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Abstract

This thesis studies interacting multiterminal Josephson junctions in the context of a single-

level quantum dot (QD) coupled to multiple s-wave superconductors using the supercon-

ducting impurity Anderson model. We derive the effective action for electrons on the QD

and show – in the limit of large superconducting gap (proximitized limit) – that this leads

to an effective low-energy Hamiltonian which describes proximity-induced superconductiv-

ity of the QD. In this limit, we obtain the eigenenergies, eigenstates, and the QD phase

diagram, showing the transition from a BCS-like singlet to a magnetic doublet. Next, we

consider the leading order corrections to describe finite-gap systems and find the energy

level shifts through a self-consistent renormalization. We compare the phase diagram with

NRG and find good agreement for single-lead systems in the proximitized limit and even

for moderate interactions U ∼ ∆. For two-lead systems with cancelled proximity effect

(φ = π), the model fails to describe the persistent doublet region around particle-hole

symmetry. We also develop a zero-bandwidth (ZBW) model which is shown to capture

some qualitative features of the full Anderson model, namely the transition from a BCS-

like singlet to a YSR-screened singlet as ∆/U is decreased as well as similar bound state

energy spectra, supercurrents, and phase diagrams. In the proximitized limit, we state the

appropriate conversion from the effective ZBW tunneling rate t to the hybrdization Γ of the

Anderson model; the conversion is shown to be independent of U . We find solid agreement

with NRG results – showing that the ZBW model is able to describe proximitized QDs

on a quantitative level. In the Kondo limit U ≫ Γ ≫ ∆, we utilize the phase transition

relation TK = 0.3∆ from NRG to scale t. By interpolating between the proximitized limit

and the Kondo limit, we extend the validity of the ZBW model, but find it inadequate in

describing the strongly interacting limit due to the lack of a continuum of states in the

leads.
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1 Introduction

Quantum dots embedded in Josephson junctions is an interesting platform to study as it

lends itself to examination of the intriguing competition between superconductivity and

magnetism. Experimentally, the manufactured devices are engineered to have a high degree

of tunability of the relevant model parameters. The simple nature of the systems makes it

an ideal platform for theory and experiment to come together. In such systems, small quan-

tum dot (QD) regions can be made to resemble a single, localized magnetic moment which

in turn will affect the properties of the Josephson junction in which the QD is embedded.

In this way, measurements such as the conductance of the junction can give insight into

the energy spectrum of the QD and, hence, the underlying physics. The energy scales also

make such systems highly relevant for the study of the Kondo effect in relation to supercon-

ductivity. In a sense, they are competing phenomena as superconductivity seeks to bond

electrons into Cooper pairs that carry no net spin while the Kondo effect tries try screen a

local moment (on a QD) by breaking apart the Cooper pairs into screening quasiparticles

with opposite spin to the local moment. In some parameter regimes, superconductivity

prevails and in others, the Kondo effect.

In this thesis, we study interacting multiterminal Josephson junctions through the

superconducting Anderson impurity model via different approximation schemes. In the

rest of Section 1, we review BCS theory, Josephson junctions, quantum dots, and the

Anderson model to lay the foundation of some of the key concepts relevant for this thesis.

In Section 2, we define the physical system we will be studying along with the Hamiltonian

before we integrate out the leads to find an effective action for electrons on the QD.

In Section 3 we find a low-energy effective Hamiltonian in the infinite gap limit which

describes the proximity effect and discuss the eigenstates, eigenenergies, and the phase

diagram before we move on to finite superconducting gaps in Section 4. In the last part

of the thesis we go into detail with a zero-bandwidth model (Section 5) and evaluate its

effectiveness as both a qualitative and quantitative tool.

1.1 BCS theory

Bardeen, Cooper, and Scrieffer (BCS) introduced their theory of superconductivity in their

seminal paper from 1957 [1]. The idea is that, in an electron gas, the Fermi sea ground state

is unstable towards the formation of Cooper pairs near the Fermi surface for an arbitrary
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small electron-electron attraction. These Cooper pairs, that consist of two electrons of

opposite momentum and spin, are responsible for the superconducting properties such

as zero resistivity and the Meissner effect. BCS explained this for a phonon-mediated

(conventional) superconductor whose effective electronic interactions are modelled by a

simplified Bardeen-Pines interaction.

For an electrically neutral material with a lattice of positively charged ions immersed

in a sea of itinerant electrons, the effective electron-electron interactions are described by

the Bardeen-Pines interaction [2, 3].

Veff(q, ν) =
e2

ϵ0(q2 + κ2)

(
1 +

ω2
q

ν2 − ω2
q

)
. (1.1)

The first term describes the direct electron-electron Coulomb interactions which are screened

by the positively charged ions over the Thomas-Fermi screening length κ−1 =
√
ϵ0/(2e2νF )

with vacuum permittivity ϵ0, electron charge e, and electronic density of states at the

Fermi level νF . The second term describes the phonon-mediated interactions. Here,

ω2
q = Ω2

pq
2/(q2+κ2) is a renormalized ionic plasma frequency, where Ω2

p = (Ze)2nion/(ϵ0M)

with proton number Z, ionic mass M, and density nion. Due to the heavy mass of the ions

compared to the light electrons, only the phonon-mediated interactions are frequency-

dependent and, hence, retarded in this approximation. The direct Coulomb interactions

are considered instantaneous in time. The cartoon picture of the phonon-mediated interac-

tion is a negatively charged electron traversing the lattice, attracting the positively charged

ions, and leaving behind a slight positive charge compared to the unperturbed lattice. This

attracts another electron, meaning the pair of electrons are effectively attracted to each

other without being close to each other at the same time.

From Eq. (1.1), it is clear that electrons in states with energy difference |ν| < |ωq| are
attracted (Veff < 0); phonon-mediated attraction overcomes the Coulomb repulsion. BCS

simplified this interaction further and replaced it with a constant attraction for energies

−ωD < ν < ωD within a thin shell around the Fermi surface and Veff = 0 outside. The

thickness of the shell is the typical phonon energy, here given by the Debye frequency ωD.

Superconductivity is inherently a many-particle phenomena, leading to a macroscopic,

coherent wave function. Therefore, it serves to describe superconductors in the second

quantization formalism by introducing creation (annihilation) operators for the electrons

c†kσ(ckσ), which creates (annihilates) an electron with momentum k and spin σ ∈ {↑, ↓
}. The operators satisfy the usual fermionic anti-commutation relations {c†kσ, ck′σ′} =
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δk,k′δσ,σ′ , {ckσ, ck′σ′} = {c†kσ, c
†
k′σ′} = 0. The BCS Hamiltonian only considers interactions

between zero-momentum Cooper pair states and takes the form

HBCS =
∑

kσ

ξkc
†
kσckσ +

∑

kk′

Vkk′c
†
k↑c

†
−k↓c−k′↓ck′↑, (1.2)

with electronic dispersion ξk = ϵk−µ (measured from the chemical potential) and scattering

matrix elements Vkk′ between Cooper pair states. We will only be concerned with zero

temperature physics, meaning the chemical potential coincides with the Fermi energy:

µ = ϵF . In simple s-wave superconductors as BCS considered, Vkk′ is taken to be an

attractive, constant, and isotropic interaction close to the Fermi surface

Vkk′ =

{
−g0, |ξk|, |ξ′k| < ωD

0, otherwise,
(1.3)

where g0 > 0 is the average interaction strength.

In the thermodynamic limit (infinite system size), fluctuations are negligible and a

mean field approximation is justified, yielding the effective Hamiltonian

HMF
BCS =

∑

kσ

ξkc
†
kσckσ −

∑

k

(
∆c†k↑c

†
−k↓ +∆∗c−k↓ck↑

)
, (1.4)

where the pairing potential ∆ = g0
∑

|ξk|<ωD
⟨c−k↓ck↑⟩ is determined self-consistently such

that the free energy is minimized. This Hamiltonian is only bilinear and may be diagonal-

ized, yielding quasi-particle excitations with energies Ek = ±
√
ξ2k + |∆|

2, a gapped spec-

trum around the Fermi level. In the language of the phenomenological Ginzburg-Landau

theory, the pairing potential ∆ = |∆|eiφ is the complex order parameter which becomes

finite and breaks U(1) gauge symmetry when the material becomes superconducting and

coherently chooses a macroscopic complex phase φ. One might ask what happens when

two superconductors with different complex phases are placed in close contact; this is the

exciting topic of Josephson junctions.

1.2 Josephson junctions

A Josephson junction (JJ) consists of two superconducting electrodes in weak contact

through a region of a different material, e.g. an insulator or a normal metal; these are

abbreviated as S-I-S and S-N-S junctions, respectively. Quantum mechanics allows for

tunneling between the superconducting regions if the tunneling barrier is surmountable.

When the voltage bias between the superconducting electrodes is less than the critical
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value eVc = 2∆, normal current can’t flow. However, electrons bound in Cooper pairs

may tunnel through the barrier giving rise to a (super-)current across the junction. This

is referred to as the Josephson effect after B. D. Josephson who received the Nobel prize

in 1973 for his work on this topic [4]. Opposed to normal metals with a finite resistance,

no voltage bias is required between the superconducting electrodes for a current to flow.

The effect is observable if there is a phase difference between the superconducting order

parameters across the junction.

For a perfect JJ with a narrow intersection region compared to the coherence lengths of

the superconductors, the Josephson equations relate the supercurrent IJ and voltage drop

V across the junction to the phase difference ∆ϕ of the two superconductors [5].

IJ = Ic sin(∆ϕ), (1.5)

d

dt
(∆ϕ) =

2eV

ℏ
. (1.6)

The maximum supercurrent Ic that can be driven through the junction with V = 0 is

determined by the normal state resistance of the junction and the superconducting gap [6].

In a physical experiment, the current bias may be fixed to a constant value IJ < Ic which

fixes the phase difference ∆ϕ = arcsin(IJ/Ic) and V = 0 (since the phase difference is

time-independent). This is known as the direct current Josephson effect. Conversely, if the

voltage bias is constant in time and nonzero V ̸= 0, the phase difference advances linearly in

time ∆ϕ = ∆ϕ0+2eV t/ℏ. This produces an alternating current IJ = Ic sin(∆ϕ0 + 2eV t/ℏ)
with frequency ν = KJV and Josephson constant KJ = 2e/h ≈ 483.6 GHz/mV. This is

known as the alternating current Josephson effect.

As mentioned, the weak contact region may be made of different materials. For a

S-N-S junction with a normal metal (not superconducting by itself) in the middle, the

adjacent superconductors will, in fact, induce superconductivity in the material. This

is known as the proximity effect. Subgap bound states form within the normal region

and Cooper pairs are transported across the junction through Andreev scattering off the

normal-superconducting interfaces. Here, an electron in the normal metal is reflected as

a hole at the superconductor interface if it has less energy than the superconducting gap

E < ∆; there are no states in the superconductor with that energy. Simultaneously, a

Cooper pair is formed in the superconductor, yielding a charge transport of 2e at the

interface.
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1.3 Quantum dots

Interesting physics arise when one can control the electronic occupation on the level of

single electrons in the junction region. Experimentally, it is possible to confine electrons

to a small region in space. Like a quantum particle in a box, the spacing between energy

levels grows as the region shrinks, making it possible to isolate and conduct experiments

with a single orbital. This is the basic idea behind (single-level) quantum dots (QDs). The

small confinement also results in a large Coulomb repulsion between electrons on the QD,

typically on the order of meV. The electronic occupation of the QD may be controlled

through a capacitively coupled electrode which varies the electrostatic potential close to

the QD. There is a profound difference between an even and an odd number of electrons on

the QD. An odd number of electrons means a half-filled orbital with an unpaired electron

and, hence, a local magnetic moment. Among other things, this affects the bound states

and transport properties, making S-QD-S junctions behave quite differently from S-N-S

junctions. The local electron-electron repulsion gives rise to Coulomb-blockaded transport

and a local magnetic moment may be screened by quasiparticles in the leads.

To probe such an S-QD-S junction, one might construct a device such as the one

depicted in Fig. 1.1 from Ref. [7] in which a QD is placed into a transmon circuit. The

central part of the device is the 10 µm long superconductor-semiconductor nanowire with

a core of InAs and Al shell seen in Figs. 1.1(c) and 1.1(d). The actual QD is simply the

200 nm long region seen in Fig. 1.1(d) where the Al has been etched away. Underneath,

there are three gates to tune the electrostatic potential and confine electrons. These control

the QD energy level and coupling strengths to the SC leads. The S-QD-S junction is placed

in parallel with another JJ to form a SQUID loop. Then, the phase difference across the

S-QD-S junction can be measured when an external flux is threaded through the SQUID.

The SQUID is capacitively coupled to an LC circuit to measure resonant frequencies of

the transmon circuit – excitations of the QD. Theoretical models of such systems are often

based on the Anderson model which we will briefly review.

1.4 The Anderson model

Consider an impurity embedded in a metallic host with a localized state at the impurity

site. Let us denote the wave function ψd(r) = ⟨r|d⟩ and charge density ρd(r) = e|ψd(r)|2. If
the state is doubly occupied by both a spin up and down electron, the Coulomb repulsion
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Figure 1.1: Transmon circuit with quantum dot from Ref. [7]. (a) shows the ciruit diagram

with the transmission line (green) capacitively coupled to an LC resonator and to a SQUID

loop with penetrating flux Φext and two JJs – one for reference and one to be measured.

(b)-(d) are images of the actual device, colored to match (a) (zoom region indicated by

inset rectangles).
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between the electrons

U =
1

4πϵ0

∫
d3r d3r′

1

|r − r′|ρd(r)ρd(r
′), (1.7)

may be a large energy expense. If this is the case, the system may favor to occupy the

impurity state with only a single electron, leading to the formation of a local moment. This

is the idea behind local moments in the Anderson model.

For simplicity, we consider only a single localized impurity orbital with energy level ϵd

and Coulomb repulsion U . The Anderson Hamiltonian then takes the form [8]

HA = ϵdnd + Und↑nd↓ +
∑

kσ

ξkc
†
kσckσ +

∑

kσ

tkc
†
kσdσ + t∗kd

†
σckσ, (1.8)

where nd = nd↑ + nd↓ and ndσ = d†σdσ counts the number of d -electrons with spin σ in the

impurity state. The third term in the Hamiltonian is the kinetic term for the conduction

electrons and the last term describes the tunneling or hybridization between conduction

electrons and the localized impurity state.

In the (atomic) limit tk = 0 with no hybridization, the Hamiltonian is trivially di-

agonalized. The metal has a filled Fermi sea with three possible ground state energies

for the d -electrons: 0, ϵd, 2ϵd + U , corresponding to states with zero, one, or two elec-

trons and denoted by |0⟩ , |σ⟩ , |↑↓⟩, respectively. The state with single occupancy is doubly

spin-degenerate. For ϵd > 0 (energy is measured from the Fermi energy of the metal), the

impurity state is empty. For ϵd < 0, one electron is added from the metal and if ϵd+U < 0,

it pays off to add a second electron. This is illustrated in Fig. 1.2. For −U < ϵd < 0, |σ⟩ is
the ground state which defines the local moment regime in the atomic limit. At the points

ϵd = −U, 0, the ground state becomes charge-degenerate. With finite hybridization, these

points evolve into regimes of mixed-valence.

1.4.1 Local moment regime

If the level spacings between the ground state and excited states are large compared to

the hybridization Γ = πνF t
2, the picture with a well-defined particle number does not

change too much and we can consider the hybridization a perturbation to the atomic

limit. In the local moment regime (−U < ϵd < 0 and |ϵd + U |, |ϵd| ≫ Γ), one can show,

through a Schrieffer-Wolf transformation, that virtual excitations to the empty and doubly

occupied d -states lead to an effective anti-ferromagnetic exchange interaction between the
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−U −U/2 0

εd

−U

0

U

E

|0〉

|σ〉 | ↑↓〉

|0〉

|σ〉

| ↑↓〉 |0〉 |σ〉

| ↑↓〉

Figure 1.2: Impurity energy levels relative to the Fermi energy of the host metal in the

atomic limit of the Anderson model. The energy levels are drawn in the local moment

regime at ϵd = −U,−U/2, 0.

local impurity moment and the conduction electrons [9].

JνF = − 2

π

ΓU

ϵd(ϵd + U)
> 0. (1.9)

This effect leads to screening of the impurity spin and the formation of a Kondo singlet

ground state when T ≪ TK . The Kondo temperature TK is determined by the size of the

exchange interaction J . At the particle-hole symmetric point ϵd = −U/2, JνF = 8Γ/πU ,

such that JνF ≪ 1 when U ≫ Γ in the local moment regime. Using a scaling argument of

the Anderson model, Haldane [10] derived an expression for the Kondo temperature

TK = 0.182

√
8ΓU

π
exp

[
π

2

ϵd(ϵd + U)

ΓU

]
. (1.10)

At particle-hole symmetry in the local moment regime, this energy scale is small compared

to the large Coulomb interaction: TK/U ∝
√

8Γ/πU exp(−πU/8Γ) ≪ 1. We will return

to the Kondo temperature later. For now, we move on to how we use the Anderson model

to model interacting multiterminal Josephson junctions.
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2 Modelling multiterminal Josephson junctions

In this thesis, we will study so-called multiterminal Josephson junctions (MJJs) with a QD

in the interface region. Instead of only two leads – as in Fig. 1.1(d) – we consider a single

QD tunnel-coupled toN ∈ N superconducting leads indexed by α = 1, 2, ..., N . We describe

this system using a single-orbital superconducting Anderson model H = HS+HD+HS−D.

We assume the leads are described by simple s-wave BCS Hamiltonians (see Eq. (1.4))

with different electronic dispersions ξαk in general.

HS =
∑

αkσ

ξαkc
†
αkσcαkσ −

∑

αk

(
∆αc

†
αk↑c

†
α−k↓ +∆∗

αcα−k↓cαk↑

)
. (2.1)

The pairing potential ∆α = |∆α|eiφα can vary between leads in both magnitude and phase.

Absolute phases are, however, gauge-dependent and only phase differences are physically

meaningful (e.g. relating to current flows as in Eq. (1.5)). Hence, without loss of generality,

we set φN = 0 and measure all other phases relative to lead N. The bandwidth of lead

α is assumed to be 2Dα such that ξαk ∈ [−Dα, Dα]. We can think of the QD as a single

electronic level with Coulomb repulsion U > 0.

HD =
∑

σ

ϵdndσ + Und↑nd↓, (2.2)

where ndσ = d†σdσ counts the number of electrons with spin σ on the QD. The filling may

be controlled through a gate voltage that adjusts the energy level ϵd; the electrodes below

the QD in Fig. 1.1(d). The QD is in contact with the leads, giving rise to electron-tunneling

which we assume, for simplicity, to be momentum-independent.

HS−D =
∑

αkσ

tαc
†
αkσdσ + t∗αd

†
σcαkσ. (2.3)

Furthermore, we assume the direct tunneling between individual leads to be negligible, i.e.

all tunneling happens through the QD. If the QD orbital is occupied by a single electron,

a local moment develops. As with a magnetic impurity in a superconductor, this gives rise

to the formation of Yu-Shiba-Rusinov (YSR) bound states inside the superconducting gap

[11–13]. In terms of gauge choice, we have N + 1 degrees of freedom to work with from N

leads and one QD. This means that, without loss of generality, we may choose the phase

of N + 1 parameters from the 2N parameters ∆α and tα. We already set φN = 0 and in

the following, we choose a gauge in which the tunneling amplitudes are real (tα = |tα|).
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2.1 Effective action for electrons on the QD

In this section, we will formulate the problem in terms of path integrals and integrate out

the leads to arrive at an effective action for the electrons on the QD. To this end, we replace

the fermionic operators with Grassman fields that are anti-periodic in imaginary time τ

over a period of the inverse temperature β = 1/kBT

cαkσ → cαkσ(τ),

c†αkσ → c̄αkσ(τ),

dσ → dσ(τ),

d†σ → d̄σ(τ),

(2.4)

and write the total action as S = SS + SD + SS−D in complete analogy with how we

separated the Hamiltonian. The terms are given by (suppressing the time dependence of

the fields for the sake of readability)

SS =

∫ β

0
dτ

{∑

αkσ

c̄αkσ(∂τ + ξαk)cαkσ −
∑

αk

(∆αc̄αk↑c̄α−k↓ +∆∗
αcα−k↓cαk↑)

}
, (2.5a)

SD =

∫ β

0
dτ

{∑

σ

d̄σ(∂τ + ϵd)dσ + Ud̄↑d̄↓d↓d↑

}
, (2.5b)

SS−D =

∫ β

0
dτ
∑

αkσ

[
tαc̄αkσdσ + tαd̄σcαkσ

]
, (2.5c)

where the partial time derivative ∂τ is the Berry phase term. Due to the anomalous terms

in the BCS part, it is convenient to rewrite the quadratic terms using Nambu spinors.

