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Abstract
In this paper two methods for how to calculate contractions of Lie algebra structure constants,
for simple compact Lie groups, are derived. The two methods are both based on the pictorial
representation of group elements called Birdtracks[3]. The easiest algebras to describe are the
four families An, Bn, Cn and Dn plus g2, these algebras are described by the first method which
decomposes the spaces V ¢ V or V ¢ V into irreducible subspaces described by their primitive
invaraints. This method however is not able to decompose the algebras f4, e6, e7 and e8 into
solvable diagrams. These algebras are instead described using the second method, where the adjoint
representation is decomposed into subgroups of the more simple algebras, which allows one to
calculate contraction of structure constants. Lastly a method for how to reformulate the colour
factors for tree-level scattering amplitudes in terms of irreducible representations of the symmetric
group enables us to easily compare the result of colour calculations for specific scattering calculations
between di�erent algebras.
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Introduction
The focus of this thesis is to study some of the most common groups to appear in physics, the sim-
ple Compact Lie groups [26]. With the formulation of Yang-Mills theory [25] these groups became
a part of the ”Cook-book” available for physicists when formulating theories in a quantum field
theory framework. In the early 1960’s Gell-Mann sought to bring some order to what was known as
the particle ”Zoo”, which in the 1950’s was a large amount of newly discovered particles. Using the
isospin and hypercharge of these particles he realised in 1961 that they could be organised in way
resembling the irreducible representations of su(3), and subsequently noticed a missing part in the
diagram and predicted the existence of a new particle �≠ [10]. This particle was later discovered
in 1964 [1]. In that same year Gell-Mann proposed the existence of quarks and gluons [9] with
the intent to bring some order to the particle ”zoo”, this theory used the formalism developed by
Yang and Mills, and were realised using the fundamental representation of su(3). Later in 1967 the
electromagnetic and weak forces was combined by Weinberg [22] in what is known as the electro-
weak unification, a theory exhibiting a su(2) symmetry. These theories together make up the very
celebrated standard model of particle physics, that describes the interaction of all particles that we
know exist.

Even though we have been unable to find evidence of particles outside of the standard model,
theorists have not hesitated to further develop and propose new theories in an attempt to solve one
of the last puzzles in fundamental physics, Gravity. Because even though the standard model has
proven to be extremely successful, it is a well know result that gravity is not renormalizable in a
quantum field theory [19]. This has lead to a whole new plethora of theories, from string theory to
super-symmetry and conformal field theory. An interesting example of this is the N = 8 supergrav-
ity theory by Cremmer and Julia [2], who developed a gravity theory using supersymmetry that
exhibits a E7 duality symmetry with a subgroup of su(8). Another very interesting example where
simple compact Lie groups appear is the Chern-Simons theory which is a topological quantum field
theory developed by Edward Witten [24] where some of the observable’s of the theory are given by
Wilson loops [23]. Wittens work on topological quantum field theories was part of the work that
earned him a Fields medal.

Given all these examples of simple compact Lie groups appearing in physics it is natural to ask
how these groups work and how to do calculations with them. The focus of this thesis is thus to
develop a framework in which we can formulate these calculations and to check if the approach
is viable. The focus is on the appearance of Lie groups in Yang-Mills theory and the first two
chapters are devoted to introducing Lie groups and explaining the formalism of Yang-Mills theory
with a focus of explaining where the idea for the quantum field theory framework comes from.
The focus will hereafter be on the colour factors of tree-level scattering amplitudes, where we in
chapter 3 introduce the DDM-basis[4] and show that this basis is valid for all simple compact Lie
groups. In the chapter about the Zeppenfeld basis an approach by Zeppenfeld [27] is applied to
the DDM-basis, where the colour factors are reformulated in terms of irreducible representations
of the permutations groups, with the gauge group factors summed over. What is now left is to
calculate the summed over gauge group factors, therefore the notion of birdtracks[3] is introduced,
a pictorial way to represent and perform calculations in group theory. Using the birdtrack notion
each of the 9 simple compact Lie groups are treated separately, and methods for how to evaluate
calculations (or birdtrack diagrams) are developed for each group individually. For the groups An,
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Bn, Cn, Dn and G2 we use the method presented in [3], with decomposing the calculation in terms
of primitive invariants of the group. For the groups E6, E7, E8 and F4 we find that it is not possible
to find general reduction identities for the primitive invariants, therefore we will decompose these
irreducible representations in terms of subgroups we already know how to calculate, the result is
that we are only able to perform calculations using the adjoint representation of theses groups,
although this can surely be extended to other representations. The methods are all verified using
known results from the theory of Lie groups.

Lie groups and algebras
In modern physics it is virtually impossible to not encounter group theory in some way, shape or
form, when studying physics. Whenever a physical law or specific calculation expresses some kind
of symmetry it can be described using group theory and once the specific group ”responsible” for
the symmetry has been found it can often lead to new discoveries. One of the best examples of
this is when Murray Gelmann used an irreducible representation of the su(3) algebra to predict
the existence of a the �≠ particle, which was later confirmed experimentally [1]. Another way that
group theory manifests itself in physics is in quantum mechanics when one solves the Schröedinger
equation for the hydrogen atom, where the amount of degenerate eigenstates and how they appear
is described by the so(3) algebra. The instance of interest for us is how group theory appears in
quantum field theory in calculations of scattering amplitudes in Yang-Mills theory, and how to
calculate these group factors for the most general case. These Lie groups that appear in Yang-Mills
theory are part of a class of groups called semi-simple compact Lie groups, and that is the interest
of this section.

General properties of Lie groups
A lie group is a structure that is both a group and a smooth manifold. the fact that it is a smooth
manifold means that in a small neighbourhood around the identity the manifold will look like flat
euclidean space RN and the unit vectors for that space T a, also called generators since they generate
the group, are members of the Lie algebra [14]. To go from the algebra to the group elements one
can use the exponential map defined as:

g(a) = eaiT i

(1.1)

where the exponential of a matrix is defined as:

eM =
Œÿ

n=0

(M)n

n! (1.2)

One can view the generators as an infinitesimal transformation around the identity, this can be seen
by assuming the values ai to be small, and then using the exponential map where factors of O((ai)2)
are ignored, leaving just a linear sum of generators and the identity. We will immediately restrict
ourselves to the class of Lie groups called compact Lie groups where the amount of generators are
finite and we can represent all these groups as matrix groups.
Like all matrix groups the compact lie groups are closed under multiplication, whereas Lie algebras
are closed under under the lie bracket defined as:

[T a, T b] = fab
c T c, [T a, T b] = T aT b ≠ T bT a (1.3)
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where we have defined the structure constants fab
c , and we sum over repeated indices. From the

above expression we see that the structure constants are anti-symmetric in the first two indices and
zero if they are equal to each other. Further the Lie algebra has to satisfy the Jacobi identity given
by:

[T a[T b, T c]] + [T b[T c, T a]] + [T c[T a, T b]] = 0 (1.4)

Taking the trace of equation (1.3) we get:

tr([T a, T b]) = fab
c tr(T c) ∆ (1.5)

tr(T aT b) ≠ tr(T bT a) = fab
c tr(T c) ∆ (1.6)

0 = fab
c tr(T c) (1.7)

Since the generators are the uni vectors, it is not possible to express any of the generators them
as a linear combination of the other generators. Therefore we have two choices in eq. (1.7), either
the structure constants are all zero, resulting in a rather simple structure, or we can choose the
generators to be traceless tr(T a) = 0, which is the choice we make.
Taking the left part part of eq. (1.3) and inserting it in the jacobi identity we get [26]:

fab
c fdc

g + f bc
d fda

g + fcb
d fdb

g = 0 (1.8)

Defining matrices (Xa)b
c = fab

c and using that the two upper indices in the structure constants are
anti-symmetric we get:

≠(Xa)b
d(Xc)d

g + (Xc)b
d(Xa)d

g = ≠fac
d (Xd)b

g (1.9)
∆ [Xa, Xc] = fac

d Xd (1.10)

from this we see that the structure constants themselves satisfy the commutator relation and thus
it is valid to use them as generators for the algebra. This representation of the generators is called
the adjoint representation and it is by far the most important representation. Later we will see and
utilise other representations.
Next thing we define the Cartan-killing metric:

gab = tr(T aT b) = ≠fac
d f bd

c (1.11)

The metric has an inverse given by:
gabgbc = ”a

c (1.12)

The function of the metric is to raise and lower adjoint indices. So using the metric we can isolate
the structure constants at the left side of eq. 1.3:

[T a, T b]T d = fab
c T cT d (1.13)

tr([T a, T b]T d) = fab
c tr(T cT d) (1.14)

tr([T a, T b]T d) = fab
c gcd (1.15)

1
C(r) tr([T a, T b]T d) = fabc (1.16)

where we here have defined the totally anti-symmetric structure constants. This constant is pretty
important since it allows us to decompose any structure constant in terms of generators in any
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representation one can think of. The constant C(r) is the quadratic Casimir, a number that is
dependent upon the specific representation in which it is calculated. It is possible also to define
an invariant in the algebra called the quadratic invariant, that commutes with all elements of the
algebra. This is called the quadratic casimir invariant and is give by:

C̃2(R) = gabT aT b (1.17)

where it satisfies the following condition:
⇥
C̃2(R), T r

a

⇤
= 0 (1.18)

This is proved in the following way:
⇥
gabT aT b, T c

⇤
= gabT a[T b, T c] + gab[T a, T c]T b (1.19)
= fc

ad(T )
�
T aT d + T dT a

�
(1.20)

= 0 (1.21)

Classification of all simple compact lie groups
If the algebra is simple the generators can be split into two sets {H}, {E} where the generators Hi

mutually commutes with each other:
[Hi, Hj ] = 0 (1.22)

This means that they simultaneously diagonalized and they form a linear space with:

Hi |xiÍ = xi |xiÍ (1.23)

The generators E operates as raising and lowering operators on this linear space. This is a gener-
alisation of the classical case of representations of spin in quantum mechanics. There we define a
generator that commutes with itself usually denoted by Jz, and two other generators that acts as
raising and lowering operators denoted by J+ and J≠.
The way we go about doing this is that after we have transformed the generators such that one
of them is diagonal, the raising and lowering operators is then two di�erent linear combinations
of the two other generators. In this case we have a 1 dimensional ladder, which corresponds to
a single generator in the set {H}. When using the raising generator on the top rung of the lad-
der the eigenvalue has to be zero, and the same is the case with the bottom rung of the ladder
and the lowering operator, where the number of steps on the ladder is equal to the dimension of
the matrix representation of the algebra. Each irreducible representation is defined as such a ladder.

Going back to the general case with N generators in the set {H}, now each Hi represents their
own ladder, and can as a whole be viewed as a whole N dimensional lattice where the raising and
lowering operators {E} moves you around from one point to another in this lattice. Again after we
have transformed our generators into a basis where we have the maximum set of {H}, the raising
and lowering operators are linear combinations of the generators not in {H}. N also defines the
rank of the algebra, and it turns out that it is possible to order all simple compact lie algebras and
index them by their rank.
Again each representation of the algebra can be viewed as the ”closed” set of points on this mul-
tidimensional ladder, where the raising and lowering operators either takes you to a point inside
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the ladder where the eigenvalues of the {H} operators are finite or outside the ladder where the
eigenvalues of the {H} set are zero. The defining representation is the representation consisting of
the fewest number of points on this ladder, that satisfies the above condition, and is larger than
just the trivial 1 dimensional representation.
Looking at the generators in the set {H}, we see that we can rewrite them as:

Figure 1.1: The weight diagram for the fundamental 3 dimensional representation of of su(3) along
with its conjugate representation and the 8 dimensional adjoint representation [17]. Since su(3) has
two generators in the set {H} the ladders exists in a two dimensional plane

fab
c = (T a)b

c = —a(b)”b
c (1.24)

Where there is no summation over b. this shows us that we can write the commutator between the
two sets {H} and {E} as:

[Hi, Ej ] = f ij
c Ec = —i(b)”j

cEc = —i(b)Ej (1.25)

One can then define root vectors:

—̨(a) = (—1(a), —2(a), ..., —l(a)) (1.26)
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Where l is the number of generators in the set {H}, that explicitly states how to move around
in the l dimensional ladder. Now cartan found that in this basis where the generators are part of
either the two sets {H} and {E}, it is possible to make generalised commutator relations between
them, these are given by[26]:

• [Hi, Hj ] = 0

• [Hi, E–] = –iE–

• [E–, E— ] = N–,—E–+—

• [E–, E≠–] = –iHi

These generators turns out to give very strict restrictions on the length of the root vectors and the
angels between them and using these restrictions killing was able to find all simple compact Lie
algebras [12]. These algebras can be show pictorially using their Dynkin diagram: where Dynkin

(a) All Dynkin diagrams (b) All extended-Dynkin diagrams

Figure 1.2: Dynkin diagrams [7]. A pictorial way of depicting the relevant information to construct
each possible simple compact Lie algebra

diagram is a way of representing the relevant information for constructing the root vectors. Since
the dimension of the lattice l is smaller than the number of raising/lowering operators, we only need
a subset of the raising/lowering operators to move around in the lattice equal to the dimension of
the lattice l. The dots in a Dynkin diagram represents these simple roots. If the angel between
the roots is 90 degrees no line is drawn between the roots, and the 3 other possible angels you can
have between roots is represented with either 1,2 or 3 lines. The relative length between the roots
is marked by the filling of the dots. If a dot is filled it is the shorter root and if it is unfilled it is
the longer root. The extended Dynkin diagrams [28] are interesting in this instance since one can
get the subgroups of the specific group by starting with its extended diagram and then removing
one of the dots, we will make use of this result later on when we are to calculate contractions of
structure constants for some of the exceptional algebras.
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QFT
From Quantum Mechanics to QFT
Quantum field theory is arguably the most successful theory ever made. The ideas and formalism
it produced laid the foundation for modern physics and the theory itself is still as relevant as it was
when it was first written down. The reason for developing QFT sprung from a desire to be able
to describe the experimental observations made inside particle accelerators of what happens when
two particles collide. What was observed in those experiments was that when two particles collide
sometimes other types of particles would emerge from the collision. For a modern physicist it might
almost seem like a trivial fact of nature that particles can change into on another, but back then
it was disturbing news, since the only viable theory for subatomic particles, Quantum Mechanics,
did not allow such conversions. The reason for this is that probabilities in quantum mechanics are
conserved:

È�|�Í = 1 (2.1)

So in order to describe a theory where particles could disappear and reappear, we needed a theory
where a particle is not conserved.

Even though quantum mechanics is insu�cient to describe such interactions, our starting point
in deriving this theory is still the 1 dimensional Hamiltonian from the Schrödinger equation given
by:

H(P, Q) = 1
2m

P 2 + V (Q) (2.2)

~ is set to 1 for simplicity. What we would like to describe with this general Hamiltonian is the
probability for a particle in the state |qÕÍ at time tÕ to end up in the state |qÕÕÍ at time tÕÕ, this can
of course be described as:

ÈqÕÕ| e≠iH(tÕÕ≠tÕ) |qÕÍ (2.3)

now taking the time interval tÕÕ ≠ tÕ and dividing it up into N+1 equal time steps and inserting N
complete sets of position eigenstates, we get:

ÈqÕÕ| e≠iH(tÕÕ≠tÕ) |qÕÍ =
⁄ NŸ

j=1
dqj ÈqÕÕ| e≠iH”t |qN Í ÈqN | e≠iH”t |qN≠1Í ... Èq1| e≠iH”t |qÕÍ (2.4)

Where I have set ”t = T/(N + 1), and T = tÕÕ ≠ tÕ

Now consider the state Èq2| e≠iH”t |q1Í, inserting the Hamiltonian (2.2) and using the Zassenhaus
formula [13]:

et(X+Y ) = etXetye
≠t2

2 [X,Y ]... (2.5)

we get:
Èq2| e≠i ”t

2m P 2
e≠i”tV (Q)eO(”t2)... |q1Í (2.6)

in the limit of small ”t, we can discard all terms with order ”t2 or higher and inserting a complete
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set of momentum egenstates gives us:

Èq2| e≠iH”t |q1Í =
⁄

dp1 Èq2| e≠i ”t
2m P 2

|p1Í Èp1| e≠i”tV (Q) |q1Í

=
⁄

dp1e
≠i”t
2m p2

1e≠i”tV (q1) Èq2|p1Í Èp1|q1Í

=
⁄

dp1e
≠i”t
2m p2

1e≠i”tV (q1)eip1(q2≠q1)

=
⁄

dp1
2fi

e≠iH”teip1(q2≠q1)

inserting this expression into the eq. (2.4) we get:

ÈqÕÕ| e≠iH(tÕÕ≠tÕ) |qÕÍ =
⁄ NŸ

k=1
dqk

NŸ

j=0

dpj

2fi
eipj(qj+1≠qj)e≠iH”t (2.7)

defining q̇j = qj+1≠qj

”t and taking the limit ”t æ 0 we can rewrite the expression into:

ÈqÕÕ| e≠iH(tÕÕ≠tÕ) |qÕÍ =
⁄

DqDpe
i
s tÕÕ

tÕ dt(pq̇≠H) (2.8)

If H does not contain powers of p higher than p2, and i the term that is quadratic in p, then the
momentum part of the integral is a Gaussian integral and the prefactors from that integral can be
included in the definition of Dq, giving us:

ÈqÕÕ| e≠iH(tÕÕ≠tÕ) |qÕÍ =
⁄

Dqe
i
s tÕÕ

tÕ dt(L) (2.9)

where the Lagrangian L is defined from the classical expression L = pq̇ ≠ H. Since we are allowed
to include terms linear in q representing external forces, we would like to distinguish those from the
original Lagrangian, so that we overall write:

ÈqÕÕ| e≠iH(tÕÕ≠tÕ) |qÕÍ =
⁄

Dqe
i
s tÕÕ

tÕ dt(L0+fq) (2.10)

Now this is as far as we will get with quantum mechanics, however this equation is still rooted in
quantum mechanics, and thus our goal to find a theory where particles can change into one another
is still not satisfied. So to proceed from here we need to make some assumptions when changing
the equations into what we need and thus we begin with Quantum Field Theory.

