ, c

†
kCσ

)
,

the Hamiltonian can be rewritten as

HTB =
∑
kσ

c†kσhkckσ, (3.10)

where hk is

hk = −t

 0 1 + e−2ik·aAB 1 + e−2ik·aAC

1 + e−2ik·aBA 0 1 + e−2ik·aBC

1 + e−2ik·aCA 1 + e−2ik·aCB 0

 , (3.11)

The Hamiltonian can be diagonalized analytically yielding three energy bands

ε1(k) = t+ tAk, ε2(k) = t− tAk, ε3(k) = 2t, (3.12)

where Ak =
√

4 [cos2 (k · aAC) + cos2 (k · aAB) + cos2 (k · aBC)]− 3 [3, 4]. The band
structure is shown in Fig. 3.3a. The density of states d(ω) can be calculated using,
d(ω) =

∑
kA(k, ω), where A(k, ω) = −2=[GR(ω,k)] is the spectral function, GR(ω,k)

is the retarded Greens function which for a non-interacting system is given by GR(ω,k) =
(ω − ξk + i0+)−1 where ξk = ε(k) − µ is the dispersion, µ is the chemical potential and
0+ is an infinitesimal small positive number. The density of state of the kagome lattice is
shown in Fig. 3.3b. From the density of state three van Hove singularities, i.e. energies
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Figure 3.4: The Fermi surface at the (a) lower and (b) upper van Hove (vH) points,
with a plot of the weight of each sublattice around the Fermi surface, where the sites
A, B and C are represented by the yellow, blue and red colors. The sublattice label(s)
indicate which sublattices are present at the vertices of the Fermi surface. The Fermi
surface nesting vectors are drawn, having M1 = g1/2, M2 = g2/2 and M3 = −M1−M2,
modulo reciprocal lattice vectors.

where the density of state diverges [5], are present in the kagome lattice. One comes from
the completely flat band, which we will ignore, and the other two are marked in Fig. 3.3b
by the gray shaded regions, and we will call them the upper and lower van Hove points.

The Fermi surface at the two van Hove points is shown in the inset on Fig. 3.3a. The
Fermi surface forms a regular hexagon, where the vertices of the Fermi surface are at the M
point of the first Brillouin zone. We can compare the Fermi surface at these points to the
ARPES measurements of AV3Sb5 in Fig. 2.4. We here see that the vanadium bands close
to the edge of the first Brillouin zone fits with the regular hexagon of the Fermi surface of
the van Hove point. Since the Fermi surface forms a regular polygon with an even number
of edges, we have to consider nesting effects. Nesting is defined as a non-zero wave vector
Q, called the nesting vector, satisfying the equation ξk = −ξk+Q for an ensemble of wave
vectors k close to a Fermi wave vector [40]. Assuming all k are on the Fermi surface, we
get the further condition, ξk = ξk+Q = 0. As the only excitable states at low temperatures
lie close to the Fermi surface, an excitation with this particular wave vector can excite
more states than other wave vectors. Thus, an order modulated with a nesting vector is
more probable to be found in the system than orders modulated by different wave vectors,
and since the nesting vector is non-zero by construction, the orders enhanced by nesting
effects break translational symmetry. The nesting vectors of the Fermi surface at the van
Hove points are M1 = g1/2, M2 = g2/2 and M3 = −M1 −M2. The spatial modulation
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represented by the nesting vectors correspond to a doubling of the unit cell, along t1, t2

and t2 − t1 respectively. Conclusively, the Fermi surface at the van Hove points means,
ordered phases breaking translational symmetry by doubling the size of the unit cell along
either of the primitive lattice vectors are more probable to occur in the system.

However, electrons with a given momentum at the Fermi surface, do not have an equal
probability of being measured at either sublattice [6, 7, 10, 41], as can be seen by the
sublattice weights around the Fermi surface in Fig. 3.4. This means, that only certain
orders will be enhanced from the nesting. Starting with the lower van Hove point, and
taking an order with wave vector Q = M2 as an example, the sublattice B is dominating at
all parts of the two edges connected by M2, whereas A and C, changes weight. The means
that a doubling of the unit cell in the direction of t2 by an order involving the operators
c†kBck+M2B is enhanced by nesting effects, as opposed to order involving c†kAck+M2A or

c†kCck+M2C . Similar arguments can be made for the other nesting vectors, such that M1

enhances orders with site A and M3 enhances orders with site C. Turning to the upper
van Hove point, again considering orders with wave vector Q = M2, we first see that the B
site is absent from the entire edge, meaning any order involving this site will be unaffected
by nesting. The other two sites do not dominate both parts of the Fermi surface connected
by M2, instead if A dominates at momentum k, C dominates at k + M2 and vice versa.
This means that bond orders involving sites A and C are enhanced most by nesting vector
M2. Similar arguments yield that bond orders involving sites B and C are enhanced by
M1 and bond orders involving sites A and B are enhanced by M3. Conclusively, at the
lower van Hove point, site orders are enhanced by the nesting effects, connecting a site to
each nesting vectors, whereas at the upper van Hove point, bond orders are enhanced by
nesting effects, connecting a specific bond to each nesting vector.

The superlattice structure of the charge order in the kagome metals has a transla-
tional symmetry breaking, which matches the spatial modulation of the nesting vectors
at the van Hove point. Furthermore, it is indicated that the van Hove points close to
the Fermi energy of AV3Sb5 are reminiscent of the upper van Hove point in the kagome
band structure [10, 22]. This has lead the scientific community to believe the superlattice
structure is formed by modulations of the bonds. The bond modulations enhanced by the
nesting effects can combine into the Tri-Hexagonal or Star-of-David bond orders depicted
in Fig. 2.7, and they are the only possible combination that conserves the symmetries of
the D6 point group. We will thus focus on these two ordered states, when searching for
phases in Chapter 5.

Since we look for translational symmetry breaking phases with the primitive lattice vectors
t̃1 = 2t1 and t̃2 = 2t2, we have to adjust the size of the reciprocal lattice. The new
primitive vectors of the reciprocal lattice are M1 and M2, meaning the first Brillouin zone
consists of all the momenta closer to Γ than any of the M points in the first Brillouin
zone of the translational symmetry conserving system. We will call the first Brillouin zone
defined by the primitive vectors M1 and M2 the reduced Brillouin zone (RBZ) and the
first Brillouin zone defined by the primitive vectors in Eq. (3.3) for the full Brillouin zone
(FBZ). Any sum over the full Brillouin zone can be rewritten in terms of sums over the
reduced Brillouin zone

∑
k∈FBZ

f(k) −→
∑

k∈RBZ

[f(k) + f(k + M1) + f(k + M2) + f(k + M3)] . (3.13)

We now assume that the tight-binding has a reduced translational symmetry, matching a
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Figure 3.5: The band structure of the Hamiltonian in Eq. (3.14) following the high
symmetry path of (a) the reduced Brillouin zone (b) the full Brillouin zone. The bands
from the translational symmetry conserving Hamiltonian can be seen, along with the
bands folded onto the path.
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Figure 3.6: The Fermi surface (FS) in the full Brillouin zone. We have indicated the
boundaries of the reduced Brillouin zone, as well as marked the different high symmetry
points of the full Brillouin zone (reduced Brillouin zone) as the labels with (without)
the apostrophe. The arrow indicates how the original contribution to the Fermi surface
of the full Brillouin zone is translated into the reduced Brillouin zone.

2a0 × 2a0 phase. This means we can rewrite the tight-binding Hamiltonian Eq. (3.10)

HTB =
∑

k∈RBZ

C†kσ(hk ⊕ hk+M1 ⊕ hk+M2 ⊕ hk+M3)Ckσ, (3.14)

where we have defined C†kσ = (c†kσ, c
†
k+M1σ

, c†k+M2σ
, c†k+M3σ

). The band structure of the
tight-binding Hamiltonian along the high symmetry path in the reduced Brillouin zone
and in the full Brillouin zone is plotted in Fig. 3.5. We will use the band structure in
Fig. 3.5b as a benchmark to compare ordered states breaking translational symmetry with
a 2a0×2a0 phase. The Fermi surface at the van Hove points is plotted in the full Brillouin
zone in Fig. 3.6. In the plot we show how the Fermi surface from the first Brillouin
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zone, when we consider a translational symmetry conserving phase, is translated into the
reduced Brillouin zone of a 2a0× 2a0 phase. In ARPES experiments the spectral function
is measured, which at the Fermi energy is non-zero for the occupied states, i.e. the states
contributing to the Fermi surface. When we examine the spectral function for the orders
states in Chapter 5, it will be compared to this Fermi surface.
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Chapter 4

Mean field theory

A many-body system consists of many particles whose dynamics are influenced by all
the other particles. To study such a system on the microscopic level one has to make
assumptions about the correlations between the particles. One theoretical framework
is mean field theory, which is based on the assumption that the fluctuations δc†µcµ′ =

c†µcµ′−
〈
c†µcµ′

〉
of the operator c†µcµ′ are small. This means, we can expand the Hamiltonian

to first order in the fluctuations obtaining a problem consisting of independent particles,

where the effective background potential is defined by the mean fields
〈
c†µcµ′

〉
. We start

by considering the general interaction

H =
∑
µµ′νν′

Vµµ′νν′ c
†
µcµ′c

†
νcν′ . (4.1)

Since electrons are indistinguishable particles, we have to consider all the possible ways to
decouple the interaction, yielding three possible channels: The direct channel, where the
interaction is expanded in the fluctuations of the operators of the form c†µcµ′ ; the exchange
channel, where the interaction is expanded in the fluctuations over an exchange of particles
c†µcν′ ; and finally the Cooper channel, where the interaction is expanded in the fluctuations
between two creation or two annihilation operators. The Cooper channel is important
when considering particle hole symmetric orders like superconductivity, however, as this
thesis is concerned with the normal state of AV3Sb5, we will ignore this channel. We now
compute the expansions of the interaction and divide the terms from the direct channel,
called the Hartree terms, from the terms from the exchange channel, called the Fock terms.

Vµµ′νν′c
†
µcµ′c

†
νcν′ ≈ Vµµ′νν′

(
V H
µµ′νν′ − V F

µµ′νν′
)

V H
µµ′νν′ =

〈
c†µcµ′

〉
c†νcν′ +

〈
c†νcν′

〉
c†µcµ′ (4.2)

V F
µµ′νν′ =

〈
c†µcµ′

〉
c†νcµ′ +

〈
c†νcµ′

〉
c†µcν′ .

In the expressions above we have not included the constant terms from the first order
expansion. These are added as corrections to the final energy

Ecrxn = −
〈
c†µcµ′

〉〈
c†νcν′

〉
+
〈
c†µcν′

〉〈
c†νcµ′

〉
, (4.3)

which will be included in the mean field Hamiltonian when needed, and else kept as
separate terms to be calculated later.
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To construct the mean field Hamiltonian we need to find the mean fields
〈
c†µcν

〉
. They

are defined as the thermal average over the operators c†µcν

〈
c†µcν

〉
=

Tr
[
e−HMF/T c†µcν

]
ZMF

, (4.4)

where ZMF is the partition function defined as Tr
[
e−HMF/T

]
and T is the temperature.

When using a self-consistency algorithm (see Section 4.3), it will be useful to express the
mean fields in terms of the components of the eigenvectors. Defining the eigenbasis of the
mean field Hamiltonian |ψn〉, such that HMF |ψn〉 = En |ψn〉 where En is the eigenenergy
and defining the µ component of the eigenvector un(µ) = 〈ψn|µ〉, we express the mean
fields in terms of the components of the eigenvector〈

c†µcν

〉
=
∑
n

[un(µ)]∗ un(ν)nF (En), (4.5)

where nF (E) is the Fermi function nF (E) =
[
eE/T + 1

]−1
.