ψcαk(τ) =

(
cαk↑(τ)

c̄α−k↓(τ)

)
, ψ̄cαk(τ) =

(
c̄αk↑(τ), cα−k↓(τ)

)
,

ψd(τ) =

(
d↑(τ)

d̄↓(τ)

)
, ψ̄d(τ) =

(
d̄↑(τ), d↓(τ)

)
.

(2.6)

Using partial integration and anti-periodicity of the Grassman fields, we write the Berry

phase term as
∫
dτ
∑

kσ c̄αkσ∂τ cαkσ =
∫
dτ
∑

k ψ̄cαk∂τψcαk. We will also transform to

Matsubara frequencies ωn = (2n+ 1)π/β.

ψcαk(τ) =
1√
β

∑

n

ψcαk(iωn)e
−iωnτ , ψ̄cαk(τ) =

1√
β

∑

n

ψ̄cαk(iωn)e
iωnτ ,

ψd(τ) =
1√
β

∑

n

ψd(iωn)e
−iωnτ , ψ̄d(τ) =

1√
β

∑

n

ψ̄d(iωn)e
iωnτ .

(2.7)
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Using the orthogonality relation 1
β

∫
dτ exp[i(ωn − ωn′)τ ] = δn,n′ , the terms of the action

involving the leads become (suppressing the frequency dependence of the fields)

SS =
∑

αkn

ψ̄cαk
(
−iωn + ξαkτz −∆′

ατx +∆′′
ατy
)

︸ ︷︷ ︸
−G−1

0,αk

ψcαk, (2.8a)

SS−D =
∑

αkn

[
ψ̄cαktατzψd + ψ̄dtατzψcαk

]
, (2.8b)

where τx,y,z are a set of Pauli matrices acting in electron-hole (Nambu) space and the

pairing potential has been decomposed into real and imaginary parts: ∆α = ∆′
α + i∆′′

α.

From Eq. (2.8a), we may directly read off the inverse Matsubara Nambu Green function

for the electrons in lead α. After inverting it, we find

G0,αk(iωn) =
iωn + ξαkτz −∆′

ατx +∆′′
ατy

(iωn)2 − (ξ2αk + |∆α|2)
. (2.9)

It will be useful to also calculate the momentum-summed version, i.e.

G0,α(iωn) =
∑

k

G0,αk(iωn) = νF,α

∫ Dα

−Dα

dξα G0,αk(iωn)

= 2νF,α arctan


 Dα√
|∆α|2 + ω2

n


 1√
|∆α|2 + ω2

n

(
−iωn ∆α

∆∗
α −iωn

)
,

(2.10)

assuming a constant density of states νF,α near the Fermi surface in lead α.

To arrive at an effective action for the electrons on the dot, we consider the partition

function and perform the Gaussian integrals over the leads (tildes are used to reserve the

effective action for Eq. (2.15)).

Z̃ =

∫
D[ψ̄c, ψc, ψ̄d, ψd]e−S =

∫
D
[
ψ̄d, ψd

]
e−S̃eff ,

e−S̃eff [ψd,ψ̄d] =

∫
D[ψ̄c, ψc]e−S[ψc,ψ̄c,ψd,ψ̄d].

(2.11)

Completing the square among lead electrons, we find

SS + SS−D =
∑

αkn

[
(ψ̄cαk − ψ̄dtατzG0,αk)(−G−1

0,αk)(ψcαk − G0,αktατzψd) + t2αψ̄dτzG0,αkτzψd
]
.

(2.12)

Changing variables to ψ′
cαk = ψcαk −G0,αktατzψd, ψ̄′

cαk = ψ̄cαk − ψ̄dtατzG0,αk, the measure

is unchanged D[ψ′
c, ψ̄

′
c] = D[ψc, ψ̄c], and we may perform the Gaussian integral. Comparing
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with Eq. (2.11), we find

S̃eff = SD +
∑

n

ψ̄d(iωn)Σd(iωn)ψd(iωn)− ln
(
det
(
−G−1

0

))
, (2.13)

with self-energy

Σd(iωn) =
∑

αk

t2ατzG0,αk(iωn)τz

= −
∑

α

2

π
arctan


 Dα√
|∆α|2 + ω2

n


 Γα√
|∆α|2 + ω2

n

(
iωn ∆α

∆∗
α iωn

)
,

(2.14)

where Γα = πνF,αt
2
α is the tunneling rate between lead α and the QD. We define the total

hybridization as the sum of the individual contributions: Γ =
∑

α Γα. The second equality

follows from Eq. (2.10).

The last term in Eq. (2.13) is unimportant for the physics of the QD since it depends

on the leads only. Therefore, let us define the effective action as

Seff = SD +
∑

n

ψ̄d(iωn)Σd(iωn)ψd(iωn). (2.15)

Due to the interacting term in SD (see Eq. (2.5b)), the problem is not analytically

solvable in general and we have to study the problem in certain limits. The infinite gap/low

energy limit is (analytically) the easiest way to proceed and will, therefore, be our first

order of business.

3 The proximitized QD in the infinite gap limit

Let us consider the limit ω ≪ |∆α|, i.e. the low-energy or infinite gap limit. This means

we may neglect the diagonal entries in the self-energy (Eq. (2.14)) and approximate√
|∆α|2 + ω2

n ≃ |∆α|. Then the self-energy becomes static and takes the form

Σd = −
(

0 γ

γ∗ 0

)
, (3.1)

where the effect of coupling to the leads is contained in a single complex parameter

γ =
∑

α

2

π
arctan

(
Dα

|∆α|

)
Γαe

iφα . (3.2)
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Interestingly, in this limit where the continuum states in the leads are inaccessible, the effect

of the leads boils down to an ‘interference’ problem governed by the tunneling amplitudes

Γα and lead phases φα. No matter the number of leads, the QD is only concerned with

two degrees of freedom, e.g. the magnitude and phase of γ. Clearly, then, all results from

single or two-lead systems in the infinite gap limit, expressed in terms of γ, also apply to

multiterminal systems.

The effective action for the electrons on the QD (Eq. (2.15)) takes the form

S
(∞)
eff =

∫ β

0
dτ

{∑

σ

d̄σ∂τdσ +
∑

σ

ϵdd̄σdσ − γd̄↑d̄↓ − γ∗d↓d↑ + Ud̄↑d̄↓d↓d↑

︸ ︷︷ ︸
H̃∞[d̄,d]

}
. (3.3)

Since the self-energy is static, we may directly read off the (normal-ordered) Hamiltonian

H̃∞[d†, d] leading to this action.

H̃∞[d†, d] =
∑

σ

ϵdd
†
σdσ − γd†↑d

†
↓ − γ∗d↓d↑ + Ud†↑d

†
↓d↓d↑. (3.4)

In this form, the proximity effect of the superconducting leads is directly apparent through

the anomalous terms. Hence, the infinite gap limit is also referred to as the “proximi-

tized limit” or sometimes the “atomic limit” (we take this to mean no hybridization – see

Section 1.4).

To write it in a particle-hole symmetric form, we consider the fermionic identity (nd −
1)2 = 2nd↑nd↓ − nd + 1; it follows from Pauli’s exclusion principle that n2dσ = ndσ. Then

we may write the effective low-energy Hamiltonian as

H∞ = ξdnd − γd†↑d
†
↓ − γ∗d↓d↑ +

U

2
(nd − 1)2, (3.5)

where ξd = ϵd + U/2. Note that the zero point energy has been raised by U/2 compared

to Eq. (3.4), hence the tilde. The particle-hole symmetric point is ξd = 0 or equivalently

ϵd = −U/2. At this point, the Hamiltonian is unchanged under the transformation dσ ↔
d†σ, cαkσ ↔ c†αkσ; this entails ndσ → 1− ndσ and γ ↔ −γ∗.

The Hamiltonian only lives in a 4-dimensional Hilbert space spanned by the states

|0⟩ , |σ⟩ = d†σ |0⟩ , |↑↓⟩ = d†↑d
†
↓ |0⟩. The Hamiltonian is easily diagonalized since it may be

decoupled into an odd and an even parity sector, yielding two uncoupled 2 × 2 matrices.

The odd parity, singly occupied eigenstates |σ⟩ form a doublet with energy E0
σ = ξd.

The superscript is placed in anticipation of the perturbation corrections to be discussed
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in Section 4. The even parity base kets given by the empty and doubly occupied states

|0⟩ , |↑↓⟩, mix and form BCS-like eigenstates with energies E0
± = ξd + U/2 ± EA where

EA =
√
ξ2d + |γ|

2. We will label the states |±⟩ and they may explicitly be written as

|+⟩ = −ve−iζ |0⟩+ u |↑↓⟩ , |−⟩ = u |0⟩+ veiζ |↑↓⟩ , (3.6)

where the real coefficients u, v are given by

u =
1√
2

√
1 +

ξd
EA

, v =
1√
2

√
1− ξd

EA
, (3.7)

and ζ is the phase of the tunneling parameter γ = |γ|eiζ .
It is clear that the energies of the even parity states depend on the tunneling couplings

to the leads Γα and on the phases of the leads φα through the parameter γ (see Eq. (3.2));

the doublet energy is independent of γ. In analogy with crystal momentum on a lattice

with translational symmetry, the superconductor phases φα ∈ [0, 2π) define a periodic

first Brillouin zone. In Fig. 3.1, the ‘band structure’ is shown for different three-terminal

junctions in the limit of infinite electronic bandwidth Dα/|∆α| → ∞. Depending on the

position in phase-space (φ1, φ2), the ground state of the QD is either the singlet |−⟩ or the
doublet |σ⟩. At the so-called Weyl nodes, the even parity eigenstates are degenerate which

occurs when ξd = 0 and γ = 0. These nodes are seen in Fig. 3.1(a) and Fig. 3.1(c) and may

be associated with topological charges which always come in pairs with opposite sign in

this model. At very strong coupling asymmetry, max(Γα) > Γ/2, there are no solutions to

the equation γ = 0 and, hence, no Weyl nodes in Fig. 3.1(e). In appendix A we show that

the topology is indeed trivial (zero Chern number) in the model considered here. Klees

et al. [14] showed, however, that an additional tunneling term between neighboring leads

gives rise to non-trivial topological phases (nonzero Chern number). Then, the Weyl points

are also protected against deviations away from particle-hole symmetry.

The phase diagram for the QD is very simple in the infinite gap limit. The phase

transition between doublet and singlet ground states occurs when E0
− = E0

σ which is

equivalent to ξ2d + |γ|2 = U2/4. The levels are allowed to cross since they come from

sectors of H∞ with different parity. The phase diagram is shown in Fig. 3.2 and illustrates

the competition between local Coulomb repulsion and the proximity effect. Around the

particle-hole symmetric point ξd = 0, the doublet phase |σ⟩ is stabilized for small tunneling

rates. However, as the tunneling is increased, the phase transition eventually occurs and

the QD favors the BCS-like singlet state |−⟩. Note also that, at the Weyl nodes from

Fig. 3.1, the doublet phase is favoured when −U/2 < ξd < U/2 since γ = 0.
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E+
0 E-

0 Eσ
0

Figure 3.1: Infinite gap multi-particle eigenenergies for three-terminal junctions as function

of two independent lead phases; the last phase is fixed by our gauge φ3 = 0. For simplicity,

we consider infinite electronic bandwidth Dα/|∆α| → ∞. The top row (a), (b) uses a

symmetric coupling Γ1 = Γ2 = Γ3 = U/3, while the second row (c), (d) introduces an

asymmetry Γ1 = Γ2 = U/4,Γ3 = U/2, and the bottom row (e), (f) uses stronger asymmetry

Γ1 = Γ2 = U/5,Γ3 = 3U/5. The left column (a), (c), (e) is at particle-hole symmetry

(ξd = 0), while the right column (b), (d), (f) has ξd = 0.1U . At particle-hole symmetry

(ξd = 0), Weyl nodes are found where γ = 0; solutions are possible when max(Γα) ≤ Γ/2.
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ξd / U
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|γ
|/

U

Doublet |σ〉

Singlet |−〉

Figure 3.2: Infinite gap phase diagram for the QD showing the transition between the

singlet |−⟩ and doublet |σ⟩ ground states at ξ2d + |γ|2 = U2/4.

4 First order energy corrections to the infinite gap limit

To extend our discussion to finite superconducting gaps, we apply perturbation theory to

the infinite gap limit as done by Meng & Florens & Simon [15] in the case of N = 2 leads.

We follow their methods and generalize the results to an arbitrary number of leads. In

the end, we will find the energy shifts from the infinite gap energy levels and new phase

diagrams. Later, we will refer to this as the “MFS” model.

We start from Eq. (2.15) and split the effective action on the QD into an unperturbed

infinite gap action and collect the rest as a perturbation. Transforming to imaginary time,

the self energy is

Σd(τ) =
1

β

∑

n

Σd(iωn)e
−iωnτ , (4.1)

such that Eq. (2.15) expands to

Seff =

∫ β

0
dτ
∑

σ

d̄σ(τ)(∂τ + ϵd)dσ(τ) + Ud̄↑(τ)d̄↓(τ)d↓(τ)d↑(τ)

+

∫ β

0
dτ

∫ β

0
dτ ′ ψ̄d(τ)Σd(τ − τ ′)ψd(τ ′).

(4.2)

We write this as Seff = S
(∞)
eff + Spert. The infinite gap action S

(∞)
eff is given by Eq. (3.3)
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and by comparison with Eq. (4.2), the perturbation is seen to be

Spert =

∫ β

0
dτ

∫ β

0
dτ ′ ψ̄d(τ)Σd(τ −τ ′)ψd(τ ′)+

∫ β

0
dτ
[
γd̄↑(τ)d̄↓(τ) + γ∗d↓(τ)d↑(τ)

]
. (4.3)

Perturbation theory amounts to expanding the partition function in powers of Spert. Ex-

panding to linear order, we find

Z =

∫
D[d̄, d]e−Seff ≈

∫
D[d̄, d](1− Spert)e−S

(∞)
eff = Z0 − Z0 ⟨Spert⟩0 . (4.4)

The subscript zero indicates that the unperturbed infinite gap distribution function is used

to evaluate the path integral, i.e. Z0 ⟨· · ·⟩0 =
∫
D[d̄, d](· · · )e−S(∞)

eff and Z0 =
∫
D[d̄, d]e−S(∞)

eff .

Sufficiently close (we will see what this means later) to the infinite gap limit, this linear

expansion describes the system well. If we introduce the infinite gap single-particle Nambu

Green function for electrons on the QD

Gαβ0,d(τ − τ ′) = −
〈
Tψdα(τ)ψ

†
dβ(τ

′)
〉
0
= −

∫
D[d̄, d]ψdα(τ)ψ̄dβ(τ ′)e−S

(∞)
eff

∫
D[d̄, d]e−S(∞)

eff

, (4.5)

that only depends on the time difference due to time translation symmetry, we may write

⟨Spert⟩0 =
∫ β

0
dτ

∫ β

0
dτ ′Σαβd (τ − τ ′)Gβα0,d(τ ′ − τ) +

∫ β

0
dτ γG210,d(0) + γ∗G120,d(0),

= β

∫ β

0
dτ Σαβd (τ)Gβα0,d(−τ) + βγG210,d(0) + βγ∗G120,d(0),

(4.6)

with an implicit sum over Nambu matrix indices α, β ∈ {1, 2}. The last equality reduces

the double integral to a single integral – this follows from Fourier transformation. To

proceed further, we need the imaginary time self-energy and QD Green functions.

The self-energy may be written as (Eq. (2.14))

Σd(τ) =
∑

αk

t2ατzG0,αk(τ)τz =
∑

αk

t2α

(
G110,αk(τ) −G120,αk(τ)
−G210,αk(τ) G220,αk(τ)

)
. (4.7)

The imaginary time Nambu Green functions for electrons in lead α are derived in Appendix

B through Fourier transformation of Eq. (2.9) and restated here:

∑

k

G110,αk(τ) = −
∑

k

1

2
f(Eαk)

(
eEαk(β−τ) + eEαkτ

)
, 0 < τ < β, (4.8a)

G120,αk(τ) =
∆α

2Eαk
f(Eαk)

(
eEαk(β−τ) − eEαkτ

)
, 0 < τ < β. (4.8b)
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We use the shorthand notation Eαk =
√
ξ2αk + |∆α|2 for quasiparticle energies in lead α

and f(z) = [exp(βz) + 1]−1 for the Fermi function. The two other components are found

from
∑

k G220,αk(τ) =
∑

k G110,αk(τ), G210,αk(τ) = G120,αk(τ)∗.
The QD Green functions are a little more cumbersome to derive. In the infinite gap

limit, we consider the interactions as they are – it is exact in U. Therefore, if we attempted

to use the equations of motion to derive the single-particle Green function G0,d, we would

soon run into problems due to these interactions. We would find that G0,d couples to a two-

particle Green function. The two-particle Green function couples to a three-particle one

and so on. We would not be able to find a closed system of equations for G0,d. Furthermore,

due to interactions, it is not possible to apply Wick’s theorem that reduces many-particle

Green functions to a sum of products of single-particle Green functions.

However, since we actually do know the many-particle eigenstates in the infinite gap

limit, we may instead use the Lehmann representation and calculate the QD Green func-

tions in this way. Then, we simply take statistical averages where each state is weighted

by a Boltzmann factor: Z0 ⟨· · ·⟩0 =
∑

n0
e−βE

0
n ⟨n0|· · ·|n0⟩ using the eigenstates (Eq. (3.6))

|n0⟩ ∈ {|↑⟩ , |↓⟩ , |+⟩ , |−⟩} and with normalization Z0 =
∑

n0
e−βE

0
n .

Terms of the form ⟨AH(τ)BH(0)⟩0 need to be evaluated when calculating single-particle

Green functions. Here, AH(τ), BH(τ) are operators in the Heisenberg representation. The

time evolution is governed by the unperturbed infinite gap Hamiltonian (Eq. (3.5)), e.g.

AH(τ) = eH∞τASe
−H∞τ with AS given in the Schrödinger representation.

We may write the QD Nambu Green function (Eq. (4.5)) explicitly as

G0,d(−τ) =



〈
d†↑(τ)d↑(0)

〉
0
⟨d↓(τ)d↑(0)⟩0〈

d†↑(τ)d
†
↓(0)

〉
0

〈
d↓(τ)d

†
↓(0)

〉
0


 , 0 < τ < β. (4.9)
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The statistical averages are evaluated in Appendix C. They end up being

Z0

〈
d†↑(τ)d↑(0)

〉
0
= u2

(
e−E

0
−τe−E

0
σ(β−τ) + e−E

0
στe−E

0
+(β−τ)

)

+ v2
(
e−E

0
+τe−E

0
σ(β−τ) + e−E

0
στe−E

0
−(β−τ)

)
,

(4.10a)

Z0

〈
d↓(τ)d

†
↓(0)

〉
0
= u2

(
e−E

0
+τe−E

0
σ(β−τ) + e−E

0
στe−E

0
−(β−τ)

)

+ v2
(
e−E

0
−τe−E

0
σ(β−τ) + e−E

0
στe−E

0
+(β−τ)

)
,

(4.10b)

Z0

〈
d†↑(τ)d

†
↓(0)

〉
0
= uve−iζ

(
e−E

0
+τe−E

0
σ(β−τ) + e−E

0
στe−E

0
−(β−τ)

−e−E0
−τe−E

0
σ(β−τ) − e−E0

στe−E
0
+(β−τ)

)

= Z0 ⟨d↓(τ)d↑(0)⟩∗0 .

(4.10c)

Note that if we exchange E0
+ and E0

− on the RHS of Eq. (4.10a), we get the RHS of Eq.

(4.10b) and vice versa; i.e.
〈
d†↑(τ)d↑(0)

〉
0

+↔−←→
〈
d↓(τ)d

†
↓(0)

〉
0
.

Let us now return to Eq. (4.6) and evaluate the first order correction to the partition

function Z0 ⟨Spert⟩0. Inserting the expressions for the Green functions and performing the

time integral, the diagonal terms give

Z0β

∫ β

0
dτ Σ11

d (τ)G110,d(−τ) + Σ22
d (τ)G220,d(−τ)

= −β
∑

αk
s=+,−

t2αf(Eαk)

[
eβ(Eαk−E0

s ) − e−βE0
σ

Eαk − (E0
s − E0

σ)
+
eβ(Eαk−E0

σ) − e−βE0
s

Eαk + (E0
s − E0

σ)

]
, (4.11)

while the off-diagonal terms give

Z0β

∫ β

0
dτ Σ12

d (τ)G210,d(−τ) + Σ21
d (τ)G120,d(−τ)

= 2uvβ
∑

αk

t2α
Re(∆αe

−iζ)

Eαk
f(Eαk)

([
eβ(Eαk−E0

+) − e−βE0
σ

Eαk − (E0
+ − E0

σ)

− eβ(Eαk−E0
σ) − e−βE0

+

Eαk + (E0
+ − E0

σ)

]
− [+→ −]

)
.