The procedure from here is now the following:
Take each q and replace it with Ï(x, t), and each source f and replace it with J(x, t), also we will
now be handling all expressions in 4-dimensions instead of just one (with time and space on an
equal footing). Lastly we change the Lagrangian L into the Lagrangian density used for fields L.

So since we are now using the Lagrangian density the Euler-Lagrange equation is also going to
change a bit, so that it now looks like:

ˆµ
”L

”(ˆµÏ) ≠ ”L
”Ï

= 0 (2.11)
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Now we turn to the Lagrangian density itself. Since we are dealing with a quantum theory we
would appreciate if it is Lorentz-invariant and thus relativistic. The equation of motion for a field
that satisfies that condition is given by the Klein-Gordon equation[18]:

(ˆ2 + m2)Ï = 0 (2.12)

so we want to find a Lagrangian density that when it is inserted into the Euler-Lagrange equation
to get the equation of motion returns the Klein-Gordon equation.
The Lagrange density that satisfies that condition is given by:

L = 1
2ˆµÏˆµÏ ≠ 1

2m2Ï2 (2.13)

We now take the right hand side of eq. (2.10), multiply with the ground state Â0, integrate out the
momenta qÕÕ and qÕ, and make the limits tÕ æ ≠Œ and tÕÕ æ Œ. The resulting term we will now
interpret as having the same meaning as the partition function from statistical mechanics, and is
called the vacuum expectation value:

Z0(J) = È0|0ÍJ =
⁄

Dqei
s

d4x(L0+JÏ) (2.14)

To evaluate Z0 we focus on the expression in the exponent of e:

S0 =
⁄

d4x [L + JÏ] (2.15)

and Fourier transform the fields Ï according to:

Ï̃(k) =
⁄

d4xe≠ixÏ(x) (2.16)

so inserting the Lagrangian density and Fourier transforming the fields we get:

S0 = 1
2

⁄
d4k

(2fi)4
⇥
≠Ï̃(k)(k2 + m2)Ï̃(≠k) + J̃(k)Ï̃(≠k) + J̃(≠k)Ï̃(k)

⇤
(2.17)

changing integration variable to ‰̃(k) = Ï̃(k) ≠ J̃(k)/(k2 + m2), which is merely just a shift by a
constant we get DÏ = D‰ and this leads to:

S0 = 1
2

⁄
d4k

(2fi)4

ñ
J̃(k)J̃(≠k)

k2 + m2 ≠ ‰̃(k)(k2 + m2)‰̃(≠k)
ô

(2.18)

where the integral over D‰ can easily be performed by noticing that Z0(0) = È0|0Í = 1, which
means that we end up with:

Z0(J) = exp
ñ

i

2

⁄
d4k

(2fi)4
J̃(k)J̃(≠k)

k2 ≠ m2

ô
(2.19)

If we now Fourier transform the source terms J̃ we get:

Z0(J) = exp
ï

i

2

⁄
d4xd4xÕJ(x)�(x ≠ xÕ)J(xÕ)

ò
(2.20)
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Where the Feynman propagator �(x ≠ xÕ), defined as:

�(x ≠ xÕ) =
⁄

d4k

(2fi)4
eik(x≠xÕ)

k2 + m2 (2.21)

is a Green’s function to the Klein-Gordon equation:

(≠ˆ2
x + m2)�(x ≠ xÕ) = ”4(x ≠ xÕ) (2.22)

Interacting field theory and Feynman rules
Now that we have dealt with the free field, it is natural to proceed to an interacting theory.

So lets see what happens when we add a Ï3 term to our Lagrangian:

Z(J) = È0|0ÍJ =
⁄

Dqei
s

d4x(L0+JÏ+gÏ3) (2.23)

We have also included a coupling constant g in our Ï3 term, that controls the strength of the
coupling. To solve this we are going to use a neat little trick. lets say we have an integral of on the
form:

I =
⁄

dxe≠x2≠bx4
(2.24)

if we split up the two exponentials and expand the bx4 term as a Taylor series we get:

I =
⁄

dxe≠x2
ï
1 ≠ bx4 + (bx4)2

2! ≠ ...

ò
(2.25)

However there is another way of representing eq. (2.24), through a mathematical trick where a
generating function is used. This can be done in the following way:

I = e≠b d4
d4c

⁄
dxe≠x2+cx|c=0 (2.26)

since the Taylor expansion of the first exponent, will result in the same expression as eq. (2.25).
So in order to describe equation we can use J as a generating function in eq. (2.23), so that we can
express that equation as:

Z = eig
s

d4x
Ä

1
i

”
”J(x)

ä3
⁄

Dqei
s

d4x(L0+JÏ) (2.27)

but since the left over path integral is nothing more than our free field path integral we can exchange
it with that result so that we get:

Z = ei
s

d4x
Ä

1
i

”
”J(x)

ä3

exp
ï

i

2

⁄
d4xd4xÕJ(x)�(x ≠ xÕ)J(xÕ)

ò
(2.28)

expanding both of these exponentials as Taylor series we get:

Z(J) Ã
Œÿ

V =0

1
V !

ñ
ig

⁄
d4x

Å1
i

”

”J(x)

ã3ôV Œÿ

P =0

1
P !

ï
i

2

⁄
d4yd4zJ(y)�(y ≠ z)J(z)

òP

(2.29)
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This means that the number of sources that survive the functional derivatives for a particular value
of V and P is E = 2P ≠ 3V .

The way that we now calculate the vacuum expectation values is to take time ordered products
of fields, which is done in the following way:

È0| TÏ(x1)Ï(x2)...Ï(xn) |0Í |J=0 = ”1”2...”nZ1|J=0 (2.30)

where ”n is defined as:
”n = 1

i

”

”J(xn) (2.31)

So in order for the expression in eq. (2.30) to be anything other than zero, we need the surviving
terms to have exactly n sources. These sources will we interpret as particles interacting with each
other.
Further the partition function Z can then be viewed as an exponential containing all the diagrams:

Z = exp [iW (J)] (2.32)

so that for two particles interacting we get eq. (2.30) to be:

È0| TÏ(x1)Ï(x2) |0Í |J=0 = ”1”2Z1(J)|J=0

= ”1”2iW (J)|J=0 + ”1iW (J)|J=0”2iW (J)|J=0

= ”1”2iW (J)|J=0

The fields can be redefined by shifting the vacuum expectation value of the fields by a constant,
therefore we define them in way so that ”1iW (J)|J=0 = 0 since this is a requirement by the LSZ
formula that È0| Ï(x) |0Í = 0 in order for the LSZ formula to be valid. Where the LSZ formula is
the method used to calculate the scattering amplitude of quantum fields interacting. The formula
is given by:

Èf |iÍ = in+nÕ
⁄

dx4
1eik1x1(ˆ2

1 + m2)...dx4
1Õe≠ik1Õ xÕ

1(ˆ2
1Õ + m2)... È0| TÏ(x1)...Ï(x1Õ)... |0Í (2.33)

Where the calculation is over the initial to final state of the particles interacting. The last term in
the formula is the vacuum expectation value that we have spent some time developing here. The
story about removing the single source diagrams is part of a larger story of adding counterterms
to the Lagrangian whose sole purpose is to cancel unwanted parts of the final calculation. This is
a very important part of QFT and is essential in when calculating any scattering process beyond
the most simple ones. However it is a rather involved subject and not essential to this project, so I
will not go over it here.

If we repeat our calculation for 2 particles but instead with 4 particles this time, we get:

È0| TÏ(x1)Ï(x2)Ï(x1Õ)Ï(x2Õ) |0Í |J=0 = ”1”2”1Õ”2ÕZ1(J)|J=0

= ”1”2”1Õ”2ÕiW (J)|J=0 + ”1”2iW (J)|J=0”1Õ”2ÕiW (J)|J=0

+ ”1”1ÕiW (J)|J=0”2”2ÕiW (J)|J=0 + ”1”2ÕiW (J)|J=0”1Õ”2iW (J)|J=0
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Here Z1(J) stands for all diagrams including disconnected diagrams, and W(J) is defined as all
connected diagrams. and we choose to only consider connected diagrams. The three terms where
the functional derivatives are divided up does not contribute to the scattering calculation of the
four particles since in these terms the particles do only interact pairwise. Therefore another choice
is taken, that we will only look at the diagrams that actually contribute to the scattering process
of all the particles, which is the terms where all the functional derivatives act on the same W (J).
The final expression is therefore given by:

È0| TÏ(x1)Ï(x2)Ï(x1Õ)Ï(x2Õ) |0Í |J=0 = ”1”2”1Õ”2ÕZ1(J)|J=0 (2.34)

Since there are 4 functional derivatives and 4 external sources there are 4! ways of combining
those up with each other. Thus in total we will get 24 expressions for each term that survives the
expansion in eq. (2.29). Assuming that the coupling constant is small, we can direct our focus on
the term that gives the lowest order in g. The 24 terms for that diagram turns out to be divided
into 3 groups each with 8 identical diagrams, so that we in total end up with:

È0| TÏ(x1)Ï(x2)Ï(x1Õ)Ï(x2Õ) |0Í |J=0 = (ig)2
Å1

i

ã5 ⁄
d4zd4y�(y ≠ z)

· [�(x1 ≠ y)�(x2 ≠ y)�(x1Õ ≠ z)�(x2Õ ≠ z)
+ �(x1 ≠ y)�(x1Õ ≠ y)�(x2 ≠ z)�(x2Õ ≠ z)
+ �(x1 ≠ y)�(x2Õ ≠ y)�(x2 ≠ z)�(x1Õ ≠ z)]

These three calculations can then each be represented with a diagram:

Figure 2.1: The 3 diagrams that are the result of eq. (2.34)

These types of diagrams are known as Feynman diagrams, and the specific diagrams we are dealing
with here is the tree diagrams. Tree diagrams are all the diagrams that do not involve any kind
of closed loop, and they all have the same order of the coupling constant g. The rule for creating
these diagrams is as follows:
If you have n particles interacting with each other you need to have n lines that have one end not
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connected to anything. Then look at the interacting term, the amount of factors in that term is
the number of lines that should exit from each vertex, so for a Ï3 theory we have to connect the
lines in vertices of three each. If it had been a Ï4 theory we would have had to connect 4 lines to
each vertex. Then construct all possible topological distinct diagrams. In the past calculation we
only included the terms with the lowest order of g, but in the general case there will of course be
plenty of diagrams that have an order of g much larger, actually an infinite amount of them. It
turns out that each time a diagram goes up one order in g (and because g is assumed small then
gets a lower overall value and contributes less) the corresponding diagram gets an extra loop where
momenta can circle around in. This is the reason that corrections to the tree diagrams are called
loop corrections or loop diagrams. In this thesis I will however not focus on loops.

The value of each diagram can then be calculated by letting the momentum flow through the
lines from left to right. Then to construct the calculation of the diagrams simply set up a chain of
propagators such that they represent the flow of momenta through each diagram.

Non-abelian gauge theory
Now that we have described how a scattering processes in QFT works and how Feynman diagrams
arise lets move straight on to the meat of the matter. What we have described so far is interactions
for a field with spin=0, what we could do now is to introduce fields with spin=1/2, and from there
develop the theory for fermions. However that is not the focus of this thesis, instead we will jump
directly on to describing bosons, particles that have spin=1[18].

First let’s start with observing how we could make a Lagrangian for the most simple spin 1 field,
the photon. We know that photons is nothing more than electromagnetic waves, and that these
waves can be described by Maxwell’s equations. From Maxwell’s equation it can further be deduced
that the electric and magnetic fields can be described by two other fields, a vector and scalar field
that combined has a lower dimensionality than the electric and magnetic field, that are given by:

E = ≠ÒÏ ≠ Ȧ (2.35)
B = Ò ◊ A (2.36)

thus simplifying all equations involving electric and magnetic fields. However these new fields are
not uniquely defined, and by shifting them in a specific way, the magnetic and electric fields will
remain unchanged. These shifts are given by:

ÏÕ = Ï + �̇ (2.37)
AÕ = A ≠ Ò� (2.38)

and are called gauge transformations. By switching to relativistic notation we can make it all a
little more compact by introducing Aµ = (Ï, A), then we define the field strength by:

F µ‹ = ˆµA‹ ≠ ˆ‹Aµ (2.39)

Maxwell’s equations can then be reframed as:

ˆ‹F µ‹ = Jµ (2.40)
‘µ‹fl‡ˆflF µ‹ = 0 (2.41)
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where Jµ = (fl, J).

The gauge transformation of eq. 2.37 and 2.38, can be expressed as AÕµ = Aµ ≠ ˆµ�, so gauge
transforming the field strength F µ‹ we get:

F Õµ‹ = ˆµAÕ‹ ≠ ˆ‹AÕµ (2.42)
= ˆµ(A‹ + ˆ‹�) ≠ ˆ‹(Aµ + ˆµ�) (2.43)
= ˆµA‹ ≠ ˆ‹Aµ + (ˆµˆ‹ ≠ ˆ‹ˆµ)� (2.44)
= ˆµA‹ ≠ ˆ‹Aµ + (ˆµˆ‹ ≠ ˆµˆ‹)� (2.45)
= ˆµA‹ ≠ ˆ‹Aµ = F µ‹ (2.46)

which shows us that the field strength is gauge invariant. Proceeding as with the free scalar field,
what we would like to do now is to find a Lagrangian that when put into the Euler-Lagrange
equation returns the equation of motion, which in this case are Maxwell’s equations. The solution
to this is given by:

L = ≠1
4 F µ‹Fµ‹ + JµA‹ (2.47)

This equation is also Lorentz invariant, Gauge invariant, parity and time reversal invariant (two
symmetries that I do not have time to cover here). Now that we have the Lagrangian the way we
solve the path integral and develop interactions follows the same path as for the scalar fields, albeit
with a few extra hurdles such as having to fix the gauge freedom.

An interesting fact however is that the gauge invariance shown here is not the most general case
that we can construct and the general is what we will explore now. When doing quantum electro-
dynamics one finds that QED can be understood as having a local U(1) symmetry, such that the
electron fields transforms as Ï(x) æ U(x)Ï. The only way this could be a symmetry of the QED
Lagrangian is if all derivatives are replaced with covariant derivatives, not unlike what one needs
to do in general relativity, given by Dµ = ˆµ ≠ ieAµ. Generalising this to the most general case
we can define the gauge fields Aµ to be matrices that exhibit the same properties as the genera-
tors of the group elements U(x) that we want it to be invariant under. Then we define the gauge
transformation of the fields as:

Aµ æ U(x)AµU≠1(x) + i

e
U(x)ˆµU≠1(x) (2.48)

the covariant derivative then also transforms as:

Dµ æ U(x)DµD≠1(x) (2.49)

and is given by:
Dµ = ˆµ ≠ igAµ (2.50)

where the partial derivative has an identity matrix multiplied with the same dimension as the gauge
fields. If we look at U(1) with U(x) = exp [≠ie�(x)], we see that the transformation of the gauge
field returns what we got for Maxwell’s equations. Now instead of U(1) we can define U(x) more
generally as:

U(x) = e≠ig�a(x)T a

(2.51)
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where the T a’s are generators of a compact Lie group. The field strength of this theory can then
be defined as:

F = i

g
[Dµ, D‹ ] = ˆµA‹ ≠ ˆ‹Aµ ≠ ig [Aµ, A‹ ] (2.52)

if it had been like in QED the last terms would have been equal to zero, since the gauge fields here
were not matrices. But now since they are matrices they do not disappear, this is known as Yang-
Mills theory [25]. Using that the gauge fields Aµ exhibits the same properties as the generators of
the gauge group, we can expand it in terms of these generators:

Aµ = Ac
µ(x)T c (2.53)

Putting this into the definition of the field strength we get:

Fµ‹ = (ˆµAc
‹ ≠ ˆ‹Ac

µ)T c ≠ igAa
muigAb

nu

⇥
T a, T b

⇤
(2.54)

= (ˆµAc
‹ ≠ ˆ‹Ac

µ)T c ≠ igAa
muigAb

nufabcT c (2.55)
= F c

µ‹T c (2.56)

The field strength transforms as F µ‹ æ U(x)F µ‹U≠1(x) it is not gauge invariant, so the usual
expression F µ‹Fµ‹ can not be used as the kinetic term. however to create a gauge invariant term
we simply use:

tr (F µ‹Fµ‹) æ tr
�
U(x)F µ‹U(x)≠1U(x)Fµ‹U(x)≠1�

= tr
�
F µ‹U(x)≠1U(x)Fµ‹U(x)≠1U(x)

�

= tr(F µ‹Fµ‹)
=F µ‹aF b

µ‹tr(T aT b)

The last equal sign is not part of the gauge invariance for the kinetic term, however it is paramount
for what we are doing here. Because the reason that we used semi-simple lie group generators in
eq. (2.51) is because those generators are compact, which means that tr(T aT b) Ø 0, and with this
condition we make sure that we do not end up with any kinetic terms that have the wrong sign,
since this could result in a Hamiltonian that is unbounded from below. Therefore in a gauge theory
we are restricted to only use the following groups or products of these groups as our gauge groups:
An, Bn, Cn, Dn, G2, F4, E6, E7 and E8.