4.1 Mean field decoupling of the interaction

We will now consider the particles in the tight-binding model as interacting electrons. We
assume the interaction takes the form of an extended Hubbard model, where we introduce
an on-site repulsion for electrons on the same lattice site, parameterized by U [42], and a
nearest neighbor repulsion, parameterized by V . The interaction strengths will be assumed
to be invariant of the lattice site(s), yielding the interaction Hamiltonian H ′

H ′ = U
∑
Rα

n̂Rα↑n̂Rα↓ + V
∑
Rα
β>α

∑
σσ′

(
n̂Rασn̂Rβσ′ + n̂Rασn̂R−2aαββσ′

)
, (4.6)

where nRασ = c†RασcRασ is the density operator and α < β is understood to ensure no
double counting takes place, defining A < B etc. Before writing the general mean field we
introduce some new notation s. We set s = + (s = −) when the two sites α and β are in
the same (different) unit cell(s). This allows us to define the lattice vector Rs of the unit
cell with the β site when the α site is in the unit cell at R

Rs ≡ R + (s− 1)aαβ. (4.7)

With this additional index we can write the most general mean field

∆ασβσ′

R,s =
〈
c†RασcRsβσ′

〉
. (4.8)

The s index is redundant when α = β, as the only non-zero mean fields with particles on
sites with the same sublattice are between particles in the same unit cell. We will interpret
the mean fields will in terms of order parameters in Section 4.4.

The interactions are decoupled in terms of the mean fields using the unrestricted
Hartree-Fock approximation from Eq. (4.2). We start by decoupling the on-site repulsion,
writing the Hartree and Fock terms

HMF
U = U

∑
Rα

∑
σ

(
∆ασασ

R,+ n̂Rασ −∆ασασ
R,+ c†RασcRασ

)
, (4.9)
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where σ =↑ (↓), when σ =↓ (↑). The nearest neighbor interaction is similarly decoupled.
The decoupling allows us to compress the notation

HMF
V = V

∑
Rα
β 6=α

∑
sσσ′

(
∆ασασ

R,+ n̂Rsβσ′ −∆ασβσ′

R,+ c†Rsβσ′cRασ

)
. (4.10)

The mean field Hamiltonian is found by combining the two mean field decoupled interac-
tions and the tight-binding Hamiltonian from Section 3.2.

HMF =
∑
Rασ

−t ∑
s,β 6=α

c†RασcRsβσ + U
(

∆ασασ
R,+ n̂Rασ −∆ασασ

R,+ c†RασcRασ

)

+V
∑
β 6=α

∑
σ′,s

(
∆ασασ

R,+ n̂Rsβσ′ −∆ασβσ′

R,s c†Rsβσ′cRασ

) , (4.11)

with the correction to the free energy

Ecrxn =− V
∑
Rα
β>α

∑
σσ′s

(
∆ασασ

R,+ ∆βσ′βσ′

Rs,+
−∆ασβσ′

R,s ∆βσ′ασ
Rs,s

)

− U
∑
Rα

(
∆α↑α↑

R,+ ∆α↓α↓
R,+ −∆α↓α↑

R,+ ∆α↑α↓
R,+

)
. (4.12)

4.2 Mean field Hamiltonian in momentum space basis

We will similarly make a change of basis and consider the interaction in momentum space.
To do this we assume translational symmetry breaks in accordance with the nesting vectors
presented in Section 3.2, meaning the mean fields has the property

∆ασβς
R,s = ∆ασβς

R+T,s, T = 2t1 + 2t2. (4.13)

This property allows the mean fields to either not break translational symmetry, or break
translational symmetry in either one lattice direction yielding a 2a0 phase or break trans-
lational symmetry in both lattice directions yielding a 2a0 × 2a0 phase.

We transform the mean fields into momentum space by inserting Eq. (3.8) in Eq. (4.8),
obtaining

∆ασβσ′

R,s =
∑
q

eiq·R
∑
k

ei(s−1)(q+k)·aαβ

N

〈
c†kασck+qβσ′

〉
. (4.14)

Comparing this with the definition of the Fourier transform, we obtain an expression for
the Fourier transform of the mean fields

∆ασβσ′
q,s =

∑
k

ei(s−1)(k+q)·aαβ
√
N

〈
c†kασck+qβσ′

〉
. (4.15)

We can rewrite the constraint on the system imposed in Eq. (4.13) in terms of the mean
fields in the momentum space basis∑

q

eiq·R
(
1− eiq·T

)
∆ασβσ′

q,s = 0. (4.16)
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As this has to be true for any lattice vector R, the equation must hold for every term in
the sum, meaning, either ∆q is zero or q ·T = 2πn. This yields four momenta in the first
Brillouin zone: 0, M1, M2 and M3, where ∆q can be non-zero.

We are now ready to construct the mean field Hamiltonian in momentum space, start-
ing by transforming Eq. (4.6), into momentum space

H ′ =
U

N

∑
qα

n̂qα↑n̂−qα↓ +
V

N

∑
qα,
β>α

∑
σσ′

(
n̂qασn̂−qβσ′ + n̂qασn̂−qβσ′e2iq·aαβ

)
, (4.17)

where n̂qασ =
∑

k c
†
kασck+qασ. Using the general mean field approximation given in

Eq. (4.2), we mean field decouple the Hubbard interaction.

HMF
U =

U√
N

∑
kqασ

(
∆ασασ

q,+ c†kασck+qασ −∆ασασ
q,+ c†kασck+qασ

)
, (4.18)

similarly, the nearest neighbor interaction is mean field decoupled

HMF
V =

V√
N

∑
kqασσ′

β 6=α

[(
1 + e2iq·aαβ

)
∆βσ′βσ′

q,+ c†kασck+qασ

−
(

∆ασβσ′

q,+ + ∆ασβσ′

q,− e2ik·aαβ
)
c†kβσ′ck+qασ

]
, (4.19)

with a step by step derivation given in Appendix A.
We can now construct the mean field Hamiltonian in the momentum space basis

HMF =
∑
kσ

c†kσhkckσ +HMF
U +HMF

V . (4.20)

This Hamiltonian is block diagonal, meaning we can rewrite the Hamiltonian as

HMF =
∑

k∈RBZ

(
C†k↑,C

†
k↓

)
Hk

(
Ck↑
Ck↓

)
, (4.21)

where Hk is the Hamiltonian for k in the reduced Brillouin zone, written in the basis
(C†k↑,C

†
k↓). The exact expressions of the interacting part of the Hamiltonian is derived in

Appendix A. The correction to the free energy from the on-site repulsion is found

EUcrxn = −U
∑
qα

(
∆α↑α↑

q,+ ∆α↓α↓
q,+ −∆α↓α↑

q,+ ∆α↑α↓
q,+

)
, (4.22)

and the correction to the free energy from the nearest neighbor interaction is

EVcrxn = −V
∑
qσσ′

α,β>α

∑
s

[
ei(1−s)q·aαβ∆βσ′βσ′

q,+ ∆ασασ
q,+ − ei(1−s)q·aαβ∆ασβσ′

q,s ∆βσ′ασ
q,s

]
. (4.23)

The expressions are also derived in Appendix A.
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4.3 Self-consistency algorithm

To solve the mean field Hamiltonian numerically, we implement a self-consistency algo-
rithm. The foundation of this method, lies in the fact that a self-consistent solution
minimizes the free energy. We follow the proof given in Ref. [43], starting with the mean
field Hamiltonian, where the mean fields put in to the Hamiltonian are defined as ∆µν ,
and minimize the free energy F = −T ln(ZMF), with the respect to a specific mean field
∆κλ

0 =
δF

δ∆κλ
=
−T
ZMF

δ

δ∆κλ
Tr
[
e−HMF/T

]
(4.24)

=
∑
νν′

(Vκλνν′ + Vνν′κλ − Vκν′νλ − Vνλκν′)
(〈
c†νcν

〉
−∆νν′

)
.

As this has to be true for any pair (κ, λ), we obtain the self-consistency condition
〈
c†νcν

〉
=

∆νν′ for all pairs of (ν, ν ′), which means that the mean fields used in the Hamiltonian are
equal to the mean fields calculated from the eigenstates of the Hamiltonian.

We will consider the system in the grand canonical ensemble, which means only the
average particle density ntarget is known, thus introducing the chemical potential µ, such
that H → H − µ. By choosing different target densities, we can examine the system at
different points in the band structure.

We now give a description of the steps of a self-consistent algorithm. For a state to be
a solution to the algorithm, we will require that the mean fields fulfills the self-consistency
condition and that the system has the desired average density ntarget. As the particle
density is controlled both by the mean fields and the chemical potential, we also update
the value of the chemical potential. We will start from an initial configuration of the mean
fields and an initial chemical potential, and follow the steps

1. Calculate the correction to the energy Ecrxn from the input mean field ∆in.

2. Calculate the average density n from the mean fields, see Eq. (4.25)

3. Calculate the mean field Hamiltonian from the input mean fields, and solve the
eigenvalue problem HMF |ψn〉 = En |ψn〉.

4. Calculate the new mean fields ∆new using the states obtained from the eigenvalue
problem and the chemical potential µin, see Eq. (4.5).

5. Check if all mean fields have converged, which numerically means the difference
between the new and input mean fields is smaller than a cut-off value ε, and if the
system has the desired total density, i.e. |n− ntarget| < εn, where εn is the cut-off
value for the densities.

(a) If the system has converged, the solution are the current mean fields.

(b) If the system has not converged, but the algorithm has gone through a fixed
number of iterations (in this thesis 10,000), the algorithm is stopped, and the
system has not converged.

(c) Else update the mean fields and the chemical potential with weights w∆ and
wµ, such that the updated mean fields are ∆up = (1−w∆)∆in +w∆∆new, and
the updated chemical potential is µup = µin +wµ(ntarget − n), where µin is the
chemical potential used at the start of the iteration. The algorithm is then
repeated with the updated mean fields and chemical potential as inputs.
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Ideally the result of the algorithm would not depend on the input parameters and always
find the global energy minimum, thus we could keep the cut-off values at essentially 0.
Numerical precision and the constraints on the running time of the algorithm forces a
lower bound on the cut-off values. In this thesis we set ε = εn = 10−8.

The weights are another layer of parameters influencing the solution of the algorithm.
If the weights are too small the algorithm converges slowly, such that a potentially ordered
state is missed due to the threshold of 10,000 iterations. On the contrary, when weights
are too large, energy minima can be missed by the algorithm. Furthermore, one risks that
the algorithm runs in a loop between different states above the convergence threshold, and
the algorithm never yields a solution. In this thesis we use w∆ = wµ = 1

5 , and on rare
occasions the change the weights, to test if the different input parameters yield a different
solution with a lower free energy.

The input parameter with the largest impact on results are the original mean fields put
in to the Hamiltonian in the first iteration. Some energy minima are narrow, i.e. the solu-
tions are rarely obtained if the original mean fields are not close to the solution. Hence, if
the global energy minimum cannot be found with the initialization used in the algorithm
the self-consistent solution is not the actual ordered phase, instead a meta stable state.
To mitigate the issue we will initialize with different configurations of the mean fields, and
the solution with the lowest free energy, i.e. the ground state, is the ordered state at this
point in (U, V )-space. However, the risk of missing the actual global energy minimum can
never be avoided.

In Eqs. (4.11) and (4.21) we have expressed the Hamiltonian in the real space basis and
momentum space basis, respectively. While the Hamiltonian can be written more intu-
itively in the real space basis, it comes with some computational problems. First, the time
to solve the eigenvalue problem grows cubic with the system size, meaning larger systems
are not realistically computable. Furthermore, with larger systems domains are likely to
occur yielding an inconclusive solution. Conversely, smaller systems are prone to finite
size effects, which also impact the quality of the results. Finally, due to periodic boundary
conditions the mean fields can only break translational symmetry in specific ways, allowed
by the boundary conditions.

