
Topological Classification of Floquet-Bloch Systems

Master’s Thesis in Physics

Niels Bohr Institute, University of Copenhagen

Frederik S. Nathan
Supervisor: Mark S. Rudner

January 27, 2015



2



Abstract

Topological insulators are characterized by the existence of universal, robust and
highly non-trivial phenomena at their edges. Recently, it has been realized that
periodic driving may provide us with a tool versatile enough to induce these robust
edge phenomena into otherwise ordinary systems. These periodically driven (Floquet)
systems actually have a richer topological structure than non-driven systems, and
for this reason we need to develop a new topological classification. In this thesis we
present a unified and intuitive way of understanding the topological properties of
periodically driven systems. We demonstrate that non-removable degeneracies of the
bulk time-evolution operator determine the edge-mode spectrum of such systems. We
use this understanding to obtain bulk-edge correspondences of Floquet systems for
various cases of dimensionality and symmetry class.

The approach presented here provides a general way of obtaining bulk-edge
correspondences for periodically driven systems. The approach can furthermore
be used to systematically construct Floquet systems that exhibit non-trivial edge
phenomena.
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Chapter 1

Introduction

In recent years, a class of materials known as topological insulators has been under intensive
study. These systems are characterized by the existence of universal, robust and highly non-
trivial phenomena at their edges. Besides from being interesting on their own, these phenomena
have current and possible applications ranging from metrology, over spintronics to quantum
computation. A theory that provides a unified description for topological insulators has been
developed recently. The core idea is that these universal edge phenomena are all expressions of
some non-trivial property of the bulk systems, the topological phase of the system. The stability
of the topological phase is what gives the edge phenomena their robustness. By identifying the
topological phase of the system, that is, topologically classifying the bulk Hamiltonian, one can
predict the class of phenomena that occurs at the edge.

However, although theoretically well-understood, topological insulators are rarely found in
nature. Since the edge phenomena are determined by the bulk properties of a system, their
appearance is limited by the choice of materials. There exist tools for manipulating materials,
such as applying a strong magnetic field to a sample. However, these are, with some few notable
exceptions [1], not sufficient to make desired edge phenomena observable.

More recently, it has been realized that periodic driving might provide us with a tool for
"engineering" Hamiltonians that is versatile enough to do this. Periodically driven systems (Floquet
systems) are in some respects very analogous to non-driven systems, and edge phenomena in
these can be relevant to consider for the same reasons as their non-driven counterparts [2].
Several proposals have been made for experiments that can drive otherwise ordinary systems into
exhibiting these non-trivial edge-phenomena, using materials and driving protocols achievable with
current technology [3–8]. In this way, periodic driving opens up a new possibility for observing
otherwise unobtainable edge phenomena.

The fact that these Floquet systems are governed by time-dependent Hamiltonians means that
they have some fundamental differences with static systems however [9–11]. For example, even
though the theory of topological insulators generalizes straightforwardly to periodically driven
systems, periodically driven systems actually have a richer topological structure than non-driven
systems. This is manifested in the existence of anomalous edge phenomena in Floquet systems
that are not possible to obtain in non-driven systems [10, 12, 13]. This richer structure opens
up some new possibilities (see for example Sec. 5.3.1), but it also means that our classification
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10 CHAPTER 1. INTRODUCTION

of non-driven topological insulators is not easily generalized. We thus need to develop a new
topological classification for periodically driven systems.

For non-driven systems, topological classification amounts to identifying one or more invariant
quantities of the bulk Hamiltonian. These invariants define its topological phase and determine
whether the system has non-trivial edge phenomena or not. This relationship between invariants
of the bulk system and the edge phenomena is the fundamental idea in the theory of topological
insulators. Knowing the invariants that determine the edge physics is helpful for identifying which
materials exhibit non-trivial edge phenomena, as was done in Refs. [14, 15].

For periodically driven systems, one can also identify such invariants. As for the non-driven
systems, such invariants are helpful for identifying materials and driving protocols that result
in non-trivial edge phenomena. Very recently, several invariants have been obtained that relate
various classes of edge-configurations with the bulk-properties of driven systems [10,12,13,16].
These invariants were obtained with very different approaches however, and do not give a clear
general understanding of the topological structure of periodically driven systems. Furthermore,
they do not all provide an immediate intuition that can be used for devising driving schemes that
result in non-trivial behaviour.

In this thesis we present a unified and intuitively appealing way of understanding the topological
properties of periodically driven systems. We demonstrate for a periodically driven system that
the eigenvalues of the bulk time-evolution operator define a well-defined band structure, analogous
- but fundamentally different - from the energy band structure of non-driven systems. Note that
this is not the quasi-energy band structure. This band-structure can have protected degeneracies
similar to Weyl nodes [17] for a 2+1-dimensional system, as we demonstrate in Chapter 4. In other
dimensions, similar protected degeneracies also appear when symmetries are present. We refer to
them as topological singularities. We demonstrate in this thesis that topological singularities play
a crucial role for the topological properties of periodically driven systems. We show for multiple
cases of symmetry class and dimensionality that the edge-phenomena of Floquet systems have a
direct relationship with these protected degeneracies. The topological singularities account for
the additional topological richness of periodically driven systems and give rise to the anomalous
edge phenomena that are unobtainable in non-driven systems.

The results in this thesis seem to make it generally possible to systematically devise driving
schemes that result in non-trivial edge behaviour. The approach presented here furthermore
provides a general way of obtaining correspondences for Floquet systems. This we demonstrate
in Chapter 5 where we derive the bulk-edge correspondences for a wide range of systems.

This thesis is structured as follows: In Chapter 2, we give an introduction to the topic of
topological insulators. In Chapter 3 we then introduce the theory of periodically driven systems in
quantum mechanics, and generalize the concept of topological insulators to also encompass such
Floquet systems. In Chapter 4 we present the main ideas of this thesis: the band-structure picture
of the time-evolution operator and the existence of topological singularities. We demonstrate
that the number of chiral edge modes in a 2-dimensional Floquet system have a direct and simple
relationship with the topological singularities of the bulk time-evolution operator. This system
was studied in Ref. [10]. In chapter 5 we generalize the ideas of chapter 4 to also include systems
with symmetries. We use the approach outlined there to derive bulk-edge correspondences for
periodically driven systems of various symmetry classes. Chapter 6 contains a group of results
that follow immediately from the ideas in chapter 4, but are not fully developed. This chapter is



11

not strictly relevant for the main theme of thesis. In Chapter 7 awe discuss the results of this
thesis as well as possible future directions of study. Chapters 1-3 thus introduce the relevant
topics, while Chapters 4 and 5 constitute the bulk of the thesis.

Appendix A gives a complete overview of all currently known topological invariants of
periodically driven single-particle systems.

Appendix C contains an alternative approach to topological classification of Floquet systems
that was attempted in spring 2014. This approach eventually turned out to be inconvenient. This
appendix is not a part of the thesis, and can be skipped if necessary. However, the approach
still provides a useful and complementary view on the theory of periodically driven systems. It
furthermore contains some useful and non-trivial results. Among these is the generalization of
the winding number invariant [10] to any even dimension. For completeness we therefore include
this approach as appendix.
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Chapter 2

Topological Insulators

In this chapter, we introduce the topic of topological insulators. The concept of topological
insulators provides a unified description for a great variety of interesting phenomena in condensed
matter physics. Examples of topological insulators include the spin quantum Hall effect (Fig. 2.1a),
the integer quantum Hall effect (shown on Fig. 2.1b), and Majorana modes at the ends of a
super-conducting nano-wire (Fig. 2.1c). Apart from these well-known realizations, there are many
other types of topological insulators as well.

What the above systems have in common is that they are in some respect trivial in the bulk, but
exhibit interesting phenomena at the edges. These edge phenomena are furthermore “protected”
by some fundamental property of the system - for example the locality of the Hamiltonian or
a symmetry. The core idea in the theory of topological insulators is that the interesting edge
phenomena do not depend on details of the edge itself. Rather, they can be seen as expressions
of some inherent bulk property of the system. This gives the edge phenomena their robustness,
and thus opens up for a wide range of interesting possible applications in for example metrology,
spintronics, and quantum computation.

In this chapter we will explain in more detail what the above means. In order to do this, we
first introduce the concept of edge phenomena in single-particle systems with discrete translational
invariance. Following this, we demonstrate that certain aspects of the edge-mode spectra can
be protected by topology or symmetry. We then discuss the consequences and applications of
this phenomenon, and examine the above mentioned examples in a little more detail. Finally, we
outline a general theory for these types of phenomena, namely the theory of topological insulators.

In this chapter and the next, continuous deformations of Hamiltonians will play a central role.
For continuous deformations of Hamiltonians, we implicitly assume that translational invariance
and locality is maintained.

2.1 Edge-mode phenomena in systems with discrete translational
invariance

We begin with a general discussion of edge-mode phenomena in single-particle systems with
discrete translational invariance in the bulk. Although topological insulators in general do not
need translational invariance, it is for illustration very helpful to work with this. The systems we

13



14 CHAPTER 2. TOPOLOGICAL INSULATORS

Figure 2.1: Different realizations of topological insulators. a): spin quantum Hall effect. Top
shows a picture of BiSe, a time-reversal symmetry protected topological insulator. Bottom: a
schematic depiction of the spin quantum Hall-effect. b): An Integer Quantum Hall Effect (IQHE)
system . Top shows the quantized current response to an applied voltage gradient in an IQHE
system. Bottom: Skipping orbits in an IQHE system, the mechanism behind the quantized
current response (this is explained in more detail in Sec. 2.4). c): Majorana fermions in a quantum
wire. Experimental setup that might have Majorana fermions at its edge. Image sources in order
of mentioning: [18–22].
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Figure 2.2: a) Depiction of the energy spectrum and eigenstates of an infinite system with discrete
translational symmetry. b,c): energy spectrum and eigenstates when edges are introduced at xL
and xR. b): bulk spectrum and bulk eigenstates. c): edge spectrum and edge modes

consider here are non-driven systems with discrete translational invariance in d spatial dimensions,
defined on an infinite lattice. The systems are governed by a time-independent single-particle
Hamiltonian H, and in order to be able to properly distinguish bulk phenomena from the edge-
mode phenomena that we are eventually interested in, we require that this Hamiltonian is local in
space; i.e. it only couples points in the system that are near each other. Consider first an infinite
system governed by the Hamiltonian H. The Bloch theorem implies that the spectrum of H
forms continuous energy bands, while its eigenstates are plane waves. This situation is depicted
in Fig. 2.2 a. Suppose now edges are introduced in the system. The locality condition means that
sufficiently far from the edges, the eigenstates and spectrum of the Hamiltonian are unaffected by
the introduction of edges (assuming the edges are placed sufficiently far apart). We will refer to
this region as the bulk. In the bulk it is still possible to identify the energy bands and eigenstates
of the infinite system, as in Fig. 2.2b., and this part of the spectrum forms the bulk energy bands
of the finite system. The eigenstates of the Hamiltonian appear in the bulk as plane waves and
are completely delocalized (at least until disorder is introduced).

Near the boundary of the system, however, the spectrum and eigenstates of the Hamiltonian
gets distorted by the presence of edges. In this region, the Hamiltonian can acquire localized
eigenstates whose energies lie in the bulk gaps [23]. These eigenstates are known as edge modes,
and their energies form the edge-mode spectrum (these are depicted on Fig. 2.2c).

For some systems, the presence or absence of edge states (and their corresponding energies)
sensitively depends on the details of the boundary itself. Intriguingly, in other cases, very precise
statements can be made about the appearance and energies of edge states, without needing to
know almost anything about the details of the boundary. When this is the case, the system is
known as a topological insulator. An example of such a system is the Chern Insulator, which we
will now discuss.
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Figure 2.3: a): The spectrum of a Hamiltonian with discrete translational symmetry in an infinite
geometry, as a function of the crystal momentum coordinate k‖. k‖ is defined within a Brillouin
zone, and a is the size of the unit cell in the direction of k‖. b) An example spectrum of an
ordinary insulator in a strip geometry, with the edge-mode spectrum at one edge displayed. c)
The spectrum of a topological (Chern) insulator in a strip geometry, with the edge-mode spectrum
on one edge displayed. At the opposite edge the two bulk bands are connected by an edge-mode
with the opposite slope. The number of chiral edge modes νξ in the gap for this system is 1, and
this number cannot change as long as the bulk gap stays open. When the chemical potential
lies in the bulk gap, the protected edge mode give rise to a localized current propagating in one
direction along the edge.
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2.2 Protection of edge-mode phenomena by topology: the Chern
Insulator

Consider an insulator in 2-dimensions which is infinite in extent or large and subject to periodic
boundary conditions. Ignoring disorder, such a system is governed by a Hamiltonian H with
discrete translational symmetry. From the Bloch Hamiltonian we can define a set of continuous
energy bands {En(k)} that depend on crystal momentum k. Since the system is an insulator,
the system has a well-defined energy gap that separates a group of energy bands from another.
When the energy bands {En(k)} of this system are projected onto one direction in momentum,
one obtains the spectrum of H as a function of a single crystal momentum coordinate k‖, as in
Fig. 2.3a. Since crystal momentum is defined within a Brillouin zone, the dependence of the
spectrum on k‖ is 2π/a-periodic, where a is the width of the unit cell in the direction of k‖.

Suppose now that edges are introduced along k‖, such that the system now becomes an
infinitely long strip (Fig. 2.3b bottom). Since the edges were introduced in only one direction, k‖
is still a good quantum number, and we can thus still obtain the spectrum of the strip-geometry
Hamiltonian as a continuous function of k‖ (see Fig. 2.3b top). If the two edges of the strip are
far enough apart, we can still identify the bulk energy spectrum of the system. Near the edges
of the strip however, the system can acquire edge modes. As for the rest of the spectrum, the
energies of the edge modes on each edge will be continuous functions of k‖, but it is possible
for the edge modes to merge with a bulk band under a continuous change of momentum. This
situation is also depicted on Fig. 2.3b. The edge modes in this figure can be altered by changing
the shape and form of the edge, and adding perturbations to the Hamiltonian. In particular, it is
in general possible to merge the edge modes completely with the bulk bands under an adiabatic
change of the Hamiltonian without closing the bulk gap.

Consider now the situation depicted in Fig. 2.3c. Suppose that an edge mode on one edge
connects two bulk bands on each side of a bulk gap. This connection cannot be broken under a
continuous change of the Hamiltonian, unless the bulk energy gap is closed during the deformation:
there is no way to collapse the entire edge mode into either of the two bulk bands without “ripping”
the spectrum apart (breaking continuity in k‖). Hence the connecting edge mode is a topologically
protected feature of the edge-mode spectrum. It is also possible to have a larger number of
edge-modes connecting two bulk bands. In general, we can define νξ to be the difference in the
number of times the edge modes on one edge crosses the bulk gap at energy ξ from below and
above, respectively, as k‖ goes from 0 to 2π/a (see Fig. 2.3c). Note that νξ cannot change under
any continuous deformation of the Hamiltonian that keeps the bulk gap open. The number νξ is
thus a topologically protected characteristic of the edge-mode spectrum. Since the number of
states in a bulk band should not change by winding k‖ from 0 to 2π/a, one can show that the
net the number of times an edge mode crosses the gap from below should be −νξ at the opposite
edge.

The guaranteed existence of protected edge modes of a Chern insulator means that the
system will always be conducting at the edge when connected with a particle reservoir that has
chemical potential in the bulk gap. However, there will be a different number of left-moving and
right-moving edge modes, and this difference, the net number of chiral edge modes, is given by
νE . A nonzero number of chiral edge modes means the system will have a current propagating
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along the edges of the system, as depicted in Fig. 2.3. If the chemical potential is different at the
two edges, there will be a net current along the edges of the system, due to the different filling of
edge modes, and the associated “transverse” conductivity is quantized as σxy = 2νEσ0, where
σ0 = 7.75 · 10−5 Ω−1 is the conductance quantum .

The phenomenon discussed above is one the most striking features of the integer quantum
Hall effect, and in fact systems exhibiting this effect can be seen as a Chern insulators. The
quantum Hall effect is discussed in more detail in Sec. 2.4.