(4.12)

Here, Re(z) denotes the real part of z. The final two terms evaluate to

Z0β
[
γG210,d(0) + γ∗G120,d(0)

]
= 2β|γ|uv

(
e−βE

0
− − e−βE0

+

)
. (4.13)



4 FIRST ORDER ENERGY CORRECTIONS TO THE INFINITE GAP LIMIT 20

Due to the perturbation, the energy levels are shifted compared to the infinite gap limit.

To first order in Spert, the four energy levels are E± = E0
± + δE± and Eσ = E0

σ + δEσ.

Since there is symmetry between spin up and down electrons in the system, we will still

find a doublet state, i.e. E↑ = E↓. To determine the energy shifts, we consider the low

temperature limit, specifically δEσ(±) ≪ T ≪ Eαk. To maintain lead superconductivity,

we require T ≪ |∆α| < Eαk, and the condition δEσ(±) ≪ T allows us to expand the

partition function (again).

In the limit T ≪ Eαk, f(Eαk) = e−βEαk and terms that scale as ∼ e−βEαk are expo-

nentially suppressed and negligible at low temperatures since Eαk > 0. Then, combining

Eqs. (4.11)–(4.13), the partition function is given by

Z ≈ Z0

+ β
∑

αk

t2α

{ ∑

s=+,−

[
e−βE

0
s

Eαk − (E0
s − E0

σ)
+

e−βE
0
σ

Eαk + (E0
s − E0

σ)

]

− 2uv
Re(∆αe

−iζ)

Eαk

([
e−βE

0
+

Eαk − (E0
+ − E0

σ)
− e−βE

0
σ

Eαk + (E0
+ − E0

σ)

]
− [+→ −]

)}

− 2βuv|γ|
(
e−βE

0
− − e−βE0

+

)
.

(4.14)

On the other hand, given the energy levels Eσ, E±, we can also expand the partition

function according to

Z =
∑

σ

e−βEσ + e−βE+ + e−βE− =
∑

σ

e−β(E
0
σ+δEσ) + e−β(E

0
++δE+) + e−β(E

0
−+δE−)

≈ Z0 − β
(∑

σ

δEσe
−βE0

σ + δE+e
−βE0

+ + δE−e
−βE0

−

)
.

(4.15)

This is valid for energy shifts much smaller than the temperature δEσ(±) ≪ T . Comparing
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coefficients in front of the Boltzmann factors, we find

δEσ = −
∑

αk

t2α
2

{
1

Eαk + (E0
+ − E0

σ)
+

1

Eαk + (E0
− − E0

σ)

+ 2uv
Re(∆αe

−iζ)

Eαk

[
1

Eαk + (E0
+ − E0

σ)
− 1

Eαk + (E0
− − E0

σ)

]}
,

(4.16a)

δE+ = −
∑

αk

t2α

{[
1− 2uv

Re(∆αe
−iζ)

Eαk

]
1

Eαk − (E0
+ − E0

σ)

}
− 2uv|γ|, (4.16b)

δE− = −
∑

αk

t2α

{[
1 + 2uv

Re(∆αe
−iζ)

Eαk

]
1

Eαk − (E0
− − E0

σ)

}
+ 2uv|γ|. (4.16c)

We note that for N = 2 identical leads with symmetric coupling, this reduces to the energy

corrections found by Meng & Florens & Simon [15]. Already now, we may expect to run

into some divergence problems when E0
± − E0

σ ≃ ±|∆α| and the denominators approach

zero. This is indeed a problem we need to deal with shortly.

For now, let us evaluate the momentum summations. We do this inside the lead sum-

mations so the lead index α will be suppressed in the following. In the thermodynamic

limit, we may replace the discrete summations with continuous integrals:
∑

k(· · · ) →
νF
∫ D
−D dξ (· · · ). This will leave us with two types of integrals: I1 and I2 – both with

analytic solutions. Using the trigonometric substitutions ξ = |∆| tan θ and x = tan(θ/2),

one may show I1 and I2 are related to the same, dimensionless integral I. Introducing the

notation E(ξ) =
√
ξ2 + |∆|2, we have

I1(E
′) =

∫ D

0
dξ

1

E(ξ)− E′ = 2
E′

|∆|I
(
E′

|∆|

)
+ L

( |∆|
D

)
, (4.17)

I2(E
′) =

∫ D

0
dξ

1

E(ξ)

1

E(ξ)− E′ =
2

|∆|I
(
E′

|∆|

)
. (4.18)

The term L
(
|∆|
D

)
= ln

(
1+xmax
1−xmax

)
with xmax = − |∆|

D +

√
1 + |∆|2

D2 comes from partial fraction

decomposition and describes the logarithmic divergence with increasing bandwidth. The

principal value of I is given by

I(c) = P
∫ xmax

0
dx

1

1− c+ (1 + c)x2
=





∞, c = 1

xmax/2, c = −1
−sgn(c)

2
√
c2−1

ln
(
xmax+x∗
|xmax−x∗|

)
, |c| > 1

1√
1−c2 arctan(xmax/x∗), |c| < 1

. (4.19)
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Figure 4.1: The integral I (see Eq. (4.19)) for different values of xmax and c. The vertical

axis on the RHS relates D/|∆| to xmax through xmax = − |∆|
D +

√
1 + |∆|2

D2 . The integral I

diverges on the lines c = 1 and xmax = x∗.

The integrand diverges at x∗ =

√∣∣∣ c−1
c+1

∣∣∣ when |c| > 1, giving rise to a divergence of the

whole integral when the upper limit of integration is set to this value: xmax = x∗. I also

diverges when c = 1 and the integrand is 1/(2x2). Apart from these two lines, the integral

is well behaved. The value of I is plotted in Fig. 4.1 for different arguments c and upper

limits xmax in the region D > |∆|, corresponding to
√
2 − 1 < xmax < 1. The integral is

positive for c < 1 and negative for c > 1.

In terms of I, the energy corrections (Eq. (4.16)) are given by

δEσ = − 2

π

∑

α

Γα

{
E0
σ − E0

+

|∆α|
I

(
E0
σ − E0

+

|∆α|

)
+
E0
σ − E0

−
|∆α|

I

(
E0
σ − E0

−
|∆α|

)
+ L

( |∆α|
Dα

)

+ 2uv cos(φα − ζ)
[
I

(
E0
σ − E0

+

|∆α|

)
− I
(
E0
σ − E0

−
|∆α|

)]}
,

(4.20a)

δE± = − 2

π

∑

α

Γα

{[
E0

± − E0
σ

|∆α|
∓ 2uv cos(φα − ζ)

]
2I

(
E0

± − E0
σ

|∆α|

)
+ L

( |∆α|
Dα

)}
∓ 2uv|γ|.

(4.20b)

Note that all energy levels are shifted by the same logarithmic term L, meaning energy
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differences will not depend on this. Just as we anticipated, our perturbation corrections

break down when the infinite gap energy differences approach the gap E0
± −E0

σ ≃ |∆α| or
E0
σ − E0

− ≃ |∆α|, and I diverges.

To extend the validity of Eq. (4.20), Meng & Florens & Simon [15] proposed to renor-

malize the energy levels through a “self-consistency condition inspired by Brillouin-Wigner

perturbation theory” that re-sums the divergences. Their method corresponds to self-

consistently renormalizing the even parity energy levels E± and leaving the odd parity

energy level Eσ as stated in Eq. (4.20a). It may seem odd to only have self-consistent

equations for some energy levels and not all, but it takes care of the divergences and fits

well with NRG data as we shall see.

Consider the energy differences a = E− − Eσ and b = E+ − Eσ between the two

singlets and the doublet. Let us denote the unperturbed infinite gap energy differences by

a0 = E0
− − E0

σ and b0 = E0
+ − E0

σ, and the first order corrections by δa = δE− − δEσ and

δb = δE+ − δEσ such that a = a0 + δa and b = b0 + δb. The self-consistency conditions

then yield

δa = − 2

π

∑

α

Γα

{
2a

|∆α|
I

(
a

|∆α|

)
+

b0
|∆α|

I

( −b0
|∆α|

)
+

a0
|∆α|

I

(−a0
|∆α|

)

+ 2uv cos(φα − ζ)
[
2I

(
a

|∆α|

)
− I
( −b0
|∆α|

)
+ I

(−a0
|∆α|

)]}
+ 2uv|γ|,

(4.21a)

δb = − 2

π

∑

α

Γα

{
2b

|∆α|
I

(
b

|∆α|

)
+

b0
|∆α|

I

( −b0
|∆α|

)
+

a0
|∆α|

I

(−a0
|∆α|

)

− 2uv cos(φα − ζ)
[
2I

(
b

|∆α|

)
+ I

( −b0
|∆α|

)
− I
(−a0
|∆α|

)]}
− 2uv|γ|.

(4.21b)

These two equations are decoupled since no self-consistency is imposed on Eσ. Since

b0 = E0
+ −E0

σ > 0, terms with I(−b0/|∆α|) do not diverge. But a0 = E0
− −E0

σ is negative

in the singlet region of the infinite gap limit, and, therefore, terms with I(−a0/|∆α|) may

diverge (when a0 = −|∆α|). Close to the level crossing of E− and Eσ, however, the integral

turns out to be well behaved for the cases considered here. Equation (4.21) may therefore

be used to determine the phase diagram.
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4.1 Phase diagrams and comparison with NRG

Using these perturbative energy corrections, we may update the infinite gap phase diagram

shown in Fig. 3.2. To first order in Spert, the phase transition between the doublet and

singlet state occurs when E− = Eσ, equivalent to a = 0. The easiest approach to find the

phase transition is simply to set a = 0 on the RHS of Eq. (4.21a) and δa = −a0 on the

LHS. This leaves us with the self-consistency equation

a0 =
2

π

∑

α

Γα

{
b0
|∆α|

I

( −b0
|∆α|

)
+

a0
|∆α|

I

(−a0
|∆α|

)

+ 2uv cos(φα − ζ)
[
2I(0)− I

( −b0
|∆α|

)
+ I

(−a0
|∆α|

)]}
− 2uv|γ|,

(4.22)

which indirectly determines the phase transition.

For identical leads (Dα = D, |∆α| = |∆|) with no phase differences, φα = 0, we find the

same phase diagram as Meng & Florens & Simon [15] computed for N = 2 leads. This is

shown in Fig. 4.2. As the superconducting gap is decreased from the infinite gap limit, the

doublet phase is suppressed. Close to the particle-hole symmetric point ξd = 0, however,

the QD will still be found in the doublet phase for strong enough Coulomb repulsion. Note

that the ratios |∆|/Γ and D/Γ are ‘extensive’ quantities that depend on the number of

leads N since Γ =
∑

α Γα is the total hybridization. Hence, adding more leads favors the

singlet phase. This was also true in the infinite gap limit (Fig. 3.2). Note, also, that we

did not have to specify the individual couplings, only the total tunneling rate Γ =
∑

α Γα

since the leads act in unison when φα = 0.

As previously mentioned, I(−a0/|∆|) diverges when a0 = −|∆|. Except at the charge

degeneracy points, the line on which a0 = −|∆| is far from the phase transition for all

three values of |∆|/Γ considered here (see Fig. 4.2). Since the curve a0 = −|∆| is in the

singlet region in the infinite gap limit and the phase transition moves downwards in Fig.

4.2 with decreasing gap, the curve a0 = −|∆| will remain in the singlet region. Thus,

the divergence will never be an issue for the determination of the phase transition and an

imposed self-consistency on the renormalization of Eσ will only change the results slightly.

In the limit |∆| → 0, the curve a0 = −|∆| collapses onto the infinite gap phase transition

curve.

For |∆| ≳ Γ, Meng & Florens & Simon found good agreement with numerical renormal-

ization group (NRG) results by Bauer et al. [16] (also shown in Fig. 4.2 but graphically read

off from Fig. 12 in Ref. [16]). For |∆| < Γ and close to the particle-hole symmetric point,
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Figure 4.2: QD phase diagram to first order in Spert for N identical leads with no phase

differences φα = 0, electronic bandwidth Dα = 5πΓ, and superconducting gap |∆α| = |∆|
given by the legend. Solid curves are the analytical expressions (ξ2d + |γ|2 = U2/4 for

infinite gap and Eq. (4.22) for finite gap); symbols are NRG data (graphically read off)

from Bauer et al. [16]; dashed curves (color matches solid curves) are where a0 = −|∆|,
giving diverging integrals. The doublet phase is stabilized with increasing gap around the

particle-hole symmetric point ξd = 0. To read this diagram, it is easiest to think of fixing

Γ, and thereby |γ|, for each line and varying U along the vertical axis and ξd along the

horizontal axis.
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the Kondo effect becomes increasingly important since U/Γ becomes large (local moment

regime) at the phase transition. Then, the YSR singlet changes character from a BCS-like

singlet (TK ≪ ∆) – the |−⟩ state we saw in Eq. (3.6) – to a Kondo singlet (TK ≫ ∆) with

a screened impurity moment. Meng & Florens & Simon argue that this first order pertur-

bation theory underestimates the Kondo temperature at particle-hole symmetry. In this

sense, perturbation theory breaks down since the system is very different from the infinite

gap limit; the continuum states which were ‘frozen’ out and irrelevant in the infinite gap

limit become important in Kondo physics. Non-negligible corrections lie in higher order

perturbative terms. One could return to Eq. (4.4) and include these terms but it becomes

a tedious process. Instead, a Schrieffer-Wolff [9, 17] transformation to an effective Kondo

model in the local moment regime is likely a better approach. This eliminates (real) charge

fluctuations on the QD and considers – as lowest order – co-tunneling processes.

Superconductivity and the Kondo effect are competing phenomena in the sense that

Cooper pairs, that carry no net spin, must be broken apart to screen an impurity moment.

In some parameter regimes, superconductivity prevails and in others, the Kondo effect.

Consider, for instance, the particle-hole symmetric point ξd = 0, deep in the local moment

regime of the Anderson model, U ≫ Γ. For a single lead with very small superconducting

gap ∆ ≪ TK (the Kondo temperature is stated in Eq. (1.10)), there are lead electrons

close to the Fermi level and it is energetically favorable for the electrons to screen the local

moment instead of forming Cooper pairs. Therefore, we expect to find a screened Kondo

singlet as the ground state of the system (see Section 1.4.1). As ∆ is increased, we expect

to find a crossover between the energy of the singlet and doublet states when it is favorable

for the lead electrons to condense into Cooper pairs instead of participating in screening

(∆ ∼ TK). NRG calculations [16, 18, 19] have shown that the doublet-singlet transition is

given by TK ≃ 0.3∆ in the local moment regime when the QD is coupled to a single BCS

superconductor.

To study the effect of a phase difference between leads, we consider a two-lead S-QD-S

system with identical leads Dα = D, |∆α| = |∆|, symmetric coupling Γα = Γ/2 and phase

bias φ. Using the same gap sizes as in Fig. 4.2, we find the phase diagrams shown in

Fig. 4.3. The phase diagrams have a ‘chimney’-like look with a growing doublet region

around the particle-hole symmetric point as φ → π; this is suppression of the proximity

effect. As we saw in Fig. 4.2, the superconducting gap protects the doublet phase, causing

the doublet region to shrink with decreasing gap. The sides of the chimney move from
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Figure 4.3: QD phase diagrams to first order in Spert when coupled to N = 2 identical

leads with electronic bandwidth Dα = 5πΓ, phase difference φ, and superconducting gap

|∆α| = |∆| given by the figure text in the upper right corner. The frame color matches the

line color used in Fig. 4.2. The color indicates where the phase transition lies for different

phase differences; some lines have been labeled.

completely vertical in Fig. 4.3(a) to almost collapsed in Fig. 4.3(d) where the φ = 0 and

φ = π phase transitions lie almost atop each other. In the infinite gap limit (Fig. 4.3(a))

at φ = π, γ = 0 and the even parity base kets |0⟩ and |↑↓⟩ decouple. The system is then

equivalent to the atomic limit of the Anderson model with no QD-lead hybridization (see

Section 1.4). Thus, the ground state is seen to be the singlet |↑↓⟩ when ξd < −U/2, the
doublet |σ⟩ when −U/2 < ξd < U/2 and the singlet |0⟩ when ξd > U/2.

When φ = π, the off-diagonal anomalous terms in the self-energy (Eq. (2.14)) are zero

and the proximity effect is completely cancelled. This is true in general for identical leads

with symmetric coupling – even before we apply any perturbative methods. We can inter-

pret this as destructive interference between the two leads. An instructive picture might

be a field that changes sign across the QD, giving rise to a node in the superconducting

gap at the QD. Since the unperturbed infinite gap limit only considers these off-diagonal

terms, we expect the perturbative results to become gradually worse as we change φ from
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zero to π where the diagonal terms become important. To quantify this claim, we compare

our phase diagrams with NRG results by Tanaka et al. [20] who studied both the effect

of asymmetric coupling and phase bias in two-terminal junctions (L = Left lead, R =

Right lead) coupled to a QD. They considered identical leads with superconducting gap

|∆L| = |∆R| = ∆ and electronic bandwidth DL = DR = 1.0 × 105∆. Fig. 4.4 shows

how our first-order results compare with data from their Figs. 5, 6, and 7; the NRG data

has been extracted graphically. Note that all energies are in units of ∆ instead of U as

in the previous figures. The phase transition agreement is excellent in the proximitized

limit φ = 0, ∆ ≫ ΓR for both the symmetric (ΓL = ΓR) and asymmetric (ΓL = 1.44ΓR)

coupling.

The NRG data in Fig. 4.4 show an enlarged doublet region when the phase difference

is nonzero. This effect is captured by the perturbation theory, but it is too conservative.

In the proximity-cancelled limit φ = π, ΓL ∼ ΓR, the computed phase transitions are far

off, as expected. The discrepancies are largest at particle-hole symmetry which is shown in

Fig. 4.4(a). Here, the NRG calculations show a doublet ground state for all ΓR > 0, U > 0

in the case of symmetric coupling at φ = π. Our perturbative results, however, predict a

phase transition (dashed red line) in the middle of Fig. 4.4(a) for finite U . For asymmetric

coupling at φ = π (solid red lines), we actually have two phase transitions in the plotted

region in Fig. 4.4(a) – in disagreement with NRG. Returning to Fig. 4.3(d), we see that the

‘chimney’-collapse is a flaw of our perturbative results; the doublet phase should remain

protected at particle-hole symmetry when the proximity-induced gap vanishes at φ = π

for symmetric coupling as is clearly evident from the NRG data in Fig. 4.4(c).

Recently, exactly this sort of ‘chimney’-like phase diagram was observed experimentally

by Bargerbos et al. [7] in the phase-biased junction seen in Fig. 1.1. They also used a two-

lead superconducting Anderson model as the theoretical model but used NRG to fit to the

experimental data which yielded good agreement.

We have seen that the MFS model accurate replicates the NRG phase diagram for

single and two-lead systems with ∆ ≳ Γ. For smaller gaps (∆ < Γ) or with a large phase

bias φ ≃ π, however, care must be taken since the MFS model becomes gradually worse.

This suggests that the important parameter for the validity of MFS is the induced gap on

the QD γ (Eq. (3.2)).
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Figure 4.4: QD phase diagrams to first order in Spert when coupled to N = 2 identical

leads (L = Left lead, R = Right lead) with superconducting gap |∆L| = |∆R| = ∆ and

electronic bandwidth DL = DR = 1.0× 105∆. The phase difference and couplings for the

different lines is given by the legend below pane (c). Symbols are NRG data from Tanaka

et al. [20] (the data has been graphically read off from their Figs. 5, 6, and 7).
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5 Zero-bandwidth approximation

So far we have studied the infinite gap limit and the first order corrections to the energy

levels and the accompanied phase diagram. In this section, we strengthen our intuition

for Josephson junctions coupled to interacting quantum dots by considering a very simple

numerical model, namely the zero-bandwidth (ZBW) approximation. In the ZBW model,

BCS leads are replaced by single quasiparticles with energy ∆, disregarding the continuum

of states outside the gap. This makes the model exactly solvable, numerically. Opposed to

NRG, the ZBW model is also easily extendible to more complex systems with more dots,

leads, and other couplings. Despite the crude continuum simplification, it has been shown

to be a useful tool to describe experimental data, in good agreement with NRG [21, 22].

One caveat of the model is the determination of the effective tunneling between the QD

and the single level in the lead. Given the hybridization Γ which describes total coupling

to all states in the lead, the conversion to the ZBW tunneling parameter is non-trivial.