In the momentum space basis, we limit the possibilities of how the translational sym-
metry can be broken when we imposed the constraint Eq. (4.13), however, since the
Hamiltonian is block diagonal in the momentum space basis, the time to solve the eigen-
value problem grows linear with system size, making larger systems more computationally
feasible. Furthermore, due to the assumptions on translational symmetry breaking, the
states cannot form domains.

4.4 Order parameters

The mean fields can be combined into order parameters, which quantify if the mean field
state has a particular order. We can define the phases of the system from the values of
the order parameters, especially how the order parameters differ from their values in the
disordered state. The expressions of the order parameters is written in real space basis,
as the physical interpretation of the parameters is more clearly seen in this basis. The
order parameters in momentum space basis can be obtained by Fourier transformation.
We define the vector φ†Rα = (c†Rα↑, c

†
Rα↓), to more elegantly define the order parameters.
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Using this notation, the density order parameter is defined as

nRα ≡
1

2
<
〈
φ†Rασ0φRα

〉
, (4.25)

where σ0 is the identity operator in spin space. This order parameter represents the local
electron density on site α in the unit cell at R, divided by the number of spin states. Next
we consider the spin density order parameter,

siRα ≡
1

2
<
〈
φ†RασiφRα

〉
, (4.26)

where σi is the Pauli-i matrix.
To define the bond order parameter properly, we consider the term in the mean field

Hamiltonian (Eq. (4.11)) with the operators c†Rsβσ′cRασ. The effective hopping strength

between the two sites is the coefficient of this term t+ V∆ασβσ′

Rs , meaning the real part of

the V∆ασβσ′

Rs modifies the hopping strength t. By defining the bond order parameter as

ηRsαβ ≡
1

2
<
〈
φ†Rασ0φRsβ

〉
, (4.27)

we can measure how easily electrons on sites α and β in the unit cells at respectively R
and Rs can hop to the other site. A positive value of the bond order parameter, means the
effective hopping strength is larger than the disordered state, translating into a stronger
bond between the two sites. We similarly define the spin bond order parameter

χiRsαβ ≡
1

2
<
〈
φ†RασiφRsβ

〉
, (4.28)

which measures if one spin direction can hop more easily between sites α and β in the unit
cells at R and Rs than the opposite spin direction.

We will derive the current density order parameter from the continuity equation, con-
sidering the site α in the unit cell with lattice vector R∑

β 6=α,s
̂Rsαβ = −∂n̂Rα

∂t
, (4.29)

where ̂Rsαβ is the current operator for the current flowing from site α to site β in the unit
cells at R and Rs respectively, and n̂Rα = (n̂Rα↑ + n̂Rα↓)/2. From Heisenberg’s equation
of motion we find the temporal derivative of the density operator∑

β 6=α,s
̂Rsαβ = i[n̂Rα, H]. (4.30)

As the interactions are density-density interactions, they will commute with the density
operator, hence, we only consider the tight-binding contribution to the Hamiltonian. Fur-
thermore, all terms where cRασ and its conjugate are absent will also commute with the
density operator of the site examined, leaving the remaining terms of the Hamiltonian∑

β 6=α,s
̂Rsαβ =

−it
2

∑
σ

∑
β 6=α,s

[
c†RασcRασ, c

†
RασcRsβσ + c†Rsβσ

cRασ

]
. (4.31)

Using anti-commutator relations, we can obtain the general result for the commutation

relation for two fermionic creation and annihilation operators ca and cb:
[
c†aca, c

†
bca

]
=
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×

Figure 4.1: Schematic drawing of the kagome lattice. The generating symmetry opera-
tions are indicated, with the arrow representing the C6 rotation around the axis marked
by × and the dashed line indicating the median of the mirror plane.

−c†bca and
[
c†aca, c

†
acb

]
= c†acb. Furthermore, as this has to be true for any pair site of the

lattice, we can equate the parts being summed over

̂Rsαβ =
−it
2

∑
σ

(
c†RασcRsβσ − c

†
Rsβσ

cRασ

)
. (4.32)

Taking the mean field average of this operator we find the current order parameter

jRsαβ ≡ =
〈
φ†Rασ0φRsβ

〉
. (4.33)

Similarly, we can define the spin current order parameter

ϑiRsαβ ≡ =
〈
φ†RασiφRsβ

〉
, (4.34)

which is non-zero if the direction of the current is opposite for particles of opposite spin.

4.5 Candidate phases

In this section, we will introduce the phases either found in the phase diagrams, or phases
that have previously been reported to exist in the kagome lattice at the upper or lower
van Hove point in Refs. [6, 7]. We will also discuss what symmetries the phases break.
The generating symmetry operations of the point group D6 are schematically drawn on a
section of the kagome lattice in disordered state in Fig. 4.1

When grouping different states together into a single phases we have chosen to focus
on what order parameter is broken in the system. Further subdivision has focused on
whether translational symmetry has been broken. This makes some phases cover a wide
range of different possibilities especially with regard to rotational symmetry. This is done,
as we are primarily interested in the translational symmetry breaking phases relevant to
AV3Sb5. The candidate phases are summarized in Table 4.1, with a list of the symmetries
of the phase.

Disordered

The disordered phase is, where the density is the same for all sites, all bonds have equal
strengths and where the spin density, spin bond, current and spin current order parameters
are zero everywhere in the system.
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Phase T C6 σ T Phase T C6 σ T
Disordered O C6 O O CBO (X) (X) (X) O
UCFM O (C2) (X) X TrH X C6 O O
FM O C6 O X SoD X C6 O O
SDW X (X) (X) X SBO (X) (X) (X) X
CDW X (X) (X) O iCDW (X) (X) (X) X
UC CDW O C2 (X) O iSDW (X) (X) (X) O

Table 4.1: An overview of the different phases, and whether they break translational
symmetry T , six-fold rotational symmetry C6, mirror symmetry σ or time reversal sym-
metry T . O indicates the symmetry is conserved; X indicates the symmetry is broken;
Cn indicates the order has n-fold rotational symmetry, and (X) indicates the symmetry
can be broken.

Unit-cell ferromagnet (UCFM)

A unit-cell ferromagnet is a phase, where the magnetic moments have the same distribution
in all unit cells. This phase breaks time reversal symmetry, and can reduce the point group
to C2 i.e. only conserve two-fold rotational symmetry of the symmetries of D6. We have
schematically drawn to variations of the UCFM in Figs. 4.2a and 4.2b. The first has a
combined magnetic moment of the unit cell, and the spins of the different sites do not lie
in the same plane or have the same magnitude. This phase has the point group C2. The
latter has no overall magnetic moment in the unit cell, the spins have the same magnitude
and lie in the same plane. In effect, this phase is a compromise to the magnetic frustration
of the Ising spin model on the kagome lattice discussed in Chapter 1. This variation has
the D6 point group.

Ferromagnet (FM)

A ferromagnet is a phase, where the magnetic moment of all sites are aligned, have the
same non-zero magnitude. It is thus a subcategory of the UCFM. An example is schemat-
ically drawn in Fig. 4.2c. This phase breaks time reversal symmetry, but conserves the
symmetries of the point group and translational symmetries.

Spin density wave (SDW)

We will use the term spin density wave for a generic phase, where the distribution of the
magnetic moments enlarge the unit-cell, thus breaking translational symmetry. The spin
bond order parameter can be non-zero in this phase as well, as the uneven distribution
of magnetic moments across the system makes hopping strengths of certain spins likely
to be larger than others. All the symmetries of the point group can be broken, and time
reversal symmetry is broken due to the non-zero spin order.

Charge density wave (CDW)

A charge density wave refers to phases where the distribution of charges breaks the trans-
lational symmetry. The bond order parameter can be non-zero for a similar reason as the
spin bond order could be non-zero for the SDW. This phase does not break time reversal
symmetry, and the all the symmetries of the D6 point group can be broken.
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(a) (b)

(c) (d)

Figure 4.2: Schematic drawings exemplifying (a), (b) UCFM, (c) FM, and (d) UC
CDW. The size of the red dots represents the charge accumulation on the site, and the
green arrows represents the directions of the spin of the site. The example drawing in
(a) do not have all spins in the same plane, and has a combined magnetic moment of
the unit cell, (b) has no overall magnetic moment.

Unit-cell charge density wave (UC CDW)

A unit-cell charge density wave distributes the charges unevenly inside the unit cell, where
all unit cells have the same distribution. This phase conserves time reversal symmetry
and translational symmetry, but it reduces the six-fold rotational symmetry to a two-fold
rotational symmetry, and it can break the mirror symmetry. An example of a UC CDW,
which conserves the mirror symmetry is schematically drawn in Fig. 4.2d.

Charge bond order (CBO)

For charge bond ordered phases the bonds between sites are not of equal strengths, but the
charges remain evenly distributed throughout the system. This phase does not break time
reversal symmetry, and can break any combination of translational, rotational symmetry
and mirror symmetry, but have to break at least one of them.

Tri-Hexagonal (TrH) and Star-of-David (SoD)

These two phases are examples of CBOs, and are schematically drawn in Fig. 2.7. They
have been separated from the other CBOs, as these phases have the same modulation of
the bond order parameter as the proposed candidates for the charge bond order in AV3Sb5

[28]. The phases break translational symmetry, yielding a new unit cell of size 2a0 × 2a0,
and the phases has the same point group as the disordered state.
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Spin bond order (SBO)

With a spin bond ordered phase we mean a phase with a non-zero spin bond order pa-
rameter. SBO breaks time reversal symmetry, and this phase can break any combination
of translational, rotational symmetry and mirror symmetry.

Imaginary charge density wave (iCDW)

Phases with a non-zero current order parameter are imaginary charge density waves. These
phases break time reversal symmetry and can break translational and any symmetry of the
point group of the disordered state. Two examples of iCDWs are schematically drawn in
Fig. 2.10, which conserve the rotational symmetry, one conserves translational symmetry
and both break mirror symmetry. The ordered states match the candidates to the loop
current phase proposed in Refs. [17, 29].

Imaginary spin density wave (iSDW)

Similarly to iCDW, an imaginary spin density wave is a phase with a non-zero spin cur-
rent. An imaginary spin density wave does not break time reversal symmetry, as particles
of opposite spin has the opposite momentum, but it can break translational symmetry,
rotational symmetry.
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Chapter 5

Results

In this section we present the results of the self-consistency algorithm from Section 4.3,
and we examine the most interesting phases with regard to the newly discovered kagome
metals more closely.

To examine the orders, we plot the reconstructed band structure of the ordered phase
and compare it to the band structure of the non-interacting system in Fig. 3.5b. If the
band structure is heavily reconstructed around the Fermi energy, i.e. a large gap has
opened around the Fermi energy or the overall shape of the band structure has changed
significantly, the electronic states are correlated to such a degree that the Hartree-Fock ap-
proximation is no longer valid, and thus the phase obtained is not describing the physical
system. We can furthermore calculate the spectral function at the Fermi energy over the
full Brillouin zone. Experiments like ARPES measures the spectral weight at the Fermi
energy, and this thus yields a prediction of experimental results.

To discuss the obtained phase diagrams at the different points in the band structure, we
compare the results of the self-consistency algorithm with two previous studies: A study
using the singular-modal functional renormalization group (SMFRG) method (see ref. [6])
and a functional renormalization group (FRG) study (see Ref. [7]). Both methods are
based on renormalization group theory, which only works in the disordered state. When
the system enters the ordered state a divergence in the respective susceptibility stops the
analysis. This have two important consequences: The method cannot reveal if any of the
symmetries of the point group are broken, and it cannot find coexisting orders. A differ-
ent study using Jastrow-Slater wave-functions has recently been published (see Ref. [23]),
however, as the results from the study matches poorly with the results obtained here and
in the SMFRG and FRG studies, we will not compare our results to this study.