2.2.1 Bulk-edge correspondence of the Chern insulator

In the previous subsection we saw that the number νξ of chiral edge modes in a bulk-energy gap
ξ was invariant under any continuous deformation of the Hamiltonian that kept the bulk gap
open. For a Hamiltonian of a 2d system with discrete translational symmetry, it turns out that
there only exist two independent quantities with this behaviour [24], and these quantities can be
found directly from the bulk properties of the system. The first, Bξ[H] is simply the number of
bulk bands below the energy ξ, when ξ is set inside one of the gaps of the bulk spectrum. The
second is the so-called Chern Number of the occupied bands.

The Chern number is found as follows: first we express the Bloch Hamiltonian of the system
in the form

H(k) =
N∑
n=1

Pn(k)En(k), (2.1)

where the continuous eigenspace projector Pn(k) is given by Pn(k) = |Ψn(k)〉〈Ψn(k)| with |Ψn(k)〉
being the n’th eigenstate of H(k), given some arbitrary ordering. The locality of H means that
{Pn(k)} can be taken to be continuous in k. The Chern number of the band is defined as

C[Pn] = 1
2πi

∫
d2kTr[Pn∂kxPn∂kyPn]− x↔ y. (2.2)

The Chern number is an integer, and it cannot change under any adiabatic deformation of the
projector Pn(k) that preserves its continuity [25]. Furthermore, one can show that for multiple
orthogonal projectors {Pn},

∑
nC[Pn] = C [

∑
n Pn]. These two properties mean that the sum of

Chern numbers of the bands below the energy gap,

Cξ[H] =
∑
En<ξ

C[Pn], (2.3)

is a topological invariant of the bulk system. It stays invariant under any continuous deformation
of the system that keeps the bulk energy gap Egap open. The indices Bξ and Cξ are the only
independent quantities with this property [24]; any two systems with the same Bξ[H] and Cξ[H]
can be continuously deformed into each other while keeping the bulk energy gap open. The net
number of edge modes νξ defined above is also invariant under such deformations however, and
this means that νξ must be given by some function of Bξ[H] and Cξ[H]. Indeed, it can be proven
in several ways [26] that

νξ = Cξ[H]. (2.4)
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Figure 2.4: a) Energy spectrum of a 1-dimensional system with even particle-hole symmetry in
infinite boundary conditions. b) Spectrum of a system in a finite setting, with the edge-mode
spectrum at one edge displayed. This system has a trivial edge-mode configuration. c) The
spectrum of a system with a non-trivial edge-mode spectrum. The system has a single zero-energy
mode that is forced to stay at energy zero.

This non-trivial relation shows that the bulk properties of the system determines the configuration
of the edge-mode spectrum: the number of chiral edge modes in a gap is given by the sum of
Chern numbers of the bulk bands below the gap.

A relation that identifies the edge-mode configuration with a bulk topological invariant is
known as a bulk-edge correspondence, and the existence of such a relation is the key feature
of topological insulators. This notion is therefore referred to extensively in the following, and
subsequent chapters will to a large extent focus on generalizing this concept. In Sec. 2.5, a more
general discussion of bulk-edge correspondences is given.

2.3 Protection of edge-mode phenomena by symmetry and topol-
ogy

The chiral edge modes in a Chern insulator are protected purely by topology. That is, the
robustness of these modes comes directly from the necessity of maintaining continuity of the
spectrum, as described above. However, if one or more additional symmetries are present, the
symmetries themselves may also contribute to the protection of the edge modes, thus allowing for
new protected configurations of edge modes.

To illustrate the concept that edge modes can be protected by symmetry, we now consider
zero-energy edge modes on the edges of 1-dimensional systems with particle-hole symmetry.

Consider a 1-dimensional system, whose Hamiltonian H is particle-hole symmetric, i.e. the
Hamiltonian satisfies H = −H∗ in some basis. The symmetry means that if |Ψn〉 is an eigenstate
of H with energy En, |Ψ∗n〉 also is, with energy −En, where |Ψ∗n〉 is the complex conjugate of
|Ψn〉 with respect to the same basis. The spectrum of H is thus symmetric around E = 0 and
is depicted in Fig. 2.4a for an infinite system. Suppose now this system has a bulk gap around
E = 0 and has edges. The Hamiltonian will in general have edge modes, and these also have
to satisfy particle-hole-symmetry. Thus, if at one edge the Hamiltonian has an edge mode with
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energy E, there will at the same edge be a localized mode with energy −E. Edge-modes with
nonzero energy thus come in pairs as on Fig. 2.4b.). Importantly, however, zero-energy edge
modes can be their own conjugates, since E = −E for E = 0. The symmetry then forces such
edge modes to stay at energy zero. In this way, particle-hole symmetry ensures that the number
of edge modes with zero energy cannot change its parity ν unless the bulk energy gap at zero is
closed: the parity ν is a protected characteristic of the edge-mode spectrum.

Similarly to the Chern insulator case, there only exist a limited number of independent
quantities invariant under continuous deformations that preserve particle-hole symmetry and
keep the bulk gap at energy zero open. These quantities can also be obtained directly from the
bulk system, and ν can thus be found from an invariant quantity of the bulk system. Such an
expression for ν in terms of the bulk Hamiltonian was found in [27]. There it was shown that ν is
given by the expression

ν = sgnPf[H(0)]Pf[H(π)], (2.5)

where ν = −1 corresponds to an odd number of zero-energy edge-modes. Here H(k) is the Bloch
Hamiltonian of the 1d system at crystal momentum k in the basis where H = −H∗, and where the
width of the unit cell is taken to be 1. The Pfaffian Pf is a quantity defined for skew-symmetric
matrices that is invariant under orthogonal transformations (more information about these can
be found in Ref. [28]).

2.3.1 Symmetry classes

The 1-dimensional particle-hole symmetric system was just one example where a symmetry
contributed to the protection of certain characteristics of the edge-mode spectrum. In fact, a
wide range of symmetry classes can support systems whose edge mode spectrum have non-trivial
properties that are protected by a combination of symmetry and topology. The most interesting
symmetry classes from a physical perspective are symmetries insensitive to disorder, as disorder
is always present in real-world solid state systems. Of these disorder-insensitive symmetries, the
most important ones are time-reversal symmetry, particle-hole symmetry, and chiral symmetry.
They can each be expressed as a condition on the Hamiltonian of the form

H = rSHS−1, (2.6)

where S is some unitary or anti-unitary1 operator, and r is 1 or −1. The four different cases
correspond to the different symmetries: a system is said to be time-reversally symmetric if the
Hamiltonian satisfies the above relation for some anti-unitary S and with r = 1. Particle-hole
symmetry is present if S is anti-unitary and r = −1, and chiral symmetry is present if S is unitary
and r = 1. The last type of condition where S is unitary and r = 1 is always satisfied. If S is
anti-unitary, one can furthermore show that S must square to either 1 or −1, and these two
cases correspond to physically distinct situations. In this way, there actually exist two types of
time-reversal symmetry and two types of particle-hole symmetry.

From the symmetry conditions discussed above, it is possible to show that there are in total 10
independent combinations of particle-hole, time-reversal and chiral symmetries that Hamiltonians

1Anti-unitary operators are operators on the form UK, where U is a unitary operator and K is the complex
conjugation operator with respect to some basis
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Figure 2.5: Periodic table of topological insulators. The table shows the topological classification
of edge-mode spectra for systems with all types of twofold symmetries. The Greek letters Θ,Ξ
and Π indicate whether, respectively, time-reversal, particle-hole or chiral symmetry are present.
These symmetries are explained in more detail in Sec. 2.3.1. For the two first, the sign indicates
whether the symmetry operator squares to 1 or −1. Given the dimension d and symmetry class,
the table shows how many topologically distinct edge-mode configurations are possible, where 0
corresponds to all edge-mode spectra being topologically identical. The leftmost column shows
the Altland-Zirnbauer naming convention for the symmetry classes [29]. The table was obtained
in [30,31].

can satisfy (including the trivial cases). These were described in Ref. [29], where a naming
convention - the Altland-Zirnbauer (AZ) classification - was also introduced. In Refs. [30,31] it
was found how many distinct edge-mode configurations each of these 10 symmetry classes could
support in a given dimension. This “periodic table” of edge-mode configurations is shown on
Fig. 2.5, with an explanation.

The symmetries on the periodic table are not the only types of symmetries that can support
protected edge modes however. Other symmetries than the 10 AZ classes can also give rise
to protected edge mode configurations. These can for example be crystal symmetries, such as
inversion symmetry [26], but there could in principle also exist other disorder-insensitive symmetry
classes that support new types of protected edge-mode configurations. This could for example be
the case if a Hamiltonian satisfies the condition with S unitary and r = 1 for multiple independent
operators S.

2.4 Topological insulators
In the previous section we found that there existed a wide range of systems that had edge-
mode phenomena protected by symmetry and topology. Such systems are collectively known as
topological insulators. Topological insulators host a wide range of interesting physical phenomena
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that are characterized by their robustness and may have useful applications [32].
The most striking example observed so far in experiments is the quantum Hall effect. This

phenomenon is found in a 2-dimensional electron gas, such as for example a GaAs/AlGaAs
interface, subject to a perpendicular magnetic field [25]. Such a system can bee seen as a
realization of the Chern insulator. The magnetic field causes the electrons at the edge to move
in skipping orbits along the edge, constituting chiral edge modes (see Fig. 2.1b bottom). The
quantized current response discussed in Sec. 2.2.1 is what gives rise to one of the most noticeable
features of the integer quantum Hall effect, namely the plateaus formed by the transverse resistivity
as a function of the magnetic field (see Fig. 2.1b top). The plateaus arise because the number
of transversely conducting edge modes can be changed by tuning the magnetic field. But since
this number can only take integer values, the transverse conductance must change stepwise.
The topological nature of the edge modes protects this effect against disorder—actually and
most remarkably, the quantum Hall effect would not exist without disorder [33]. Due to this
robustness, the quantum Hall effect can be observed in relatively large and uncontrolled systems.
Furthermore, the quantum Hall conductance is universal: it has the same value, regardless of
sample, experiment, or lab. The quantum Hall conductance is so precisely quantized that its
value can be measured to a accuracy of a few parts per billion. This accuracy, achieved in a wild
and relatively uncontrolled solid state sample, is as good as any measurement in atomic physics
. Due to its universality and robustness, the Quantum hall conductance is used as a practical
standard of electrical resistance. [34].

Another example of a topological insulator was the 1-dimensional system discussed in Sec. 2.3
whose edge-mode spectrum was protected by particle-hole symmetry. Examples of Hamiltonians
with this type of symmetry are Boguliubov-de Gennes (BdG) Hamiltonians that are used as a
mean-field description of fermionic systems with superconductivity. BdG-Hamiltonians act in a
space containing two particle-hole conjugate copies of the same system, and the symmetry is thus
artificially imposed. Nevertheless, such systems can have edge-modes with zero energy that are
their own conjugates [27]. The modes corresponding to a many-body excitations that are their
own antiparticles - so-called Majorana fermions. These excitations have non-trivial exchange
statistics and can potentially be used for quantum computation. The Majorana fermions have
been proposed to be observable in a 1-dimensional wire with the correct band-structure properties,
in the proximity of superconductivity. An experimental setup is shown in Fig. 2.1c. Although no
definite observation has been made so far, these edge states are currently subject of intensive
investigations [35].

Another prominent example of a topological insulator protected by symmetry is the two
dimensional topological insulator with time reversal symmetry [36, 37]. These systems have a
time-reversally conjugate pair of edge modes at their boundary. The edge modes have opposite
chirality, so in contrast to the Chern insulator, the edge modes do not carry a charge current
along the edge of the system, but instead for example a spin current [36] (see Fig. 2.1a). This type
of phenomenon can be realized in graphene and HgTeCd quantum well-structures. Time-reversal
symmetry also allows for a distinct protected edge-mode configuration in 3-dimensional systems,
and in this way, there also exists a distinct type of 3-dimensional topological insulator protected
by time-reversal symmetry. On such systems, the edge modes live on 2D surfaces. of these systems
have an odd number of Dirac-points in their dispersion, and these are protected by symmetry.
These 3D topological insulators can be found in nature, for instance in the materials BiSb, BiSe
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(sample depicted on Fig. 2.1), BiTe and SbTe. Topological insulators protected by time-reversal
symmetry have potential applications in quantum information processing and spintronics [32]

The protection of edge-mode spectra by symmetry and topology thus give rise to a wide range
of robust and physically interesting phenomena that may have useful applications.

2.5 Topological classification of topological insulators and super-
conductors

In this section, we introduce a simple but powerful idea that gives us some fundamental insight into
the nature of topological insulators. The concepts we introduce here furthermore provide a useful
framework for describing topological insulators that will be used extensively in the subsequent.
The main idea is that bulk Hamiltonians with a given symmetry fall into some distinct topological
classes or phases, related by continuous deformations. The protected edge-mode configurations
we have discussed turn out appear at the boundary between Hamiltonians of different classes.

Given a symmetry, two Hamiltonians are defined to be topologically equivalent if it is possible
to continuously deform one into the other without closing any energy gap, breaking locality or
the symmetry. If this is not possible, the Hamiltonians are topologically distinct. This equivalence
relation defines a natural grouping of Hamiltonians: Two Hamiltonians belong to the same
topological class or phase if and only if they are topologically equivalent. A quantity that is
invariant under any continuous deformation of the Hamiltonian that maintain all symmetries and
keeps all bulk gaps open is known as a topological invariant of the Hamiltonian. Per definition,
Hamiltonians in the same topological phase share the same invariants. Furthermore, the invariants
of a Hamiltonian usually determines its topological class. The identification of the topological
phase of a Hamiltonian is known as topological classification.

For every type of topological insulators, the edge-mode configuration in a bulk gap defines
a topological invariant. Often, if not always, it is only possible to define a limited number of
independent topological invariants of a system, and these invariants can also be found directly from
the bulk Hamiltonian. It is therefore possible to identify one of these topological invariants with the
edge mode configuration, such as was done with the Chern number in Sec. 2.2.1. The identification
is known as the bulk-edge correspondence, and the existence of a bulk-edge correspondence is is
the key property of a topological insulator. Identifying the bulk-edge correspondence for a class
of topological insulators provides non-trivial insight into the mechanism behind the edge-mode
phenomena. More importantly, it can be used to identify materials that exhibit the non-trivial
edge mode phenomena. As was demonstrated for the Chern insulator in Sec. 2.2.1, the bulk-edge
correspondence is not necessarily the only independent topological invariant one can define for a
bulk system. There can be more distinct phases of bulk systems than there are distinct edge-mode
configurations.

Since the topological categorization of Hamiltonians requires a specification of symmetry class
and dimensionality, every class of topological insulators is defined by these two properties. For
example, a Chern insulator is classified as a 2-dimensional topological insulator with no symmetries
(symmetry class A), while the 1d system with Majorana edge modes is a 1-dimensional topological
insulator with particle-hole symmetry (class D), and the spin quantum Hall effect is found in 2d
topological insulators with time-reversal symmetry (class AII). For topological insulators with
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the symmetry classes studied in the periodic table (Fig. 2.5), all bulk-edge correspondences are
known in every dimension [30].

It is important to note that not all combinations of dimensionality and symmetry class can
support a topological insulator - for example there exists no 1-dimensional version of the Chern
insulator. In fact, in each dimension only 5 of the 10 symmetry classes in the periodic table
(Fig. 2.5) support a topological insulator. If a symmetry class and dimensionality supports
topological insulators, it means there exist distinct topological phases, but one of these is always
trivial. Hence, it is always possible for a system with of a given symmetry and dimensionality to
be topologically trivial even though topological insulators are supported. For instance, not all
2-dimensional systems are Chern insulators.



Chapter 3

Periodically driven quantum systems

In the last chapter we discussed a class of materials known as topological insulators. This type of
systems was characterized by having robust and interesting phenomena at their edges. Besides
from being physically interesting on their own, these edge phenomena have several possible
applications, and are thus desirable to obtain in experiments for many reasons. The core property
that makes the edge phenomena interesting is that they can be seen as expressions of some
inherent bulk property of the system. This gives the topological edge phenomena their robustness.

This also has an unfortunate consequence however: the fact that the edge modes were
determined by the bulk properties of the systems means that the observation of topological edge
phenomena is limited by the choice of materials, and although interesting, topological insulators
are rarely found in nature. There exist a few methods of manipulating the band-structure of
non-driven systems into exhibiting the edge phenomena, such as applying a strong magnetic field
to a sample. However, with some few exceptions, these tools are in general not enough to make
desirable topological edge phenomena easily obtainable in experiments.