In some sense, one can treat it as a fitting parameter when comparing with experimental

data. It turns out, however, that the conversion is straightforward in the infinite gap limit

as we will present in Section 5.6.1.

The ZBW model is also able to interpolate between two distinct regimes: the proximity-

induced superconducting QD (U ≪ ∆) and YSR screening of a local moment (U ≳ ∆) [17,

23]. Nonetheless, the model fails to describe the Kondo effect in the strongly interacting

limit U ≫ ∆ due to the lack of a continuum of bulk states. In Section 5.6.2 we try to mend

this flaw in the S-QD (N = 1) system by a suitable rescaling of the tunneling parameter.

First, we introduce the ZBW Hamiltonian and write it in a basis of Fock states before

we transform it into a basis that conserves total spin angular momentum. Afterwards, we

study screening of a local moment in the ZBW model and YSR bound states before we

move on to energy dispersions and current-phase relations. In the end, we try to relate

it directly to the superconducting Anderson model and compare with both NRG and the

MFS model from Section 4.

5.1 The ZBW Hamiltonian

The ZBW approximation amounts to keeping only terms involving Fermi surface states

in the Hamiltonian which substantially simplifies the problem. The Hamiltonian H =
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HS +HD +HS−D (Eqs. (2.1) to (2.3)) is then approximated by

HS ≈ −
∑

α

(
∆αc

†
α↑c

†
α↓ +∆∗

αcα↓cα↑

)
, (5.1a)

HD =
∑

σ

ϵdndσ + Und↑nd↓, (5.1b)

HS−D ≈
∑

ασ

(
tαc

†
ασdσ + tαd

†
σcασ

)
, (5.1c)

where we have dropped the k -index on the c-operators c
(†)
ασ = c

(†)
αkF σ

and chosen a gauge

with real tunneling matrix elements tα ∈ R. The QD part of the Hamiltonian remains

unchanged.

In the ZBW approximation we are left with a Hilbert space of size 4N+1 (4 states in

each lead and 4 on the QD), meaning we can diagonalize the Hamiltonian numerically if

N is reasonably small. Let us denote the Fock states by

|D,S1, S2, ..., SN ⟩ = D†S†
1S

†
2 · · ·S†

N |0⟩ , (5.2)

where the creation operators D† and S†
α mean

D† =





1 (nD = 0)

d†σ, σ =↑, ↓ (nD = 1)

d†↑d
†
↓ (nD = 2)

, S†
α =





1 (nα = 0)

c†ασ, σ =↑, ↓ (nα = 1)

c†α↑c
†
α↓ (nα = 2)

. (5.3)

The number n simply counts the number of creation operators (electrons) and will become

useful to keep track of minus signs when commuting operators. Single electron operators

anti-commute between a lead and the QD and between different leads: c
(†)
ασd

(†)
σ = −d(†)σ c

(†)
ασ,

c
(†)
ασc

(†)
α′σ = −c(†)α′σc

(†)
ασ (α ̸= α′). Thus,

S(†)
α S

(†)
α′ = (−1)nαnα′S

(†)
α′ S

(†)
α , α ̸= α′, (5.4a)

S(†)
α D(†) = (−1)nαnDD(†)S(†)

α . (5.4b)

The states are orthonormal, meaning

⟨D̃, S̃1, ..., S̃N |D,S1, ..., SN ⟩ = ⟨0|S̃N · · · S̃1D̃D†S†
1 · · ·S†

N |0⟩ = δD̃D

∏

α

δα̃α. (5.5)

Before we can diagonalize the Hamiltonian, we need to determine the matrix elements

in this Fock basis. The QD part is diagonal.

⟨D̃, S̃1, ..., S̃N |HD|D,S1, ..., SN ⟩ = EDδD̃D

∏

α

δα̃α, (5.6)
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where ED = 0, ϵd, 2ϵd + U for the states |0, S1, ..., SN ⟩ , |σ, S1, ..., SN ⟩ , |↑↓, S1, ..., SN ⟩, re-
spectively. The lead part HS also simplifies nicely since it only concerns electrons in the

same lead. Let us write HS =
∑

αH
α
S , where H

α
S = −∆αc

†
α↑c

†
α↓ − ∆∗

αcα↓cα↑ from Eq.

(5.1a). Note that operators pertaining to different leads or the QD commute with Hα
S

since it is bilinear. Using Eqs. (5.4) and (5.5), we find

⟨D̃, S̃1, ..., S̃N |HS |D,S1, ..., SN ⟩ =
∑

α

⟨0|S̃N · · · S̃1D̃Hα
SD

†S†
1 · · ·S†

N |0⟩

= δD̃D

∑

α

⟨0|S̃N · · · S̃αHα
SS

†
α · · ·S†

N |0⟩
∏

α′<α

δα̃′α′

= δD̃D

∑

α

⟨0|S̃αHα
SS

†
α|0⟩

∏

α′′>α

(−1)(ñα+nα)nα′′
∏

α′ ̸=α
δα̃′α′

= δD̃D

∑

α

⟨0|S̃αHα
SS

†
α|0⟩

∏

α′ ̸=α
δα̃′α′ ,

(5.7)

where we have used that ñα + nα = 2 when ⟨0|S̃αHα
SS

†
α|0⟩ ≠ 0; the BCS terms create or

destroy a Cooper pair of two electrons. We represent Hα
S in the single lead subspace as a

4× 4 matrix. In the basis {|0α⟩ , |↑α⟩ , |↓α⟩ , |↑↓α⟩}, the matrix representation is

Hα
S

.
=




0 0 0 −∆∗
α

0 0 0 0

0 0 0 0

−∆α 0 0 0



. (5.8)

The tunneling part HS−D couples each lead to the QD and, hence, takes a more com-

plicated form. Similar to before, we write Eq. (5.1c) as HS−D =
∑

αH
α
S−D, where
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Hα
S−D =

∑
σ(tαc

†
ασdσ + t∗αd

†
σcασ), such that

⟨D̃, S̃1, ..., S̃N |HS−D|D,S1, ..., SN ⟩ =
∑

α

⟨0|S̃N · · · S̃1D̃Hα
S−DD

†S†
1 · · ·S†

N |0⟩

=
∑

α

⟨0|S̃N · · · S̃αD̃Hα
S−DD

†S†
α · · ·S†

N |0⟩

×
∏

α′<α

(−1)(ñD+nD)nα′ δα̃′α′

=
∑

α

⟨0|S̃αD̃Hα
S−DD

†S†
α|0⟩

∏

α′<α

(−1)nα′ δα̃′α′

×
∏

α′′>α

(−1)(ñα+ñD+nD+nα)n′′
αδα̃′′α′′

=
∑

α

⟨0|S̃αD̃Hα
S−DD

†S†
α|0⟩ (−1)

∑
α′<α nα′

∏

α′ ̸=α
δα̃′α′ .

(5.9)

In the third and final equalities we used that ñD = nD ± 1 (one electron is either added to

or removed from the QD) and ñD + ñα = nD + nα (the number of electrons is conserved)

when ⟨0|S̃αD̃Hασ
T D†S†

α|0⟩ ̸= 0. As in Eq. (5.8), we can write the matrix representation

of Hα
S−D in a subspace of the full 4N+1-dimensional Hilbert space. Since Hα

S−D couples a

single lead and the QD, we need a 16× 16 matrix to represent this term. Due to the size,

we omit the explicit form and simply note that it is a sparse matrix with only 16 nonzero

entries.

5.2 Conservation of total spin angular momentum

The ZBW Hamiltonian has spin rotational symmetry which we will exploit. In this section

we will show that the total spin is conserved, simplifying the job of diagonalizing the

Hamiltonian.

The spin of the QD and of lead α are measured with the operators SQD and Sα,

respectively. The usual commutation relations between different directions apply and the

square of spin operator commutes with any of its three components.

[Si, Sj ] = iϵijkSk, i, j, k ∈ {x, y, z}, (5.10a)
[
S2, Si

]
= 0, i ∈ {x, y, z}. (5.10b)

Here, ϵijk is the Levi-Civita symbol and we set ℏ = 1. Thus, only one component of the

spin and S2 may be measured simultaneously. Note that operators pertaining to different
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‘channels’ (QD or leads) commute, e.g.
[
SxQD, S

y
2

]
= 0. The z -component of SQD and Sα

have the explicit forms

SzQD =
1

2
(nd↑ − nd↓),

Szα =
1

2
(nα↑ − nα↓).

(5.11)

Instead of working with Sx and Sy directly, we introduce the non-hermitian ladder opera-

tors: S± = Sx ± iSy. They are easier to find explicit forms of than Sx and Sy and will be

more useful to us.
S+
QD = d†↑d↓, S−

QD = d†↓d↑,

S+
α = c†α↑cα↓, S−

α = c†α↓cα↑.
(5.12)

From these expressions, it is straightforward to verify the commutation relations [S+, S−] =

2Sz and [Sz, S±] = ±S±. These are equivalent to Eq. (5.10a). Using the ladder operators,

one may write S2 = S2
x + S2

y + S2
z as

S2
QD =

1

2

(
S+
QDS

−
QD + S−

QDS
+
QD

)
+
(
SzQD

)2
=

3

4
nd −

3

2
nd↑nd↓,

S2
α =

1

2

(
S+
α S

−
α + S−

α S
+
α

)
+ (Szα)

2 =
3

4
nα −

3

2
nα↑nα↓.

(5.13)

The (single-channel) operators have the following properties:

Sz |0⟩ = Sz |↑↓⟩ = 0,

Sz |↑⟩ =
1

2
|↑⟩ , Sz |↓⟩ = −

1

2
|↓⟩ ,

(5.14)

S± |0⟩ = S± |↑↓⟩ = 0,

S+ |↓⟩ = |↑⟩ , S+ |↑⟩ = 0,

S− |↑⟩ = |↓⟩ , S− |↓⟩ = 0,

(5.15)

S2 |0⟩ = S2 |↑↓⟩ = 0,

S2 |σ⟩ = 3

4
|σ⟩ .

(5.16)

Due to the tunneling part of the Hamiltonian HS−D, only the total spin across the QD

and the leads will be conserved. Let us construct the operator that measures the total spin
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of a Fock state.

S = SQD + S1 + ...+ SN

= SQD ⊗ 11 ⊗ · · · ⊗ 1N + 1QD ⊗ S1 ⊗ 12 ⊗ · · · ⊗ 1N + ...+ 1QD ⊗ · · · ⊗ 1N−1 ⊗ SN .

(5.17)

The operators on the RHS only act in their respective ‘channel’, i.e. the QD or lead

α. Since all single-channel operators on the RHS satisfy Eq. (5.10) and commute across

channels, the total spin S also satisfies Eq. (5.10). The z -component of S has the explicit

form

Sz = SzQD + Sz1 + ...+ SzN =
1

2
(nd↑ − nd↓) +

1

2
(n1↑ − n1↓) + ...+

1

2
(nN↑ − nN↓), (5.18)

and the ladder operators extend to

S+ = S+
QD + S+

1 + ...+ S+
N = d†↑d↓ + c†1↑c1↓ + ...+ c†N↑cN↓,

S− = S−
QD + S−

1 + ...+ S−
N = d†↓d↑ + c†1↓c1↑ + ...+ c†N↓cN↑.

(5.19)

Expanding S2, we have

S2 = S2
QD +

∑

α

S2
α + 2

∑

α

SQD · Sα + 2
∑

α

∑

α′>α

Sα · Sα′ (5.20)

The combined spin operators Sz, S
2 and S± satisfy the same commutation relations as

the single channel ones:
[
Sz, S

2
]
=
[
S±, S

2
]
= 0, [S+, S−] = 2Sz, [Sz, S±] = ±S±. Note,

however, that
[
S2, SzQD

]
̸= 0 ̸=

[
S2, Szα

]
; one can only describe the system using the

single-channel operators (SzQD, S
z
α) or the total spin operators (S2, Sz).

Now we show that the ZBW Hamiltonian (Eq. (5.1)) commutes with both Sz and S2,

such that they correspond to conserved quantities and ‘good’ quantum numbers. It is clear

that ‘cross-channel’ commutators are zero.

[HD,Sα] =
[
HD, S

2
α

]
= 0, (5.21a)

[HS ,SQD] =
[
HS , S

2
QD

]
= 0,

[Hα
S ,Sα′ ] =

[
Hα
S , S

2
α′
]
= 0, α′ ̸= α,

(5.21b)

[
Hα
S−D,Sα′

]
=
[
Hα
S−D, S

2
α′
]
= 0, α′ ̸= α. (5.21c)
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Let us first show that [H,Sz] = 0. Using Eqs. (5.18) and (5.21), we find

[H,Sz] =
[
HD, S

z
QD

]
+
∑

α

[Hα
S , S

z
α] +

∑

α

[
Hα
S−D, S

z
QD + Szα

]
. (5.22)

Since [ndσ, ndσ′ ] = 0, the first term is zero:
[
HD, S

z
QD

]
= 0. The second term is also zero

and the QD and lead contributions cancel in the final term.

[Hα
S , S

z
α] = −

1

2

(
−∆αc

†
α↑c

†
α↓ +∆∗cα↓cα↑ −∆αc

†
α↓c

†
α↑ +∆∗cα↑cα↓

)
= 0, (5.23)

[
Hα
S−D, S

z
QD

]
=
tα
2

(
c†α↑d↑ − d

†
↑cα↑ − c

†
α↓d↓ + d†↓cα↓

)
= −

[
Hα
S−D, S

z
α

]
. (5.24)

Thus, we conclude [H,Sz] = 0.

Next, let us show
[
H,S2

]
= 0. Using Eqs. (5.20) and (5.21), we find

[
HD, S

2
]
=
[
HD, S

2
QD

]
+ 2[HD,SQD] ·

∑

α

Sα, (5.25)

[
HS , S

2
]
= 2SQD ·

∑

α

[Hα
S ,Sα] +

∑

αα′

(
[Hα

S ,Sα] · Sα′ + Sα ·
[
Hα′
S ,Sα′

])
, (5.26)

[
HS−D, S

2
]
=
∑

α

[
Hα
S−D, (SQD + Sα)

2
]
+ 2

∑

α,α′ ̸=α

[
Hα
S−D,SQD + Sα

]
· Sα′ . (5.27)

We use the ladder operators (Eq. (5.12)) to write Sx = (S++S−)/2, Sy = (S+−S−)/2i. We

find
[
ndσ, S

±
QD

]
= ±σS±

QD such that
[
HD, S

±
QD

]
= 0. Remembering that

[
HD, S

z
QD

]
= 0,

we conclude [HD,SQD] = 0 and, hence,
[
HD, S

2
]
= 0. It is easy to see that [Hα

S , S
±
α ] = 0

such that also [Hα
S ,Sα] = 0 and, therefore,

[
HS , S

2
]
= 0. This leaves us with the tunneling

part for which we find

[
Hα
S−D, S

+
α

]
= tα(d

†
↑cα↓ − c

†
α↑d↓) = −

[
Hα
S−D, S

+
QD

]
, (5.28)

[
Hα
S−D, S

−
α

]
= −

[
Hα
S−D, S

+
α

]†
= −

[
Hα
S−D, S

−
QD

]
. (5.29)

The terms in Eq. (5.27) evaluate to zero since the QD and lead commutators cancel,

i.e.
[
Hα
S−D,SQD + Sα

]
= 0 (the z -component is zero from Eq. (5.24)). In conclusion, our

ZBW Hamiltonian commutes with both Sz and S
2 which is a consequence of spin rotational

symmetry.

We now have a set of three commuting operators (H,Sz, S
2) which we may use to label

the eigenstates |n, s,m⟩.

H |n, s,m⟩ = Esn |n, s,m⟩ , (5.30)

Sz |n, s,m⟩ = m |n, s,m⟩ , (5.31)

S2 |n, s,m⟩ = s(s+ 1) |n, s,m⟩ . (5.32)
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We may not add S2
QD or S2

α to the set of commuting operators (H,Sz, S
2) since they do

not commute with HS−D. Notice that the energy is independent of m. The degeneracy

is due to spin rotational symmetry and may be broken by e.g. an external magnetic field.

Combining the intermediate results in proving
[
H,S2

]
= 0, we showed that [H,S±] = 0.

Thus, the states |n, s,m⟩ and S± |n, s,m⟩ ∝ |n, s,m± 1⟩ are degenerate.

H(S± |n, s,m⟩) = S±(H |n, s,m⟩) = Esn(S± |n, s,m⟩). (5.33)

All states within the same multiplet are degenerate.

To find the energy spectrum of the ZBWHamiltonian, then, one may use the eigenstates

of S2 and Sz to block-diagonalize H through a change of basis. Only states with the same

quantum numbers s and m are connected via H. We wish to find a unitary operator U

which maps the Fock states onto eigenstates of S2 and Sz.

|χ, s,m⟩ = U |D,S1, S2, ..., SN ⟩ . (5.34)

The χ indicates that these states are not necessarily eigenstates of H, but some linear

combination of eigenstates with the same s and m; it represents our ignorance.

|χ, s,m⟩ =
∑

n

⟨n, s,m|χ, s,m⟩ |n, s,m⟩ . (5.35)

Multiplying Eq. (5.34) from the left by the bra ⟨D̃, S̃1, ..., S̃N |, we see that the matrix

elements of U in the original basis are the appropriate Clebsch-Gordan coefficients.

⟨D̃, S̃1, ..., S̃N |U |D,S1, S2, ..., SN ⟩ = ⟨D̃, S̃1, ..., S̃N |χ, s,m⟩ . (5.36)

Except for the largest multiplet s = smax = (N + 1)/2, this mapping is not unique. In

other words, the expansion coefficients ⟨n, s,m|χ, s,m⟩ in Eq. (5.35) are not unique. The

set of states {|χ, s,m⟩} is just one particular basis which block-diagonalizes H.

Conveniently, the Fock states are already eigenstates of Sz.

Sz |D,S1, S2, ..., SN ⟩ = m |D,S1, S2, ..., SN ⟩ . (5.37)

The z -projection of the total spin is just the sum of individual contributions from all single-

particle states: m = mQD +m1 +m2 + ...+mN . This follows from the linearity of Sz (Eq.

(5.18)). If we consider

0 = ⟨D,S1, ..., SN |Sz − SzQD − Sz1 − ...− SzN |χ, s,m⟩
= (m−mQD −m1 − ...−mN ) ⟨D,S1, ..., SN |χ, s,m⟩ ,

(5.38)
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then it follows that the Clebsch-Gordan coefficients vanish unless m = mQD +m1 +m2 +

... +mN such that the transformation matrix U only connect states with the same m as

usual.

U = Umδm,mQD+m1+...+mN . (5.39)

The eigenstates of S2 are a little more cumbersome to obtain but largely follows the

usual procedure of applying S− from the highest weight state and ensuring orthogonality

between different multiplets (different s). If we list all 4N+1 Fock states, it is easy to

divide them into groups with the same quantum number m. We only need the states with

m ≥ 0 to find all energies Esn in the end. This results in N + 2 blocks – one for each

spin z -projection m = 0, 1/2, ..., (N + 1)/2. In each group there will be states from higher

multiplets (s ≥ m), except for the two groups with largest m: m = smax, smax − 1/2. We

know that the highest weight state |↑, ↑, ..., ↑⟩ belongs to the largest multiplet as the only

state with m = smax.

|s = smax,m = mmax⟩ = |↑, ↑, ..., ↑⟩ , Um=(N+1)/2 = 1. (5.40)

In the next group (m = smax − 1/2) which contains Fock states with N spin-up electrons

and 1 empty or doubly occupied single-particle state, there are 2(N +1) Fock states. They

all have the same quantum numbers s and m and, hence, any linear combination of these

states are also simultaneous eigenstates of S2 and Sz.

S2 |↑, ..., ↑, 0, ↑, ..., ↑⟩ = N

2

(
N

2
+ 1

)
|↑, ..., ↑, 0, ↑, ..., ↑⟩ ,

S2 |↑, ..., ↑, ↑↓, ↑, ..., ↑⟩ = N

2

(
N

2
+ 1

)
|↑, ..., ↑, ↑↓, ↑, ..., ↑⟩ .

(5.41)

As mentioned, this freedom means the mapping in Eq. (5.34) is not unique. We would

need more ‘good’ quantum numbers / commuting operators / symmetries to choose a better

basis. For simplicity, we take the basis of eigenstates of S2 and Sz in the s = m = N/2-

subspace to be the Fock states |D,S1, ..., SN ⟩. Then Um is, again, just the identity.

Um=N/2 = 1. (5.42)

From here, we apply S− to the basis states to lower m.