In the following sections we present the result of the self-consistency algorithm at different
target densities. For all phase diagrams we consider a system of 12 unit cells in both
lattice directions, yielding 432 sites for the real space basis and 36 momenta in the reduced
Brillouin zone. We will consider the system at a temperature of 0.01t unless otherwise
specified.

5.1 At the upper van Hove point

We first study the upper van Hove point, where ntarget = 5/12. At this filling the algorithm
was studied considering the Hmiltonian in both the real space basis and momentum space
basis. The algorithm was initialized with the random, Tri-Hexagonal and a Star-of-David
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(b)

Momentum space

Disordered Not converged or domains
UC CDW FM
CDW (2x2 or 2x1) iSDW w/ UC FM
CDW (non 2x2 or 2x1) SDW (2x2)
TrH TrH w/ SDW & CDW
CBO (non TrH or SoD) SDW w/ CDW

Figure 5.1: Phase diagrams at the van Hove point where ntarget = 5/12 in (U, V )-
space using the (a) momentum space and (b) real space basis of the Hamiltonian in
the self-consistency algorithm. The × symbol marks the points in (U, V )-space tested
in the algorithm, and the color codes of the phases are indicated in the table below.
Both variations of the algorithm were initialized with the random, Tri-Hexagonal and
Star-of-David configurations, and the momentum space variation was further initialized
with the coexisting Tri-Hexagonal and FM and two coexisting Tri-Hexagonal and iCDW
configurations.

configurations in both bases. The algorithm was further initialized with a coexisting Tri-
Hexagonal and FM phase and two coexisting Tri-Hexagonal and iCDW phases when the
Hamiltonian was written in the momentum space basis. The iCDW configurations, which
the system was initialized with, are the same as the proposed iCDWs schematically drawn
in Fig. 2.10. The phase diagrams obtained form the self-consistency algorithm are shown
in Fig. 5.1.

The two phase diagrams yields similar results, when the algorithm using the Hamiltonian
in the real space basis converges to a phase the momentum space code cannot find (i.e.
a modulation containing more than two unit cells in either lattice direction) or does not
converge.

The phases of most interest to us are the phases containing the Tri-Hexagonal bond
order. We see a large region, covering several of the tested points in (U, V )-space with
this bond configuration around the point (U, V ) = (2t, 0.75t). This phase is only found
when initializing with the Tri-Hexagonal configuration, meaning the minimum in the free
energy might be narrow i.e. the algorithm only converges to this order if the initial mean
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(U, V ) = (3t, t)

(a)

(U, V ) = (2.5t, 1.5t)

(b)

Figure 5.2: The coexisting Tri-Hexagonal and SDW found when U = 3t, V = 1t.

fields have a similar configuration. When initializing with the Star-of-David configuration,
the algorithm converges to a Star-of-David; however, this state has a higher free energy,
eg. for U = 1.5t and V = 0.75t, ESoD−ETrH ≈ 0.005t. We also note that previous studies
have only found the Tri-Hexagonal phase when including phonons [23], where we have
here found that the phase can be driven solely by the nesting effects associated with the
electronic states.

Furthermore, at the two points (3t, t) and (2.5t, 1.5t) in (U, V )-space, the self-consistent
solution is a coexisting Tri-Hexagonal, CDW and SDW phase. The order at (3t, t), is found
when initializing with a Tri-Hexagonal configuration of the mean fields, thus the bare Tri-
Hexagonal order is not likely to be a self-consistent solution at this point. The two orders
are schematically drawn in Fig. 5.2. As can be seen the order state found at (2.5t, 1.5t)
breaks translational symmetry, time reversal symmetry and the six-fold rotational symme-
try. Only the two-fold rotational symmetry and mirror symmetry are conserved yielding
the point group D2. Conversely, the ordered state found at (3t, t) conserves all the sym-
metries of the D6 point group, intriguingly this means we have found an order, which has
the same symmetries expected as the kagome metals, in the charge ordered state.

Comparing the remaining phase diagram to the previous renormalization group studies,
we see some overlap between our results. The large ferromagnetic phase when U ≥ 3V ,
matches well with both studies, however the SMFRG analysis only finds it for U < 2.5t.
The coexisting iSDW and UCFM has the spin configuration seen in Fig. 4.2b, which is
similar to the anti-ferromagnetic phase found in the SMFRG analysis at U ≈ 2.5t and
V < 0.5t. The exact location of the phase in (U, V )-space, and how large V can be when
seeing this phase differs between the two studies. The FRG study does not find any CDW
phases for the interaction strengths we are considering; however, the UC CDW phase found
for U, V < 0.5t in the SMFRG study, matches well with the UC CDW phase found here.
The phase found using mean field theory covers a larger portion of (U, V )-space; however,
in large parts of this region the SMFRG study finds superconducting phases, which our
analysis cannot obtain. Furthermore, where the SMFRG study finds UC CDW around
(U, V ) = (0.5t, 2t), we find a translational symmetry breaking CDW. Finally, over a large
region in (U, V )-space the SMFRG method finds a translational symmetry breaking CBO,
including the regions where we find a Tri-Hexagonal phase. While the SMFRG study can-
not tell us if the Tri-Hexagonal order is the ground state, it does match well with our result.

We will inspect the Tri-Hexagonal order more closely, as it is a proposed candidate for the
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Figure 5.3: (a) The reconstructed band structure of the Tri-Hexagonal phase taken
along the high symmetry path of the full Brillouin zone. (b) The spectral function in the
first Brillouin zone for the Tri-Hexagonal phase at the Fermi energy. A weak response
is seen at the Fermi surface when the material is not in an ordered phase. The values
of the mean fields are taken for (U, V ) = (2t, t)

charge order in AV3Sb5. The reconstructed band structure is plotted in Fig. 5.3a. We see
a gap opening at the Fermi energy, which can be explained by the ordered state lifting of a
degeneracy. This change in the band structure further means the state is band insulating
as no states can be excited with an infinitesimal higher energy at the Fermi level. As
the band structure has not been heavily reconstructed, we can conclude that the Hartree-
Fock approximation is a good approximation at the examined interaction strength. We
furthermore plot the spectral function in Fig. 5.3b. We see a weak response compared to
Fig. 5.9b, as can be seen on the intensity scales. This is caused by the gap opening at the
Fermi energy.

We do a similar investigation of the coexisting Tri-Hexagonal, SDW and CDW, since
it breaks the symmetries which are seen broken in the kagome metals. In Fig. 5.4a we
plot the reconstructed band structure of the order state. The band structure has the same
overall structure as the Tri-Hexagonal phase seen in Fig. 5.3a, with a similar gap at the
Fermi energy. Furthermore, the plot of the spectral function in Fig. 5.3b, where a weak
response is seen at the Fermi surface of the non-interacting Hamiltonian.

The mean fields calculations so far have ensured that the on-site part and the hopping
part of the nearest neighbor interaction are the same. This implicit assumption is not nec-
essarily true, so we allow for the two contributions to the Hamiltonian to be characterized
by different strengths, meaning the mean field decoupled nearest neighbor interaction in
real space is

HV =
∑
β 6=α

∑
σσ′s

(
V∆ασασ

R,+ nRsβσ′ − V ′∆ασβσ′

R,s c†Rsβσ′cRασ

)
. (5.1)

With the new interaction, we can again follow the self-consistency algorithm to obtain
the most energetically favored phases. We choose three different values of U : 0, 2t and
3.5t. For these values we can test whether a bond ordering regime exist for low magnetic
strengths, how the Tri-Hexagonal phase found when V = V ′ behaves when allowing for
V 6= V ′, and finally, this allows us to see if the unrestricted Hartree-Fock analysis supports
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Figure 5.4: (a) The reconstructed band structure of the coexisting Tri-Hexagonal,
SDW and CDW phase taken along the high symmetry path of the full Brillouin zone.
(b) The spectral function in the first Brillouin zone for the coexisting Tri-Hexagonal,
SDW and CDW phase at the Fermi energy. A weak response is seen at the Fermi
surface of the non-interacting Hamiltonian. The values of the mean fields are taken for
(U, V ) = (3t, t)

the findings in Ref. [6], where a CBO was found for U = 3.5t. The three phase diagrams
were obtained in the momentum space basis, and all points were initialized with random,
Tri-Hexagonal and Star-of-David configurations. They are shown in Fig. 5.5.

We will again focus on the phases most interesting for the new kagome metals. We
see a bond ordering regime in the phase diagram where U = 0. A bond ordering phase
is expected here as modulations in density and spin are limited by the small values of U
and V compared to V ′. We furthermore find a bond ordering regime for U = 2t when
V ′ ≥ 0.75t and V ≤ t. This phase is an extension of the Tri-Hexagonal phase found in
Fig. 5.1. The parts of (V, V ′)-space where V ′ > V are expected to favor bond ordered
phase, due to the larger impact of the bond order parameter in the Hamiltonian and in
the correction to the total energy, however when (V, V ′) = (t, 0.75t) the algorithm still
converges to a Tri-Hexagonal state, meaning the phase is robust against changes to the
interaction strengths.

Finally, we consider the phase diagram for U = 3.5. Our results show a CBO phase
when V ′ ≈ 2t and V ≤ t, however this phase is not of the same form as the Tri-Hexagonal
or the Star-of-David, instead the ordered states break rotational symmetry. The rest of
the phase diagram is dominated by magnetic phase, with other coexisting order. This
result does not match the finding of the SMFRG study well.

5.2 Above the upper van Hove point

As discussed in Section 2.2, AV3Sb5 has van Hove points below the Fermi energy. Hence,
we want to examine how stable the phases obtained for the upper van Hove points are
against a small change in average density of the system. We will here consider the target
density ntarget = 5/12 + 0.02. The Fermi surface at the appropriate chemical potential is
shown in Fig. 5.6 in the full Brillouin zone. The corners of the regular hexagon has been
rounded off. Naively one would assume the nesting effects would be suppressed compared
to ntarget = 5/12, as fewer momenta k satisfy the nesting conditions for any particu-
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Figure 5.5: Phase diagrams at the upper van Hove point (ntarget = 5/12) in the (V, V ′)-
space, when (a) U = 0, (b) U = 2t and (c) U = 3.5t. The × symbol marks the points
in (V, V ′)-space tested in the algorithm, and the color codes of the phases are given in
table to the lower right. All three cases are initialized with the random, Tri-Hexagonal
and Star-of-David configurations.
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Figure 5.6: The Fermi surface (FS) in the full Brillouin zone (FBZ) for the tight-binding
model with the average density n = 5/12 + 0.02, using the Hamiltonian assuming (a)
conservation (b) breaking of translational symmetry. The high symmetry points of the
first Brillouin zone are labelled, and in (b) are the boundaries of the reduced Brillouin
zone indicated with the high symmetry points of that zone.
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Figure 5.7: Phase Diagram above the upper van Hove point (ntarget = 5/12 + 0.02)
using the momentum space code. The × symbol marks the points in (U, V )-space
tested in the algorithm, and the color codes of the different phases are given in the
table to the right. The algorithm was initialized with random, Tri-Hexagonal, Star-
of-David, coexisting Tri-Hexagonal and iCDW and coexisting Tri-Hexagonal and FM
configurations.

lar nesting vector. We initialize the algorithm with the random, Tri-Hexagonal, Star-of
David, coexisting Tri-Hexagonal and FM configurations and two coexisting Tri-Hexagonal
and iCDWs configurations, where the currents resemble the two current configurations in
Fig. 2.10. The phase diagram obtained from the momentum space code is given in Fig. 5.7.