Now what would normally be done is to solve the path integral for the Lagrangian L = ≠ 1
2 tr(F µ‹Fµ‹),

so that we can get the propagator and essentially develop it all in the same manner as we did for
a spin 0 field. However this is rather cumbersome to go over and for our purpose it is not needed,
since many of the results will turn out to be very similar to the ones for spin 0 fields, just with
some precautions due to the gauge invariance. Therefore writing out the Lagrangian we get:

L = ≠ˆµA‹cˆµAc
‹ + ˆµA‹cˆ‹Ac

µ ≠ gfabcAaµAb‹ˆµAc
‹ ≠ 1

4g2fabefcdeAaµAb‹Ac
µAd

‹ (2.57)

The Feynman rules for how to draw diagrams that we have already developed almost translates
directly to our gauge invariant theory, therefore we get a 3 vertex diagram from the terms with 3
gauge fields and a 4 vertex diagram from the term with four gauge fields. We can draw this as
shown in figure (2.2):
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Figure 2.2: The vertices we have for our free field gauge theory

Then when drawing Feynman diagrams for a scattering amplitude for purely gluonic calculations
these are the fundamental diagrams that we need to use. These diagrams each contain one or
two factors of the Lie algebra structure constants structure fabc, and so their respective scattering
amplitudes also contains factors of structure constants. When summing over all the diagrams that
arise from a tree level calculation of gluonic scattering we do not end up with the same expression
as we did in the spin 0 case. What we instead end up with is an expression where we have expanded
all structure constants in terms of their fundamental representation and collected the terms that
share the same group factor. This all results in a formula for the amplitude that is given by:

M =
ÿ

fiœSn

M(fi1, fi2, ..., fin)tr(T fi1T fi2 ...T fin) (2.58)

Where the sum is over all permutations of the symmetric group Sn [21]. Here we see that each
element in the amplitude is split up in a kinematic part and group part. Our focus for the rest
of this paper will be to find a way to calculate the traces of structure constants also called colour
factors.

DDM basis
From the last section we know that the standard way of calculating scattering amplitudes for gauge
fields is given by eq. (2.58):

M(1, 2, ..., n) =
ÿ

fiœSn

M (afi1 , afi2 , ..., afin) tr (T afi1 T afi2 ...T afin ) (3.1)

Furthermore from calculations of gluon amplitudes [6] we know that the kinematic part of the
subamplitudes has a cyclic invariance:

M(fi1, fi2, ..., fin) = M(fi2, ..., fin, fi1) (3.2)

which is also shared by the traces (since traces of matrices are cyclic invariant), this enables us to
fix one of the ”legs” in the amplitude, which means that we can reduce the above expression to:

Mn =
ÿ

fiœSn≠1

M(fi1, afi2 , ..., afin)tr(T fi1T afi2 ...T afin ) (3.3)
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Since the trace of a product of matrices is cyclic invariant independent of which matrices are mul-
tiplied together, and since the kinematic factors does not depend on the group symmetry, this
decomposition holds for any of the semi-simple compact lie groups (SU(n), SO(n), SP(n), G2, F4,
E6, E7 and E8).

The reason we want to reduce the amount of expressions in the sum is simply because it will
make it easier for us in the future to calculate scattering amplitudes if we have fewer terms in our
expression. Especially because the hard part to calculate is often the kinematic factors, so the fewer
o� them we have, the better of we are. Luckily for us, it is however possible to further reduce the
expression for the scattering amplitude in eq. (3.3), using a decomposition shown in [4], called the
DDM basis.

The DDM basis builds on the decomposition from eq. (3.3) and utilises two di�erent relations
in order to be proved, the first is:

ffi1fi2x1fx1fi3x2 ...fxn≠3fin≠1fin = (≠1)n≠2tr(T fi1 [T fi2 , [T fi3 , ..., [T fin≠1 , T fin ]...]]) (3.4)

This relation can be derived from the commutator relation, and the definition of the structure
constants:

[T a, T b] = ifabcT c ∆ (≠i)[T a, T b] = fabcT c (3.5)

fabc = ≠itr(T a[T b, T c]) (3.6)

So the calculation goes like this:

ffi1fi2x1fx1fi3x2fx2fi4fi5 = (≠i)tr(T fi1 [T fi2 , T x1 ])fx1fi3x2fx2fi4fi5

= (≠i)tr(T fi1 [T fi2 , T x1fx1fi3x2 ])fx2fi4fi5

= (≠i)2tr(T fi1 [T fi2 , [T fi3 , T x2 ]])fx2fi4fi5

= (≠i)2tr(T fi1 [T fi2 , [T fi3 , T x2fx2fi4fi5 ]])
= (≠i)3tr(T fi1 [T fi2 , [T fi3 , [T fi4 , T fi5 ]]])

From here it is easy to see how to generalise it to the case of n ≠ 2 structure constants, and
N generators in the fundamental representation. Since this relation is derived using only the
commutator relation and the definition of the structure constants, it holds for all semi-simple
compact Lie groups.
The second relation that the DDM basis builds on is the Kleiss-Kuijf relation[15], which is given
by:

M(1, {–}, n, {—}) = (≠1)n—
ÿ

‡œOP {–}{—T }

M(1, ‡({–}{—T }), n) (3.7)

Her the sum over OP{–}{—T } stands for the sum over all ordered products of the two sets {–}
and {—}, where an ordered product stands for any permutation that mixes the two sets and that
preserves the relative ordering between the elements internally in each of the sets. This is also
called the shu�e product.

This is also a calculation only depending on the kinematic part of the amplitude and is thus
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not depending on the choice of gauge group. Inserting the Kleiss-Kuijf relation in eq. 3 yields:

Mn =
ÿ

({–}{—})œSn≠1

tr(T (1,{–},n,{—})) · (≠1)n—
ÿ

‡œOP {–}{—T }

M(1, ‡({–}{—T }), n) (3.8)

Even though the two sets {–} and {—} together contains n-2 elements, the first sum is still over the
permutation of n-1 elements, since for every permutation of the two elements {–} and {—} there
are n-1 ways of setting the cut between the two sets. eg. all elements can be put in {–} and zero in
{—}, or n-3 elements in {–} and 1 in {—} and so forth until all elements are in the set {—}. Which
then in total gives Sn≠1 ways of permuting and slicing the two sets.

The number of ordered permutations of the two sets {–} and {—} is equal to the binomial co-
e�cient of

�–+—
—

�
, when summing over all the cuts between the sets (how many elements each set

gets), we get the sum:
n≠2ÿ

—=0

Ç
n ≠ 2

—

å
= 2n≠2 (3.9)

where n≠2 = –+—. So using this summation of the elements on the two sums in eq. (3.8), we now
have 2n≠2 sub-amplitudes of the form

q
cuts M(1, ‡({–}{—T }), n), and are left with a sum over

the (n ≠ 2)! elements of the permutations of the set {–} fi {—}. Since every permutation of the set
{–} fi {—} gives 2n≠2 di�erent sub-amplitudes, when summing over all the permutations we get for
each of the (n-2)! permutations, 2n≠2 sub-amplitudes that are identical but have di�erent traces
associated with them. These traces exactly match the traces from the identity in eq. (3.4), so that
we can combine the 2n≠2 traces to a single term containing structure constants:

M(1, 2, ..., n) =
ÿ

fiœSn≠2

f1fi2x1fx1fi3x2 ...fxn≠3fin≠1nM(1, fi2, fi3, ..., fin≠1, n) (3.10)

Since this decomposition is achieved using only identities that does not depend on the Lie group,
this holds for any of the 9 semi-simple compact Lie groups.

Zeppenfeld basis
What we achieved in section () is a method where all tree level calculations of scattering amplitudes
of N particles are reduced to a sum over N ≠ 2 subamplitudes. This is a really nice result since
it reduces the amount of calculations we have to do by a factor of N(N ≠ 1). However since the
calculations still depend on the gauge group of the generators it leaves us with no tangible way of
comparing how the calculations for the di�erent groups di�er from each other. In order to compare
how the group calculations di�er from each other we need to find a way to disconnect the gauge
group terms with the kinematic terms. A that allows us to do this was found in 1988 by Zeppenfeld
[27] where he used the irreducible representations of the permutation group to reformulate calcula-
tions of scattering amplitudes into an orthogonal basis and this is the approach we will be using here.

Applying Zeppenfelds approach to the DDM basis is actually fairly straight forward and it can
almost entirely be copied from his paper.
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Defining colour factors of the form:

�(–;kl)
1n = n–

(n ≠ 2)!
ÿ

fiœSn≠2

D(–)
kl (fi)T (fi)

1n (4.1)

Where – labels the irreducible representations of the permutation group and n– is the dimension
of the corresponding representation. fi is a permutation of the n ≠ 2 elements that is permuted in
eq. (3.10):

T (fi)
1n = (F fi2F fi3 ...F fin≠1)1n = f1fi2x1fx1fi3x2 ...fxn≠3fin≠1n (4.2)

where F 1
ij is a generator in the adjoint representation. The elements D(–)

kl (fi) are a representation
matrix for a specific irreducible orthogonal representation of the permutation group Sn≠2.
The new colour factors can be inverted using the orthogonal basis for the representation of the
Sn≠2 elements, so this result is only realisable in that representation:

T (fi)
1n =

ÿ

–

n–ÿ

k,l=1
D(–)

kl (fi)�(–;kl)
1n

=
ÿ

–

n–ÿ

k,l=1
D(–)

kl (fi)
ÿ

flœSn≠2

D(–)
kl (fl)T (fl)

1n

=
ÿ

flœSn≠2

ÿ

–

nflÿ

k,l=1

n–

(n ≠ 2)!D
(–)
kl (fi)D(–)

kl (fl)T (fl)
1n

=
ÿ

flœSn≠2

”fifl≠1T (fl≠1)
1n

= T (fi)
1n

Where the identity used between line 3 and 4 is [11]:

ÿ

–

n–ÿ

k,l=1

n–

(n ≠ 2)!D
(–)
kl (fi)D(–)

kl (fl)† = ”fifl (4.3)

and:
D(–)

kl (fl)† = D(–)
kl (fl≠1) = D(–)

lk (fl) (4.4)

and:
n2

– = (n ≠ 2)! (4.5)
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Which stems from the fat that we use the orthogonal representation of the symmetric group.
multiplying two of the new colour factors together then gives:

�(–;kl)
1n (�(—;ij)

1n )† = n–

(n ≠ 2)!
ÿ

fiœSn≠2

D(–)
kl (fi)T (fi)

1n

Ñ
n—

(n ≠ 2)!
ÿ

flœSn≠2

D(—)
ij (fl)T (fl)

1n

é†

(4.6)

= n–n—

((n ≠ 2)!)2

ÿ

fi,flœSn≠2

D(–)
kl (fi)

Ä
D(—)

ij (fl)
ä†

T (fi)
1n (T (fl)

1n )† (4.7)

= n–n—

((n ≠ 2)!)2

ÿ

fi,flœSn≠2

D(–)
kl (fi)D(—)

ji (fl≠1)T (fi)
1n (T (tfl)

n1 ) (4.8)

t is explained below (4.9)

= n–n—

((n ≠ 2)!)2

ÿ

fi,flœSn≠2

D(–)
kl (fi)D(—)

jm(t(tfl≠1fi))D(—)
mi (fi≠1) tr

Ä
T (fi)T (tfl)

ä
(4.10)

= n–n—

((n ≠ 2)!)2

ÿ

fiœSn≠2

D(–)
kl (fi)D(—)

mi (fi≠1)
ÿ

flœSn≠2

D(—)
jm(t(tfl≠1fi)) tr

Ä
T (fi)T (tfl)

ä

(4.11)

= n–n—

((n ≠ 2)!)2

ÿ

fiœSn≠2

D(–)
kl (fi)D(—)

mi (fi≠1)
ÿ

flœSn≠2

D(—)
jm(t(tfl≠1fi)) tr

Ä
T (1)T (tflfi≠1)

ä

(4.12)

= n–n—

((n ≠ 2)!)2

ÿ

fiœSn≠2

D(–)
kl (fi)D(—)

mi (fi≠1)
ÿ

flœSn≠2

D(—)
jm(t(tfl≠1fi)) tr

Ä
T (1)T ((tfl≠1fi)≠1)

ä

(4.13)

= n–n—

((n ≠ 2)!)2
(n ≠ 2)!

n–
”–—”ki”lm

ÿ

flœSn≠2

D(—)
jm(tfl) tr

Ä
T (1)T (fl≠1)

ä
(4.14)

= n–

(n ≠ 2)!”–—”ki

ÿ

flœSn≠2

D(—)
jl (tfl) tr

Ä
T (fl)T (1)

ä
(4.15)

between eq. (4.7) and eq. (4.8) the identities used are[11]:
Ä
D(—)

ij (fl)
ä†

= D(—)
ji (fl≠1) Same as in Zeppenfelds paper

which is a feature of the irreducible representations matrices of Sn≠2 since we utilises them in their
orthogonal form, and

tr
Ä
T (fl)
ä†

= tr
Ä
T (tfl)

ä

where t represents a transposition such that the set {‡1, ‡2, .., ‡n} under t transforms into:

{‡1, ‡2, .., ‡n} æ {‡n, ‡n≠1, .., ‡1} (4.16)

between eq. (4.11) and eq. (4.12) the identity used is:

tr(T fiT fl) = tr(T ‡fiT ‡fl)
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This identity is the exact same as in Zeppenfeld’s paper.
Between eq. (4.13) and eq. (4.14) the identity used is[11]:

ÿ

fiœSn≠2

D(–)
kl (fi)D(—)

mi (fi≠1) = (n ≠ 2)!
n–

”–—”ki”ml (4.17)

which again is the same as in Zeppenfeld’s paper.
Since we can express the colour factors T (fi)

1n in terms of the new colour factors �(–;kl)
1n and irreducible

representation matrices for Sn≠2, we can express the amplitudes as:

M =
ÿ

–

n–ÿ

k,l=1
�(–;kl)

1n

ÿ

fiœSn≠2

D(–)
kl (fi)M(fi) (4.18)

where the kinematic part M(fi) is:

M(fi) = M(1, fi2, fi3, ..., fin≠1, n) (4.19)

So then calculating the amplitude squared gives us:

|M|2 =
ÿ

–

n–ÿ

k,l=1
�(–;kl)

1n

ÿ

fiœSn≠2

D(–)
kl (fi)M(fi)

Ñ
ÿ

—

n—ÿ

i,j=1
�(—;ij)

1n

ÿ

flœSn≠2

D(—)
ij (fl)M(fl)

é†

=
ÿ

–

ÿ

—

n–ÿ

k,l=1

n—ÿ

i,j=1
�(–;kl)

1n (�(—;ij)
1n )†

ÿ

fi,flœSn≠2

D(–)
kl (fi)(D(—)

ij (fl))†M(fi)(M(fl))†

=
ÿ

–

ÿ

—

n–ÿ

k,l=1

n—ÿ

i,j=1

n—

(n ≠ 2)!”–—”ki”lm

ÿ

‡œSn≠2

D(—)
jm(t‡) tr

Ä
T (‡)T (1)

ä ÿ

fi,flœSn≠2

D(–)
kl (fi)(D(—)

ij (fl))†M(fi)(M(fl))†

=
ÿ

–

n–ÿ

k,l,j=1

n–

(n ≠ 2)!
ÿ

‡œSn≠2

D(–)
jl (t‡) tr

Ä
T (‡)T (1)

ä ÿ

fi,flœSn≠2

D(–)
kl (fi)(D(–)

kj (fl))†M(fi)(M(fl))†

=
ÿ

–

n–ÿ

k,l,j=1
C(–;jl)

ÿ

fi,flœSn≠2

D(–)
kl (fi)(D(–)

kj (fl))†M(fi)(M(fl))†

Where I have defined:

C(–;jl) = n–

(n ≠ 2)!
ÿ

‡œSn≠2

D(–)
jl (t‡) tr

Ä
T (‡)T (1)

ä
(4.20)

The factors tr
�
T (‡)T (1)� can then be calculated via their birdtrack diagrams:

(4.21)
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Where the first and last vertical legs are fixed and the permutation is over the other vertical legs.
These diagrams are thus only build up of structure constants, and can be calculated via the bird-
track deconstruction of structure constants, which is given by (see section () for further explanation):

(4.22)

and by using the adjoint projection operator to expand each of the adjoint lines in the diagrams
one ends up with.

Therefore for a diagram with n particles, we get 2(n ≠ 2) structure constants by eq. (4.21), and
since each structure constant leads to a factor of 2 extra diagrams this will in total give 22(n≠2)

di�erent diagrams to calculate. Furthermore for each of these 22(n≠2) diagrams we have n+2(n≠3)
adjoint projection operators (lines between the structure constants or), and if each of these projec-
tion operators contains 2 terms we further get another 2n+2(n≠3) diagrams. There may however be
more than two terms in an adjoint projection operator, so that number will be denoted npo. So in
total for each factor of tr

�
T (‡)T (1)� which is given by eq. (4.21) we get 22(n≠2)nn+2(n≠3)

po diagrams
to calculate, and there are (n ≠ 2)! di�erent traces in an amplitude calculation, so in total when
calculating an amplitude squared we need to calculate:

(n ≠ 2)!22(n≠2)nn+2(n≠3)
po (4.23)

di�erent colour factors (or birdtrack diagrams). Comparing this to standard way of calculating
scattering amplitudes from eq. (2.58) which we can draw in a way similar to eq. (4.21):

(4.24)

we see that we in total have (n!)2 diagrams, and each of these diagrams has n projection operators,
which will then give nn

po diagrams. From this we then in total get:

(n!)2nn
po (4.25)

di�erent diagrams. So we see that the di�erence in the number of diagrams we need to calculate is
eq. (4.23) divided by eq. (4.25) which gives:

22(n≠2)n2(n≠3)
po

n(n ≠ 1)(n!) (4.26)

For values of n larger than 4 and smaller than 74 gives a number larger than 1, which means that in
that range it is more computationally heavy to do calculations this way since there are more terms
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to calculate. On the other hand though, by calculating amplitudes using the Zeppenfeld basis the
amount of kinematic factors we have to calculate has been reduced from (n!)2 to ((n ≠ 2)!)2, which
is often preferred since the kinematic factors can be very hard to calculate, and the colour factors
can essentially just be calculated using simple algorithms (once those algorithms are found, and if
the number of particles is too big, it might take a very long time and a lot of RAM to calculate all
those diagrams though).