S− |smax, smax⟩ ∝ |smax, smax − 1⟩ ,
S− |χ, smax − 1/2, smax − 1/2⟩ ∝ |χ, smax − 1/2, smax − 3/2⟩ .

(5.43)
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Then we construct the states |χ, smax − 1, smax − 1⟩, |χ, smax − 3/2, smax − 3/2⟩ by ensur-

ing they are orthogonal to the higher multiplets and within the same multiplet.

⟨smax, smax − 1|χ, smax − 1, smax − 1⟩ = 0,
〈
χ, smax − 1, smax − 1

∣∣χ′, smax − 1, smax − 1
〉
= δχ,χ′ ,

〈
χ, smax − 1/2, smax − 3/2

∣∣χ′, smax − 3/2, smax − 3/2
〉
= 0,

〈
χ, smax − 3/2, smax − 3/2

∣∣χ′, smax − 3/2, smax − 3/2
〉
= δχ,χ′ .

(5.44)

This may be done using the Gram–Schmidt process, for instance. Again, the basis is not

unique. We continue using S− and forming an orthonormal basis for each m until we reach

m = 0 and m = 1/2. The Clebsch-Gordan coefficients for m < 0 may be inferred from

Um>0 if need be.

Having constructed the transformation matrix U , the Hamiltonian becomes block-

diagonal upon a change of basis: H → U †HU . Due to the m-degeneracy, it suffices to

study the blocks with m = 0 and m = 1/2 where we find all s-values. We denote these

blocks Hm = U †
mHUm. Assuming N is odd, smax = (N + 1)/2 is an integer and the

s = smax multiplet will be in the m = 0-block – otherwise it will be in the m = 1/2-block.

Hm=0
.
= diag

(
Hsmax

0 , Hsmax−1
0 , ...,H0

0

)

Hm=1/2
.
= diag

(
H
smax−1/2
1/2 , H

smax−3/2
1/2 , ...,H

1/2
1/2

)


 N odd,

Hm=0
.
= diag

(
H
smax−1/2
0 , H

smax−3/2
0 , ...,H0

0

)

Hm=1/2
.
= diag

(
Hsmax

1/2 , Hsmax−1
1/2 , ...,H

1/2
1/2

)


 N even.

(5.45)

Here, Hs
m is the part which has not yet been diagonalized in each (s,m)-block.

Hs
m =

∑

χ,χ′

|χ, s,m⟩ ⟨χ, s,m|H|χ′, s,m⟩ ⟨χ′, s,m| . (5.46)

Diagonalizing Hs
m=0,1/2 for each s = 0, 1/2, ..., smax, we find the full energy spectrum and

the eigenstates. The degeneracy follows from the quantum number s; there are 2s + 1

states with same energy but different m = −s,−s+1, ..., s in each multiplet. If we require

the eigenstates for m > 0, 1/2 (m < 0, 1/2), we may apply the ladder operator S+ (S−) to

the eigenstates |n, s,m = 0⟩ , |n, s,m = 1/2⟩.
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5.2.1 The dimensionality of spin-blocks

The unitary transformationH → U †HU outlined in the previous section block-diagonalizes

the ZBW Hamiltonian by utilizing the spin-rotational symmetry of the system. In this

section, we find the dimensions of the remaining blocks of U †HU , namely those we denoted

Hs
m=0,1/2 with s = 0, 1/2, ..., smax. This is related to how one decomposes a composite

system of n spin-1/2 particles into irreducible representations.

The general rule of angular momentum addition for two particles with spin s1 and s2

is

s1 ⊗ s2 ∼ s1 + s2 ⊕ s1 + s2 − 1⊕ ...⊕ |s1 − s2|. (5.47)

The LHS represents eigenstates of Sz1 and Sz2 while the RHS are all the irreducible repre-

sentations using eigenstates of the total spin: S1+S2. A composite system of two spin-1/2

particles gives a triplet and a singlet.

1

2
⊗ 1

2
∼ 1⊕ 0. (5.48)

Using this decomposition, three spin-1/2 particles combine in a quartet and two doublets.
(
1

2
⊗ 1

2

)
⊗ 1

2
∼ (1 + 0)⊗ 1

2
∼ 3

2
⊕ 1

2
⊕ 1

2
. (5.49)

Four spin-1/2 particles combine in a quintet, three triplets, and two singlets.
(
1

2
⊗ 1

2
⊗ 1

2

)
⊗ 1

2
∼
(
3

2
⊕ 1

2
⊕ 1

2

)
⊗ 1

2
∼ 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (5.50)

One may continue this iterative expansion by adding one particle at a time.

Let d(n, s) denote the number of singlets (s = 0), doublets (s = 1/2), triplets (s = 1),

etc. in the decomposition of n spin-1/2 particles into irreducible representations. Then,

the decomposition gives the recurrence relation

d(n, s) = d

(
n− 1, s− 1

2

)
+ d

(
n− 1, s+

1

2

)
, n ≥ 2, 0 < s <

n

2
;

d

(
n, s >

n

2

)
= d(n, s < 0) = 0, n ≥ 1;

d

(
1,

1

2

)
= 1.

(5.51)

When we add a spin-1/2 particle, the spin only changes by s = ±1/2. Therefore, the

irreducible representations with spin s for n particles must come from irreducible represen-

tations with either spin s− 1/2 or s+1/2 at n− 1 particles. Of course, s = 0 and s = n/2
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n s

0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

1 1

2 1 1

3 2 1

4 2 3 1

5 5 4 1

6 5 9 5 1

7 14 14 6 1

8 14 28 20 7 1

9 42 48 27 8 1

Table 1: The number of irreducible representations d(n, s) with combined spin s from the

product of n spin-1/2 particles:
⊗n

i=1
1
2 . Each entry is the sum of the two entries above it

(Eq. (5.51)). Blank entries are zero as well as entries with s < 0.

are special cases, for they are only connected with s = 1/2 and s = (n− 1)/2, respectively.

Table 1 shows d(n, s) for combining 1 ≤ n ≤ 9 spin-1/2 particles. One finds that these

form an asymmetric Pascal’s triangle where an entry is the sum of the two entries above.

Given that there are 2s+1 states in each multiplet, one may check that the dimension of

the Hilbert space is still 2n after the decomposition; e.g. for n = 5, 5·2+4·4+1·6 = 32 = 25.

For the ZBW Hamiltonian, we have to include the vacuum state and the doubly occu-

pied state. In terms of angular momentum addition, these are “spin-0 particles”. According

to Eq. (5.47), this does not change the decomposition itself, only the number of times it

has to be counted. The Fock states |D,S1, ..., SN ⟩ describe N + 1 “particles” in a 4N+1-

dimensional Hilbert space. We denote the number of irreducible representations with spin

s by D(N + 1, s), where

D(N, s) =

N∑

j=0

2j
(
N

j

)
d(N − j, s), (5.52)

and
(
N
j

)
= N !/(N − j)!j! is a binomial coefficient which counts the number of ways to

place j “spin-0 particles” into a combined Fock state of N particles. The factor 2j reflects

the two choices of “spin-0 particle”: vaccum or doubly occupied. Eq. (5.52) states that we
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N s

0 1
2 1 3

2 2 5
2

1 2 1

2 5 4 1

3 14 14 6 1

4 42 48 27 8 1

5 132 165 110 44 10 1

Table 2: The number of irreducible representations D(N, s) with combined spin s from the

product of N − j spin-1/2 particles and j spin-0 particles of which there are two types:
⊗N

i=1

(
0⊕ 0⊕ 1

2

)
. Blank entries are zero as well as entries with s < 0.

can compute the number of irreducible representations with spin s by weighing the rows

of Tab. 1 by the number of times we need to perform that particular decomposition. The

values of D(N, s) are collected in Tab. 2 for 1 ≤ N ≤ 5.

Another way to look at it is the expansion of the product
⊗N

i=1

(
0⊕ 0⊕ 1

2

)
, which

is directly related to the Fock states. Each single-particle state is either from a doublet

(si = 1/2) or a singlet (si = 0), and there are two singlets (vacuum and doubly occupied

states). Therefore, each term in the expansion corresponds to a unique Fock state. From

the expansion follows a useful recurrence relation analogous to Eq. (5.51).

D(N, s) = 2D(N − 1, s) +D
(
N − 1, s− 1

2

)
+D

(
N − 1, s+

1

2

)
, N ≥ 2, 0 < s <

N

2
;

D(1, 0) = 2; D
(
1,

1

2

)
= 1; D

(
N, s >

N

2

)
= D(N, s < 0) = 0.

(5.53)

This, in fact, implies that all the rows of Tab. 2 are contained in Tab. 1 if one ignores the

blank spaces; compare rows N = 1, 2, 3, 4 from Tab. 2 with rows n = 3, 5, 7, 9 from Tab. 1.

The number D(N, s) is precisely the dimension of the spin-blocks Hs
m=0,1/2. Thus, the

problem of diagonalizing the ZBW Hamiltonian – originally a 4N+1×4N+1 matrix – reduces

to a set of smaller matrices of dimension D(N+1, s), s = 0, 1/2, ..., (N+1)/2 given by Tab.

2. Numerically, this decomposition is more efficient due to the (time / space) complexity

of eigenvalue and eigenvector determination. The added cost is just the determination of

U , which only needs to be done once for each N (it is independent of model parameters),

and a matrix product H → U †HU which needs to be done for each set of parameters.
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With the matrix elements and the simplifying observations about ‘good’ quantum num-

bers in place, the Hamiltonian is readily diagonalized numerically. As we proceed down

this avenue in the next section, we supplement the discussion with perturbation theory to

understand the process of screening in the ZBW model. It is instructive to consider the

single-lead S-QD system first.

5.3 YSR bound state in the single lead system

Let us study the atomic limit (t → 0) of the single lead (N = 1) ZBW model and the

leading order perturbative corrections. In the end, we will find a ground state transition

at some finite t to a screened YSR singlet in the local moment regime.

We take H0 = HS +HD as the unperturbed Hamiltonian where

HS = −∆c†↑c
†
↓ −∆c↓c↑, HD = ϵdnd + Und↑nd↓, (5.54)

and treat

HS−D = t
∑

σ

(
c†σdσ + d†σcσ

)
(5.55)

as a perturbation. Note, that both ∆ and t are real, positive numbers without loss of

generality. In the unperturbed system there is no tunneling between the lead and the

QD. Therefore, the ground state of the combined system is simply the combination of the

isolated QD ground state and the isolated lead ground state. The atomic limit of the

(normal metal) Anderson model was dicussed in Section 1.4. The only difference with

superconducting leads is the condensation of electrons into Cooper pairs in the leads.

Diagonalizing HS , the eigenstates are |σS⟩ = c†σ |0S⟩ with energy EσS = 0 (at the Fermi

level) and BCS states (cf. Eq. (3.6))

|+S⟩ =
1√
2

(
− |0S⟩+ |↑↓S⟩

)
, |−S⟩ =

1√
2

(
|0S⟩+ |↑↓S⟩

)
, (5.56)

with energies E±
S = ±∆. The subscript S is for superconductor (lead). The state |−S⟩

has lowest energy. The ground state of the isolated QD is determined by ϵd and U (see

Fig. 1.2). The unperturbed eigenstates of the combined system and their energies are

summarized in Tab. 3. From the previous section we know that we may decompose

the 16-dimensional Hamiltonian into three blocks of dimension 5, 4, 1 corresponding to

s = 0, 1/2, 1, respectively (cf. Tab. 2).
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s = m = 0

State (|↑, ↓⟩ − |↓, ↑⟩)/
√
2 |0,−⟩ |0,+⟩ |↑↓,−⟩ |↑↓,+⟩

E0 ϵd −∆ ∆ 2ϵd + U −∆ 2ϵd + U +∆

s = m = 1/2 s = m = 1

State |↑,−⟩ |↑,+⟩ |↑↓, ↑⟩ |0, ↑⟩ |↑, ↑⟩
E0 ϵd −∆ ϵd +∆ 2ϵd + U 0 ϵd

Table 3: Unperturbed eigenstates and energies of H0 = HS +HD (Eq. (5.54)) for N = 1

lead in the ZBW approximation. Due to spin-rotational symmetry, energies are degenerate

in m. Hence, only states with s = m are shown. The states are written as |QD,Lead⟩ with
|±⟩ defined in Eq. (5.56).

In the local moment regime −U < ϵd < 0, the isolated QD ground state is |σD⟩ with
energy EσD = ϵd. Therefore, the (doublet) ground state of H0 is

|D0⟩ = |σ,−⟩ = |σD⟩ ⊗ |−S⟩ =
1√
2

(
|σ, 0⟩+ |σ, ↑↓⟩

)
. (5.57)

The doublet has combined spin s = 1/2 and unperturbed energy ED0 = ⟨D0|H0|D0⟩ =
ϵd − ∆. Note that there are three other doublets than |D⟩ in the system (with higher

energy).

For some critical t = tc, it will be energetically favorable to screen the local moment

on the QD such that the ground state of H has spin s = 0. To find this critical tunneling

rate, we will apply degenerate perturbation theory. Thus, we need to find the ‘good’ linear

combinations in the degenerate subspace that split up when the perturbation is applied.

Then we can apply the results of non-degenerate perturbation theory. We will limit our

discussion to the local moment regime where the level spacings between |0,−⟩ , |↑↓,−⟩ and
the two degenerate states |↑, ↓⟩, |↓, ↑⟩ are large: ∆− U ≪ ϵd ≪ −∆. For small ∆, we can

find such ϵd, but at ∆ ≃ U/2, this obviously breaks down for all ϵd. In this regime, we can

neglect the mixing between these states and focus on how the degeneracy between |↑, ↓⟩
and |↓, ↑⟩ is lifted.

If we apply the perturbation to these states and project onto the unperturbed eigen-
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states, we find

HS−D |↑, ↓⟩ = t
(
|0, ↑↓⟩+ |↑↓, 0⟩

)
=

t√
2

(
|0,+⟩+ |0,−⟩+ |↑↓,−⟩ − |↑↓,+⟩

)
, (5.58a)

HS−D |↓, ↑⟩ = −HS−D |↑, ↓⟩ . (5.58b)

It is clear that the symmetric combination

|s = 1,m = 0⟩ = 1√
2

(
|↑, ↓⟩+ |↓, ↑⟩

)
(5.59)

is an eigenstate of the full Hamiltonian H = H0 + HS−D (with energy Es=1 = ϵd). It

is not affected by the perturbation at all. This is just a statement about spin-rotational

symmetry; with only one lead, there is just one triplet (s = 1) and, therefore, no further

mixing. The odd combination

|S0⟩ = |χ = 1, s = 0,m = 0⟩ = 1√
2

(
|↑, ↓⟩ − |↓, ↑⟩

)
(5.60)

is not an eigenstate of H0 + HS−D, however, since it mixes with |0, ↑↓⟩ and |↑↓, 0⟩. The

χ-label is there to remind us, that |S0⟩ is just one of the five singlets that will mix when

we turn on HS−D. We will refer to |S⟩ as the screened YSR singlet. In the limit t → 0,

|s = 1,m = 0⟩ and |s = 0,m = 0⟩ are degenerate but they are the ‘good’ states to use for

non-degenerate perturbation theory since they obey the spin-rotational symmetry.

Now we compare the perturbative energies of the doublet |D⟩ and singlet |S⟩. Using

Eq. (5.58), we find

HS−D |D0⟩ =
t√
2

(
|0, σ⟩ − |↑↓, σ⟩

)
, (5.61a)

HS−D |S0⟩ = t
(
|0,+⟩+ |0,−⟩+ |↑↓,−⟩ − |↑↓,+⟩

)
. (5.61b)

From here, it is easy to see that the first order energy corrections are zero: ⟨D0|HS−D|D0⟩ =
⟨S0|HS−D|S0⟩ = 0. Summing over all other eigenstates |n⟩ of H0, the second order terms

are

δED2 =
∑

n

| ⟨n|HS−D|D0⟩|2
ED0 − En0

= − t
2

2

(
1

∆− ϵd
+

1

ϵd + U +∆

)
, (5.62a)

δES2 =
∑

n

| ⟨n|HS−D|S0⟩|2
ES0 − En0

= −t2
(

1

∆− ϵd
− 1

∆ + ϵd
+

1

ϵd + U −∆
+

1

ϵd + U +∆

)
.

(5.62b)
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Close to the particle-hole symmetric point ϵd ≃ −U/2 and with large Coulomb repulsion

U ≫ ∆, we may neglect ∆ in all terms. It is then clear that both corrections are negative

and that the correction to the singlet state is larger: δES2 /δE
D
2 ≃ 4. The singlet has more

tunneling options and becomes more delocalized. Thus, at some finite t = tc, we expect an

energy level crossing: ED − ES = 0.

ED − ES = −∆+ t2
(

1/2

∆− ϵd
− 1

∆ + ϵd
+

1

ϵd + U −∆
+

1/2

ϵd + U +∆

)
. (5.63)

We find that the critical tunneling rate is given by

t2c, p.t. =
2∆

1
∆−ϵd −

2
∆+ϵd

+ 2
ϵd+U−∆ + 1

ϵd+U+∆

. (5.64)

The subscript “p.t.” stands for “perturbation theory” and is meant to discern it from the

true critical tunneling rate tc we find from numerical diagonalization of H. As expected,

in the case of a normal metallic lead (∆ = 0) in the local moment regime, the screened

singlet becomes the ground state for finite tunneling (t > tc = 0). This is the ZBW version

of the Kondo effect when TK ≫ ∆; the YSR singlet becomes the Kondo singlet in this

limit. For a superconducting lead, it takes extra persuasion (tc > 0) to convince the lead

to split up the Cooper pair and screen the local moment on the QD; it only happens if

δED2 − δES2 > ∆.

The eigenenergies of H are shown in Fig. 5.1 as a function of t at the particle-hole

symmetric point ϵd = −U/2 for a small ∆ = 0.1U . The doublet-singlet phase transition

occurs at t = tc ≈ 0.14U , but second order perturbation theory (dashed curves) estimates

tc, p.t. ≈ 0.12U (Eq. (5.64)). Since the doublet and singlet have different quantum numbers

s = 1/2, 0, they don’t mix and are allowed to cross each other in energy. The corresponding

eigenstates |D⟩ and |S⟩ are shown in Fig. 5.2 at the energy-crossing (t = tc ≈ 0.14U).

They have very large overlap with the unperturbed states |D0⟩ and |S0⟩, respectively. The
singlet, in particular, shows some (small) charge fluctuations which would increase with

larger ∆. In the proximitized limit, the lowest energy singlet resembles the BCS state

|−,−⟩ = (|0,−⟩+ |↑↓,−⟩)/
√
2.

Fig. 5.3(a) shows how tc, p.t. (Eq. (5.64)) varies around the particle-hole symmetric

point. As mentioned, our perturbative results are only valid in region ∆−U ≪ ϵd ≪ −∆.

In this region, we compare with the exact result (numerical diagonalization of H = H0 +

HS−D) in Fig. 5.3(b). For ∆≪ U , tc is small and the agreement is excellent. As we move

away from particle-hole symmetry or increase ∆, the discrepancy grows and perturbation
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Figure 5.1: ZBW eigenenergies ofH = H0+HS−D as function of the tunneling rate t. Black

dashed curves are the second order energy corrections (Eq. (5.62)). The doublet-singlet

phase transition occurs at t = tc ≈ 0.14U while tc, p.t. ≈ 0.12U (Eq. (5.64)). Parameters

used: ∆ = 0.1U , ϵd = −U/2.
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| ↓, ↑〉

| ↑, ↓〉
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Figure 5.2: Lowest energy ZBW eigenstates |D⟩ (a) and |S⟩ (b) at the critical tunneling

rate tc ≈ 0.14U . The phase is encoded in the bar color (grey: 0, black: π); with parameters

as real numbers, the eigenvectors are chosen to be real. Other parameters used (same as

Fig. 5.1): ∆ = 0.1U , ϵd = −U/2.
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Figure 5.3: ZBW critical tunneling rate for the singlet-doublet phase transition in second

order perturbation theory in t around particle-hole symmetry in the region of validity:

∆ − U < ϵd < −∆. (a) shows tc, p.t. calculated with Eq. (5.64). (b) shows the relative

error between Eq. (5.64) and numerical diagonalization of H = H0 +HS−D.

theory underestimates tc; it is worst close to the lines ϵd = ∆−U and ϵd = −∆ where our

perturbation theory breaks down and tc, p.t. goes to zero.

5.4 YSR bound states in the two-lead system

When we add another lead, we can study the effect of asymmetries and interference effects.

