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Abstract (English)

In this master thesis, a special kind of quantum-dot cellular automaton, know as the (2,N)-QDCA, are
described and mapped to an anti ferromagnetic, nearest neighbour, quantum Ising model with open
boundary conditions. Ignoring the quantum dynamics, the system acts as a classical Ising model in a
longitudinal field. The equilibrium properties of the classical Ising model are therefore explored. From
statistical average calculations it is shown that for small temperatures and small field, the system
localizes around an zero-field AFM ground state. Increasing the field over a certain threshold is
predicted to cause the system to localize around a zero-field FM ground state with a magnetization
opposite to the field.

To describe the non-equilibrium dynamics of the classical model, the kinetic Ising model is introduced.
This allows one to simulate how a given initial configuration will act when coupled to a Glauber heat
bath. To simulate this, the Gillespie algorithm is implemented using Cython code and can be using
in Python. From numerical results, it is shown that for zero longitudinal fields and zero temperature,
the system randomly picks a zero-field AFM ground state, which it decays into. The average decay
time is measured to be independent of the initial state in general, and depends on the system size
via a power law with an exponent of 2.05188 ± 0.00006. When the field is non-zero but less than a
given threshold, any given initial state decays into a disordered state with domain wall in the bulk.
At the threshold, domain wall pairs can be created and annihilated spontaneous which introduces an
enormous amount of disorder. For fields over the threshold, the system decays into the zero-field FM
ground with magnetizations opposite to the field.

In the end of the thesis, the eigenvalues of the quantum Hamiltonian is evaluated semi-analytical.
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Resumé (Dansk)

I dette speciale, en type kvant-dot cellulære automater, kaldet (2,N)-QDCA er beskrevet og afbildet
til en antiferromagnetisk, nærmest nabo, kvante Ising model med åbne grænse betingelser. Hvis
kvantedynamikken ignoreres vil systemet opføre sig som en klassik Ising model i et longitudinalt felt.
Ligevægtsegenskaber for denne model er undersøges. For lave temperature og små feltstyrker vil
det klassiske systemet lokaliserer sig omkring en de to nul-felts antiferromagnetiske grundtilstands
konfigurationer. Er feltet stærkt nok, vil systemet i stedet lokaliserer sig omkring den nul-felts
ferromagnetiske grundtilstand, hvis magnetisering er modsat feltet.

Til at beskrive ikke-ligevægtsdynamikken at den klassiske Ising model, introduceres den kinetisk
Ising mode. Denne model tillader en af simulerer hvordan en given begyndelsestilstand opfører sig,
n̊ar den er koblet til et Glauber varmebad. Til simuleringer bruges Gillespie algoritmen, def er
implementeret i Cython og kan frit benyttes i Python koder. From numeriske resultater ses det,
at for nul temperatur og feltet sl̊aet fra, vil system vælge en tilfældig nul-felts antiferromagnetisk
grundtilstand, som den henfaldet til. Den gennemsnitlige henfaldstid afhænger generelt ikke af begyndelsestilstanden,
men i stedet systemstørrelsen, der afspejles via en potensfunktion. Eksponenten for denne lov er
estimeret til 2.05188 ± 0.00006. Er feltet ikke er nul, men i stedet er mindre end en bestemt værdi,
da vil systemet henfalde til en ikke-ordnet tilstand med domænevæge i hovedparten af system. Skrues
feltstyrken op, s̊a den rammer den bestemte værdi, da vil domænevæge kunne skabes og tilintetgøres
spontant. Systemet vil da indeholde meget uorden. Skrues feltet endnu højere op, vil enhver begyndelseskonfiguration
henfalde til den nul-felts ferromagnetisk grundtilstands hvis magnetisering er modsat feltet.

Tilsidst i specialet regnes egenværdierne af kvantemodellens Hamilton ud halvanalytisk.
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Chapter 1

Introduction

Quantum cellular automata1 (QCA) are quantum mechanical systems which have the ability to describe
many interesting phenomena such as the dynamics of topological phases in Floquet systems[1], quantum
Turing machines[2], and quantum random walks[1, 3, 4]. All three phenomena are super interesting with
the first two being different approaches to build a quantum computer[1, 5]. This, for now, theoretical
machine will exploit quantum mechanics to make the computers of today look pathetic because of the
quantum computer’s tremendously large computing power.

Since the dynamics of a quantum random walk has been shown to be similar to that of excitons in
photosynthetic systems[3, 4, 6], the applications of QCA extends to areas other than material science.
Also in the technology industry, a class of QCA called quantum-dot cellular automata (QDCA) shows
potential for creating ultra-small circuits that can be used to create better and more compact computer
chips[7, 8].

1.1 But what is a quantum cellular automaton?

1.1.1 Starting classical

Figure 1.1.1: Simulation of a 1D,
k = 2 cellular automaton with random
initial configuration and selection rule
126. Time propagates in the downward
direction.

A QCA is a generalization of the classical cellular
automaton (CA) which was invented by John von Neumann
to describe self-replicating phenomena [1, 2, 9]. The CA
consists of a discrete, and sometimes infinite, d-dimensional
lattice evolving in discrete time steps. Each site can be
in any k different states which are updated each time step
depending on the state of its neighbouring sites[9]. These
”update rules” are local and homogeneous across the system
and classifies the overall dynamics of the system. For
different ”update rules”, the automaton will act in different
ways. Demonstrations of this can easily be found on
Youtube[10, 11, 12] where cellular automata with different
dimensions and update rules are simulated. These models
are very interesting for biologist and physicist specializing in
complex systems, because they are able to simulate complex
phenomena such as forest fires, starfish outbreaks in coral
reefs, and formal languages[13, 14, 15].

An example of a 1D, k = 2, cellular automaton can be
seen in figure 1.1.1. The two states are here represented by
black and white squares which are updated using selection

1Single: Automaton - Plural: Automata
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(a) (b)

Figure 1.1.2: The standard cell and the binary wire for Quantum-dot cellular automata based
architectures.

rule 126[16]. Its initial state has been chosen randomly. Even so, ”triangles” appear in the time
directions, demonstrating order from simple local rules. This is why cellular automata are studied by
complex physicist since many complex phenomena can emerge from simple local rules. For a quantum
physicist’s point of view, these cellular automata would be interesting to quantize.

1.1.2 The Quantum-dot cellular automata

2Through the history, different attempts of quantizing the cellular automaton have been made. Some
attempts were good and some gave non-physical results[2]. One example of the quantization going well
is referred to as a quantum-dot cellular automata (QDCA). This is a CA where the cells are replaced
by quantum dots whose state can be any superposition of k basis states. The lattice is build from unit
cells consisting of four or five quantum dots, see fig. 1.1.2a, which are named standard cells. On each
standard cell, two electrons are placed. These electrons are able to tunnel between the dots, thereby
creating some internal dynamics in the cell. Due to the Coulomb interaction, the electrons will move in
ways such that the distance between them is maximized. If the tunnelling rates between the quantum
dots are sufficiently small, the Hilbert space of the cell reduces to a two-level system where electrons
occupies antipodal quantum dots denoted∣∣∣∣•◦ ◦•

〉
and

∣∣∣∣◦• •◦
〉
. (1.1.1)

Here • represents a dot occupied by an electron, while ◦ represents an empty dot. It is standard to
define a polarization P ∈ {−1, 1} to the two antipodal states in eq. 1.1.1. Here the left state in eq.
(1.1.1) is defined to have polarization P = 1, while the right state has polarization P = −1. Using
linear superpositions, one can create a state with a given polarization p ∈ [−1, 1] by choosing the
coefficients picked so that

|ψ;φ〉 =

√
1 + p

2

∣∣∣∣•◦ ◦•
〉

+

√
1− p

2
eiφ
∣∣∣∣◦• •◦

〉
with φ ∈ [0, 2π[. (1.1.2)

Assuming the two states of eq. 1.1.1 to be orthonormal, the expectation value of a state |ψ;φ〉 is p.
When placing two cells in close proximity of each other, this degeneracy between the two antipodal

states are lifted. This is due to the Coulomb interaction between electrons of different cells. This
means that if the polarization of one cell is fixed to a non-zero value, one of the antipodal states of
the other cell will be energetically favourable over the other. This is reflected by the cell-cell response
function[7], which is almost takes the form of a sign function,

P2(P1) ≈ sgn(P1). (1.1.3)

This response function in what the binary wire architecture is build upon. This structure can be
constructed from a long string of standard cells placed close to each other, fig 1.1.2b. The ground state
of such wire is the state, where all the cells have the same polarization. Fixing the polarization of the

2This section is based on articles [7, 8, 17]
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first cell to any positive polarization p > 0, the rest of the cells in the wire will acts accordingly and
shift to the | •◦ ◦• 〉 state. If the polarization of the first cell is then changed to a negative polarization,
the rest of the cells will change to the | ◦• •◦ 〉 state. In this way, the binary wire allows transport of
binary information, hence the name ”binary wire”, which can be done super fast[8].

Logical gates can also be constructed from standard cells. Gates such as inverters and Majority
gates can be build using QDCA standard cells[17]. The latter is a logical gate that takes three inputs
via binary wires, (a, b, c), and outputs, via a fourth wire, the polarization of the majority of the inputs.
If one of the inputs are fixed to either 0 or 1, the Majoranty gate becomes a permanent AND or OR
gate respectively. From these logic gates, larger architectures, such as the full adders and shift registers,
can be realized. Experts hope to use this QDCA representation of binary information to build both
small and fast processors that will work at room temperature[17]. Inspired by this, one can analyse
the dynamics of other QDCA structures like the one described in the next section.

1.2 The (2,N) quantum-dot cellular automata

Figure 1.2.1: Sketch of (2,N) quantum-dot cellular automata. Dashes lines represents tunnelling
coefficients ti,j between two dots.

To continue the idea of building QCAs from quantum dots, one can consider the (2, N) QDCA. This
system consists of a 2-dimensional array of quantum dots with N columns and 2 rows, fig. 1.2.1. The
dots are filled to a certain occupation-level, using a chemical potential µ, such that the occupation of
a single dot is given by the Fermi-Dirac distribution 〈n̂i,j,σ〉 = nF (Ei,j − µ). Here n̂i,j,σ is the number
operator of the j’th electronic eigenstate of the i’th dot. σ ∈ {↑, ↓} denotes the spin degrees of freedom,
which is assumed not to influence the energy levels. Since nF (x) = [ex/T + 1]−1 then, for small enough
temperatures T , the Fermi Dirac distribution approaches the steps function

Θ(x) := lim
T→0+

nF (x) =


1 for x < 0
1
2 for x = 0
0 for x > 0

. (1.2.1)

Assuming each quantum dot has a spectrum that mimics fig. 1.2.2a, and assuming that T � µ then
all energy-level under the chemical potential will be fully occupied. This defines the Fermi surface in
fig. 1.2.2a. In addition, if the spacing between the Fermi surface and the next energy level is ∆1 and
satisfies (∆1 − µ) � T , then all states above the Fermi surface are completely empty. This state is
denoted |Ω〉. The state of the complete quantum-dot array can then be written as the direct product⊗N

i=1 |Ω〉.

1.2.1 Adding extra electrons to |Ω〉

To make the system a bit more interesting, a few additional electrons can be added to the system. Since
all energy levels under the chemical potential are fully occupied, the only place to put the electrons are
on the levels above the Fermi surface. Putting the electrons on the first levels above the Fermi level
at temperatures also satisfying ∆2 � T , each quantum dot will now have a four dimensional Hilbert
space of

Hdot = span {|Ω〉, | ↑〉, | ↓〉, | ↑↓〉} . (1.2.2)
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(a) (b)

Figure 1.2.2: Graphical representation of the occupation of a single quantum dot for small temperatures.
a) Occupation of dot with chemical potential µ. Because of the small temperature, all energy levels
under the chemical potential is 100 % occupied, while higher states are empty. This state is labelled
|Ω〉. b) Two extra electrons are added to |Ω〉 and placed on the first energy level over µ. Due to the
Pauli exclusion principle, the spins of the electrons must anti-align. This state is labelled | ↑↓〉.

Here | ↑〉 and | ↓〉 are the state |Ω〉 dressed with an additional spin up or down electron on the first

levels above Fermi level. Using second-quantized operators, one can write | ↑〉 = c†↑|Ω〉 and | ↓〉 = c†↓|Ω〉,
where c†σ is the creation operator of an electron with spin σ having energy EF + ∆1. The last state,
| ↑↓〉 = c†↑c

†
↓|Ω〉, is the state where both a spin up and spin down electron are added to |Ω〉. They

anti-align because of Pauli’s exclusion principle. This state is depicted in fig. 1.2.2b. The requirement
for ∆2 � T is necessary to avoid electrons on the EF + ∆1 levels being excited to the EF + ∆1 + ∆2 by
thermal excitations. If this were not the case, electrons would be able to move between energy levels,
which would result in a more complicated Hilbert space. To keep the dynamics of system simple, the
assumption is necessary.

1.2.2 Hamiltonian of multiple dots

Assuming that all dots in the (2,N) QDCA are roughly equivalent and have a Hilbert space Hdot, the
Hilbert space of the total system can be written in the direct product basis

H = span
{
{|Ω〉, | ↑〉, | ↓〉, | ↑↓〉}⊗2N

}
. (1.2.3)

This Hilbert space has a dimension of 16N , which is quite enormous even for just a few columns.
Placing the quantum dots in close proximity of each other, the extra electrons on different dots are
able to interact with each other. The Hamiltonian describing these interactions can be written as a
sum of the following terms:

A zero-point energy This term describes the total interaction between all electrons of the QDCA
that lay under the Fermi surface of the individual dots. Assuming this energy doesn’t change
when adding the extra electrons, the energy can be view as a constant on the Hilbert space H.
The zero-point energy therefore takes the form of

H0 = E0I. (1.2.4)

Here I is the identity operator acting on H. Since the only consequence of this term is a shift in
the total energy of the system, it can be ignored for all practice purposes here.
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On-site energy term Given the energy cost of putting an extra electron on the i’th dot, Ei, the
on-site energy term of the Hamiltonian can be written as

Hdot =
∑
i

Ei(n̂i↑ + n̂i↓) (1.2.5)

Here n̂i,σ is the number operator corresponding to an electron with spin σ ∈ {↑, ↓} sitting on the
i’th dot.

Tunnelling Allowing electrons to jump from one dot to another via tunnelling processes. If ti,j is
the coefficient associated of an electron tunnelling between the i’th and j’th dot, the tunnelling
Hamiltonian can be written as

Htunnel =
∑

<i,j>,σ

ti,j

(
c†iσcjσ + c†jσciσ

)
. (1.2.6)

Here c†iσ and ciσ are the electron creation and annihilation operators of the i’th dot. Again,
σ ∈ {↑, ↓} represents the electron spin. The tunnelling processes are restricted so electrons only
are allowed to hop between neighbouring sites. One therefore sums over all pairs 〈i, j〉 where i
and j are neighbouring dots. For each dot, there are three kinds of neighbours. One being along
the rows, one along the columns, and one being a combination of both. Each type of neighbour

have an associated tunnelling coefficient being t⊥i , t
‖
i , and t⊥i . For the i’th dot, then the coefficient

t⊥i describes tunnelling in the same column, t
‖
i describes tunnelling in the same row, and tdi is for

diagonal tunnelling, 1.2.3. This part of the Hamiltonian makes the electrons move around the
system and delocalizes them.

Inter-dot Coulomb repulsion If two electrons are placed on the same dot, each with different spins,
then a repulsive Coulomb interaction, Qi is present.

HInter =
∑
i

Qin̂i↑n̂i↓. (1.2.7)

This interaction forces electrons to occupy different dots.

Extra-dot Coulomb repulsion Between all the extra electrons, a Coulomb repulsion is present
described by the Hamiltonian

HExtra =
1

2

∑
i 6=j

∑
σ,σ′

Vijn̂iσn̂jσ′ . (1.2.8)

Here Vij = V
‖ri−rj‖ is the Coulomb potential between two electrons with coordinates ri and rj .

Because of this interaction, the extra electrons move so they maximize the distance between
them.

Adding the above terms, excluding the irrelevant zero-point energy, one get a Hubbard-like Hamiltonian
describing the QDCA

H =
∑
i

Ei(n̂i↑ + n̂i↓) +
∑
〈i,j〉,σ

ti,j

(
c†iσcjσ + c†jσciσ

)
+
∑
i

Qin̂i↑n̂i↓ +
1

2

∑
i 6=j

∑
σ,σ′

Vijn̂iσn̂jσ′ . (1.2.9)

Due to the large dimension of the Hilbert space, and therefore also the matrix representation of the
Hamiltonian, the dynamics of the system cannot be evaluated numerical for large N ’s. It is therefore
necessary to do some analytical work first. This is not trivial in any way because of the tunnelling
and the extra-dot Coulomb interaction, which makes the eigenstates complicated. The Hilbert space
is therefore restricted even more to make the Hamiltonian more manageable to work with.
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Figure 1.2.3: Graphical representation of the different ways electrons can tunnel between dots.

1.3 Restricting to a single electron pr. column

Assuming that the tunnelling rates between dots in the same column is much larger than the tunnelling
rates between dots in different columns, t⊥ � t‖, td, electrons will stay in their columns. If one at the
same time assumes that only a single extra electron is put into every column, the Hilbert space of each
column will reduce to a simple two-levels system,

H̃single = span {| •◦ 〉 , | ◦• 〉} . (1.3.1)

Here, | •◦ 〉 is the state of a single column with the extra electron being on the top dot. In the same
way, | ◦• 〉 is the state of a single column, where the electron is on the bottom dot. The total, reduced
Hilbert space of the system can then be written as

H̃ = span
{
{| •◦ 〉 , | ◦• 〉}

⊗
N
}
. (1.3.2)

When restricting the Hilbert space in this way, the inter-dot interaction HInter can be ignored since no
process allows for two electrons to be on the same dot, given the initial configuration. Also, since the
energy levels of the quantum dots are assumed to independent of spin, the spin degrees of freedom can
be ignored. The Hamiltonian therefore reduces to

H =
∑
(i,j)

E(i,j)n̂(i,j) +
∑
i

ti

(
c†(i,1)c(i,2) + c†(i,2)c(i,1)

)
+

∑
(i,j),(i′,j′)

V

‖r(i,j) − r(i′,j′)‖
n̂(i,j)n̂(i′,j′). (1.3.3)

Here (i, j) labels the coordinates of the dots with i ∈ {1, · · · , N} and j ∈ {1, 2}. j = 1 refers to the
bottom dot while j = 2 refers to the top. This two-level system has another representation, which will
make it easier to work with. Since a system of N spin-1/2 particles have a Hilbert space of the same
dimension as H̃, one could imagine that a map between the them should exist. This turns out to be
correct and is shown in the next section.

1.4 Mapping to the quantum Ising model

To map the Hilbert space of the restricted QDCA to the Hilbert space of a chain of N spin-1/2 particles,
one does so column by column. If M : H̃ → Hspin-1/2 maps the restricted single column Hilbert space
to the Hilbert space of a single quantum spin, one can chose M so that

| •◦ 〉 ↔ | ↑〉 and | ◦• 〉 ↔ | ↓〉. (1.4.1)

For this to be valid, one must ensure that the fermion anticommutator and spin commutator relation
holds.
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First, the fermion operator c†(i,2)c(i,1) maps to the spin ladder operator σ+
i . One observes this by

using that

c†(i,2)c(i,1) = | •◦ 〉〈 ◦• | and σ+ = | ↑〉〈↓ |. (1.4.2)

Since the operators c†(i,2)c(i,1) and σ+
i acts in the same way on their respective basis states, then they

must map to each other. σ−i must then represent the operator c†(i,1)c(i,2), since σ−i = (σ+
i )†. From this,

it is possible to shown that both the commutator relation, [σ+
i , σ

−
j ] = δijσ

z
i , and the anti-commutator

relation, {c†i , c
†
j} = {ci, cj} = 0 and {c†i , cj} = δij , are satisfied simultaneous. This can be shown by

expanding the commutator

[σ+
i , σ

−
j ]↔ [c†(i,2)c(i,1), c

†
(j,1)c(j,2)] = c†(i,2)c(i,1)c

†
(j,1)c(j,2) − c

†
(j,1)c(j,2)c

†
(i,2)c(i,1). (1.4.3)

Using the fermion anti-commutators one can show that

c†(i,2)c(i,1)c
†
(j,1)c(j,2) = δij

(
n̂(i,2) − n̂(i,1)

)
+ c†(j,1)c(j,2)c

†
(i,2)c(i,1), (1.4.4)

which implies

[σ+
i , σ

−
j ]↔ δij

(
n̂(i,2) − n̂(i,1)

)
. (1.4.5)

this operator can then be mapped to δijσ
z
i = [σ+

i , σ
−
j ]. By using the spin commutators relations, one

can also show that the anti-fermion commutators are satisfied. The map M therefore maps the two
Hilbert spaces correctly. From this, the spin representation of the Hamiltonian in eq. (1.3.3) can be
found. This is done term by term. First, the on-site energy term can be written Zeemann term from
a field pointing along the z-direction.

N∑
i=1

E(i,2)n̂(i,2) + E(i,1)n̂(i,1) =

N∑
i=1

E(i,2) + E(i,1)

2
(n̂(i,2) + n̂(i,1)) +

E(i,2) − E(i,1)

2
(n̂(i,2) − n̂(i,1)) (1.4.6)

↔
N∑
i=1

E(i,2) + E(i,1)

2
I + hzi σ

z
i . (1.4.7)

The first term can again be ignored, since it just shifts the energy levels by a constant. The field
strength is directly proportional with the energy difference between the dots. In the same way, the
tunnelling part of the Hamiltonian can be mapped to Zeemann term in the x-direction

H =
N∑
i=1

ti

(
c†(i,2)c(i,1) + c†(i,1)c(i,2)

)
↔

N∑
i=1

ti
(
σ+
i + σ−i

)
=

N∑
i=1

hxi σ
x
i . (1.4.8)

Here the tunnelling coefficient directly maps to the magnetic field along the x-direction. This reflects
the fact that for large ti, the electron delocalizes and occupies the dots equality, resulting in

∣∣〈n̂(i,2)〉
∣∣2 =∣∣〈n̂(i,1)〉

∣∣2 = 0.5. This is analogous to a transverse magnetic field that forces the spin to point in the

x-direction so |〈↑ | ↑x〉|2 = |〈↓ | ↑x〉|2 = |〈↑ | ↓x〉|2 = |〈↓ | ↓x〉|2 = 0.5
For the extra-dot Coulomb repulsion, the interaction between the i’th and j’th column can be

written in terms of four parts

HCoulomb
i,j = Vi,j

(
n̂(i,1)n̂(j,1) + n̂(i,2)n̂(j,2)

)
+ V ′i,j

(
n̂(i,1)n̂(j,2) + n̂(i,2)n̂(j,1)

)
(1.4.9)

Here Vi,j are the Coulomb interaction between electrons in the same row, while V ′i,j are the Coulomb
interaction between electron is different rows. Adding and subtracting a few cross terms, which adds
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to a total zero, one gets

HCoulomb
i,j =

Vi,j + V ′i,j
2

(n̂(i,2) + n̂(i,1))(n̂(j,2) + n̂(j,1)) +
Vi,j − V ′i,j

2
(n̂(i,2) − n̂(i,1))(n̂(j,2) − n̂(j,1))

(1.4.10)

↔
Vi,j + V ′i,j

2
I + Ji,jσ

z
i σ

z
j (1.4.11)

The first term here can again be ignored, since it is a constant. The second term is an interaction
term, which depends on the separation between the dots. This interaction constant Jij will always be
positive for these kind of systems. Due to the nature of the Coulomb interactions, the nearest neighbour
interaction energy dominates eq. (1.4.11). One can show this by denoting the distance between rows
by b, and the distance between columns a. The interaction energy Ji,j will then takes the form of

Ji,j =
Vi,j − V ′i,j

2
=
V

2

(
1− a|i− j|√

(i− j)2a2 + b2

)
. (1.4.12)

The ratio between nearest neighbour interactions, Jnn and the interactions between spins separated by
n columns are then

Jn
J1

=
1

x

1− n√
n2+( ba)

2

1− 1√
1+( ba)

2

. (1.4.13)

For a = b, this ratio is around 18% for x = 2 and around 3% for x = 3. Because of this, only the nearest
neighbour interaction is considered throughout this thesis. Since Jnn > 0, then spins will therefore
tend to anti-align with their neighbours. This makes the total Hamiltonian, acting on the reduced
Hilbert space H̃, take the form of

H ↔
N−1∑
i=1

Jiσ
z
i σ

z
i+1 +

N∑
i=1

hzi σ
z
i + hxi σ

x
i . (1.4.14)

which is a quantum Ising Hamiltonian. The (2,N)-QDCA will therefore have the same dynamics of the
quantum Ising model, given the assumptions presented in the chapter.

1.5 Structure of the thesis

Now that the (2,N) QDCA has been mapped to a quantum Ising model, the next step is to analyse the
dynamics of the system. Since the system is not isolated, but can interact with the environment, it can
be interesting to study its non-equilibrium dynamic. If the coupling to between the ”spins” and the
environment are strong enough, the thermal dynamics of the system will dominate, and the quantum
dynamics can be ignored for now. Doing so leads one to consider a classical Ising model coupled to
heat baths each with their own temperature. This allows the classical system to experience thermal
dynamics, which will be described in chapter 3.

Before delving into non-equilibrium dynamics of the classical Ising model, the language used to
describe them are explain. The equilibrium dynamics is then analysed to gain some intuition about
the long-term behaviour of the classical system for both zero, small, and high temperatures. All this
is in chapter 2.

Chapter 3 describes the kinetic Ising model. Here the classical Ising model is coupled to a Glauber
heat bath, which flips single spins randomly. The rates for which these spin-flip processes happens
at can be used to simulate the non-equilibrium dynamics using stochastic simulations. The algorithm
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used in these simulations, as well as the implementation in code, are described in chapter 4. The code
is written in Cython, which is a Python/C hybrid language. Running the simulations yields results
which will be analysed in chapter 5.

In the chapters 6, the first steps in the analytical framework using to described the quantum
dynamics are taken. The open boundary, nearest neighbour, transverse field quantum Ising Hamiltonian
is diagonalized using analytical methods.

To end the thesis a description on how the code could be improved, are written in chapter 7.



Chapter 2

Classical Ising model

To study simply magnetic systems, the classical Ising model is an all time classic. It describes a classical
system of magnetic dipoles, often referred to as classical spins, on a D dimensional lattice. These spins
can either point along or opposite to a special axis, which often is set to be the z-axis. These spins
interacts with each other trough an exchange interaction, described via a matrix J. Other than that,
each spins interacts individually with a space dependent, longitudinal, magnetic field h. For different
lattice types and values of J and h, the overall behaviour of the system changes.

The first iteration of this model was first set up by William Lenz to describe ferromagnetism in
one-dimensional magnets[18]. It was then solved by Ernest Ising[19] for whom the model was named
after. Ising calculated the magnetization of a one-dimensional chain with periodic boundary conditions,
given that every spin interacts only with its nearest neighbours via a homogeneous exchange coupling
J . The value of this interaction was picked so that the energy was minimized, if all spins pointed in the
same direction. h was also chosen to be homogeneous along the chain. For different values of J and h,
as well as the temperature of the environment T , he found the system’s magnetization as a function
of h/J and T/J .

The simplicity of the Ising model makes it a good toy model for studying many-body system. This
includes magnets, but also lattice gas models[18] and even market modelling[20]. Even thou the model
is simple, only a few cases can be solved exactly, even for homogeneous field and coupling constants.
Numerical methods, such as Monte Carlo simulations, are therefore necessary if one needs to calculate
statistical properties such as magnetization, correlation functions, and critical points.

In this chapter, the notation used to describe the one-dimensional, classical, Ising model with
homogeneous J and h is described first section. Here, the different terms in the energy function is
also descried as well as the term ”domain wall excitations”. In the second section, the equilibrium
properties of this model analysed, is calculated. This includes the magnetic properties, the nearest
neighbour correlation function, and the entropy, for different values of J/T and h/T . From this, a
phase diagram of the 1D classical Ising model can be made.