Birdtrack
It is often said that one of the biggest hurdles when solving a problem in physics is to find a notation
to express the problem in a solvable way. One of the best examples of this is the Lagrangian
formalism in classical mechanics, which is essentially just a rewriting of Newtons equations but
which o�ers a whole new way of framing problems in terms of energies instead of forces.
In this section we will do something similar for group theory calculations, by using what is commonly
known as Birdtrack. Birdtracks is essentially a pictorial way of solving various group calculations
by drawing diagrams and summing up the result based on what rules the group has. The method
itself is equivalent to writing up tensors and expanding them according to normal convention, but
as shall hopefully be clear throughout the rest of this thesis, it will often be easier to get an overview
of the problem by formalising it in Birdtracks. This section is based upon the book ”Group Theory:
Birdtracks, Lie’s and Exceptional Groups” [3], written by Predrag Cvitanović.

Definitions
In the Birdtrack notation a propagator that connects two vertices is a Kronecker delta given by:

(5.1)

The arrows gives a pictorial way of distinguishing upper and lower indices, where arrows always
points away from the upper index and towards the lower index. This way of representing indices
is only relevant when a representation of the group is complex, for real representations there is no
di�erence between upper and lower indices. any Invariant tensor can in this formalism be realised
as a vertex:

(5.2)

where it does not matter if the vertex i drawn as a square, circle or simply a dot, however it is
preferable if di�erent types of objects and invariant tensors gets their own vertex shape/colour to
make it easier to distinguish them. The upper and lower indices are read separately so that their
relative order does not matter, however it is important to note that the order of the indices in the
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same row is to be upheld. The order of reading the indices is counterclockwise:

(5.3)

The above diagram is drawn in such a way that it can be interpreted as that the indices are cyclically
invariant, however if this is not the case it should be clearly visible by the drawing of the diagram,
as stated below:

(5.4)

Summing over indices is drawn as an internal line between two tensors or when two indices is
summed over in the same tensor it is drawn as a line from the tensor to the tensor itself:

(5.5)

A matrix that has both upper and lower indices is defined as an object that transforms transforms
objects in the following way M = V p ¢ V̄ q æ V p ¢ V̄ q, is in the Birdtrack notation given by:

(5.6)

The matrix multiplication is then defined just like the contraction of indices for tensors, just with
the rule that if two matrices are multiplied the only indices that can be summed over is those that
are on the sides that is oriented towards the other matrix. Notice that all the names on the lines
have been dropped. This is due to the fact that we do not need them in order to know what is
going on, the other rules we set up already completely describes everything we needs to know, so
giving them a name will just be extra work for us without any benefit.
Also due to the way that we have depicted a matrix it is possible for us to draw the trace of a
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matrix in a planar way:

(5.7)

Symmetric and anti-symmetric tensors
One of the most useful notations in birdtracks is the symmetrization or anti-symmetrization of
tensor indices. Permuting of indices is a linear operation, and we can thus represent it by a matrix.
We will here only consider completely symmetric or anti-symmetric tensors, and not matrices that
are a mix of those. Lets start wit symmetrization.

If we have a 2 index tensor we have two options when permuting indices, these are given by:

(5.8)

So when we symmetries a 2 index tensor we have to apply both of these operations and sum them
up, then we have to divide with 2 since we are summing up two elementsw and to make sure that a
symmetrization of a symmetrization does not change eh anything about the tensor. In the general
case with a n-index tensor the action of symmetrizing p indices is thus given by a sum over all the
p! ways of permuting p elements:

(5.9)

also a symmetrization of a subset of symmetrized indices also just returns the original symmetrized
indices:

(5.10)

This also means that any permutation on the symmetrized indices just gives the indices back,
thus any permutation has eigenvalue 1 on the symmetric space. Since calculations with these
symmetrizations yields p! diagrams they are often very tedious to work with, therefore it is preferable
to work out identities to lessen our work. The first identity that we shall state is the reduction of
one symmetrized index given by:

(5.11)
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if we then trace the top row in this equation we get an identity for tracing 1 index in a symmetrized
space:

(5.12)

where n is the dimension of the index being summer over, which is represented by a closed circle
which is equivalent to ”a

a = n. Notice that in this calculation we have symmetrized from the right
on both sides and used that the symmetrization of a symmetric space just returns the symmetric
space. Using this trick repeatedly on the symmetric space we are able to get a formula for tracing
p≠k indices on a symmetric matrix and tracing all p indices on a symmetric matrix, which is given
by:

(5.13)

Now turning our attention to the case of anti-symmetrization, out goal is to find identities that eases
up calculations involving anti-symmetric spaces. Like the case with symmetrization we start from
the point of eq. (5.8), only now instead of summing all permutations we now have to distinguish
if a permutation is of even or odd parity. If the permutation is even we add the corresponding
diagram to the overall result, and if the permutation is odd we subtract the permutation. In the
general case this gives us:

(5.14)

Notice that we have shifted from colouring the insides of the box all white, to all black in compliance
with our own rule to distinguish objects that di�er to increase the ease of understanding from
viewing the diagrams. Continuing to proceed as we did with symmetrization, we find that the
anti-symmetrization and already anti-symmetric space just returns the anti-symmetric space.

(5.15)

An interesting thing to note here is that if one tries to symmetrices an anti-symmetric space or vice
versa, it will just give zero:

(5.16)
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Compared to the symmetric case where crossing two legs on a space just returns the original space,
crossing two adjacent legs on an anti-symmetric space returns the same space multiplied with a
factor of ≠1. Again we continue as we did with the symmetric space and see if we can find a relation
that eases up calculations with anti-symmetric subspaces so that we do not have to deal with p!
diagrams. This gives us:

(5.17)

Tracing this identity we get:

(5.18)

and with repeated use of this formula we can again get formulas for tracing (p ≠ k) or simply all
indices:

(5.19)

It is worth noticing that the identities for the anti-symmetric calculations are only valid if the
number of indices to be anti-symmetrized is smaller than the dimension of the representation,
a result well known from dealing with tensors. Since Birdtrack notation is just another way of
representing tensors that result naturally also has to be realised here.

Invariance and projection operators
Lets start o� by going back to the matrix and tensor notation, and define an invariant tensor as an
object that satisfies:

x
a1..ap

b1...bq
= Ga1

c1 ...Gap
cp

Gd1
b1 ...G

dq

bq
x

c1...cp

d1...dq
(5.20)

for any group element g in G, where G is a matrix representation of g. If a bilinear form, m = xaM b
ayb

M : V p ¢ V̄ q æ V p ¢ V̄ q, is invariant for all g, then the matrix M is an invariant matrix:

M b
a = Gc

aGb
dMd

c (5.21)

If M is unitary we can multiply it with Ge
b and thus find that invariant matrices commutes with all

transformations:
[G, M ] = 0 (5.22)

If all indices on an invariant tensor is traced with invariant vectors the resulting scalar will be an
invariant scalar, this is given by:

h = hab
cdexbyaserdzc (5.23)
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Invariant tensors can of course be multiplied together to give what is called composed invariant
tensors. One can then define what is called tree invariant tensors which is invariant tensors that
can be draw diagrammatically as a product of invariant tensors but where there is no loop index
loops (much like tree level amplitudes in QFT). An example of an invariant tensor that does not
satisfy the tree condition is:

(5.24)

Lastly we define a primitive invariant tensor as those tensors that can not be expressed as a linear
combination of tensors of a lower rank. The primitiveness assumption[3] states that all invariant
tensors h œ V p ¢ V̄ q can be expressed as a linear sum of tree invariants T µ V q ¢ V̄ q,

h =
ÿ

–œT

a–t– (5.25)

and tree invariants can of course be build up of primitive invariants. For a fixed amount of indices
in an invariant tensor there exists a finite number of ways to combine primitive invariants into tree
invariants and thus a finite number of components in the sum from which we can define an invariant
tensor as a linear sum of tree invariants.

Hermitian matrices can always be diagonalized using a unitary matrix C, so that the eigenval-
ues of the matrix is the values along the diagonal of the matrix, so that a hermitian matrix M
satisfies the minimal characteristic equation.

rŸ

i=1
(M ≠ ⁄i1) = 0 (5.26)

where the numbers ⁄i is the eigenvalues of the matrix. One can create a matrix with zeros at the
diagonal places where the eigenvalue ⁄a would normally be via the expression: C(M ≠ ⁄a1)C†.
Using this expression we can define projection operators Pi:

Pi =
Ÿ

j ”=i

M ≠ ⁄j1
⁄i ≠ ⁄j

(5.27)

that act as an identity matrices on the subspaces i, and 0 matrices on all other i’s. The projection
operator P1 in matrix notation is given by:

P1 = C†

0

BBBBBBBBBB@

1
. . .

1
0

0
. . .

0

1

CCCCCCCCCCA

C (5.28)
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The projection matrices are orthogonal PiPj = ”ijPi, and they satisfy a completeness relation:
rÿ

i=1
Pi = 1 (5.29)

and the dimension of each subspace can be computed by tracing the corresponding projection
operator:

tr(Pi) = di (5.30)

If there exists several linear independent matrices we can use the fist matrix to decompose the vector
space: V into subspaces V =

q
üVi using the projection operators for the first matrix. Then we can

find the projection operators for the other matrices and see if we can further decompose each of the
underlying subspaces Vi. Such a straight forward application only works if the matrices commute
with each other, but if they do not commute the projection operators from the matrix M1 given
as {Pi}, can be used on the other matrices to create commuting pieces of the other matrices, such
that the subparts of the other matrices that is not included in M1 can be projected out. Such a
deconstruction is given by:

M (i)
2 = PiM2Pi (5.31)

If it turns out that the matrices M (i)
2 only contain one eigenvalue they do however not induce

a subspace. A representation is said to be irreducible if all invariant matrices are proportional
to unity. Since invariant matrices commute with group transformations we find that projection
operators also commute with group transformations since they are constructed from the invariant
matrices. Which means that a [d ◊ d] matrix representation of a group can be written as a sum of
[di ◊ di] matrix representations:

G =
ÿ

i

PiGPi =
ÿ

i

Gi (5.32)

this means that a invariant matrix with n distinct eigenvalues induces a decomposition of a vec-
torspace V, in n distinct subspaces. Using eq. (5.28) this same expression can in the block-diagonal
basis be expressed as:

G =
ÿ

i

CiGiCi (5.33)

Where the tensors Ci will be defined below.

Going back to our birdtrack notation, we define what is known as a Clebsch-Gordon coe�cients as
the product: 0

BBBBBBBBBB@

1
. . .

1
0

0
. . .

0

1

CCCCCCCCCCA

C (5.34)

which is the same as a projection operator from eq. (5.28) just without the unitary matrix C†. The
only nonzero values of that matrix is a [d1 ◊d] rectangular matrix. These are defined as: (C1)bp...b1

aq...a1 ,
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and is represented with:

(5.35)

They map the space V æ V1. The hermitian conjugate of a Clebsch-Gordon coe�cient is naturally
given by:

(5.36)

From the definition of projection operators we can express them in terms of these clebsch-gordon
coe�cients:

(5.37)

a specific projection was chosen here to emphasise that there is no sum over the contracted indices
for the Clebsch-Gordon coe�cients. The Clebsch-Gordon coe�cients are orthonormal so that they
satisfy:

(5.38)

for two subspaces µ and ‹. The completeness relation for the projection operators given by eq.
(5.29), can be expressed as:

(5.39)

As a side note lets look back at eq. (5.19) where we see that an anti-symmetric tensor with n
indices only has one independent component dn = 1. The Clebsches for this case is proportional to
the Levi-Civita tensor, which we pictorially draw as:

(5.40)
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Where the constant C is there so that the Levi-Civita tensor satisfies:

(5.41)

and it is given by:

C = in(n≠1)/2
Ô

n!
(5.42)

The Levi-Civita tensor further satisfies:

(5.43)

Which is the same as using the anti-symmetrization operator on n + 1 lines when the fundamental
representation is n, which we know from eq. (5.19) is equal to 0.

Lie algebra in Birdtrack
An infinitesimal unitary transformation is given by:

Gb
a = ”b

a + iDb
a (5.44)

where the matrix D has values much smaller than 1. the conjugate of D is then given by:

Ga
b = ”a

b ≠ iDa
b (5.45)

D is parametrized by N Æ n2 parameters, where n is the dimension of each of the indices {a, b}.
This number is equivalent to the dimension of the group, also called the adjoint dimension. Recall
from section that the amount of generators in a simple-compact Lie group is equal to the adjoint
dimension. The generators of infinitesimal transformations D are hermitian matrices and belong to
the space V ¢ V̄ . From the calculations we made this chapter we know that this space can always
be composed in a linear combination of projection operators, where each of these operators is a
linear combination of tree invariants composed of primitive invariants. This can be written:

1 = 1
n

T + PA +
ÿ

⁄”=A

P⁄ (5.46)

The singlet 1
n T representation is always part of a unitary space. The representation that is always

present in the space V ¢ V̄ is the adjoint representation. This can be represented in birdtrack
notation as:

(5.47)
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where the second term is the adjoint projection operator and we give it the symbol PA:

(5.48)

This projection operator must exist in every decomposition, since the associated clebsches for this
operator is the lie group generators in the fundamental representation and we also identify the
matrices D in eq. (5.44) as these generators. The adjoint projection operator in tensor notation
can be expressed in familiar form as:

PA = (T a)i
j(T a)k

l (5.49)

An expression, that anyone that does calculations in colour ordered QCD are very familiar with.
Since any invariant tensor is una�ected by the group acting on it, see eq. (5.20), we see that acting
with G on an invariant tensor we get:

q = Gq = (1 + T i)q (5.50)

from which we can conclude that the generators must annihilate invariant tensors. Given the
invariance condition from eq. (5.20), we find that the birdtrack equivalent amounts to adding an
adjoint line to every external line in an invariant tensor, which should equal zero. So given an
invariant tensor Q we get:

(5.51)

where the sign depends on the direction of the arrow. Clebsch-Gordon coe�cients are themselves
also invariant tensors. Going back to eq. (5.33) and multiplying it with Ca on both sides and using
orthogonality of the Clebsch-Gordon coe�cients we get:

CaG = CaGa (5.52)

Multiplying both sides with G†
a we get:

Ca = G†
aCaG (5.53)

using eq. (5.44) and (5.45) and omitting all orders of D larger than 1, we find the invariance
condition for Clebsch-Gordon coe�cients to be:

0 = ≠T a
i Ca + CaTi (5.54)

Which can diagrammatically be expressed as:

(5.55)
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A special case of the invariance condition also arises when one handles totally symmetric or anti-
symmetric tensors. In the case of a totally anti-symmetric tensor we see that it satisfies:

(5.56)

Therefore we can express the invariance condition for a totally anti-symmetric tensor as:

(5.57)

Where the factor of 1/p! in the front don’t really matter, since an overall constant can’t change that
the result is zero. The same is of course also true for a totally symmetric tensor if we interchange
the anti-symmetric operator with the symmetric operator.

From the definition of the adjoint projection operator in birdtrack notation eq. (5.48), we associate
a thin line without any arrow on as an adjoint representation, such that it satisfies:

(5.58)

where NA is the dimension of the adjoint representation. From the definition of the structure
constants eq. (1.16), we see that a structure constant in birdtrack notation can be drawn as:

(5.59)

This we will shorten into a dot with three adjoint legs, which is totally anti-symmetric under
interchanging of any two legs:

(5.60)

Since the generators also are Clebsch-Gordon coe�cients they satisfy the invariance condition eq.
(5.55), which turns out to be equivalent to the commutator relation:

(5.61)
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The structure constants also satisfies the commutator relation, see eq. (1.10), which for the adjoint
representation is called the Jacobi relation, which we can draw as:

(5.62)

Looking at eq. (1.17) we can also draw the pictorial diagram for the quadratic Casimir invariant.
This is easily realised as:

(5.63)

So given all this what is it then that we want to achieve? Well essentially the goal of this pa-
per is to calculate the colour factors defined in eq. (4.21), that are part of the c factors defined in
eq. (4.20). The colour factors consists of structure constants where all indices are summed over, and
these structure constants can all be expanded using the trace based relation defined in eq. (5.60).
Then what we end up with is 22(n≠2) diagrams where n is the number of particles in the scattering
amplitude. Each of these diagrams can then be further decomposed by using the adjoint projection
operator. To determine the adjoint projection operator we follow the procedure from this chapter
and start by decomposing the V ¢ V̄ space into irreducible subspaces by building these subspaces
up from tree invariant tensors that are each composed of primitive invaraints. Then lastly we we
can single out the adjoint space since it is the only one that annihilates invariant tensors. This
method will take us very far, but as we shall later see we will actually need to develop other tricks
in order to tackle some of the exceptional cases. Therefore what we will do now is dive in to each
of the eight simple compact Lie groups and treat them separately.