Now, the unperturbed Hamiltonian H0 = HS +HD is given by the terms

HS = −
∑

α=L,R

(
∆αc

†
α↑c

†
α↓ +∆∗

αcα↓cα↑

)
, HD = ϵdnd + Und↑nd↓, (5.65)

where the summation runs over the left (L) and right (R) lead. The tunneling perturbation

is

HS−D =
∑

ασ

(
tαc

†
ασdσ + tαd

†
σcασ

)
. (5.66)

Again, we limit our discussion to the local moment regime: |∆α| − U ≪ ϵd ≪ −|∆α|.
We will only study the ∆-asymmetric case (|∆L| ≪ |∆R|) with perturbation theory since

symmetric gaps requires us to resolve a degeneracy which only lifts to second order in t;

the point is not to test or use perturbation theory directly, but merely as a tool to aid our

understanding of the model. Without loss of generality, we have taken the left lead to be

the one with the smaller gap in the following.

All unperturbed energies are found in Tab. 4 along with the corresponding eigenstates

for s = m. Being in the local moment regime means that the ground state will be a state
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with only a single electron occupying the QD. Thus, most states from Tab. 4 will not be

ground state candidates due to their high energy. The unperturbed ground state is the

doublet |D0⟩ = |σ,−,−⟩ from the block with s = 1/2. This expands to

|D0⟩ = |σ,−,−⟩ =
1

2

(
|σ, 0, 0⟩+ eiφL |σ, ↑↓, 0⟩+ eiφR |σ, 0, ↑↓⟩+ ei(φL+φR) |σ, ↑↓, ↑↓⟩

)
.

(5.67)

As in the single lead case, a screened YSR singlet will become the ground state for

sufficiently large tunneling. In the ∆-asymmetric case, the two unperturbed screening

states

∣∣SL0
〉
=

1√
2

(
|↑, ↓,−⟩ − |↓, ↑,−⟩

)
,

∣∣SR0
〉
=

1√
2

(
|↑,−, ↓⟩ − |↓,−, ↑⟩

)
,

(5.68)

which describes screening by the left and right lead, respectively, are non-degenerate with

energies EL0 = ϵd − |∆R| and ER0 = ϵd − |∆L|. If the left lead – which we assumed to have

the smallest gap: |∆L| ≪ |∆R| – couples at least as much to the QD as the right lead:

tL ≥ tR, we expect the screening to be done primarily by the left lead. We will call this

(tL > tR or tL < tR) a t-asymmetry. In this case,
∣∣SL
〉
will cross |D⟩ in energy at some

critical t = tc. If the tunneling is skewed in the right lead’s favor (tR > tL), it is unclear

which of the two leads will be the ‘primary screener’. Then,
∣∣SL
〉
might mix a lot with

∣∣SR
〉

before it crosses |D⟩ in energy. In terms of energy scales, if |∆R|+ t2L/U ≫ |∆L|+ t2R/U ,

it will be energetically favorable to break apart the Cooper pair in the left (not right) lead

and screen the local moment. Hence, the left lead will be the ‘primary screener’. In the

opposite case, the roles are reversed and the right lead will be the ‘primary screener’. In

the intermediate case, both leads will participate and screen the local moment on the QD

coherently. We will see examples of this shortly.

In both t-asymmetric cases, we consider the second order energy correction to both∣∣SL0
〉
and

∣∣SR0
〉
. Applying the perturbation to the singlets, we find

HS−D
∣∣SL0
〉
= tL

(
|0,+,−⟩+ e−iφL |0,−,−⟩+ |↑↓,−,−⟩ − eiφL |↑↓,+,−⟩

)

− tR
2

(
|0, ↓, ↑⟩ − eiφR |↑↓, ↓, ↑⟩ − |0, ↑, ↓⟩+ eiφR |↑↓, ↑, ↓⟩

)
,

(5.69a)

HS−D
∣∣SR0

〉
= tR

(
|0,−,+⟩+ e−iφR |0,−,−⟩+ |↑↓,−,−⟩ − eiφR |↑↓,−,+⟩

)

+
tL
2

(
|0, ↑, ↓⟩ − eiφL |↑↓, ↑, ↓⟩ − |0, ↓, ↑⟩+ eiφL |↑↓, ↓, ↑⟩

)
.

(5.69b)
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s = m = 0

State |↑, ↓,±⟩ − |↓, ↑,±⟩ |↑,±, ↓⟩ − |↓,±, ↑⟩
∣∣ 0↑↓, ↑, ↓

〉
−
∣∣ 0↑↓, ↓, ↑

〉

E0 ϵd ± |∆R| ϵd ± |∆L|
{

0

2ϵd + U

}

State
∣∣ 0↑↓,±,±

〉 ∣∣ 0↑↓,±,∓
〉

E0

{
±|∆L| ± |∆R|

2ϵd + U ± |∆L| ± |∆R|

} {
±|∆L| ∓ |∆R|

2ϵd + U ± |∆L| ∓ |∆R|

}

s = m = 1/2

State |↓, ↑, ↑⟩+ c |↑, ↓, ↑⟩+ c2 |↑, ↑, ↓⟩ |↓, ↑, ↑⟩+ c2 |↑, ↓, ↑⟩+ c |↑, ↑, ↓⟩
E0 ϵd ϵd

State |↑,±,±⟩ |↑,±,∓⟩
E0 ϵd ± |∆L| ± |∆R| ϵd ± |∆L| ∓ |∆R|

State
∣∣ 0↑↓,±, ↑

〉 ∣∣ 0↑↓, ↑,±
〉

E0

{
±|∆L|

2ϵd + U ± |∆L|

} {
±|∆R|

2ϵd + U ± |∆R|

}

s = m = 1 s = m = 3/2

State |↑, ↑,±⟩ |↑,±, ↑⟩
∣∣ 0↑↓, ↑, ↑

〉
|↑, ↑, ↑⟩

E0 ϵd ± |∆R| ϵd ± |∆L|
{

0

2ϵd + U

}
ϵd

Table 4: Unperturbed eigenstates and energies of H0 = HS + HD (Eq. (5.54)). Due to

spin-rotational symmetry, energies are degenerate in m. Hence, only states with s = m

are shown. For easy of readability, the composite states are not normalized and c = e2πi/3

with the property 1 + c+ c2 = 0 that ensures orthogonality.
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In terms of energy corrections, the screening lead gives a contribution similar to Eq. (5.62b)

and the other lead gives a contribution similar to Eq. (5.62a).

δE
L(R)
2 =− t2L(R)

(
1∣∣∆L(R)

∣∣− ϵd
− 1∣∣∆L(R)

∣∣+ ϵd
+

1

ϵd + U −
∣∣∆L(R)

∣∣ +
1

ϵd + U +
∣∣∆L(R)

∣∣

)

−
t2R(L)

2

(
1∣∣∆R(L)

∣∣− ϵd
+

1

ϵd + U +
∣∣∆R(L)

∣∣

)
,

(5.70)

The difference between δEL2 and δER2 is just the interchange of L and R. Applying the

perturbation to the unperturbed doublet ground state |D0⟩ = |σ,−,−⟩, we find

HS−D |D0⟩ =
−tL√

2

(
|0, σ,−⟩ − eiφL |↑↓, σ,−⟩

)
+
tR√
2

(
|0,−, σ⟩ − eiφR |↑↓,−, σ⟩

)
. (5.71)

This leads to an energy shift of

δED2 = − t
2
L

2

(
1

|∆L| − ϵd
+

1

ϵd + U + |∆L|

)
− t2R

2

(
1

|∆R| − ϵd
+

1

ϵd + U + |∆R|

)
. (5.72)

The second term of Eq. (5.70) is contained in Eq. (5.72) and, thus, eliminated from the

energy difference.

ED − EL(R) = −
∣∣∆L(R)

∣∣+ t2L(R)

(
1/2∣∣∆L(R)

∣∣− ϵd
− 1∣∣∆L(R)

∣∣+ ϵd

+
1

ϵd + U −
∣∣∆L(R)

∣∣ +
1/2

ϵd + U +
∣∣∆L(R)

∣∣

)
.

(5.73)

This is completely equivalent to the single lead case (cf. Eq. (5.63)) and gives two critical

tunneling rates – one for each lead (Eq. (5.64)). One can easily generalize this to an

arbitrary number of leads as long as the system is ∆-asymmetric.

The characteristics of the YSR state is dependent on the level of t-asymmetry. In Fig.

5.4 the bound state energy spectrum is shown when varying the average tunneling rate

t = (tL+tR)/2 for fixed ratios tR/tL. This is done for a ∆-asymmetric setup (|∆L| = 0.05U ,

|∆R| = 0.2U) at particle-hole symmetry. For tR = tL (Fig. 5.4(a)), the situation is

analogous to a single-lead setup since the right lead is not participating in the screening.

We see the same crossover as in Fig. 5.1. As the ratio tR/tL is increased, the right lead

takes over the screening and we observe an avoided crossing between
∣∣SL
〉
and

∣∣SR
〉
in the

energy spectrum. This is most noticeable in Fig. 5.4(c).

This explanation is inferred from the eigenstates which are shown in Fig. 5.5 for the

lowest energy state in the s = 0 spin block (the YSR state) at t = tc. For tR = tL (Fig.
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Figure 5.4: Bound state energy (Eb = E − Eground state) as a function of the average

tunneling rate tavg = (tL + tR)/2 in the ∆-asymmetric two-lead ZBW system for different

coupling ratios. The black dashed curves are the second order energy corrections around

t = 0 (Eq. (5.73)) which are plotted up to the doublet-singlet phase transition (red dotted

line). Note that many levels are outside the plotted energy window, including the quartet

(s = 3/2). Parameters used: |∆L| = 0.05U , |∆R| = 0.2U , φL − φR = 0, ϵd = −U/2.

5.5(a)), the YSR state is predominantly screening by the left lead (
∣∣SL0
〉
– Eq. (5.68))

when we only consider the two components with largest amplitude. For tR/tL = 4, the

YSR state can be very well described as
∣∣SL0
〉
+
∣∣SR0

〉
, i.e. coherent screening between the

left and right lead. And for tR/tL = 20, the YSR state is mostly screening by the right

lead (
∣∣SR0

〉
). The other states with smaller amplitudes are the ones from Eq. (5.69).

5.5 Energy dispersion and current-phase relations

So far we have not addressed the phase bias of a two-lead ZBW system. We have only

studied systems with φL = φR. As previously mentioned, we have some gauge freedom

when we choose the phases. Here, we define φ ≡ φL − φR which is 2π-periodic and lives

in the (first) Brillouin zone: φ ∈ [0, 2π). In this context, we may refer to the phase-

dependence of the energy, E(φ), as the energy dispersion. In Fig. 5.6, we show the

dispersion for different coupling strengths/asymmetries as well as away from particle-hole

symmetry. The degree of particle-hole symmetry is parametrized by the dimensionless

quantity x = 1+2ϵd/U which is zero at particle-hole symmetry and x = ±1 at the charge-

degeneracy points. For symmetric coupling and at particle-hole symmetry (Figs. 5.6(a)–
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Figure 5.5: YSR eigenstates (lowest energy singlet) from Fig. 5.4 at the critical tunneling

rate / doublet-singlet phase transition. Only the components with non-zero amplitude are

shown. The phase is encoded in the bar color (grey: 0, black: π). Parameters used (same

as Fig. 5.4): |∆L| = 0.05U , |∆R| = 0.2U , φL − φR = 0, ϵd = −U/2.
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(c)), the ground state is a doublet for all φ ∈ [0, 2π) when the coupling is weak (Fig. 5.6(a)),

but a singlet ground state is found for stronger coupling (Figs. 5.6(b)–(c)) except close to

φ = π where the ground state remains a doublet. This is still true for even stronger

coupling (t > 0.2U) as long as x = 0 and tL = tR, but the doublet region shrinks. A Weyl

point is located at φ = π where the two singlet (and triplet) levels touch. As was the case

with the infinite gap limit (Section 3), this degeneracy is lifted when moving away from

particle-hole symmetry (Figs. 5.6(d)–(f)) or with an asymmetric coupling (Figs. 5.6(g)–

(i)). In both cases, there is no protected doublet region around φ = π; the ground state

is a singlet for all φ ∈ [0, 2π) at strong coupling (Figs. 5.6(f) and 5.6(i)). In this way,

particle-hole asymmetry and coupling asymmetry has the same effect on the energy levels.

Note, however, that the (small) coupling asymmetry mostly affects the energy levels that

meet at the Weyl point φ = π (forces an avoided crossing) and only close to φ = π, while

particle-hole asymmetry affects all energy levels in the whole φ-range. In other words, the

coupling asymmetry only opens a gap between degenerate levels at the Weyl point.

Even in systems with ∆-asymmetry, it is possible to tune tL and tR such that the

gap between the two singlets with lowest energy closes at φ = π. This still seems to

require particle-hole symmetry, however. Furthermore, the doublet remains the ground

state at φ = π; the singlet is not pushed below the doublet – not even at strong coupling.

In Fig. 5.7(a), we show how the singlet gap in Fig. 5.6(h) closes with a fine-tuned ∆-

asymmetry. Only the singlets are degenerate at φ = π (not the triplets) and this Weyl

point is not protected against a change in coupling strength tavg (cf. Figs. 5.6(a)–(c)). In

Fig. 5.7(b) we plot the set of parameter configurations that keep the singlet gap closed.

These surfaces are parametrized by |∆L|/U . For large couplings (tL, tR ≫ |∆L|, |∆R|),
|∆R|/|∆L| seems to be proportional to (tR/tL)

2 (a straight line in the plot). The surfaces

touch on the line of ∆- and t-symmetry, meaning the Weyl point is proteced against

coupling strength variations tavg in this case (as shown in Figs. 5.6(a)–(c)).

The energy dispersion is important for the physical system. It determines the super-

current that runs across the junction (here in arbitrary units).

I =
∂EGS
∂φ

. (5.74)

Junctions are often categorized according to their current-phase relation (CPR). If the

phase is a free variable, the system chooses the phase which minimizes the (free) energy. If

the energy minimum is at φ = 0 or φ = π, the junction is referred to as a 0- or π-junction,

respectively. It may also be noted that the singlet-doublet phase transition, we have been
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Figure 5.6: ZBW energy dispersions in the ∆-symmetric two-lead system. The average

tunneling rate tavg = (tL + tR)/2 as well as particle-hole asymmetry x = 1 + 2ϵd/U and

coupling ratio tR/tL are varied between panels as indicated by the column and row labels.

Note that many levels are outside the plotted energy window of 2∆, including the quartet

(s = 3/2). Common parameters: |∆L| = |∆R| = 0.1U .



5 ZERO-BANDWIDTH APPROXIMATION 56

s = 0 s = 1/2 s = 1 |∆L| = 0.1U |∆L| = 0.05U |∆L| = 0.01U

0 π 2π

ϕ

0.0

0.1

0.2

(E
−
E

m
in

)/
U

(a)

tavg/
U

0.0

0.5

1.0

tR/tL 0

5

10

√
|∆

R
|/
|∆

L
|

0

5

10

(b)

Figure 5.7: Weyl points with asymmetric couplings and SC gaps. (a) shows a Weyl point

at φ = π where the two singlets with lowest energy become degenerate – compare with

Fig. 5.6(h). The set of configurations of tα and ∆α which closes the singlet gap are shown

in (b) for fixed values of |∆L|/U . In the symmetric case, all surfaces touch (dashed red

line). Parameters used in (a) are the same as in Fig. 5.6(h) except for |∆R| = 0.122U .

Parameters used in (b): x = 0, φ = π.
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Figure 5.8: Exemplary energy dispersions (a)-(d) and corresponding current-phase relations

(e) for the four different junction types: π, π′, 0′, and 0. In (a)-(d), the blue (orange) lines

are s = 0 (s = 1/2). Discontinuities in the current are due to quantum phase transitions.

Common parameters: |∆L| = |∆R| = 0.1U , x = 0.

concerned with, is also commonly referred to as a 0-π-transition due to the shift in energy

minimum. As is evident from e.g. Fig. 5.7(a), the ground state may change when φ is

varied (GS: singlet → doublet → singlet). This leads to a discontinuous current flow and

provides a further distinction within 0- and π-junctions. Such junctions are referred to as

0′- or π′-junctions, depending on where the global energy minimum is. Examples of the

four different junction types are shown in Fig. 5.8.

The ZBW approximation produce, qualitatively, the same phase diagrams that we

have previously studied – e.g. Fig. 4.4. In Fig. 5.9, we show phase diagrams for different

two-terminal junctions with both symmetric and asymmetric couplings and SC gaps. For a

junction with symmetric coupling (tL = tR) and equal gaps (|∆L| = |∆R|) as in Fig. 5.9(a),
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Figure 5.9: Phase diagrams for different coupling and gap asymmetries in two-lead ZBW

systems. The color scale is the difference between the energy minimum of the singlet

(φ = 0) and the doublet (φ = π). Common parameters: |∆L| = 0.1U .

the 0-phase is inacessible at particle-hole symmetry (x = 0); the doublet remains the ground

state at φ = π even for strong coupling (cf. Fig. 5.6(c)). The same is true for asymmetric

junctions (Fig. 5.9(d)) if they are fine-tuned as in Fig. 5.7(b). One may run through the

junction types by tuning tavg for fixed x ̸= 0 or vice versa for weak coupling. For other

asymmetric configurations, the chimney-like 0′-phase around x = 0 becomes a closed dome

(Figs. 5.9(b)–(c)). These phase diagrams are similar to what we find in e.g. Refs. [17, 24].

5.6 Relation to the superconducting Anderson model

So far we have seen that the ZBW model may be used as a qualitative tool describing

a lot of the physics of the superconducting Anderson model. In this section we will try

to connect the ZBW to the Anderson model on a quantitative level. We will do so by

a suitable renormalization of the tunneling parameter tZBW which describes the effective

tunneling to a single SC level. We introduced the superscript “ZBW” to discern tZBW from

the original tunneling amplitude t of the Anderson model, introduced in Eq. (2.3). The
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rest of the parameters we leave unchanged compared to the full superconducting Anderson

model. We split the problem into two parts: the proximitized limit and the Kondo regime.

These are treated separately, initially, but connected in the end via a suitable interpolation

function. Along we way, we compare with NRG results and find good agreement with

the renormalized ZBW model in terms of the phase diagram – except in the intermediate

regime where the system is neither in the proximitized limit nor the Kondo regime. The

subgap energy spectrum and the supercurrent is shown to match poorly with NRG in the

Kondo regime which we attribute to the lack of a continuum.

5.6.1 Renormalization for the proximitized QD

In the proximitized / infinite gap limit we find the correct renormalization of tZBW by a

comparison of the QD self-energy in the superconducting Anderson model and in the ZBW

model. To calculate the self-energy in the ZBW model, we may retrace our steps from

Sections 2.1 and 3 and reuse the results derived there. We find that the Matsubara Nambu

Green function for electrons in lead α is given by

G0,α(iωn) =
−1

|∆α|2 + ω2
n

(
iωn −∆α

−∆∗
α iωn

)
. (5.75)

Comparing with the Anderson model (Eq. (2.9)), there is only a single momentum value,

k = kF , and, hence, no k-index in the ZBW approximation. Integrating out the ZBW

leads, we find

Σd(iωn) =
∑

α

(
tZBW
α

)2
τzG0,α(iωn)τz = −

∑

α

(
tZBW
α

)2

|∆α|2 + ω2
n

(
iωn ∆α

∆∗
α iωn

)
(5.76)

as the self-energy for electrons on the QD. Comparing this result with the self-energy of

the full superconducting Anderson model (Eq. (2.14)), we see that we can’t simply replace

tZBW
α by Γα = πνF,αt

2
α in the ZBW model. In general, the conversion also depends on the

gap and the energy.

(
tZBW
α

)2
=

2

π
arctan


 Dα√
|∆α|2 + ω2

n


Γα

√
|∆α|2 + ω2

n. (5.77)

For the proximitized dot, |∆α| ≫ ω, the conversion becomes energy-independent.

(
tZBW
α

)2 ≈ 2

π
arctan

(
Dα

|∆α|

)
Γα|∆α|, |∆α| ≫ ω. (5.78)
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In this infinite gap regime, Eq. (5.78) gives the correct renormalization of tZBW
α and a

way to compare it to other, more exact, methods such as NRG or quantum Monte Carlo

(QMC). Previously, we found that the leading order corrections to the infinite gap limit

were of order Γα/|∆α| (see e.g. Eq. (4.20)). Therefore, we should expect Eq. (5.78) to

hold for |∆α| ≫ Γα. Curiously, if one is working in units of ∆ = 1, this renormalization is

equivalent to (neglecting the bandwidth term) just replacing (tZBW)2 with Γ as one might

do.

Figure 5.10 compares this t-conversion method to NRG data by Bauer et al. [16] for

a single-lead (N = 1) S-QD system. Here, we have kept all other physical quantities

unchanged compared to the Anderson model, i.e. UZBW = U,∆ZBW = ∆, and so on.