2.1 Notation and definitions

To describe a given configuration consisting of N spins, one labels each spin by an integer i ∈
{1, · · · , N}. The projection of each spin on the z-axis, which is here picked as the special axis, are
written as σi and can be either plus or minus one,

σi ∈ {1,−1}. (2.1.1)

Here, σi = 1 represents the spin pointing along the z-axis, while σi = −1 represents the spin pointing
opposite to the z-axis. A given configurations is therefore written as {σi}. Graphically, one can
represent {σ} either as a collection of arrows, or as in fig. 2.1.1, a set of grey and white dots.

11
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Figure 2.1.1: Cartoon of the configuration {σ} = {−1, 1,−1, 1,−1} of a classical Ising model with five
sites. The filled dots represents a site with value −1 while an empty site represents a site with value 1.

2.1.1 Interaction energy

Between two spins in the vicinity of each other, an interaction energy proportional to the spins
orientations exists. Given two spins, labelled i and j, this interaction energy takes the form of Jijσiσj ,
where Jij a an element of J. Summing over all unordered spin pairs (i, j), the total spin-spin interaction
energy of a given configuration {σ} takes the form of

Espin-spin({σ}) =
∑
(i,j)

Jijσiσj =
∑
i<j

Jijσiσj . (2.1.2)

For different values of Jij , pairs of spins act differently. Given two isolated spins, who interacts with
coupling strength J , one gets the following behaviour depending on the sign of J :

• J < 0: If the coupling is negative, the spins can minimize their energy by aligning with each
other. The ground state configurations are therefore {1, 1} and {−1,−1}. Both of these have
an overall non-zero magnetic field, since the sum of spins will be either be 1 or −1 respectively.
Negative coupling constants are therefore said to be ferromagntic (FM), since they tend to create
non-zero overall magnetic fields, just like ferromagnetic materials do.

• J > 0: If the coupling is positive, the spins can minimize their energy by anti-aligning with
each other. The ground state configurations are therefore {1,−1} and {−1, 1}. The magnetic
moment of the two spins will then cancel, resulting in no overall magnetic field. Negative coupling
constants are therefore said to be antiferromagntic (AFM), since they tends to prevent non-zero
magnetic field, exactly like antiferromagnetic materials do not have an overall magnetic field.

• J = 0: Here the spins do not interact with each other. One does not care what the other is doing
and all configurations have the same energy. One therefore says that the spins are non-interacting.

1 If all non-zero coupling constants all have the same sign, the models is said to be either a pure
ferromagnetic or a pure antiferromagnetic system. In some systems, such as the model analysed in
this thesis, the interacting between spins decays rapidly with distance. Nearest neighbour interactions
will therefore be much stronger than interactions between next-nearest neighbours and beyond. This
reduces the total spin-spin interaction energy to

Espin-spin,nn({σ}) =
∑
〈i,j〉

Jijσiσj . (2.1.3)

In eq. (2.1.3), {〈i, j〉} refers to the set of nearest neighbouring pairs. On a D = 1, regular, and equally
separated lattice, each site in the system’s bulk have two neighbours. For D = 2, this number increases
to four. For different boundary conditions, the number of neighbours a edge spin has, can vary from
site to site. If periodic boundary conditions (PBC) are assumed, there will be no edge sites, so all spins
have the same number of neighbours. For open boundary conditions (OBC), the edge spins of a chain
will always have one neighbour. For a 2D, regular, square lattice with straight edges, the edge spins on
the side have three nearest neighbours, while the corner spins have two. This can be seen in fig. 2.1.3.

1In other literature, the interacting energy is defined with an overall sign, meaning J > 0 is FM and J < 0 AFM. This
is just a question of convention. Since this thesis will mostly work with antiferromagnetic interactions, the convention
described here is used throughout this thesis. This is to minimize the number of potential sign error.
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Figure 2.1.2: One of the
ground states configurations
of a 1D AFM Ising model with
periodic boundary conditions
and N = 3

Due to the interaction being quadratic in spin, the energy functions
in eq. (2.1.2) and eq. (2.1.3) are Z2 symmetric. This is because
one can flip all spins, σi → −σi, without changing the energy of the
system. This implies that all energy states must be at least two-fold
degenerate. For pure FM systems, the ground state configurations are
the configurations where all spins align. For AFM system, it is not
immediately clear how the ground state configurations look like. This
is because, for some lattices, a spin can sometimes be flipped without
changing the energy. An example of this can be seen for an 1D nearest
neighbour Ising model with periodic boundary conditions and N = 3,
fig. 2.1.2. Here, if either the left of the middle spin is flipped, the energy
does not change, since it will still align with one and anti-align with
the other. That is of course if the nearest coupling constants are homogeneous. For one dimensional
system, the AFM ground state are the states where the spin projection alternates from spin to spin,
such as the configuration depicted in fig. 2.1.1.

2.1.2 Magnetizations and sub lattices

To characterize the overall behaviour of a system, one can use the total magnetization M({σi}) =∑N
i=1 σi as an order parameter. This is often normalized with the number of sites N , such that

m({σ}) =
1

N

N∑
i=1

σi. (2.1.4)

For a pure FM, the ground state configurations have m = 1 or m = −1, since all spins point in the same
direction. Therefore, if one measures a magnetization with magnitude |m| = 1, one knows for sure that
the system is in a FM ground state. For AFM systems, this is unfortunately not that simple. For a
D-dimensional cubic lattice, both AFM ground state configurations have a very small magnetization

of order O
(
N−

1
D

)
. The reason for this is that the number of edge sites scales proportional to x1−1/D

when the number of spin is scaled by a factor x. Because the magnetic moment of the edge sites are
not necessary cancelled by other spins, they can all contribute to a non-zero overall magnetic field.
Normalizing the magnetization, results in it scaling proportional to x−1/D. An example of this can
be seen by noticing that the number of edge sites of a D = 1 chain is always two. Also a D = 2
square lattice, with side length `, has 4` edge sites. In both cases, the ”area to volume” ratio scales
proportional to N−1/D.

Due to the normalized magnetization being vanishingly small for large AFM ground state configurations,
it is not a good order parameter. One can do something else. If the lattice is split into an even and an
odd sub lattice,

L = Leven ∪ Lodd, (2.1.5)

then one can define a magnetization for each part. Denoting the number of sites in the sub lattice Lα
by |Lα|, one defines

meven = |Leven|−1
∑

i∈Leven

σi and modd = |Lodd|−1
∑
i∈Lodd

σi. (2.1.6)

For a 1D chain, the even sub lattice is the collection of all spins labelled with an even i. The rest
is in the odd sub lattice. Using this, the AFM ground state configurations will have magnetizations
(meven,modd) being either (1,−1) or (−1, 1). This donation does also work for FM ground state
configurations, because (meven,modd) will either be (1, 1) or (−1,−1). In this way, the even and odd
sub lattice magnetization are better at describing order in AFM systems than the total magnetization.
This will be important in chapter 5.
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a) 1D pure FM b) 1D pure AFM

c) 2D pure FM d) 2D pure AFM

Figure 2.1.3: Graphical representation of ferromagnetic and anti-ferromagnetic states in one and two
dimensions. For each state, domain walls are drawn as red bars. For a FM couplings, domains walls
are drawn between sites where σiσj = −1 and for AFM couplings, domain walls are drawn between
sites where σiσj = −1.

2.1.3 Domain wall excitations in classical nearest neighbour Ising model

Because each spin only has to worry about their nearest neighbours, one can divide a D-dimensional,
cubic, classical, nearest neighbour, Ising system into different domains using the following rules:

1. All spins are in the same domain as themselves.

2. Given to nearest neighbouring spins, σi and σj , if their interaction energy is positive, Jijσiσj > 0,
then the spins are in different domains.

3. Given to nearest neighbouring spins, σi and σj , if their interaction energy is negative, Jijσiσj < 0,
then the spins are in the same domain.

4. Given three spins; σi, σj , and σk, then if σi is in the same domain as σj , and σj is in the same
domain as σj , then σi and σk are also in the same domain.

5. Between two domains, a domain wall is said to be present.

Four examples of the rules can be seen in fig. 2.1.3. Here, both one and two dimensional systems
are shown for both FM and AFM coupling constants with the red lines denote domain walls. When
a spin is flipped the domains will change and domain walls will move. It can therefore sometimes be
easier look at how domain walls move, instead of looking at which spins are flipped. Mapping the
domain walls to particles on a discrete lattice, the dynamics of spin flips can be translated into motion,
creating, and/or annihilation of the domain wall particles. For instance, if one uses the configuration
of fig. 2.1.3a, one maps the domain walls to particles via

↑↓↓↑↓↑↑↓↑↓↑↓↑↑↓↓↓↑−→ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ (2.1.7)

Here a • represents a domain wall while ◦ represents a lack of domain walls. Note that the number of
sites is reduces by one, since domain walls live in the space between spins. For a 1D, classical, nearest
neighbour Ising model, the possible domain wall moves are relatively simple. To first order in spin
flips, meaning only one spin is flipped at a time, every move can be divided into only five categories.
These categories are listed in table 2.1.4. From here, one observes that if two walls meet, they can
annihilate each other via pair annihilation. In spin space, this translates to a domain being collapsed
between two other domains. These two domains are then combined into one big domain. This releases
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List of single spin flip actions

Action Realization (DW) Realization (AFM) Realization (FM) ∆E σi−1σi+1

Pair creating ◦◦ ⇒ •• ↑↓↑⇒↑↑↑
↓↑↓⇒↓↓↓

↑↑↑⇒↑↓↑
↓↓↓⇒↓↑↓ 4|J | 1

Pair annihilation •• ⇒ ◦◦ ↑↑↑⇒↑↓↑
↓↓↓⇒↓↑↓

↑↓↑⇒↑↑↑
↓↑↓⇒↓↓↓ −4|J | 1

Moving left/right ◦• ⇔ •◦ ↓↑↑⇔↓↓↑
↑↓↓⇔↑↑↓

↑↑↓⇔↑↓↓
↓↓↑⇔↓↑↑ 0 −1

Edge creation ◦ · · · ⇒ • · · · ↑↓ · · · ⇒↓↓ · · ·
↓↑ · · · ⇒↑↑ · · ·

↑↑ · · · ⇒↓↑ · · ·
↓↓ · · · ⇒↑↓ · · · 2|J | 0

· · · ◦ ⇒ · · · • · · · ↑↓⇒ · · · ↑↑
· · · ↓↑⇒ · · · ↓↓

· · · ↑↑⇒ · · · ↑↓
· · · ↓↓⇒ · · · ↓↑ 2|J | 0

Edge annihilation • · · · ⇒ ◦ · · · ↓↓ · · · ⇒↑↓ · · ·
↑↑ · · · ⇒↓↑ · · ·

↓↑ · · · ⇒↑↑ · · ·
↑↓ · · · ⇒↓↓ · · · −2|J | 0

· · · ◦ ⇒ · · · • · · · ↑↓⇒ · · · ↑↑
· · · ↓↑⇒ · · · ↓↓

· · · ↑↑⇒ · · · ↑↓
· · · ↓↓⇒ · · · ↓↑ −2|J | 0

Figure 2.1.4: List over possible moves of single domain walls from single dipole moment flips. In column
2, the full circles, •, represents a site with a domain wall, while white circles, ◦, represents sites with
no domain wall. In column 3 and 4, the corresponding action in Ising picture is given for a pure AFM
and a pure FM. The change in energy, when a given action is performed, is given by the column 5 for
a homogeneous system with no longitudinal field. The last column set the value of products of the
nearest neighbouring spin σi−1σi+1. For Edge creation/annihilation this product is set to zero since
one of spin does does not exist.

an energy of 4|J | for homogeneous coupling constants. A pair of domain walls can also be created,
which splits one domain in two by created a small domain between them. This has an energy cost
of 4|J | for homogeneous coupling constants. If the system has open boundary conditions, then single
domain walls can be create/annihilated on the edge of the chain. This only cost/releases an energy of
2|J |. In spin space, this translated to one of the edge spins being flipped. The last move on the list is
domain wall motion. Because a spin on the edge of a domain goes from being in one to be in the other
when flipped, domain walls can be moved. If the nearest neighbour coupling is homogeneous, this move
is free in terms of energy cost. These action becomes important in chapter 3, when the non-equilibrium
behaviour of the classical Ising model is considered. Other higher order spin-flip process can also be
translated into domain wall motions, but will not be done so in this thesis. Note that these process are
symmetric w.r.t the Z2 transformation mentioned earlier. This means that each action in the domain
wall picture can be related to two different processes in spin space. This changes when a longitudinal
magnetic field is added over the system.

2.1.4 Adding a longitudinal magnetic field over the system

An isolated classical spin will have an energy degeneracy between the σi = 1 and σi = −1 state. This
changes when it is placed in a longitudinal magnetic field. Just like the Zeeman effect for quantum
spins, the energy levels split proportional to the magnetic field strength. For electrons in a magnetic
field B, the eigenstates will have energy E = ±gµB

2 |B| with µB being the Bohr mangeton, and g being
the g-factor of electrons.

In the same way, when a classical Ising spin is placed in a longitudinal magnetic field, which is set
to point along the z-direction, the energy of spin is

Esingle,field(σ) = σh. (2.1.8)
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This means, that if a nearest neighbour Ising model is placed in a space dependent, longitudinal,
magnetic field h(x), the energy of the system becomes

E({σ}) =
∑
〈i,j〉

Ji,jσiσj +
N∑
i=1

hiσi. (2.1.9)

Here hi = h(xi) is the field strength at the i’th site. This extra term breaks the Z2 symmetry, since if
all the spin in a configuration {σ} is flipped, the energy changes by

∆EFlip all({σ}) = −2

N∑
i=1

hiσi. (2.1.10)

Notice that if the field is homogeneous, then ∆E = −2hM with M being to total magnetization of
the system. Some of the degeneracies are therefore lifted, but not all of them. If

∑N
i=1 hiσi = 0 for a

configuration {σ}, the two-fold degeneracy is still present.
The effect of this magnetic field is that for pure FM systems, one of the zero-field ground states

will have a lower energy than the other. In equilibrium, this means that the system will have a higher
probability of being in a state with a magnetization M ≈ −h. Even for small field strengths, one
would expect the system to prefer states with M ≈ −h, since the nearest neighbour interaction helps
with aligning the spins. For pure AFM systems, because the magnetization of the zero-field ground
states is small, the field does not influence the equilibrium properties very much for small fields. One
would therefore excepts the system behaving much like the zero-field case, when h� J for pure AFM
systems. On the other hand, if h � J , then the magnetization dominates the energy of the system.
One would therefore expects then M ≈ −h states to be preferred, even for pure AFM systems. The
threshold values this seem to be |h| = 2J for homogeneous fields and coupling constants. At this value
spin configuration such as ↓↑↓ with h = 2J > 0 can have its middle spin flipped with no energy cost.
One would therefore except a crossover around |h| = 2J > 0 between a system preferring configurations
with vanishing magnetization to systems that prefers configurations with high magnetization.

Another important thing to note is that the longitudinal field divides the single spin-flip processes,
listed in table 2.1.4, into two subcategories. All process that flips a spin from 1 to −1 now changes the
energy by an extra of −2h, and will therefore be labelled by a minus sign. In the same way, all spin flip
processes that flips a spin from −1 to 1, will be labelled by a plus sign. This distinction will becomes
important in chapter 3, where the non-equilibrium dynamics of the classical Ising model is described.
Before going into details with non-equilibrium dynamics, it can be useful to have some intuition about
the equilibrium properties of the system.

2.2 Equilibrium properties of 1D classical Ising model

To get the equilibrium properties of the 1D, nearest neighbour, classical Ising model, one first needs
to calculate the partition function as usual. To do this, one labels the non-zero elements of J with an
integer i, such that Ji = Ji,i+1. In doing so, the energy function reduces to

E({σ}) =
N∑
i=1

Jiσiσi+1 +
N∑
i=1

hiσi. (2.2.1)

For OBC, JN = 0. When coupling the system to a heat bath with a temperature T , the partition
function takes the form of

Z =
∑
{σ}

e−βE({σ}) =
∑
{σ}

N∏
i=1

e−β[Jiσiσi+1+hiσi], (2.2.2)
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with β = 1/T . For homogeneous nearest neighbour couplings and homogeneous longitudinal fields,
the equilibrium properties of system can be evaluated using the transfer matrix T. This is a 2x2, real
matrix, whose elements are given by

Tab = eβ(Jab+hb) so that T =
(
e−β(J+h) eβ(J−h)

eβ(J+h) e−β(J−h)

)
. (2.2.3)

T is designed in this way to make partition function reduce to a sum over products of the elements of
T. The exact form of Z will then be

Z =
∑
{σ}

N∏
i=1

Tσiσi+1 . (2.2.4)

For periodic boundary conditions, then σN and σ1 are nearest neighbours. This implies that the
product in eq. 2.2.4 simplifies to the trace over TN . one sees this to writing the product out explicit
and observing that the sums corresponds to matrix products.

ZPBC =
∑
{σ}

Tσ1σ2 · · ·TσN−1σNTσNσ1︸ ︷︷ ︸
N factor matrix product

=
∑
σ1

(TN )σ1σ1 = tr{TN}. (2.2.5)

For open boundary conditions then, because there is no interaction between the first and last spin, the
partition function takes the form of

ZOBC =
∑
{σ}

Tσ1σ2 · · ·TσN−1σN︸ ︷︷ ︸
N − 1 factor matrix product

e−βhσN =
∑
σ1,σN

(TN−1)σ1σN e
−βhσN . (2.2.6)

The matrix products are easiest to evaluate in the eigenbasis of T, which requires knowledge of its
eigenvectors and eigenvalues. These can be found using standard techniques. If λ± denotes the
eigenvalues of T and v± denotes the eigenvectors, then

λ± = e−βJ
[
cosh(βh)±

√
sinh2(βh) + e4βJ

]
with correspoding eigenvectors (2.2.7)

v± = (a, b±)T =

(
eβ(J−h), e−βJ

[
sinh(βh)±

√
sinh2(βh) + e4βJ

])T
. (2.2.8)

In the eigenbasis of T, then TM is simply the diagonal matrix with elements being λM± . Transforming
back to the standard basis, one gets that TN−1 evaluates to

TM = P

(
λM+ 0
0 λM−

)
P−1 =

λM+
a(b− − b+)

(
a a
b+ b−

)(
1 0
0 κM

)(
b− −a
−b+ a

)
. (2.2.9)

Here P = (v+,v−) is the matrix whose columns are the eigenvector v+ and v−, and is used in the basis
transformation. Because λ+ + λ− > 0 and λ+− λ− > 0, then κ = λ−/λ+ ∈]− 1, 1[. This is true for all
non-zero temperatures and implies that |κ|M � 1 for M � 1. The κM factor can then be ignored in
eq. (2.2.9) for large systems. This results in a an open boundary condition partition function of

ZOBC =
λN−1

+

a(b− − b+)

[
a(b−e

−βh − b+eβh) + b+b−e
−βh − a2eβh

]
(2.2.10)

The four terms in eq. (2.2.10) can be written in term of two sums, which evaluates to

b+b−e
−βh − a2eβh = −eβ(2J−h) − eβ(2J−h) = −2eβ(2J−h) (2.2.11)

a(b−e
−βh − b+eβh) = −2e−βh

[
sinh2(βh) +

√
sinh2(βh) + e4Jβ cosh(βh)

]
(2.2.12)
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At the same time, the denominator of eq. (2.2.10) will reduce to

a(b− − b+) = −2e−βh
√

sinh2(βh) + e4Jβ (2.2.13)

Putting it all together, the partition function takes the form of

ZOBC = λN−1
+ g

(
J

T
,
h

T

)
with g

(
J

T
,
h

T

)
=

sinh2(βh) + e2Jβ√
sinh2(βh) + e4Jβ

+ cosh(βh) (2.2.14)

Since g(x, y) > 1 for all x, y ∈ R, then ln g(x, y) is positively defined. The free energy pr. site can then
be evaluated in the thermodynamic limit, where N � 1. This evaluates to

f = −N − 1

Nβ
lnλ+ −

1

βN
ln g(x, y)→ J − 1

β
ln

[
cosh(βh) +

√
sinh2(βh) + e4βJ

]
. (2.2.15)

Compared to the partition function for periodic boundary conditions, the trace can be evaluated in
the eigenbasis, which results in

ZPBC = λN+ + λN− = λN+
(
1 + κN

)
≈ λN+ for N � 1. (2.2.16)

Evaluating the free energy pr. site in the thermodynamic limit yields the same results for both PBC
and OBC. The effect of the boundary conditions vanishes in the thermodynamics limit. For non-zero
temperatures, then f(J/T, h/T ) is an infinitely differentiable function. This means that any derivative
of f to any k is continuous. This implies that no phase transitions are present in the phase space
(J/T, h/T ) ∈ R2. The fact that eq. 2.2.15 is an infinitely differentiable function is proven using a
theorem described in appendix A.1.

2.2.1 Magnetic properties

It can be demonstrated that for AFM couplings, a crossover between two phase occurs around |h| = 2J .
This can be shown by calculating the magnetic susceptibility as a function of hβ for fixed Jβ. Starting
with the magnetization, one gets

m = − 1

βN

∂ lnZ

∂h
= − sinh(βh)√

sinh2(βh) + e4βJ
. (2.2.17)

Here, it doesn’t matter which partition function is used, since the boundary conditions are ignored.
Differentiating again, the magnetic susceptibility will be

χT = T
∂M

∂h
= −e4Jβ cosh(βh)

(sinh2(βh) + e4βJ)3/2
=
e4Jβ coth(βh)

sinh2(βh)
m3. (2.2.18)

Both the magnetization and the magnetic susceptibility are plotted in fig. 2.2.1 for both AFM and FM
coupling constants. It is observed that the magnetization for a AFM are zero for small fields, |h| < 2J .
When |h| → 2J from below, the strength of the magnetization increases drastically. Continuing in
the same direction, when the field becomes stronger, |h| > 2J , the magnetization approaches −sgn(h).
This is reflected in the magnetic susceptibility, which peaks at |h| = 2J . The AFM side of the phase
space (J/T, h/T ) is therefore divided into three regimes; One with m ≈ 1, one with m ≈ −1, and one
with m ≈ 0.

For FM coupling constants, the magnetization m = −sgn(h) for non-zero field. Around hβ ≈ 0, the
sign of the magnetization changes sign, reflected by the magnetic susceptibility that peaks. To explain
how the system achieves there magnetizations, its is necessary to analyse the energy and the order of
the system. To help with the order, entropy as well as the average expectation value of the nearest
neighbour correlation function is used.
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(a) AFM (J/T = 5) (b) FM (J/T = −1)

Figure 2.2.1: Magnetization and susceptibility of classical nearest neighbour Ising model with
homogeneous coupling constant.

2.2.2 Entropy, energy, and correlation function

Given a canonical ensemble with a temperature of T , then the probability of being in a given configuration
{σ}, given that the system is in equilibrium with the heat bath, is denoted p({σ}). The entropy of the
system will then be

S = −
∑
{σ}

p({σ}) ln p({σ}). (2.2.19)

For some parameter J, h, and T, the system can localize in a given configuration {σ̃}. By ”localization”,
it is here meant that the probability of the system being in a configuration {σ̃} is close to one, while
the probability of being in any other state is close to zero:

p({σ}) ≈
{

1 for {σ} = {σ̃}
0 for {σ} 6= {σ̃} . (2.2.20)

If this is the case, the entropy will be close to zero, since

x lnx→ 0− for both x→ 0+ and x→ 1−. (2.2.21)

This statement is also true the other way around, so that if S = 0, then the system must be localized.
Proof is in appendix A.2. One can therefore conclude that if S → 0, then the system approaches a
given configuration. The entropy of the Ising model is therefore calculated via S = lnZ + βE. Here E
is the statistical average of the energy. Calculating the two quantities, one gets the following

E/N = −∂ lnλ+

∂β
= J +

(
h+ J

2e3Jβ

λ+ sinh(βh)

)
m(Jβ, hβ) (2.2.22)

S/N = ln (λ+) +
Eβ

N
. (2.2.23)

The entropy is plotted in fig. 2.2.2a, which shows a flat landscape of S = 0, except around the origin
and |h| ≈ 2J > 0. The system must therefore localize around a few states when being on the AFM
side of the phase diagram. The same is true for J < 0 but for all h values. The figure out which states
the system approaches, one uses the statistical average of the nearest neighbour correlation function,
averaged over all spins

C(Jβ, hβ) =
1

Z

∑
{σ}

(
N−1∑
i=1

σiσi+1

N − 1

)
e−βE({σ}) =

−1

Zβ(N − 1)

∂

∂J

∑
{σ}

e−βE({σ}) = − 1

β

∂ lnλ+

∂J
(2.2.24)
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(a) (b) (c)

Figure 2.2.2: Statistical properties of the 1D. classical nn. Ising model. In a), the entropy pr. site is
shown, in b), the average nearest neighbour correlation functions is shown, and in (c), the energy of
the system is shown.

Performing the differentiation, one gets

C(Jβ, hβ) = 1 +
2e3Jβ

λ+ sinh(hβ)
m(Jβ, hβ) (2.2.25)

which is plotted in fig. 2.2.2b. Looking at the plot, one observes that the correlation between nearest
neighbours are 1 for |h| > 2J , which implies that the system is in a FM ground state. From the energy
plotting in fig. 2.2.2c one observes that E = J − |h| for |h| > 2J implying a diamagnetic ground state.
For AFM couplings and 2J > |h|, the entropy nearest neighbour correlation functions C takes the value
of −1 implying an AFM ground state reflected by the C = −1 from fig. 2.2.2b. The exact ground
state is not possible to determine since the energy difference between the two AFM ground states are
pr. site |h|/N . For 2J 6≈ |h| the system is in an ordered state for non-zero finite temperatures. This is
also reflected in the energy plot, fig. 2.2.2c, since it goes as −2J in this region.

Around 2J = |h| the entropy increases dramatically since the energy required to create a domain
wall pairs becomes so small that domains can be created from thermal excitations. This introduces
disorder to the system reflected by the increase in entropy. This is reflected in the average correlation
function C going smoothly between −1 and 1.

FM side - Low temperature - non-zero field

One the FM side of the phase diagram, the square root of the eigenvalues will be dominated by the
sinh2(hβ) term, since e4Jβ ∈]0; 1[. The low temperature behaviour of the positive eigenvalue and the
magnetization will therefore be

λ+ ∼ e−Jβ [cosh(hβ) + sinh(|h|β)] = e(−J+|h|)β and m ∼ − sinh(hβ)

sinh(|h|β)
= −sgn(h) (2.2.26)

for T � |J |, |h|. The entropy will then takes the form

E

N
∼ J +

h+ J
2e3Jβ

e(−J+|h|)β
(
− sgn(h)

2

)
e|h|β

 (−sgn(h)) = J − |h|+ 4Je2[2J−|h|]β (2.2.27)

∼ J − |h|. (2.2.28)

This reflects correctly that the system localized into the zero-field FM ground state. The average
nearest neighbour correlation function also reflects this behaviour, since C ∼ 1 as seen in fig. 2.2.2b.
To shown this localization is correct, the entropy can be evaluated in this limit, which results in

S

N
= lnλ+ + βE ∼ (−J + |h|)β + β(J − |h|) = 0. (2.2.29)
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In conclusion, for any non-zero longitudinal field and J 6= 0, the system localizes into a zero-field FM
ground state, which have all its spins pointing opposite to magnetic field.

AFM side - Low temperature behaviour - non-zero field

For low temperature T � J, |h|, the square root in the eigenvalues λ± will have low temperature
behaviour

√
sinh2(βh) + e4βJ ∼


sinh(β|h|) for |h| > 2J√

5
2 e

2βJ for |h| = 2J
e2βJ for |h| < 2J

. (2.2.30)

As expected, some of the quantities used in calculations if statistical properties have different behaviours
depending on |h| > 2J , |h| < 2J , or |h| = 2J . These different behaviours results in the positive
eigenvalue and the magnetization having the following low temperature behaviour

λ+ ∼


e(−J+|h|)β for |h| > 2J
ϕeJβ for |h| = 2J
eJβ for |h| < 2J

and m ∼


−sgn(h) for |h| > 2J

− sgn(h)√
5

for |h| = 2J

− sgn(h)
2 e−(2J−|h|)β for |h| < 2J

. (2.2.31)

The special value ϕ = 1+
√

5
2 ≈ 1.618 is knows as the golden ratio. The energy, correlation function,

and entropy will are then

E

N
∼


J − |h| for |h| > 2J
−J for |h| = 2J
−J for |h| < 2J

, C ≈


1 for |h| > 2J

−0.106 for |h| = 2J
−1 for |h| < 2J

, and
S

N
≈


0 for |h| > 2J

0.481 for |h| = 2J
0 for |h| < 2J

.