The four families
Now with the method outlined in the last part of section , we are finally ready to begin our
calculations of the colour factors described in eq. (4.21). In this chapter we will derive the method
of how to calculate these colour factors for the four families: An, Bn, Cn and Dn. The notation
we so far have used for the families of Lie groups is the one mathematicians use, however now
we will switch to the notation most commonly used by physicists. In this notation we get that
An = su(n + 1), Bn = so(2n + 1), Cn = sp(2n) and Dn = so(2n). The groups Bn and Dn both
describes the special orthogonal group in either odd or even dimensions. The reason that they are
split up is that on a fundamental level there is a di�erence in the way their Dynkin are drawn
and thus a di�erence in their root systems, however since both groups preserve the same invariant
tensor we will see that for our purposes we do not need to split up the algebra of so(n) into even
and odd dimensions, but simply treat it as one algebra. With this in mind let’s get started.

SU(N)
The group SU(n) is defined as the invariance group of the Kronecker delta ”a

b and the Levi-Civita
tensor ‘a1a2..an , and our goal is to use these to find the adjoint projection operator, defined and
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explained in eq. (5.47). To do that we need to decompose the space V ¢ V̄ into irreducible
representations by the action of su(n) on V ¢ V̄ , where the identity I for this space is given by:

(6.1)

Which is an invariant tensor for su(n). Another invariant one can consider is the trace invariant T
which is given by:

(6.2)

This trace invariant as it turns out satisfies the minimal characteristic equation, see eq. (5.26),
which we can write as:

(6.3)

From this it is easily seen that the eigenvalues of the characteristic equation are given by: ⁄1 = 0
and ⁄2 = n. Then we can use the definition of the projection operators from eq. (5.27), to extract
the projection operators from the space V ¢ V̄ of su(n). Since we have two eigenvalues, we simply
insert them into the definition and get the following two projection operators:

(6.4)

To we find which projection operators is the adjoint projection operator, we need to the one that
annihilates the primitive invariants. Applying both of these projection operators to the invariance
condition eq. (5.51) Kronecker delta we see that both projection operators P1 and P2 annihilates
this primitive invariant. So if the only invariant tensor we have is the Kronecker delta we have to
add those two projection operators together to get the adjoint projection operator for that group.
This will result in the adjoint projection operator for u(n) that is the group with only the Kronecker
delta as invariant:

(6.5)
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However if we also want the Levi-Civita symbol, defined in eq. (5.40), to be an invariant of
the group, we need to find the projection operator that satisfies the invariant condition for the
completely anti-symmetric Levi-Civita tensor:

(6.6)

Inserting each of the two projection operators into this condition we see that it is only P2, that
satisfies the invariance condition. This can be seen by using eq. (5.17) to expand the expression
from eq. (5.43), which gives:

(6.7)

This we see is equal to inserting P2 into eq. (6.6). So finally we find that the adjoint projection
operator for su(n) is given by:

(6.8)

and taking the trace of the adjoint projection operator, we get the dimension of the adjoint repre-
sentation:

(6.9)

So what to do now? Well first of all we need to make sure that our method of calculation is correct.
Luckily we actually know a lot about the su(n) algebra from other sources, so our priority right
now is to make sure we know how to calculate diagrams using the adjoint projection operators,
then later on we will return to the question of if what we do gives the correct answer. So going
boldly into the night we would now like to calculate the colour factor for 3 particle scattering which
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is given by the diagram:

(6.10)

To calculate this diagram we start by expanding it using eq. (5.60) and collection equal terms, so
that we end up with:

(6.11)

The two terms in this expression are straightforward to calculate and the calculation is given by:

(6.12)

(6.13)

putting these two terms back into eq. (6.11) we thus get:

(6.14)
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Now we have seen the first example of how to calculate one of the colour factors from eq. 4.21.
Even though what we calculated was the simplest case we could come up with, our method is still
general enough that any possible diagram no matter the amount of particles will be possible for us
to calculate. Therefore we can confidently say now that we have solved our first group su(n). Even
though this group has already been solved in the general literature it is still nice to see that the
Birdtrack method is able to reproduce the results we already know.

SO(N)
With our recent success with su(n) we now move on to tackle the case of calculating colour factors
for the special orthogonal group SO(n). Transformations in SO(n) preserve a symmetric rank 2
non-degenerate tensor given by gab, where we define contractions with its inverse by:

gabgbc = ”a
c (6.15)

where gab is the inverse of gab. We call the invariant for the metric of the group, and with the
metric we can raise and lower indices at will on any tensor. Since we raise and lower indices, we
do no longer distinguish between upper and lower indices and we can therefore drop arrows on our
lines. The metric will therefore have the following birdtrack representation:

(6.16)

Since we can raise and lower indices, we can now put both indices in the generators (T i)a
b on equal

footing, which gives:
(T i)a

b gac = gac(T i)a
b = (T i)bc (6.17)

The invariance condition for the metric tensor is then given by:

0 = (T i)a
b gac + gab(T i)a

c (6.18)
0 = (T i)bc + (T i)cb (6.19)

(T i)bc = ≠(T i)cb (6.20)

This can be drawn diagrammatically in birdtrack notation as:

(6.21)

Which shows us that the so(n) generators are anti-symmetric. Since the metric tensor does not
carry any indices, we have a little more room to play with when decomposing the V ¢ V space.
The total amount of spaces that we can make is given by:

(6.22)
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Using the flip space as our decomposition space we insert it into eq. (5.26), and find that it satisfies
the following characteristic equation:

(6.23)

From this we see that the eigenvalues are ⁄1 = 1 and ⁄2 = ≠1. We find the projection operators by
inserting these into the definition of the projection operators given by eq. (5.27), which gives us:

(6.24)

By direct calculation we see that P1 does not annihilate the trace subspace, but P2 does annihilate
this subspace:

(6.25)

Now since P1 does not annihilate the trace subspace we can know that we need to further decompose
the space. To do that we take the trace subspace and calculate the characteristic equation. From
there we get the eigenvalues which we put into the definition of the projection operators, only this
time the element that we treat as the identity is now the symmetric subspace. Since the result for
the characteristic equation will give us 2 eigenvalues (just like for su(n)), we can further split the
symmetric subspace up into two new subspaces and get their projection operators, however there
is actually no reason at all for us to do that because we see that by inserting the anti-symmetric
projection operator P2 into the invariance condition for the metric tensor, eq. (6.21), we find that:

(6.26)
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And since it is only the generators that satisfies this condition, we find that the anti-symmetric
projection operator is the adjoint projection operator:

(6.27)

The dimension of the adjoint space can then be found by tracing its projection operator which
gives:

(6.28)

Which is a wellknow result.

This means that we are done with exploring so(n), since we do not need any more from that
group in order to calculate the colour factors from eq. (4.21). As we did with su(n), we would like
to do a calculation in order to verify if we have found the correct projection operator. To do this
we again want to calculate the colour factor for a 3 particle scattering amplitude. When doing that
we can reuse some of the results from the su(n) chapter and start directly from eq. (6.11). Doing
this we find that the first diagram in the expression gives:

(6.29)

The next diagram gives:

(6.30)
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So inserting both of these expressions in eq. (6.11) we get:

(6.31)

Again what we have done here is that we have calculated the simplest colour factor that we can
encounter from eq. (4.21), but the method with which we have calculated this is general enough
that every colour factor we can encounter can be calculated from it. So with the success of so(n)
lets move on to tackle the group sp(n).

SP (N)
The symplectic group sp(n) is defined as the group that leaves a skew-symmetric tensor fab invari-
ant. That the tensor is skew symmetric, means that:

fab = ≠f ba (6.32)

The skew symmetric tensor satisfies the following contraction identity:

fabfbc = ”a
c (6.33)

Where the tensor fab is the inverse of fab. The skew symmetric tensor acts as a metric on the
symplectic space, and makes it possible for us to lower and raise indices at will. Because of this
we will, just like with so(n), remove all arrows on the lines representing the primitive invariant.
However since the primitive invariant in this case satisfies eq. (6.32), we have to keep track of the
sign when contracting indices. Therefore we will draw the primitive invariant in the following way:

(6.34)

Where it no longer matter if the indices are up or down. The reason we draw the lines with a
triangle pointing either up or down is to keep track of the relative ordering of the indices in fab,
since interchanging them per. (6.32) changes sign when interchanging a and b. Pictorially we can
think of this as rotating the line in eq. 6.34 180 degrees, this still allows us to connect the line as
before we rotated it, but because we then have to interchange the indices we no have to pick up a
sign. The arrow therefore helps us keep track of this sign. The sign convention for the arrows then
follow from eq. (6.33), and gives:

(6.35)

The invariance condition for the skew symmetric invariant is then:

0 = (T i)a
b fac + fab(T i)a

c (6.36)
0 = (T i)bc ≠ (T i)cb (6.37)

(6.38)
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where we draw the generators as:

(6.39)

The invariance condition for the skew symmetric tensor then becomes:

(6.40)

Now proceeding as for the group so(n): since we do not have any arrows on our invariant we can
draw all possible combinations for the space V ¢ V as:

(6.41)

Using the flip space as our decomposition space we insert it into eq. (5.26), and find that it satisfies
the following characteristic equation:

(6.42)

From this we get the exact same eigenvalues as with the so(n) case, namely ⁄1 = 1 and ⁄2 = ≠1.
We again insert this into the definition of the projection operators eq. (5.27) and find the two
projection operators to be:

(6.43)

The next thing we would like to do is, just as for the case of so(n), to check if these two projection
operators annihilate the trace subspace. This time however it is the symmetric subspace that
annihilates the trace and not the anti-symmetric. This is caused by the skew symmetric tensor
that makes the trace subspace anti-symmetric. going through the case of decomposing that space
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further we actually ends up with the exact same result as with so(n), just with anti-symmetrization
exchanged with symmetrization. Finding the adjoint projection operator now is not very hard, we
simply insert the projection operators into the eq. (6.40) and see if any of them satisfies it. Luckily
we do not have to look far. Inserting the symmetric projection operator we find that:

(6.44)

where we have used eq. (6.34). This then tells us that the adjoint projection operator for sp(n) is
given by:

(6.45)

The dimension of the adjoint space for sp(n) is then given by the now familiar expression:

(6.46)

Which is all we need to know in order for us to calculate anything we can encounter with regards
to gauge group colour factors for sp(n). Now we would like to return to our usual check and see
what the result is when we calculate the diagram from (6.11). First we need to exchange every
generator with the ”new” generators from eq. (6.39), and then we can expand the with the adjoint
projection operator from eq. (6.45), where we make sure to keep track of the sign using eq. (6.35),
so that we for the first diagram get:

(6.47)
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and the second terms yields:

(6.48)

So in total when inserting these terms back into eq. (6.11), we get:

(6.49)

The method used here to calculate colour factors for sp(n) is a bit cumbersome since it requires
one to keep a close eye on the sign of the whole thing. So to calculate factors of sp(n) we will from
now on use another method described by: [3] namely that calculations done with sp(n) are equal to
calculations done with so(n) provided that we make the exchanging n æ ≠n. Indeed when looking
at eq. (6.31) we see that if we make the previous exchanging we recover the result from eq. (6.49).

Results and verification of correctness
Now that we know how to calculate diagrams for each of the families, we would like to check if
our method of calculation is correct. To do this we need a unique scalar for the group that we can
calculate, and one that we already from know literature. The number we want to calculate for each
group is the dual Coxeter number h‹ defined in [8], and reproduced in figure (6.1):

Figure 6.1: A table of the dual coxeter numbers for for the simple-compact lie groups

The dual coxeter number is equal to half the Casimir number of the adjoint representation, the
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adjoint casimir is defined in [5] and its relation with the dual coxeter number is also outlined.

(6.50)

This is the same as in eq. (5.63), where the representation is the adjoint representation. This
expression is also almost the same as our 3 particle calculation, where the only di�erence is that
here we have not closed the last line. If we close it, it will give us an extra factor of the dimension
of the adjoint space. So to check it we simply take the results we got for the 3 particle scattering
and divide it by the dimension of the corresponding adjoint space, to which we get:

(6.51)

From this we see that so(n) di�ers by a factor of two compared to the two other groups. To see why
this does not match the case outlined in eq. (6.50), we have to look at how the invariant quadratic
form of the Lie algebra is normalized. The normalization convention chosen in the mathematics
literature is to set the length squared of the highest root in the Cartan algebra equal to 2, which
for su(n) and sp(n) gives the result in eq. (6.50). Fro so(n) however this results in an extra factor
of two that we have to divide our result with, which explains the di�erence in eq. (6.51). This
factor of two however only applies to so(n) with n Ø 5. so for so(3) and so(4) we should still have
to factor of 2 in eq. (6.51).

An extra check we can perform is to see if groups that are equivalent will give the same result when
the same diagram is calculated. The two combinations of groups we will look at is so(5) ≥= sp(4)
and so(3) ≥= su(2), to see why these groups are essentially the same, we can look at their Dynkin
diagram from figure (1.2a) and see that for the respective groups these Dynkin diagrams are equiv-
alent. From eq. (4.21) we see that for colour factors of 3 particle scattering amplitudes we have
1 diagram, for 4 particle scattering amplitudes we get 2! = 2 diagrams, for 5 particle scattering
amplitudes we get 3! = 6 diagrams and for 6 particle scattering amplitudes we get 4! = 24 diagrams.
Each of these diagrams should give the same result when calculated for equivalent groups. These
results are summarised in the tables below, and were calculated using a script in python that I
wrote to calculate the colour factors for the four families:

3 particles
su(n) so(n) sp(n) su(2)

so(3)
sp(4)
so(5)

2(n3 ≠ n) 1
2 (n3 ≠ 3n2 + 2n) 1

2 (≠n3 ≠ 3n2 ≠ 2n) 4 -2

Table 6.1: Colour factor for 3 particle scattering

From these results we see that the 3 particle results di�ers by a factor of 2 for the case
so(5) ≥= sp(4), this is as expected since the Coxeter number is the same but the contraction di�ers
by a factor of 2. We see that this is actually a pattern that continues for scattering amplitudes with
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4 particles
su(n) so(n) sp(n) su(2)

so(3)
sp(4)
so(5)

4n4 ≠ 4n2 1
2 n4 ≠ 5

2 n3 + 4n2 ≠ 2n 1
2 n4 + 5

2 n3 + 4n2 + 2n 16 4
2n4 ≠ 2n2 1

4 n4 ≠ 5
4 n3 + 2n2 ≠ n 1

4 n4 + 5
4 n3 + 2n2 + n 16 4

Table 6.2: Colour factors for 4 particle scattering

5 particles
su(n) so(n) sp(n) su(2)

so(3)
sp(4)
so(5)

8n5 ≠ 8n3 1
2 n5 ≠ 7

2 n4 + 9n3 ≠ 10n2 + 4n ≠ 1
2 n5 ≠ 7

2 n4 ≠ 9n3 ≠ 10n2 ≠ 4n 64 -8
2n5 ≠ 2n3 5

4 n5 ≠ 7
8 n4 + 9

4 n3 ≠ 5
2 n2 + n ≠ 5

4 n5 ≠ 7
8 n4 ≠ 9

4 n3 ≠ 5
2 n2 ≠ n 64 -8

2n5 ≠ 2n3 5
4 n5 ≠ 7

8 n4 + 9
4 n3 ≠ 5

2 n2 + n ≠ 5
4 n5 ≠ 7

8 n4 ≠ 9
4 n3 ≠ 5

2 n2 ≠ n 64 -8
4n5 ≠ 4n3 1

4 n5 ≠ 7
4 n4 + 9

2 n3 ≠ 5n2 + 2n ≠ 1
4 n5 ≠ 7

4 n4 ≠ 9
2 n3 ≠ 5n2 ≠ 2n 64 -8

0 0 0 / /
4n5 ≠ 4n3 1

4 n5 ≠ 7
4 n4 + 9

2 n3 ≠ 5n2 + 2n ≠ 1
4 n5 ≠ 7

4 n4 ≠ 9
2 n3 ≠ 5n2 ≠ 2n 64 -8

Table 6.3: Colour factors for 5 particle scattering

more particles. For four particles we have two contractions and thus we have an extra factor of 2
so we in total ends up with a factor of 4. This pattern is sustained for every permutation of the
lines in the diagrams from eq. (4.21) and for each extra particle we have an extra contraction and
an extra factor of 2, where the sign changing is caused by the contracting of the skew symmetric
invariant of sp(n). For the case su(2) ≥= so(3), the dual Coxeter number di�ers by a factor of 2,
so we would expect to see the same pattern as with the previous case (without the sign changing).
However what we see is that there is a factor of 4 for each extra particle in the scattering factor,
this is due to the adjoint casimir for so(3) still not giving twice the dual Coxeter number, even
though the normalization from the Cartan algebra has it as the normalization. This is a limitation
of the birdtrack method, but luckily for us it only applies to calculations with the algebras of so(3)
and so(4).
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6 particles
su(n) so(n) sp(n) su(2)

so(3)
sp(4)
so(5)