However, recently [3,6] it has been realized that periodic driving can provide us with a tool for
band-structure manipulation that is versatile enough to drive systems into non-trivial topological
phases, and thereby induce non-trivial protected edge phenomena. The existence of stationary
states of the time-evolution operator means that periodically driven systems are in some respects
very similar to non-driven systems. Many results for non-driven systems can thus be generalized
to periodically driven systems. In particular, it is for periodically driven systems possible to
talk of band-structure of some effective Hamiltonian that acts in a way analogous to non-driven
systems. The concept of topological insulators also has a direct and immediate generalization
to periodically driven systems, as we discuss in Sec. 3.3. The relevant bulk properties of driven
systems are in some cases very dependent on the driving field., and in this way periodic driving
gives us a new way of “engineering” effective Hamiltonians. This can be used to induce topological
edge phenomena into otherwise ordinary systems.

In this chapter we first present the theory of periodically driven quantum systems. Such systems
are also known as Floquet systems, dubbed after the French 19th century Mathematician whose
theorem [38] for periodic linear differential equations provides us with a basis for understanding
periodically driven quantum systems. After having presented the theory of periodically driven
system, we generalize the concept of topological insulators from non-driven systems to also include
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driven systems. These types of systems are the subject of study in the rest of this thesis.

3.1 Theory of periodically driven systems
In this section we introduce the subject of periodically driven systems in quantum mechanics.
According to the laws of quantum mechanics, the state of a physical system associated with a
vector |ψ(t)〉. The time-evolution is of the system is then governed by the Schrödinger equation

i∂t|ψ(t)〉 = H(t)|ψ(t)〉, (3.1)

where H(t) is the Hamiltonian operator of the system. In the above equation we set ~ = 1, and
we will do so in the rest of the thesis. If the Hamiltonian is independent of time, the problem
of solving the Schrödinger equation is made simpler by the diagonalization of the Hamiltonian.
Obtaining a complete set of solutions {En, |Ψn〉} to the static Schrödinger equation

H|Ψn〉 = En|Ψn〉 (3.2)

allows one to compute the time-evolution of any state analytically, given an initial state: the
solutions to the Schrödinger equation take the form

|ψ(t)〉 =
∑
n

cn|Ψn〉e−iEnt, (3.3)

where the amplitudes {cn} are constant in time, and can be found from the initial conditions:
cn = 〈ψ(0)|Ψn〉. We will refer to systems governed by time-independent Hamiltonians as non-
driven.

The simplification for non-driven systems arose from the continuous time-translation symmetry
of the problem. If the Hamiltonian H(t) is time-dependent, it is in general impossible to obtain
the time-evolution of a state analytically. The best one can do is to formally integrate the
Schrödinger equation, obtaining

|ψ(t)〉 = U(t)|ψ(0)〉, (3.4)

where the time-evolution operator is given by

U(t) = T e−i
∫ t

0 H(t′)dt′ (3.5)
= lim

δt→0
e−iH(t)δte−iH(t−δt)δte−iH(t−2δt)δt . . . e−iH(0)δt. (3.6)

Here T is the time-ordering operator that orders the factors of H(t′) in the expansion of the
exponential in order of increasing time, such that the later times are to the left of earlier
times. The time-evolution operator is a unitary operator that from Eq. (3.4) should satisfy
U(0) = 1. Furthermore, there is a one-to-one correspondence between time-evolution operators
and Hamiltonians, since H(t) = i∂tU(t) · U †(t). Eqs. (3.4)-(3.6) gives a formal solution to the
time-dependent Schrödinger equation, but they are basically a restatement of the problem. Their
solution is in general computationally involved, and equally important, it does not provide much
physical insight into the behaviour of the system. For systems governed by time-dependent
Hamiltonians however, this is in general the best one can do.
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There are some exceptions though. importantly, if the Hamiltonian depends periodically on
time, such that H(t) = H(t+ T ) for some driving period T , we can actually do much better in
describing and understanding the behaviour of the system. We will refer to this type of system
as a periodically driven system. The discrete time-translational symmetry of a periodically driven
system makes it possible to analyse the time-evolution of a periodically driven system in a similar
fashion to non-driven systems. The reason for this is that the time-evolution operator of a
periodically driven system satisfies

U(t+mT ) = U(t)U(T )m (3.7)

for integer m, as can be shown from Eq. (3.6). In particular, U(mT ) = U(T )m.
Each time a driving period has passed, the eigenstates of U(T ) have thus evolved into

themselves, gaining a complex phase. Whereas for non-driven systems we wanted to diagonalise
the Hamiltonian, we are for periodically driven systems instead interested in diagonalizing the
so-called Floquet operator, defined as the time-evolution operator U(T ) of the system over one
driving period. The central eigenvalue problem for periodically driven systems thus looks like

U(T )|Ψn〉 = e−iεnT |Ψn〉. (3.8)

Knowing the eigenvalues and eigenstates of the Floquet operator, one can easily obtain the
time-evolution of any initial state stroboscopically. At any integer multiple of the driving period,
the evolution of a state can be obtained as

|ψ(mT )〉 =
∑
n

cn|Ψn〉e−iεnmT , (3.9)

where, as for non-driven systems, {cn} are determined by the initial state: cn = 〈ψ(0)|Ψn〉. For
periodically driven systems, it is thus possible to analytically obtain the time evolution of a state
at integer multiples of the driving period by diagonalizing the Floquet operator.

Comparing the above to Eqs. (3.2), (3.3), we see that the parameter ε plays a role analogous
to energy for the time-evolution of a state of a non-driven system. For this reason, it is known
as quasi-energy. Like energy, it determines the time-evolution of a system and is a conserved
quantity1. Unlike energy however, it is periodic: equation (3.8) only defines εn up to an integer
multiple of the driving frequency 2π/T . So whereas energy lives on the line of real numbers, quasi-
energy lives on a circle. The periodicity of quasi-energy constitutes one of the main qualitative
differences in the analysis of non-driven and periodically driven systems, and it has important
implications.

If we want to know the evolution of observables (say, the position of particles), at time-
scales longer than the driving period, the stroboscopic evolution given by Eq. (3.9) will often,
but not always, give all relevant information about the physical behaviour of the system (see
eg. Refs. [9, 39] for examples where the stroboscopic evolution does not provide an adequate
description).

It is also possible to obtain the time-evolution of a state at intermediate times, using the
so-called Floquet states {|Ψn(t)〉, that are defined as |Ψn(t)〉 = U(t)|Ψn〉. From Eq. (3.7), we

1This can be seen by explicitly writing the change of the quasi-energy expectation value over one driving period
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know the Floquet states must evolve with the form

|Ψn(t)〉 = e−iεnt|Φn(t)〉, (3.10)

where the state |Φn(t)〉 = |Φn(t+ T )〉 is T -periodic. Eq. (3.10) is known as the Floquet theorem,
and is a result that dates back to 1883 [38] (although not in the context of quantum mechanics).
Knowing the quasi-energies and the Floquet states, it is possible from to obtain the time-evolution
of any state, for all times:

|ψn(t)〉 =
∑
n

cn|Φn(t)〉e−iεnt, (3.11)

where the amplitudes {cn} are determined from the initial conditions.
Note the similarity between the Floquet states in Eq. (3.10) and the Bloch wave functions

of a periodic crystal. The Bloch theorem states that when a system has discrete translational
symmetry, the eigenstates of the Hamiltonian takes the form of a periodic function times a
complex plane wave. The wavelength of the plane wave defines the crystal momentum of the state,
and this is just defined up to a multiple of 2π/a with a being the lattice constant. Quasi-energy
can thus be seen as the time-translation analogue to crystal momentum.

3.2 Floquet-Bloch systems

For the topic of this thesis, we are interested interested in driven systems with translational
symmetry. For studying such systems, it is very important to note that many of the ideas about
band structure can carry over from non-driven systems, only with the Hamiltonian being replaced
by the Floquet operator, and energy with quasi-energy.

If a non-driven systems has discrete translational symmetry, the Hamiltonian H diagonalizes
with respect to crystal momentum. We can then represent it by a Bloch Hamiltonian H(k) that
determines the time-evolution of states with crystal momentum k. If the Hamiltonian of a Floquet
system has discrete translational invariance, the time-evolution operator still block-diagonalizes
with respect to crystal momentum. We can in the same way represent the time-evolution operator
U(t) by a Bloch time-evolution operator U(k, t) that gives the time-evolution of states with
crystal momentum k. The Bloch time-evolution operator is given by

U(k, t) = T e−i
∫ t

0 dt
′H(k,t′), (3.12)

where H(k, t) is the Bloch Hamiltonian of the system. The locality and boundedness of the
Hamiltonian is equivalent to U(k, t) being continuous in crystal momentum and time, respectively.
We can in particular represent the Floquet operator in Bloch space, and its eigenvalue equation
becomes:

U(k, T )|Ψn(k)〉 = e−iεn(k)T |Ψn(k)〉. (3.13)

{εn(k)} are known as the quasi-energy bands. Together, the Floquet eigenstates and quasi-energies
form the Floquet bands of the system. This effective band structure describe the physics of a
single-particle system in an analogous way to the protected edge-modes of a non-driven system.
Although the many-body problem is currently not as well-understood, [10], Floquet bands play a
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role similar to energy bands for the transport properties of a multi-particle system in at least
some cases of weak driving [2].

Single-particle systems with discrete translational symmetry in the bulk will be known as
Bloch systems. If the system is furthermore periodically driven, we refer to it as a Floquet-Bloch
system.

3.3 Topological phenomena in Floquet-Bloch systems

The close analogy between periodically driven and non-driven systems means that the concept of
topological insulators has an immediate analogy in periodically driven systems. When edges are
introduced to a Floquet-Bloch system, the Floquet operator maintains its bulk spectrum and
eigenstates, but can acquire edge modes whose quasi-energies form an edge-mode spectrum. In the
same way as for the non-driven case, it is possible for the Floquet operator to have features of its
edge-modes spectrum that are protected by topology or symmetry. The protected edge-modes of
non-driven systems discussed in the previous chapter can actually be seen as a special case of this
phenomenon as one can also define a quasi-energy spectrum for non-driven systems. In this way,
Floquet-Bloch systems with topologically protected edge modes can be seen as generalizations of
topological insulators. Floquet-Bloch systems in general have a richer topological structure than
their non-driven special cases. For example, there exist multiple cases of Floquet-Bloch systems
with configurations of edge modes that are not obtainable in any non-driven system [10,12,13].
Such configurations will be known as anomalous edge modes and they will be discussed in more
detail in the subsequent.

For the understanding of the edge-phenomena of periodically driven systems, it is also very
useful develop a topological classification for periodically driven systems. Two driven systems are
defined to be topologically equivalent if the quasi-energy gaps to stay open during a continuous
deformation from one system to another, and with this definition the results in Sec. 2.5 still apply:
the time-evolution operators of periodically driven systems fall into distinct topological classes or
phases, and the topological phase of a system is determined by a set of topological invariants.
One of these invariants determines the edge-mode configuration of the Floquet operator. In this
way, periodically driven systems also have a bulk-edge correspondence.

However, that while the bulk invariant of a non-driven system determining the edge mode
configuration related to the bulk Hamiltonian, it turns out that the bulk-edge correspondence for
driven systems actually depends on the entire time-evolution of the system [10]

There are no obvious generalization of the bulk-edge correspondences of non-driven systems
to periodically driven systems. Although recently bulk-edge correspondences for several cases
have been obtained [10,12,13,16], there are still many cases of symmetry class and dimensionality
for which the bulk-edge correspondence is not known.

We now present an example of a Floquet-Bloch system with non-trivial edge mode configura-
tions, analogous to the 2-dimensional system discussed in Sec. 2.2.1. and present its bulk-edge
correspondence that was obtained in ref. [10]. The this system will be examined in more detail in
the next chapter, and hence the following section serves as a starting point for the next chapter...
.
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Figure 3.1: a) Quasi-energy band-structure of a periodically driven system in infinite boundary
conditions. The dots above and below the spectrum indicate the periodicity of quasi-energy. b)
quasi-energy spectrum of a system in a strip geometry whose Floquet operator has a single chiral
edge mode in the quasi-energy gap ξ . c) Floquet topological insulator with anomalous edge
modes. The Chern numbers of the bulk Floquet bands are zero, but the Floquet operator still
has chiral edge modes in its bulk gaps.

3.3.1 Chiral edge modes in a 2-dimensional periodically driven system

Consider a 2-dimensional periodically driven system with translational invariance, defined on an
infinite geometry, subject to periodic driving. This system has a single-particle time-evolution
operator in Bloch Space U(k, t) and a bulk-quasi-energy band structure {εn(k)}, as depicted on
Fig. 3.1a. Suppose now edges are introduced in one direction, along k‖. In the same way as for
the Chern insulator, the Floquet operator of this system can also acquire chiral edge modes in
its bulk quasi-energy gap, as depicted on Fig. 3.1b. The edge-mode configuration depicted here
can also be found for the Floquet operator of a non-driven Chern Insulator, but the quasi-energy
spetrum on Fig. 3.1c is impossible to have in a non-driven system. Here the Chern numbers
of the Floquet bands are zero, but there are chiral edge modes in every bulk quasi-energy gap,
and a non-driven system whose bulk bands have Chern number zero should have no chiral edge
modes. This anomalous edge-mode configuration is possible to have in periodically driven systems
however, and appear in several known models [10].

As for the Chern insulator, the number νξ of chiral edge-modes in a bulk quasi-energy gap at
quasi-energy ξ is determined from some quantity of the bulk system. In contrast to non-driven
systems however, the Chern numbers of the Floquet bands are not enough to determine the
number of chiral edge modes, as can also be seen from the appearance of anomalous edge modes.
Hence further information is needed to determine the number of edge modes. This information is
contained in the entire time-evolution of the system.
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The bulk-edge correspondence of this system was found in [10]. In order to find the number
νξ of chiral edge modes in a bulk gap at quasi-energy ξ, we consider the bulk time-evolution
operator U(k, t) in Bloch space. We then let Uξ(k, t) be any time-evolution operator that satisfies
Uξ(k, T ) = 1 and can be continuously deformed into U(k, t) without closing the gap at quasi-
energy ξ. In practice, Uξ can be obtained as follows. We define the effective Hamiltonian Hξ

eff(k)
as the unique operator that satisfies

U(k, T ) = e−iH
ξ
eff(k)T , (3.14)

and takes eigenvalues between ξ and ξ + 2π/T . Then Uξ can be taken to be

Uξ(k, t) = U(k, t)eiH
ξ
eff(k)t. (3.15)

With Uξ(k, t) defined, νξ can then be obtained as

νξ = W [Uξ] ≡ −
1

8π2

∫ T

0
dt
∫
d2kTr

[
U †ξ∂tUξ · U

†
ξ∂kxUξ · U

†
ξ∂kyUξ − x↔ y

]
. (3.16)

where W [Uξ] is referred to as the winding number of Uξ. In the next chapter we will derive an
alternative, complementary expression for νξ.
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Chapter 4

Topological classification of Floquet
systems without symmetries

In the last chapter we discussed the possibility of engineering effective Hamiltonians using periodic
driving. The quasi-energy spectrum of a periodically driven system in general depends non-
trivially on the applied driving potential [6], and periodic driving gives a new and versatile way
of manipulating the effective band-structure of a quantum system. In particular, periodic driving
can be used to drive an otherwise ordinary system into a topologically non-trivial phase with
topologically protected edge modes at its boundary [2, 10].

However, there are still some major qualitative/fundamental differences between the description
of driven and non-driven systems, and the field of periodically driven quantum systems is not
entirely well-understood yet. An important question is understanding what bulk properties
give rise to protected edge mode phenomena in driven systems. As we saw in section 3.3.1, the
bulk-edge correspondences of non-driven systems do not have immediate generalizations to driven
systems. There are multiple examples of topological phenomena in driven systems, so-called
anomalous edge phenomena, that do not have equivalents in non-driven systems [10,12,40,41].
It is therefore necessary to gain a better understanding for topological structure of periodically
driven systems. This better understanding will be helpful for gaining a deeper theoretical insight
into topological phenomena in single-particle quantum systems. But also, more importantly,
it is a powerful tool for identifying materials and devising driving schemes that can result in
topologically protected edge modes.