(2.2.32)

For fields strength |h| > 2J , the system localized since S ≈ 0. It does so by decaying into a zero-field
FM ground state with magnetization opposite to the field, since C = 1 and E = J − |h|. For small
fields|h| < 2J , the energy pr. spin, the nearest neighbour correlation function, and the magnetization
all matches a zero-field AFM ground state. At first, one could falsely make the conclusion that the
system must localize into one of the zero-field AFM ground states. To show that this is false, one needs
to consider the open boundary partition function. For AFM couplings and small fields |h| < 2J , the
partition function takes the form of the following sum

ZOBC = 2eβ(N−1)J cosh(hβδmod(N,2),1)︸ ︷︷ ︸
zero-field AFM ground states

+O
(
eβ[(N−3)J+|h|]

)
︸ ︷︷ ︸

Rest

(2.2.33)

The first term is a result of zero - field ground states having energy

Ezero-field AFM groundstate(±) = −(N − 1)|J | ± |h|δmod(N,2),1. (2.2.34)

Her, the Kronecker delta function appears because for odd system, the last spin will contribute with
a small magnetic moment which, when interacting with the field, causes the energy levels to split.
Summing over the Boltzmann factors of the two lowest energy levels gives the first term in eq. (2.2.34).
The next term reflect that fact that the Boltzmann factors of all higher energy levels grows slower than
the the Boltzmann factors of the two lowest energy levels. The free energy is therefore

F = −T lnZOBC = −T ln 2− (N − 1)J + ln cosh
(
hβδmod(N,2),1 +O

(
e(|h|−2J)β

))
. (2.2.35)
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From this, the magnetization, energy, correlation function, and entropy can be calculated in the low-
field, low-temperature limit

M = − 1

β

∂ lnZ

∂h
∼ − tanh(hβ)δmod(N,2),1 ∼ −sgn(h)δmod(N,2),1 (2.2.36)

E = −∂ lnZ

∂β
∼ −(N − 1)J +Mh (2.2.37)

C = − 1

(N − 1)β

∂ lnZ

∂J
≈ −1 (2.2.38)

S = lnZ + βE ∼ ln 2 + ln cosh(hβδmod(N,2),1)−Mhβ (2.2.39)

For even N , then M ≈ 0, E ∼ −(N − 1)J , C ≈ −1, and S ≈ ln 2. Both zero-field AFM ground states
are therefore equality likely to be visited, since the energy of the two are equal. This is reflected by
the entropy being S ≈ ln 2, which can occur if the system has an equal probability of being in two
states and a zero probability for all other states. There two states must be the zero-field AFM ground
states to produce the given values of M , E, and C. Note that this effect cannot be seen from the
thermodynamic limit since the ln 2 vanishes when divided by a large N .

For odd N , then one of the zero-field AFM ground states will have a lower energy than the other.
Because of this,

pzero-field AFM groundstate(±) =
e−(|h|±|h|)β

1 + e−2|h|β +O
(
e(|h|−2J)β

) ≈ {0 for +
1 for − (2.2.40)

in the low temperature limit. The system will therefore localize in the lowest energy level, which is
reflected in S = 0.

High temperature

In the high temperature limit, T � |J |, |h|, then the positive eigenvalue can be expanded around β ≈ 0.
To second order in β, one gets

λ+ = e−Jβ
[
2 + 2Jβ + (2J2 + h2)β2 +O

(
β3
)]
. (2.2.41)

From this, the different statistical quantities can be calculated. Starting with the magnetization, one
gets that

m = − 1

β

∂ lnλ+

∂h
= − 1

λ+

(
2hβ +O

(
β2
))
→ 0 (2.2.42)

In the same way, the limiting behaviour of the energy, entropy, and the correlation function, can be
calculated.

E ≈ 0, C = 0 and S = N ln 2. (2.2.43)

This is expected since when the temperature dominates, all Boltzmann factors approaches 1. The
partition function are therefore simply the number of different configurations, which here is 2N . This
makes all derivatives of Z zero, so M = E = C, and S = N ln 2. Around the origin of the phase
diagram, one would therefore expect a rise in entropy, which is confirmed in fig. 2.2.2a.

Summary of results

In summary, the system will for FM couplings magnetize opposite to the longitudinal field,

{σ} → {−sgn(h), · · · ,−sgn(h)}, (2.2.44)
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Figure 2.2.3: Phase diagram of the classical Ising model. The red lines marks the crossover lines
|h| = 2J while red box marks the area where β < |J |, |h|

in the low temperature limit T � |J |, |h|. This is reflected in the energy pr. spin and the average
nearest neighbour correlation function, which matches the properties of this configuration. Form the
entropy, it can be concluded that the system localizes into a single state, since S = 0.

On the AFM side of the phase diagram, if |h| > 2J , the system still magnetized opposite to the
field. Again, this is based on the energy pr. spin, the average nearest neighbour correlation function,
and the entropy pr. spin, which takes the same value as for FM couplings. If |h| < 2J , then the
system changes its characteristics. If the number of spins is even, the configurations with the lowest
energy are the zero-field AFM ground states. Both states have the same energy, which implies that
the system has an equal probability of visiting both states. This is reflected in the entropy S = ln 2
in the low temperature limit. On the other hand, if the number of spins is odd, one zero-field AFM
ground state has a lower energy than the other. As a result, the system localizes in the configuration
with the lowest energy, reflected by S = 0. For fields satisfying |h| = 2J , then the system experience
a crossover between high and low magnetization. The entropy pr. site becomes of order O (1), which
reflects that a low of configurations will have the same probability of being visited.

Around the origin of the phase diagram, where the temperature dominates the energy scales,
T � |J |, |h|, all configurations becomes equality likely to be visited. This is reflected in the entropy
taking the value of S = N ln 2.

The behaviour of the system is summarized in the phase diagram depicted in fig 2.2.3. On the axis,
the parameters J/T and h/T are shown while the colours indicates the magnetization pr. site.



Chapter 3

Kinetic Ising model

The calculations performed in section 2.2 were done so, assuming that the system was in equilibrium
with a heat bath with a given temperature T . In doing so, all details about how the systems initial
state and the time it took to get to equilibrium was not included. The statistical averages over the
magnetizations, the energy, and the correlation function can therefore not be completely trusted, if
the non-equilibrium properties of a system is to be analysed. It can therefore be necessary to perform
numerical simulation of the system to get its exact properties and dynamics. For classical systems,
there are no intrinsic mechanisms that can drive it, so a pure classical system will remain static on
its own. One therefore needs to get classical dynamics from somewhere else. One way of doing this,
is to couple the system to one or more heat baths[21, 22]. Each heat bath can be labelled by an
index α ∈ {1, · · · ,M}, where M is the number of heat baths, and is assigned a temperature Tα.
These temperatures can, in principle, take any non-negative values, including Tα = 0. The system
can now exchange energy with the baths, which occurs at time scales τα, which results in the classical
being dynamical. Each heat bath are allowed to perform a different set of mores, which alters the
configuration of the system.

If Tα = 0, then heat bath α is frozen. This means that the classical system can be give energy to
the heat bath, but not receive any. If the classical system is only coupled to heat baths with Tα = 0,
then its energy will decrease steadily. That is, until it hits a ground state configuration and cannot
decrease its energy further. In that case, only energy conserving moves can be performed, if any is
available. If not, the system will become static and does not evolve further.

When coupling a classical Ising model to a set of heat baths in this way, and is know as the Kinetic
Ising model (KIM). To describe the dynamics of the KIM, one uses the Master equation, which is the
topic of the next section.

3.1 Master equation approach

Give a general classical system coupled to set of heat bath denoted by α, then the Master equation
describes time evolution the probabilities P (s|I, t). These are the probabilities of the system being in
a state s to time t ∈ R+, given the a priori knowledge I. It does so using the rates the set of rates
{ωα(s → s′)} which are probabilities pr. unit time, that the system transitions from a state s to a
state s′ by interacting with heat bath α. All together, the time evolution Ṗ (s|I, t) can be described by
the linear differential equation

Ṗ (s|I, t) =
M∑
α=1

∑
s′∈S\{s}

[
ωα(s′ → s, I)P (s′|I, t)− ωα(s→ s′, I)P (s|I, t)

]
, (3.1.1)

which is the Master equation. Here S denotes the total state space of the classical system. In appendix
B.1, eq. (3.1.1) is derived from first principles. Applied to the classical Ising model, the Master equation

24
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is written as

Ṗ ({σ}, t) =

M∑
α=1

∑
{σ′}6={σ}

[
ωα({σ′} → {σ})P ({σ′}, t)− ωα({σ} → {σ′})P ({σ}, t)

]
., (3.1.2)

From this equation, given the set of rates {ωα}, the dynamics of the KIM can be described.
Some of the key actors in describing the dynamics of the KIM, were Glauber and Kawasaki[23, 24].

In Glaubers original work[23], he assumed the present of only a single heat bath. This heat bath
could alter the 1D, classical, nearest neighbour, Ising model by flipping one spin at the time. The
types of moves are now know as Glauber dynamics and does not conserve the magnetization of the
system. If one wishes dynamics that conserves the magnetization, then Kawasaki dynamics is the way
to go[24]. Here, two nearest neighbouring spins, whose projections are opposite to each other, can flip
simultaneous, which conserving the overall magnetization.

In the thesis, Glauber dynamics will be studies primarily. Kawasaki dynamics will be mentioned
and discussed, but will not be analysed further.

3.1.1 Detailed balance

One way of determining the set of transitions rate {ω}, is to consider the system in equilibrium with
a given heat bath. When this is the case, and the system if not coupled to any other heat baths, one
gets a master equation of

0 =
∑

{σ′}6={σ}

[
ωα({σ′} → {σ})P equilibrium({σ′}, t)− ωα({σ} → {σ′})P equilibrium({σ}, t)

]
. (3.1.3)

This is of course assuming that the equilibrium distribution P equilibrium({σ}, t) is a steady state solution
to the Master equation. In eq. (3.1.3), the probability flow into any state is perfectly cancelled out by
the probability flow out of the state. One solution to eq. (3.1.3) is to also balance the probability flow
between any pair of configurations ({σ}, {σ′}). If true, then

ωα({σ′} → {σ})P equilibrium
α ({σ′}) = ωα({σ} → {σ′})P equilibrium

α ({σ}). (3.1.4)

This condition is know as detailed balance[21]. Given that P equilibrium({σ}) allows the equilibrium
distribution of a canonical ensemble, then

P equilibrim
α ({σ}) = Z−1e−βαE({σ}) with βα = 1/Tα. (3.1.5)

This implies that for non-zero rates, the detailed balance condition in eq. 3.1.4 can be rewritten as

ωα({σ} → {σ′})
ωα({σ′} → {σ})

=
P equilibrium
α ({σ′})
P equilibrium
α ({σ})

= exp

(
−E({σ′})− E({σ})

Tα

)
. (3.1.6)

One of the solution to eq. (3.1.6), is to use the Fermi function

nF (x) =
1

1 + ex
, because

nF (x)

nF (−x)
=

1 + e−x

1 + ex
=

1 + ex

1 + ex
e−x = e−x. (3.1.7)

Using this, the solutions of eq. (3.1.6) can be written as

ωα({σ} → {σ′}) = τ−1
α nF

(
E({σ′})− E({σ})

Tα

)
. (3.1.8)

The τα in eq. 3.1.8 is a time scaled associated with how often the heat bath interacts with the system.
This is necessary to include, since ωα({σ}) must have units of 1/time. This is not the only solution to
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the detailed balance, since one can scale it by any positive scalar and still have it satisfy detail balance.
One can even scale the solution by a function of the parts of the configuration, that does not change
under the transition {σ} ↔ {σ′}. An example of this will be seen later, when Glauber dynamics are
considered in section 3.1.2. It should also be noted, that the Fermi function does not appear here
because of any relation to Fermions. It just happens to be a function that satisfies eq. (3.1.6).

For small temperatures, Tα � |J |, |h|, the rate of processes that increases the energy of the system,
will be exponentially small since

ωEnergy gainτα = e−β∆E +O
(
e−2β∆E

)
≈ 0 for T � ∆E = O (|J |, |h|) . (3.1.9)

At the same time, processes that decreases the energy of the system will occur at time scales of τα,
since

ω−1
Energy loss = τα

(
1 + e−β∆E

)
≈ τα for T � −∆E = O (|J |, |h|) > 0. (3.1.10)

For moves that neither decrease nor increase the energy, the rates are 1/(2τα). At Tα = 0, the limits
becomes exact and energy increasing moves will always have their rates equal to zero. If at any point
in time, the system is in a configuration where all rates are zero, then the system has become static.
This can happen if the temperatures of all heat baths are zero and the system is in a configuration
where all moves requires energy to perform.

From these considerations, Glauber dynamics can be studied.

3.1.2 Glauber dynamics

If the KIM is coupled to a heat bath, that interacts with the spins by flipping them one at a time,
the resulting dynamics is known as Glauber dynamics. As mentioned earlier, these single spin-flip
processes do not conserve the overall magnetization, since each move change it by a ±2. For a KIM
with N spins, N different moves can be performed on the system. All of these are listed in table 2.1.4
from chapter 2. One labels these processes corresponding to which spin is flipped, so that process i flips
the i’th spin. Assuming no longitudinal field is present, the spin-flip rates takes the form of[21, 23, 22]

ωj({σ}) =
1

2τ

[
1 + σi(γ

+
i σi−1 + γ−i σi+1)

]
(1− δσi−1σi+1) with (3.1.11)

γ±i =
1

2

[
tanh

(
Ji−1 + Ji

T

)
± tanh

(
Ji−1 − Ji

T

)]
. (3.1.12)

Note that the tanh terms in eq. (3.1.12) are in agreement with eq. (3.1.8), since 2nF (x) = 1−tanh(x/2).
The 1 − δσi−1σi+1 term is an extra term originally introduced by Glauber[23] which, as will be seen
later, can be used to tune the ratio between domain wall motion and domain wall creation/annihilation.
The parameter δ ∈ [−1, 1] and the product σi−1σi+1 is set to be zero for i = 1 and i = N for OBC. On
the topic of OBC, when satisfied the nearest neighbour couplings J0 and JN are both set to be zero.
This results in the γ±i coefficient for i = 1 and i = N satisfying

γ±1 =

{
0 for +

tanh
(
J1
T

)
for − and γ±N =

{
tanh

(
JN−1

T

)
for +

0 for −
, (3.1.13)

which implies

ω1({σ}) =
1

2τ

[
1 + σ1σ2 tanh

(
J1

T

)]
= τ−1nF

(
−2J1σ1σ2

T

)
and (3.1.14)

ωN ({σ}) =
1

2τ

[
1 + σN−1σN tanh

(
JN−1

T

)]
= τ−1nF

(
−2JN−1σN−1σN

T

)
. (3.1.15)
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The rest of the γ±i coefficients are defined so that the first term of eq. (3.1.11) reduces to eq. (3.1.8) for
general, space-dependent, nearest neighbour couplings Ji. This can be shown by setting σi−1 = ±σi+1,
which implies an energy difference of

∆Eint
i = Eint({σ′})− Eint({σ}) = −2Jσiσi−1(Ji−1 ± Ji+1). (3.1.16)

Here {σ′} and {σ} differ only by the sign of σi. Eq. (3.1.8) will therefore take the form of

nF

(
∆Eint

i

T

)
=

1

2

(
1− tanh

(
∆Eint

i

2T

))
=

1

2

(
1 + tanh

(
Ji−1 ± Ji+1

T

)
σiσi−1

)
(3.1.17)

=
1

2

[
1 + σiσi−1

(
γ+
i ± γ

−
i

)]
=

1

2

[
1 + σi

(
γ+
i σi−1 + γ−i σ

−
i

)]
. (3.1.18)

In the first equality, the fermi function is simply expanded as a tanh. In the second equality, the
energy difference in eq. (3.1.16) is written explicit, while the σiσi−1 factor can be taken out of the
tanh, since it only contributes with a sign. In equality three, the tanh term is expanded in terms of
the γ±i coefficients, and in the last equality, σi−1 is distributes into the parenthesis and σi−1 = ±σi+1

is used. For homogeneous nearest neighbour coupling, Ji = J , then γ±i = 1
2 tanh(2J/T ) for 1 6= i 6= N .

3.1.3 Evolution of statistical averages of spin projections

In general, Glauber dynamics can be used to calculate the time evolution of statistical averages of the
spin projections on the z-axis. One does by considering the statistical average of σi, with is denoted
by mi, which satisfies

mi(t) = 〈σi〉(t) =
∑
{σ}

σiP ({σ}, t). (3.1.19)

There quantities can be put into a vector m(t) whose elements are mi(t), which referred to as the
magnetization vector. The exact dynamics of such quantity can be determined by using a rewritten
version of the Master equation in eq. (3.1.2), which includes the spin-flip operator p̂i. This operator is
defined such that given a function f({σ}), then

p̂f({σ}) = f(p̂{σ}). (3.1.20)

p̂{σ} is the same configuration as {σ}, with the exception that the i’th spin has been flipped. This
allows one to rewrite the Master equation in eq. (3.1.2), which only includes Glauber dynamics, to

Ṗ ({σ}, t) = −
∑
j

(1− p̂j)ωj({σ}, t)P ({σ}, t). (3.1.21)

The elements of the magnetization vector will then evolve via

ṁi(t) =
∑
{σ}

σiṖ ({σ}, t) = −
∑
{σ}

σi
∑
j

(1− p̂j)ωj({σ})P ({σ}, t) (3.1.22)

To make this a bit easier to work with, the sum over spin configurations can be expressed in terms of
spin flip operators via

∑
{σ}

=
N∏
`=1

(1 + p̂`) (3.1.23)

This results in eq. (3.1.22) taking the form of

ṁi = −
∑
j

[
N∏
`=1

(1 + p̂`)

](
σi(1− p̂j)ωj({σ})P ({σ}, t)

)
(3.1.24)
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Now because (1 + p̂i)σi(1− p̂j) = 2(1 + p̂i)σiδi,j and the spin flip operators commutes, [p̂i, p̂j ] = 0, then
eq. (3.1.24) reduces to

ṁi = −2
∑
j

[
N∏
`=1

(1 + p̂`)

](
σiωi({σ})P ({σ}, t)δi,j

)
= −2

∑
{σ}

σiωi({σ})P ({σ}, t). (3.1.25)

Expanding the spin-flip rates ωi({σ}) one gets the following differential equation describing the magnetization
of each site

ṁiτ = −
[
mi + γ+

i mi−1 + γ−i mi+1 − δ
(
γ+
` mi+1 + γ−i mi−1 + 〈σi−1σiσi+1〉

)]
(3.1.26)

Solving this differential equation is possible for δ 6= 0. This is because eq. (3.1.26) depends on the
3-point correlation function 〈σi−1σiσi+1〉. One must therefore also include the three-point correlation
functions in the system of coupled differential equation before m(t) can be evaluated. Since the
differential equations describing the n-point correlation functions depends on correlation functions up
to n + 1’th order, the system of coupled differential equation needed is of size 2N − 1 which includes
all correlation function up to N ’th order. The size of the system of differential equation therefore gets
out of hand fast, even for only a few sites N . The same problem occurs for non-zero longitudinal fields.
For some cases thou, the magnetization vector m can be solved analytical, which is done in the next
section.

3.2 Special cases of Glauber dynamics with analytical solutions

In some special cases, the evolution of the magnetization vector m(t) can be found analytically. For
hi = δ = T = 0, then m’s time derivative can be expressed as

ṁ(t) = −1

τ
Am(t). (3.2.1)

Here A is an N ×N matrix, which generates the time evolution, and can be written explicit as

A :=



1 γ−1 0 · · · 0

γ+
2 1 γ−2

. . .
...

0
. . .

. . .
. . . 0

...
. . . γ+

N−1 1 γ−N−1

0 · · · 0 γ+
N 1


. (3.2.2)

This will from now on be refer to as the classical time evolution matrix. If A is diagonalizable, one can
expand the vector m in terms A’s eigenvectors. If v` is the `’th eigenvector of A, with eigenvalue λ`,
then

m(t) =
∑
`

c`v`e
−λ`(t−t0)/τ (3.2.3)

is a solution to eq. (3.2.1). Here t0 ∈ R is some initial time, where the magnetization vector m is known.
The coefficients {c`} are the scalar product between the initial magnetization vector m0 = m(t0) and
the `’th eigenvector v`:

c` = 〈m0,v`〉. (3.2.4)

Since mi ∈ [−1, 1], then the eigenvalues of A must satisfy λ` ≥ 0, so that the exponential in eq. (3.2.3)
does not increase. The exponentials with negative eigenvalue will decay to zero, while those with zero
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eigenvalues will not evolve. In the limit of (t − t0)/τ → ∞, the only terms left in eq. (3.2.3) will be
the terms involving eigenvectors with λ` = 0. The number of these eigenvalues depends on the specific
case. If non exists, the magnetization vector m(t)→ 0 and the statistical average of the magnetization
will be zero.

Using the method described above, one can start analysing the dynamics of a 1D AFM KIM with
hi = δ = T = 0.

3.2.1 Zero field, zero temperature, homogeneous AFM coupling

For a system with zero field hi = 0, homogeneous coupling constant Ji = J(1− δi,N ), and T = 0, the
off-diagonal elements A reduces to γ±i = 1

2 for 1 < i < N , γ+
1 = γ−N = 0, and γ−1 = γ+

N = 1. A will
therefore take the form of

A =



1 1 0 · · · 0

1
2 1 1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . 1

2 1 1
2

0 · · · 0 1 1


. (3.2.5)

For a vector v to be an eigenvector of A, with a given eigenvalue λ, then the elements of v must satisfy
the following linear difference equation:

0 = xv1 + v2, (3.2.6a)

0 =
1

2
vi + xvi+1 +

1

2
vi+2, (3.2.6b)

0 = vN−1 + xvN , (3.2.6c)

with x = 1 − λ. The exact values of set {vi} can be evaluated using the method described in [25].
Here it is stated, that the elements of v should satisfy vi = A[ri+ +Bri−] to be a solution of eq. (3.2.6)
with A and B being general complex numbers. For this to be true, the coefficient r+ and r− must be
roots of the polynomial

P (z) =
1

2
z2 + xz +

1

2
, (3.2.7)

where the coefficients of P matches the those of eq. (3.2.6b). The roots of P can easily be evaluated
and takes the form of

r± = −x±
√
x2 − 1. (3.2.8)

Note that r+ and r− are reciprocal to each other, since r+r− = 1. For eigenvalues λ ∈]0, 2[, then r±
both lays on the complex unit circle and forms complex conjugate pair. If λ < 0 or λ > 2, then r± are
both real non-zero numbers.

From the boundary conditions, eq. (3.2.6a) and eq (3.2.6c), the allowed values of x and B are
determined. A will work as a normalization constant, which is determined afterwards. From the first
boundary condition, eq. (3.2.6a), then

0 = xv1 + v2 = Ax[r+ +Br−] +A[r2
+ +Br2

−] = A [r+(x+ r+) +Br−(x+ r−)] . (3.2.9)

Since (x+ r±) = ±
√
x2 − 1 and r+r− = 1 is true, then

0 = A
√
x2 − 1 [r+ −Br−] =

A
√
x2 − 1

r+

[
r2

+ −B
]
⇔ A = 0 or |x| = 1 or B = r2

+. (3.2.10)
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The first possibility, being A = 0 is not considered because if A = 0, then v is the zero vector 0, which
can never be an eigenvector of a matrix. The second possibility of |x| = 1 can be considered, which
gives a valid eigenvector. This ends up being covered by the last condition B = r2

+, so for the rest of
the calculations, B = r2

+.

The choice causes vi = Ar+[ri−1
+ + ri−1

− ]. From the last boundary conditions, x can be determined.
This extra factor of r+ can be absorbed into the normalization constant, by redefining A → Ar+.
Doing so makes the last boundary condition, eq. (3.2.6c), take the form of

0 = A
[
rN−2

+ + rN−2
− + x(rN−1

+ + rN−1
− )

]
=
A
√
x2 − 1

rN−1
+

(
1− r2(N−1)

+

)
. (3.2.11)

Do get this, one uses rN−2
± + xrN−1

± = rN−1
± (r∓ + x) = ∓rN−1

±
√
x2 − 1 together with r+r− = 1.

From this condition, it can be concluded the allowed values of r+ must be roots of the polynomial
Q(z) = 1− z2(N−1). This has 2(N − 1) solutions, which all are equally distributed on the complex unit
circle.

z` = ei
`π
N−1 with ` ∈ {−(N − 2), . . . ,−1, 0, 1, · · · , N − 2, N − 1} (3.2.12)

For the ` eigenvector, then r+ = z`, which implies r− = z−`, again since r+r− = 1. The corresponding
eigenvector v` will then have elements

(v`)i = A
[
(r+)i−1

` + (r−)i−1
`

]
= 2A cos

(
`π

N − 1
(i− 1)

)
(3.2.13)

Normalizing the vector defines A, which gives the following expressions for the eigenvectors.

(v`)i =


√

2
N+1 cos[(i− 1)θ`] for ` ∈ {±1, · · · ,±(N − 2)}

1√
N

for ` = 0
1√
N

(−1)i for ` = N − 1

. (3.2.14)

Since cosine is an even function, then v−` = v`. There are therefore only N distinct eigenvectors of A,
as expected. The corresponding eigenvalues can also be calculated, which simply yields

λ` = 1− x` = 1 +
1

2
[(r+)` + (r−)`] = 1 + cos

(
`π

N − 1

)
. (3.2.15)

All eigenvalues are positive except for λ0 = 0. This implies that one of the exponentials will not decay
when time increases. From this, the magnetization vector that solved eq. (3.2.1) with A taking the
form of eq. 3.2.5, is

m(t) = 〈m0,vN−1〉vN−1 +

N−2∑
`=0

〈m0,v`〉e−[1+cos( `π
N−1)] t−t0τ v`. (3.2.16)

For t− t0 � τ/[1− cos
(

π
N−1

)
], the magnetization vector approaches

m(t)
(t→∞)→ 〈m0,vN−1〉vN−1 =

1√
N

(
N∑
i=1

(m0)i(−1)i

)
vN−1. (3.2.17)

The exacts meaning of this result is unfortunately not clear. This is because the dot product 〈m0,vN−1〉
does not really relate to any physical quantity. One thing can be said thou. The long-term behaviour
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of the statistical average of the total magnetization, can be evaluated.

lim
t→∞

m(t) =
1

N

N∑
i=1

lim
t→∞

(m(t))i =

N∑
i=1

1√
NN

 N∑
j=1

(m0)j(−1)j

 (vN−1)i (3.2.18)

=

{
− 1√

NN

∑N
j=1(m0)j(−1)j for odd N

0 for even N
∈ [−N−1, N−1]. (3.2.19)

At the same time, each element of m(t→∞) have the same absolute value and alternate sign along the
chain. This could lead one to assume that the system decays into a random AFM ground states with an
unknown probability of going into either. This can be tested in chapter 5, where the non-equilibrium
dynamics of the system is simulated.

3.2.2 Field at first site, AFM homogeneous coupling, and zero temperature

Even thou (3.1.26) cannot be solved for general longitudinal fields, it is possible to find the dynamics
for the system if a local field is placed on the first site hi = hδi,1. If the field is strong enough, a domain
wall could be created between spin 1 and 2, which can be moves to the opposite side of the system.
This allows the system to transition from one ground state to another. The threshold for this lays on
the line |h| = J , with the sign of h determining which state is preferred.

When introducing a field on the first site, only the first rate ω1({σ}) changes compared to before.
Assuming T = δ = 0 then ω1({σ}) takes the form of

ω1(σ) =
1

τ
nF

(
−2σ1

Jσ2 + h

T

)
T→0+

=
1

2τ
[1 + σ1sgn (Jσ2 + h)] =

1

2τ
[1 + σ1 (a+σ2 + a−)] , (3.2.20)

with a± =
sgn(J + h)± sgn(J − h)

2
. (3.2.21)

The system of differential equation, describing the time evolution of m(t), will therefore gain an extra
term compared to h = 0.