We see that the agreement between the simple ZBW model and NRG is excellent in the

proximitized limit (∆ ≳ Γ) both at and away from particle-hole symmetry – on a par

with MFS considered in Section 4. Moving towards the Kondo regime (U ≫ Γ,∆), how-

ever, Eq. (5.78) fails to capture the YSR singlet ground state for TK ≳ 0.3∆ as NRG

predicts. ZBW predicts that the doublet phase wins out for U ≳ 6Γ (Fig. 5.10(a)). The

pertubative expansion around the infinite gap limit (MFS) from Section 4 describes this

singlet-doublet crossover more accurately in the Kondo regime even though it underesti-

mates the Kondo temperature somewhat at particle-hole symmetry; Meng et al. [15] finds

that TK ∝ exp(−πU/4Γ) instead of TK ∝ exp(−πU/8Γ) as expected from scaling theory

(Eq. (1.10)).

Note also that the YSR bound state crosses the gap, ES − ED < ∆, in the lower

left (dark blue) corner of Fig. 5.10(a) for ∆ ≪ Γ. This is unphysical as the bound state

is always within the gap in the real system (see e.g. Fig. 5.15). The gap crossing is an

inherent problem of the ZBW model in the strong coupling limit, Γ≫ ∆, as there are no

bulk states to repel the bound state from the gap edges. On the other hand, Eq. (5.78) is

not expected to describe the system in the strong coupling limit, anyway.

Previously, we also compared the MFS model to NRG data from Tanaka et al. [20] in

the two-lead system S-QD-S with and without coupling asymmetry and SC phase bias (see

Fig. 4.4). There we found that the perturbative approach was able to describe only the

proximitized QD, i.e. φ = 0. For both symmetric and asymmetric coupling, the predicted

phase transition was quite far off in the proximity-cancelled case, i.e. φ = π. The ZBW

model handles this much better as illustrated in Fig. 5.11. For φ = 0, the ZBW model and

MFS are almost indistinguishable, except for large U/∆ in Fig. 5.11(b) when compared



5 ZERO-BANDWIDTH APPROXIMATION 61

0 2 4 6 8 10 12 14

U/Γ

0

1

2

3

∆
/
Γ

S
in

gl
et

Doublet

x = 0

(a) ZBW

NRG (Bauer et al.)

∆/Γ→∞
Pert. theory (Meng et al.)

TK = 0.3∆

−1

0

1

(E
S
−
E
D

)/
∆

−0.5 0.0 0.5

ξd/U

0.0

0.2

0.4

0.6

Γ
/U

Doublet

Singlet

TK = 0.3∆

t2 ≈ Γ∆

(b) ∆/πΓ→∞
∆/πΓ = 1.0

∆/πΓ = 0.3

∆/πΓ = 0.05

Figure 5.10: Phase diagram comparisons between ZBW and NRG data from Bauer et al.

[16] for a single-lead (N = 1) S-QD system. Pane (a) reproduces their Fig. 9 at particle-

hole symmetry with the ZBW phase transition line (using Eq. (5.78)) along with the

infinite gap asymptote and the first order corrections to the infinite gap limit (Eq. (4.22)).

The ‘Kondo asymptote’ TK = 0.3∆ in the strongly interacting limit is also shown. The

color indicates the energy difference between the lowest energy singlet and doublet (red:

doublet; blue: singlet). Pane (b) compares the ZBW phase transition (lines) to the NRG

data (symbols) given in Fig. 12 in Ref. [16]. The bottom two lines (∆/πΓ = 0.05) compare

the ZBW model (using Eq. (5.78)) with the ‘Kondo asymptote’ TK = 0.3∆; at particle-

hole symmetry, U ≈ 8.1Γ at the phase transition (see (a)). Compare (b) with Fig. 4.2.
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with Fig. 4.4(b). In this case, both approaches are close to the NRG phase transition with

small deviations for large U ≳ 5∆. The proximity-cancelled limit, φ = π, is where the

ZBW model really discerns itself from the perturbative approach. Here, the ZBW model

agrees well with NRG for small U/∆; large deviations occur for U ≳ 5∆. Opposed to

MFS, the ZBW model correctly predicts the characteristic ‘chimney’ around the particle-

hole symmetric point in Fig. 5.11(c) for symmetric coupling and φ = π. The ‘chimney’ is

also present in Fig. 5.11(b), but the right-hand side is outside the plot limits – quite far

from the NRG data (here we approach the Kondo regime).

5.6.2 Renormalization in the local moment regime

Through Eq. (5.78), we are able to reproduce the NRG phase diagrams on a quantitative

level in the weakly interacting limit, U ≪ ∆, with the simple ZBW model. Equation (5.78)

seems to break down around U ≃ 5∆, ∆ ≃ Γ. Thus, in the strongly interacting limit,

U ≫ ∆, we need to do something else to use the ZBW model. For a single-lead S-QD

system, we propose to use the universal phase transition relation [16, 18, 19]

TK ≈ 0.3∆c, U ≫ ∆, ϵd ≈ −U/2, (5.79)

and map the ZBW phase transition onto this curve for U ≫ ∆. This is an empirical

observation based on NRG results and also shown in Fig. 5.10. To emphasize that Eq. (5.79)

only holds at the phase transition, we added the subscript c (for “critical”) to ∆c on the

RHS. At the phase transition, Eq. (5.79) relates the physical quantities U , Γ, and ∆. As

stated in Eq. (5.79), the definition of the Kondo temperature is the one given in Eq. (1.10).

Note that Eq. (1.10) is valid away from particle-hole symmetry, and Yoshioka et al. [19]

showed that the ratio TK/∆c is only weakly dependent on ϵd around the particle-hole

symmetric point, so we can neglect this effect (see also Fig. 5.10(b)).

Ideally, we want to interpolate between the proximitized limit and the local moment

regime in a way that matches more accurate methods such as NRG. The intermediate

regime is hard to match with a hands-off approach. In this case, a simple ZBW model may

not be able to give quantitative predictions. The ZBW model loses its edge on e.g. NRG

if it can’t be used as a stand-alone tool.

In the single-lead S-QD system, the ZBW tunneling amplitude tZBW may be related

to the hybridization Γ of the Anderson model through Eq. (5.79). At the ZBW phase

transition, we write tZBW/U = f(∆/U, x) for some smooth, bijective function f . See
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Figure 5.11: ZBW phase diagrams for N = 2 identical leads (L = Left lead, R = Right

lead) with superconducting gap |∆L| = |∆R| = ∆ and electronic bandwidth DL = DR =

1.0 × 105∆. The phase difference and couplings for the different lines is given by the

legend below pane (c). Symbols are NRG data from Tanaka et al. [20] (the data has been

graphically read off from their Figs. 5, 6, and 7) while the lines are ZBW results using Eq.

(5.78). Compare this figure with Fig. 4.4.
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appendix D for some details. Using Eq. (5.79), we find

tZBW

U
= f

(
TK
0.3U

, x

)
, U ≫ ∆, (5.80)

where the RHS depends on the ratio U/Γ and x. To map the ZBW phase transition onto

the line TK = 0.3∆c, we find that the ratio tZBW/Γ must be varied as in Fig. 5.12. Again,

we have kept all other parameters unchanged: UZBW = U,∆ZBW = ∆, ϵZBW
d = ϵd. Close

to the particle-hole symmetric point, x = 0, the surface does not vary much, but develops

a ‘shoulder’ for x ≳ 0.5. We really only care about the asymptotic behavior in the limit

U ≫ Γ since this is where Eq. (5.79) is valid. In the limit U ≫ ∆ – which is satisfied at the

phase transition (of the full Anderson model) when U ≫ Γ – the ZBW phase transition

occurs at (Eq. (5.63))

(tZBW)2 =
2

3

∆
1

ϵd+U
− 1

ϵd

, U ≫ tZBW,∆. (5.81)

We want this to align with TK = 0.3∆, meaning that we should choose tZBW such that

(tZBW)2 =
20

9

TK
1

ϵd+U
− 1

ϵd

, U ≫ Γ, (5.82)

which reduces to (tZBW)2 = 5TKU/9 at particle-hole symmetry, ϵd = −U/2. Inserting TK
from Eq. (1.10), we find

(tZBW)2 ≈ 0.161U
√
ΓUe−πU/8Γ, U ≫ Γ, x = 0, (5.83)

at particle-hole symmetry.

5.6.3 Interpolating between the proximitized limit and the local moment

regime

To connect the limit of the proximitized QD and the Kondo regime, some kind of interpo-

lation function is needed. In this case we combine Eq. (5.78) and Eq. (5.80) and write the

ZBW tunneling as

tZBW = I(U,∆,Γ)
√

2

π
arctan

(
D

∆

)
Γ∆+ [1− I(U,∆,Γ)]Uf

(
TK
0.3U

, x

)
, (5.84)

with interpolation function I(U,∆,Γ). We know that this expression must reduce to

Eq. (5.78) in the proximitized limit (I = 1) and to Eq. (5.80) in the Kondo regime (I = 0)
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Figure 5.12: Rescaling of tZBW in the ZBW model to map the phase transition onto the

‘Kondo asymptote’ TK = 0.3∆. The surface is mirror-symmetric in the plane x = 0 and,

hence, only shown for 0 < x < 1.

to match the NRG phase transition. The best interpolation function is hard to find and

would require extensive comparison with e.g. NRG and more data. Here, we take the

interpolation function to be a simple Fermi function

I(U,∆,Γ) = nF

(
U − U∗

w

)
, nF (x) = (1 + ex)−1 , (5.85)

with some center U∗ and width w. We set U∗ = 18.6∆ to match the intersection of the

ZBW transition (with Eq. (5.78)) and the ‘Kondo asymptote’ TK = 0.3∆ in Fig. 5.10(a).

We set w = 2Γ to smooth out the transition between the regimes. The resulting phase

diagrams and comparison with Bauer et al. is shown in Fig. 5.13. In Fig. 5.13(a), the ZBW

phase transition moves from the line in the proximitized limit (Fig. 5.10(a)) for U ≲ 4Γ to

the ‘Kondo asymptote’ for U ≳ 5Γ. In between the two regimes, the ZBW phase transition

suffers a kink and is not as smooth as the NRG data suggest. In this intermediate regime,

the ZBW model struggles and does not quite match the NRG. As Fig. 5.13(b) shows, the

ZBW model does well also away from particle-hole symmetry in both the proximitized

limit (∆/πΓ > 0.3) and the Kondo regime (∆/πΓ = 0.05).

We also show the ZBW phase diagrams along with the interpolation function in Fig. 5.14.
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Figure 5.13: Phase diagram comparisons between ZBW and NRG data from Bauer et al.

[16] for a single-lead (N = 1) S-QD system using Eqs. (5.84) and (5.85) with U∗ = 18.6∆,

w = 2Γ. The transition between the proximized limit and the local moment regime is

smoothed out but still visible. Compare with Fig. 5.10.
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The kink in the intermediate region is also visible in Fig. 5.14(a) as a bend in the phase

transition surface. In Fig. 5.14(b), the axes are chosen differently and it looks smooth.

The phase diagram is, of course, only part of the story. If an experiment probes the

subgap states in some way, the ZBW model should, ideally, be able to explain this, too –

not just predict the phase transition. Bauer et al. [16] calculated the bound state energy

for a single lead S-QD system in their NRG analysis of the superconducting Anderson

model. In Fig. 5.15, we compare their NRG results with the interpolated ZBW model and

the MFS model, we considered in Section 4. For ∆ = 0.3πΓ (black curves), both ZBW

and MFS models match the NRG data quite well up until the phase transition. The MFS

model sees a small dip for U < Γ which is due to a divergence in Eq. (4.21a) in the singlet

region when E0
−−E0

σ = −∆ (see Section 4). For U ≳ 5Γ, the MFS model starts to deviate

from the NRG data while the interpolated ZBW model follows NRG until U ≈ 13Γ. The

ZBW model interpolates smoothly between the infinite gap curve (black dashed curve)

and the ‘Kondo asymptote’ (black dash-dotted curve), extending the validity of the ZBW

model.

The t-conversion from the ‘Kondo asymptote’ (Eq. (5.80)) is, however, not able to

capture the bound state energies in the Kondo regime, only the position of the phase

transition. This is especially apparent from the small gap curves in Fig. 5.15(a): ∆/πΓ =

0.05, 0.005 in red and blue, respectively. Here, I ≈ 0 along both curves, meaning the

Kondo rescaling is used. One of the issues is the aforementioned inherent gap crossing

of the doublet in the ZBW model which stems from a lack of continuum states in the

superconductor at the gap edge. As is evident from Fig. 5.15(b), the doublet in the MFS

model also crosses the gap edge for small ∆/Γ. Both models work well in the proximitized

limit, with a small edge in favor of the ZBW model, and both models fail in the Kondo

regime.

In a recent article by Žonda et al. [25] an extension of simple the infinite gap limit

(see Section 3) was explored. In addition to the off-diagonal, anomalous terms in the

self-energy (Eq. (2.14)), they included the leading order (in ∆/ω) diagonal terms of the

self-energy. Since these are proportional to ω, they were able to include the effect in the

Berry phase term through a simple renormalization of the parameters and reach the same
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Figure 5.14: ZBW phase transition surfaces for a single-lead (N = 1) S-QD system using

Eqs. (5.84) and (5.85) with U∗ = 18.6∆, w = 2Γ. The phase transition occurs across the

surfaces with the doublet phase residing inside the ‘domes’ (cf. Fig. 5.13). The color map

on the ‘floor’ is the value of the interpolation function I at the phase transition (color bar

below (b)). The difference between (a) and (b) is simply the choice of y- and z -axis.
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Figure 5.15: Comparison between bound state energies at particle-hole symmetry in the

single lead S-QD system calculated with NRG (filled circles) by Bauer et al. [16], the

interpolated ZBW model (a) (Eqs. (5.84) and (5.85) with U∗ = 18.6∆, w = 3Γ), and

first order corrections to the infinite gap limit (b) (Eq. (4.21a)). To show the effect of

the interpolating function, for the largest ∆ = 0.3πΓ (black) in (a), both the infinite gap

curve (dashed) using Eq. (5.78) and the ‘Kondo asymptote’ (dash-dotted) using Eq. (5.80)

are shown along with the interpolated curve (solid) using Eq. (5.84). Note that for strong

coupling (small U/Γ), both ZBW and MFS have doublets that cross the gap edge.
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Figure 5.16: Subgap bound state energies as a function of the QD energy level ξd in a

phase-biased, symmetric two-lead S-QD-S system. Symbols are NRG data graphically

read off from Ref. [25] while the curves are interpolated ZBW (solid) and MGAL (dashed).

Parameters used: |∆L| = |∆R| ≡ ∆, ΓL = ΓR = ∆, U = 5∆, φ = 0.9π.

effective Hamiltonian (Eq. (3.5)).

ξd → ξ̃d = νξd,

γ → γ̃ = νγ,

U → Ũ = ν2U,

(5.86)

where ν = 1/(1 + Γ/∆). Via comparisons with NRG, they found better agreement when

rescaling the QD energy level as ξd → ξMGAL
d = ν2ξd

√
1 + 2Γ/νU . They called the infinite

gap limit with this parameter rescaling the “modified generalized atomic limit” (MGAL).

Among other things, they compare the energy of the subgap states in a two-lead S-QD-S

system with NRG close to the proximitized limit. We show a comparison with the ZBW

model in Fig. 5.16. Here, MGAL seems to have the upper hand but ZBW is not far off –

both models certainly seem to qualitatively agree.

Žonda et al. also looked at the energy dispersion of the subgap states and the corre-

sponding supercurrent in the proximitized limit. In Fig. 5.17 we reproduce the relevant

figures and overlay the ZBW and MFS results. The energy dispersion in Figs. 5.17(a)

and 5.17(b) show very good agreement between ZBW, MGAL, and the NRG data for both

bound state energies close to the phase transition – they deviate slighty from NRG for
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smaller φ. On the other hand, MFS has a hard time predicting the phase transition as we

saw in Fig. 4.4 for non-zero φ (when the proximity effect is reduced). MFS describes the

bound state energy well in Figs. 5.17(a) and 5.17(b) for small φ, however.

In Fig. 5.17(c), we note a few things about the supercurrent. First of all, the ZBW

model matches more closely the NRG data than both MGAL and MFS. Second of all,

they all fall short for large U/∆ as we have previously seen. Third of all, MGAL fails

on two qualitative aspects as noted in Ref. [25]: the current is independent of U in the

singlet phase and zero in the doublet phase since MGAL is only a rescaled infinite gap

Hamiltonian (Eq. (3.5)). These shortcomings are not oberserved in ZBW and MFS. In

a following paper, however, Pokorný & Žonda showed that these problems of MGAL are

largely solved by a band correction which includes higher-order terms in the self-energy

[26].

The ZBW model with appropriate rescaling of the effective tunneling parameter t does

seem to match with NRG results in the proximitized limit and with the interpolation

between the proximitized limit and the Kondo regime, the model’s range of validity does

seem to improve. The strongly interacting, U ≫ ∆, Kondo limit is, however, not described

to a satisfying degree. Here, other methods – such as an effective Kondo model [17] – need

to be used.
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Figure 5.17: Bound state energies (a)-(b) and supercurrent (c) as a function of the SC phase

difference φ in a symmetric two-lead S-QD-S system. Symbols are NRG data graphically

read off from Ref. [25] while the curves are interpolated ZBW (solid), MGAL (dashed), and

MFS (dotted). In (a) and (b), there are two singlets (s = 0) within the gap that become

degenerate at φ = π. In (c), the supercurrent I = 2e/ℏ(∂EGS/∂φ) has been normalized

with I0 = e∆/ℏ. Common parameters: |∆L| = |∆R| ≡ ∆, ΓL = ΓR = ∆, ξd = 0.
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6 Conclusion

In this thesis we have studied interacting multiterminal Josephson junctions consisting of

a single-level quantum dot coupled to superconducting leads through the superconduct-

ing impurity Anderson model. We used the path integral formalism to integrate out the

superconducting leads and arrive at an effective action for electrons on the QD. In the

limit of large superconducting gap, we found an effective low energy Hamiltonian which

described proximity-induced superconductivity of the QD. We diagonalized the Hamilto-

nian, found the eigenstates and eigenenergies, and obtained the phase diagram, describing

the transition from a BCS-like singlet to a magnetic doublet state.

To extend the model to finite superconducting gaps, we developed the multiterminal

MFS model. Here, we expanded the partition function around the infinite gap limit and

considered the lowest order corrections to the QD energy levels. In an effort to re-sum

leading divergences, we introduced a self-consistency condition to attain the phase diagram

from the renormalized energy levels. Good agreement was found with NRG data close to

proximitized limit for single-lead (S-QD) and two-lead (S-QD-S) systems. In the proximity-

cancelled limit (φ = π) of the two-lead (S-QD-S) system, however, the phase diagram was

qualitatively wrong.

In the second half of this thesis, we studied the zero-bandwidth model which trades

the continuum of bulk states in each lead for a single quasiparticle at the gap edge with an

effective tunneling rate to the QD. First we explored the qualitative features of the model.

We saw that the model was able to describe both the proximity effect and YSR screening

of a local moment. Through perturbation theory we were able to understand the energy

reduction of the many-body system by screening and the breaking apart of Cooper pairs

in the leads. In a two-lead system, we saw that, depending on the (a)symmetry of the

system, the screening could be carried out by a single lead or shared among the leads. We

also calculated the energy dispersion and supercurrent in the ZBW model and used it to

characterize S-QD-S systems as 0- or π-junctions.

In the end, we established a direct, quantitative connection between the ZBW model

and the superconducting impurity Anderson model. Through comparisons with various

NRG data, it became evident that the simple ZBW model – with effective tunneling rate

found from the self-energy – provides an accurate description of the phase diagrams, bound

state energies, and the supercurrent in QD-based JJs in the proximitized limit, ∆≫ Γ, U .

It was also able to describe the phase diagram of proximity-cancelled (φ = π) two-lead
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S-QD-S systems – an advantage over MFS. In the proximitized limit of two-lead systems,

the ZBW model is also favorable to the “modified generalized atomic limit” (MGAL)

considered by Žonda et al. in terms of determination of the supercurrent and both models

give an accurate description of the bound state energies.

In the local moment regime, we mapped the ZBW phase transition onto the ‘Kondo

asymptote’ TK ≈ 0.3∆c in an attempt to extend the use of the ZBW model. By interpo-

lating between the two regimes, we were able to better capture the onset of Kondo physics.

Deep in the local moment regime, however, we were not able to describe the energy of the

subgap states away from the phase transition – partly due to the gap crossing of the dou-

blet in the strong-coupling limit of the ZBW model. To mend this, one likely needs to add

more SC bulk states to the Hilbert space or use some clever parameter renormalization.