The most interesting phase in the phase diagram is the large region with a coexisting
Tri-Hexagonal, SDW and iCDW, which is found when U ≈ 2V . We see two variations of
the ordered state, found in the regions marked by the regions I and II, respectively. The
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Figure 5.8: The two coexisting Tri-Hexagonal, SDW and CDW ordered states found
above the van Hove point. (a) and (b) is found in the regions I and II in Fig. 5.7,
respectively. We note that while the order in (a) has conserved the symmetries of the
D6 point group, the order in (b) have broken rotational symmetry, such that it has a
C3 rotational symmetry, yielding the point group D3.
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Figure 5.9: (a) The band structure for the coexisting Tri-Hexagonal and SDW. Specific
values taken for U = 2t, V = t. The red (black) lines represent the band structure of the
spin-up (spin-down) electrons. (b) The spectral function of the coexisting Tri-Hexagonal
and SDW at the Fermi energy. Values taken when U = 2t, V = t.

two orders are schematically drawn in Fig. 5.8. The ordered states break translational
symmetry, creating a new unit cell of size 2a0 × 2a0, and time reversal symmetry. The
order found in region II break the six-fold rotational symmetry, only having a three-fold
rotational symmetry, leaving the state with the point group D3. The ordered state in
region I conserves the six-fold rotational symmetry, thus this phase has the same point
group as the disordered state.

We can compare the phases studied here to the phase diagram at the same in target
density in the FRG study (see Ref. [7]). First the FRG analysis does not find the bond
ordered phase for any part of (U, V )-space that we examine here. The FRG study finds a
ferromagnetic phase covering the region where U ≥ 2V . This covers a much larger than
the ferromagnetic phase found for U ≈ 1t and V = 0.25t. The FRG paper finds a super-
conducting phase for V > 2U , which our method cannot obtain. Furthermore, for large
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Figure 5.10: The temperature dependence of the bond order parameter associated with
the charge bond order and of the spin order parameter associated with the spin density
wave. A second order phase transition for a ferromagnetic phase is seen at 0.0289t and a
first order phase transitions is seen at 0.0281t introducing the Tri-Hexagonal order and
changing the ferromagnetic phase to a SDW. The plot is shown for (U, V ) = (2t, t).

parts of the (U, V )-space considered in this work, the FRG analysis could not determine
the order precisely, as the critical ordering scales were too small.

We now examine the coexisting Tri-Hexagonal, SDW and CDW phase from region I. We
plot the band structure of the ordered state in Fig. 5.9a. The degeneracy between spin
up and spin down electrons is lifted for most parts of the band structure, and the gap is
especially prevalent around the Fermi energy. The charge order further lifts a degeneracy
at the Fermi energy. Due to the lifting of the degeneracy between spin-up and spin-
down electrons, we now have bands crossing at the Fermi energy, meaning the phase is
no longer band insulating. As the bands are not heavily reconstructed, only opening
small gaps, we can consider the Hartree-Fock approximation to be valid for the ordered
phase. We similarly plot the spectral function calculated at the Fermi energy for this
state in Fig. 5.9b. Compared to the Fermi surface of the disordered state, the Fermi sea
has expanded. Furthermore, the Fermi surface no longer appears to have straight lines
instead bending inwards between the M points. We also note the absolute intensity of the
spectral weight, which is much larger than the spectral weight of the two phases found at
the upper van Hove point.

As the time reversal symmetry breaking happens either at the same temperature or
at a lower temperature than the translational symmetry breaking in the kagome metals
[27, 33], we want to consider which order develops first. To do this we plot the temper-
ature dependence of a bond order parameter associated with the translational symmetry
breaking and the magnitude of the spin vector associated with the spin density wave aver-
aged over the sites in Fig. 5.10 for (U, V ) = (2t, t). We see two separate phase transitions.
First at TFM = 0.0289t, a second order phase transition introduces a ferromagnetic order.
We note that this matches the result FRG study, where a ferromagnet is found at this
point in (U, V )-space. At TCBO = 0.0281t a first order phase transition introduces the
bond order and changes the magnetic order to break translational symmetry. To translate
this temperature into measurable units, we estimate the value of t = 0.5 eV based on
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the minimal tight-binding model discussed in Chapter 6. The difference between the two
critical temperatures are ∆TC = 5 K. Using a different point in (U, V )-space (U = 3t and
V = 1.25t), we obtain ∆TC = 25 K. This result does not match the sequence at which the
two orders emerge in AV3Sb5.

We, furthermore estimate the effective magnetic field felt by the electrons from the
energy difference between the spin-up and spin-down particles at the Fermi level, using
the relation Beff = ∆E/µB. Considering the case where (U, V ) = (2t, t) and T = 0.01t
and assuming t = 0.5 eV, we obtain an effective magnetic field of Beff = 0.1 G. This
magnetic field can be compared to the effective magnetic field responsible for the time
reversal symmetry breaking, which is estimated at Beff = 0.3 G [17]. As can be seen the
two orders of magnitude matches well, which means we cannot exclude the coexisting
Tri-Hexagonal, SDW and CDW depicted in Fig. 5.8a from being responsible for the time
reversal symmetry broken phase.

5.3 At the lower van Hove point

We also construct the phase diagram for the lower van Hove point (ntarget = 1/4). As
discussed in Section 3.2, the nesting effects at the lower van Hove point enhance site or-
ders doubling the unit cell. As we are still primarily interested in the charge bond ordered
phases proposed for AV3Sb5, we initialize with random, Tri-Hexagonal and Star-of-David
configurations. We use the algorithm with the momentum space basis, showing the phase
diagram in Fig. 5.11.

This phase diagram has three regimes. When V > U , we obtain a charge modulating
phase, primarily seeing modulations inside the unit cell. Furthermore, when U ≥ V , we
see a ferromagnetic phase, and finally for U ≈ 4t and V ≈ 2t, we see the coexisting phase
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Figure 5.11: Phase Diagram at the lower van Hove point (ntarget = 1/4) using momen-
tum space code. The × symbol marks the points in (U, V )-space tested in the algorithm,
and the color codes of the different phases are given in the table to the right. The algo-
rithm was initialized with the random, Tri-Hexagonal and Star-of-David configurations.
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containing SDW, iSDW and CDW. The limited number of points in (U, V )-space, where
a translational symmetry breaking phase is found, could indicate that the initializations
used in the algorithm are not covering the necessary configurations to obtain the global
energy minimum for many points in (U, V )-space.

5.4 Summary of the results

We here give a short summary of the results obtained in this chapter.

• In the phase diagram at the upper van Hove point we find a Tri-Hexagonal phase.
This phase has a lower free energy than the Star-of-David configuration making the
Tri-Hexagonal phase the ground state. Furthermore, the phase is robust against
changes to interaction strengths. The band structure of the Tri-Hexagonal phase
reveals a small gap opening at the Fermi surface leaving the ordered state a band-
insulator.

• At the upper van Hove point we further find two different coexisting Tri-Hexagonal,
SDW and CDW phase orders. The variant found at (U, V ) = (3t, t) conserves the
six-fold rotational symmetry and the mirror symmetries, while breaking translational
symmetry and time reversal symmetry. Hence, the phase has the same symmetries
as the kagome metals in the charge ordered phase. A gap has opened at the Fermi
energy leaving the state a band-insulator.

• In the phase diagram above the upper van Hove point, we again find two different
coexisting Tri-Hexagonal, SDW and CDW phase orders, none of them the same as
the orders found at the upper van Hove point. The phase found in the region I,
conserves the six-fold rotational symmetry and the mirror symmetries, while break-
ing translational symmetry and time reversal symmetry. Hence, the phase has the
same symmetries as the kagome metals in the charge ordered phase. From the band
structure we see a degeneracy lifted between the spin-up and the spin-down parti-
cles, which results in band crossings at the Fermi level, thus this phase is no t band
insulating.
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Chapter 6

Seven band model

So far, we have studied the pristine two-dimensional kagome lattice only considering elec-
trons hopping between nearest neighbor sites. While this model is applicable to the re-
cently discovered kagome materials, it does not capture the specific intricacies of the
material. To obtain a more materially specific model, one can from DFT calculations
construct minimal tight-binding models, which captures most of the important physics
of the model, without the large computational costs of using the entire DFT calculated
band structure. The minimal tight-binding model includes multiple orbitals and hopping
strengths between sites that are not nearest neighbors. The limitations of a minimal
model comes from the choices made regarding the ”important physics.” This can limit
its applicability to our purpose, which is to use it as the base model for an unrestricted
Hartree-Fock mean field analysis.

Y. Gu et al. introduced two minimal tight-binding models based on DFT calculations
of CsV3Sb5 in Ref. [15]. Their models use d orbitals from the vanadium sites and p
orbitals from the in-plane antimony sites, meaning the models are kept in two dimensions,
making the code more efficient and viable as a basis of a self-consistency algorithm. The
models were used to study the spin orbit coupling of the materials and if any edge state
show gapless excitations.
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Figure 6.1: Schematic drawings showing the transformation to the local coordinate
system (X,Y, Z) from the global coordinate system (x, y, z), showing (a) the kagome
plane (b) the plane perpendicular to the kagome plane. Furthermore, the sublattice
label is given for the local coordinate systems, associated with the site in (a), where
the local coordinate system in (b) is the same for all sites. Out-of-plane and in-plane
antimony sites are labelled.
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Figure 6.2: (a) The band structure of the seven band model. The red, blue, black
bands shows the contributions from the vanadium dX2−Y 2 , vanadium dY Z and antimony
pz orbitals respectively. The red line closely resembles the dispersion of the dispersion
of the kagome lattice. The dashed line indicates the Fermi energy chosen in this thesis.
(b) The Fermi surface of the seven band model. The black line represents the choice
of the authors of the model, and the red line shows our choice of the Fermi surface.
The contribution of the different orbitals are labelled together with the high symmetry
points of the kagome lattice.

To construct the tight-binding models, the authors transform the system into a local
coordinate system (X,Y, Z) for each site, such that the crystal appears the same for all
vanadium sites. The coordinate transformation is sketched in Fig. 6.1. Y is the out-of-
plane direction, Z is the direction to the nearest in-plane antimony site and X is the
direction in-plane between the out-of-plane antimony sites. With this local coordinate
system, the nearest antimony sites create a distorted octahedral, such that the orbitals
can be written in ascending order in terms of energy as dX2−Y 2 , dY Z , dXZ , dXY and
dZ2 . The authors find that the orbitals associated with the two van Hove points near
the Fermi surface is associated with the dX2−Y 2 and dY Z orbitals in the local coordinate
system. Furthermore, the electron pocket around the Γ point comes from the antimony pz
orbital. The authors choose these three orbitals to base the minimal tight-binding model
yielding seven bands in total. To obtain the parameters of the model including up to 5th

nearest neighbor hoppings, the tight-binding model is fitted to the DFT calculations. The
tight-binding Hamiltonian has the structure

H =

HX2−Y 2 0 0
0 HSb V
0 V † HY Z

 , (6.1)

where HSb is a number, HX2−Y 2 and HY Z are three by three matrices in sublattice space,
and V is a one by three matrix. We write the expressions for each entry in the Hamiltonian
in Appendix B. The band structure is shown in Fig. 6.2a. As wanted the two van Hove
points at M below the Fermi energy are captured well within this model as is the electron
pocket around Γ from the antimony pz orbital. We also compare the Fermi surface of the
seven band model plotted in Fig. 6.2b comparing to ARPES results from Ref. [9, 10]. We
notice that Fermi surface from the dX2−Y 2 does not resemble any of data seen in ARPES.
However, by changing the chemical potential, we get the concave Fermi surface from
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experiments. Furthermore, the contribution to the Fermi surface from the dY Z orbital in
the model does not seem to have any connection to the ARPES data.