ṁ = −1

τ
(Am + g) with A =



1 a+ 0 · · · 0

1
2 1 1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . 1

2 1 1
2

0 · · · 0 1 1


and gi = δi,1a−. (3.2.22)

The introduction of this extra term g makes the differential equation non-homogeneous. It must
therefore be solved using the generalized Panzer formula[26] for systems of differential equations.

m(t) = Φ(t)Φ(t0)−1m0 −
1

τ
Φ(t)

∫ t

t0

dt′ Φ(t′)−1g. (3.2.23)

In the Panzer formula, the matrix Φ(t) is know as the fundamental matrix of the system. It is defined
to be the solution of the homogeneous system

Φ̇(t) = −1

τ
AΦ(t). (3.2.24)

If A is diagonalizable, then, in the eigenbasis of A, Φ is also diagonal with elements e−λ`(t−t0)/τ . The
boundary condition used here are Φ(t0) = I. This reduces eq. (3.2.23) correctly to m(t0) = m0. Change
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from A’s eigenbasis to the canonical basis, using the transformation matrix S, the fundamental matrix
can be written as

Φ(t) = exp

(
−A t− t0

τ

)
= S diag

(
e−λ0

t−t0
τ , · · · , e−λN−1

t−t0
τ

)
S−1 with S =

(
v0, · · · ,vN−1

)
.

(3.2.25)

If the local field is time independent, then the vector g is time independent too. It can therefore be
pulled from the integral in eq. (3.2.23), so that∫ t

t0

dt′ Φ(t′)−1g = S diag

(∫ t

t0

dt′eλ`
t′−t0
τ

)
S−1g. (3.2.26)

The integral over the exponential function depends on the value of eigenvalue λ` in question. If λ` = 0,
the integral becomes linear in t− t0. This would make some of the elements in m(t) increase/decrease
linear in time as well, which would, at some point, exceed allowed values of m. For the system to act
physical, all eigenvalues of A must be non-zero. Assuming this is to be the case, the integral in eq.
(3.2.26) reduces to∫ t

t0

dt′ Φ(t′)−1g = −τS diag
{(
e−λ`

t−t0
τ − 1

)
λ−1
`

}
S−1g = −τ

[
Φ−1(t)− 1

]
A−1g. (3.2.27)

Inserting this back into the Panzer formula in eq. (3.2.23), that the magnetization evolves as

m(t) = Φ(t)(m0 −A−1g) +A−1g. (3.2.28)

Since the eigenvalues of A are all assumed to be positive, then Φ(t) will vanish for (t− t0)/τ � 1. This
makes m(t)→ A−1g. If any of A’s eigenvalues are negative, some of the elements of the fundamental
matrix will diverge and m becomes non-physical.

Using this scheme, the long-term behaviour of m can be calculated for different value of h1.

Low positive field, AFM coupling

For positive local fields with J > h1 > 0, then the two constants, a+ and a−, evaluates to 1 and 0
respectively. g will therefore evaluate to the zero vector, while A acts as if the field was zero. In
summary,

A =



1 1 0 · · · 0

1
2 1 1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . 1

2 1 1
2

0 · · · 0 1 1


and g = 0. (3.2.29)

The differential equation describing this system will therefore reduce to eq. (3.2.1). The dynamics will
then be equivalent to if the field didn’t exist at all. The reason for this is that even thou the field changed
some energy levels, it is not strong enough to rearrange the energetic order of the configurations. At
zero temperature, if the system has decays into the zero-field AFM ground state with σ1 = sgn(h1),
a domain wall cannot be created between the first and second site. The system can therefore not
transition to the true ground state configuration. This implies that the zero-field AFM ground state
the system first decays into, is the one that it gets stuck in.

A last note to make here is that since g = 0, then the integral in eq. (3.2.23) is zero. The
condition stating that all eigenvalues of A must be non-zero is therefore not required any more. The
magnetization vector will therefore have a long-term equivalent to that of h1 = 0.

m(t) ∼ 〈vN−1,m0〉vN−1 for
t− t0
τ
� 1. (3.2.30)

Things becomes more interesting when h1 = J .
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Critical positive field, AFM coupling

If the field h1 = J , then the nearest neighbour interaction and the field contributes equally to the
energy of the first spin. This mean that if the system is in a configuration where the first two spin
being ↑↓, then a domain wall can be created between them without an energy cost. This implies that
if the system is in the zero-field AFM ground state with σ1 = sgn(h1), then the system can transition
into the true ground state using a single domain wall. This wall is created between site 1 and 2 and
moves as a random walk until it hit the other edge, where it is annihilated. The system will therefore
always end up in the true ground state, which the magnetization vector m should match. To check if
this is true, a+ and a− are evaluated. Both of then evaluates to 1/2 which makes A and g evaluate to

A =



1 1
2 0 · · · 0

1
2 1 1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . 1

2 1 1
2

0 · · · 0 1 1


and g =

1

2
ê1. (3.2.31)

Here ê1 is the first unit vector with (ê1)i = δi,1. If v is an eigenvector of A, with eigenvalue λ, then
the elements of v must satisfy the linear difference equation

0 = xv1 +
1

2
v2, (3.2.32a)

0 =
1

2
vi + xvi+1 +

1

2
mi+2, (3.2.32b)

0 = vN−1 + xvN , (3.2.32c)

with x = 1−λ. This looks a bit like eq. (3.2.6), with the exception of the first boundary condition. vi
must therefore satisfy vi = A(ri+ +Bri−) with r± = −x±

√
x2 − 1 as before. From the first boundary

condition eq. (3.2.32a), B can again be determined. Doing so reveals

0 = A

[
x(r+ +Br−) +

1

2
(r2

+ +Br2
−)

]
= A

[(
x+

1

2
r+

)
r+ +

(
x+

1

2
r−

)
r−B

]
. (3.2.33)

Since (
x+

1

2
r±

)
r± =

1

2

(
2x− x±

√
x2 − 1

)
r± = −1

2
r∓r± = −1

2
, (3.2.34)

then eq. (3.2.33) reduces to

0 = −A
2

(1 +B)⇔ (A = 0 or B = −1). (3.2.35)

Again, if A = 0, then v is the zero vector, which cannot be an eigenvector. Therefore, B = −1 must
be the only solution. v’s elements must therefore be vi = A[ri+ − ri−] to satisfy the first boundary
condition. From this, the second boundary condition eq. (3.2.32c) reduces to

0 = A
[
rN−1

+ − rN−1
− + x

(
rN+ − rN−

)]
= A

[
rN+ (x+ r−)− rN− (x+ r+)

]
(3.2.36)

As before, (r± + x) = ±
√
x2 − 1, which implies

0 = −A
√
x2 − 1

[
rN+ + rN−

]
= −A

√
x2 − 1

rN+

(
r2N

+ − 1
)
. (3.2.37)
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What remains is that either; r+ must be a root of the polynomial Q(z) = z2N + 1 = 0, or |x| = 1. In
the second case, with |x| = 1, then r+ = r−.

which have solutions

(r+)` = ei
2`−1
2N

π for ` ∈ {−(N − 1), · · · ,−1, 0, 1, · · · , N} (3.2.38)

The eigenvectors of A are therefore on the form.

(v`)i =

√
2

N − 1
sin

(
2`− 1

2N
πi

)
for ` ∈ {0, 1, · · · , N − 1} (3.2.39)

Note that the eigenvectors generated from negative `s are equal to the eigenvector generated from
positive `’s since

φ−` =
−2`− 1

2N
π = −2`+ 1

2N
π = −2(`+ 1)− 1

2N
π = −φ`+1 (3.2.40)

when normalizing the eigenvector, the sign difference is removed and the v−` = v`+1 for ` ∈ {1, · · · , N−
1}. The eigenvalues can also be evaluated which will be

λ` = 1− x = 1 +
1

2
(r+ + r−) = 1 + cos

(
2`− 1

2N
π

)
> 0 (3.2.41)

All eigenvalues are then greater than zero, which implies A−1 is well defined and the fundamental
matrix does not diverge. The magnetization vector will therefore evolve via

m(t) = Φ(t)(m0 −A−1~g) +A−1~g with Φ(t) = exp(A(t− t0)) (3.2.42)

which for t− t0 � τ , decays into A−1g. The exact value of this vector-matrix product can be evaluated
analytical, which is done in appendix B.2, the result of the calculations yields

m(t) ∼ A−1g = (−1)i (3.2.43)

From this, one can conclude that the system must decay into the zero-field AFM ground state with
the first spin being opposite to the field.

High positive field, AFM coupling

In the high field limit, h > J > 0 the field dominated over the nearest neighbour coupling. It is
therefore expected that the system decays into the zero-field AFM ground state {σ} = {1,−1, · · · , }.
The same physics apply as for the critical field region, h = J > 0, but with the exception that field
now dominated. This means that instead of the domain wall being able to be annihilated of both sides
of the spin chain, it is now only possible for domain walls to be annihilated at the N ’th site. The
magnetization vector is therefore expected to again decay into the (m(t))i → (−1)i. To show this, the
a± coefficients are evaluated. Since

a+ = 0 and a− = 1, (3.2.44)

then A and g takes the form of

A =



1 0 0 · · · 0

1
2 1 1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . 1

2 1 1
2

0 · · · 0 1 1


and g = δi,1. (3.2.45)
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This is actually a problem since the method described above does not work, becauseA is not diagonalizable.
This will not be proven here, but one can prove it by evaluating the eigenvectors using the previous
described method. When one is done, it can shown that the set of generated ”eigenvectors” are not
linear independent which implies det S = 0 and S−1 does not exists. A can therefore not be diagonalized
since there does not exists a matrix S such that S−1AS is diagonal. Luckily there is another way to
solve eq. (3.2.22).

Writing the system of coupled differential equation out explicit, one get that the magnetization
vector’s elements must satisfy

ṁ1 = −1

τ
(m1 + 1) (3.2.46a)

ṁi = − 1

2τ
(mi−1 +mi+1)− 1

τ
mi for 1 < i < N (3.2.46b)

ṁN = − 1

2τ
(mN−1 +mN ), (3.2.46c)

one observes that the differential equation describing the evolution of m1 is independent of all the
other elements of m. The time evolution of m1 can therefore be evaluated using the one-dimensional
Panzer formula[26].

m1(t) = m1(t0)e−
t−t0
τ + e−

t−t0
τ

∫ t

t0

dt′e
t′−t0
τ

(
−1

τ

)
= (m1(t0) + 1)e−

t−t0
τ − 1 (3.2.47)

For times t− t0 � τ , the magnetization on site one approaches the fix-point m1 = −1 which minimizes
hm1. The rest of the system are described by the reduced magnetization vector mred which is simply
the magnetization vector m without the first site. The dynamics of mred are

ṁred = −1

τ





1 1
2 0 · · · 0

1
2 1 1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . 1

2 1 1
2

0 · · · 0 1 1


mred + gred(t)


with gred(t))i =

1

2
m1(t)δi,1 (3.2.48)

This system of differential equations looks similar to that of the previous paragraph but with a time
dependent g vector. The fundamental matrix corresponding to eq. (3.2.32) is therefore the same as
for h = J but with one less site.

Φ(t) = S diag
(
e−λ0

t−t0
τ , · · · , e−λN−2

t−t0
τ

)
S−1 with (3.2.49)

Sij =

√
2

N − 2
sin

(
(i− 1)

2j − 1

2(N − 1)
π

)
and λ` = 1 + cos θ` (3.2.50)

The Panzer formula, for the reduced magnetization vector can then be written as

mred(t) = Φ(t)Φ(t0)−1mred(t0)− 1

τ
Φ(t)

∫ t

t0

dt′ Φ(t′)−1gred(t′) (3.2.51)

Diagonalizing the fundamental matrix, the integral in eq. (3.2.51) can be written as(∫ t

t0

dt′ Φ(t′)−1gred(t)

)
i

=
∑
`

Si`(S
−1)`1

∫ t

t0

dt′ eλ`
t′−t0
τ [(m1(t0) + 1)e−

t′−t0
τ − 1] (3.2.52)
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This integral acts different depending on if N is even of odd. If N is even, then N/2 in an integer.
This mean that

λN/2 = 1 + cos

(
2N2 − 1

2(N − 1)
π

)
= 1 + cos

(π
2

)
= 1 (3.2.53)

The ` = N
2 term of eq. (3.2.52) will therefore evaluated to∫ t

t0

dt′ e
t′−t0
τ

[
(m1(t0) + 1)e−

t−t0
τ − 1

]
= (m1(t0) + 1) (t− t0)− τ

(
e
t−t0
τ − 1

)
(3.2.54)

= τe
t−t0
τ

[
(m1(t) + 1)

t− t0
τ

e−
t−t0
τ + e−

t−t0
τ − 1

]
. (3.2.55)

For the other `s, the integral in eq. (3.2.52) can be expressed as∫ t

t0

dt′ eλ`
t′−t0
τ m1(t′) = τeλ`

t−t0
τ

{
m1(t) + 1− (m1(t0) + 1) e−λ`

t−t0
τ

λ` − 1
+
e−λ`

t−t0
τ − 1

λ`

}
(3.2.56)

If N is odd, then for all `, λ` 6= 1, which implies eq. (3.2.56) work for all `. Defining the matrix

Ξ(t) =
1

τ
Φ(t)

∫ t

t0

dt′ Φ(t′)−1m1(t′), (3.2.57)

one can write time evolution of the magnetization vector as

m(t) = Φ(t)m(t0)− Ξ(t)ê1 (3.2.58)

Again, it is used that Φ(t0) = I. For both even and odd system sizes, then for t− t0 � τ , the Ξ matrix
approaches

Ξ(t)→ −A−1 (3.2.59)

The reduced magnetization vector will therefore approach

mred(t)→ A−1ê1 =
(
1 −1 1 −1 · · ·

)T
(3.2.60)

using the results of appendix B.2. Since m1(t) approaches −1, then the limiting behaviour of the
magnetization vector is

m(t)→
(
−1 1 −1 1 · · ·

)T
(3.2.61)

As expected, the system decays into the zero-field AFM ground state that minimized the energy of the
first site.

Other regimes with local field

For other combinations of J and h, the behaviour of the model can be related to cases described above.
Keeping an AFM coupling while changing the sign of the field value, one observes that the sign of a−
since

a± =
1

2
[sgn(J + h)± sgn(J − h)] =

1

2
[sgn(J − |h|)± sgn(J + |h|)] = ±a± (3.2.62)

This results in g changing its sign, g → −g while the classical time-evolution matrix A stays the
same as for h > 0. The system will therefore, again, decay into a random AFM ground state for
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sub-critical field. For critical field and super critical fields, the system decays into the configuration
{σ} = (1,−1, 1,−1, · · · ). One can also get this result by constructing a new set of spins, {σ̃} satisfying:
σ̃i = −σi. The energy functional of {σ̃} are the same as for {σ} with the field being flipped since

E({σ})
∣∣∣
J>0,h<0

=

N−1∑
i=1

Jσiσi+1 + hσ1 =

N−1∑
i=1

Jσ̃iσ̃i+1 + |h|σ̃1 = E({σ̃})
∣∣∣
J,h>0

(3.2.63)

In the second to last equality it is used that h < 0 which implies −h = |h| > 0. This new set of
spins have a local, positive field on the first site which implies the set {σ̃} evolves as described in
the previous section. This mean that for 0 > h > −J , then the system decays into any of the two
AFM ground states of {σ̃} which translates into the AFM ground states of {σ}. For critical and
super-critical fields, 0 > −J ≥ h, the system decays into {σ̃} = (−1, 1,−1, 1, · · · ) which translates into
{σ} = (1,−1, 1,−1, · · · ).

Changing the sign of J makes the system ferromagnetic. Instead of redoing all the calculation, one
can simply map the spin configuration {σ} to a new spin configuration {σ̃} by flipping all then even
spins.

{σ̃} =

{
σ̃i = σi for i being odd
σ̃i = −σi for i being even

(3.2.64)

This new configuration has an energy function which act as a AFM energy function

E({σ})
∣∣∣
J<0,h 6=0

=
N−1∑
i=1

Jσiσi+1 + hσ1 =
N−1∑
i=1

|J |σ̃iσ̃i+1 + hσ̃1 = E({σ̃})
∣∣∣
J>0,h 6=0

(3.2.65)

The new spins {σ̃} therefore evolves as if J > 0 which results in the {σ̃} spin evolving into a random
AFM ground state for |J | > |h| and into the AFM configuration with the lower energy for |h| > |J |.
Going back to the original spins, this limiting behaviour will be a randomly chosen FM zero-field
ground state for |J | > |h|, and the zero-field FM groundstates which magnetizes opposite to the field
for |h| > |J |.

One can also show then result by noticing that changing the spin of J results in a± → ∓a± and
γ±j → γ±j . The off-diagonal terms of A then change sign, which implies A → 2IN − A which further
implies λ` → 2−λ` = λN−`−1. This changes the order in which eigenvectors are labelled, which changes
long-term behaviour of the system.

The results of this section can be summarized in tabular 3.2.1.

3.3 Kawasaki dynamics

To end the chapter, the Kawasaki dynamics are described in short. Kawasaki dynamics are, as described
earlier, dynamics resulting from spin exchange processes. Here two nearest neighbouring spin that are
anti-aligned with each other can flip simultaneous, ↑↓↔↓↑. These moves will therefore conserve the
total magnetization ov the system and was first described in Kawasaki’s original paper[24]. Since all
moves does not change the total magnetization, a homogeneous longitudinal field would not influence
rates ω({σ} → {σ′}). For 1D systems with OBC, each allowed move can be written in the domain wall
representation, which divides the set of all Kawasaki moves into three subsets. These are depicted in
tabular 3.3.1. Note that in contrast with the Glauber moves, the domain wall representation of each
move depends on the sign of J .

For AFM nearest neighbour couplings, domain walls can move left and right by skipping over one
empty site. Domain walls can be created/annihilated in the bulk around an empty site, while on
the edges a domain wall can be created the site next to the edge site, given that the edge site is
empty. For FM nearest neighbour coupling, domain walls can be moved in pairs of two. The can be
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J h Case Solution Changes w.r.t J, h > 0 lim
t→∞

m(t)

J > 0 h > 0 |J | > |h| Low — Random AFM ground state
|J | = |h| Critical — (−1, 1, · · · )
|J | < |h| High — (−1, 1, · · · )

h < 0 |J | > |h| Low g→ −g Random AFM ground state
|J | = |h| Critical g→ −g (1,−1, · · · )
|J | < |h| High g→ −g (1,−1, · · · )

J < 0 h > 0 |J | > |h| Low λ` → λN−`−1 Random FM ground state
|J | = |h| Critical λ` → λN−`−1 (−1, · · · ,−1)
|J | < |h| High λ` → λN−`−1 (−1, · · · ,−1)

h < 0 |J | > |h| Low λ` → λN−`−1 and g→ −g Random FM ground state
|J | = |h| Critical λ` → λN−`−1 and g→ −g (1, · · · , 1)
|J | < |h| High λ` → λN−`−1 and g→ −g (1, · · · , 1)

Figure 3.2.1: Behaviour of the different regimes of the classical Ising model for different values of (J, h).
The dynamics are all compared with the (J > 0, h > 0) regime. The difference between regimes, in
terms of the dynamic, are, at most, a sign change of g and an offset of the eigenvalues λ`

created/annihilated around an occupied site, while on the edge, a domain wall can only be created
next to the edge site, if and only if the edge site is occupied. For FM coupling, the system can never
reach an FM ground state if only Kawasaki dynamics are present, since the last domain wall cannot
be annihilated.

Given a system 1D KIM with N sites and OBC, there will be N−1 different nearest neighbour spin
pairs. Each spin exchange process can therefore be associated to the lowest indexed site participating in
the spin exchange. This means the first process is the process where spin 1 and 2 exchange spins, while
the second process exchanges spins between spin 2 and 3. Given a general, space dependent, nearest
neighbour coupling Ji and a homogeneous longitudinal field hi = h, the rate of the i’th Kawasaki
process can be written as

ω̃i({σ}) =
1

2τ

[
1 + σi

(
γ̃+
i σi−1 − γ̃−i σi+2

)] 1− σiσi+1

2
for i ∈ {1, · · · , N − 1} with (3.3.1)

γ̃±i =
1

2

[
tanh

(
Ji−1 + Ji+1

Tα

)
± tanh

(
Ji−1 − Ji+1

Tα

)]
(3.3.2)

This can be shown by setting σi = −σi+1 and σi−1 = ±σi+1 and observing that the r.h.s. of eq. (3.3.1)
reduces to τ−1nF (∆E/T ). Also, the 1−σiσi+1

2 term is to ensure that for σi = σi+1, the rate is zero.

From this, the magnetization vector of the system will still satisfy eq. (3.1.25), where P̂ ({σ}, t) is
described via the Master equation for Kawasaki processes

Ṗ ({σ}, t) = −
N−1∑
j=1

(1− p̂j p̂j+1)ω̃j({σ})P ({σ}, t) (3.3.3)

Using the method described in section 3.1.3, it is possible to shown that

(1 + p̂j)(1 + p̂j+1)(1− p̂j p̂j+1) = 0 and (1 + p̂j)(1 + p̂j+1)(1 + p̂j p̂j+1) = 2(1 + p̂j)(1 + p̂j+1)
(3.3.4)
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Action DW (AFM) AFM DW (FM) FM ∆E

Move left/right ◦ ◦ • ↔ • ◦ ◦ ↑↓↑↑↔↑↑↓↑
↓↑↓↓↔↓↓↑↑ ◦ • • ↔ • • ◦ ↑↑↓↑↔↑↓↑↑

↓↓↑↓↔↓↑↓↓ 0

Pair creation/annihilation ◦ ◦ ◦ ↔ • ◦ • ↑↓↑↓↔↑↑↓↓
↓↑↓↑↔↓↓↑↑ ◦ • ◦ ↔ • • • ↑↑↓↓↔↑↓↑↓

↓↓↑↑↔↓↑↓↑ ±4|J |

Edge creation/annihilation ◦◦ ↔ ◦• ↑↓↑↔↓↑↑
↓↑↓↔↑↓↓ •◦ ↔ •• ↑↓↓↔↓↑↓

↓↑↑↔↑↓↑ ±2|J |

Figure 3.3.1: Table describing the allowed moved for spin-exchange dynamics in both spin and domain
wall picture. In the last column, creation of domain walls costs energy while annihilation frees energy.

which implies that

ṁ1(t) = −2
∑
{σ}

σ1 (ω1{σ}+ ω2({σ}))P ({σ}, t) (3.3.5a)

ṁi(t) = −2
∑
{σ}

σi (ωi−1({σ}) + ωi{σ}+ ωi+1({σ}))P ({σ}, t) for i ∈ {2, · · · , N − 2} (3.3.5b)

ṁN−1(t) = −2
∑
{σ}

σN−1 (ωN−2{σ}+ ωN−1({σ}))P ({σ}, t) (3.3.5c)

ṁN (t) = −2
∑
{σ}

σNωN−1{σ}P ({σ}, t) (3.3.5d)

Writing the spin exchange rate out explicit, one gets that three point correlation functions enter the
system of differential equations eq. 3.3.5, which makes an analytical solution to the problem hard.
Solving the dynamics of the magnetization vector will not be attempted here.

3.4 Summary and conclusion

When the equilibrium properties of the classical Ising model is not sufficient to describe the behaviour
of the system, the non-equilibrium dynamics must be considered. Coupling the classical Ising model to
heat baths that are each allowed to perform different changes to the system, one gets the Kinetic Ising
Model (KIM), whose probability distribution P ({σ}, t) evolves via the Master equation, eq. (3.1.21).
When only Glauber dynamics are considered, which only alters the system via single spin-flip processes,
the statistical average of the magnetization can be found analytical for some conditions. The conditions
are homogeneous nearest neighbour couplings, zero temperature, and zero longitudinal field up to a
local field on the first site. Here the system decays exponentially into either a zero-field FM or AFM
ground state configuration given the value of the J and the local field strength.

Kawasaki dynamics are also introduces, but it is not possible to analyse the resulting dynamic
using analytical methods. They will therefore be ignored for some time, since nothing really can be
concluded yet.



Chapter 4

Simulating the non-equilibrium
dynamics of the KIM

Since the dynamics of the KIM only can be evaluated analytical for a few cases, if one wishes to get the
complete picture, one must perform numerical simulation of the KIM. An algorithm that is well suited
for this, is the Gillespie algorithm[27]. This allows one to simulate the KIM using the rates described
in the section about the Master equation, 3.1.

To explore the properties of the KIM for general condition, a Cython implementation of the Gillespie
Algorithm is written. The design of the code is described in the chapter as well as the theory behind
Gillespie’s original work[27]. The code is written in Cython 0.29.21 and implemented in Python 3.7.3.
The reason for using Cython, which is a hybrid between C and Python, are described in the first part
of this chapter. In section two, the Gillespie algorithm is described, and in section three, its Cython
implementation is described.

4.1 Why Cython?

Cython is a language which uses the high-level aspects from Python together with elements from C
and C++. The advantage of this being that the user can write fast functions at C-level, which can be
used in Python codes. If done correctly, one can speed up algorithms by a few hundred times compared
to pure Python. This high speed comes primarily from one thing, namely use of statically typed C
variables[28, 29]. This is easily described using the following example.

4.1.1 1 + 2 = 3

In Python, everything is an object1. This means that a lot of code have be ran for Python to store
simple things such as numbers. Mathematical operations on and with these objects are therefore also
complicated and requires a lot of steps to performs. As an example, if one wishes to declare two integers;
i = 1 and j = 2, then Python creates two integer objects in which 1 and 2 are stored respectively. If
one wishes to add i and j and store the result in a variable k, then the command k = i + j is called.
Under the hood, Python then has to go through the following steps[29]:

• First, Python checks what kind of object i is. In this example, i is an int.

• Then, Python checks if the int type has a build-in add method, which is does.

• Python then calls i’s add method which takes j as an inputs.

1What an object means will be described later in sec. 4.3
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• Inside add , the type of j is then checked. If the type is suitable for addition, then the values
stored in i and j are added. Here, if j was not an integer, then either conversion between data
types is done before the addition, or an error is raises.

• If nothing has gone wrong yet, an object k is created where the result of the addition is stored.
The type of k will depend on the type of i and j. In this example, k is also an int.

This requires a lot of function calls and lookups which makes a simple instruction, such as 1 + 2 = 3,
take a long time2. Even thou this is slow compared to other languages such as C, it is much more
flexible and easier to use. This method of adding allows one to do addition across data types. For
example

• Integers and floating point numbers can be added resulting in a floating point: 1 + 1.0 = 2.0

• Integers and complex numbers can be added resulting in a complex number: 1 + 1.0j = (1.0 +
1.0j)

• Integers can be added to numpy arrays element wise: 1 + array([1.0,2.0,3.0]) = array([2.0,3.0,4.0])

Programmers can then use addition without worrying about data types which makes code easier to
write. This trade-off between speed and flexibility makes code slow, but easier to develop and write.
In Cython, one can do this much faster by first declaring i, j, and k as C-variables:

cdef int i = 1, j = 2 (4.1.1)

cdef int k = i + j (4.1.2)

These instructions are then translated into C code which is compiled and ran. The first line allocates
space for two C-ints in RAM where 1 and 2 are stored. The second line roughly translated into add
two C-integers labelled i and j and place the results in a integer variable k allocated in RAM. This is
much faster, but also comes with several caviares. If the type of j was instead a floating point number,
then this addition would not be possible, and the program cannot be compiled. This means that if
the data types are correctly typed, then when the code has been compiled, the computer does not
need to check the data types of i and j when the code is ran. Also, if the numbers are large, so that
i + j is greater that 231 − 1 = 2, 147, 483, 647 then the sum overflows, which means that the numbers
wrap around and starts counting from −2, 147, 483, 647. Depending on the code, a warning is printed
to the user indicating the addition resulted in an overflow, but is not guaranteed. The programmer
therefore has to add another item to the list of things that can go wrong when programming. It can
be worth the trouble thou, since a function written properly in Cython will perform faster than its
Python equivalence. This is demonstrated in the next example.

4.1.2 Example of speed up

To demonstrate Cython’s ability to speed up code, one can consider the following question: What is the
sum of the integer from 1 to N? Without using the obvious method which is to use that

∑N
i=1

N(N+1)
2 ,

the answer can be evaluated using loops. Implementing an algorithm that calculates the sum in both
Python and Cython, one can compare the average runtime of the two, using the %timeit magic.