16n6 ≠ 16n4 1
2 n6 ≠ 9

2 n5 + 16n4 ≠ 28n3 + 24n2 ≠ 8n 1
2 n6 + 9

2 n5 + 16n4 + 28n3 + 24n2 + 8n 256 16
2n6 + 22n4 ≠ 24n2 1

16 n6 ≠ 3
4 n5 + 83

16 n4 ≠ 71
4 n3 + 107

4 n2 ≠ 13n 1
16 n6 + 3

4 n5 + 83
16 n4 + 71

4 n3 + 107
4 n2 + 13n 256 16

24n4 ≠ 24n2 ≠ 3
16 n5 + 51

16 n4 ≠ 57
4 n3 + 93

4 n2 ≠ 12n 3
16 n5 + 51

16 n4 + 57
4 n3 + 93

4 n2 + 12n 256 16
4n6 ≠ 4n4 1

8 n6 ≠ 9
8 n5 + 4n4 ≠ 7n3 + 6n2 ≠ 2n 1

8 n6 + 9
8 n5 + 4n4 + 7n3 + 6n2 + 2n 256 16

4n6 ≠ 4n4 1
8 n6 ≠ 9

8 n5 + 4n4 ≠ 7n3 + 6n2 ≠ 2n 1
8 n6 + 9

8 n5 + 4n4 + 7n3 + 6n2 + 2n 256 16
4n6 ≠ 4n4 1

8 n6 ≠ 9
8 n5 + 4n4 ≠ 7n3 + 6n2 ≠ 2n 1

8 n6 + 9
8 n5 + 4n4 + 7n3 + 6n2 + 2n 256 16

0 0 0 / /
0 0 0 / /

4n6 ≠ 4n4 1
8 n6 ≠ 9

8 n5 + 4n4 ≠ 7n3 + 6n2 ≠ 2n 1
8 n6 + 9

8 n5 + 4n4 + 7n3 + 6n2 + 2n 256 16
0 0 0 / /
0 0 0 / /

4n6 ≠ 4n4 1
8 n6 ≠ 9

8 n5 + 4n4 ≠ 7n3 + 6n2 ≠ 2n 1
8 n6 + 9

8 n5 + 4n4 + 7n3 + 6n2 + 2n 256 16
8n6 ≠ 8n4 1

4 n6 ≠ 9
4 n5 + 8n4 ≠ 14n3 + 12n2 ≠ 4n 1

4 n6 + 9
4 n5 + 8n4 + 14n3 + 12n2 + 4n 256 16

24n4 ≠ 24n2 ≠ 3
16 n5 + 51

16 n4 ≠ 57
4 n3 + 93

4 n2 ≠ 12n + 3
16 n5 + 51

16 n4 + 57
4 n3 + 93

4 n2 + 12n 256 16
24n4 ≠ 24n2 ≠ 1

16 n5 + 51
16 n4 ≠ 57

4 n3 + 93
4 n2 ≠ 12n + 1

16 n5 + 51
16 n4 + 57

4 n3 + 93
4 n2 + 12n 256 16

8n6 ≠ 8n4 1
4 n6 ≠ 9

4 n5 + 8n4 ≠ 14n3 + 12n2 ≠ 4n 1
4 n6 + 9

4 n5 + 8n4 + 14n3 + 12n2 + 4n 256 16
8n6 ≠ 8n4 1

4 n6 ≠ 9
4 n5 + 8n4 ≠ 14n3 + 12n2 ≠ 4n 1

4 n6 + 9
4 n5 + 8n4 + 14n3 + 12n2 + 4n 256 16

2n6 ≠ 2n4 1
16 n6 ≠ 9

16 n5 + 2n4 ≠ 7
2 n3 + 3n2 ≠ n 1

16 n6 + 9
16 n5 + 2n4 + 7

2 n3 + 3n2 + n 256 16
24n4 ≠ 24n2 ≠ 3

16 n5 + 51
16 n4 ≠ 57

4 n3 + 93
4 n2 ≠ 12n + 3

16 n5 + 51
16 n4 + 57

4 n3 + 93
4 n2 + 12n 256 16

2n6 ≠ 2n4 1
16 n6 ≠ 9

16 n5 + 2n4 ≠ 7
2 n3 + 3n2 ≠ n 1

16 n6 + 9
16 n5 + 2n4 + 7

2 n3 + 3n2 + n 256 16
0 0 0 / /
0 0 0 / /

2n6 ≠ 2n4 1
16 n6 ≠ 9

16 n5 + 2n4 ≠ 7
2 n3 + 3n2 ≠ n 1

16 n6 + 9
16 n5 + 2n4 + 7

2 n3 + 3n2 + n 256 16
2n6 ≠ 2n4 1

16 n6 ≠ 9
16 n5 + 2n4 ≠ 7

2 n3 + 3n2 ≠ n 1
16 n6 + 9

16 n5 + 2n4 + 7
2 n3 + 3n2 + n 256 16

Table 6.4: Colour factors for 6 particle scattering

G2

With our recent success for the four families we will proceed right away with our first treatment
of one of the exceptional groups. This chapter is based on chapter 16 in [3]. The group we will
focus on here is G2, which is defined as having two primitive invariants. The first is a symmetric
two index invariant gab, that is exactly like the invariant we saw in our treatment of so(n). We will
draw this invariant as:

(7.1)

It acts as a metric on the group so that it can raise and lower indices at will, and therefore we
will omit any arrows on our lines. The second invariant we have in our group is a three index
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anti-symmetric invariant defined as:

(7.2)

From the primitiveness assumption we know that if we contract two indices on a labc tensor with
two indices on another lcbd tensor it should be proportional to a sum of the possible combinations
of 2-index tree-invariants. Since there only exists one such tree invariant, we can immediately fix
the normalization of the 3 index invariant. This is drawn as:

(7.3)

Throughout this chapter we set – = 1. As with the families our task is to decompose the space
V ¢ V into a sum of tree invariant subspaces. This we can write in a general form as:

(7.4)

However instead of going directly to the characteristic equation like we did with the the families
it is easier this time to first find some relations among the subspaces. First we start by using the
anti-symmetric subspace from the right which gives:

(7.5)

If we refer to the subspaces by the constant in front of them, we see that B disappears naturally
when anti-symmetrized, and the subspace E just returns itself by using the anti-symmetric property
from eq. (7.2). A and C are combined, and thus becomes a new constant given by C Õ = A ≠ C. D
and F are combined in a similar manner and the new constant is given by F Õ = D ≠ F . If instead
we anti-symmetrize 3 indices we see that A, B and C vanish for the same reason that B vanishes
in the first example. We will treat the rest of the diagrams in the birdtrack notation, so that we
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get:

(7.6)

This can be shortened to:

(7.7)

This relation di�ers from the relation in [3] by a minus sign instead of a plus between E and F Õ,
but as it turns out this minus sign is actually needed in order to produce the later results, so this
must be a notational error in [3]. If E ”= F Õ the diagram must be the one that equals zero, in that
case we actually get an expression that equals the Jacobi relation, and if AÕ ”= 0 in eq. (7.5) we
actually recover the group su(3). A proof of this is given in [3], likewise if AÕ ”= 0 we actually only
have the Jacobi-relation to go on from, and any simple-Lie group is a solution to this relation. The
proof of this is also in [3]. The only relation we have not exposed is then the case E = F Õ. If that
is the case we can rewrite eq. (7.5) into:

(7.8)

Tracing the upper line we can get an expression for AÕÕ which turns out to be:

(7.9)

Which makes us reach our first relation in our quest to find the adjoint projection operator for G2.
The second relation can be found by symmetrizing the two upper indices in eq. (7.8) and rotating
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the diagrams by 90 degrees, which gives:

(7.10)

Adding together these two relations we get:

(7.11)

From these two relations we see that the diagrams from D and F , are reducible on both the
symmetric and anti-symmetric subspaces, and that from eq. (7.11) it can be expressed in terms of
E, whereas E is only reducible on the anti-symmetric subspace. Because they are related we can
choose which of these two diagrams we want to keep, so since E is easier to work with we keep that
diagram. So now we have the spaces A, B, C and E left that we need to find projection operators
for. To do this we start our like we did for so(n) and inserts the flip space C into eq. (5.26) where
we find the eigenvalues to be ⁄1 = 1 and ⁄2 = ≠1. We insert this in eq. (5.27) from which we
recover the same two projection operators as we had for so(n):

(7.12)

From this we see that the projection operator P1 acts as the identity on diagram B (the trace), so
again like for so(n) this can be decomposed into two further projection operators. The new case
that di�ers from so(n), which we have to deal with here, is that the P2 projection operator now
acts as the identity on diagram E, so decomposing this space we first finds the eigenvalues from
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the characteristic equation:

(7.13)

Therefore when inserting this into the definition of the projection operators eq. (5.27), and adding
up the two other projection operators, we get all projection operators for G2:

(7.14)

To find the adjoint projection operator for G2 we need to figure out which projection operator
satisfies the invariance condition for the 3-index anti-symmetric tensor labc. The invariance condi-
tion for a completely anti-symmetric 3-index tensor is given by eq. (5.57), so we need the adjoint
projection operator to satisfy:

(7.15)

We see immediately that P4 can not be the one, since it actually gives back the Jacobi relation,
which we from eq. (7.6) assumed not to hold. It can not be P2 either since this will just give
back the invariant tensor itself and a fundamental line which obviously can not be zero. P1 could
potentially be the adjoint projection operator, but as is done in [3] we will now see what happens
when we assume P3 to be the adjoint projection operator. First we insert it in the invariance
condition so that we get:

(7.16)

Expanding the last term we get:

(7.17)
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So putting this back into the last term in eq. (7.16) we get:

(7.18)

This relation can be rotated and the bottom anti-symmetrization can be expanded in so that we
can make the diagram look like:

(7.19)

The first two of the bottom lines is anti-symmetric in the left diagram, and the last two bottom
lines are also anti-symmetric. This can only be realised on the left side if we fix n=7. Thus this
reduction relation is only viable for n = 7. This relation is paramount in the calculation of our
colour factors from eq. (4.21). The reason is that in these calculations we will encounter all sorts
of di�erent combinations of the 3-index invariant tensor, so having a general formula for how to
reduce 3 connected 3-invariants enables us to solve any calculation regarding G2, and thus solves
the group for us.

Now that we have the dimension of the fundamental representation we can calculate the dimension
of the adjoint representation by tracing the adjoint projection operator:

(7.20)

As a quick check we see that this does indeed match the known result from the literature. We can
further calculate two extra identities that will help us when calculating colour factors. The first
one is obtained by tracing eq. (7.8) from the left with the 3-index invariant, which gives:

(7.21)

From this we get an easy relation for how to contract a loop of 3 3-invariant tensors. The second
relation arises from tracing the first two bottom legs in the invariance condition eq. (7.15) with the
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3-index primitive invariant, and contracting the adjoint line with a generator. This then gives us:

(7.22)

The last equality sign uses that the adjoint projection operators are anti-symmetric with regards to
interchange of the two legs in either end. Now that we have all the relations in place and the adjoint
projection operator is known, lets see if we can confirm that this approach works as intended. To
do so we return to our usual calculation of the 3-particle scattering colour factor, and as always we
start from eq. (6.11). Where we use the adjoint projection operator to expand the diagrams, given
by:

(7.23)

alongside the identities from eq. (7.3) and (7.2). For the case of G2 the first terms yields:

(7.24)
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And the second term gives:

(7.25)

So inserting these two results in eq. (6.11) we will in total get:

(7.26)

Since we are calculating these colour factors for the exceptional groups, we see that the results is
just a number. Looking at figure (6.1) we see that the dual coxeter number is 4, and since the
dimension is 14, we find that:

fabcfacb = h‚dAg2
(7.27)

Here we again see that the factor of 2 that we see in eq. (6.50) is missing. This also stems from
the normalization of the bilinear form as it did with so(n).

E6

What we have done so far is following the path that [3] laid down for us for each group. That
path consisted of starting from the primitive invariants finding invariant matrices and possible re-
lations among the tree invariants one can make of the primitive invariants. The next step is to find
projection operators to split di�erent spaces (we have focused on the V ¢ V or V ¢ V̄ space) into
projection operators which enables one to express everything in terms of lines in the fundamental
representation. This method is useful if one’s goal is to define and describe the entire group, how-
ever this approach has its limitations. If we take G2 as an example, we saw in the last chapter that
there was a relation that enables you to iteratively reduce any combination of three 3-invariants
given by eq. (7.19). This identity is what makes us able to say that any diagram we can get as
a colour factor from eq. (4.21) is solvable, through repeated reduction. The problem arises when
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we become unable to find general reduction identities for our invariant tensors with more than
two indices on them, because if we are unable to express our diagrams in terms of closed circles
we are unable to reduce them to numbers, which makes the whole formalism useless for our purpose.

So why mention that now? Well because in [3], every group and formalism up until now have
had general reduction identities for all their invariants with more than three lines. This however
changes when we get to E6 and the other exceptional groups. The group E6 has three invariant
tensors ”a

b and two fully symmetric invariants dabc and dabc. This means that we would like to
get an identity that allows us to reduce three or more connected 3-index invariants, however as is
shown in chapter 18 in [3] we do not have a general reduction identity, but only an identity where
multiple diagrams are added together and reduced. This is a problem since we can not count on
that each diagram in general would have the correct combinations of 3-index tensors to be able to
use the reduction formula. Therefore what one would have to do is find relations for each edge case,
which is not guaranteed to even be possible.

So the question is, what else can we do? Well as it turns out, quite a lot actually. Looking
back at the extended Dynkin diagrams from figure (1.2b) we see that if we remove node number
4 in the e6 diagram we get two disconnected diagrams one with 5 connected circles and one with
a single circle. The two disconnected diagrams represents su(6) and su(2), which in total have
(62 ≠ 1) + (22 ≠ 1) = 35 + 3 = 38 generators, so since e6 has 78 generators [8] we need to find an
extra 40 generators. Looking in [20] we find that e6 has a subgroup of su(2) ¢ su(6), which is given
by the dimensions (2, 20), where the left number represents the dimension of su(2) and the right
number represents the dimension in su(6). Added together with the two adjoint representations we
get: (3, 1) ü (1, 35) ü (2, 20) where the first two terms in this expression is the adjoint dimension of
each group, with a trivial 1 dimensional representation from the other group, as we would expect
from our inspection of the extended Dynkin diagram. The last term is the interesting one, this
one is a mix of both su(2) and su(6). So our diagram for that part must include lines from both
groups. The two dimensional representation of su(2) is obviously the fundamental representation,
so for that one we just draw a normal fundamental line. The second one is the 20 dimensional
representation of su(6), this one turns out to be the completely anti-symmetric 3-index tensor,
and we can draw this as 3 fundamental lines that are totally anti-symmetric. Therefore the total
diagram turns out to be:

(8.1)

Where the black box is the anti-symmetric operator, which means that the blue lines are anti-
symmetric. Notice that we have colour coded the diagrams in order to distinguish them from each
other, where we have given su(6) the colour blue and su(2) the colour red. Checking the dimension
of the representation we just calculate the trace as usual which gives:

(8.2)
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Which combined with the dimensions of the other 2 representations gives exactly what we need in
order to reach the adjoint dimension of e6, 35 + 3 + 40 = 78. So far so good, but how do we turn
this dimension into a generators? Well generators in birdtrack notation are essentially just lines
of the given representation where one has attached an adjoint line. This is motivated by looking
at a generator in the tensor notation (T i

R)a
b . Where the indices a and b are dependant on the

representation R, while the index i is always in the adjoint representation. The next question is,
since we have four lines in the new 40 dimensional ”special” representation, we need to figure out
which line we should connect the adjoint to. Well actually it turns out that we need to add the
adjoint line to each of the four lines in the special generator, which gives:

(8.3)

However now we see that there is a new problem, because it should not matter which of the indices
a or b that we chose to interact with, so the fact that we have an anti-symmetric symbol on one side
of the adjoint line violates this principle. Therefore we will choose to put another anti-symmetric
symbol on the other side of the adjoint line. This will not change anything for our calculation
of the dimension of the special space, since the anti-symmetrization operator does not a�ect an
anti-symmetric space. We therefore get:

(8.4)

The last equality follows from the fact that if we change one line in the middle one up with the
anti-symmetric symbol in one end it will give a minus sign, but if we give change a line one up in
both ends it will give 2 minus sign cancelling each other. This results in the 3 last sub-generators
to be identical. We have further given the two remaining sub-generators the name of A and B. So
now are we sure these are the correct generators for for e6? Well almost, so far they satisfies the
dimension needed so we in total get the dimension of the adjoint representation of e6, however it
would be nice to make another check to be sure that this is correct. The check we now do is to see
if the special generator satisfies the Jacobi relation defined in the birdtrack notation in eq. (5.61).
So doing this calculation we find that for the sub-generators A the Jacobi relation is:

(8.5)



8 E6 58

Expanding the diagram labeled by 3, we find:

(8.6)

which we see is exactly the same as we have on the left side, thus the A sub-generators satisfies the
Jacobi-relation. Doing the same for the B sub-generators we find:

(8.7)

Expanding diagram labeled by 1 we find:

(8.8)
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and expanding the diagram labeled by 2 we find:

(8.9)

The term 3 trivially expands in the same way as it did for the su(2) line, so that it gives:

(8.10)

From this we see that the first result in the calculation of diagram 1 and 2 together equals the result
from the calculation of diagram 3. Therefore we must have:

(8.11)

This can actually be verified fairly easily by interchanging the upper two lines in the left diagram
on both anti-symmetrization symbols. This will result in the adjoint line that was connected at the
top left part of the diagram is now connected to the top right, and likewise in reverse for the other
adjoint line. Which results in them now being directly under the point that they connect to above
the special generator. This shows that the two diagrams are identical, and thus cancel each other
in the Jacobi calculation.