6.1 Modifications to the interaction Hamiltonian

As we have now introduced multiple orbitals on each site, we have to consider Coulomb
repulsion between the electrons in different orbitals. We introduce some notation letting κ
represent both site and the orbital on the site and let κ represent the other orbital on the
same site. We follow Olés (Ref. [44]), and consider three contributions. A density-density
interaction, parametrized by U ′

HU ′ =
U ′

2

∑
Rκσσ′

nRκσnRκσ′ , (6.2)

where the factor of 1/2 is to account for double counting of the orbitals. Hund’s coupling

HJ = −J
2

∑
Rκσσ′

c†RκσcRκσ′ c†Rκσ′cRκσ, (6.3)

where 1/2 is similarly introduced to account for double counting. The pair wise coupling

HJ ′ = J ′
∑
Rκ

c†Rκ↑cRκ↑ c
†
Rκ↓cRκ↓. (6.4)

We will set J = J ′ = U/r, where r ≥ 2. We set U ′ = U − 2J . In this way U ≥ U ′ ≥ 0 and
U ≥ J , meaning the strongest repulsion comes from interactions in the same orbital, which
matches Hund’s rules. We choose to write the Hamiltonian in the momentum space basis,
as the algorithm is more efficient in this basis. We thus Fourier transform the interactions
into momentum space and mean field decouple them

HU ′ =
U ′√
N

∑
qk

∑
κσσ′

(∆κσκσ
q+ c†kκσ′ck+qκσ′ −∆κσκσ′

q+ c†kκσ′ck+qκσ) (6.5)

HJ = − J√
N

∑
qk

∑
κσσ′

(∆κσκσ′
q+ c†kκσ′ck+qκσ −∆κσκσ

q+ c†kκσ′ck+qκσ′) (6.6)

HJ ′ =
J ′√
N

∑
qk

∑
κσ

(∆κσκσ
q+ c†kκσck+qκσ −∆κσκσ

q+ c†kκσck+qκσ). (6.7)

Similarly, the correction to the total energies are calculated

Ecrxn
U ′ = −U

′

2

∑
qκσσ′

(
∆κσκσ

q+ ∆κσ′κσ′
q+ −∆κσκσ′

q+ ∆κσ′κσ
q+

)
(6.8)

Ecrxn
J =

J

2

∑
qκσσ′

(
∆κσκσ′

q+ ∆κσ′κσ
q+ −∆κσκσ

q+ ∆κσ′κσ′
q+

)
(6.9)

Ecrxn
J ′ = −J ′

∑
qκσ

(
∆κσκσ

q+ ∆κσ κσ
q+ −∆κσκσ

q+ ∆κσ κσ
q+

)
. (6.10)

The detailed calculations are written in Appendix C.
Finally, we discuss the interactions with electrons on the antimony pz orbital. Since

the contribution to the Fermi surface of the antimony orbital seems to change little when
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AV3Sb5 enters the charge bond ordering phase [18], will we try to limit the effect of the
interactions on the antimony orbital. Hence, we do not allow for nearest neighbor inter-
actions between the vanadium sites and the antimony sites or between different antimony
sites. Regarding the Hubbard interaction, we define a USb, such that the strength of the
Hubbard interaction on the antimony pz orbital is given by USb ≡ λU . This allows us to
tune the strength of magnetic moments on the antimony sites. As the p orbital on the
antimony sites are not localized as sharply as the d orbitals on the vanadium sites [14], we
only consider 0 ≤ λ ≤ 1.

The system is in the grand canonical ensemble, and we only know the average density
of electrons over all types of orbitals, meaning we have one common chemical potential.

6.2 Candidate phases

The candidate phases introduced in Section 4.5, will with small changes to their definitions,
be applicable for the seven band model. Most importantly any ordered phase not breaking
translational symmetry, will have to deviate for each orbital. As an example, we will
consider a state ferromagnetic if all spins from the same orbital has the same magnitude
and direction. Thus, if the spins of the antimony pz orbital and the vanadium dX2−Y 2

orbital point in different directions, we will still consider it a ferromagnetic state if the
spins of the vanadium dX2−Y 2 orbitals point in the same direction. This choice is made, as
the electrons on the pz orbital in the non-interacting case are only coupled to the electrons
on the vanadium sites, through the tunneling between the antimony pz orbital and the
vanadium dY Z orbital.

6.3 Results

We consider a system of 12 by 12 unit cells, yielding 36 momenta in the reduced Brillouin
zone, and the system has a temperature of T = 0.005 eV. We initialize with the random,
Tri-Hexagonal, Star-of-David, coexisting FM w/ iSDW and iCDW, shown in Fig. 6.4, co-
existing Tri-Hexagonal and FM and coexisting Tri-Hexagonal and iCDW configurations,
where the currents resemble the configurations in Fig. 2.10. The algorithm is examined
with two values of USb: USb = 0 and USb = U/2. The resulting phase diagrams are seen
in Fig. 6.3.

The two phase diagrams have similar overall regimes, so we will deal with them at the
same time. First, when V < 1 eV, we have a disordered phase, where the only structure is
a relocation of charges between the different orbitals. For USb = U/2 the phase is further
limited, by U < 1 eV. A ferromagnetic phase appears for when U ≥ 1 eV, as magnetic
moments on the antimony sites lowers the free energy here and redistributing of charges
has a smaller effect compared to the case where USb = 0

When U . 1 eV, V & 1 eV we see charge density wave orders breaking translational
symmetry, similar to the results from the three band model. We get a co-existing UC
CDW and a UCFM when U ≥ 1.5 eV and V ≈ 1.25 eV. This phase covers a larger area of
(U, V )-space when USb = 0 compared to USb = U/2. Furthermore, we obtain a coexisting
CDW and SDW phase when U & 1.5 eV and V & 1.5 eV. Finally, when U = 2.25 eV,
V = 0.75 eV and USb = 1

2 , and for USb = 0 in the regions around V = 0.75 eV and
U = 1.5 eV and around U = 2.5 eV and V = 1 eV a coexisting FM, iSDW and iCDW is
found. The phase is schematically drawn in Fig. 6.4. It contains loop currents between the
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Figure 6.3: Phase Diagram for the seven band model with (a) USb = U/2 and (b)
USb = 0 using the self-consistency algorithm. The color codes of the phases is seen in
the table to the right and the × symbol marks the points in (U, V )-space tested with
the algorithm.

vanadium sites, which has the same spatial modulation as the proposal for loop currents
in kagome metals from Ref. [17].

The loop currents in this phase comes from electrons in the vanadium dY Z orbitals
moving between the different sites, which can explain, why they are not seen in the pristine
kagome lattice, as the contribution to the band structure from the dY Z orbital does not
have a similar dispersion as the band structure of the pristine kagome lattice found in
Section 3.2. Apart from time reversal symmetry, the order breaks mirror symmetry, hence
the point group of the ordered phase is C6. In Fig. 6.5 we check how robust the phase is
against changes in the interaction strengths. Small variations in U , V and USb changes
the solution of the self-consistency algorithm. This lack of robustness indicates that either
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Figure 6.4: Schematic drawing of the coexisting FM, iSDW and iCDW, for USb = 0.
For the case when USb = U/2, is identical to this case, except a magnetic moment
appears on the antimony sites. This moment is much larger than the moments on the
vanadium sites.
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Figure 6.5: (a) The phase diagram at the zoomed in area marked in Fig. 6.3, with
USb = U/2. The color codes of the phases are similarly found in Fig. 6.3 (b) A plot of
the size of the magnetic moment of the antimony site (blue curve), and the current in
the system (red curve).

the state is susceptible to small changes of the interaction strength, and small deviations
from the end state are enough to converge to a different solution, or the state is meta
stable, i.e. the true ground state of the system has not been found.

We plot the reconstructed band structure of the loop current phase in Fig. 6.6a. We
notice that a relative shift in energy between the bands have taken place compared to
the band structure of the non-interacting tight-binding model. This relative shift means
the van Hove points of the vanadium dX2−Y 2 or dY Z orbitals are no longer close to the
Fermi energy. Furthermore, the density of the antimony orbital has increased due to the
shift down in energy. This can also be seen on the spectral function plotted in Fig. 6.6b.
Compared with the Fermi surface of the disordered state, we see that the contribution from
the antimony orbital has a larger radius, indicating more occupied states. Similarly, the
contributions form the vanadium orbitals are closer to the K points of the first Brillouin
zone indicating a lower occupation compared to the disordered state. This means that
the system does not model an ordered state of the kagome metals, and we can not use the
result to make direct conclusions on the materials. A relative shift in energy between the
bands is seen for other points in (U, V )-space and for both values of USb = U/2. Thus,
the issue seen here is not specific to the phase, but rather a general problem related to
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Figure 6.6: (a) The reconstructed band structure of the coexisting FM, iSDW and
iCDW phase plotted along the high symmetry path of the first Brillouin zone where the
color code of the different orbitals is shown. The Fermi energy is marked by the black
line. The arrows indicate the relative shift in energy between the bands compared to the
disordered state. (b) The spectral function calculated at the Fermi energy, revealing
the Fermi surface. The high symmetry points are labelled, and the dominant orbital of
the contributions to the Fermi surface are labelled. As the order conserves translational
symmetry, we only plot the contributions from the mean fields with momentum 0. The
data is taken for U = 1.75 eV, V = 0.75 eV and USb = 0.

how the system is modelled.
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Chapter 7

Conclusion and outlook

In the thesis we have implemented a tight-binding model for the kagome lattice and found
the band structure. From the band structure we argued, why nesting effects at the upper
van Hove point are likely to enhance charge bond orders breaking translational symmetry
such that the new unit cell has a size of 2a0 × 2a0. We further introduced interactions to
the tight-binding Hamiltonian in the form of an on site Hubbard interaction and a nearest
neighbor repulsion. Using mean field theory the interactions were decoupled to yield an
effective two-operator Hamiltonian, that could be solved numerically. We implemented a
self-consistency algorithm to solve the mean field Hamiltonian and obtained phase diagram
for systems at various average densities. For the upper van Hove point, we found that the
Tri-Hexagonal and Star-of-David bond orders were stable solutions of the self-consistency
algorithm. Furthermore, we found that the Tri-Hexagonal phase had a lower free energy
compared to the Star-of-David order, and that the Tri-Hexagonal phase were the ground
state in a region in (U, V )-space. Moreover, we find a coexisting Tri-Hexagonal and SDW
phase when looking for phases above the upper van Hove point. This phase breaks time
reversal and translational symmetry as has been reported in the new kagome metals [17, 31]

We further implemented a materially specific minimal tight binding based on CsV3Sb5

presented in Ref. [15]. First we adjusted the Fermi level of the model to better fit the
Fermi surface found by ARPES experiments. We then implemented the Hubbard-Hund
model for the interactions between orbitals. These interactions were mean field decoupled
and implemented in the self-consistent algorithm. Phase diagrams were obtained at the
van Hove point for two different Hubbard interaction strengths on the antimony sites. In
the phase diagrams we found a phase with loop currents following a previously proposed
current pattern [17]. The phase had coexisting magnetic moments on the sites and spin
current and no bond order. The state was found to be susceptible to variations in the
interaction strengths, which could hint at the phase being a meta stable solution to the
self-consistency algorithm. Furthermore, the phase was found to have reconstructed bands
where a relative shift had occurred between the antimony orbital and the vanadium or-
bitals, meaning the ordered state no longer had a Fermi surface resembling the kagome
metals.

With this work we have added evidence to the argument that the Tri-Hexagonal bond
order configuration is the ground state for the translational symmetry breaking found in
AV3Sb5. We find that the order can be driven solely by the electronic states and the
nesting effects, which is a counter example to previous studies where phonons were a vital
ingredient to observe the ordered state [23].

The work presented in this thesis cannot help us draw any conclusions about how time
reversal symmetry is broken in the kagome metals. Where the effective magnetic field
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found for the coexisting Tri-Hexagonal, SDW and CDW phase at ntarget = 5/12 + 0.02
of 0.1 G matches the order of magnitude of magnetic fields found in the new kagome
metals [17]. However, the critical temperature of the time reversal symmetry breaking is
higher than the critical temperature of the bond order. The loop current phase found in
the seven band model have a relative shift in the energy between the bands associated
with the different orbitals, meaning the results cannot be applied directly to the time
reversal symmetry breaking order in the kagome metals. However, the mere presence of
loop currents emerging from a minimal tight-binding model fitted to CsV3Sb5, means that
loop currents, as an explanation for time reversal symmetry breaking, cannot be ruled out.