Starting with the Python implementation, fig. 4.1.1a, a function named summer py is written that
takes the number N as an input. Because of the flexibility, N can be any Python object. The ”results
= 0” command then creates a python int where 0 is stored in. The program then adds all the integers
from ”1” to ”N” with a for loop.3 At the beginning of the loop, when range is called, the type of
the input N is check, which raises a TypeError if N is not a python int. At the end of the function

2Of course a long time is relative here. On my PC it takes (83± 7) ns to perform this.
3Note that upper limit of the range object is ”N+1” since the range object excludes the upper limit.
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def summmer py(N) −> int :
r e s u l t = 0

for i in range (1 ,N+1):
r e s u l t += i

return r e s u l t

a)Python implementation of summer

def summmer cy ( long long N) :
cde f long long r e s u l t = 0 , i

for i in range (1 ,N+1):
r e s u l t += i

return int ( r e s u l t )

b) Cython implementation of summer

Figure 4.1.2: Two different implementation of the same algorithm. One is written in pure Python a)
while the other is written in Cython b)

N = 106 N = 107 N = 108 N = 109

Python 91 ms 812 ms 10.1 s -
Cython 423 µs 3.99 ms 45 ms 423 ms

Speed up 215 203 224 -

Figure 4.1.3: The performance of a Python and Cython implementation of the same algorithm. Run
times are measure using the %timeit command.

results is returned. Timing this implementation for N = 106, N = 107, and N = 108, yields the results
written in tabular 4.1.3. One observed that when summing from 1 to 108, the algorithm takes seconds
to complete.

In the Cython implementation, fig. 4.1.1b, a function named summer cy is created which takes a
long long and store it in a variable called N . A long long is a C data type which allocated 64 bits
of memory to represent a signed integer. This means that is can store integer value from −(232 − 1)
to 232 − 1 which is necessary to avoid overflow errors for N <= 109. The results and i variables are
then statically typed as long longs and results is set to ”0”. The for loop is then performed. Here, the
simplicity of the C’s +-operator really shines though, since the numbers are simply added. At the end
of the Cython function, results is converted to a Python int which is returned. Timing this methods,
one gets the results written in table 4.1.3. Compared to pure Python, the Cython implementation is
around 200 times faster! From this example, it is clear that Cython dramatically can increase efficiently.
Due to this, Cython is used to run the simulations of the KIM.s

4.2 The Gillespie algorithm

To simulate the KIM, the Gillespie algorithm[27, 30] is the way to go. The basic idea is that given a
system whose state can change via different stochastic processes, its dynamics can be simulated using
the rates at which each process happens. Given a system I that can react/change via M different
processes, labelled by µ ∈ {1, · · · ,M}, then one can defined the probability density function (PDF)
P(µ, τ |I, t) as

P(µ, τ |I, t)∆τ = The probability, to first orther in ∆τ , that the µ’th

process occures in the time interval ]t+ τ ; t+ τ + ∆τ [,

given that the system was in the configuration I at time t. (4.2.1)
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This PDF must then satisfy

M∑
µ=1

∫ ∞
0
P(µ, τ |I, t)dτ = 1 (4.2.2)

for the probabilities to sum one unity. It is here assumed that if the system can react via a given
process, it is bound to do at some point. In Gillespie’s original work[27], he used this PDF to describe
an algorithm for which a chemical system can be simulation. In this section, the thoughts presented
by Gillespie is used to get the PDF related to the KIM.

The basic idea of the algorithm is then to simulate a reaction event of a state I by picking an integer
µ ∈ {1, · · · ,M} and a positive real number τ ∈ R+ from the PDF P (µτ |I, t). The system I is then
updated using the µ’th process after the time τ has passed. This procedure is iterated until either the
system becomes static or a maximum number of iterations has been performed. This is described in
greater details in section 4.2.3. For now, the exact form of the PDF P (µ, τ |I, t) is determined.

4.2.1 Determining the PDF

The PDF P(µ, τ |I, t) can be evaluated using the rates in the master equation in eq. 3.1.1. Since these
are the probability pr. unit time, that the system changes via a given process, one gets that[27, 30]

ωµ(I)∆t = Probability, to first order in ∆t, that the system

changes via the µ’th process in a time interval of size ∆t,

given the state of the system is I. (4.2.3)

From this assumption, the probability that more than one reaction/process occurs in the this time
interval is of order O

(
(∆t)2

)
. Therefore, for small time intervals, one can assuming that no more than

one reaction/process can occur in the interval. Therefore, the probability described in eq. (4.2.1) must
satisfy

P(µ, τ |I, t)∆τ = P0(τ + t, t|I)
(
wµ∆τ +O

(
(∆τ)2

))
(4.2.4)

Here P0(τ + t, t|I) is the probability that the system does not changing in the time interval ]t; t + τ ],
given that the system is in the state I at time t. ωµ∆dτ is then the probability, to first order in ∆τ ,
that the system changes via the µ’th process in the interval ]t+ τ ; t+ τ + ∆τ ]. To determine P0, one
splits in interval ]t; t+ τ ] into N smaller intervals of size τ/N .

]t; t+ τ ] =

N−1⋃
n=0

]
t+

τ

N
n; t+

τ

N
(n+ 1)

]
(4.2.5)

From this, one can say that if nothing must happen in ]t; t+ τ is the same as saying the nothing must
happen in the interval ]t+ τ/N ; t+ τ ] given that nothing happened at ]t; t+ t/N ]. In this way

P0(τ + t, t|I) = P0

(
τ + t, t+

τ

N

∣∣∣∣∣I
)
P0

(
t+

τ

N
, t

∣∣∣∣∣I
)

(4.2.6)

Continuing this line of reasoning, one can write that

P0(τ + t, t|I, t) =
N−1∏
n=0

P0

(
t+

τ

N
(n+ 1), t+

τ

N
n

∣∣∣∣∣I
)

(4.2.7)
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If N can be considered to be large, which can be chosen freely, the one can expand P0 in the following
way

P0

(
t+

τ

N
(n+ 1), t+

τ

N
n|I
)

=
M∏
µ=1

(
1− ωµ(I)

τ

N
+O

(
N−2

))
(4.2.8)

The logic behind this is a bit long, by in summary, the r.h.s. of eq. (4.2.8) states that the system does
not change by either of the M process, which are expanded to first order in N . These probabilities are
the expanded to first order in N−1. Expanding the product, one gets that

P0

(
t+

τ

N
(n+ 1), t+

τ

N
n|I, t

)
= 1−

 M∑
µ=1

ωµ(I)

 τ

N
+O

(
N−2

)
= 1−W (I)

τ

N
+O

(
N−2

)
(4.2.9)

Here W =
∑M

µ=1 ωµ(I) is the sum of the rates given the system is in the state I. It is assumed here
that W 6= 0. If W = 0 the system would be static, which would break probability conservation of
P (µ, τ |I, t). Given that at some point the system reaches a state where W = 0, the simulation is
stopped and no further calculations of the PDF is necessary, thereby evading the problem all together.
This is discussed in more detailed when the algorithm is described in details, sec. 4.2.3.

Inserting eq. 4.2.9 into eq. (4.2.7), the probability of the system not changing in the interval
]t; t+ ∆τ ] takes the form of

P0(τ + t, t|I, t) =

N−1∏
n=0

[
1−W (I)

τ

N
+O

(
N−2

)]
=
(

1−W (I)
τ

N

)N
+O

(
N−1

)
→ e−W (I)τ (4.2.10)

for N →∞. The PDF, P(τ, µ|I, t), will therefore decay exponentially.

P(τ, µ|I, t) = wµe
−Wτ , (4.2.11)

This probability density function satisfies the probability conservation described in eq. (4.2.2)

1 =

M∑
µ=1

∫ ∞
0
P(τ, µ|I, t)dτ =

 M∑
µ=1

ωµ(I)

(∫ ∞
0

e−W (I)τdτ

)
= W (I)

1

W (I)
= 1X. (4.2.12)

4.2.2 The direct method

The direct method is described in more detail in Gillespie’s paper[27]. The basis idea here is that the
probability density function P(µ, τ |I, t) can be split into the product

P(µ, τ |I, t) = P1(τ |I, t)P2(µ|τ, t, I) (4.2.13)

Here P1(τ |I) is the PDF corresponding to the next process happens in the time interval ]t; t+ τ ] while
P2(µ|I, τ, t) is the probability that the process performed is the µ’ht process, given that a process
occurs in the time interval. From eq. (4.2.13), then summing over µ yields

P1(τ |I, t) =
∑
µ

P(µ, τ |I, t) and P2(µ|τ, t, I) =
P(µ, τ |I, t)∑
ν P(ν, τ |I, t)

(4.2.14)

To show this, it is used that
∑M

µ=1 P2(µ|τ, t, I) = 1. This is because the system must change using on
of the M processes given that the system changes.
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Inserting eq. (4.2.11) into eq. (4.2.14), one gets

P1(τ |I, t) = W (I)e−W (I)τ and P2(µ|τ, t, I) =
ωµ(I)

W (I)
(4.2.15)

From the first condition of eq. (4.2.15), a random time interval can be picked. One does this by using
that the probability of picking a time interval ∆t greater than some time interval τ is

P (∆t > τ |I, t) =

∫ ∞
τ
P(τ ′|I, t)dτ ′ = − 1

W (I)

[
W (I)e−W (I)τ ′

]∞
τ

= e−W (I)τ (4.2.16)

Generating a random number r from a uniform distribution [0, 1], one can get a random time interval
from the PDF P1 via

∆t = − 1

W (I)
ln r ∈ R+ (4.2.17)

A random produces can then be picked by, again, generating a random number r2 from a uniform
distribution [0, 1[. From this, a random µ ∈ {1, · · · , N} can be picked following the probability
distribution P2 by finding the smallest µ such that

µ∑
ν=1

wν > Wr2 (4.2.18)

One can easily see why this is by imagining ”lining up” the M processes on the real number line with
a length proportional to P2(µ|I, τ, t). The probability of throwing a dart randomly at the real number
line, equivalent to picking r2, and hitting the the ν’th process will then be equal to P (ν|I, τ, t). The
”dart” will therefore pick the process ν with if

ν−1∑
µ=1

wµ
W
≤ r2 <

ν∑
µ=1

wµ
W
⇔

ν−1∑
µ=1

wµ ≤ r2W <
ν∑

µ=1

wµ (4.2.19)

Here w0 = 0 and wM+1 = 1.

4.2.3 The algorithm

Given a way of generating the pair (µ, τ), the outline of the Gillespie algorithm can be described.
Applied to the KIM, the algorithm goes as following:

1. Initial the system. The first step is to initialize the system in a given configuration {σ}.
Additionally, the simulation time is initialized as well t = 0.

2. Calculate rates. Given the current configuration, the set of rates {ωµ({σ})} can be calculated.
Summing over all rates, the total rate W ({σ}) is evaluated too. If the total rate is zero, the
simulation stops since the system is static and all dynamics are dead.

3. Increment time. Since W 6= 0, the simulation time can be incremented by picking a random
number r1 from a uniform distribution ]0; 1[, which is used in τ = −W−1 ln r1. The time is then
incremented t→ t+ τ

4. Pick a process. To pick which process the current state is altered by, one generated another
random number r2 from a uniform distribution [0; 1[. The smallest µ satisfying

∑µ
ν=1wν > Wr2

is then chosen and the µ’th process are performed on the current configuration. The system is
now in a new configuration and has its time variable incremented.
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5. New loop. If the number of maximum iterations has been reached, the simulation is not allowed
any more moves and the simulation is stopped. This is to prevent the code to run forever, if for all
configurations then W ({σ}) 6= 0. If the maximum iterations hasn’t been reached, the algorithm
jumps back to step 2.

As said in the start of the chapter, this algorithm is implemented in Cython, which are described now.

4.3 Overall structure of the code

The code that simulates the KIM is implemented in Cython as an extension class. This is a kind of
object, which in computer science, is a data structure defined by three properties[29]:

• Identity: An identity that distinguishes it from the other. In Cython, this is simply the memory
location where the object is stored.

• Value: Objects can store data in variables knows as attributes.

• Type: This specifies the behaviour of the object, which is accessible using a collection of methods
saved in it. In Cython, the methods of an object must always take the objects itself as an input.
The standard notation for this is to use the keyword: self. An objects methods can then use an
alter the attributes of the object.

These three things makes an objects what it is. It is possible to create multiple instances of a given
object, meaning that a lot of simulation can be created and stored in memory at the same time. Each
instance their own set of attributes and methods, which can be accessed and altered independently of
each other.

To simulate the KIM, a Cython extension class named Gillespie cy is created. One does this by
starting the code block describing the object by cdef class Gillepsie cy: followed by a doc-string.

cde f class G i l l e s p i e c y :
””” Doc s t r i n g ”””

The doc-string does not actively serve any purpose, except for describing the code. It is always a good
practice do this! After the doc-string, the attributes of the extension call are statically typed using
the cdef keyword. These attributes are listed in table 4.3.1. Since Gillespie cy is a Cython extension
type, all attributes of it must be statically types. Even those who are Python objects. Afterwards the
methods are defined. There are no limitation on which methods can be used, meaning def, cdef, and
cpdef functions are all allowed. 4 Note that only def and cpdef methods can be called from outside the
object. Gillespie cy has a lot of method, which will not all be covered in this chapter. The important
ones will thou and is done in next sections. The full list of all methods can be found in appendix C.4
with a small description of what they do.

4.3.1 Initialization of a Gillespie cy instance

When an instance of the Gillespie cy object is creates, Cython calls a series of special methods. This is
initiated by calling Gillespie cy with a given set of inputs:

Gillespie cy(J,h,init,N,temp,Nmax,delta,run sim). (4.3.1)

There are eight input in total where only five of them are required, being (J,h,init,N,temp). The type
and value limitations of the inputs are:

4The difference between the three types of functions can be found in the Cython documentation[28].
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List of attributes

Variable name Data type Description

N int Number of sites of KIM

Nmax int Maximum number of iterations of simulation

ended at int Number of iteration before system stopped. (-1 if
system did not before static before Nmax iterations)

delta double local variable in Glauber rates δ ∈ [−1, 1]

beta double inverse temperature (-1 if zero temperature )

J double[:N] Nearest neighbour couplings

h double[:N] Longitudinal fields

time double[:Nmax+1] Array of saved times

mag even double[:Nmax+1] Instantaneous magnetization of even sub-lattice

mag odd double[:Nmax+1] Instantaneous magnetization of even odd-lattice

energy double[:Nmax+1] Instantaneous energy

hist int[:Nmax] history of moves

initial state int[:N] Initial states of simulation

end state int[:N] end states of simulation

ran bint boolean variable to check is simulation has been ran

Figure 4.3.1: Table of attributes of the Gillespie. First column are the third names, the second column
are their data types, and the last column describes that data is stored here.

• J: A general Python object that described the nearest neighbour interaction. Given different
types and values of J, different space-dependent nearest neighbour couplings are defined. The
exact correspondence between input and output is described in appendix C.1.

• h: A general Python object that described the longitudinal field. Given different types and values
of h, different space-dependent fields are defined. The exact correspondence between input and
output is described in appendix C.1.

• init: A general Python object that described the initial configuration of the KIM. Given different
types and values of init, different initial configurations are defined. The exact correspondence
between input and output is described in appendix C.1.

• N: An integer describing the number of sites in the system.

• temp: A python float or a C double describing the temperature of the system. temp = -1 is
interpreted as an infinite temperature.

• Nmax: An integer described the number of iteration the algorithm can perform before it is
stopped. As a default value, it is set to be 100N .

• delta: Glauber parameter δ as a python float or a C double. Must be in the interval [−1, 1].
Default value is zero.

• run sim: A boolean variable that tell the object to run the simulation when the instance is created.
Default value is true.

When the creation of an instance is initiated, all attributes and methods are allocated in Memory.
A special method cinit is then called, which takes the same inputs as described above. In here,
attributes that are C data types are set/allocated. The instance is not yet a proper Python object,
so one should be careful about attributes that are Python object. To set there, the special method
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init is called. Here the rest of the attributes are set and, at the end of the method, the instance
should be ready to simulate the KIM. If run sim = True, then the simulation is ran at the end of init
method. It does this be calling the run sim cy method, where the Gillespie Algorithm is performed
on the system. That is until the system enter a static state, making it impossible for the algorithm
to process further, or the maximum number of iterations allowed are reached. The simulation results,
such as the history of the energy, magnetization, and simulation history, is then saved. These result
can then be outputted to the user either by the get attribute py method, which simply converts all
attributes to Python objects and outputs them as a dictionary, or by the plotting method then plots
the simulation history.

In the next sections, some of the important methods are described in detail. On this should be noted
thou. All the methods of an object will automatically take the instance itself as an input. Always!.
This is so that the methods have access to its attributes and other methods. It is standard to name
the instance itself for self, and is done so here too.

4.3.2 cinit

The special method is a Python function and is called immediately after the instance is allocated in
memory. As said before, the inputs of Gillespie cy are past directly into here together with the instance
itself.

The method then saved the number of sites N into its corresponding attribute self.N5 The maximum
number of iterations self.N max, and the Glauber parameter δ are then set, while the self.beta attribute
is calculated from the temp input. If temp is non-zero, then self.beta is set to the reciprocal value of
the input temperature 1/temp. If the input temperature is infinite, represented by a −1, then self.beta
= 0, while if the input temperature is zero, then self.beta is infinite, again represented by −1.

At last the self.J, self.h, self.time, self.mag even, self.mag odd, and self.energy attributes are allocated
as memoryviews6 of C doubles. The same is done for the self.history, self.initial state, and self.end state
attributes except that they are allocated as int memoryviews.

Before proceeding to init , the last attributes two attributes are set. These being the self.ran and
self.ended at attributes, which are set to False and −1 respectively, since the simulation hasn’t ran yet.

At this point, if not errors has been raised yet, the program continues to init .

4.3.3 init

This special method is a Python function which takes the same inputs as the cinit method did.
At this point, the instance is a fully defined Python object, which means that attributes can be
manipulated using Python function.

The goal of this method is to prepare the instance and make it ready to simulate the dynamics of the
KIM. It does so by first defining the nearest neighbour coupling self.J, the longitudinal field self.h, and
the initial configuration self.initial state. This is done using the self.get J att, the self.get h att, and the
self.get init att respectively. These methods takes J, h, and init as input and alters their corresponding
attributes using the rules states in appendix C.2 and C.3. After these are set, the time array self.time
has its first element set to 0.

After defining the physical parameters and the initial configuration, the initial conditions of the
system are set and calculated. First, the even and odd magnetization of the initial configuration are
calculated using the self.magnetization method, the result of which are saved in the self.mag even and
self.mag odd variables, first element. Afterwards, the energy of initial configuration is calculated by

5The object.something notation is the way one access attributes and methods of a given object in the Python languages.
6A Cython data-types used to store arrays. See documentation for more information[31]
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emulating the equation

E({σ}) =
N∑
i=1

Jiσiσi+1 + hiσi (4.3.2)

with a while loop. The result is stored in the first elements of the energy attribute self.energy.

At the end of the method, if the run sim input is True, the simulation is started by calling the
self.run sim cy method. If run sim = False, the method returns and the simulation is not ran.

4.3.4 run sim cy

This method is an inline C-function with the goal of simulating the behaviour of the KIM.

cde f i n l i n e void run s im cy ( s e l f ) :
cde f :

int l oop counte r = 0 , m

double r , W, sum var , P

# A l l o c a t e memory f o r arrays
int [ : ] c o n f i g = np . empty ( [ s e l f .N, ] dtype = int )
double [ : ] r a t e s = np . empty ( [ s e l f .N, ] dtype = np . double )

# Copy the e lements o f the i n i t i a l s t a t e over to the c o n f i g
# array
c o n f i g [ : ] = s e l f . i n i t i a l s t a t e

# Run s i m u l a t i o n loop
while l oop counte r < Nmax:

# C a l c u l a t e the r a t e o f the curren t c o n f i g u r a t i o n
# and save the r e s u l t s in the r a t e s array
s e l f . g l a u b e r r a t e s ( con f i g , r a t e s )

# C a l c u l a t e the sum of a l l r a t e s
W = 0
m = 0
while m < ( s e l f .N − 1 ) :

W += r a t e s [m]
n += 1

# Code goes here a f t e r the loop over m.

# I f sum of r a t e s are zero , then the system i s s t a t i c and
# the system does not e v o l v e anymore .
i f W == 0 :

# I f true , break out o f the w h i l e loop running the
# s i m u l a t i o n .
break

# Generate a random number in i n t e r v a l ] 0 , 1 [ and save i t in P
P = random number in exc lude exc lude (0 , 1 )
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# Generate a random number in i n t e r v a l [ 0 ,W[ and save i t in r
r = random number in exc lude inc lude (0 ,W)

# Generate the time i t t a k e s f o r the system to t r a n s i t i o n ,
# increment the time and save the new time in the
# in the corresponding element o f t ime array
s e l f . t ime ar ray [ n + 1 ] = s e l f . t ime ar ray [ n ] − l og (P)/W

# Find the s m a l l e s t ”m” such t h a t so t h a t sum of the f i r s t
# ”m + 1” r a t e s i s g r e a t e r than ” r ” .
m = 0
sum var = 0 .0

while m < (N − 1 ) :
# Increment sum v a r i a b l e by the ”m” ’ th r a t e
sum var += r a t e s [m]
m += 1

i f sum var > r :
# The current m s a t i s f i e s the c o n d i t i o n .
# Stop s e a r c h i n g
break ;

# The current m did not s a t i s f y the c o n t i t i o n .
# Continue s e a r c h i n g
m += 1

# After the w h i l e loop oveer ”m” , the code goes here .

# Save which pro ces s was performed in the s e l f . h i s t
# a t t r i b u t e
s e l f . h i s t [ l oop counte r ] = m

# Perform the m’ th pr oce s s by f l i p p i n g the m’ th sp in
c o n f i g [m] ∗= −1

# C a l c u l a t e magnet i za t ion o f new system and save the
# r e s u l t s in the s e l f . mag even and s e l f . mag odd
# a t t r i b u t e s
s e l f . magnet izat ion ( c o n f i g )

# C a l c u l a t e the energy o f the current c o n f i g u r a t i o n
# and save the r e s u l t s in the s e l f . energy a t t r i b u t e .
s e l f . c a l c e n e r g y d i f f ( con f i g ,m)

# Increment loop counter
l oop counte r += 1

# After the s i m u l a t i o n w h i l e loop , the code goes here .
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# Set the ran f l a g as w e l l as how many i t t e r a t i o n s
# the s i m u l a t i o n ran
s e l f . ran = True
s e l f . ended at = loop counte r

# Save the l a s t c o n f i g u r a t i o n in the s e l f . ended at
# a t t r i b u t e
s e l f . ended at = c o n f i g

Note that this is not a carbon copy of the real code, but should be seen as a demonstration of its
structure.

4.3.5 Building the file

In this chapter, the non-equilibrium behaviour of the classical Ising model is ran for different parameters
using the Gillespie cy cython extension class described in the previous chapters. One does this by
working in Python, that imports the Gillespie cy method by first cythonize it[32]. This by creating a
Python setup file on the form

from s e t u p t o o l s import setup
from Cython . Build import cython ize

setup (
ext modules = cython ize ( ” G i l l e s p i e c y 2 . pyx” )

)

which builds the Cython file when

$ python setup . py b u i l d e x t −−i n p l a c e

in a command line. The Gillespie cy object can then be imported and used in Python code. This can
then be implemented in other Python codes which is used a lot to simulate the results presented in the
next chapter.



Chapter 5

Simulating the KIM

In this chapter, the Gillespie cy object is used to simulate the non-equilibrium dynamics of the Kinetic
Ising model, for different parameter settings. This is done by simulating the same set of parameters a
given number times, often between a hundred and a thousand times. The data is then analysed using
statistics to interpret the dynamics of the KIM. Starting with zero temperature, the system can be
simulated for different fields and initial configurations. For each single simulation, properties such as
magnetization, history, and simulation time can be measured, which can be summarized is histograms.
As also stated in chapter 3, at zero temperature, the statistical averages of the spin projections will
decay exponentially into a given configuration. The states of which could be controlled by single local
field on the first site. This prediction also defined the limitations of the analytical work.

As mentioned in chapter 3 when the heat bath has a temperature of zero, the heat bath is frozen
and cannot give energy the the spins. At any point in time, the energy of the spins can therefore not
increase, but can either decrease or be kept unchanged. The result of this is that the system of spins
will ”move” closer and closer to a ground state configuration. For different values of the longitudinal
field h, the system’s long-term behaviour differs greatly. For some values, the system decays into one
of the zero-field AFM ground states were it becomes static. For small non-zero field strengths, the
system decays into a disordered state, and for large field strengths, the system decays into a zero-field
FM ground state. In this first section of the chapter, the system is simulated for AFM coupling, zero
temperature, an δ = 0. The value of h is changed gradually to explore the system in different fields.
Since the temperature is zero, the explicit value of the field does not matter, only whether or not it
is strong enough to rearrange the energetic order of the energy level. Due to an unknown bug in the
program, only simulations with δ = 0 are considered. The bug makes it so the energy can sometimes
increase even for T = 0. Since this is forbidden, one must conclude that the program simulated the
δ 6= 0 dynamics incorrectly. This will hopefully be fix in later patches of the code.

The overall behaviour of the system is determined by creating different initial states and running
multiple simulations on them. The measured quantities are based on averages over different initial
states and over different runs. More details about the specific data is explain in the sections below.

5.1 AFM - Zero temperature - zero longitudinal field

Starting simple, if the longitudinal field is zero, the only term in the energy function is the nearest
neighbour coupling. The system will therefore have its Z2 symmetry preserved, which results in both
ground states having the same energy. When averaging over all initial configurations, one would
therefore except that the frequency of decaying into one of the AFM ground states should be equal to
that of the other.

At T = h = δ = 0 the Glauber rates can be evaluated so that the allowed moves can be determined.
Because the creation of a pair of domain wall and the creation of a single edge wall has a positive

52
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energy cost, the Glauber rates

ωPC = ωEC = 0. (5.1.1)

This is because the Fermi function takes the form of a step function

nF

(
∆E

T

)
=


1 for ∆E < 0

0.5 for ∆E > 0
0 for ∆E = 0

for T → 0+ (5.1.2)

On the other hand, since the system releases energy when either two domain wall are annihilated or a
wall is annihilated on an edge, then

ωPA = ωEA = τ−1. (5.1.3)

At last, since domain wall can be moved for free in terms of energy, then ∆E = 0 for domain wall
motion and

ωM = 0.5τ−1. (5.1.4)

Remember that wall have an equal probability of moving to the left and the right given that the wall
is in the bulk of the material. Because of this, each wall will move as a random walker on a one-
dimensional line, which can annihilate with other walkers. The number of domain wall are therefore
forced to decrease over time, since at some point each domain wall will either collide with another or
hit an edge. Each time this happens, there is a probability of the wall(s) gets annihilated. The wall(s)
also has(have) a probability of moving, which may extend their life time for a bit. Keeping that in
mind, the walls cannot continue to be lucked and their life must eventually come to an end.

5.1.1 Behaviour of the zero-field KIM

This can be observed in fig. 5.1.1a and 5.1.1e where two randomly generated initial states are simulated
for T = h = δ = 0 with J > 1 and N = 30. Because the initial states are generated randomly, a lot
of domain walls are present in the beginning of the simulation. In the plots, domain walls will sit
between two nearest neighbouring sites of the same colour, because J > 0. As time goes on, the walls
are annihilated either by pair annihilation or edge annihilation. This is reflected in the energy history
of the simulation, depicted in fig. 5.1.1b and 5.1.1e. The energy drops quickly in the start and slows
down later on, but is always decreasing. Note the number of time steps used on the x-axis on the fig.
5.1.1a and d, while the simulation time is used in fig. 5.1.1b and e. Due to the nature of the Gillespie
algorithm, the simulation time between each time step is randomly chosen. There is therefore not a
direct map between the x-axis of the two kinds of plots.