With these confirmations that we have found the correct generators, lets see if we can do a calcu-
lation and hopefully get the correct result. Returning to the usual calculation of the colour factor
for 3-particle scattering eq. (6.10), we see that the calculation for e6 di�ers compared to other
groups since we no have 4 options for each of the two general adjoint generators in the calculation.
Luckily for us though it turns out that not all combinations are valid, so we do not have to calculate
42 = 16 diagrams. The only valid diagrams we can make are those where each line in the diagram
connects with another line of the same kind, so that lines with the same colour only meet lines with
a matching colour, and lines in di�erent representations only meet lines in the same representation.
Taking care that we satisfy these requirements we end up with the following 4 diagrams for the
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colour factor of the 3-particle scattering amplitude:

(8.12)

Diagram 1 and 2 is just the result we got from eq. (6.14), with n = 2 and n = 6 respectively.
Diagram 3 can be calculated using the adjoint projection operator for su(n) (6.8) and the formula
for contraction a fully anti-symmetric tensor with itself eq. (5.19). The diagram thus gives:

(8.13)

Using the same identities for diagram 4 we get:

(8.14)

One thing that we have to be careful of is that in diagram 1 and 2, we can not distinguish the
legs in the diagram from each other, however this is not the case for the legs in diagrams 3 and 4,
where one of the legs is in the adjoint representation and the other two legs is in either the 2 or 20
dimensional representation. Because of the legs in diagram 3 and 4 being distinguishable from each
other, we have to sum each possible legs combination together. The di�erent combinations though
all give the same result so we simply just have to multiply the results of diagram 3 and 4 with a
factor of 3. Thus in total we get:

2(63 ≠ 6) + 2(23 ≠ 2) + 3 · 60 + 3 · 420 = 1872 (8.15)

Which is very lucky for us since looking at the table of dual Coxeter numbers (6.1) we see that
the dual Coxeter number of E6 is h‚ = 12, so dividing our previous result for the 3 particle colour
factor by the adjoint dimension of e6 we find:

1872
78 = 24 = 2 · h‚

E6 (8.16)

Which is exactly what we expect since we express e6 in terms of subgroups of su(2) and su(6).
This method of calculating diagrams of e6 in the adjoint representation is completely generalisable
to every diagram that can occur in the colour factors from eq. (4.21), which means that we have
solved e6 regarding any calculation we can encounter.
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E7

With our recent result for e6, we are ready to go head first and tackle e7. As it turns out though
this algebra is a lot easier to solve than e6. For the algebra e7 we will use the same procedure as we
did for e6, so looking at the Extended Dynkin diagram 1.2b, we find that if we remove node number
7, we are left with the algebra su(8), again looking in [20] we find that e7 can be represented with
the adjoint representation of su(8) plus a 70 dimensional representation of su(8). Since the adjoint
representation of su(8) is 63 dimensional (82 ≠1 = 63), we see that the combined dimension of these
two representations gives 133 which is the dimension of e7. The 70 dimensional representation of
su(8) turns out to be the totally anti-symmetric 4 index tensor, which in birdtrack notation can be
represented as:

(9.1)

Where the dimension is calculated per usual using eq. (5.17):

(9.2)

This time there is no need to colour code any of the lines since we do not have a dimension with
mixed representations. Like with the case of e6 we can now immediately write down the generator
for this dimension, this time we will also add another anti-symmetrization symbol to the other side
of the adjoint dimension, so that we do not di�erentiate between the two sides of the diagram:

(9.3)

What we want to do now is, like with e6, to verify that we have the correct generator. To do so we
again want to see if the generator satisfies the Jacobi identity. This is calculated the usual way:

(9.4)

Diagram 3 follows from our calculations of e6, so we know that it gives:

(9.5)
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Likewise from our calculations in the chapter on e6 diagram 1 gives:

(9.6)

and the calculations for diagram 2 gives:

(9.7)

substituting these result back into eq. (9.5) we see that the two diagrams with the front factor of 6
actually reproduces the the Jacobi relation. So what is left to show is that the diagrams with the
front factor of 18 cancels each other. This is done by showing that they are actually equal, so when
they are subtracted itjust gives zero:

(9.8)

So from this we see that the generator from eq. (9.3) satisfies the Jacobi relation. Moving on
with the now very familiar case of calculating the colour factor for 3 particle scattering, we now
have 2 di�erent generators, and have to combine them in every possible combination to get all the
diagrams we have to calculate. This turns out to be very simple since the two diagrams are unable
to combine in the 3-particle case, thus we end up with the following diagrams:

(9.9)

The first diagram (diagram 1) is the familiar result from our calculation of colour factors for 3-
particle scattering amplitudes for the algebra su(n) eq. (6.14) where in this case n = 8. The second
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diagram (diagram 2) can be calculated using the reduction identity for anti-symmetric tensors given
by eq. (5.19). Furthermore we again have to take into account that the legs in the generators for
the 70 dimensional representation of su(8) are not all the same, so that we have to sum up all
possible configurations of how to order the legs. Luckily all diagrams turns out to be equal to each
other, so that we only have to account for this by multiplying with a factor of 3. Therefore we can
calculate the value of diagram 2, which gives:

(9.10)

Therefore combining the results from the two diagrams, we find the final result to be:

3780 + 2(n3 ≠ n) = 3780 + 2(83 ≠ 8) = 4788 (9.11)

If we divide this number by the adjoint dimension of E7 we find:

4788
133 = 36 = 2h‚

E7 (9.12)

Where the dual Coxeter number is found in table 6.1. This is exactly the result we were looking
for. From this we also see that since we have represented e7 using su(8) subgroups we find the
result to be equal to 2h‹

E7
instead of just h‹

E7
. Since the calculations here are easily translated to

the general case, we have now solved the algebra e7 regarding every possible colour factor of a type
from eq. (4.21).

F4 and E8

Riding on the wave of our results from e6 and e7, we throw ourselves head first into the last two
algebras that we need to solve: f4 and e8. In this chapter we will as it turns out solve both of
these groups simultaneously. The reason we can do that stems from the fact that for both of these
algebras we can decompose the adjoint representation as a sum of two subalgebras, one of so(n)
and the other of spin(n). For the case of e8, it can be decomposed as a sum of so(16) alongside
spin(16), while f4 can be decomposed as a sum of so(9) plus spin(9), see [20]. The reason that we
can solve both of these algebras simultaneously is that we can solve this type of decomposition in
the case of a general n. However before we can start to solve this case and check that we get the
correct result, we need to first find out how to describe spinors in the Birdtrack notation, we will
base this on [3].
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Spinors in birdtrack
Spinors are representations on which “µ matrices act, where “µ satisfy a Cli�ord algebra:

“µ“‹ + “‹“µ = 2gµ‹1 (10.1)

Where 1 is the identity matrix for the spinor representation and gµ‹ is the 2 index primitive in-
variant of so(n). The Gamma matrices are linked to their so(n) counterpart in that their index is
an index that lives in the space of so(n). Furthermore it can be shown [3] that the dimension of
the gamma matrices depends on the specific n in so(n), where for so(2r) and so(2r + 1) gamma
matrices are realised as [2r ◊ 2r] dimensional matrices. This is a typical physicist way of defining
spinors. One could instead go a more abstract mathematical way and define a vector space V with
a norm N and a product ·, where every element x œ V satisfies x · x = N(x). In this way we
would eventually be lead to a complete classification of spinors and their representations. However
such a treatment of spinors is not needed in our case, and we will instead stick to the above definition.

With this in mind we will define the gamma matrices in the Birdtrack notation as:

(10.2)

Where the spinor lines are depicted with a dotted line, and the so(n) fundamental representation
line is depicted with a solid line. Looking at the definition of the Cli�ord algebra we see that we
can depict it in birdtrack notation as:

(10.3)

From this we see that we can take a general product of gamma matrices and split them up so it
only consists of anti-symmetric products of gamma matrices. This leads to the general formula for
how to express a matrix product of an anti-symmetric gamma matrix with a single gamma matrix:

(10.4)

This relation can be derived by looking at the first term on the right hand side. For each time
the line 1 choose to go somewhere, there are (p ≠ 1)! di�erent ways for the other (p ≠ 1) lines to
organise themselves. For each of these diagrams there exists a corresponding diagram where the
only di�erence is that line number 1 is interchanged with the line that sits in the first place. Taking
these two diagrams and adding the corresponding two diagrams where these lines have the opposite
front factor is going to give a diagram where the first line is line number 1, since the opposite sign
cancels the first. This could be achieved by adding a diagram similar to the one on the left hand
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side where the first two lines have been symmetrized. However since fixing two lines in the mixed
diagram results in there being (p ≠ 2)! diagrams left, we need to multiply with a factor of (p ≠ 1) in
order to have enough diagrams to cancel all the diagrams from the totally anti-symmetric gamma
product. Lastly we can exchange symmetric operator using the definition of the Cli�ord algebra
eq. (10.1) to reach eq. (10.4).To see how this helps us, we will now show how to decompose general
products of gamma matrices, where we start of with a product of two gamma matrices:

(10.5)

Then we can use that result to get the decomposition for the product of 3 gamma matrices:

(10.6)

From this we see that only a product of fully anti-symmetric gamma matrices can not be reduced
further. Therefore these fully anti-symmetric tensors provide a complete basis for expanding prod-
ucts of gamma matrices. We define these tensors as:

(10.7)

We can further use the birdtrack definition of the Cli�ord algebra to get a recursive formula for the
product of p gamma matrices, given by:

(10.8)
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From this we see that if we take the trace of the spinor line and p is an even number we get a
formula that relates traces of p gamma matrices to traces of p ≠ 2 gamma matrices. for the trace
of 2 and 4 gamma matrices this yields:

(10.9)

This formula for spinor traces of p gamma matrices will give (p≠1)!! di�erent diagrams to calculate,
so if p is su�ciently large this will absolutely blow up, and give a completely unnecessary amount
om diagrams to evaluate. Luckily for us the solution for this is right around the corner, for as it
will turn out later, the only thing we need to consider is spinor traces of anti-symmetric gamma
matrices, so lets see how that is calculated.

First lets start o� by noticing that if we have a set of anti-symmetric so(n) lines, and we then
contract two of them with gab, the diagram wil equal zero:

(10.10)

We can use this to show that the trace of two �(a) matrices multiplied together is orthogonal. Since
if one of the gamma matrices have more lines than the other, then those lines will have to connect
back to itself, and we just saw that a self ”contacting” gab line under an anti-symmetric operator
equals zero, which proves the point.

(10.11)

The factor a! stems from all the diagrams that survive being being anti-symmetrized from the
formula from eq. (10.9). Taking this one step further one can extrapolate the formula for a trace
of 3 anti-symmetric gamma matrices to be:

(10.12)

Because the �’s constitute a complete basis we know that we can express a product of gamma
matrices as a sum over �’s and gab’s. A product of �(a) and �(b), needs to preserve all the outer
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lines of a and b. This means that the only valid expansions are those that satisfies the spinor
3-vertex. Therefore we know that the expansion has the form:

(10.13)

Where the constants Kc can be found by spinor tracing both sides with �(d), and the sum is over
all valid values of c, which is bounded by: |a ≠ b| Æ c Æ |a + b| and the requirement that a + b + c
has to be even. Doing that one finds them to be:

Kc = 1
c! Tr(1) (10.14)

From eq. (10.13) we thus see that if we have spinor traces with more than 3 �’s in them we can
expand them and reduce them to a combination of 3-vertex diagrams which we know how to eval-
uate, thus solving the problem of evaluating spinor traces of �’s.

So why are we so interested in calculating traces of �’s? Well the reason for this is that the
adjoint spinor generators is essentially just “(2), this can be show by using the invariance condition
on a normal “-matrix, and collecting terms. This is done in [3], and it turns out that one needs
an extra factor of 1

4 for the normalisation to be correct. Therefore we get for the adjoint spinor
generators:

(10.15)

Since these are the generators in the adjoint representation, it is these that we have to use when
evaluating colour factors for particle scattering in eq. (4.21), which then turns out to only consist
of spinor traces of �’s that we now know how to solve. Thus this completely solves our problem of
evaluating colour factors involving adjoint spinor generators.

Results and consistency checks
So now that we have learned how to take care of spinors in the birdtrack notation, let’s return to the
case of calculating colour factors for F4 and E8. Since both of these groups have so(n) and spin(n)
as a subgroup we will evaluate them together. Let’s return to the familiar case of evaluating the
colour factor for 3-particle scattering eq. (6.10). Like in the last two section we now have multiple
adjoint generators, therefore we have to combine them in all possible ways. In the case of 3-particle
scattering this turns out to give two diagrams to solve:

(10.16)

This time we also have to take into account that the lines in spinor generator are distinguishable
therefore we need to sum up all possible combinations we can arrange the lines in. It turns out
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that there are 3 distinct ways to do this, however these combinations all give the same result, so
we can account for this by simply multiplying with a factor of 3.

The first diagram is just the familiar diagram of so(n) which we solved in eq. (6.31), the sec-
ond diagram is the spinor diagram which we can now solve:

(10.17)

adding together the result for the adjoint spinor generators and the adjont so(n) generators we find:

(10.18)

Looking at figure (6.1), we find the dual Coxeter number for both E8 and f4. Since the dual Coxeter
number for e8 is h‚ = 30 and the adjoint dimension is 248, we see that:

7440 = 248 · h‚
e8 (10.19)

Which is exactly what we would expect for a group described by so(n) (the result is missing the
factor 2 from eq. (6.51)). For f4 we know the dual Coxeter number to be h‚ = 9, so looking at the
result we see:

468 = 52 · h‚
f4 (10.20)

Which again is exactly what we would expect from a group described by subgroups of so(n). So
it turns out amazingly that we have solved both e8 and f4 simultaneously, what a time to be alive
in!

Summary
So lets recap what has been achieved in this thesis. In the chapter on the DDM basis the standard
colour ordered scattering amplitudes given by (2.58) was rewritten into a basis where the colour
factors are expressed as products of structure constants, which is generators in the adjoint rep-
resentation, instead of having the generators in their fundamental representation. This basis was
then transformed into another basis in the chapter on the Zeppenfeld basis, where the sum over the
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kinematic par is summed over irreducible representations of the symmetric group and the sum over
the Lie algebra structure constants is hidden in the C(–;jl) factors defined in eq. (4.20). Since the
structure of the C(–;jl) factors does not depend on the Lie algebra we use in the scattering ampli-
tude, this enables us to easily compare the result of amplitude calculations where we use di�erent
Lie algebras. What was then left was the question of how to calculate the colour factors from eq.
(4.21) for each of the simple compact Lie algebras.

To answer this question we used the birdtrack formalism[3] to express group theoretic formulas
and results in a pictorial way allowing us to doodle us to our answers. The method of decomposing
the fundamental spaces V ¢ V̄ or V ¢ V into irreducible subspaces was then formulated in the
birdtrack notation, where the subspaces were expressed as projection operators. The adjoint pro-
jection operator could then be singled out using the invariance condition defined in eq. (5.51). The
adjoint projection operators then enables us to calculate the diagrams from eq. (4.21) after using
the trace based identity for the structure constants defined in eq. (5.60). This enabled us to tackle
the algebras of su(n), so(n), sp(n) and g2. For g2 we saw that the exceptional groups had primitive
invariants with more than two indices, which meant that we need extra reduction identities in order
to calculate our birdtrack diagrams.
Because of the need for extra reduction identities for the exceptional Lie groups we found ourselves
unable to solve the rest of the exceptional algebras using the method described above. Therefore for
these algebras we represented their adjoint representation using their sub-algebras which were all
made up of the Lie algebras we had already solved. Using the Jacobi identity eq. (5.61), we could
verify that we had found the correct generators, and along with introducing spinors in birdtrack,
the rest of the exceptional Lie algebras (e6, e7, e8 and f4) were solved.

So what is the next step from here? Well a couple of questions immediately arises, where the
first one is, that since these calculations have all been performed exclusively on tree amplitudes
what happens when we want to calculate colour factors to any loop order? One of the issues that
comes to mind here is that in order to calculate the colour factors for the exceptional algebras e6,
e7 and f4 we had to take advantage of them being expressed in terms of the adjoint representation.
This was ensured by transforming the generators in colour ordered amplitudes into the structure
constants in the DDM basis, but for the general loop level case it is not certain that one can express
the colour factors in the adjoint representation. Therefore it could be interesting to investigate if
it is possible to express the colour factors to all loop orders in terms of their adjoint representation
(notice that since the adjoint representation of e8 is the same as the fundamental representation of
e8, we can still calculate colour factors for this algebra), or if it is possible to find a way to express
the fundamental representation in a way where we can use birdtrack to calculate diagrams.

Another interesting question to arise from this is the appearance of the symmetric group in the
Zeppenfeld basis. An open question here is why this group appears and if it is possible to find new
relations or symmetries based on this appearance. One possible way of attacking this problem could
be by using the Brauer algebra [16]. Lastly we can ask why the birdtrack method fails by a factor of
2 to correctly calculate the adjoint quadratic Casimir for so(3), and so(4). Even though this might
not seem of the utmost importance it is nevertheless worrying that the birdtrack method gives the
wrong answer here, when it seem to give the correct answer at all other instances, so maybe there
is something to uncover here. But all these things aside lets end it here and rejoice in the fact that
in the end we did catch ’em all.
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Appendix - Python Code
This is the Python code used to calculate the colour factors shown in tables: (6.1), (6.2), (6.3) and
(6.4). It draws the diagrams and calculates them using the Birdtrack method.

import networkx as nx

import time

import matplotlib as plt

import numpy as np

import itertools

import multiprocessing as mp

from sympy import Symbol

from fractions import Fraction

# To use the code to calculate the value of a diagram use the following functions:

# For so_n, sp_n or su_n use the function - complete_diagram(n_p,n_g,group,S_n)

# where n_p is the number of particles, n_g is the "n" in su_n (and also for so_n and sp_n)

# group can be either ’so_n’, ’sp_n’ or ’su_n’

# S_n is the permutation of the diagram, eq. for 5 particles we might have [0,1,2], which

is equivalent to the identity or [2,0,1] which is some permutation. Since weare

working

# with S_(n-2) there are 2 fewer numbers than there are particles.

def make_structure_constant(A,B):

# This function creates each structure-constant fˆ{abc}, as a closed circle of 8

connected nodes.