In this chapter, we present the main idea of this thesis, namely that there is a relationship
between topologically protected degeneracies of the time-evolution operator and the edge mode
spectrum of the Floquet operator in a finite geometry. We first show that by diagonalizing
Bloch space time-evolution operator of a driven system, it is possible to represent it by a time-
dependent band structure, analogous to the energy band structure of a non-driven system. We
then demonstrate that, for a 2-dimensional system, there are cases where the time-evolution
operator can have topologically protected degeneracies in its band structure, analogous to Weyl
nodes in a 3D topological semi-metal [17]. These degeneracies can in some cases prevent us from
continuously deforming the time-evolution operator of a driven system into that of a non-driven
system. Hence they must play a role for the topological properties of a periodically driven system.
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Figure 4.1: A periodically driven system whose time-evolution operator has no degeneracies is
topologically equivalent to at non-driven system: it can always be continuously deformed into
a non-driven system without closing any quasi-energy gap or breaking the continuity of the
time-evolution operator. If the time-evolution operator of the system has degeneracies, such a
deformation can in general not be done. Periodically driven systems of this type are therefore
topologically distinct from non-driven systems. These types of systems can have anomalous edge
modes in finite geometry.

We finally show that there indeed is a direct and simple relationship between the topological
singularities and the winding number invariant [10] that determines the edge-mode spectrum of a
2D driven system.

In Ref. [12], it was mentioned that there was a connection between the topological properties of
periodically driven systems and the continuous evolution of the eigenvalues of the time-evolution
operator. This idea will now be generalized and its consequences examined in more detail.

4.1 Band-structure picture of the time-evolution operator

In this section we will present a new principle for finding topological invariants of periodically
driven systems, analogous to the band-flattening procedure used for non-driven systems. The core
idea is that degeneracies of the time-evolution operator play an important role for the topological
properties of periodically driven systems. In the second half of the section we will show that
these degeneracies are closely related with the appearance of anomalous edge-mode phenomena.

The systems we consider are periodically driven, meaning they are subject to a Hamiltonian
that depends periodically on time, with driving period T . For our purpose, it is no longer
convenient to use the Hamiltonian to describe such systems. We will instead work with the
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time-evolution operator U(t) of the system that contains the same amount of information as the
Hamiltonian. We will furthermore work in Bloch space such that the time evolution operator
U(k, t) depends on crystal momentum as well as time. The locality and the boundedness of
the Hamiltonian then translates to U(k, t) being continuous in both momentum and time. Our
starting point is to note that we can write U(k, t) in the diagonal form

U(k, t) =
d∑

n=1
Pn(k, t)e−iφn(k,t), (4.1)

where Pn(k, t) is the projector into the n’th eigenstate of U(k, t) and e−iφn(k,t) is the corresponding
eigenvalue, given some arbitrary labelling of eigenstates. We take the real functions φn(k, t) to
take values zero at the beginning of the driving and be continuous in k and t, although not
necessarily differentiable. Furthermore, they can always be chosen to never cross, such that if it
holds for one point in k, t-space that φn(k, t) ≥ φm(k, t), it holds everywhere k, t-space. With
this choice, the continuous functions {φn(k, t)} are uniquely determined for any system, and
they can grow to take any value on the real line. We will refer to the functions {φn(k, t)} as the
phase bands (not to be confused with the topological phase of a system). The phase bands of
the time-evolution operator define a band structure for a periodically driven system, analogous
to the energy bands of a non-driven system. In contrast to the energy bands, the phase bands
of a driven system depend on time as well as crystal momentum. At t = 0, the phase bands all
take value zero, and at t = T , they give the quasi-energy bands of the system. An example of a
phase-band structure is shown on Fig. 4.1. The periodic nature of the phases {φn(k, t)} means
that there should be copies of the two depicted bands above and below the depicted bands. For
compactness we only show the one copy of each phase band.

We want to find the edge-mode spectrum of the Floquet operator U(k, T ) associated with
this system. To begin, we consider the case of a two dimensional system with no symmetries
beyond those of the lattice. While this situation was studied previously in ref. [10], here we
use a different approach which will naturally generalize to other symmetry classes. In the
subsequent sections, we will then generalize the results of this section to systems with additional
symmetries. For static systems, the topological nature of the edge modes allows us to perform
a band flattening procedure. A continuous deformation of the eigenvalues of the Hamiltonian
will not change the number of edge modes in any gap, as long as no bulk gap is closed and the
Hamiltonian stays continuous in momentum. As was noted in ref. [10], the edge-mode spectrum
of the Floquet operator is also topologically protected, meaning number of chiral edge modes
will be invariant under any continuous transformation of the system that preserves locality and
keeps every quasi-energy gap open. For periodically driven systems, we can thus develop a
procedure similar to band-flattening, where we continuously deform the time-evolution operator
through its eigenvalues without changing its edge-mode spectrum. The only requirements are
that we keep the time-evolution operator continuous in momentum and time, and no quasi-energy
gap is closed during the deformation. Such a deformation can be implemented by continuously
deforming the functions φn(k, t) in a way that keeps their initial and final values constant. The
only other constraint on the deformation lies in regions where the band projectors P̂n(k, t) are
not continuously defined. This can only happen where two bands are degenerate, and we can
thus in general not lift degeneracies of the time-evolution operator without breaking locality.
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Figure 4.2: Graphical depiction of the deformation described in sec. 4.1, where the time-evolution
operator of a periodically driven system is deformed into the time-evolution operator of a
non-driven system. This deformation is always possible if the time-evolution operator has no
degeneracies.

Naively, one might expect a generic time-evolution operator of a periodically driven system to
have no degeneracies. If this were true, we would always be able to deform our system into a
non-driven system using our band-flattening procedure: for any n simply deform φn(k, t) to zero
everywhere until a small time-interval δt before T , after which we let it grow linearly to its final
value. If this interval is small enough we can assume that Pn(k, t) = Pn(k, T ) here. After this
deformation is done, we then let δt→ T . The deformed system is now non-driven and described
by the Hamiltonian

h(k) = 1
T

∑
n

φn(k, T )Pn(k, T ). (4.2)

We note that this is an effective Hamiltonian of the system. Since the quasi-energy spectrum has
been kept constant, and the time-evolution operator stayed continuous, the edge-mode spectrum
has not changed during the deformation. If the edge-mode spectrum depends on some symmetry
being present a similar deformation to non-driven systems could be performed without breaking
the symmetry, as long as no degeneracies are present. We will demonstrate this in the following
sections. When the deformation is done, any topological invariant could then be calculated by
simply analysing the resulting non-driven system, and we would thus have a general prescription
for finding topological invariants of periodically driven systems. A consequence of a nondegenerate
time-evolution operator would also be that we would have no anomalous edge modes: the edge-
mode spectrum of a system with a nondegenerate time-evolution operator can always be found in
a non-driven system with the same bulk Floquet operator (4.2). By definition, this excludes the
possibility of anomalous edge modes. This result indicates that degeneracies of the time-evolution
operator are a generic feature in periodically driven systems, as anomalous edge modes have been
identified in several models [10, 40]. We will now demonstrate how such a degeneracy can appear:
consider a 2d non-driven two-level system, with flattened bands 1 and 2 that have opposite and
nonzero Chern numbers. The phase bands of the time-evolution operator will look like Fig. 4.3a.
The time evolution operator of the system will have a degeneracy at any time t0 for which
ε1t0 ≡ ε2t0 mod 2π, εi being the energy of band i. We now try to lift this degeneracy by adding
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Figure 4.3: a) the phase band-structure of a 2-band non-driven system whose Hamiltonian has
flattened band, plotted as a function of kx for some fixed value of ky. b) Our naive expectation
of the phase band structure after some small time-dependent perturbation has been applied near
t0. c) the actual phase-band structure if band 1 and 2 have different Chern numbers.

a time-dependent perturbation V (k, t) to the Hamiltonian such that P1(k)V (k, t0)P2(k) 6= 0. We
would then naively expect a gap to open, separating two new hybridized bands a and b, as on
Fig. 4.3b. The corresponding eigenstate projectors Pa(k, t) and Pb(k, t) must then be continuous
in k and t. Since the perturbation only changed the time-evolution operator near, t = t0 we must
have Pa(k, t1) = P1(k), and Pa(k, t2) = P2(k) for times t1 � t0 � t2 (see again Fig. 4.3b). But
this must mean that the Chern number of band a changes between t1 and t2, and our assumption
that Pa(k, t) was continuous must be wrong. There must then be at least one point in this region
of k, t-space where U is degenerate and Pa(k, t) discontinuous.

We will refer to such a point as a topological singularity. A topological singularity is a
topologically protected degeneracy of the time-evolution operator at which the degenerate band
projectors have a discontinuity. We claim that we can reduce any region where the time-evolution
operator is degenerate to a cluster of topological singularities. Topological singularities are closely
related to the appearance of anomalous edge-mode phenomena: Their presence prevents us from
deforming the system into a non-driven system, thus allowing for the system to exhibit anomalous
edge-mode phenomena. Examples of such phenomena are the anomalous edge states found in
ref. [10], or the ω/2-quasi-energy modes in a particle-hole symmetric system, found in ref. [12].
As we will demonstrate in this thesis, these anomalous phenomena are all the consequence of
topological singularities appearing in the system.

4.2 Relationship between topological singularities and the edge-
mode spectrum in two dimensions

In this section we will explicitly show how topological singularities determine the topological
properties of 2D systems, in the case without additional symmetries beyond those of the lattice.
By using the band-flattening procedure presented in the previous section, we find that the winding
number invariant found in Ref. [10] has a simple expression in terms of its Floquet eigenstates
and topological singularities, and that there is a direct relation between topological singularities
and anomalous edge modes. Before we begin on this, we will first give a more precise definition
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of a topological singularity.

4.2.1 Topological singularities in two-dimensional systems

Let U(k, t) be the bulk time-evolution operator of a two-dimensional system with no other
symmetries than discrete translational symmetry. Consider now a point r0 = (k0, t0) in k, t-space
where the eigenvalues of two bands of U coincide. The two bands are spanned by some basis
states |ψ1〉 and |ψ2〉. The continuity of U means we can assume that the subspace spanned by
the two degenerate bands can be assumed constant within some finite-size neighbourhood around
r0 in k, t-space . The remaining non-degenerate bands {|χn〉} and their associated phases {φn}
can also be assumed to be constant within this neighbourhood. Close to r0, the time-evolution
operator thus takes the form

U(k, t) =
∑
n

|χn〉〈χn|e−iφn +
2∑

a,b=1
|ψa〉〈ψb|Mab(k, t), (4.3)

where M is a 2× 2 unitary matrix. The fact that M is U(2) means that we can write it as

M(r) = exp [−iφd(r)− ifj(r)σj ]

where summation over repeated indices is used. Here φd(r) is a real function, whose value at r0
gives the eigenvalue of the two bands that are degenerate here, {σj} are the Pauli matrices, and
{fj(r)} are real continuous functions that satisfy fi(r0) = 0. We assume that U , and thereby f ,
is differentiable in some neighbourhood around r0 such that we can expand fj around r0. When
we take the neighbourhood small enough we only have to keep the term with lowest order in
(r− r0). Since fj(r0) = 0, this is the first order term, and M can thus be written

M(r) = exp [−iφd(r)− i(r− r0)jSjkσk] , (4.4)

where Sjk = ∂jfk(r0) is a real 3× 3 matrix. The case where the first order term is also zero will
be covered shortly.

Let us consider the case where the matrix S has rank 3 such that all three Pauli matrices
come into play in the neighbourhood around r0. In this case, the degeneracy is topologically
protected, similarly to the case of a Weyl node [17]: an infinitesimal change of the time-evolution
operator can never lift the degeneracy, but rather can only infinitesimally change the location
where it appears. The degeneracy can thus not be lifted with a continuous deformation of the
system, and is therefore topologically protected. In this way, we define a topological singularity of
a two-dimensional system to be a a degeneracy of the time-evolution operator, where the matrix
S is invertible. For a topological singularity, the degeneracy will only occur at a single point r0.

We may also find cases where S is not invertible. This occurs when two bands are degenerate
along some line, surface, or 3-dimensional region in k, t-space, such that r0 is a point on this
manifold. The rank of S will then be 3 − D, where D is the dimension of the manifold. In
this case, the degeneracy is not topologically protected: we can completely lift it in the entire
neighbourhood where |ψ1,2〉 are constant, by turning on an infinitesimally small term orthogonal
to the image of S in Eq. (4.4). We can only do this in one small neighbourhood at a time
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Figure 4.4: Deformation of U to Uξ

however. If one tries to lift the degeneracy over the entire manifold, two cases are possible:
either the degeneracy can be lifted everywhere, or there will be a discrete set of points where
topological degeneracies remain. Hence, if the time-evolution operator is degenerate along some
finite-dimensional manifold, one can always apply an infinitesimal deformation to the system that
either completely lifts the degeneracy, or reduces it to a cluster of topological singularities.

With the definition of a topological singularity in place, we now associate two indices with
each singularity that play important roles for the topological properties of the system. These two
indices we call the vorticity σ and the branch index ν, which we define as

σ = sgn|S|, ν = |φa(r0)− φb(r0)|/2π, (4.5)

where bands a and b are the two bands that become degenerate at the singularity. Note that
ν can be non-zero since we defined the bands φa and φb by analytic continuation in time from
φa,b(k, 0) = 0. The two ν and σ are topologically protected, and we define q ≡ νσ as the charge
of the singularity. The total charge of all topological singularities in a system is conserved under
any continuous deformation of the system that keeps at least one quasi-energy gap open.

As mentioned in the previous section, there is a relationship between the Chern numbers of
the bands of the time-evolution operators and the topological singularities. To be precise, consider
a topological singularity where two bands meet. The Chern numbers of the two bands change
discontinuously here with time: The Chern number of the band whose phase has a minimum
at the singularity changes by σ at the singularity, while the Chern number of the other band
changes by −σ.

4.2.2 Winding number of a two-dimensional system

Having seen how topological singularities appear in a 2-dimensional system, we now investigate
their relationship with the edge-mode spectrum of the system in a finite geometry. We want
to calculate the number of edge-modes of this system in a quasi-energy gap at quasi-energy ξ,
nedge(ξ). This number can be calculated using the bulk-edge correspondence that was found in
ref. [10]. In order to calculate nedge(ξ), the first step is to deform the time-evolution operator U
into a time-periodic time-evolution operator Uξ such that Uξ(T ) = 1. This deformation should be
done continuously without ever closing the quasi-energy gap at ξ. The number of edge modes
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can then be found by nedge(ξ) = W [Uξ], where

W [Uξ] = − 1
8π2

∫
d2kdtTr

[
U †ξ∂tUξ · U

†
ξ∂kxUξ · U

†
ξ∂kyUξ

]
− x↔ y. (4.6)

We will refer to W [Uξ] as the winding number of Uξ. As was noted in ref. [16], a convenient
choice for Uξ is U(k, t)eiH

ξ
eff(k)t. Here Hξ

eff = i logU(k, T )/T , where the logarithm is defined with
branch radially from 0 through e−iξT . In other words, Hξ

eff is the unique effective Hamiltonian of
the system with eigenvalues in the interval [ξ, ξ + ω). With this choice of Uξ, the eigenstates of
Uξ(k, t) will coincide with the eigenstates of U(k, t) as t approaches T , and the phases φξn(k, T )
of Uξ(k, T ) will satisfy

φξn(k, T ) = 2πwξn, (4.7)

where wξn is the net number of times e−iφn(k,t) crosses e−iξT during the driving cycle. We will
refer to wξn as the phase winding number of band n. If ξ lies in a quasi-energy gap, wξn will be the
same for all k, due to the k-continuity of φn, which is why we haven’t indicated at k-dependence.

With the choice of Uξ given above, we will now find a new expression for the winding number
of Uξ in terms of the phase winding numbers and the charges of the topological singularities. This
will be done by using the band-flattening procedure on the deformed time-evolution operator Uξ.
We will first consider two special cases, then discuss the general situation.