As time goes on, fewer and fewer walls remains which slows the rate annihilated event. In the end
only one or two domain walls remain. In the first case, the last wall moves as a random walk until it
hits one of the edges. Here it has a 2/3 probability of annihilating and a 1/3 probability of moving
away from the wall. Even if the wall is lucky and manages to move away, it has a 50/50 change of
moving back to the wall again. It can therefore happen that a wall can bounce on the edge until it is
annihilated. Even if it manages to escape one wall, it can at maximum move over to the other wall
where it has the same options. As for all the other walls, the life of the last wall must come to an
end as well. One observes this in fig. 5.1.1a, where the last wall is annihilated in the end. Most of
the same things can be said if two walls remains. Either both walls are annihilated on edges, or they
annihilate each other as seen in fig. 5.1.1d. When no walls are left, the system is in one of the zero-field
AFM ground state configuration, where it becomes static and the simulation is ended. Tracing the
even and odd magnetizations of both system, fig 5.1.1c and 5.1.1f, one observes that they end with
(meven,modd) ∈ {(1,−1), (−1, 1)}.
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Figure 5.1.1: History and magnetization of single Gillespie cy simulation with (T, h, δ) = (0, 0, 0) given
an arbitrary ground state. Each row shows data from the same simulation. In a) and d), the histories
of the simulations are depicted. Here, the dark sites represents spin down states while the light sites
represents spin up states. In b) and e), the energy history are depicted. In c) and f) the history of the
even and odd magnetization are shown. Note that the x-axis depicts the number of steps performed
for a) and d) while for the rest, the simulation time in units of the characteristic Glauber rate α, are
used.

5.1.2 Measuring simulation time

Given how a general initial state behaves for h = 0, one can ask how long it takes for such system
to relax into a ground state. To answer this question for a given initial state, the have simulation
can be ran multiple times. For each run, the simulation time is saved. The measured data can then
be summarized in a histogram using ten bins as shown in fig 5.1.2. For each bin, the uncertainty in
frequency are based on the fact that counts follow a Poison distribution[33]. The uncertainty in number
of simulation in a given bin ni is then equal to

√
ni. The uncertainty in frequency of each bin with

ni 6= 0 is then

δfi =
δni
ntotal

=

√
ni

ntotal
=

√
fi

ntotal
(5.1.5)

Here ntotal is the total number of simulations performed. Also, the uncertainty in time is simply set to
half of the bin widths. From the histogram, it seem that the frequencies decay exponentially. To test
this hypothesis, the data can be fitted to an exponential decay y = Ae−λt. One way of doing this is
to scale the bin heights logarithmically and fitting it to a linear model since ln y = lnA − λt. When
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Figure 5.1.2: Fit of simulation times from 10,000 simulations of the KIM with a randomly generated
initial state with a 50/50 distribution of spin up and spin down states. The simulations are performed
for N = 30 sites, h = T = δ = 0 and AFM nearest neighbour couplings J = 1.

doing this, the uncertainties in frequencies will for fi 6= 0 scale to

δ ln(fi) =
∂ ln fi
∂fi

δfi =
δfi
fi

=
1√

fintotal
=

1
√
ni
. (5.1.6)

Using the numpy.polynomial.polynomial.Polynomial.fit method1, one generates the fit depicted in fig.
5.1.2b. Note that because the logarithmically errors are inversely proportional to the square root of
the count, bins with more data points are weighted higher in the fit than bins with less data points.
The fit look good in logarithmic space following the data closely. When converting from the real data,
in fig 5.1.2a, the fit is translated as well. The new fit still follows the data, with the difference between
data and theory shown in fig 5.1.2c. The largest disagreement between data and fit is for the first bin
and decreases when tα gets larger. For the first bins, which are weighed the most in the fit, the relative
error is only around 10%, which are within the errors of the data points. The hypothesis can therefore
be accepted for now.

From the measured fit parameters, one can measure both a decay rate λ and a normalization
constant A for a given initial configuration2.

5.1.3 Correlation between A and λ

Given an initial state {σ} as before. If one was to simulate it many many time, then the frequency
f(In) of measuring a simulation with simulation time in the interval In ⊂ R+ should approach the
probability P (In|{σ}) of such an even. As measured before, if a bin size of ∆t is chosen, then the
probability of measuring a simulation with time t ∈ [∆tn,∆t(n+ 1)[ should be

P ([∆tn,∆t(n+ 1)[|{σ}) = Ae−λ∆t(n+ 1
2), (5.1.7)

using the results from the previous subsection. Summing over these probabilities, the result should be
one since the simulation times must be a real, positive number. Therefore

1 =

∞∑
n=0

P ([∆tn,∆t(n+ 1)[|{σ}) = Ae−λ∆t/2
∞∑
n=0

e−λ∆tn =
Ae−λ∆t/2

1− e−λ∆t
=

A

2 sinh
(
λ∆t

2

) . (5.1.8)

1For more details about the method, read [34]. And yes, the number of polynomials are correct!
2Well in principle it is lnA that is measured, but it hardly matters.
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A and λ must therefore be correlated via the relation A = 2 sinh
(
λ∆t

2

)
. In the third equality of eq.

5.1.8, the geometric series is used. This is allowed since λ∆t > 0 which implies |e−λ∆t| < 1, which
implies convergence of the geometric series. This statement is tested in the next section where different
initial configurations are generated and simulated. As a final note, the probability density function
associated with the simulation is then

P(t;λ, {σ}) = λe−λt (5.1.9)

so that∫ ∞
0
P(t;λ)dt = 1 and

∫
In

P(t;λ)dt =

∫ ∆tn+1

∆tn
λe−λt

′
dt′ = 2 sinh

(
λ∆t

2

)
e−λtn (5.1.10)

From this, the average decay time can be evaluated as

〈t〉 =

∫ ∞
0

tP(t;λ)dt =

∫ ∞
0

t

λ
e−λtdt = λ−1. (5.1.11)

The average decay time are therefore reciprocal to the decay rate λ. This fact will be used throughout
this section.

5.1.4 λ’s dependence on initial states percentage

To determine how λ and A depends on the initial state, one can generate a large amount of different
initial states and perform the previously described analysis on each state. For a given percentage %,
being a measure of the fraction of spin down states in the initial configuration, the 100 initial states can
be generated for N = 30, which can be simulated 1,000 times each. From these simulations a hundred
pairs (A, λ) which can be analysed. In fig. 5.1.3a, initial states with 70 % of its spins pointing down.
The decay time measurement λ−1 can then be summarized in a histogram, which shows that the initial
state distributes symmetrically around 300α and does not seem to depend on the number of domain
walls in the initial system. This is in agreement with the fact that the simulation time is dominated
by the motion of the last domain wall. To show that probabilities adds to one, the (A, λ) are plotted
again each other over all the generated states. One can therefore define the decay time λ−1(%), as a
function of %, being the decay time averaged over initial states with the same percentage of spin down
states %.

To find how λ−1’s depends on %, a 100 initial states are randomly generated for each % where each
state is simulated 1,000 times, as before. From the thousand measurements, the measured simulation
times are fitted to a fit, as done earlier. This gives a hundred decay rates pr. percentage, which are
averaged over, which are shown in the first plot of fig. 5.1.3b. The error bars are here set to be the
standard deviation of the hundred measurements for each %. In the second plot of 5.1.3b, the measured
decay rates of each initial states is plotted against the number of domain walls in that configuration.
From these two plots, one can conclude that the average simulation time does not depend on the
percentage of down spins in the initial state nor does it depend on the number of domain walls.

Averaging over %, the average decay time of the KIM for N = 30 sites with AFM nearest neighbour
coupling and no longitudinal field, are

τdecay = (302± 7)τ (5.1.12)

5.1.5 λ’s dependence on system size

If the size dependence of λ and τdecay is to be analysed, one needs to simulate the KIM for many
different sizes. Since the decay rate in general does not depend on the initial configuration, one can
estimate τdecay(N) without the need of scanning through all possibilities of % for each system size.
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Figure 5.1.3: Simulation depicting how λ−1 depends on the initial configuration. In (a), a given
percentage, here 70%, is picked. 100 randomly generated initial states for which the decay time λ−1 is
measured using 1,000 simulations. A histogram of λ−1 is shown on the left, and λ−1 is plotted against
the number of domain walls. On the right, the fit parameters (A, λ) are plotted against each other
where λ is scaled corresponding 2 sinh(∆tλ/2), which shows a linear dependence. In (b), each data
point is an average over the decay time of 100 randomly generated initial states with a given % of spin
down, each simulated 1,000 times. The average decay time over % is 〈λ−1〉 = (302± 7)τ

One can simply pick a few percentages, such as % ∈ {0, 1
9 , · · · ,

8
9 , 1} and make due with generating ten

initial states pr. percentage for each system size N . This gives a 100 measurements of λ, exactly like
in the previous subsection, but with only a tenth of the generated initial states. Averaged over these
measurement, one gets the data shown in figure fig. 5.1.4. From the logarithmic plot, one observed
that

ln τdecay = Exp · log(N) + log(a)⇔ τdecay = aNExp (5.1.13)

with a and Exp measured to be

Exp = 2.05188± 0.00006 and a = (0.27881± 0.00016)τ (5.1.14)

5.1.6 Summary

In summary, for h = T = δ = 0, the probability density associated with measuring the simulation time
of KIM follows

P(t;λ) = λe−λt. (5.1.15)
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Figure 5.1.4: Data from scanning over the system size fitting to a power law. The left window shows the
average decay time are plotted for different system sizes with error bars being equal to the standard
deviation of the sampled data. This is done by randomly generating 10 initial states with for 10
different percentages %, so 100 states in total, which each are simulated 1,000 times each. In the
middle window, the same data is plotted in logarithmically scaled axis. Errors are here estimated
using error propagation. In the last window, the difference between fit and data is presented.

Here λ−1 is average simulation time and is, in general, independent of the initial state. It does depend
on the system size thou via a power law with exponent Exp and front factor a measured to be

Exp = 2.05188± 0.00006 and a = (0.27881± 0.00016)τ (5.1.16)

This result agrees with the equilibrium calculation performed in chapter 2. Compared to the kinetic
Ising model, the assumption that the system decays into a randomly chosen zero-field AFM ground
state for h = 0 is correct as well.

5.2 AFM - Zero temperature - Non-zero field

5.2.1 Small non-zero longitudinal field

If a longitudinal field is turned on, the Z2 symmetry is broken. From the analytical calculation in
chapter 2, the overall statistical average of the magnetization should be zero. This is because the
nearest neighbour coupling between spin are still dominating for 0 < |h| < J . One would therefore
expect the system would still decay into a zero-field AFM ground state. This does actually no happen
here. Instead, the system will end op in a disordered where it becomes states. An example of this is
shown in fig. 5.2.1. One can explain this phenomenon by looking at the rates.

Because of the non-zero longitudinal, the allowed domain wall moves must be labelled with a sign
± corresponding to its equivalent spin-flip process. This is described in the end of section 2.1. In this
context given the following processes

↑↓↓→↑↑↓ costs ∆E = 2h to perform. In domain wall picture ◦• → •◦ (5.2.1)

↓↑↑→↓↓↑ costs ∆E = −2h to perform. In domain wall picture ◦• → •◦ (5.2.2)
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Figure 5.2.1: Simulation of KIM for small fields satisfying 0 < |h| < J for AFM coupling J > 0 and
h = T = 0. The randomly generated initial states with 30 sites decays into a disordered configurations.

Even thou the two processes look identical in the domain wall picture, the energy cost differs by a sign.
One therefore defined the process in eq. (5.2.1) and eq. (5.2.2). Evaluating these rates for homogeneous
fields and nearest neighbour couplings, one gets an asymmetry in the domain wall motion

ω±PC = ω±EC = 0, ω±PA = ω±EA = τ−1, and ω±M =

{
τ−1 for +
0 for − (5.2.3)

For these calculations it is assumed that h > 0. If one wishes to know the equivalent dynamics for
h < 0, one can simply flip all spin, then run the calculations, and then flip all spins back again. The
same is true for the rest of this chapter.

As for h = 0, the processes of creating domain walls are not allowed so the have a rate of 0. Also
domain wall annihilations are allowed and happens on the time scale of τ . The system differs from
h = 0 by the asymmetry between domain wall motion. A wall can be moved if is results in a spin to be
flipped from ↑ to ↓, while if it results in ↓ to ↑ is forbidden. This results in some configurations having
domain wall setting in the bulk of the system which cannot be annihilated. As an example, if one
considers a single, lonely domain wall in the bulk of the system, as depicted in fig. 5.2.2a. Two spin
configurations can correspond to such domain wall configuration. In one case, the wall cannot move,
because to move in either direction, the system must perform a + domain wall move. In the second
case, the wall can move in either direction because the moves required are both of − kind, but after a
single move, the wall requires moves of + kind to move in either direction. Lonely domain walls will
therefore get stuck in the bulk of the system, which results in disorder. If two walls are placed next to
each other, so they are nearest neighbours, then in one case, the only move allowed is pair annihilation,
which results in the domain between the wall collapsing, fig 5.2.2b. In the other case, pair annihilation
are also allowed, but both walls are also allowed to move away from each other. Following the diagram
in fig 5.2.2b, and using the theory on how the Gillespie algorithm picks these processes, there will be
a probability of 2/3 of the domain collapsing. The other possibility is that the domain is widened and
two wall are stuck in the bulk. The last option results in a disordered configuration.

If domain walls are separated further, or more domain walls are introduced, the diagram required
to describe the possible dynamics becomes quite large and complicated. They will therefore not be
described here. In conclusion, the AFM KIM can in a small longitudinal field happen to decay into a
disordered ground state.
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(a) (b)

Figure 5.2.2: Diagrams showing how domain walls will move for an AFM KIM in a longitudinal field
0 < h < J . In (a), the moves a single domain wall can perform are shown. This will always lead to
the wall getting stuck in the bulk. In (b) the moves two nearest neighbour domain wall can perform.
These moves will sometimes lead to the walls getting stuck in the bulk. In both sub figures, the static
configurations are marked by red.

5.2.2 When the field matches the nearest neighbour coupling - edge flip line

For longitudinal fields whose strength matches the nearest neighbour coupling, h = J , something
special happens at the edges. Since each edge spin only has a single nearest neighbour, the energy
difference when flipping an edge spin is now zero for some configurations. Compared to 0 < J < h,
then

w−EC = w+
EA =

1

2τ
. (5.2.4)

The rest of the rates are similar for h = J and 0 < h < J . This means that the bulk of the system
still ends up being stuck in a disordered state. The difference from 0 < h < J is that now that if a
spin down happens to be next to one of the edge spin, the edge spin can flip freely. The dynamics of
some simulation will therefore never stop as shown in fig. 5.2.3a. Here, only one of the edge spins are
flipping constantly, but simulations can occur were neither or both of the edge spins flips.

5.2.3 Medium longitudinal field: J < h < 2J

Not much new can be said in the section since systems with J < h < 2J acts very much like systems
with 0 < h < 2J . One exception is present thou. The rates of the edge related processes are now

w+
EC = w+

EA = 0 and w−EC = w−EA =
1

2τ
. (5.2.5)

This means that edge spins will always end up being opposite to the field. This can be seen in fig.
5.2.3b.

5.2.4 Critical field: hc = 2J

The statistical average calculations of the magnetization of the system at T = 0, sec. 2.2, predicts
a phase transition at h = 2J , where the system goes from having m = 0 to m = −h. One should
therefore expect that the simulation to shown some kind of critical behaviour. And indeed it does.
Setting h = 2h, some of the pair creation rates will become non-zero. In summary

ω+
PC = ω+

EC = ω+
EA = ω+

M = 0, and ω+
PA =

1

2τ
(5.2.6)

ω−EC = ω−PA = ω−EA = ω−M = τ−1, and ω−PC =
1

2τ
(5.2.7)
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Figure 5.2.3: Simulations of an AFM KIM for (a) h = J and for (b) J < h < 2J . In both cases, the
bulk of the system gets stuck in a disordered state with the exception the edge spin flipping constantly
in (a).

The heat bath can therefore create certain domain wall, which introduces disorder to the system. The
system will therefore never settle down and the simulation never becomes static. The disorder of the
system also becomes enormously high because of the many domain wall pairs constantly being created
and annihilated. In figure 5.2.4a, this disorder is shown.
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Figure 5.2.4: Simulations of an AFM KIM for (a) h = 2J and for (b) h > 2J . In (a), domain wall
pairs are created and annihilated at the same rate, which implies a very disordered simulation. In
(b), the field dominated the energy scales which results in the system decaying into a zero-field AFM
ground state.
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5.2.5 Super-critical phase

Exceeding the critical field value, so that h > 2J , the field becomes the dominating term in the energy.
All rates of + kind will therefore reduce to zero, while all the rates of − kind evaluates to τ−1. The
system can therefore create pairs of domain walls which cannot be annihilated. This implies that when
t � τ the system will be in a state saturated by domain wall excitations of ↓↓↓ kind. In spin space,
this configuration is the state were all spins points opposite to the longitudinal field, fig. 5.2.4b. The
system therefore decays in a zero-field FM ground states.

5.2.6 Discussion of results

Compared with the equilibrium calculation of chapter 2, the results presented here are different.
Chapter 2 predicted that for T = 0 the system would either decay into one of the zero-field AFM
ground state for T � |h| < 2J . If the system size was even, the ground state was picked randomly
while for odd system sizes, one of the states was preferred. Here on the other hand, the system does not
decay into any of the ground states. One could explain this disagreement by the fact the equilibrium
calculations does not take the initial configuration into account. Since the field is not strong enough
to change the energetically order of the energy level, then one would except that the even and odd
magnetization could take any sign when averaging over all initial configuration. If true, the average
magnetizations could agree with the equilibrium dynamics. More data is needed to say this for sure
thou.



Chapter 6

Open 1D transverse field Ising model

In the last four chapters, the quantum dynamics of the original system, described in chapter 1, was
completely ignored. This lead to the study about classical thermal dynamics which introduced the
Kinetic Ising model. In reality, it is not necessary the case that the quantum dynamics can be ignored.
It is therefore wise to analyse these dynamics also. If there is a difference in the dynamics of the classical
and quantum system, experiments can be performed to determine if the QDCA can be considered as
a classical object or not. The question of whether there is a difference between the two will not be
answered in the chapter nor will the statistical properties be explored fully. The goal of this chapter is
instead to take the first steps in the direction and solve the eigenstate problem for the Hamiltonian in
eq. (1.4.14) for certain conditions.

6.1 Introduction

Returning to the introduction, the basis states of the electron on the quantum dots could be maps to
the 1D, OBC, nearest neighbour, quantum Ising model, in a magnetic field ~h(x)

H =
N−1∑
i=1

Jiσ
x
i σ

x
i+1 +

N∑
i=1

(hzi σ
z
i + hiσ

x
i ) . (6.1.1)

Note that this Hamiltonian different to the one written in chapter 1 by a π
2 rotation around the y-axis.

The reason for this will becomes clear later when the eigenstates are to be evaluated. One can always
rotate back if one want to compare the two. Term first term in eq. (6.1.1) is similar to the nearest
neighbour term in the classical, nearest neighbour, Ising model’s energy function. They are indeed very
similar and both forces spins to align/anti align depending on the sign of J . The convention of J > 0
being an AFM coupling is also used in this chapter. Similar to the classical case, the interaction part
of the Hamiltonian is also Z2 symmetric with respect to the transformation

R =
N∏
`=1

(−iσzi ) (6.1.2)

that flips the sign of a all σxi operators. This implies that for ~h = ~0, all energy levels are at least two-
fold degenerate. This changes with the field interaction is including, which breaks this symmetry for
non-zero longitudinal field hxi . The reason that no y-component of the field are considered is because

it can generally be ignored. To shown this, one considers the rotation Rx(~θ) around the x-axis, defined

63
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by

Rx(~θ) = e−i
∑N
j=1

θj
2
σxj =

N∏
j=1

[
cos

(
θj
2

)
I− i sin

(
θj
2

)
σxj

]
with (6.1.3)

θi =

{
∓ tan−1

(
hyi
hzi

)
for hzi 6= 0

∓π
2 for hzi = 0

. (6.1.4)

Applying the to the interaction term does not alter it since Rx commutes with σxi nor does it alter the
interaction with the longitudinal field. It does change the rest of the field thou, by mapping

N∑
i=1

hyi σ
y
i + hzi σ

z
i = ±

N∑
i=1

√
(hyi )

2 + (hzi )
2σzi (6.1.5)

The longitudinal field, hxi acts as a Zeemann term and splits the degeneracy coming from the Z2

symmetry. If this is the only active term in the field interaction, then σxi commutates with the
Hamiltonian and they share eigenstates. The spectrum therefore overlaps the classical, nearest neighbour
Ising model in a longitudinal field. The transverse field hzi mixes the basis since [H, σxi ] ∝ hzi which
implies H and σxi cannot share basis states. In this chapter, H is diagonalized for hzi = 0. The reason
why the longitudinal field must be excluded will be clear later. The model remaining is knows as the
transfer field quantum Ising model (TFQIM).

6.2 Analytical solution for zero-longitudinal fields

6.2.1 Jordan-Wigner transformation

Spin-1
2 picture

Fermion picture

Figure 6.2.1: Representation of
the Jordan-Wigner transformation.
The picture shows a configuration
of a spin-1

2 system with 6 sites.
This gets mapped to the spin-less
fermion state represented by the
lower picture. Here an empty circle
represents an empty site while a
blue circle represents an occupied
site.

When diagonalizing the TFQIM, the first thing to do, is to
perform a Jordan-Wigner transformation[35, 36, 37]. This
transformation maps the Hilbert space of a system of N spin-
1/2 particles into the Fock space of N spin-less fermions. More
specifically, the spin-down state is mapped to an occupied site,
while the spin-up state is mapped to an empty site, fig. 6.2.1. In
this way, the product of spin ladder operators σ+

i σ
−
i is mapped

to the product of fermion operators, cic
†
i . Here ci and c†i

are the creation/annihilation operators of a spin-less fermion
sitting on the i’th site. One could therefore make the näıve
guess that one should map the spin-ladder operators to the
fermion creation/annihilation operators directly via σ+

i → ci
and σ−i → c†i . This is unfortunately the wrong way to do it,
since the commutator relations for the spin operators cannot
be satisfies simultaneously with the fermion anti-commutator
relations.1 Therefore, the map must be more sophisticated. One
such map is the non-local Jordan-Wigner transformation:

σ+
i ↔

i−1∏
j=1

(−1)c
†
jcjci. and σ−i ↔

i−1∏
j=1

(−1)c
†
jcjc†i . (6.2.1)

1As an example [σ+
i , σ

−
j ] = 0 for i 6= j while [ci, c

†
j ] = cic

†
j − c

†
jci = 2cic

†
j 6= 0 for i 6= j. From the näıve map, these

commutators should map to each other, which they clearly don’t.
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From this map, it can be shown that σ+
i σ
−
i → cic

†
i , while

σ+
i σ
−
j → ci

max(i,j)−1∏
`=min(i,j)

(−1)c
†
`c`c†j (6.2.2)

Products of spin operators on different sites will therefore map to products of fermion operators with
a sign depending on the number of fermions between the two sites. Using relation (6.2.1), all the other
spin operators can be mapped to their corresponding fermion operators. From commutator relation
[σ+
i , σ

−
j ] = δijσ

z
i , the anti-commutator relation {ci, c†i} = I, and the fact that [A,B] = {A,B} − 2BA,

one gets

σzi = [σ+
i , σ

−
i ] = {σ+

i , σ
−
i } − 2σ−i σ

+
i ↔ {ci, c

†
i} − 2c†ici = I− 2c†ici. (6.2.3)

Here, the distinction between the identity operator acting on spin Hilbert space and the identity
operator acting on the Fock space are not made because they are always mapped to each other. The
correct use of identity operator is given by context. From eq. (6.2.3), the inverse Jordan-Wigner
transformation can be realized as

cj ↔

(
j−1∏
`=1

σz`

)
σ+
j and c†j ↔

(
j−1∏
`=1

σz`

)
σ−j . (6.2.4)

With eq. (6.2.1) and eq. (6.2.4), one can jump back and forwards between spin and fermion picture.

The remaining Pauli operators

When mapping σxi and σyi to Fock space, the parity of the sub chain consisting of the sites j with j < i,
becomes important. Writing σxi and σyi as a linear combination of ladder operators, eq. (6.2.1) can be
used to gets show that

σxj = σ+
j + σ−j ↔

(
c†j + cj

) j−1∏
`=1

(−1)c
†
`c` and σyj = −i(σ+

j − σ
−
j )↔ −i

(
c†j − cj

) j−1∏
`=1

(−1)c
†
`c` (6.2.5)

As will be clear later in this chapter, it can be advantageous to thing of these products as in terms of
the Majorana operators

γ+
i = c†i + ci and γ−i = i(c†i − ci) (6.2.6)

These operator anti-commute with each other and squares to identity

{γsi , γs
′
j } = 2δijδ

ss′ (γ+
i )2 = (γ−i )2 = I. (6.2.7)

Since γ+
i γ
−
i = i(c†i + ci)(c

†
i − ci) = i(−1)c

†
i ci , then the parity

∏i−1
j=1(−1)c

†
i ci =

∏i−1
j=1(−iγ+

i γ
−
i ), which

implies

σxj ↔ γ+
j

(
j−1∏
`=1

−iγ+
j γ
−
j

)
and σyj ↔ γ−j

(
j−1∏
`=1

−iγ+
j γ
−
j

)
(6.2.8)

Since all Pauli operators are now mapped to the Fork space of spin-less fermions, the Hamiltonian of
the TFQIM can be mapped as well. In doing so, the nearest neighbour interaction term will take the
form of

σxj σ
x
j+1 ↔

(
j−1∏
`=1

−iγ+
` γ
−
`

)
γ+
j

(
j∏
`=1

−iγ+
` γ
−
`

)
γ+
j+1 = −i

(
j−1∏
`=1

(
−iγ+

` γ
−
`

)2)
(γ+
j )2γ−j γ

+
j+1 (6.2.9)

= −iγ−j γ
+
j+1 = c†jcj+1 + c†j+1cj + c†jc

†
j+1 + cj+1cj (6.2.10)
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In the first equality, the the anti-commutator relation {γsi , γs
′
j } = 2δijδss′ is used where s, s′ ∈ {+,−}.

In the second equality, the fact that (−iγ+
i γ
−
i )2 = (γ+

j )2 = (γ−j )2 = I is used. The TFQIM Hamiltonian
will therefore take form

H =
N−1∑
i=1

Ji(c
†
ici + c†i+1xc

†
i+1 + h.c.)−

N∑
i=1

hxi (ci + c†i )

(
i−1∏
`=1

(1− 2c†`c`)

)
+ hzi (I− 2c†ici). (6.2.11)

in Fock space. For zero longitudinal field and uniform nearest neighbour coupling and transverse field,
this Hamiltonian is equivalent to a Kitaev chain [38, 39] with superconducting gap ∆ = −J , hopping
amplitude2 w = −J , and chemical potential µ = 2h. One should therefore expect zero modes3 in the
spectrum the system for certain values of (J, h)[39]. With a non-zero longitudinal field, eq. (6.2.11)
becomes incredibly hard to diagonalize, even for homogeneous fields. This is because the longitudinal-
field term includes up to N -point interaction terms all happening at the same order of magnitude. This
means that non of them can be considered as a perturbation w.r.t. the interaction J and transverse
field hz. To make any attempts to diagonalize eq. (6.2.11), the longitudinal field must first be set to
zero. The Ising Hamiltonian will therefore reduce to

H =

N−1∑
i=1

Ji

(
c†ici+1 + c†ic

†
i+1 + h.c.

)
−

N∑
i=1

2hic
†
ici +

(
N∑
i=1

hi

)
I (6.2.12)

with hi = hzi . Solving the eigenvalue problem for this Hamiltonian is much simpler since only quadratic
terms are left. The way to approach the problem here are very dependent on the boundaries. To do
this, one cannot simply Fourier expand the fermion operator as done when working with PBC[36].