Adding more states, of course, defeats the purpose of a simple, exactly solvable model.

7 Outlook

Recently, experiments [27–29] with full-shell InAs/Al nanowires coupled to a quantum dot

have been performed, measuring the effect of an axially applied magnetic field on e.g. the

subgap energies. A superconducting shell gives rise to the destructive Little-Parks effect

[30, 31] and phase winding of the SC pairing potential when a flux penetrates the core.

With a phase winding, opposing points on the shell geometry cancel each other in the

proximity effect as in a two-lead (S-QD-S) junction with φ = π. This has been studied

using mean-field theory [32] but it would be interesting to develop and explore a ZBW

model. The multiterminal ZBW model investigated in this thesis could be considered a

‘tight-binding’ model by discretization of the superconducting shell into smaller segments

and introducing a nearest neighbor inter-lead coupling. At this point, the approach is

speculative but definitely an interesting idea to pursue.

As already showed by Ref. [14], such an inter-lead tunnel-coupling can lead to a non-

trivial topology in non-interacting MJJs with three or more leads in the infinite gap limit.

Physically, this is exciting because the transconductance is proportional to the Chern

number and, therefore, quantized – as in the quantum Hall effect – in units of 4e2/h [33].1

Therefore, it would be interesting to study the topological properties of MJJs further –

especially, if all this is contained within the ZBW model, now that we know it agrees

1An array of SQUIDs aranged in a chain has also been proposed to realize fractional transconductance

– as in the more exotic fractional quantum Hall effect [34].
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with NRG on the phase diagram, bound state energies, and the supercurrent close to the

proximitized limit.

Another extension of this work – perhaps more straightforward compared to the above-

mentioned future projects – is to use our quantitative ZBW model to calculate the current

response to an ac bias voltage as done in Ref. [23]. This relies on the current matrix

element between the ground state of the system and excited states within the same parity

sector. In Ref. [23], they argue that a ZBW model qualitatively matches other analytical

approaches but quantitative comparisons with e.g. NRG were missing to substantiate the

application of ZBW models.
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Appendices

A Berry curvature and Chern number in the infinite gap limit

This section is partly based on the lecture notes by Kolodrubetz et al. [35] and Klees et al.

[14].

We derived the many-particle eigenstates in the infinite gap limit in Section 3, describing

the low energy effective Hamiltonian of the QD. Here, we will show that the topology of the

eigenstates is trivial in the sense that the Chern-number is always zero in the φj , φk-phase

space.

We may characterize the topology of the eigenstates using the geometric tensor. This

tensor contains the information about the geometry and thus the topological features.

First, let us define the Berry connection of state |n⟩ = |σ⟩ , |±⟩

A
(n)
j = i ⟨n|∂jn⟩ , (A.1)

where ∂j =
∂
∂φj

. The odd parity eigenstates |σ⟩ do not depend on the phases of the leads

and thus A
(σ)
j = 0. The even parity states depend on φj through u, v, and ζ. Using Eq.

(3.6), we find

A
(+)
j = v2∂jζ + i(u∂ju+ v∂jv) = −

(
A

(−)
j

)∗
. (A.2)

Using ∂jEA = |γ|/EA∂j |γ| = −|γ|Γ̃j sin(ϕj − ζ)/EA, we differentiate Eq. (3.7) with respect

to φj

∂ju =
ξd|γ|Γ̃j
4E3

Au
sin(ϕj − ζ), (A.3)

∂jv =
−ξd|γ|Γ̃j
4E3

Av
sin(ϕj − ζ), (A.4)

∂jζ =
Γ̃j
|γ| cos(ϕj − ζ), (A.5)

where Γ̃j = 2
π arctan

(
D

|∆α|

)
Γα. We note that u∂ju + v∂jv = 0 which reduces the Berry

connection of the states |±⟩ to

A
(+)
j = v2∂jζ = −A(−)

j . (A.6)

The curl of the Berry connection is the Berry curvature which contains the topological

information of the state. From Eq. (A.6) we get

F
(+)
jk = ∂jA

(+)
k − ∂kA(+)

j = ∂j(v
2)∂k(ζ)− ∂k(v2)∂j(ζ) = −F (−)

jk , (A.7)
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since ∂j(∂kζ) = ∂k(∂jζ); the second derivatives of ζ are continuous. Using ∂jv
2 = 2v∂jv

and Eqs. (A.4) and (A.5), we find

F
(+)
jk =

ξdΓjΓk
2E3

A

sin(ϕk − ϕj) = −F (−)
jk . (A.8)

The integral of the Berry curvature is quantized in most cases and known as the Chern

number

C(±) =
1

2π

∫ 2π

0
dφj

∫ 2π

0
dφk F

(±)
jk . (A.9)

This number tells trivial (C = 0) topological states from non-trivial (C ̸= 0). In this case,

it evaluates to C(±) = 0. Let us show this explicitly.

Consider the inner integral

f(φj) =

∫ 2π

0
dφk

sin(φk − φj)(
ξ2d + |γ|

2
)3/2 . (A.10)

This function is odd around the point φj = ζ0 = arg(γ ̸=j,k) = arg(
∑

α ̸=j,k Γ̃αe
iφα); the

angle of γ in the complex plane before summing over lead j and k. If φj = ζ0, then the

angle of γ is unchanged when adding lead j, i.e. γ ̸=k = |γ ̸=k|eiζ0 . For the integrand in Eq.

(A.10), we have |γ|2 = |γ ̸=k|2 + Γ2
k + 2|γ ̸=k|Γk cos(ϕk − ζ0), using the law of cosines. The

integrand is thus also odd around φk = ζ0 and 2π-periodic, so it integrates to zero over a

full period; f(ζ0) = 0.

A reflection about the axis ζ = ζ0 does not change |γ|. Parametrizing φj , φk by ∆φj , η,

|γ(φj = ζ0 +∆φj , ϕk = ζ0 +∆φj + η)| = |γ(φj = ζ0 −∆φj , ϕk = ζ0 −∆φj − η)|. Using

this and the 2π-periodicity of the integrand in Eq. (A.10), one may show that f(ζ0+∆φj) =

−f(ζ0 − ∆φj), such that
∫ 2π
0 dφj f(φj) = 0 and thus C(±) = 0. This holds for all finite

Γj ,Γk such that the topology of the eigenstates |σ⟩ , |±⟩ is always trivial in the infinite gap

limit.
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B Imaginary time Nambu Green function for lead electrons

In Eq. (2.9), we found the Matsubara Nambu Green function for the electrons in lead α.

Here we Fourier transform this expression to arrive at the imaginary time representation

of this function.

By definition

G0,αk(τ) =
1

β

∑

n

G0,αk(iωn)e−iωnτ , 0 < τ < β, (B.1)

where G0,αk(iωn) is given by Eq. (2.9), restated here with Eαk =
√
ξ2αk + |∆α|2:

G0,αk(iωn) =
iωn + ξαkτz −∆′

ατx +∆′′
ατy

(iωn)2 − E2
αk

. (B.2)

We may evaluate the Matsubara sum with complex contour integration. Consider the

integral

I =

∫

C

dz

2πi
(1− f(Eαk))

[1, z]

z2 − E2
αk

e−τz, 0 < τ < β (B.3)

using a circle of infinite radius centered at the origin as the contour C and integrating in

the counter-clockwise direction. Here, f(z) = [exp(βz) + 1]−1 is the Fermi function. The

notation [1, z] is simply to evaluate two similar integrals at the same time. By Jordan’s

lemma, I = 0 since the integrand is exponentially suppressed along the contour. The

integrand has poles at z = iωn due to the Fermi function and at z = ±Eαk. The poles at

z = iωn are simple poles with residue 1/β. Thus, by the residue theorem

I =
1

β

∑

n

[1, iωn]

(iωn)2 − E2
αk

e−iωnτ + 2πiRes(z = Eαk) + 2πiRes(z = −Eαk)

=
1

β

∑

n

[1, iωn]

(iωn)2 − E2
αk

e−iωnτ +
f(Eαk)

2Eαk

[
eEαk(β−τ) − eEαkτ , eEαk(β−τ) + eEαkτ

]
.

(B.4)

Combined with Jordan’s lemma, we find

1

β

∑

n

[1, iωn]

(iωn)2 − E2
αk

e−iωnτ = −f(Eαk)
2Eαk

[
eEαk(β−τ) − eEαkτ , eEαk(β−τ) + eEαkτ

]
. (B.5)

The components of the imaginary time Nambu Green function are then for 0 < τ < β
∑

k

G110,αk(τ) = −
∑

k

1

2
f(Eαk)

(
eEαk(β−τ) + eEαkτ

)
, (B.6a)

G120,αk(τ) =
∆α

2Eαk
f(Eαk)

(
eEαk(β−τ) − eEαkτ

)
. (B.6b)

The momentum-sum is simply there to kill the anti-symmetric term ξαk that sits on the

diagonal. Note that
∑

k G220,αk(τ) =
∑

k G110,αk(τ), G210,αk(τ) = G120,αk(τ)∗ determines the two

other components.
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C QD Nambu Green function in the infinite gap limit

In this section, we derive the components of the Nambu Green function for electrons on

the QD in the infinite gap limit. In imaginary time, the components of the Green function

are given by Eq. (4.9), and copied here

G0,d(−τ) =



〈
d†↑(τ)d↑(0)

〉
0
⟨d↓(τ)d↑(0)⟩0〈

d†↑(τ)d
†
↓(0)

〉
0

〈
d↓(τ)d

†
↓(0)

〉
0


 . (C.1)

The Green functions are evaluated in the Lehmann representation, meaning Z0 ⟨· · ·⟩0 =
∑

n0
e−βE

0
n ⟨n0|· · ·|n0⟩ using the eigenstates |n0⟩ ∈ {|↑⟩ , |↓⟩ , |+⟩ , |−⟩}, where (Eq. (3.6))

|+⟩ = u |↑↓⟩ − ve−iζ |0⟩ , |−⟩ = u |0⟩+ veiζ |↑↓⟩ , (C.2)

and |↑↓⟩ = d†↑d
†
↓ |0⟩. The time evolution is given by the infinite gap Hamiltonian (3.5) such

that Heisenberg operators evolve as AH(τ) = eH∞τASe
−H∞τ , where AH , AS refer to the

operator A in the Heisenberg, Schrödinger picture, respectively. It is useful to consider the

identity

⟨AH(τ)BH(0)⟩0 =
1

Z0

∑

n0

e−βE
0
n ⟨n0|eH∞τASe

−H∞τBS |n0⟩

=
1

Z0

∑

n0

e−(β−τ)E0
n ⟨n0|ASe−H∞τBS |n0⟩ .

(C.3)

Let us also apply e−H∞τ to the states |0⟩ , |↑↓⟩ that are not eigenstates.

e−H∞τ |0⟩ = e−H∞τ
(
−veiζ |+⟩+ u |−⟩

)
= −veiζe−E0

+τ |+⟩+ ue−E
0
−τ |−⟩

=
(
u2e−E

0
−τ + v2e−E

0
+τ
)
|0⟩+ uveiζ

(
e−E

0
−τ − e−E0

+τ
)
|↑↓⟩ ,

(C.4)

e−H∞τ |↑↓⟩ = e−H∞τ
(
u |+⟩+ ve−iζ |−⟩

)
= ue−E

0
+τ |+⟩+ ve−iζe−E

0
−τ |−⟩

= uve−iζ
(
e−E

0
−τ − e−E0

+τ
)
|0⟩+

(
u2e−E

0
+τ + v2e−E

0
−τ
)
|↑↓⟩ .

(C.5)
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Now, we are ready to calculate the Green functions.

Z0

〈
d†↑(τ)d↑(0)

〉
0
=
∑

n0

e−(β−τ)E0
n ⟨n0|d†↑e−H∞τd↑|n0⟩

=
(
e−(β−τ)E0

↑ ⟨↑|d†↑e−H∞τd↑|↑⟩+ e−(β−τ)E0
+ ⟨+|d†↑e−H∞τd↑|+⟩

+ e−(β−τ)E0
− ⟨−|d†↑e−H∞τd↑|−⟩

)

=
(
e−(β−τ)E0

↑ ⟨0|e−H∞τ |0⟩+ u2e−(β−τ)E0
+ ⟨↓|e−H∞τ |↓⟩

+ v2e−(β−τ)E0
− ⟨↓|e−H∞τ |↓⟩

)

= u2
(
e−E

0
−τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
+(β−τ)

)

+ v2
(
e−E

0
+τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
−(β−τ)

)
,

(C.6)

Z0

〈
d↓(τ)d

†
↓(0)

〉
0
=
∑

n0

e−(β−τ)E0
n ⟨n0|d↓e−H∞τd†↓|n0⟩

=
(
e−(β−τ)E0

↑ ⟨↑|d↓e−H∞τd†↓|↑⟩+ e−(β−τ)E0
+ ⟨+|d↓e−H∞τd†↓|+⟩

+ e−(β−τ)E0
− ⟨−|d↓e−H∞τd†↓|−⟩

)

=
(
e−(β−τ)E0

↑ ⟨↑↓|e−H∞τ |↑↓⟩+ v2e−(β−τ)E0
+ ⟨↓|e−H∞τ |↓⟩

+ u2e−(β−τ)E0
− ⟨↓|e−H∞τ |↓⟩

)

= u2
(
e−E

0
+τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
−(β−τ)

)

+ v2
(
e−E

0
−τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
+(β−τ)

)
,

(C.7)

Z0

〈
d†↑(τ)d

†
↓(0)

〉
0
=
∑

n0

e−(β−τ)E0
n ⟨n0|d†↑e−H∞τd†↓|n0⟩

=
(
e−(β−τ)E0

↑ ⟨↑|d†↑e−H∞τd†↓|↑⟩+ e−(β−τ)E0
+ ⟨+|d†↑e−H∞τd†↓|+⟩

+ e−(β−τ)E0
− ⟨−|d†↑e−H∞τd†↓|−⟩

)

=
(
− e−(β−τ)E0

↑ ⟨0|e−H∞τ |↑↓⟩ − uve−iζe−(β−τ)E0
+ ⟨↓|e−H∞τ |↓⟩

+ uve−iζe−(β−τ)E0
− ⟨↓|e−H∞τ |↓⟩

)

= uve−iζ
(
e−E

0
+τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
−(β−τ)

−e−E0
−τe−E

0
↑(β−τ) − e−E0

↓τe−E
0
+(β−τ)

)

= Z0 ⟨d↓(τ)d↑(0)⟩∗0 .

(C.8)

The last equality follows from ⟨n0|d†↑e−H∞τd†↓|n0⟩
∗ = ⟨n0|d↓e−H∞τd↑|n0⟩.
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D ZBW single-lead phase transition

In section Section 5.6 we needed the function f which relates ∆/U to tZBW/U at the

singlet-doublet phase transition in the ZBW model for some x = 1 + 2ϵd/U .

tZBW

U
= f

(
∆

U
, x

)
. (D.1)

We approximate f numerically through diagonalization of the ZBW Hamiltonian for fixed

x on a 2D grid (∆/U , tZBW/U) and, afterwards, using the marching squares algorithm

(’mpl2014’ in ContourPy) to estimate the singlet-doublet phase transition ES − ED =

0 through linear interpolation between grid points. The grid is of size 200 × 200 with

logarithmic spacing (∆/U ∈ [10−4, 103], tZBW/U ∈ [5 × 10−4, 30]) and we repeat this for

101 different x ∈ [−0.99, 0.99] (evenly spaced in linear space). See Fig. D.1 for examples

of this. The sampled values of f are shown in Fig. D.2. Outside this grid, the asymptotic

values are used (dashed lines in Fig. D.1).

f

(
∆

U
, x

)
→





√
2∆/3U
U

ϵd+U
− U

ϵd

, U ≫ ∆

[
∆2

U2

(
1

4
− ξ2d
U2

)]1/4
, ∆≫ U.

(D.2)

The asymptote for U ≫ ∆ is found from Eq. (5.63) while the other (∆ ≫ U) is given

by the infinite gap limit of the ZBW model. From the QD self-energy in the ZBW model

(Eq. (5.76)), we find that the infinite gap Hamiltonian has the same form as Eq. (3.5) but

with a different tunneling parameter, γ. For a single-lead S-QD system, γ = (tZBW)2/∆.

From Section 3 we know the phase transition occurs at ξ2d + |γ|2 = U2/4 and inserting

γ = (tZBW)2/∆, one finds the asymptotic behaviour of tZBW/U given by Eq. (D.2) in the

limit ∆≫ U .
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Figure D.1: ZBW single-lead (S-QD) phase diagrams for different x = 1+2ϵd/U on a log-log

scale. Phase diagrams are identical for x → −x. The dashed lines denote the asymptotic

phase transition lines given by Eq. (D.2). It depends on x, when the asymptotic behavior

is reached.
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Figure D.2: ZBW single-lead S-QD system: relation between ∆/U , x, and tZBW/U at the

singlet-doublet phase transition.
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[27] S. Vaitiekėnas et al., “Flux-induced topological superconductivity in full-shell nano-

wires”, Science 367, eaav3392 (2020).

[28] D. Razmadze et al., “Quantum Dot Parity Effects in Trivial and Topological Joseph-

son Junctions”, Phys. Rev. Lett. 125, 116803 (2020).

https://doi.org/10.1103/PhysRevB.79.224521
https://doi.org/10.1088/0953-8984/19/48/486211
https://doi.org/10.1088/0953-8984/19/48/486211
https://doi.org/10.1103/PhysRevB.92.235422
https://doi.org/10.1143/JPSJ.61.3239
https://doi.org/10.1143/JPSJ.69.1812
https://doi.org/10.1143/JPSJ.69.1812
https://doi.org/10.1088/1367-2630/9/5/115
https://doi.org/10.1038/s41467-018-04683-x
https://doi.org/10.1103/PhysRevLett.121.257701
https://doi.org/10.1103/PhysRevLett.121.257701
https://doi.org/10.1103/PhysRevB.105.054503
https://doi.org/10.1103/PhysRevLett.82.2788
https://doi.org/10.1103/PhysRevB.107.115407
https://doi.org/10.1103/PhysRevB.107.155111
https://doi.org/10.1126/science.aav3392
https://doi.org/10.1103/PhysRevLett.125.116803


BIBLIOGRAPHY 85

[29] M. Valentini et al., “Nontopological zero-bias peaks in full-shell nanowires induced

by flux-tunable Andreev states”, Science 373, 82–88 (2021).

[30] W. A. Little and R. D. Parks, “Observation of Quantum Periodicity in the Transition

Temperature of a Superconducting Cylinder”, Phys. Rev. Lett. 9, 9–12 (1962).

[31] M. Tinkham, Introduction to Superconductivity, Dover Books on Physics Series (Dover

Publications, 2004).

[32] S. D. Escribano et al., “Fluxoid-induced pairing suppression and near-zero modes in

quantum dots coupled to full-shell nanowires”, Phys. Rev. B 105, 045418 (2022).

[33] R.-P. Riwar et al., “Multi-terminal Josephson junctions as topological matter”, Nat.

Commun. 7, 1–5 (2016).

[34] H. Weisbrich et al., “Fractional transconductance via non-adiabatic topological Cooper

pair pumping”, arXiv, 10.48550/arXiv.2212.11757 (2022).

[35] M. Kolodrubetz et al., “Geometry and non-adiabatic response in quantum and clas-

sical systems”, Phys. Rep. 697, 1–87 (2017).

https://doi.org/10.1126/science.abf1513
https://doi.org/10.1103/PhysRevLett.9.9
https://doi.org/10.1103/PhysRevB.105.045418
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1038/ncomms11167
https://doi.org/10.48550/arXiv.2212.11757
https://doi.org/10.48550/arXiv.2212.11757
https://doi.org/10.1016/j.physrep.2017.07.001

	Introduction
	BCS theory
	Josephson junctions
	Quantum dots
	The Anderson model
	Local moment regime


	Modelling multiterminal Josephson junctions
	Effective action for electrons on the QD

	The proximitized QD in the infinite gap limit
	First order energy corrections to the infinite gap limit
	Phase diagrams and comparison with NRG

	Zero-bandwidth approximation
	The ZBW Hamiltonian
	Conservation of total spin angular momentum
	The dimensionality of spin-blocks

	YSR bound state in the single lead system
	YSR bound states in the two-lead system
	Energy dispersion and current-phase relations
	Relation to the superconducting Anderson model
	Renormalization for the proximitized QD
	Renormalization in the local moment regime
	Interpolating between the proximitized limit and the local moment regime


	Conclusion
	Outlook
	Appendices
	Berry curvature and Chern number in the infinite gap limit
	Imaginary time Nambu Green function for lead electrons
	QD Nambu Green function in the infinite gap limit
	ZBW single-lead phase transition

	Bibliography