Winding number in case of no singularities

Let us first consider the case where Uξ(k, t) has no topological singularities. We can then
continuously deform the time-evolution operator Uξ into that of a non-driven system without
changing W [Uξ], in the way we described in Sec. 4.1. In this case, W [Uξ] is simply the winding
number of the non-driven system described by the Hamiltonian H̃ξ(k) =

∑
n Pn(k, T )2πwξn/T ,

where Pn is the projector into the n’th eigenstate of U(k, T ). The Floquet operator Ũξ(T ) of this
non-driven system has net number of edge modes W [Ũξ] =

∑
n(wξmax −wξn)Cn, where wξmax is the

maximum phase winding number of the system, and Cn is the Chern number of the n’th band
of H̃. With our choice of Uξ, hte n’th eigenstate of H̃ξ(k) is the same as the n’th eigenstate of
U(k, T ). Using the fact that

∑
n Cn = 0, we thus find

W [Uξ] = −
∑
n

Cnw
ξ
n, (4.8)

where Cn is the Chern number of the n’th band of U(k, T ). In other words, if no singularities are
present, the winding number of Uξ is simply the sum of Chern numbers of the Floquet bands
weighted by their phase winding number. For a non-driven system, wn will be zero if band
n is below the energy gap and 1 if band n is above. In the non-driven case, the above result
thus reduces to the well-known bulk-boundary correspondence for the Chern insulator [26] (see
Sec. 2.2.1). This follows from the fact that the Chern numbers of all bands sum to zero.

Winding number in case of one singularity

Let us now consider the case where all the phase winding numbers are zero and Uξ(k, t) has
only one singularity, located at r0 = (k0, t0). In this case we can deform the phases to zero
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Figure 4.5: Deformation of an isolated singularity

everywhere, except in some arbitrarily small neighbourhood that contains the singularity. Under
this deformation we keep the eigenstates of Uξ(r) constant, and keep the time-evolution operator
fixed at the singularity. The deformed time-evolution operator is the identity everywhere, except
in the small region of radius δs around the singularity (see fig. 4.5). If we choose δs small
enough, the time-evolution operator is then of the form (4.3) within the neighbourhood, since the
eigenstates of Uξ have not changed under the deformation:

Ũξ(r) =
∑
n

|χn〉〈χn|+
∑

a,b=1,2
|ψa〉〈ψb|Mab(r), (4.9)

whereMab(r) is a 2×2 matrix whose eigenvectors are the eigenvectors of Sjk(r−r0)σk. Since Ũ(r)
should become the identity at the boundary of the neighbourhood, we know that the logarithm
of the eigenvalues of M must grow from 0 at the boundary to −iφd(r0) and −iφd(r0)− 2πiν at
r0. for |r− r0| < δs, M thus takes the form

M(r) = v1
a(r)v1∗

b (r)eiφd(|r−r0|/δs−1) + v2
a(r)v2∗

b (r)ei(φd+2πν)(|r−r0|/δs−1) (4.10)

while for |r− r0| > δ, M is given by the identity. The vectors v1(r) and v2(r) are the eigenvectors
of the matrix Sjk(r − r0)σk. S is a real, symmetric invertible matrix and can thus be written
S = R1ΛR2, where R1 and R2 are orthogonal and Λ is diagonal matrix with positive entries [42].
A continuous deformation of the entries of Λ to 1 results in a orthogonality-preserving continuous
interpolation of the eigenvectors v1(r) and v2(r) to the eigenvectors of Rjk(r − r0)jσk, where
R = R1R2. By continuously deforming the vectors v1 and v2 in this way, we deform M into

M(r) =
{

1, |r− r0| > δs

(−1)ν exp
[
−iπν
δs (r− r0)iRijσj ·

]
, |r− r0| < δs

. (4.11)

This deformation could be done continuously without breaking continuity at any time. We recall
that R is orthogonal and its determinant is the vorticity σ = |R1||R2| = sgn|S| of the singularity
(see eq. (4.5)). From Eq. 4.6, we explicitly calculate the winding number of this time-evolution
operator and find that

W [Ũξ] = −ν|R| = −νσ ≡ −q. (4.12)
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Figure 4.6: Deformation scheme for general case

This calculation is given in appendix B.1. Using W [Uξ] = W [Ũξ], we thus have

W [Uξ] = −q. (4.13)

In other words, if Uξ contains one isolated singularity, the winding number of Uξ is given by the
corresponding charge of the singularity. This is one of the key results of this work.

The general case

We are now ready to put the pieces together. Consider the general case, where Uξ has N
singularities with charges {qξi }, and phase winding numbers {wξn}. In order to find the winding
number of this system, we deform Uξ(k, t) in the following way: we keep the band projectors
fixed, but deform φξn(k, t) to zero everywhere, except for small isolated regions that surround
each topological singularity, as well as a small time-interval δt before T , where we let the phases
wind linearly to their final values.

We then calculate the winding number of this band-flattened time-evolution operator. The
winding number, Eq. (4.6), can expressed as an integral over k, t-space of the curvature function
Fξ(k, t) = 1

8π2Tr[U †ξ∂tUξ · U
†
ξ∂kxUξ · U

†
ξ∂kyUξ]− x↔ y. For the band-flattened system, F is only

nonzero in the regions that surround the singularities and in the small time-interval before T .
We can therefore split up the integral of F into a sum of integrals over each of these nontrivial
regions. From the first special case we examined, we know that the integral of Fξ(k, t) over the
region at the time-interval before T equals

∑
n Cnwξn, where Cn are the Chern numbers of the

Floquet bands, and wξn are their phase winding numbers. From the second special case, we know
that the integral of Fξ(k, t) over a region surrounding a topological singularity equals the charge
q of the singularity. When we sum the integrals over all regions together we then obtain

W [Uξ] = −
∑
n

Cnwξn +
N∑
i=1

qξi , (4.14)

where Cn is the Chern number of the n’th band of U(k, T ). Now, since Uξ can be continuously
deformed into U without closing the quasi-energy gap, we know from the result in the end of
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subsection 4.2.1 that
∑
i q
ξ
i =

∑
i qi, where {qi} are the singularity-charges of the U(k, t). We

finally have the following result for the number of edge-modes in a two-dimensional system:

nedge(ξ) = −
∑
n

Cnwξn +
∑
i

qi (4.15)

This simple expression provides a direct way of evaluating the edge mode count given by the
winding number formula found in Ref. [10]. In Ref. [10], it was noted that the number of edge
modes of a 2D periodically driven system is determined by its full time-evolution, and not just
by the Chern numbers of the Floquet eigenstates. We now see that this information is in fact
contained in the topological singularities of the time-evolution operator.

As discussed in Sec. 4.1, topological singularities are what makes a Floquet system topologically
inequivalent to a non-driven system - they prevents us from deforming the former into the latter.
This inequivalence is reflected by the appearance of anomalous edge modes in periodically driven
systems: due to the existence of topological singularities, a system can have chiral edge modes
even though the Chern numbers of all the Floquet bands are zero.

4.2.3 Topological singularities in a specific 2-band model

In this subsection we will demonstrate the method we have described on the model that was
considered in ref. [10]. The model we will examine is a tight-binding model on a 2D bipartite
square lattice, described by the time-dependent Bloch Hamiltonian

H(k, t) =
4∑

n=1
Jn(t)

(
σ+eibn·k + σ−e−ibn·k

)
+ V σz, (4.16)

where σz and σ± = (σx ± iσy)/2 are the Pauli-matrices acting on the sublattice, and the vectors
{bn} are given by b1 = −b3 = (a, 0), and b2 = −b4 = (0, a), with a being the lattice constant.
The Hamiltonian is T -periodic in time, and one driving cycle consists of 5 time intervals of length
T/5, where in the n’th interval Jn(t) = λn while all the other hopping amplitudes are set to zero.
In the 5th interval, all hopping amplitudes are set to zero.

We now re-evaluate the edge modes of this model in terms of topological singularities. In
Ref. [10], the model above was examined in the case where all hopping amplitudes were equal such
that λn = J for some tunable parameter J . In that case anomalous edge modes were observed
in certain parameter ranges when the system was put in a strip geometry. Based on the findings
of the previous section, this implies that topological singularities are present. Indeed, when this
model is in a nontrivial phase, the time-evolution operator exhibits a degeneracy in the second
segment of the driving along the entire line kx = ky.

In order to see whether this degenerate region contains topological singularities, we add a small
time-dependent perturbation to the system, such that the degeneracy will only occur at isolated
points, if anywhere (see section 4.2.1). We do this by reducing the hopping in the y-direction
slightly compared to the x-direction, such that λ1 = λ3 = J and λ2 = λ4 = (1− α)J for some
small parameter α that can be regarded as a perturbation. Starting from fixed values of J and V ,
we expect the system to stay in the same topological phase when α is increased from 0. We then
take V = 0.8π/T , and numerically calculate time-evolution operator at a representative set of



44 CHAPTER 4. CLASSIFICATION OF FLOQUET SYSTEMS WITHOUT SYMMETRIES

points in (k, t)-space for the parameter choices J = −0.5π/T , J = −1.2π/T , and J = −2.5π/T
(see Fig. 4.7. From diagonalization of the time-evolution operator we obtain the phase band
structures of these models.

Now we examine the band structure of the time-evolution operator for three illustrative cases.
For J = −0.5π/T , we find that the time-evolution operator has no degeneracies anywhere in
k, t-space, and this system is thus topologically equivalent to a non-driven system. On Fig. 4.7a
is plotted the phase band-structure for this model at a fixed value of kx. In the two latter cases,
however, we find that there is exactly one point where bands beginning at different branches
coincide. We recognize this as a topological singularity. For J = −1.2π/T , the singularity
appears at (kxa, kya, t/T ) = (0.0, 0.0, 0.7), and for J = −2.5π/T , the singularity appears at
(kxa, kya, t/T ) = (0.5π, 0.5π, 0.4). These locations are found numerically. For J = −2.5π/T , the
time-evolution operator also has another singularity where two phase bands that coincide at t = 0
become degenerate. This singularity carries zero charge, and hence we ignore it. In Figs. 4.7
b,c, we show the band structure of U as a function of ky and t, with kx held fixed at the value
corresponding to the singularity.

Having examined the band-structure of the bulk time-evolution operator, we then numerically
compute the Floquet operator of the systems in a strip geometry, and obtain the quasi-energy
band structures, shown in Figs. 4.7 d-f. When we compare the band structure of U with the quasi-
energy bands in strip geometry, we see a direct connection between the appearance of topological
singularities and the chiral edge modes of the Floquet operator. For J = −0.5π/T , there are
no singularities, and the Floquet bands have Chern numbers zero. Hence the Floquet operator
should have no edge modes. When we turn the hopping amplitude up to J = −1.5π/T , the
time-evolution operator acquires a topological singularity that connects bands from neighbouring
branches. The net topological singularity charge is now nonzero, and there will be one pair of edge
modes in the quasi-energy gap at π/T . There will be no edge modes in the gap at quasi-energy 0,
since the Floquet bands have acquired nonzero Chern numbers. In this gap they cancel out the
contribution from the singularity (see Eq. (4.15)). Finally, when we turn the hopping amplitude
up to −2.5π/T , the bands of U will eventually meet in a singularity at a quasi-energy 0 and the
Chern numbers of the Floquet bands become zero again. However, the singularity at quasi-energy
π still remains, and there will thus be an edge mode in each quasi-energy gap of the system (see
again Eq. (4.15). Through the analysis of this explicit model, we have thus demonstrated the
connection between topological singularities and (anomalous) edge modes.

4.3 Complete topological classification of periodically driven sys-
tems in 2d

By deforming the time-evolution operator into the form depicted on Fig. 4.6, we see that topological
singularities and non-zero phase winding numbers are the only features that prevent us from
deforming the time-evolution operator into the identity. By considering how we can change the
location of singularities in k, t-space through continuous deformations, it is possible to show that
there exist only two independent topological invariants one can define for a periodically driven
system in two dimensions in the absence of symmetries. The first is the winding number Wξ[U ],
discussed in the above section. The second invariant quantity is the the sum of phase winding
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Figure 4.7: Relationship between the band structure of the time-evolution operator and edge
modes of the finite-geometry Floquet operator. For various values of the hopping amplitude J ,
we plot the band structure of the time-evolution operator of the model (4.16) (bottom). For
each value of J , we plot the band-structure at a fixed value of kx. At a) we plot for J = 0.5π/T
at kx = 0 . At b) J = 1.2π/T at kx = 0 . At c) J = 2.5π/T at kx = 0.25. In the latter two
cases, the time-evolution operator has a singularity with nonzero charge, and in these cases we
plot the band structure at the exact value of kx where this singularity appears. Also shown is
the quasi-energy band structure in a strip geometry for the respective models (top). Notice the
correspondence between the phase bands at t = T in the bottom and the quasi-energy bands in
the top.
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numbers,

zξ[U ] =
∑
n

wξn = 1
2π

∫ T

0
dtTr[U †ξ (k, t)∂tUξ(k, t)] (4.17)

This invariant is discussed in more detail in Chapter. 6. In the above, the right hand side is
independent of the choice of k. The invariants zξ and Wξ provide an exhaustive topological
classification of periodically driven systems in two dimensions. Two time-evolution operators can
be continuously deformed into each other while keeping a quasi-energy gap ξ open if and only if
they have the same winding number Wξ and phase winding number sum zξ in this gap.



Chapter 5

Topological classification of Floquet
systems with symmetries

In the previous chapter we used a band-flattening procedure to show that for a 2-dimensional
system, the winding number of the time-evolution operator had a simple expression in terms of
its singularities. So far this approach has given a new perspective on results found previously by
different means. However, the previous approaches provided no clear path to generalization. We
now illustrate the power of our new approach by using it to generalize the results and obtain an
exhaustive topological classification, including symmetries.

When the band-flattening approach is applied to systems with symmetries, it becomes apparent
that the time-evolution operator can have new types of degeneracies that are protected from
a combination of symmetry and topology. While the topological singularities we discussed in
Secs. 4.1 ad 4.2 relied on the system being 2 + 1-dimensional, particle-hole conjugation invariant
systems in any dimension can for example have protected degeneracies. These prevent us from
deforming the time-evolution operator into the identity and we see them as new types of topological
singularities. From the new types of topological singularities, new topological invariants can be
constructed.

In this section we apply the band-flattening procedure to systems with symmetries. Doing this,
it is possible to obtain all invariants of a periodically driven system directly as discrete expressions
of the type as in Eq. (4.15). We will use this approach to exhaustively classify periodically driven
systems with various types of symmetries, and identify the topological invariants that constitute
their bulk-edge correspondences. Proofs of exhaustive classification are in some examples left
out for clarity and brevity. We will prove that the obtained invariants constitute the bulk-edge
correspondence of the system, however. From the invariants we find, we derive expressions that
give them directly in terms of the time-evolution operator. The invariants we obtain coincide
with those found in Refs. [12, 13,16].

In many cases, we find more invariants than in the non-driven case, due to the extra quasi-
energy gap present in Floquet systems. For example, with no symmetries there is one extra
invariant, namely the winding number for the anomalous gap. For a particle-hole symmetric
system there exist two quasi-energies that are invariant under particle-hole conjugation and
this results in a “squaring” of the Z2 invariant. We also encounter a case of a topological
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invariant that has no analogy in non-driven systems. A 1-d periodically driven 2-band system
with particle-hole symmetry has a Z topological classification, and thus this system provides
example of a periodically driven system that has a different topological classification than its
non-driven equivalent, at least from a mathematical point of view.

We will in this chapter also demonstrate other examples of nontrivial topological phenomena
that do not have equivalents in non-driven systems. For example, we find that a periodically
driven two-band system with time-reversal symmetry can host topologically protected edge-modes,
while a minimum of four bands is necessary in the non-driven case.

5.1 Symmetries in periodically driven systems

The symmetries we consider in this paper can all be expressed in terms of conditions on the time-
evolution operator. These conditions fall into two categories. First, we consider instantaneous
symmetries which can be expressed in the form

U(t) = SU(t)S−1, (5.1)

where S is a unitary of anti-unitary operator. Second, we consider time-non-local symmetries,
which are expressed via conditions on the form

U(t) = SU(T − t)U †(T )S−1. (5.2)

where S is again some unitary or anti-unitary operator. The symmetry is satisfied if the above
holds for some proper choice of time origin. The symmetries of the periodic table of topological
insulators [30,31] can all be expressed in the above forms when applied to the Floquet operator.
The instantaneous symmetries include spatial symmetries (where S is unitary) and particle-
hole (S anti-unitary) classes, while the non-local symmetry classes include chiral symmetry (S
unitary) and time-reversal symmetry (S anti-unitary). Symmetry classes where S is anti-unitary
furthermore divide into two subclasses, depending on whether S squares to 1 or −1. If S2 = 1
one can always find a basis where S is the complex conjugation operator. One could also consider
other types of symmetries than the above, for example, a discrete time-translational symmetry,
combined with some unitary or anti-unitary operator S, but this is beyond the scope of this
thesis.