This is because Fourier expansion of ci, c
†
i , and Ji does not cooperate well with the sum

∑N−1
i=1 . If the

Fourier transformation of the annihilation operator is ĉk := 1√
N

∑N
j=1 cje

−i 2πk
N
j with k ∈ {1, · · · , N},

then the Hamiltonian can be written as

H =
1√
N

N∑
k,q

(
Ĵq

(
ei

2πk
N + e−i

2π(k+q)
N

)
− 2ĥq

)
ĉ†k ĉk+q

+
1√
N

N∑
k,k′=1

(
Ĵ∗k+k′

ei
2πk′
N − ei

2πk
N

2
ĉ†kc
†
k′ + Ĵk+k′

e−i
2πk
N − e−i

2πk′
N

2
ĉk ĉk′

)
(6.2.13)

with J̃k := 1√
N

∑N
j=1 Jje

−i 2πk
N
j . Even for homogeneous nearest neighbour coupling and transverse field,

the Hamiltonian takes the form of

HOBC
homo = HPBC

homo +HEdge
homo (6.2.14)

HPBC
homo = J

N∑
k=1

{
2

[
N

N − 1
cos

(
2πk

N

)
− g
]
c†kck − i

N

N − 1
sin

(
2πk

N

)(
c†kc
†
−k − c−kck

)
+ g

}
(6.2.15)

HEdge
homo = − J

N

∑
k 6=k′

(ei
2πk
N + ei

2πk′
N )c†kck′ + c†kc

†
k′
ei

2πk′
N − ei

2πk
N

2
+ ckck′

e−i
2πk
N − e−i

2πk′
N

2
(6.2.16)

This first term, eq. (6.2.15), describes a TFQIM with PBC and can be diagonalized by a Bogoliubov
transformation[36]. This results in a set of fermions labelled by k whose spectrum are given by

εk = 2|J |N − 1

N

√
1 +

(
Ng

N + 1

)2

− 2gN

N − 1
cos

(
2πk

N

)
(6.2.17)

2In ref. [39] the superconducting gap is equal to J . The rest of the constant agree.
3For finite chains, these zero modes will not be exactly zero. Instead these states will have exponentially small energy

compared to the characteristic energy scales, being J and h. [39]
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which in the thermodynamics limit, N → ∞, takes the form 2
√
J2 + h2 − 2Jh cos (θk) where θk ∈

]0, 2π]. The boundary term of the same as J meaning that it cannot be seen as a perturbation. One
must therefore use other techniques to diagonalize eq. (6.2.12).

6.2.2 Real space Bogoliubov transformation

A better way to diagonalizing the open boundary condition TFQIM, (6.2.12), is to perform a real space
Bogoliubov transformation [40, 41]. This is done by introducing fermion creation and annihilation

operators, denoted ηk and η†k as linear combinations of cj and c†j .

η†k =

N∑
i=1

αkic
†
i + βkici and ηk =

N∑
i=1

αkici + βkic
†
i . (6.2.18)

The coefficients αki and βki are chosen so that ηk and η†k diagonalizes H.

H =

N∑
k=1

εk

(
η†kηk −

1

2

)
. (6.2.19)

Here, the −1/2 term in eq. (6.2.19) is introduced to ensure a zero trace of H. This is because tr[σαi ] = 0
which implies tr[H] = 0 in the original form of TFQIM eq. (6.1.1). Using the method described in
appendix A and B of reference [41], one rewrites the zero-longitudinal field TFQIM Hamiltonian, eq.
(6.2.12). in terms of normal terms and anomalous term.

H =
N∑

i,j=1

[
c†iAijcj +

Bij
2

(c†ic
†
j − cicj)

]
+

(
N∑
i=1

hi

)
I. (6.2.20)

Here A and B are real N × N matrices where A is symmetric and B is anti-symmetric. The exact
form of A and B are

Aij = −2hiδij + Jiδi+1,j + Jjδi,j+1 and Bij = Jiδi+1,j − Jjδi,j+1. (6.2.21)

This way of writing the Hamiltonian is useful because it allows one to relate the matrices A and B
with the coefficients αki and βki. By using the commutation relation [ηk,H] = εkηk, it can be shown
that the vectors (~φk)i = αki + βki and (~ψk)i = αki − βki are related by

(A + B)~φk = εk ~ψk and (A−B)~ψk = εk~φk. (6.2.22)

Multiplying the first equation in (6.2.22) by (A−B) and the second equation by (A+B), one observes
that ~φk and ~φ are eigenvectors of matrices defined from A and B.

M1
~φk := (A−B)(A + B)~φk = (A−B)εk ~ψk = ε2k

~φk (6.2.23)

M2
~ψk := (A + B)(A−B)~ψk = (A + B)εk~φk = ε2k

~ψk (6.2.24)

The coefficients αki and βki can therefore be determined by solving the eigenvalue problem eq. (6.2.24).
This gives both the vectors ~ψk as well as the spectrum εk. For non-zero εk, the corresponding ~φk vectors
can be determined from eq. (6.2.22). For εk = 0, the corresponding ~φ vector can be determines by
solving eq. (6.2.23). From this procedure, the coefficients αki and βki are determined as well as the
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spectrum of the Hamiltonian. For general nearest neighbour coupling, Ji and field hi one can write

4



h2
1 + J2

N −J1h1 0 · · · 0

−J1h1 J2
1 + h2

2 −J2h2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −JN−2hN−2 J2

N−1 + h2
N−1 −JN−1hN−1

0 · · · 0 −JN−1hN−1 J2
N−1 + h2

N


~φk = λk~φk (6.2.25)

4



J2
1 + h2

1 −J1h2 0 · · · 0

−J1h2 J2
2 + h2

2 −J2h3
. . .

...

0
. . .

. . .
. . . 0

...
. . . −JN−2hN−1 J2

N−1 + h2
N−1 −JN−1hN

0 · · · 0 −JN−1hN J2
N + h2

N


~ψk = λk ~ψk (6.2.26)

with λk = ε2k. For OBC JN = 0. This result also holds for both time dependent Ji and hi which results
in time-dependent coefficients αki(t) and βki(t) as well as time dependent energies εk(t). This will not
be discussed further in this thesis thou. For homogeneous parameters, the complexity of the eigenvalue
problems eq. (6.2.23) and (6.2.24) can be reduced even further.

6.2.3 Semi-analytical solution for homogeneous J and h

From the vector-matrix product in eq. (6.2.26), it can be concluded that for ~ψk to be an eigenvector
of M1, its elements must satisfy the following recursion relation.

(a− λ)ψk1 − bψk2 = 0 (6.2.27a)

−bψk,i−1 + (a− λk)ψki − bψk,i+1 = 0 for 1 < i < N (6.2.27b)

−bψk,N−1 + (a′ − λk)ψkN = 0 (6.2.27c)

Here a = 4(J2 +h2), a′ = 4h2, and b = 4Jh. Eq. (6.2.27b) is a second-order, linear, and homogeneous
difference equation with boundary conditions given by eq. (6.2.27a) and (6.2.27c). A general non-zero
solution to such system can be written ψkj = Crjk,+ + Drjk,−, where rk,± are the solutions to the
quadratic equation[25]

−b+ (a− λk)rk,± − br2
k,± = 0. (6.2.28)

For b 6= 0, these solution are given explicit as

rk,± =
a− λk

2b
±

√(
a− λk

2b

)2

− 1 (6.2.29)

which are reciprocal to each other since rk,+rk,− = 1.

The two solutions are equal

If the two solutions happens to equal, rk,+ = rk,− = r∗, the form of ψkj are modified to ψkj =
(C + jD)rj [25]. For this to be true, the square root in eq. (6.2.29) must be zero, which implies
λk = 4(J ± h)2. Therefore r∗k = ∓1 and ψkj = (C + jD)(−1)j . From the boundary conditions, it can
be shown that C = 0 and that D 6= 0 if and only if h = ± N

N+1J . It can therefore be concluded that

ψkj = sgn(g)j
√

6j√
N(N + 1)(2N + 1)

(6.2.30)
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is an eigenvector of M1 with eigenvalue ε∗ = 2|J |
N+1 if and only if |g| = N

N+1 . One therefore defined the

critical order parameter gc = N
N+1 . For large N , the energy of this state vanishes and becomes a zero

in the thermodynamic limit.

The two solution are different

For rk,+ 6= rk,−, the eigenvectors takes the form[25] of ψkj = Crjk,+ + Drjk,−. Here D/C and λk can
be determined by the boundary conditions while C acts as a normalization constant. Inserting the
general form of ~ψk into the first boundary condition, eq. (6.2.27a), one gets

0 = C [(a− λk)− brk,+] rk,+ +D [(a− λk)− brk,−] rk,− (6.2.31)

Since (a − λk) − brk,± = brk,∓ and rk,+rk,− = 1, then eq. (6.2.31) is true if and only if C = −D.
The value of rk,+, and therefore the value of λk, can then be determined from the second boundary

condition, eq. (6.2.27c). Inserting ψkj = C(rjk,+ − r
j
k,−) into the eq. (6.2.27c), it is possible to shown

that the set {rk,+, rk,−} are complex roots of a 2(N + 1)-degree polynomial

P (z) = g(z2(N+1) − 1) + (1− z2N )z = 0. (6.2.32)

P (z) has two trivial roots, namely z = ±1. For g 6= gc, both of these roots corresponds to the zero vector
~0 which is not considered a eigenvector. If |g| = gc, then z = sgn(g) corresponds to the eigenvector
eq. (6.2.30) while z = −sgn(g) corresponds to the zero vector.4. Since z = ±1 are irrelevant for this
discussion, they are divided out of P (z) leaving a N -degree polynomial

Q(z) =
P (z)

z2 − 1
= g

N∑
n=0

z2n −
N−1∑
n=0

z2n+1 = gz2N + (g − z)
N−1∑
n=0

z2n (6.2.33)

which roots are to be found. Evaluating the roots of Q numerically, one get that for supercritical
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Figure 6.2.2: Roots of the complex polynomial Q(z) for different values of |g|. In a), |g| < N
N+1 , for

b), |g| = N
N+1 and for c) |g| > N

N+1 . All plot are created for N = 10.

fields, |g| > gc, all the complex roots of Q(z) lay on the unit circle in the complex plane, 6.2.2c). For
subcritical fields, |g| < gc, 2(N − 1) of the roots lay on the unit circle while two lay on the real number
line, fig. 6.2.2a). These real roots will also be reciprocal since Q(z) = z2NQ(z−1). One of being in
the interval [−1, 1], while the being outside. For critical fields |g| = gc, the real roots is z = ±1, fig.

4One could also argue that these roots cannot be treated here since |rk,+| = 1 which does against the assumption
rk,+ 6= rk,−. Both ways yield the same result: Exclude z = ±1 from the current discussion!
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6.2.2b), which corresponding to eigenvector eq. (6.2.30). This is another example of the difference in
the behaviour of the systems in the different regimes.

The roots on the unit circle can all be written in terms of an angles θk being the argument of the
root. For rk,+ = eiθk to be a root of Q(z), then θk must satisfy

T (θk) = g sin[(N + 1)θk]− sin(Nθk) = 0 for θk ∈ [0, 2π]\{0, π} (6.2.34)

The roots of T (θ) are neither equidistant nor can be expressed analytically for g 6= 0. One thing can
be said thou. Since rk,+rk,− = 1, then arg(rk,+) = −arg(rk,−), which implies rk,± = r±iθk . The roots
on the upper half of the complex unit circle are therefore identified with rk,+, while the roots on the
lower half are identified with rk,−. This is also reflected in T (θ) since it is an odd function. Therefore
if θk is a root of T , then −θk is also a root of T . Since the roots cannot be found analytically, they
must be evaluated numerically. When done so, any eigenvector ~ψk associated with there k’th root of
T (θ), can be expressed as

ψkj =
sin(jθk)√∑N
n=1 sin2(nθk)

(6.2.35)

with corresponding eigenvalues

λk = 4
(
J2 + h2 − 2Jh cos(θk)

)
(6.2.36)

Figure 6.2.3: Real root of Q(z) compared
with g for different values of N and g/gc.
Here N ∈ {10, 20, · · · , 300} and g/gc ∈
[0.1, 1].

Since λk > 4J2(1 − |g|)2, the spectrum of these states are
gapped for |g| 6= 1 with gap size ∆(g) = 2|J |

∣∣1 − |g|∣∣.
For |g| = 1 then ∆(g) = 0 but since θk ∈ {0, π} are
not associated with any eigenvectors, then the spectrum is
still gapped. This smaller gap is of order O

(
N−1

)
which

vanishes in the thermodynamic limit. For supercritical
fields, |g| > gc, all the roots of Q(z) sits on the complex
unit circle, see fig. 6.3.1a).

For |g| → gc from above, the energy gap decreases and
one of the complex roots move closer to the real number line,
fig. 6.3.1b). This results in its corresponding eigenvalue
approaching ε∗ = 2|J |/(N + 1) from above. At the critical
point field |g| = gc, the the eigenvector eq. (6.2.30) becomes
an eigenvector of M2 with eigenenergy ε∗.

For subcritical fields, 0 < |g| < gc, the polynomial Q
will have two real roots, r̃ and r̃−1. The exact value of
these roots cannot be found analytically and must therefore
be evaluated numerically, if needed5. It can be shown that
in most cases, these roots are approximately g and g−1, fig. 6.2.3. In the figure, the percentage error
of the initial guess g compared to the real root is close to zero. This error becomes large when N is
small and g ≈ gc. This is because Q(g) = g2N+1 � 1 for N � 1 and g < gc.

For the large root r̃−1 even thou the functional value at the initial Guess Q(g−1) = g cannot be
considered to be small for general |g| ∈]0; gc[ it is still close to the real root. This is due to Q(z) having
the property that if x̃ 6= 0 is a root of Q then x̃−1 is also a root of Q since

P
(
x̃−1

)
= g

(
x̃−2(N+1) − 1

)
+ (x̃−2N − 1)x̃−1 (6.2.37)

= −
g
(
x̃2(N+1) − 1

)
+ (x̃2N − 1)x̃

x̃2(N+1)
(6.2.38)

= − P (x)

x̃2(N+1)
(6.2.39)

5You know where to look
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Therefore

Q(r̃−1) =
P (r̃−1)

r̃−2 − 1
=
−r̃−2(N+1)P (r̃)

r̃−2 − 1
=
−r̃−2(N+1)P (r̃)

r̃−2(1− r̃2)
=
Q(r̃)

r̃2N
(6.2.40)

Since Q(r̃) = 0 then Q(r̃−1) = 0. From this result, the eigenvalue λ̃ can be written evaluated

λ̃ =
√
J2 + h2 − Jh [r̃ + r̃−1] =

√
gδ
√

1− g2 +O
(
δ5/2

)
(6.2.41)

Here δ = r̃ − g is the difference between the real root of Q and the initial guess g. The corresponding
eigenvector will therefore take the form of

ψNn =
|g|−n − |g|n√∑N
m=1(g−m − gm)2

+O (δ) (6.2.42)

The last vector here is defined in a way so it’s elements are positively. For completeness, if h = 0, the
off-diagonal terms in both M1 and M2, and their eigenvectors are the unit vectors {ê1, · · · , êN} with
eigenvalues {0, J}. Actually any vector, whose N component is zero, is an eigenvector of M2. The
same is true for M1 excepts for its first component. There is therefore a some freedom in how the αki
and βki coefficients can choose. A natural choice of vectors is to pick them so they are consistent with
the limits lim

g→0
~φi and lim

g→0
~ψi.

Spin-wave basis

Since the limiting behaviour of the function T (θ) are

lim
g→0+

T (θ) = − sin(Nθ) (6.2.43)

then the Bogoliubov angles will approach

θk =
πk

N
as g → 0 for k ∈ {1, · · · , N − 1}. (6.2.44)

Therefore, the first N − 1 eigenvectors can be picked so

ψkn =

√
2

N
sin

(
πk

N
n

)
with eigenvalues εk = 2J (6.2.45)

Here,
√

2
N is the normalization constant. Note that ψkN = 0 here. Q(x) cannot be used to get the last

vector since it’s real root is zero. The reciprocal does therefore not exist and eq. (6.2.42) cannot be
used. Other methods are therefore needed. Since the ~φk vectors are orthogonal to each other, appendix
D.1, then the last eigenvector must be orthogonal to all the others which implies

ψNn = δN,n with eigenvalue εN = 0 (6.2.46)

The φ vectors

Given the set of eigenvectors {ψk}, the eigenvectors of the matrix M1 can be evaluated. This is done
using the second condition of eq. (6.2.22). If the eigenvalues εk is non-zero, then one can express ~φk in
terms of ~φk via

~φk =
1

εk
(A−B)~ψ. (6.2.47)
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Written explicit, eq. (6.2.47) simplifies to

φkn =

{
− hn
εk/2

ψkn for n = 1
Jn−1ψkn−1−hnψkn

εk/2
for n 6= 1

(6.2.48)

If εk = 0, this method does not work since eq. 6.2.48 diverges. One therefore has to use other method.
Since one a maximum of of vector are an eigenvalue of zero, namely the φN vector, only one vector does
not suit eq. (6.2.48). One can then use that the eigenvectors are orthonormal to each other, appendix
D.1, to generate the last vector using Gram-smith orthogonalization[42].

Summary of the results

To summarize, the eigenvectors of the matrices M1 and M2 takes the form of

ψkn =



δN,n for g = 0 and k = N√
2
N sin

(
πk
N n
)

for g = 0 and k 6= N
|r̃|−n−|r̃|n√∑N
n=1(r̃n−r̃−n)2

for |g| < gc and k = N

sgn(g)n
√

6n√
N(N+1)(N+2)

for |g| = gc and k = N

sin(nθk)√∑N
i=1 sin2(nθk)

else

(6.2.49)

and

φkn =


−hψk1
εk/2

for n = 1 and εk 6= 0
Jn−1ψkn−1−hnψkn

εk/2
for n 6= 1 and εk 6= 0

Use orthogonalization for εk = 0

(6.2.50)

with eigenvectors

εk =



0 for g = 0 and k 6= N
2J for g = 0 and k 6= N

2
√
J2 + h2 − Jh[r̃ + r̃−1] for |g| < gc and k = N

2|J |
N+1 for |g| = gc and k = N

2
√
J2 + h2 − 2Jh cos θk for |g| > gc

(6.2.51)

As a conclusion to this section it is worth mentioning that the orthogonal properties of the vectors
{φk} and {ψk} can be used to prove that the inverse Bogoliubov transformation are given by

c†i =
∑
k

αkiη
†
k + βkiηk and ci =

∑
k

αkiηk + βkiη
†
k (6.2.52)

This is shown in appendix D.2.

6.3 Energy bands

Sign of εk

Since the energies εk are calculated from a square root of the eigenvalues of M1 and M2, the question
of which sign to choose comes up naturally. It can be shown that the sign of εk does not matter since
the transformation εk → −εk leaves the Hamiltonian invariant. This is because a sign change of εk
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results in a sign change of φki which leads to αki becoming βki and βki becoming αki. Therefore, due
to eq. (6.2.52), the creation and annihilation operator changing places. In summary

εk → −εk ⇒ φki → −φki ⇒ αki ↔ βki ⇒ η†k ↔ ηk (6.3.1)

The Hamiltonian therefore undergoes the transformation

H →
∑
k

−εk
(
ηkη
†
k −

1

2

)
=
∑
k

−εk
(

1− η†kηk −
1

2

)
=
∑
k

εk

(
η†kηk −

1

2

)
= H (6.3.2)

One can therefore pick the sign of εk to always be positive so that the vacuum state |∅η〉, satisfying

∀k ∈ {1, · · · , N} ηk|∅η〉 = 0, (6.3.3)

is a ground state of the Hamiltonian. Excited states can then be created by using creation operators
η†k on the vacuum state, thereby building a tower

|k1, · · · , kn〉 = η†k1 · · · η
†
kn
|∅η〉 (6.3.4)

with the highest excited state being η†kN · · · η
†
k1
|∅η〉.

Limiting behaviour

As a sanity check, the limiting behaviour of the eigenvectors ~ψk and ~φk can be checked. For small fields
To first order in g with first order energy being EGS = −(N − 1)|J |. Since

εk = ±2|J |
√

1 + g2 − 2g cos(θk) ≈ ±2|J |+O
(
g2
)

(6.3.5)

then

EGS = −1

2

N∑
k=2

εk = −|J |(#+ −#−) (6.3.6)

with #± being the number of positive and negative signs respectively. This can only be true if all
energies εk are positive. The same can be said for the opposite limit, g � gc, where the ground state
are the

|GS〉 =

{⊗N
i=1 | ↓x〉 for h > 0⊗N
i=1 | ↑x〉 for h < 0

(6.3.7)

The energy of this state is, to first order in g−1 equal to −N |h|. Expanding εk to first order in g−1,
one gets

εk = ±2|h|+O
(
g−2
)

(6.3.8)

Again, the ground state energy is therefore given by

EGS = −1

2

N∑
k=1

εk = −|h|(#+ −#−) (6.3.9)

Again, this can only be satisfied if and only if all the sign are positive. The energy cost of exciting the
k’th Bogoliubov fermion are therefore εk/2 ≥ 0 and the energy gain for creating a k hole is −εk/2 ≤ 0.
The particle/hole spectrum of the Bogoliubov fermion can therefore be plotting in terms of their angle
in the complex plane θk. This is done in fig. 6.3.1. Here the gap is clearly visible and the present of
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Figure 6.3.1: Spectrum of the system for different values of g for particles and holes. a) For |g| > gc, the
spectrum is gapped with ∆(g) =

∣∣1−|g|∣∣ and approximates the function E(k) = ±
√
J2 + h2 − 2Jh cos θ.

The gap gets small for g → gc.b) At critical field |g| = gc a zero mode appears at θ = 0 in the
thermodynamic limit. c) For |g| < gc, the gap ∆ widens but the spectrum still have a zero mode.
Plots are generated for N = 20, exchange coupling J = 1 and fields h = 0.3, h = 20

21 , and h = 1.3.

low-energy mode As observed in fig. 6.3.1b) and c), the energy required to create the k = N fermion
is very small compared to the rest of the spectrum. This is due to the Z2 symmetry present in the
low field regime. The k = N Bogoliubov fermion can therefore be excited with a small energy cost for
sub-critical field, implying an (almost) two-fold degeneracy for all energy levels. This symmetry breaks
when the field h becomes dominating. The low-energy state will, at g = gc begin increasing in energy
and the energy gap widens. The Hamiltonian can be seen as a system of free fermions with momentum
k and dispersion relation E±(k). The vacuum state, |0B〉 where no quasi-particles are present, must
therefore satisfy ∀k ∈ I ηk|0B〉 = 0 and have energy

E0 = −1

2

N∑
k=1

E(k) (6.3.10)

The higher excited states of the TFQIM can then be reached by acting on the vacuum state with one
or more creation operators η†k. The excited states can be labelled by the vector k ∈ {0, 1}N which is
defined as

|k〉 =

∏
k∈Ik

η†k

 |0B〉 (6.3.11)

where Nk = {k ∈ N|kk = 1} is the set of indices k such that the k’s element of k is 1. Note that

the product is ordered such that the operators η†k with smallest k is furthest to the right. Inverting

relation (6.2.18), one can express the fermion creation/annihilation operators in terms of ηk/η
†
k

c†i =
∑
k

αkiη
†
k + βkiηk and ci =

∑
k

αkiηk + βkiη
†
k (6.3.12)
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which is proven in appendix D.2. For |g| ≥ N
N+1 , the ground state is non-degenerate, while for |g| <

N
N+1 , the ground state is degenerate and the ground state manifold is

{
|0B〉, η†1|0B〉

}
. In the limits of

h� J , the energy levels approximates E±(k) = ±h, which implies a ground state energy of E0 = −hN .
This is expected since all spins point in the same direction in opposite direction of the field h. If the
energy h� J , the single particle spectrum is reduced to E±(k) = ±(1− δkk′)J , which implies ground
state energy E0 = −(N − 1)J which is in agreement with the ground state energies of J

∑N−1
n=1 σ

x
i σ

x
i+1.



Chapter 7

Summary and outlook

7.1 Summary of results

In chapter 1 it was shown that a (2,N) - quantum dot cellular automaton can be mapped to an open
boundary condition, anti ferromagnetic, quantum Ising model in a magnetic field. If the Coulomb
interaction between electrons can be considered to rapidly decay, only nearest neighbour spins will
interact, and the QDCA will map to a nearest neighbour quantum Ising model, which has Hamiltonian

H =

N−1∑
i=1

Jiσ
z
i σ

z
i+1 +

N∑
i=1

hzi σ
z
i + hxi σ

x
i (7.1.1)

In chapter 2, it is assumed that the quantum dynamics of the system can be ignored and the quantum
Ising model reduces to the classical Ising model. Each spin can therefore only be in either a spin
up state or a spin down state, which makes transverse field in the Hamiltonian vanish. It does so
because it will always be perpendicular to the spin projections. The classical Ising model is then
analysed for both ferromagnetic and anti ferromagnetic couplings. Here, the system was coupled to
a heat bath of temperature T . The equilibrium properties could then be calculated, which predicted
that the system would follow the phase diagram in figure 2.2.3. For AFM coupling, the equilibrium
calculations predicted that the system should decay into a zero-field AFM ground state configuration
for T � |h| < 2J . Depending on the number of sites in the system, the system has a 50/50 chance of
going into either zero-field ground state configurations, or will pick the same one every time.

Since the calculations performed in chapter 2 does not describe how any given initial configuration
acts, the theory non-equilibrium classical Ising model dynamics is described was chapter 3. Here the
Kinetic Ising model was introduced which is simply a classical Ising model coupled to one or more heat
baths. This was done through the master equation where detailed balance was assumed. Throughout
the chapter, Glauber dynamics was the only type of dynamics to be considered in calculations. The
dynamics works by flipping single spins in the Ising model, and occurs at time scales depending on the
energy difference they would cause if applied to the system.

From explicit calculation of the magnetization vector m, whose elements are the statistical average
of the spins projections, it was shown that for T = 0

m(t)→

{
CAFM (−1, 1,−1, 1 · · · )T for J > 0

CFM (1, · · · , 1)T for J > 0
for t→∞ (7.1.2)

where CAFM and CFM are constant that depends on the initial configuration of the system. The exact
meaning of these constant was not clear from the theory presented in chapter 3. The best guess was
that the system picks a random ground states which is decays into. This was bases on the fact that the
sign mi alternated with i for J > 0 while the sign does not change with i for J < 0. This is also what
was predicted in chapter 2. From chapter 3, it was also shown that the decay could be controlled by

76
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a single local field at the first site. For local field strength |h| < 2J , then for T = 0, nothing changes
compared to h = 0. On the other hand, if |h| > 2|J |, the system decays into a zero-field FM ground
state, which first site is opposite to the field.

In chapter 5, the non-equilibrium dynamics of the KIM was simulated for T = 0. This is done
using the Gillespie algorithm, which was described in chapter 4. Here it was shown that for AFM
couplings and zero field, the system indeed did decay into a zero-field AFM ground state. For a given
initial configuration is was shown that the time it takes for the system to decay into its final state is
distributed via the probability density function

P(t;λ) = λe−tλ. (7.1.3)

The decay rate λ is in general not dependent on the initial state, but depends on the size of system.
It does so via a power law

λ(N) = aNExp with

{
Exp = 2.05188± 0.00006
a = (0.27881± 0.00016)τ

(7.1.4)

with τ being the time scale of Glauber rates.

When turning a longitudinal field on, then for small field 0 < |h| < J , it was shown in chapter 5
that the system decays into a disordered state with domain walls in the bulk. The same was shown
to be true for J ≤ |h| < 2J with the exception that for |h| = J , the edge spin of the final state will
sometimes have the ability to flip without any energy cost. If this is the case, the edge spin(s) will
flip with a rate of 0.5τ−1. If the field has a magnitude similar to 2J , then is was shown that domain
walls can be created spontaneously in the bulk. This result in a long-term behaviour of the KIM where
domain walls are created and annihilated constantly and the system never settles into a ground state.
If the first is increased further, so |h| > 2J , the system was shown to decay into a zero-field FM ground
state.

7.2 Outlook

The tone of this section might be a bit different in the section since it describes ways of improving the
code and what I, personally, thing would be interesting to use this thesis for. It is maybe not a precise
and scientific as the rest of the thesis, but is more like a discussion of what to do next. This section
can be skipped if you don’t care about the code.

7.2.1 The code

The code performs quit well in general. It is fast, has a somewhat easy way to aces to its attributes,
and creates plot fine. Except for the δ 6= 0 bug, the code seems to simulate the KIM with Glauber
rates correctly. There are a few thing that can be improve thou:

Inclusion of Kawasaki dynamics In its current for, the Gillespie cy object cannot simulate Kawasaki
dynamics. This is a problem because it does not give the fully picture of the dynamics of KIM. As
its current form, I cannot simply stitch Kawasaki dynamics onto the current object. To include
it, I would need to rework the algorithm from scratch. It shouldn’t be that hard to do, but it
takes time, which I didn’t have under my thesis.