It is by now on experimentally solid ground that the charge bond ordered phase in
the new kagome metals breaks time reversal symmetry, thus a possible step to move the
theoretical work forward is to understand how time reversal symmetry is broken. Here the
minimal tight binding model is a place to expand upon the findings presented in this thesis.
Modifications to the model should address the problem of the charges concentrating on the
antimony site. One possibility is to consider a grand canonical ensemble where the average
electron density on each atom is known, effectively yielding two chemical potentials, which
would ensure the bands have the correct structure relative to each other. Such an attempt
was made in this project; however, the algorithm converged for limited values in (U, V )-
space, meaning no conclusions could be made from the results. Another approach is to
expand upon the work done by Y. Gu et. al. in Ref. [15] and make a revision of the
minimal tight-binding model with a greater emphasis on a Fermi surface matching the
results of the ARPES experiments more closely.

Another path is to reconsider the pristine kagome lattice, and introduce multiple
kagome layers to study the out of plane modulation of the charge order in a layered
kagome lattice. Regarding experiments a revisit of the experiments ruling out magnetic
moments on the vanadium sites could be needed, due to the phases found on the kagome
lattice in this study. Furthermore, for both theorists and experimentalists, how the charge
bond order influences superconductivity is an unsolved question, which could be as step
towards finding the exotic phenomena proposed for the kagome metals AV3Sb5.
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Appendix A

Mean field decoupling for 3 band
model

We can relate this field to its complex conjugate(
∆ασβσ′

q,s

)∗
=
∑
k

e−i(s−1)(k+q)·aαβ
〈
c†k+qβσ′ckασ

〉
=
∑
k

ei(s−1)k·aβα
〈
c†kβσ′ck+qασ

〉
(A.1)

= ei(1−s)q·aβα∆βσ′ασ
q,s

We can also see what evaluate ∆ασβσ′

q+G,s. First we note that ∆ασβς
q+G,+ = ∆ασβσ

q,+ as can be
seen from the gauge we have chosen. If we instead consider the case where s = −

∆ασβσ′

q+G,− =
∑
k

e−2i(k+q+G)·aαβ
〈
c†kασck+qβσ′

〉
= e−iG·2aαβ∆ασβσ

q,− , (A.2)

however as the 2aαβ is a lattice vector, we can conclude in general that ∆ασβσ′

q+G,s = ∆ασβσ′
q,s .

We use this expression to write the Hubbard interaction in the Mean field approxima-
tion,

HMF
U =

U

N

∑
qkk′

∑
ασ

(
c†kασck+qασ

〈
c†k′ασck′−qασ

〉
− c†kασck′−qβσ

〈
c†k′ασck+qασ

〉)
, (A.3)

where we have compacted the notation to a sum over spins, which is allowed due to the
summation over q. We will split the Hamiltonian into its two parts, such that the terms
diagonal in spin are grouped together HMF

U = U√
N

∑
σH

σσ
U −Hσσ

U . Starting with the term

diagonal in spin, this can rewritten in terms of the mean fields

Hσσ
U =

∑
kqα

∆ασασ
−q,+c

†
kασck+qασ =

∑
kqασ

∆ασασ
q,+ c†kασck+qασ, (A.4)

where we used ∆ασβσ′

−q,+ = ∆ασβσ′

q,+ . We will now impose the constraint that only certain
mean fields are allowed under the assumption that phases breaks translational symmetry
at most by 2 by 2 unit cells, and write out the sum over q more explicitly

Hσσ
U =

∑
kα

∆ασασ
0,+ c†kασckασ +

∑
j

∆ασασ
Mj ,+c

†
kασck+Mjασ

 (A.5)
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We will now only consider the reduced Brillouin zone, hence splitting the sum over k up
as described in Eq. (3.13)

Hσσ
U =

∑
k∈RBZ,α

[
∆ασασ

0,+

(
c†kασckασ +

∑
i

c†k+Miασ
ck+Miασ

)
+ (A.6)

∑
j

∆ασασ
Mj ,+

c†kασck+Mjασ + c†k+Mjασ
ckασ +

∑
i 6=j

c†k+Miασ
ck+Mlασ

 ,
with Ml = −Mi −Mj .We thus have the explicit terms for the Hamiltonian in the basis
which we use.
We can now do the same procedure with the term from the mean field Hubbard interaction
not diagonal in spin. First we will make a change in the index letting q → k′ − k − q,
which enables us to use write it in terms of the mean fields

Hσσ
U =

∑
kqα

∆ασασ
q+ c†kασck+qασ, (A.7)

where we again used ∆ασβσ′

−q,+ = ∆ασβσ′

q,+ . We now write out the sum over q using that
only specific momenta are allowed, and write the sum over k out using Eq. (3.13), thus
obtaining this part of the Hamiltonian in the basis

Hσσ
U =

∑
k∈RBZ,α

[
∆ασασ

0,+

(
c†kασckασ +

∑
i

c†k+Miασ
ck+Miασ

)
+

∑
j

∆ασασ
Mj ,+

c†kασck+Mjασ + c†k+Mjασ
ckασ +

∑
i 6=j

c†k+Miασ
ck+Mlασ

 .
(A.8)

We now turn to the nearest neighbor interaction. We start by using the mean field
decoupling given in Eq. (4.2)

HMF
V =

V

N

∑
qkk′

∑
ασσ′
β 6=α

(
1 + e2iq·aαβ

) (
c†kασck+qασ

〈
c†k′βσ′ck′−qβσ′

〉
− c†k′βσ′ck+qασ

〈
c†kασck′−qβσ′

〉)
.

(A.9)

We again split this up into two parts. We will again split it up into the two components,
an Hatree part HH

V and a Fock part HF
V , such that HMF

V = V√
N

∑
ασσ′
β 6=α

(HH
V −HF

V ). Starting

with the on site terms, writing it in terms of the mean fields

HH
V =

∑
kq

(
1 + e2iq·aαβ

)
∆βσ′βσ′

q,+ c†kασck+qασ. (A.10)

Now writing out the sum over q and k into their respective parts, yield the on site part
of the mean field decoupled nearest neighbour interaction in the basis we use

HH
V =

∑
k∈RBZ

[
2∆βσ′βσ′

0

(
c†kασckασ +

∑
i

c†k+Miασ
ck+Miασ

)
+ (A.11)

∑
j

(
1 + e2iMj ·aαβ

)
∆βσ′βσ′

Mj

c†kβck+Mjασ + c†k+Mjασ
ckασ +

∑
i 6=j

c†k+Miασ
ck+Mlασ

 .
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The Fock terms of the nearest neighbour interaction need the transformation q→ q+k′−k,
before we can write it in terms of the mean fields. Then we obtain

HF
V =

1√
N

∑
kqk′

(
1 + e−2i(k−q−k′)·aαβ

)
c†k′βσ′ck′+qασ

〈
c†kασck−qβσ′

〉
. (A.12)

We can now use the definition of the mean fields Eq. (4.15) to rewrite this expression using
the mean fields

HF
V =

∑
kq

(
∆ασβσ′

q,+ + ∆ασβσ′

−q,− e
2ik·aαβ

)
c†kβσ′ck+qασ (A.13)

We now write out the sum over k into its four parts, and we write out the sum over q,

using, that ∆ασβσ′

−q,− = ∆ασβσ′

G−q,− for any reciprocal lattice vector. The Fock terms become

HF
V =

∑
k∈RBZ

{(
∆ασβσ′

0,+ + e2ik·aαβ∆ασβσ′

0,−

)
c†kβσ′ckασ

+
∑
i

(
∆ασβσ′

0+ + e2i(k+Mi)·aαβ∆ασβσ′

0−

)
c†k+Miβσ′ck+Miασ

+
∑
j

[(
∆ασβσ′

Mj+
+ e2ik·aαβ∆ασβσ′

Mj−

)
c†kβσ′ck+Mjασ (A.14)

+
(

∆ασβσ′

Mj+
+ e2i(k+Mj)·aαβ∆ασβσ′

Mj−

)
c†k+Mjβσ′ckασ

+
∑
i 6=j

(
∆ασβσ′

Mj+
+ e2i(k+Mi)·aαβ∆ασβσ′

Mj−

)
c†k+Miβσ′ck+Mlασ

 .

Now combining eqs. (BLA) we now have the mean field part of the Hamiltonian. We will
now consider the correction to the energies from the mean field decoupling. Starting with
the correction from the Hubbard interaction

EUcrxn = −U
N

∑
kk′qα

(〈
c†k′α↓ck′−qα↓

〉〈
c†kα↑ck+qα↑

〉
−
〈
c†k′α↓ck+qα↑

〉〈
c†kα↑ck′−qα↓

〉)
(A.15)

Where the first term is easily rewritten in terms of the mean fields, the second term need
a reindexing first. Letting q→ k′ − k + q for the second term in the sum only we rewrite
this as

EUcrxn = −U
∑
qα

(
∆α↑α↑

q,+ ∆α↓α↓
−q,+ −∆α↓α↑

q,+ ∆α↑α↓
−q,+

)
= −U

∑
qα

(
∆α↑α↑

q,+ ∆α↓α↓
q,+ −∆α↓α↑

q,+ ∆α↑α↓
q,+

)
,

(A.16)

where we in the last term made use of the fact that 2q is a reciprocal lattice vector, thus
Eq. (A.2) could be used.

The correction from the nearest neighbour interaction can also be written up

EVcrxn = −V
∑
kk′q
ασσ′
β>α

(
1 + e2iq·aαβ

) (〈
c†k′βσ′ck′−qβσ

〉〈
c†kασck+qασ

〉
(A.17)

−
〈
c†k′βσ′ck+qασ

〉〈
c†kασck′−qβσ′

〉)
.
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The two first terms are again written out as sums mean fields directly, whereas the second
term need the same reindexing as before.

EVcrxn = −V
∑
qσσ′

αβ>α

[(
1 + e2iq·aαβ

)
∆βσ′βσ′

q,+ ∆ασασ
q,+ −∆ασβσ′

q,+ ∆βσ′ασ
q,+

−
∑
kk′

e−2i(q+k′)·aβαe−2ik·aαβ
〈
c†k′βσ′ck′+qασ

〉〈
c†kασck−qβσ′

〉]
(A.18)

= −V
∑
qσσ′

αβ>α

[(
1 + e2iq·aαβ

)
∆βσ′βσ′

q,+ ∆ασασ
q,+ −∆ασβσ′

q,+ ∆βσ′ασ
q,+ − e2iq·aαβ∆βσ′ασ

q,− ∆ασβσ
q,−

]
.
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Appendix B

Seven band model

We recall the overall structure of the tight-binding Hamiltonian of the seven band model

H =

HX2−Y 2 0 0
0 HSb V
0 V † HY Z

 , (B.1)

The Hamiltonian is written in the basis

c†kσ =
(
c†
kAX2−Y 2σ

, c†
kBX2−Y 2σ

, c†
kC X2−Y 2σ

, c†kSbσ, c
†
kAY Zσ, c

†
kB Y Zσ, c

†
kC Y Zσ

)
(B.2)

We will below give the expression in the different parts of the Hamiltonian in turn, using
the row-number and column-numbers to locate the entries. Only the necessary amount of
entries are given, as the other entries can be found by complex conjugation. Starting with
the expressions in HX2−Y 2

H11 =εX
2−Y 2

V + 2tX
2−Y 2,1

TNN cos(k · (t1 + t2)) + 2tX
2−Y 2,2

TNN [cos(k · t1) + cos(k · t2)] (B.3)

H22 =εX
2−Y 2

V + 2tX
2−Y 2,1

TNN cos(k · t1) + 2tX
2−Y 2,2

TNN [cos(k · t2) + cos(k · (t1 + t2))] (B.4)

H33 =εX
2−Y 2

V + 2tX
2−Y 2,1

TNN cos(k · t2) + 2tX
2−Y 2,2

TNN [cos(k · t1) + cos(k · (t1 + t2))] (B.5)

H12 =2tX
2−Y 2

NN cos(k · aAB) + 2tX
2−Y 2

SNN cos(k · (t1 + aAB)) (B.6)

H13 =2tX
2−Y 2

NN cos(k · aAC) + 2tX
2−Y 2

SNN cos(k · (t1 + t2 + aAC)) (B.7)

H23 =2tX
2−Y 2

NN cos(k · aBC) + 2tX
2−Y 2

SNN cos(k · (t2 + aBC)). (B.8)

We then give the expression of HSb

H44 = εSb + 2tSb
NN[cos(k · t1) + cos(k · (t1 − t2)) + cos(k · t2)] (B.9)

+ 2tSb
SNN[cos(k · (2t1 − t2)) + cos(k · (t1 + t2)) + cos(k · (2t2 − t1))].