What is common for the above types of symmetries is that they allow us to band-flatten the
Floquet operator: it is always possible to continuously deform the system such that the Floquet
operator becomes some scalar multiplication operator, while keeping at least one quasi-energy gap
open (this can be done since the eigenvalues of the Floquet operator are complex exponentials of
the Quasi-energies). For each distinct way the Floquet operator can be deformed into a scalar,
it is then potentially possible to define a set of topological invariants associated with the gap
that stays open. Given a symmetry and quasi-energy gap ξ, we define a topological invariant
as a quantity that does not change under any continuous deformation of the system that keeps
the quasi-energy gap open and preserves the symmetry and locality. With this definition, any
topological characteristic of the edge-mode spectrum in a bulk gap of the system defines such a
topological invariant.
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We now demonstrate the implications these various types of symmetries on the crystal
momentum and time-dependent evolution operator. In the process we obtain topological invariants
for these cases using the approach described in the beginning of this section.

5.2 Classification for particle-hole symmetry with S2 = 1
We first consider the topological classification of a 1-dimensional periodically driven system with
particle-hole symmetry (Class D in the AZ classification [29]). This case was also considered
in Ref. [12], and here topological invariants consistent with the bulk-edge correspondence were
obtained. Particle-hole symmetry for a time-dependent system implies that the Bloch Hamiltonian
of the system h(k, t) satisfies h(k, t) = −Sh(−k, t)S−1, for some antiunitary operator S. In this
section we examine the case where S2 = 1. This type of symmetry is present in Boguliubov-de
Gennes Hamiltonians. If S2 = 1, we can always find a basis where S is the complex conjugation
operator. In this basis, the symmetry condition is equivalent to the time-evolution operator
satisfying U(k, t) = U∗(−k, t) at each time t. As a consequence, the bands of U(k, t) come in
pairs related by symmetry, and the time-evolution operator of a particle-hole symmetric system
with 2N bands can always be written in the form

U(k, t) =
N∑
n=1

[
Pn(k, t)e−iφn(k,t) + Pn̄(k, t)e−iφn̄(k,t)

]
(5.3)

where we can assume the real functions φn(k, t) to be continuous and non-crossing, and, in the
basis specified above,

Pn̄(k, t) = P ∗n(−k, t),
φn̄(k, t) = −φn(−k, t) (5.4)

Furthermore, any time-evolution of this form is particle-hole symmetric. In the case where the
symmetry operator S squares to −1, the time-evolution operator U takes the same form as in
Eqs. (5.3), (5.4), but the conjugate bands n and n̄ would not relate each other just by complex
conjugation.

Particle-hole symmetry still permits a band-flattening of the time-evolution operator by a
deformation of the real functions {φ}, and we are allowed to freely deform {φn} in any region
of (k, t) space where the eigenstates {Pn(k, t)} are continuously defined. Similar to the case of
systems without symmetries, studied in Sec. 4.2, the eigenstates {Pn(k, t)} can have topologically
protected discontinuities in k, t-space around which the time-evolution operator cannot be flattened
to the identity. In fact, symmetry-protected topological singularities can occur in any dimension
for particle-hole symmetric systems when S2 = 1. The singularities appear when two particle-hole
conjugate bands of U(k, t) become degenerate at one of the time-reversal invariant points in
k-space. In order to see how the singularity arises, suppose that two conjugate bands of the
time-evolution become degenerate at (k0, t0), where k0 is a point in (k, t)-space that is taken
unto itself by an inversion in crystal momentum and time. For t close to t0, we can then write
U(k0, t) in the form

U(k0, t) =
∑
n

(
|χn〉〈χn|e−iφn(t) + |χ∗n〉〈χ∗n|eiφn(t)

)
+

∑
a,b=1,2

|ψa〉〈ψb|Mab(t), (5.5)
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Figure 5.1: a): Evolution of the phases of a generic 2-band system with particle-hole symmetry
at a inversion-invariant point in the BZ. At this point in k-space the time-evolution operator has
one singularity at phase π and one at phase 0. b): the evolution of the phases, at a point in the
BZ slightly away from the inversion-invariant point.

where {|χn〉, |χ∗n〉} are the eigenstates of U(k0, t0) that do not become degenerate, and {|ψ1,2〉}
are two states that together span the subspace of the degenerate eigenstates. Here M(t) is a
continuous 2 × 2 unitary matrix satisfying Mab(t0) = ±δab. Now, in the basis where S is the
complex conjugation operator, the symmetry (5.4) dictates that U(k0, t) must be real for all t.
Furthermore, since the two degenerate eigenstates are complex conjugates of each other, we can
assume |ψ1〉, |ψ2〉 to be real. The first sum in the above expression is also real, so then M(t) must
also be real. The latter condition implies that M(t) can be expressed as

M(t) = ±e−iλσy(t−t0), (5.6)

where λ is some real number.
From the above, we see that the degeneracy is topologically protected: any local continuous

deformation of U(k0, t) can only change the value of λ and the the time t0 where the degeneracy
occurs. The topological singularities allow the phases of conjugate bands at the time-reversal
invariant points to cross during the time-evolution. At these points in k-space, particle-hole
symmetry protects this crossing, while elsewhere in k-space, the crossing can be avoided by
turning on an infinitesimal time-dependent perturbation. See Fig. 5.1. In Ref. [12], a relationship
between this winding of phases and the topological classification was mentioned, and we will
shortly examine this further.

It is possible to deform the bulk Floquet operator of a particle-hole symmetric system to −1
or 1 while keeping the quasi-energy gap at 0 or π/T open, respectively. Hence it is potentially
possible to define two sets of topological invariants associated with these gaps. We will now
obtain two indices ν0 and νπ for a 1-dimensional system that indicate the number of edge modes
with quasi-energy 0 and π/T in the system when the system is defined in a geometry with an
edge. The invariants we obtain for the 1-dimensional case coincide with those found in [12].

Classification of 1-dimensional systems

A one-dimensional system with particle-hole symmetry can only have topological singularities at
k = 0 and k = π, and the singularities here singularities can have phase 0 or phase π. Hence there
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are two types of singularities. In 1 dimension, we furthermore have that all singularities occurring
at the same phase are topologically identical if the system has four bands or more: through a
local continuous deformation of the eigenstates |ψn〉, |χn〉, the time-evolution near all singularities
can be made to take the same form in Eq. (5.5). This allows us to create and annihilate pairs of
singularities with the same phase at the same point in k-space, without changing the topological
phase of the system. Hence the only topologically invariants we can associate with the singularities
are the parities of the numbers N0(k) and Nπ(k) of 0- and π-singularities that occur at at points
k = 0 and k = π/a in k-space. An exception is when the system has only 2 bands. This case will
be discussed in the end of the section.

In order to obtain the invariant ν0, we can continuously deform the phases such that φn(t, k) =
π everywhere in k, t-space except around t = 0 and around the singularities that appear at phase
0. This deformation keeps ν0 invariant, and the only information left about the original system is
about the singularities at phase 0, and U(k, t) in the limit t→ 0+. This means that any topological
invariant associated with the gap at quasi-energy 0 must be some function of (−1)N0(0), (−1)N0(π),
and ν[h0], where ν[h0] is the Z2 index for non-driven systems with particle-hole symmetry [27].
h0 is the initial particle-hole symmetric Hamiltonian h0(k) = h(k, 0). From this, we identify

ν0 = ν[h0](−1)N0 (5.7)

where N0 = N0(0) +N0(π) is the total number of singularities at phase 0.
In order to find νπ, we note that we can deform the phases φn to zero everywhere except

around the singularities that occur at phase π, without changing any invariant in the gap at quasi-
energy π/T . Hence any invariant in this gap is fully determined by the number of singularities at
quasi-energy π, and can thus be expressed as some function of (−1)Nπ(0) and (−1)Nπ(π/a). We
identify νπ as

νπ = (−1)Nπ (5.8)

where Nπ is the number of singularities that occur at phase π. From the above two results, it is
possible to derive expressions for νπ and ν0 directly in terms of the time-evolution operator. In
appendix B.2, we show that νπ and ν0 can be found by

ν0 = sgn
∏
k=0,π

Pf
[ 1

2i(
√
U(k, T )

†
−
√
U(k, T ))

]
, (5.9)

ν0νπ = sgn
∏
k=0,π

Pf
[ 1

2i(U(k, T )† − U(k, T ))
]

(5.10)

where the square root is defined by analytic continuation from
√
U(k, 0) = 1. The above

expressions are equivalent to the ones that were obtained in Ref. [12] by other means. The
equivalence is also explained in appendix B.2.

Through a dimensional reduction argument similar to one used in Ref. [43], it is furthermore
possible to show that these two indices give the parities of the numbers of edge modes at
quasi-energy 0 and π/T , respectively. It is possible to define a particle-hole symmetric 2-
dimensional system h2D(k, t) that satisfies h2D(kx, 0, t) = h(kx, t), while h2D(kx, π/a, t) is some
trivial Hamiltonian. Each singularity at phase 0, π, of the 1-dimensional system h(k, t) contributes
± 1 to the winding number of U0(k, t), Uπ(k, t), respectively. Topological singularities that do
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not occur at ky ∈ {0, π/a} have to appear in pairs, and thus contribute by ±2 to the winding
number of U . Furthermore, the Chern number of one conjugate half of the eigenstates of h(k, 0)
can be odd if and only if ν[h0] = −1, as was shown in Ref. [43]. Using the winding number
formula (4.15), we then obtain

W [U0(k, t)] ≡ ν0 mod 2, W [Uπ(k, t)] ≡ νπ mod 2. (5.11)

Now, suppose edges are introduced along the y-direction. The system will then be described
by the Bloch space Hamiltonian Hij(ky, t), where Hij(ky, t) is the real space Hamiltonian of the
1-dimensional open-boundary system whose bulk is given by the Bloch Hamiltonian h(kx, ky, t).
Since the edge mode spectrum of h(k, t) has to be particle-hole symmetric, Hij(0, t) andHij(π/a, t)
will together have an odd number of edge modes with quasi-energy 0 if and only if W [U0(k, t)]
is odd. Since we chose h(kx, π/a, t) trivial, Hij(π/a, t) will have no edge modes. Hence all edge
modes will all have to belong to Hij(0, t). A similar result holds for quasi-energy π.This concludes
the proof.

Cases where singularities are topologically distinct

We found above that the topological classification was Z2 for a 1D particle-hole symmetric system
with four bands or more. This relied on the fact that topological singularities with the same
phase were all topologically identical. However, in some cases the Z2 invariant do not provide
a full topological classification. For example, when the system has 2 bands there will be two
distinct types of topological singularities: In Eq. (5.5), we can assume |ψ1〉 and |ψ2〉 to span the
entire Hilbert space, and it is then always possible to choose |ψ1〉 = (1, 0) and |ψ2〉 = (0, 1). With
this choice, one can then define sgn(λ) in Eq. (5.6) to be the charge for each singularity. This
charge is conserved, and from a mathematical point of view, the net charge defines a topologically
invariant Z index that is not allowed to change unless the symmetry is broken, or the quasi-energy
gap at 0 or π is closed. The physical relevance of this invariant is not presently clear however.

5.3 Classification for time-reversal symmetry with S2 = −1

In this section we apply our framework to the topological classification of periodically driven
systems with time-reversal symmetry in the case where the symmetry operator squares to −1
(Symmetry class AII in the AZ classification [29]). This type of system was also considered in
Ref. [16] in the 2-dimensional case, and a topological invariant consistent with the bulk-edge
correspondence was obtained. We begin the section by demonstrating that if such a system
has two bands, periodic driving allows it to have a non-trivial edge-mode configuration. The
edge-mode spectrum of such a system is inherently trivial in the non-driven case. We then
discuss the topological classification of driven systems with time-reversal symmetry in general
terms, before we focus on the cases of 2 and 3 dimensions. For the 2-dimensional case we
obtain a complete topological classification and prove the bulk-edge correspondence, and for the
3-dimensional case, we also obtain a bulk-edge correspondence. An exhaustive classification can
also be done in the 3D case using band-flattening arguments, but this will not be done here.
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Figure 5.2: a): schematic depiction of the band structure of time-evolution operator of the
time-reversally symmetric 2-band system discussed discussed in Sec. 5.3.1. b): quasi-energy
band-structure of the model when put in a strip geometry along the y-direction.

5.3.1 Example of a 2-band system with time-reversal symmetry and a non-
trivial Z2 index

In this section we demonstrate that a periodically driven two dimensional two-band system with
time-reversal symmetry can have nontrivial Z2 index in its zone-edge gap (see next chapter for
the definition of zone-edge gap). We show through numerical calculation that this model has a
nontrivial edge-mode spectrum when defined in a strip geometry. For a non-driven 2-band system,
Kramer’s theorem guarantees a gapless bulk. Therefore the minimal setting for a non-trivial
time-reversal invariant topological insulator involves four bands. However, the periodicity of
quasi-energy introduces an additional gap that does not necessarily have to be closed, and this
allows for a periodically driven 2-band system with time-reversal symmetry to have topologically
protected edge modes. These can only occur when the time-evolution operator has topological
singularities.

The model we consider is a 2-orbital square-lattice model given by the T -periodic Bloch space
Hamiltonian

H(k, t) =
{
H0(k, 2t), t < T/2
σyH

∗
0 (k, 2(T − t))σy, t > T/2 (5.12)

where H0(k, t) is non-symmetric Hamiltonian presented in Sec. 4.2.3. With the above definition,
H(k, t) is inherently time-reversally symmetric. In Ref. [10], it was noted that the Floquet
operator associated with H0(k, t) was unity when the parameters δAB = 0, λn = 5π/2T were
chosen, and it was shown that the time-evolution operator U0(k, t) of this system had winding
number 1. For our model, we choose δAB = 0, λn = 5π/T . The Floquet operator of the system is
1, and the system has a single gap in its quasi-energy spectrum. A schematic depiction of the
band-structure of this model is shown in Fig. 5.2. In order to compare the bulk index with the
edge-mode spectrum we numerically calculate the time-evolution operator and obtain the Floquet
operator of this system when put in a strip-geometry. The quasi-energy band structure is plotted
in Fig. 5.2. We see that the model has two chiral edge modes at each edge, and these edge modes
are time-reversal conjugates of each other.
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Figure 5.3: a) the band structure of the time-evolution operator of a 2d system with time-reversal
symmetry whose bulk Floquet operator is the identity. b) Vξ is obtained from Uξ by flattening
the bands of Uξ at T/2 in a TR-symmetric way.

Band structure of periodically driven systems with time-reversal symmetry

We now use our approach to classify periodically driven systems with time-reversal symmetry.
We first discuss the general features of these systems, and then examine the classification of a
2-dimensional system in more detail. We obtain the bulk-edge correspondence and show that it
yields the correct edge-mode configuration for the model discussed above.

In contrast to the particle-hole symmetry discussed in Sec. 5.2, time-reversal symmetry imposes
a time-non-local condition on the time-evolution operator. Time-reversal symmetry is defined
to be present if, with some proper origin of time, an anti-unitary operator S exists, such that
h(k, t) = Sh(−k, T − t)S−1 in this basis. In this section we examine the case where S2 = −1.
Such anti-unitary operators can be written as S = σK, where K is the complex conjugation
operator given some basis, and σ is a self-adjoint unitary operator satisfying σ = −σ∗ in this
basis. The symmetry condition is then equivalent to the time-evolution operator in this basis
satisfying

U(k, t) = σU(−k, T − t)∗UT(−k, T )σ. (5.13)

For any quasi-energy gap ξ of the system, we can continuously deform U(k, t) into a periodic
time-evolution operator Uξ(k, t) without breaking the symmetry, such that the quasi-energy gap
ξ stays open under the deformation. As was noted in Ref. [16], this can be done by using an
effective Hamiltonian, in the same way as in the non-symmetric case. Since Uξ(k, T ) = 1, the
deformed time-evolution operator satisfies Uξ(k, t) = SU∗ξ (−k, T − t)S. The fact that S2 = −1
means that the eigenstates of Uξ(k, t) come in pairs that relate to each by symmetry, and we can
write Uξ(k, t) in the form

Uξ(k, t) =
∑
n

[
Pn(k, t)e−iφn(k,t) + Pn̄(k, t)e−iφn̄(k,t)

]
, (5.14)

where the functions {φn(k, t), φn̄(k, t)} are continuous and non-crossing. In contrast to the
particle-hole symmetric case, the symmetry relates conjugate bands at different times to each
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other:

Pn̄(k, t) = σP ∗n(−k, T − t)σ (5.15)
φn̄(k, t) = 2πwξn − φn(−k, T − t), (5.16)

where the integer wξn = φn(k, T )/2π is the phase winding number of bands n and n̄. An example
of a band-structure of Uξ is given in Fig. 5.3. We note that the symmetry can be expressed as a
boundary condition on Uξ(k, t) at t = T/2: for t < T/2, Uξ(k, t) can take any form as long as
the boundary condition

Uξ(k, T/2) = σU∗ξ (−k, T/2)σ (5.17)

is satisfied. The symmetry is then automatically satisfied by imposing Uξ(k, t) = SU∗ξ (−k, T − t)S
for t > T/2. This means that any topological index defined for gap ξ should stay invariant under
any continuous deformation of Uξ(k, t) in the first half of the driving that doesn’t violate the
above boundary condition. If S2 = 1, Uξ(k, t) does not take the above form . In this case, the
bands of Uξ will be their own conjugates.