The of pre-calculated lookup tables code When performing the Gillespie algorithm, the spin-
flip rates are recalculated each iterations. This is excepted since the rates depends on the
configurations and therefore should change when the configuration is updated, but is not the
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most efficient way. The code can be improved by using a pre-calculated lookup table instead.
Since the Gillespie rates only really depends on three spins each, since

ωi({σ}) = ω̃(i, σi−1, σi, σi+1) = τ−1nF

(
−2σi

Ji−1σi−1 + Jiσi+1 + hi
T

)
(1− δσi+1σi−1), (7.2.1)

there are in reality only eight different values the i’th rate can evaluate to. One can therefore
create a N × 2 × 2 × 2 lookup table which stored these values. When the Glauber rates are
needed, one simply lookup in the table and fetches the values needed. The code therefore only
has to calculate the lookup table once, which saves a lot of function calls. this should speed up
the code dramatically since, at maximum, the Fermi function nF is called 8N times for Glauber
rates only. This mean that the Gillespie algorithm only needs to run eight iterations to match
the number of times it calls the Fermi function. Since a typical simulation is ran around a few
hundred times pr. simulation, and I usually reuse the same instance to thousand simulations, the
typical number of nF calls are at minimum a few hundred thousands times N . Much more than
8N .

The need of a good getattr method In the current code, it the user needs to know the value of
a given attribute, the need to use the get attribute py method, which converts ALL the attributes
to a Python equivalent and returns ALL the attributes to the user as a dictionary. This is
incredible inefficient if the user only needs to know a the value of a single attribute. This
method is especially unnecessary since a special function, called getattr already exists for
Python objects. Designing the getattr method to work properly can save a lot of time, if done
correctly, especially if combined with some of the suggestion below.

Messy code The code is very messy. There are several reasons why

Unnessecary cythonization In the get J att, get h att, and get initial att methods, a lot of
lines of code are put into generating the J, h, and initial state attributes. Much of the
code here is actually pure python, or could be ran faster using functions from the numpy
module. The code could therefore be written simpler, faster, and shorter if converted to pure
Python. At the same time, many of the rules for generating J and h are equivalent. One
could therefore use the get h att method to generate self.J with periodic boundary condition,
which then can be taken care of in get J att. This avoids the need of repeating code, which
also makes the code easier to debug and patch later.

Too many inputs The Gillespie object has a lot of inputs due to many parameters needed to
describe the KIM with Glauber rates. This number will only increase if Kawasaki dynamics
is to be added later. One solution to the large amount of input could be fixed with the use
of python dictionaries and **kwargs input. I will not go into more details about it here, but
this solution could decrease the number of mandatory input without reducing the control of
the user.

Too many attributes The same problem is present for the number of attributes of Gillespie cy.
This could also be reduced by using dictionaries which can decrease the number of attributes
without restricting the behaviour of the simulations.

Too many brances Some of the if/else statements have way too many braces, especially in
the get J att, get h att, and get initial att methods. These can be reduces greatly without
changing the code very much, reducing the number of braces and making the code more
structured.

Comments about comments In its current form of the code, a lot of redundant comment are
present, which makes the code unnecessarily crowded. Commenting you code is always good
so that people, and even yourself at a later point, can read and understand your code. But
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it can be too much. There are a lot of examples in the code where I comment lines which
are self explanatory if one know Pythons syntax.

All these problem can only be explain by one factor, being a my lack of experience with and knowledge
of the Python and Cython languages. A basically began this project with almost zero knowledge of of
the two and have taught myself on the fly. The code described in this thesis isn’t even my first draft.
The first version was so horribly slow than a single simulation could take seconds!. Now it takes around
0.1 ms. With more experience, I hope to improve the code in the future to make the code even better!



Chapter 8

Conclusion

By analysing the interactions between electrons in the quantum dots of the (2,N) - quantum-dot cellular
automaton, it can be concluded that when prepared correctly, it can be mapped to the quantum Ising
model. Ignoring the quantum dynamics of this model, the system is described as a classical Ising
model.

From equilibrium calculations, it is concluded that the classical Ising model does not have any
phase transitions for positive temperatures. For anti ferromagnetic couplings and small temperatures,
the classical Isng model will have a small overall magnetization for longitudinal field strengths smaller
than twice the nearest neighbour coupling. If does so because it localized around either both zero-field
AFM ground state configurations or only one of them. This depends on if the number of sites in the
system are odd or even. If the field is increase further than that, the system magnetizes opposite to
the field. It does so by localizing around one of the zero-field FM ground state configuration.

The non-equilibrium dynamics of the classical Ising model are described using the Gillespie algorithm.
The rates uses here, are the rates of the Master equation, which are evaluated using detailed balance.
From simulations of the KIM’s dynamics for anti ferromagnetic coupling constants and zero temperature,
using a program written in Cython, it is concluded that for zero field, any initial configuration decays
into a randomly chosen zero-field AFM ground state.

From running multiple simulations of many different initial configurations, it is concluded that the
average time does not depend on the initial configuration. It can also be concluded that the the average
time depends on the size of the system via a power law with an exponent of 2.05188± 0.00006.

In the analysis of the Quantum Ising model, it can be concluded that there exists a zero mode when
the transverse field is smaller than the nearest neighbour coupling constant. If the field in increased
past the value, the zero mode vanishes.
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Appendix A

Classical Appendix

In this appendix, some of the mathematical theorem used in chapter 2 is proven.

A.1 A composition of two infinite differentiable functions is also
infinite differentiable

In the main text, at the ending of section 2.2, it is claimed that any composition of two infinite
differentiable functions is also infinite differentiable. This is not completely true to the authors
knowledge, but it is good enough for the calculations in the main text. To see the limitations of
this claim, one attempts to prove it and see where it goes wrong. To prove the claim, it is first
necessary to exactly define what an infinitely differentiable function is.

Definition of k differentiable: A real function f : Ω → R that maps an open subset Ω ⊆ Rd to
the real numbers, the f is k differentiable if and only if

∀k ∈ N ∀i ∈ {1, · · · , d}k ∂kf

∂xi1 · · · ∂xiN
exists and is continuous on Ω (A.1.1)

The class of all k differentiable functions on Ω are denoted Ck(Ω)[26]. For f to be infinite differentiable
on Ω, the for all k ∈ N, then f ∈ Ck(Ω). The class of infinite differentiable functions on Ω are denoted
C∞(Ω).

Before proving the statement, one must first consider a few lemma’s.

Product lemma: Let f, g ∈ C∞(Ω) be infinite differentiable functions on an open interval Ω ⊂ Rd,
then if h = f · g is the product of the two function, then h ∈ C∞(Ω).

Proof of product lemma: This statement is proven by induction. For k = 1, then

∀i ∈ {1, · · · , d} ∂h
∂xi

=
∂f

∂xi
g + f

∂g

∂xi
(A.1.2)

Since f, g ∈ C1(Ω), then f , g, ∂if and ∂ig are all continuous. Therefore both (∂if)g and f(∂ig) are
continuous, which makes ∂ih continuous as well. The lemma is therefore true for k = 1.

Defining the higher order partial differential coefficient D
(k)
i as

D
(k)
i =

∂(k)

∂xi1 · · · ∂xik
(A.1.3)
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where i ∈ {1, · · · , d}k, then for all i ∈ {1, · · · , d}k+1, j ∈ {1, · · · , d}k+1, ` ∈ {1, · · · , d}

D
(k+1)
i h = D

(k)
j

∂

∂x`
h = D

(k)
j [(∂x`f) g + g (∂x`f)] = D

(k)
j [(∂x`f) g] +D

(k)
j [g (∂x`f)] . (A.1.4)

Since f, g ∈ C∞(Ω), then f , g, ∂x`f , and ∂x`g are all infinite differentiable functions. Assuming the
lemma to be true for k, then

D
(k)
j [(∂x`f) g] and D

(k)
j [(∂x`f) g] both exists and are continuous on Ω. (A.1.5)

This implies D
(k+1)
i h exists and is continuous, which proves the lemma.

Theorem of composition: Let g : Ω → I be an infinite differentiable function on Ω ⊂ R with
I ⊂ R, and let f be an infinite differentiable function that can be expanded around every point in I
using a Taylor expansion with a non-zero radius of convergence R, then h = f ◦ g ∈ C∞(Ω).

Proof: Since g is continuous then

∀a ∈ Ω ∃δ > 0 ∀v ∈ Ω |v− a| < δ ⇒ |g(v)− g(a)| < R (A.1.6)

This implies that

h(v) = h(a) +

∞∑
n=1

1

n!
f (n) (g(a)) (g(v)− g(a))n (A.1.7)

is true and converges correctly. Because g ∈ C∞(Ω) then from the product lemma, (g(v)− g(a))n ∈
C∞(Ω) which implies h ∈ C∞(Ω). .

Compared to the main text, an extra requirement of the real function having a non-zero radius of
convergence was needed. This is no problem for the main text since coshx, sinhx ex infinite radius of
converges for all x ∈ R, while lnx and

√
x have a non-zero radius of convergence for x ∈ R+. a

A.2 Proof fo entropy theorem

Given is a statistical ensemble of a system. If x denotes a possible configuration of the system, then
p(x) denotes the probability of the system being in x. A system is then said to localize in a given state
y if the probability p has the limiting behaviour:

p(x)→
{

1 if x = y
0 if x 6= y

(A.2.1)

for some limit. The theorem, which is to be proven here, then states that the entropy

S = −
∑
x

p(x) ln p(x). (A.2.2)

approaches zero if and only if the system localized. Said differently

Localization⇔ S = 0 (A.2.3)

The prove goes as follows.

Proof To prove the theorem, one first proves that Localization ⇒ S = 0 and then prove that
S = 0⇒ Localization.
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First implication The first implication is simple to prove. Since x lnx → 0− for x → 0+, then
the part of the entropy S corresponding to configurations x 6= y will vanish. The only term left of the
entropy are therefore

S = −p(y) ln p(y), (A.2.4)

which also vanishes since ln 1 = 0. One therefore concludes that Localization⇒ S = 0.

Second implication The second implication can be proved by contradiction. Assuming that the
system does not localized, then there most exist at least two configuration must have non-vanishing
probabilities. Labelling one of these configurations as y, then one can define

p(y) = 1−
∑
x 6=y

p(x) > 0 (A.2.5)

Since p ln p > 0 for p ∈]0; 1[, then the entropy takes the form of

S = −
∑
x

p(x) ln p(x) = −
∑
x 6=y

p(x) ln p(x)−

1−
∑
x 6=y

p(x)

 ln

1−
∑
x 6=y

p(x)

 > 0 (A.2.6)

A non-localized ensemble with therefore have a non-zero entropy which is equivalent to S = 0 ⇒
Localization.
To conclude the proof, since Localization⇒ S = 0 and S = 0⇒ Localization, then the bi implication
is true.



Appendix B

Kinetic Ising model appendix

B.1 Derivation of master equation from first principles

Given a state space S, being the set of all possible states that a given system can be in, then one can
define the predicate s(t) to be

s(t) =

{
True if the system is in state s ∈ S at time t ∈ R
Flase else

. (B.1.1)

The probability of the predicate s(t) being true, given the a priori knowledge I can then be written
as P (s(t)|I). Given the knowledge of the probability distribution at a given time t ∈ R, it is possible
to determine the probability distribution at a later time t + ∆t for ∆t > 0. To do this, one write the
following tautology

True =
∨
s∈S

s(t) (B.1.2)

since the system must be on of the states in S at any given time t ∈ R. One can therefore write that

s(t+ ∆t) = s(t+ ∆) ∧

(∨
s′∈S

s′(t)

)
=
∨
s′∈S

(
s(t+ ∆t) ∧ s′(t)

)
(B.1.3)

In the last equality, the distributive property of AND and OR operations are used. Using this, the
probability distribution at time t+ ∆t can be expanded as

P (s(t+ ∆)|I) = P

(∨
s∈S

(s(t+ ∆t) ∧ s(t))

∣∣∣∣∣I
)

=
∑
s′∈S

P (s(t+ ∆t) ∧ s′(t)|I) (B.1.4)

Here, the addition rule of probabilities are used together with the fact that s(t)∧s′(t) is false for s 6= s′.
For each term in eq. (B.1.4), the probability that s(t + ∆t) and s(t) is true simultaneously can be
expended using the multiplication rule of probabilities. The result in

P
(
s(t+ ∆) ∧ s′(t)|I

)
= P (s′ → s|∆t, I)P (s′(t)|I), (B.1.5)

where P (s′ → s|∆t, I) is the probability that the system transitions into a state s′ within a time interval
∆t given that s(t) is true. It is assumed here, the the probability P (s′ → s|∆t, I) is not explicit time
depended, but only depends on the length of the time interval ∆t. This bring that probability of
s(t+ ∆t) to be true on the form

P (s(t+ ∆t)|I) =
∑
s′∈S

P (s′ → s|∆t, I)P (s′(t)|I). (B.1.6)
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Now, one of these terms can be expanded further. Because of probability conservation, the probability
of the system not transitioning in the time interval ∆t must equal

P (s→ s|I,∆t) = 1−
∑

s′∈S\{s}

P (s→ s′|I,∆t) (B.1.7)

This is because that if the system not that say in state s, it must have transitioned to another state
s′ 6= s. One can therefore write

P (s(t+ ∆t)|I) =
∑

s′∈S\{s}

P (s′ → s|∆t, I)P (s′(t)|I) +

1−
∑

s′∈S\{s}

P (s→ s′|I,∆t)

P (s(t)|I)

(B.1.8)

= P (s(t)|I) +
∑

s′∈S\{s}

[
P (s′ → s|∆t, I)P (s′(t)|I)− P (s→ s′|∆t, I)P (s(t)|I)

]
(B.1.9)

The last step before making time continuous is to expand the P (s′ → s|∆t, I) probabilities. Assuming
∆t is so small that the system only has time to interact with one heat bath, then the process s → s′

must be due to interaction with one and only one of the heat baths. One can therefore write

P (s′ → s|∆t, I) =
M∑
α=1

Pα(s′ → s|I,∆t), (B.1.10)

with Pα(s′ → s|I,∆t) being the probability that the system transitioned from s′ to s in the time
interval ∆t via interaction with the α’th heat bath. The discrete time master equation can then be
written as

P (s(t+ ∆t)|I)− P (s(t)|I) =
M∑
α=1

∑
s′∈S\{s}

[
P (s′ → s|∆t, I)P (s′(t)|I)− P (s→ s′|∆t, I)P (s(t)|I)

]
(B.1.11)

In the limit of small time intervals ∆t → 0+, one can define time derivative Ṗ (s|I, t) and decay rates
ωα(s→ s′|I) as

Ṗ (s|I, t) = lim
∆t→0+

P (s(t+ ∆t)|I)− P (s(t)|I)

∆
and ωα(s→ s′|I) = lim

∆t→0+

ωα(s→ s′|I)

∆t
(B.1.12)

The limit yields the Master equation

Ṗ (s|I, t) =

M∑
α=1

∑
s′∈S\{s}

[
ωα(s′ → s|∆t, I)P (s′(t)|I)− ωα(s→ s′|∆t, I)P (s(t)|I)

]
(B.1.13)

B.2 Calculation of limiting behaviour

To calculate the limiting behaviour of the classical Ising model in a local field hi = hδi,1 with critical
value, it is necessary to calculate the vector

lim
t→∞

m(t) = A−1g (B.2.1)
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Here A−1 is the inverse of the time derivative matrix

A =



1 1
2 0 0 0 0

1
2 1 1

2 0 0 0
0 1

2 1 1
2 0 0

0 0 1
2 1 1

2 0
0 0 0 1

2 1 1
2

0 0 0 0 1 1

 (B.2.2)

and (g)i = −δ1,i/2. Since g only has one non-zero element, namely the first elements, only the (A−1)n1

elements are needed. One can calculate these elements using the following property of any general,
invertible matrix

A−1 =
1

detA
adj(A) (B.2.3)

with adj(A) being the adjoint of A. This theorem is described in theorem 7.13 of Robert Messer’s
Linear Algebra[42]. The adjoint of A is defines as the matrix with elements

(adj(A))ij = (−1)i+j detA(j,i) (B.2.4)

where A(j,i) is the sub-matrix of A where the j’th row and the i’th column has been removed. Writing
some of these sub-matrices out explicit

A(1,1) = A(N−1), A(1,2) =

(
1
2 ∗

01N AN−2

)
A(1,3) =

1
2 1
0 1

2

∗

02N A(N−3)

 (B.2.5)

A(1,N−1) =



1
2 1 1

2 0 · · · 0 0

0
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . . 0

...
...

. . .
. . . 1 1

2

...
...

. . . 1
2 1 0

0 · · · · · · · · · 0 1
2

1
2

0 · · · · · · · · · 0 0 1


A(1,N) =



1
2 1 1

2 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
2

...
. . . 1

2 1
0 · · · · · · · · · 0 1


(B.2.6)

One observes that for 1 < i < N − 1 the sub-matrix A(1,i) decomposes into the block matrix

A(1,i) =

(
B(i−1) ∗

0 A(N−i)

)
(B.2.7)

Here B is a triangle matrix whose diagonal elements are all 1
2 , A(N−i) is a N − i ≥ 2 dimensional

version of A, and ∗ is a matrix whose elements are not important for the current discussion. For i = 1,
then A(1,1) = AN−1. For i = N − 1 and i = N , then A(1,i) is a triangle matrix with diagonal elements

being either 1
2 or 1. The first column of the adjoint matrix will then take the form of

adj(A)i1 =


detA(N−1) for i = 1

(−1)1+i detB(i−1) detA(N−i) for 1 < i < N − 1

(−1)i+1
(

1
2

)N−1
for i ∈ {N − 1, N}

(B.2.8)

Since the determinant of a triangle matrix is the product of its diagonal elements then, because the
diagonal elements of B(M) are all 1

2 , one gets that

detB(M) =
1

2M
(B.2.9)
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which implies that

adj(A)i1 =


detA(N−1) for i = 1

(−1)1+i 1
2i−1 detA(N−i) for 1 < i < N − 1

(−1)1+i 1
2i−1 for i ∈ {N − 1, N}

(B.2.10)

To get the determinant of the A(M) matrices, one defines the set {fM} as

fM = (−τ)M detA(M) (B.2.11)

for M ≥ 2. These numbers satisfies the following recursive relation

fM = fM−1 −
1

4
fM−2 (B.2.12)

which can be shown using Laplacian expansion of fM . This difference equation can be solved using
the method described in Tom Lindstrøm’s Kalkulus[25], which gives solution

fM =
A+MB

2M
(B.2.13)

since

f2 = det

(
1 1

2
1 1

)
=

1

2
and f3 = det

1 1
2 0

1
2 1 1

2
0 1 1

 =
1

4
(B.2.14)

then

A+ 3B

8
=

1

4
and

A+ 2B

4
=

1

2
⇔ (A = 2 and B = 0) (B.2.15)

Therefore

fM =
1

2M−1
⇒ detA(M) =

1

2M−1
(B.2.16)

The first column of the adjoint matrix is therefore

adj(A)i1 = (−1)i+1 1

2N−2
(B.2.17)

for all i ∈ {1, · · · , N}. The first column of the inverse matrix is therefore(
A−1

)
i1

=
1

detA(N)
(−1)i+1 1

2N−2
= 2(−1)i+1 (B.2.18)

The long-term behaviour of m will therefore be(
lim
t→∞

m(t)
)
i

=
(
A−1g

)
i

= −1

2

(
A−1

)
i1

= (−1)i (B.2.19)

which was what was needed to be calculated.



Appendix C

Classical Numerics appendix

C.1 Overview of input variables

In this section, the input to the Gillespie cy Cython extension class is presented as well as which values
they accept. In total, the simulation object takes nine inputs being:

• J - Python object that described the nearest neighbour coupling between spins.

• h - Python object that described the longitudinal field over the system.

• init - Python object that described the initial state configuration.

• N - The number of spins in the system as an Python int or a C int

• Temp - The temperature of the system as a Python float or a C double. Infinite temperature is
represented as then Temp = -1.

• Nmax - The maximum number of times the main loop is ran before the simulation is stopped.
Has 100N as a default value.

• delta - The Glauber parameter δ represented as a Python float or a C double. Has zero as its
default value.

• run sim - Boolean flag to tell the simulation if it should run the simulation when a given instance
of the Gillespie cy object is created. True is its default value.

• PBC - A boolean flag that is true if the system has periodic boundary conditions. PBC is false
on default.

For different types and values of the three general Python objects, being J, h, and init, different arrays
are created representing the physical parameters given from the inputs. This is done using the get J att,
get h att, and get initial att methods which translates certain inputs into attribute of the Gillespie cy
object. These methods are described here.

C.2 get J att and get h att

Even thou the J and h attributes represents very different physical parameters, they are still very
similar in terms of variables. Both are arrays with equal length being the number of sites, N whose
elements are all C doubles. The inputs J and h can therefore also take similar values and types. The
only exception to this is that the h input can take an extra input compared to the J input. This will
be noted thou. The input are:
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List of inputs

Type Value Description

int/float any real number Generate a homogeneous array with elements
being the input value.

list/numpy.ndarray elements can take any
value

The elements of the input is copied to attribute.
If the input object is too short, the rest of the
elements in the attribute is set to zero. If the
list is too long, the extra elements are ignored.

string random Pick the elements in the array from the uniform
distribution [-1,1].

random - (x,y) Pick the elements in the array from a normal
distribution with mean x and standard deviation
y.

local - (n,x) The array has all its elements set to zero except
the n’th site which is set to x. (h exclusive. )

C.3 get initial att

To get the initial configuration of the simulation, one uses the get initial att method is used. This is
given the init variable as an input which.

List of inputs

Type Value Description

int/float [0,1] Create an initial state with a given fraction of
spin being spin down. (Rounded down)

list/numpy.ndarray elements are either -1 or 1 The elements of the input is copied to attribute.
If the input object is too short, the rest of the
elements in the attribute is set to zero. If the
list is too long, the extra elements are ignored.

string AFMp Array are on the form [1,-1,1,-1,· · · ]
AFMm Array are on the form [-1,1,-1,1,· · · ]
FMp All elements are 1
FMm All elements are -1
DW - single - AFM - (x,n) The initial state is an AFM ground state with

the first site having the value x but with a
domain wall introduced at site n

DW - single - FM - (x,n) The initial state is an FM ground state with the
first site having the value x but with a domain
wall introduced at site n
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C.4 List of Gillespie cy’s methods

List of attributes

Method Type Input Output Description

cinit Python object J,
object h,
object initial,
int N,
float temp,
int Nmax,
float delta,
bint run sim

- run sim optional and True by
default. Initializes attributes and
allocates memory for memoryview
variables.

init Python object J,
object h,
object initial,
int N,
float temp,
int Nmax,
float delta,
bint run sim

- Generates self.J, self.h, and
self.initial state. Also, even/odd
magnetization and energy of initial
state is calculated.

run sim cy void - - Run the Gillespie algorithm for a
maximum of ”Nmax” iterations

glauber rates void int[:] config,
double[:] rates

- Calculate the Glauber rates given
a configuration. Results saved in
self.rates

overlaps void int[:] config double mag,
double ol

Calculate the magnetization
and overlap with the AFM
ground state ”-+-+ ...” for the
configuration ”config”

get J att Python object J - Generate the nearest neighbour
couplings Ji according to sec. C.1

get h att Python object h - Generate the longitudinal field hi
according to sec. C.1

get initial att Python object initial - Generate the initial configuration
according to sec. C.1

run sim Python

get attributes py Python



Appendix D

Theorems of used in Open 1D
transverse field Ising model

D.1 Othornormality of φ and ψ

In chapter 6.2.3 the eigenvectors of the matrices M1 and M2 are claimed to form two orthonormal sets.
This is proven here by using the symmetric and antisymmetric properties of A and B respectively.
Since A is symmetric, AT = A, and B is skew-symmetric,BT = −B, then the matrices M1 and M2

are symmetric.

MT
1 = ((A−B)(A + B))T = (A + B)T (A−B)T = (A−B)(A + B) = M1 (D.1.1)

MT
2 = ((A + B)(A−B))T = (A−B)T (A + B)T = (A + B)(A−B) = M2. (D.1.2)

Since the vectors {φk} are eigenvectors of M1 and all have different eigenvalues, one can prove that
they are indeed orthogonal to each other. This is done using the inner product φTkM1φk′ . One can

evaluate this product in two way. Either with respect to ~φk or with respect to ~φk′ .

λk′φ
T
k φk′ = φTkM1φk′ = (φTk′M

T
1 ψk)

T = (φTk′M1ψk)
T = λk(φ

T
k′ψk)

T = λkφ
T
k ψk′ (D.1.3)

λk′ψ
T
k ψk′ = ψTk M2ψk′ = (ψTk′M

T
2 ψk)

T = (ψTk′M2ψk)
T = λk(ψ

T
k′ψk)

T = λkψ
T
k ψk′ . (D.1.4)

Subtracting the l.h.s. from the r.h.s., one gets the follow

0 = (λk − λk′)φTk φk′ ⇔ λk = λk′ or φTk φk′ = 0 (D.1.5)

0 = (λk − λk′)ψTk ψk′ ⇔ λk = λk′ or ψTk ψk′ = 0 (D.1.6)

Since λk = λk′ if and only if k = k′ for g 6= 0, then φTk φk′ = ψTk ψk′ = 0 and for k 6= k′. Since the
vectors are also normalized, the two sets of eigenvectors {ψk} and {φk} both form orthonormal sets.

D.2 Inverse Bogoliubov transformation

In the main text it is claimed that

c†i =
∑
k

αkiη
†
k + βkiηk and ci =

∑
k

αkiηk + βkiη
†
k (D.2.1)

forms the inverse Bogoliubov transformation. This can be proven by inserting eq. (6.2.18) into eq.
(D.2.1). This results in∑

k

αkiη
†
k + βkiηk =

∑
k,j

(αkiαkj + βkiβkj) c
†
j + (αkiβkj + βkiαkj) cj (D.2.2)

∑
k

αkiηk + βkiη
†
k =

∑
k,j

(αkiαkj + βkiβkj) cj + (αkiβkj + βkiαkj) c
†
j (D.2.3)
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Expanding the parenthesis in terms of ~φk and ~ψk, one gets

αkiαkj + βkiβkj =
1

2
(φkiφkj + ψkiψkj) and αkiβkj + βkiαkj =

1

2
(φkiφkj − ψkiψkj) (D.2.4)

since αki = 1
2(φki +ψki) and βki = 1

2(φki−ψki). From the orthonormality of {ψk} and {φk}, proven in
appendix. D.1, it is possible to prove that

∑
k φkiφkj =

∑
k ψkiψkj = δij . The proof goes as following:

First one defines the matrices Jij =
∑

k φkiφkj and Kij =
∑

k ψkiψkj . Second, one observes that for a
general vector v which can be written in the eigenvectors

v =
N∑
k=1

ak~φk =
N∑
k=1

bk ~ψk (D.2.5)

Applying the matrices J and K one the vector v which results in

(Jv)i =
∑
j

Jijvj =
∑
k,k′

φk′iak′
∑
j

φk′jφkj =
∑
k,k′

φk′iak′δkk′ =
∑
k

akφki = vi (D.2.6)

(Kv)i =
∑
j

Kijvj =
∑
k,k′

ψk′ibk′
∑
j

ψk′jψkj =
∑
k,k′

ψk′ibk′δkk′ =
∑
k

bkψki = vi (D.2.7)

In the first equality, v is expanded in terms of the two sets of eigenvector. In the second equality, J and
K are expanding in terms of the eigenvectors. In the third equality, the the orthonormal properties
are used. J and K are therefore the identity matrix since both matrices transforms all vectors to
themselves. Therefore Jij = Kij = δij . Using this, eq. (D.2.4) reduces to∑

k

(αkiαkj + βkiβkj) = δij and
∑
k

(αkiβkj + βkiαkj) = 0 (D.2.8)

which implies ∑
k

αkiη
†
k + βkiηk =

∑
j

δijc
†
j + 0cj = c†j (D.2.9)

∑
k

αkiηk + βkiη
†
k =

∑
j

δijcj + 0c†j = cj (D.2.10)

One can therefore conclude that eq. (D.2.1) must be true.
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