# The node numbers that connect to other nodes is [1,4,6].

# the varable A is either ’upper’ or ’lower’ which refers to the row it is eventually

going to belong to. B a number that distinguishes the different structure

constants in each row.

G=nx.Graph()

nodes = [A+’_’+str(B)+’_’+str(i) for i in range(1,9)]

for n in nodes:

G.add_node(n)

for l, r in zip(nodes, nodes[1:]+[nodes[0]]):

G.add_edge(l,r,length=1)

return G

def row_of_structure_constants(L,position):

# This function creates a list containing all the structure constants that exists in a

row. A row is the same as the expression Tˆ{\pi} in Zeppenfelds paper.

# ie. a product of structure constants in a certain permutation.

# The variable ’L’ is the number of structure constants in the row, and the variable

’position’ indicates if it is an upper or lower row.

listen = np.zeros(L,dtype=object)
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for i in range(L):

listen[i] = make_structure_constant(position,i)

return listen

def connect_structure_constants_row(listen,parity,position):

# This function connects all the structure constants in a row. A row is the same as

the expression Tˆ{\pi} in Zeppenfelds paper.

# The variable ’Listen’ is a list of structure constants to be conected in a row.

# The variable ’parity’ indicates which of the two terms in the expansion of the

structure constants fˆ{abc} = tr(tˆaTˆbTˆc)-tr(tˆaTˆcTˆb) the is used in this

example.

# The variable position indicates weather it is an upper or lower row.

# in this part of the code the diagrams are merged together into a single diagram.

F = nx.compose(listen[0],listen[1])

for i in range(len(listen)-2):

F = nx.compose(F,listen[i+2])

# In this part of the code the structure constants are connected based on their parity.

for i in range(len(listen)-1):

if parity[i] == 1:

if parity[i+1] == 1:

F.add_edge(position+’_’+str(i)+’_6’,position+’_’+str(i+1)+’_4’,length=1)

if parity[i+1] == -1:

F.add_edge(position+’_’+str(i)+’_6’,position+’_’+str(i+1)+’_6’,length=1)

if parity[i] == -1:

if parity[i+1] == 1:

F.add_edge(position+’_’+str(i)+’_4’,position+’_’+str(i+1)+’_4’,length=1)

if parity[i+1] == -1:

F.add_edge(position+’_’+str(i)+’_4’,position+’_’+str(i+1)+’_6’,length=1)

return F

def create_diagrams(n, S_n):

# This function creates the diagrams that will occure after all the structure

constants have been expanded withe relation fˆ{abc} = tr(tˆaTˆbTˆc)-tr(tˆaTˆcTˆb).

# The variable ’n’ is the number of particles.

# The variable ’S_n’ is the specific permutation of the product of structure constants

Tˆ{\pi} in Zeppenfelds paper.

# Here the parity for the upper and lower row is created.

combinations_upper = np.array(list(itertools.product([1, -1], repeat=n-2)))

combinations_lower = np.array(list(itertools.product([1, -1], repeat=n-2)))

# Here the array containing the diagrams is prelocated

diagrams = np.zeros((2**(2*(n-2)),2),dtype=object)

k=0

for i, j in itertools.product(combinations_upper, combinations_lower): # This loop is

over the permutations in both the upper and lower row.
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upper_diagram =

connect_structure_constants_row(row_of_structure_constants(n-2,’upper’),i,’upper’)

lower_diagram =

connect_structure_constants_row(row_of_structure_constants(n-2,’lower’),j,’lower’)

diagram = nx.compose(upper_diagram,lower_diagram)

# Here the rows are connected with respect to the specific permutation in the list

S_n

for uy in range(n-2):

diagram.add_edge(’lower_’+str(uy)+’_1’,’upper_’+str(S_n[uy])+’_1’)

# The first structure constant in the lower row has two connections to the upper

row. This block of code deals with the second connection.

if i[0] == 1:

if j[0] == 1:

diagram.add_edge(’upper_0_4’,’lower_0_4’,length=1)

if j[0] == -1:

diagram.add_edge(’upper_0_4’,’lower_0_6’,length=1)

if i[0] == -1:

if j[0] == 1:

diagram.add_edge(’upper_0_6’,’lower_0_4’,length=1)

if j[0] == -1:

diagram.add_edge(’upper_0_6’,’lower_0_6’,length=1)

# The last structure constant in the lower row has two connections to the upper

row. This block of code deals with the second connection.

if i[-1] == 1:

if j[-1] == 1:

diagram.add_edge(’upper_’+str(n-3)+’_6’,’lower_’+str(n-3)+’_6’,length=1)

if j[-1] == -1:

diagram.add_edge(’upper_’+str(n-3)+’_6’,’lower_’+str(n-3)+’_4’,length=1)

if i[-1] == -1:

if j[-1] == 1:

diagram.add_edge(’upper_’+str(n-3)+’_4’,’lower_’+str(n-3)+’_6’,length=1)

if j[-1] == -1:

diagram.add_edge(’upper_’+str(n-3)+’_4’,’lower_’+str(n-3)+’_4’,length=1)

# After each diagram is created it is saved to a list, along with the product of

the parity (to keep track of the sign)

diagrams[k,0] = diagram

diagrams[k,1] = np.product(i)*np.product(j)

k+=1

return diagrams

def calculate_diagram(diagram,n_p,group,n_g):

# This script takes in a single diagram and expand all the adjoint contractions with

the adjoint projection operator. Then it calculates the value of all those

expanded diagrams.

# The variable ’diagram’ is a diagram that needs to be expanded.
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# The variable ’n_p’ is the number of particles.

# The variable ’group’ indicates the Lie group we are dealing with here (eq. su(n))

# The variable ’n_g’ is the n in su(n). It is the value of each closed loop in a

birdtrack diagram.

# Here we initialize n_po which is the number of terms in the adjoint projection

operator

if group==’su_n’:

n_po=2

elif group==’so_n’:

n_po=2

elif group==’sp_n’:

n_po=2

# Here the different arrays are preallocated. Values are the final values of the

diagrams, and permutations tells with term in the adjoint projection operator to

use thi stime.

values = np.zeros(n_po**(n_p+2*(n_p-3)),dtype=object)

permutations = list(itertools.product(np.linspace(1,n_po,n_po).astype(int),

repeat=n_p+2*(n_p-3)))

diagram_list = np.zeros(len(values),dtype = object)

# The diagrams are copied and duplicated before they are expanded.

for i in range(len(diagram_list)):

diagram_list[i] = diagram.copy()

# Here each adjoint line in the diagrams is expanded with respect to their

permutation, and then value of each diagram is calculated.

for i in range(len(values)):

temp_diagram = deformation(n_p,permutations[i],diagram_list[i],group)

values[i] = value_diagram(n_g,permutations[i],temp_diagram,group)

# The value of each diagram is summed together to give the final value.

value = sum(values)

# Since the groups ’so(n)’ and ’sp(n)’ have an overall factor of 1/2 in their adjoint

projection operator, a quick tjeck is performed to see if the overall value should

be multiplied with this factor.

if group in (’so_n’,’sp_n’):

value = value*((1/2)**(n_p+2*(n_p-3)))

return value

def deformation(n_p,permutation,diagram, group):

# This function is the first of two functions that expands all adjoint lines in a

diagram.

# the variable ’n_p’ is the number of particles.
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# The variable ’permutation’ is a list of numbers (one for each adjoint line) that

indicates which term in the adjoint projection operator to use for each adjoint

line.

# The variable ’diagram’ is the diagram to be deformed.

# the variable ’group’ indicates the Lie group we are dealing with here.

k = 0

for i in range(n_p-2):

# The loop is over the number of structure constants in a row. Since the number of

structure constants is the same in the upper and lower row, the upper and lower

# row are looped over simultaniously. For each adjoint line a specific ordering of

the of the two nodes is determined adn then is sent through to the function

# ’deform_group’ which determines how to connect the neighbors to the two

forementioned nodes.

bottom = ’lower_’+str(i)+’_1’

neighbors = list(diagram.neighbors(bottom))

for j in range(len(neighbors)):

if neighbors[j][0:5]==’upper’:

top = neighbors[j]

diagram = deform_group(top,bottom,permutation[k],diagram,group)

k+=1

try:

bottom = ’lower_’+str(i)+’_4’

neighbors = list(diagram.neighbors(bottom))

for j in range(len(neighbors)):

if neighbors[j][0:5]==’upper’:

top = neighbors[j]

if int(neighbors[j][6:7])!=int(bottom[6:7]):

top = neighbors[j]

diagram = deform_group(top,bottom,permutation[k],diagram,group)

k+=1

except:

1+1

try:

bottom = ’lower_’+str(i)+’_6’

neighbors = list(diagram.neighbors(bottom))

for j in range(len(neighbors)):

if neighbors[j][0:5]==’upper’:

top = neighbors[j]

if int(neighbors[j][6:7])!=int(bottom[6:7]):

top = neighbors[j]

diagram = deform_group(top,bottom,permutation[k],diagram,group)

k+=1

except:

1+1

try:

top = ’upper_’+str(i)+’_4’



Appendix - Python Code 77

neighbors = list(diagram.neighbors(top))

for j in range(len(neighbors)):

if neighbors[j][0:5]==’lower’:

bottom = neighbors[j]

if int(neighbors[j][6:7])!=int(top[6:7]):

bottom = neighbors[j]

diagram = deform_group(top,bottom,permutation[k],diagram,group)

k+=1

except:

1+1

try:

top = ’upper_’+str(i)+’_6’

neighbors = list(diagram.neighbors(top))

for j in range(len(neighbors)):

if neighbors[j][0:5]==’lower’:

bottom = neighbors[j]

if int(neighbors[j][6:7])!=int(top[6:7]):

bottom = neighbors[j]

diagram = deform_group(top,bottom,permutation[k],diagram,group)

k+=1

except:

1+1

# after a diagram has been deformed it s returned.

return diagram

def deform_group(top,bottom,permutation,diagram,group):

# This function determines the specific ordering of the nodes to be connected when the

adjoint line between the ’top’ and ’bottom’ nodes is expanded.

# The variable ’top’ is a node in the diagram that constitutes one part of the adjoint

line to be expanded.

# The variable ’bottom’ is a node in the diagram that constitutes the other part of

the adjoint line to be expanded.

# The variable ’permutation’ is the specific permutation for this adjoint line, that

determines which term in the adjoint projection operator to use.

# The variable ’diagram’ is the diagram from which the adjoint line will be expanded.

# The variable ’group’ indicates the Lie group we are dealing with here.

# To start with the neighbors of the top and bottom node is found, these neighbors are

the ones that should be connected to each

# other, in a way that depends on the group.

list1 = list(diagram.neighbors(bottom))

list2 = list(diagram.neighbors(top))

top = top.split(’_’)

bottom = bottom.split(’_’)

# Here the bottom node is deleted from the list containing the neighbrs of the top

node, and vice versa for the top node in the list containing

# the neighbors of the bottom node.
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for i in range(len(list2)):

if ’_’.join(bottom) == list2[i]:

delete1 = i

if ’_’.join(top) == list1[i]:

delete2 = i

try:

del list1[delete2]

except:

pass

try:

del list2[delete1]

except:

pass

for i in range(len(list2)):

list1[i] = list1[i].split(’_’)

list2[i] = list2[i].split(’_’)

# Here the specific ordering of the nodes is determined. I found it difficult to come

up with a compact way of diog it, so it is basically just checking

# all the posible combinations.

if top[0]==’upper’ and bottom[0]==’lower’:

if int(list1[0][2])>int(list1[1][2]):

A = list1[0]

B = list1[1]

else:

B = list1[0]

A = list1[1]

if int(list2[0][2])>int(list2[1][2]):

C = list2[0]

D = list2[1]

else:

D = list2[0]

C = list2[1]

if top[0]==’lower’ and bottom[0]==’upper’:

if int(list1[0][2])>int(list1[1][2]):

A = list2[0]

B = list2[1]

else:

B = list2[0]

A = list2[1]

if int(list2[0][2])>int(list2[1][2]):

C = list1[0]

D = list1[1]

else:

D = list1[0]

C = list1[1]

if top[0]==’upper’ and bottom[0]==’upper’:

if int(top[1])>int(bottom[1]):

if int(list1[0][2])>int(list1[1][2]):
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A = list1[1]

B = list1[0]

else:

B = list1[1]

A = list1[0]

if int(list2[0][2])>int(list2[1][2]):

C = list2[0]

D = list2[1]

else:

D = list2[0]

C = list2[1]

elif int(top[1])<int(bottom[1]):

if int(list1[0][2])>int(list1[1][2]):

A = list2[1]

B = list2[0]

else:

B = list2[1]

A = list2[0]

if int(list2[0][2])>int(list2[1][2]):

C = list1[0]

D = list1[1]

else:

D = list1[0]

C = list1[1]

if top[0]==’lower’ and bottom[0]==’lower’:

if int(top[1])>int(bottom[1]):

if int(list1[0][2])>int(list1[1][2]):

A = list1[0]

B = list1[1]

else:

B = list1[0]

A = list1[1]

if int(list2[0][2])>int(list2[1][2]):

C = list2[1]

D = list2[0]

else:

D = list2[1]

C = list2[0]

elif int(top[1])<int(bottom[1]):

if int(list1[0][2])>int(list1[1][2]):

A = list2[0]

B = list2[1]

else:

B = list2[0]

A = list2[1]

if int(list2[0][2])>int(list2[1][2]):

C = list1[1]

D = list1[0]

else:
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D = list1[1]

C = list1[0]

# Here the expression used to determine the ordering is combined again, so that they

represents nodes in the diagram.

A = ’_’.join(A)

B = ’_’.join(B)

C = ’_’.join(C)

D = ’_’.join(D)

top = ’_’.join(top)

bottom = ’_’.join(bottom)

diagram.remove_node(top)

diagram.remove_node(bottom)

# Finally the nodes are connected based on the group used.

if group==’su_n’:

if permutation == 1:

diagram.add_edges_from([(A,C), (B,D)])

if permutation == 2:

diagram.add_edges_from([(A,B), (C,D)])

if group ==’so_n’:

if permutation == 1:

diagram.add_edges_from([(A,C), (B,D)])

if permutation == 2:

diagram.add_edges_from([(A,D), (B,C)])

if group ==’sp_n’:

if permutation == 1:

diagram.add_edges_from([(A,C), (B,D)])

if permutation == 2:

diagram.add_edges_from([(A,D), (B,C)])

return diagram

def value_diagram(n_g,permutation,temp_diagram,group):

# Here the value of a diagram is calculated.

# The variable ’n_g’ is the value of a closed fundamental line.

# The variable ’permutation’ is a list of numbers containing the specific permutation

for each expanded adjoint line.

# The variable ’temp_diagram’ is the diagram for which the value is to be calculated.

# The variable ’group’ indicates the Lie group we are dealing with here.

# This function uses the fact that after the diagram has been deformed, there are only

closed loops left, so it just have to count how many

# closed loops there are. To do this networkx has a function (nx.cycle_basis) that

gives exactly this.

# exponent1 is how many times n_g is multiplied with itself.

# since the adjoint projection operator for each group has a negative term exponent 2
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is the total number of negative terms in this diagram.

if group == ’su_n’:

exponent1 = len(nx.cycle_basis(temp_diagram))

exponent2 = sum(np.array(permutation)==2)

return (n_g**(exponent1)/(n_g**(exponent2)))*((-1)**(exponent2))

if group == ’so_n’:

exponent1 = len(nx.cycle_basis(temp_diagram))

exponent2 = sum(np.array(permutation)==2)

return (n_g**(exponent1))*((-1)**(exponent2))

if group == ’sp_n’:

exponent1 = len(nx.cycle_basis(temp_diagram))

exponent2 = sum(np.array(permutation)==2)

return (n_g**(exponent1))*((-1)**(exponent2))*((-1)**(exponent1))

def complete_diagram(n_p,n_g,group,S_n):

# This function calculates a whole diagram.

# The variable ’n_p’ is the number of particles.

# The variable ’n_g’ is the value of a closed fundamental line.

# The variable ’group’ indicates the Lie group we are dealing with here.

# The variable ’S_n’ is the specific permutation of the product of structure constants

Tˆ{\pi} in Zeppenfelds paper.

# Here all the diagrams are created

diagrams = create_diagrams(n_p, S_n)

result = 0

# Here all the diagrams are looped over and their value is calculated

for i in range(len(diagrams)):

asdf = calculate_diagram(diagrams[i][0],n_p,group,n_g)

result = result+asdf*diagrams[i][1]

print(i)

return result

def intermediate_calculation(n_p,n_g,group,little_n,fundamental,j):

# This function is used in combination with the irreduciblerepresentations of the

permutation group. It is not used to calculate an diagram, but instead to

# calculate the C’s from Zeppenfelds paper.

S_n = np.array(np.transpose(np.matmul(np.matrix(fundamental[j][0]),

np.transpose(np.matrix([np.linspace(1,little_n,little_n).astype(int)])))))[0].astype(int)-1

return fundamental[j][1]*complete_diagram(n_p,n_g,group,S_n)