We now obtain the topological invariants for a 2d-system. In particular we are interested in
finding the parity νξ of the number of edge-mode pairs in the bulk gap ξ when the system is put
in a strip geometry.

Classification in 2D

For a two-dimensional system, we can always continuously deform Uξ(k, T/2) into the identity
without breaking the condition above. Firstly, it is possible to show that Uξ(k, T/2) can not have
any topologically protected degeneracies. It is then always possible to deform the function {φn(t)}
such that φn(T/2) = 0, without violating the boundary condition (5.17), see Fig. 5.3. Having
deformed Uξ(k, T/2) into 1, Uξ(k, t) in the first half of the driving is given by a T/2-periodic
unitary time-evolution operator Vξ(k, t) with no special symmetry requirements. The topological
properties of Uξ are thus completely determined by topological classification of Vξ, and topological
invariant of Uξ should be some function of z[Vξ] and W [Vξ] (see Sec. 4.3 for definition of z[ξ]).
We identify

νξ[U ] = W [Vξ] mod 2. (5.18)

In appendix B.3, we prove that νξ gives the parity of the number of edge-mode pairs, when the
system is put in a strip geometry. The invariant obtained here is the same that was found in
Ref. [16]. Vξ was defined in the above paragraph, and can in practice be obtained in many ways:
one way is to define a continuous effective Hamiltonian H̃eff(k) that satisfies

e−iH̃effT/2 = Uξ(k, T/2), H̃eff(k) = −SH̃∗eff(−k)S. (5.19)

This is always possible. In the first half of the driving we can then continuously deform Uξ(k, t)
into Vξ(k, t) = Uξ(k, t)eiH̃eff(k)t without breaking the condition (5.17). The indices νξ and zξ are
the only topological invariants one can associate with the quasi-energy gap ξ of a 2D system with
time-reversal symmetry.

To demonstrate that the invariant νξ[U ] constitutes the bulk-edge correspondence, we evaluate
it for the model discussed in the beginning of this section. We recall that the time-evolution
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Figure 5.4: Band-structure of U0 and Uπ. a) Band-structure of U0. b) Band-flattened U0. c)
Band-structure of Uπ slightly away from T/2. d) Band-structure of Uπ at T/2 as a function of
k, where the S-eigenvalues of one band are indicated. This system has one singularity in each
band gap, and νπ = 1. Away from T/2, the bands are continuous in k and symmetric in t. At
the singularities, the S-eigenvalue of the bands change discontinuously with k.

operator of the model satisfies U(T/2) = U(T ) = 1, so we do not have to band-flatten the system
in order to calculate the Z2 index. We can take Uπ/T (k, t) = U(k, t), and Vπ/T (k, t) = U(k, t).
Z2 index of this system is then simply

νTR = W [Vπ/T ] mod 2 = W [U0] mod 2 = 1, (5.20)

where U0 was the time-evolution operator of the non-time-reversally symmetric model discussed
in Ref. [10]. the value of νξ thus agrees with the edge-mode spectrum we obtained (see Fig. 5.2b).

Z2 index for a 3D periodically driven system with time-reversal symmetry

The Z2 index for 2-dimensional systems (5.18) can also be used to define a Z2 index ν3
ξ that

classifies a 3-dimensional system with time-reversal symmetry. The definition is analogous
to the non-driven case: for a 3-dimensional system, governed by the time-evolution operator
U(kx, ky, kz, t) we define U0,π(kx, ky, t) as U(kx, ky, 0, t) and U(kx, ky, π/a, t), respectively. Here
a is the lattice constant in the z-diretion. These time-evolution operators describe two distinct
2D systems with time-reversal symmetry that share their bulk quasi-energy gaps with the original
3D system. For a bulk gap ξ of the 3D system we then define the Z2 index ν3

ξ [U ] as

ν3
ξ [U ] = νξ[U0]− νξ[Uπ] mod 2. (5.21)

From similar arguments to the non-driven case [26], ν3
ξ [U ] = 1 implies a topologically non-trivial

edge-mode configuration in the bulk gap ξ.

5.4 Classification for chiral symmetry
In this section we use our framework to classify periodically driven systems with chiral symmetry.
A Hamiltonian h(k, t) is defined to be chirally symmetric if, given some proper origin of time, a
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self-adjoint unitary operator S exists such that h(k, t) = −Sh(k, T − t)S. The condition on the
time-evolution operator is non-local in time:

U(k, t) = SU(k, T − t)U †(k, T )S. (5.22)

There are two ways we can deform this system into a system with a scalar Floquet operator. With-
out breaking the symmetry, we can deform U(k, t) into U0(k, t) and Uπ(k, t), where U0(k, T ) = −1
and Uπ(T ) = 1, and where, respectively, the quasi-energy gap at 0, π/T stays open during the
deformation. From Uπ and U0 it is potentially possible to define topological invariants that
classify U(k, t). For a 1D-system, we can with U0 and Uπ define two such indices ν0 and νπ.
These indices indicate the number of localized edge modes in the bulk quasi-energy gaps 0, π/T ,
which appear at each edge of the system when open boundary conditions are imposed. We will
now show how to obtain these indices from the bulk time evolution operator of 1-dimensional
system system.

Classification of a 1-dimensional system

In this section results that are valid in any dimension are indicated when using k as momentum,
while 1d-specific results are indicated when using k.

In order to find ν0, we note that the operator U0(k, t) satisfies U0(k, t) = −SU0(k, T − t)S.
This means that the bands of U0 at different times are related pairwise by the symmetry, and we
can write U0 in the form

U0(k, t) =
∑
n

[
Pn(k, t)e−iφn(k,t) + Pn̄(k, t)e−i(φn̄(k,t)

]
, (5.23)

where {φn, φn̄} are continuous and non-crossing, and

Pn̄(k, t) = SPn(k, T − t)S
φn̄(k, t) = π − φn(k, T − t). (5.24)

Since U0(k, T ) = 1 and the phases of the bands never cross, we can choose the bands {Pn} such
that φn(k, T ) = π.

In one dimension, the symmetry (5.23) doesn’t protect any topological singularities, and we
can therefore assume U0(k, t) to be nondegenerate for all k, t except at t = 0 and t = T . The
absence of topological singularities allows us to deform the time-evolution operator into one
of a non-driven system, in the same way as we did in section 4.1, but with the rapid winding
happening in the middle of the driving. See Fig. 5.4ab for a depiction of the deformation. The
resulting non-driven system is described by the chiral-symmetric Hamiltonian

h0(k) = π

T

∑
n

[Pn(k, T/2)− SPn(k, T/2)S] . (5.25)

The deformation from h(k, t) into h0(k) could be done without breaking the symmetry or closing
the gap at quasi-energy 0, and hence any topological invariant associated with this gap should be
a topological invariant of h0. We identify ν0 as

ν0 = ν[h0] (5.26)
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where ν[h0] is the chiral Z index of the static Hamiltonian h0 [30]. In the end of the section, we
will show how to obtain ν0 directly from U(k, t). It is immediately clear that ν0 gives the number
of topologically protected edge modes with quasi-energy 0 when open boundary conditions are
imposed. We haven’t closed the quasi-energy gap at 0 during the deformation or broken the
symmetry, and hence the number of edge modes in the gap at quasi-energy 0 is the same for the
non-driven system described by h0 and for the periodically driven system described by U(k, t).

In order to find the index νπ, we have to find a topological classification for time-evolution
operators Uπ(k, t) that satisfy

Uπ(k, t) = SUπ(−k, T − t)S. (5.27)

This condition means that Uπ(k, t) takes the form

Uπ(k, t)
∑
n

Pn(k, t)e−iφn(k,t), (5.28)

where the phases {φn(k, t)} are continuous and non-crossing, and the bands are their own chiral
conjugates, i.e. Pn(k, t) = SPn(−k, T − t)S and φn(k, t) = φn(k, T − t).

In one dimension, Uπ(k, t) can have topological singularities, in contrast to U0(k, t): on the
line t = T/2, Uπ(k, t) commutes with S, and we are forbidden by symmetry to couple bands with
opposite S-eigenvalues, so the phases of bands with opposite S-eigenvalues can cross along this
line. See Fig. 5.4cd. These crossings we identify as topological singularities. The time-evolution
near a singularity at k0 takes the form

Uπ(k, T/2) =
∑
n

|χn〉〈χn|+
∑

a,b=1,2
Mab(k)|ψa〉〈ψb|, (5.29)

where |ψ1〉 and |ψ2〉 are two eigenstates of U(k, T/2) with opposite spins that become degenerate
at the singularity, while {|χn〉〈χn|} are the nondegenerate eigenstates. The matrix M is given by

M(k) = e−iφd(k)−iλσz(k−k0), (5.30)

for some real λ. A perturbation that satisfies the symmetry can never lift the degeneracy, only
change the values of λ and k0, and hence the degeneracy is topologically protected. Furthermore,
not all singularities are equivalent. If we choose |ψ1〉 to have S-eigenvalue 1, we define sgn(λ) to
be the charge of the singularity. The total charge Q of singularities between any two neighbouring
bands is the same and conserved. Since we can deform the phases to zero everywhere else, any
topological invariant of Uπ can be expressed as a function of Q. We identify νπ as

νπ = Q. (5.31)

νπ is the winding number of the eigenvalues of Uπ(k, T/2) corresponding to eigenstates with
positive S-eigenvalue, as k goes from 0 to 2π. One can use a dimensional reduction argument
similar to the one used for the 1-dimensional particle-hole symmetric system in Sec. 5.2 to show
that νπ gives the number of edge modes in the quasi-energy gap at π/T .
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From the indices obtained in Eqs. (5.26) and (5.31), it is possible to derive expressions for
ν0 and νπ directly in terms of the time-evolution operator U(k, t), and we obtain the same
expressions for ν0 and νπ that were found in Ref. [13]: in a basis where S takes the form

S =
[
1 0
0 −1

]
, (5.32)

consider the form of U(k, T/2):

U(k, T/2) =
[
A(k) B(k)
C(k) D(k)

]
. (5.33)

ν0 and νπ can be found by

ν0 = 1
2πi

∫ 2π

0
dkTr[B−1(k)∂kB(k)] (5.34)

νπ = 1
2πi

∫ 2π

0
dkTr[A−1(k)∂kA(k)]. (5.35)

This is shown in appendix B.4.
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Chapter 6

The natural quasi-energy zone

In the previous chapter we demonstrated the usefulness of representing the bulk time-evolution
operator by its eigenstates {Pn(k, t)} and phase bands {φn(k, t)}. In this short chapter we present
a group of non-trivial results that follows immediately from the previous chapter but is a diversion
from the main theme of this thesis.

In Chapter 3 we mentioned that the quasi-energies of a periodically driven system were only
defined modulo the driving frequency 2π/T . Naively, this would lead one to expect that any choice
of origin for quasi-energy band labelling is as good as another. However, we here demonstrate that
this is not the case, and it is in fact possible to define a “natural” quasi-energy zone. Moreover,
this notion seem to have direct physical consequences relevant for all Floquet systems. We finally
show that this result is connected with the existence of an additional topological invariant one
can define for periodically driven systems.

The results of this section have not been studied in full detail yet, but since they follow imme-
diately from chapter 4, and is useful for understanding the topological properties of periodically
driven systems, we will present them here.

6.1 The natural quasi-energy zone
As discussed in Chapter 3, the Floquet operator only defines the quasi-energies of a periodically
driven system modulo 2π/T . This means that quasi-energy band of the system can be labelled
by two indices n,m, such that

εmn (k) = ε0
n(k) + 2πm/T (6.1)

for some zeroth quasi-energy bands {ε0
n(k)} whose corresponding Floquet eigenstates form an

orthonormal basis for the Bloch space. By requiring that two quasi-energies with the same m
must not differ by more than 2π/T , this labelling divides the quasi-energy spectrum up into
quasi-energy zones of width 2π/T , where εmn (k) lies in the m’th quasi-energy zone. Naively, the
choice of the 0’th quasi-energy zone is just a matter of convention.

However, there is a natural choice. From the previous chapter we remember that the phase
bands {φn(k, t)} of a time-evolution operator were the unique solutions to

U(k, t) =
∑
n

Pn(k, t)e−iφn(,̨v) (6.2)
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that were continuous, satisfied φn(k, 0) = 0 and never crossed each other. From this definition,
it is possible to show that at a given k, t two phase bands cannot differ by more than 2π/T .
Furthermore, their values at t = T should correspond to the quasi-energies of the system. Hence
these therefore define a natural choice for the zeroth quasi-energy zone. In this way, we can define
a natural quasi-energy zone of a periodically driven system by picking

ε0
n(k) = φn(k, T )/T. (6.3)

With this choice, the index m in Eq. (6.1) then defines a physically meaningful index for each
quasi-energy band (see Fig. 6.1a), as we will shortly demonstrate. We will refer to this index as
the natural quasi-energy zone (NQZ) index of a band. The NQZ provides a unique well-defined
labelling of quasi-energy bands that does not require picking a quasi-energy origin of a system.

The notion of a natural quasi-energy zones has physical consequences that are relevant for
all periodically driven systems: the continuity of the time-evolution operator and the phase
bands means that a quasi-energy band can never change its NQZ index under any continuous
deformation of the system. This has implications for the quasi-energy band structure at the edges
of a periodically driven system.

Consider a periodically driven 1d system. Suppose that we have an array of these 1d systems
next to each other, labelled by a coordinate y (see Fig. 6.1b). Let the 1d system at position y be
governed by the Bloch Hamiltonian H(kx, y), and let us take the Hamiltonians of the 1d systems
to depend continuously on y. This continuity then also holds for the quasi-energy bands εn(kx, y)
of this system. Suppose that the 1d systems at y = y1 and y = y2 have the same Floquet operator,
with quasi-energy bands {εmn (kx)}, but that these systems have different natural quasi-energy
zones, such that ε0

n(kx, y1) = ε0
n(kx, y2) + 2πm/T This fact tells us that the quasi-energy bands

between y1 and y2 must connect ε0
n(kx) with ε0

n(kx) + 2πm/T and the entire system has no
quasi-energy gaps.

This system is a crude model of a 2-d system with hopping in only one direction considered.
Presently it has not been studied how this result behaves when hopping in the y-direction is
introduced.

Zone-edge gap

The notion of natural quasi-energy zones means that a quasi-energy gap that separates two
natural quasi-energy zones is different from the other quasi-energy gaps in some respects. We
refer to this gap as the zone-edge gap. The zone-edge gap is the quasi-energy gap that becomes
infinitely large when the driving period of the system goes to zero. A system whose time-evolution
operator has no degeneracies cannot have any protected edge modes in its zone-edge gap. A
non-driven system seen as a driven system cannot have edge modes in it zone-edge gap when
the driving frequency becomes wider than the width of the energy spectrum. The fact that a
driven system can have non-trivial topological invariants associated with its zone-edge gap means
that periodically driven systems in general have a richer classification than their non-driven
counterparts. In this way, anomalous edge-phenomena seem to be associated with the existence
of edge-modes in the zone-edge gap.
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Figure 6.1: a) An example of a quasi-energy spectrum with a natural quasi-energy zone labelling
of bands. b) The quasi-energy spectrum for a continuous array of 1-dimensional periodically
driven systems. The systems at y1 and y2 have the same Floquet operator but different NQZ’s.
The NQZ’s of these two systems are indicated by green boxes. The different NQZ’s of the two
systems means that the entire two-dimensional array of wires is completely gapless.