B1



The expressions in HY Z is also given

H55 =εY ZV + 2tY Z,1TNN cos(k · (t1 + t2)) + 2tY Z,2TNN [cos(k · t1) + cos(k · t2)] (B.10)

H66 =εY ZV + 2tY Z,1TNN cos(k · t1) + 2tY Z,2TNN [cos(k · t2) + cos(k · (t1 + t2))] (B.11)

H77 =εY ZV + 2tY Z,1TNN cos(k · t2) + 2tY Z,2TNN [cos(k · t1) + cos(k · (t1 + t2))] (B.12)

H56 =2tY ZNN cos(k · aAB) + 2tY ZSNN cos(k · (t1 + aAB)) + 2tY Z4thNN [cos(k · (t1 − aAB))

+ cos(k · (t1 + t2 + aAB))] + 2tY Z5thNN cos(k · (t2 + aAB)) (B.13)

H57 =2tY ZNN cos(k · aAC) + 2tY ZSNN cos(k · (t1 + t2 + aAC)) + 2tY Z4thNN [cos(k · (t2 + aAC))

+ cos(k · (t1 + t2 − aAC))] + 2tY Z5thNN cos(k · (t1 − aAC)) (B.14)

H67 =2tY ZNN cos(k · aBC) + 2tY ZSNN cos(k · (t2 + aBC)) + 2tY Z4thNN [cos(k · (t1 − aBC))

+ cos(k · (t2 + aBC))] + 2tY Z5thNN cos(k · (t1 + t2 − aBC)). (B.15)

Finally, the expressions in V are given

H45 =2itSb-Y Z
NN sin(k · (t1 + t2)/2) (B.16)

H46 =− 2itSb-Y Z
NN sin(k · t1/2) (B.17)

H47 =− 2itSb-Y Z
NN sin(k · t2/2). (B.18)

Below is a table with the numerical values for the parameters of the model. The gauge of

Table B.1: The values of the parameters given in eV for the 7-band model. Taken
from REF.

εX
2−Y 2

V −0.0946 εY ZV 0.3619 εSb 0.8215

tX
2−Y 2

NN −0.4661 tY ZNN 0.1112 tSb
NN −0.1813

tX
2−Y 2

SNN 0.0278 tY ZSNN −0.1168 tSb
SNN −0.0204

tX
2−Y 2,1

TNN −0.008 tY Z,1TNN 0.0077 tSb−Y Z
NN −0.0071

tX
2−Y 2,2

TNN −0.0091 tY Z,2TNN 0.1315
tY Z4thNN 0.0356
tY Z5thNN −0.0802

the tight binding Hamiltonian is different from the choice made in this work. We perform
a gauge transformation to the tight binding model, using the transformation

Uαβ(k) = δαβe
ik·dα , (B.19)

where α and β are the site with orbital entries, and dSb =

(
−1

4√
3

4

)
.
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Appendix C

Mean field decoupling of the 7
band model

Here are the detailed calculations giving the corrections and the interactions due to on
site orbital interactions. Starting with the on site density-density interaction, we Fourier
transform the interaction to momentum space yielding

HU ′ =
U

2N

∑
qκσσ′

nqκσn−qκσ′ . (C.1)

Using the mean field approximation on this interaction we obtain

HMF
U ′ =

U

2N

∑
qkk′

∑
κσσ′

(〈
c†kκσck+qκσ

〉
c†k′κσ′ck′−qκσ′ +

〈
c†k′κσ′ck′−qκσ′

〉
c†kκσck+qκσ (C.2)

−
〈
c†k′κσ′ck+qκσ

〉
c†kκσck′−qκσ′ −

〈
c†kκσck′−qκσ′

〉
c†k′κσ′ck+qκσ

)
.

Upon close inspection the sum over the first two terms are the same as are the sum over
the last two terms.

HMF
U ′ =

U

N

∑
qkk′

∑
κσσ′

〈
c†kκσck+qκσ

〉
c†k′κσ′ck′−qκσ′ −

〈
c†kκσck′−qκσ′

〉
c†k′κσ′ck+qκσ. (C.3)

By reindexing q, using the definitions of the mean fields in momentum space with knowl-
edge that 2q is a reciprocal lattice vector under our assumptions, we obtain the expression
in the text.

HMF
U ′ =

U ′√
N

∑
qk

∑
κσσ′

∆κσκσ
q+ c†kκσ′ck+qκσ′ −∆κσκσ′

q+ c†kκσ′ck+qκσ. (C.4)

This is rewritten in the basis where we only consider momenta in the reduced Brillouin
zone, starting with the Hartree term, only writing the sum over momentum vector

HH
U ′ =

∑
k∈RBZ

[
∆κσκσ

0

(
c†kκσ′ckκσ′ +

∑
i

c†k+Miκσ′ck+Miκσ′

)
+ (C.5)

∑
j

∆κσκσ
Mj

c†k+Mjκσ′ckκσ′ + c†kκσ′ck+Mjκσ′ +
∑
i 6=j

c†k+Miκσ′ck+Miκσ′

 .
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Similarly, computations can be made for the Fock contribution

HF
U ′ =

∑
k∈RBZ

[
∆κσκσ′

0+

(
c†kκσ′ckκσ +

∑
i

c†k+Miκσ′ck+Miκσ

)
+ (C.6)

∑
j

∆κσκσ′
Mj

c†k+Mjκσ′ckκσ + c†kκσ′ck+Mjκσ +
∑
i 6=j

c†k+Miκσ′ck+Miκσ

 .
The correction to the energy is written out in terms of the mean fields

Ecrxn
U ′ = − U ′

2N

∑
qkk′

∑
κσσ′

〈
c†kκσck+qκσ

〉〈
c†k′κσ′ck′−qκσ′

〉
−
〈
c†k′κσ′ck+qκσ

〉〈
c†kκσck′−qκσ′

〉
,

(C.7)

and can be written using the mean fields by reindexing in the second term. Here we will
also use that 2q is a reciprocal lattice vector, thus we can change −q to q.

Ecrxn
U ′ = −U

′

2

∑
qκσσ′

(
∆κσκσ

q+ ∆κσ′κσ′
q+ −∆κσκσ′

q+ ∆κσ′κσ
q+

)
. (C.8)

Similar calculations are made for the Hund’s coupling, writing in momentum space

HJ = − J

2N

∑
qkk′

∑
κσσ′

c†kκσck+qκσ′c†kκσ′ck−qκσ. (C.9)

Using the mean field approximation on this interaction and combining terms that are
identical after summation we obtain

HMF
J = − J

N

∑
qkk′

∑
κσσ′

〈
c†kκσck+qκσ′

〉
c†k′κσ′ck′−qκσ −

〈
c†kκσck′−qκσ

〉
c†k′κσ′ck+qκσ′ . (C.10)

By reindexing q, using the definitions of the mean fields in momentum space with knowl-
edge that 2q is a reciprocal lattice vector under our assumptions, we obtain the expression
in the text.

HMF
J = − J√

N

∑
qk

∑
κσσ′

∆κσκσ′
q+ c†kκσ′ck+qκσ −∆κσκσ

q+ c†kκσ′ck+qκσ′ . (C.11)

This is rewritten in the basis where we only consider momenta in the reduced Brillouin
zone, starting with the Hartree term, only writing the sum over momentum vector

HH
J =

∑
k∈RBZ

[
∆κσκσ′

0+

(
c†kκσ′ckκσ +

∑
i

c†k+Miκσ′ck+Miκσ

)
+ (C.12)

∑
j

∆κσκσ′
Mj

c†k+Mjκσ′ckκσ + c†kκσ′ck+Mjκσ +
∑
i 6=j

c†k+Miκσ′ck+Miκσ

 .
Similarly, computations can be made for the Fock contribution

HF
J =

∑
k∈RBZ

[
∆κσκσ

0+

(
c†kκσ′ckκσ′ +

∑
i

c†k+Miκσ′ck+Miκσ′

)
+ (C.13)

∑
j

∆κσκσ
Mj

c†k+Mjκσ′ckκσ′ + c†kκσ′ck+Mjκσ′ +
∑
i 6=j

c†k+Miκσ′ck+Miκσ′

 .
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The correction to the energy is written directly in terms of the mean fields

Ecrxn
J =

J

2

∑
qκσσ′

(
∆κσκσ′

q+ ∆κσ′κσ
q+ −∆κσκσ

q+ ∆κσ′κσ′
q+

)
. (C.14)

And finally the computations for the pair wise coupling, writing it in momentum space

HJ ′ =
J ′

N

∑
qkk′

∑
κ

c†kκ↑ck+qκ↑c
†
kκ↓ck−qκ↓. (C.15)

Using the mean field approximation on this interaction and writing the expression using
a sum over spins, yields

HMF
J ′ =

J ′

N

∑
qkk′

∑
κσ

〈
c†kκσck+qκσ

〉
c†k′κσck′−qκσ −

〈
c†kκσck′−qκσ

〉
c†k′κσck+qκσ. (C.16)

By reindexing q, using the definitions of the mean fields in momentum space with knowl-
edge that 2q is a reciprocal lattice vector under our assumptions, we obtain the expression
in the text.

HMF
J ′ =

J ′√
N

∑
qk

∑
κσσ′

∆κσκσ
q+ c†kκσck+qκσ −∆κσκσ

q+ c†kκσck+qκσ. (C.17)

This is rewritten in the basis where we only consider momenta in the reduced Brillouin
zone, starting with the Hartree term, only writing the sum over momentum vector

HH
J ′ =

∑
k∈RBZ

[
∆κσκσ

0+

(
c†kκσckκσ +

∑
i

c†k+Miκσ
ck+Miκσ

)
+ (C.18)

∑
j

∆κσκσ
Mj

c†k+Mjκσ
ckκσ + c†kκσck+Mjκσ +

∑
i 6=j

c†k+Miκσ′ck+Miκσ

 .
Similarly, computations can be made for the Fock contribution

HF
J ′ =

∑
k∈RBZ

[
∆κσκσ

0+

(
c†kκσckκσ +

∑
i

c†k+Miκσ
ck+Miκσ

)
+ (C.19)

∑
j

∆κσκσ
Mj

c†k+Mjκσ
ckκσ + c†kκσck+Mjκσ +

∑
i 6=j

c†k+Miκσ
ck+Miκσ

 .
The correction to the energy is written directly in terms of the mean fields

Ecrxn
J ′ = −J ′

∑
qκσ

∆κσκσ
q+ ∆κσ κσ

q+ −∆κσκσ
q+ ∆κσ κσ

q+ . (C.20)
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