6.2 The zeroth winding number

Here we show that the notion of natural quasi-energy zones is connected with the existence of an
additional topological invariant associated with periodically driven systems. We recall from the
previous chapter, that given a quasi-energy gap ξ, the phase winding numbers {wξn} could only
take integer values and were therefore topologically invariant. Apart from the winding number
Wξ[U ], we can for each quasi-energy gap ξ thus define an additional topological invariant zξ[U ] of
the time-evolution operator, namely

zξ[U ] =
∑
n

wξn = 1
2π

∫ T

0
dtTr[U †ξ (k, t)∂tUξ(k, t)] (6.4)

Where the right hand side is the same for any k in the BZ. The quantity zξ[U ] is referred to as
the zeroth winding number. It is the Floquet analogue of the invariant Bξ[H] for non-driven
systems that gave the number of occupied bulk bands (see sec. 2.2.1). The invariant Bξ[H] can
be seen as a “zeroth” Chern number, hence the name for zξ. While Bξ is usually an uninteresting
quantity for non-driven systems, the zeroth winding number is in general less trivial.

The zeroth winding number has a one-to-one relation with the natural quasi-energy zone
indices. For a quasi-energy gap ξ, let {mn} be the natural quasi-energy zone indices of the
quasi-energy bands that take value in [ξ − 2π/T, ξ]. With each quasi-energy band we can identify
a phase winding number wξn. From its definition in Sec. 4.2.2, we then have that φn(k, T ) lies in
the interval [ξT + 2πwξn, ξT + 2π(wξn − 1)]. Hence the phase winding number should relate to the
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natural quasi-energy zone indices as wξn = −mn, and

zξ[U ] =
∑
i

wξn = −
∑
i

mi. (6.5)

Eqs. (6.6) and (6.5) make it possible to identify the zeroth quasi-energy zone from the invariant
zξ. In the same way, the zeroth winding number can be used to identify the zone-edge gap:
a quasi-energy gap ξ is a zone-edge gap if and only if zξ[U ] is an integer multiple of the total
number of bands.

The zeroth winding number can be found directly from the Hamiltonian and Floquet operator
of the systen. The right hand side of Eq. (6.4) can be simplified by recalling that we can take
Uξ(t) = U(t)eiH

ξ
efft (see sec. 4.2.2 For definition of Hξ

eff). We then have

zξ[U ] = 1
2π

∫ T

0
Tr[h(k, t)]dt− 1

2πTr[H
ξ
eff]T. (6.6)

With h(t) being the time-dependent Bloch Hamiltonian of the system. As an aside, the above
identity further implies there is a non-trivial relation that holds for any effective Hamiltonian of
a periodically driven system, defined with a branch cut in a quasi-energy gap:

Tr[Hξ
eff] ≡ Tr

[
1
T

∫ T

0
h(k, t)dt

]
mod 2π

T
, (6.7)

since zξ[U ] is always an integer if ξ lies in a quasi-energy gap.



Chapter 7

Discussion and outlook

In this thesis we found that non-removable degeneracies of the bulk time-evolution operator,
so-called topological singularities, play a crucial role for the topological classification of periodically
driven systems.

This result arises since we are able through a continuous deformation of the eigenvalues of
the bulk time-evolution operator to reduce the time-evolution operator to the identity anywhere
in k, t-space, except for arbitrarily small regions surrounding the singularities and possibly at the
boundary region at the beginning or end of the driving (or at T/2 if a time-nonlocal symmetry is
present). The deformation can be done without changing the topological class of the system, and
this fact implies that all topological invariants of a periodically driven system can be seen as
quantities relating to the topological singularities in the bulk of the driving, and the topological
class of time-evolution operator at the boundary region.

We explicitly demonstrated for several symmetry classes that the bulk-edge correspondence
of a periodically driven system has a direct and simple relationship with the topological singu-
larities of the time-evolution operator. To show this, we made use of the the band-flattening
scheme mentioned in the above. The band-flattening scheme provides a method for topological
classification of periodically driven systems that seems to be universally applicable, or at least
applicable for symmetries on the forms discussed in Sec. 5.1. Hence, it can be used as a general
way of obtaining bulk-edge correspondences for periodically driven systems. With the method
one can obtain all bulk topological invariants of a periodically driven system.

Periodic driving gives an extra freedom to create systems with nontrivial topological edge-
mode phenomena. Topologically non-trivial Floquet-Bloch systems are possible in any dimension
and symmetry class where topological insulators are possible. However, while every topological
insulator has a Floquet analogue, the topological classification of periodically driven systems is
actually richer than for non-driven systems. In every symmetry class supporting topologically
nontrivial bands, we find new distinct topological configurations which are impossible to obtain in
non-driven systems. Examples of such anomalous configurations are the anomalous edge modes in
a 2D system with no symmetries encountered in [10], the appearance of edge-modes in a 2-band
system with time-reversal symmetry that we described in Sec. 5.3.1, or the edge-modes with
quasi-energy π/T in system particle-hole or chiral symmetry. We also encountered an example of
a periodically driven system whose bulk topological classification was given by a Z index, while its
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non-driven counterpart classified only by a Z2 index, meaning the system has an infinite number
of topological phases that are inaccessible for a non-driven system. Periodically driven systems
thus have a richer topological classification than non-driven systems.

One of the major reasons for the importance of bulk-edge correspondences of non-driven
systems is that they are helpful identifying materials that exhibit non-trivial edge phenomena.
In the same way, it was hoped that obtaining bulk-edge correspondences for periodically driven
systems would help for devising driving schemes and materials that result in non-trivial edge
phenomena. However, this insight does not always follow from obtaining the invariants directly
in terms of the time-evolution operator The topological singularities and the band-structure
picture of the time-evolution operator give an intuitive way of understanding the topological
phenomena in driven systems. This picture provides useful insight that can be used for devising
driving schemes: one of the main conclusions of this thesis is that inducing non-trivial topological
phenomena through periodic driving often amounts to introducing topological singularities into
the phase bands of the bulk time-evolution operator.

In this paper, we have focused on 1- and 2-dimensional systems, but the band-flattening
method is also applicable in higher dimensions, and topological singularities also appear there. In 3
dimensions, topological singularities appear as closed, oriented lines in k, t-space. In 4 dimensions,
a new type of topological singularity appears where the eigenvalues of 4 bands coincide. This
type of singularity arises because the restriction of the time-evolution operator to the subspace of
4 bands can be expressed as a matrix exponential of a linear combination of the 5 Γ-matrices
that generate SU(4). The momentum- and time coordinates in the 4+1-dimensional system can
then tune all 5 gamma matrices to zero, and thereby prevent a lifting of the degeneracy between
the 4 bands. The appearance of this new type of singularity seems to reflect the existence of a
second Chern number in a 4+1D non-driven system, that can also only be nonzero if the system
has 4 bands or more.

From the examples we have considered, it seems that for some symmetry classes, non-driven
and driven systems can only have topologically non-trivial phases in dimensions where topological
singularities are possible. Indeed, if a symmetry can be expressed as an instantaneous condition on
the time-evolution operator, the symmetry only supports nontrivial topological phases if the time-
evolution operator can have topological singularities in that dimension. This can be immediately
seen by seeing the time-evolution operator as some interpolation of Floquet operators, with time
being the interpolation parameter. Topological singularities then appear at the topological phase
transitions of the system during the interpolation. For these types of symmetries, topological
phase transitions are thus only possible if topological singularities are. For systems with the
time-nonlocal condition however, the relationship is not so direct, but a similar argument can still
be applied on a continuous interpolation of Floquet operators that satisfy the symmetry. In this
way, considerations about topological singularities are enough to determine whether a symmetry
can support non-trivial topological phases, both for non-driven and periodically driven systems.

In this thesis, we have primarily focused on obtaining bulk-edge correspondences for periodically
driven systems. However, we have also encountered other topological invariants that the bulk
system can have, for example, the zeroth winding number, or the Z invariant for a 2-band
particle-hole symmetric system in 1D. This suggests that periodically driven systems can have
other types of topological phenomena in addition to analogues of the edge-mode phenomena
encountered in non-driven systems. This was also discussed in Ref. [40].
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7.1 Outlook
In this thesis we demonstrated the usefulness of representing the time-evolution operator by
its phase bands. This gave us a way of implementing continuous deformations of periodically
driven systems, and made it clear that time-evolution operator in general could have protected
degeneracies that played a role for its topological properties. Another nice result that followed
from this band structure representation was the existence of a “physically meaningful” origin
for labelling of quasi-energy bands - the natural quasi-energy zone described in chapter 6. This
result was connected with the existence of an additional topological invariant, namely the zeroth
winding number. The zeroth winding number is in the non-driven case often overlooked, but for
Floquet systems it is more non-trivial. Although some physical consequences of these concepts
were described, their implications still needs to be studied further.

In this thesis we found that inducing non-trivial topological phenomena through periodic
driving often amounts to introducing topological singularities into the bulk time-evolution
operator. For some cases, such as the particle-hole symmetric case, topological singularities can
be intentionally created. Finding out whether/ how topological singularities can be intentionally
created would be very useful for devising driving schemes that result in topologically non-trivial
behaviour. This could also be an interesting subject of future study.

The diagonalization of the Floquet operator gives solutions to single-particle problems with
periodically time-dependent Hamiltonians. The many-body problem - in particular the filling
of quasi-energy levels when the system is connected to a particle reservoir - is currently not so
well understood, and this field is a very active area of current research [11,44–46]. In order to
take advantage of the new possibilities for topological solid-state phenomena offered by periodic
driving , this field still needs to be studied further.
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Appendix A

List of known invariants

In this appendix we display the topological invariants so far obtained for periodically driven
systems. We give expressions for them directly in terms of the time-evolution operator, as well
as discrete expressions if they are known. If they are not known or relevant, or it is not clear
whether such an expression exists, we indicate this with a question mark. We also give a reference
to the source where the invariant was first derived. If a topological invariant can be defined for a
system in dimension d, similar invariants can also be defined for systems any higher dimension.
For example, a 3d system with no symmetries can be a weak topological insulator, classified by
3 invariants analogous to Chern numbers defined for 2d systems. In the tables, we therefore
indicate the lowest dimension where an invariant first appears. Below the tables, a discussion
and an explanation is given.

Symmetry Class A (No symmetry)

Dimension New topological invariant Discrete expression Obtained in

d = 0 1
2πi
∫ T

0 dtTr
[
U †ξ∂tUξ

] ∑
nw

ξ
n Chp. 6

d = 1 0 0 –

d = 2 −1
8π2

∫
d2kdtTr

[
εµ1µ2µ3

∏3
i=1 U

†
ξ∂µiUξ

]
−
∑
n Cnwξn +

∑
i qi [10]

d = 3 0 0 –

d = 4 i
160π3

∫
d4kdtTr

[
εµ1...µ5

∏5
i=1 U

†
ξ∂µiUξ

]
? Chp. C
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Symmetry Class AII (Time-reversal symmetry with S2 = −1)

Dimension New topological invariant Discrete expression Obtained in

d = 0 0 0 –

d = 1 0 0 –

d = 2 νξ[U ] = −1
8π2

∫
d2kdtTr

[
εµ1µ2µ3

∏3
i=1 V

†
ξ ∂µiVξ

]
? [16]

d = 3 νξ[U(k, kz, t)]kz=π/a
kz=0 mod 2 ? Chp. 5 / [16]

Symmetry Class AIII (Chiral symmetry)

Dimension New topological invariant Discrete expression Obtained in

d = 0 ? ? –

d = 1
ν0 = 1

2πi
∫ 2π
0 dkTr[B−1(k)∂kB(k)]

νπ = 1
2πi
∫ 2π

0 dkTr[A−1(k)∂kA(k)]

?

Q[Uπ]
[13]

Symmetry Class D (Particle-hole symmetry with S2 = 1)

Dimension New topological invariant Discrete expression Obtained in

d = 0
ν0[U ] = sgnPf

[√
U(T )−

√
U(T )T]

νπ[U ] = sgnPf
[
U(T )− U(T )T

] ν0d[H(0)](−1)N0

(−1)Nπ
[12]

d = 1
ν0[U(0)]ν0[U(π/a)]

νπ[U(0)]νπ[U(π/a)]

ν1d[H(0)](−1)N0

(−1)Nπ
[12]

d = 2 ? ? –
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Explanations and comments

Symmetry class A

The operator Uξ(k, t) is any time-evolution operator satisfying Uξ(k, T ) = 1 that can be continu-
ously deformed into the original time-evolution operator U such that the quasi-energy gap at
ξ never closes. wξn is the phase winding number of band n and qi is the charge of singularity i.
Cn is the Chern number of band n. See Chp. 4 for more information. For symmetry class A,
the topological invariants can be defined in every quasi-energy gap ξ. The invariant for d = 2
gives the number of chiral edge modes in the bulk quasi-energy gap. The relevance of the d = 0
invariant for the edge-mode spectrum is not currently clear.

Symmetry class AII

The operator Vξ is found as follows: without breaking time-reversal symmetry of Uξ(k, T ) = 1,
continuously deform Uξ(k, t) such that Uξ(k, T/2) = 1. Vξ is then given by the deformed Uξ in
the first half of the driving. For 2d, νξ give the parity of the number of Kramer’s pairs of chiral
edge mods in the quasi-energy gap ξ. The edge correspondence corresponding to the 3d invariant
should also be analogous to the non-driven case, see for example Refs. [26, 32].

Symmetry class AIII

The operators A(k) and B(k) are found as follows. In a basis where the chiral symmetry operator
S takes the form

S =
[
1 0
0 −1

]
, (A.1)

the time-evolution operator at T/2 takes the form

U(k, T/2) =
[
A(k) B(k)
C(k) D(k)

]
. (A.2)

This defines A and B. For Chiral symmetry it is possible to define two invariants ν0 and νπ,
corresponding to quasi-energy gaps 0 and π/T , respectively. For a 1d system, the parity of the
invariants ν0 and νπ give the parity of 0- and π/T -quasi-energy edge modes, respectively. Q[Uπ]
gives the number of singularities of Uπ/T (k, t) in some gap in the phase-band structure. The
operator Uπ/T (k, t) is any time-evolution operator that can be continuously deformed into U(k, t)
without closing the quasi-energy gap at π/T or breaking chiral symmetry. The 1d invariants
should have immediate generalizations to any odd dimension, analogous to the generalization of
the static invariant [30].

Symmetry class D

The indices ν0,1d[h] = sgnPf[h] are the Z2 indices found in Ref. [27] for static particle-hole
symmetric Hamiltonians. H(0) is the Hamiltonian of the driven system at the beginning of a
driving period. For d = 1 ν0 and νπ give the parity of number of edge-modes with quasi-energy 0
and π/T , respectively. N0 and Nπ is the number of singularities at phase 0 and π, respectively.
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Appendix B

Derivations

B.1 Derivation of Eq. (4.13)
In this appendix, we show that the time evolution operator Ũξ given in Eqs. (4.9)-(4.11) has
winding number n|R|, by explicit evaluation of the winding number formula (4.13). Inserting Ũξ
into this formula, we get

W =− 1
24π2

∫
|r−r0|<δr

dtd2k Tr
[
M †∂iM ·M †∂jM ·M †∂kM

]
εijk, (B.1)

where εijk is the Levi-Civita symbol. Summation over repeated indices is used and will be used
in the rest of this section. In order to exploit the symmetries of the time-evolution operator, we
shift from Cartesian coordinates to polar coordinates centred at r0. Doing this we get

W = − 1
24π2

∫ δk

0
dr
∫ π

0
dθ
∫ 2π

0
dφ |J |JiαJjβJkγεijk · Tr

[
M †∂αM ·M †∂βM ·M †∂γM

]
, (B.2)

where J is the Jacobian matrix of the coordinate transformation, and the Greek letters α, β, γ
run over the polar coordinates r, θ, φ, where r = |r− r0|. We now use the following useful identity
for the Levi-Civita symbol that holds for any real invertible 3× 3 matrix A [47]

AiαAjβAkγεijk = εαβγ
|A|

. (B.3)

With this identity, we see that the winding number formula is independent on the choice of
coordinates, as the Jacobian matrices always cancel out:

W = − 1
24π2

∫ δk

0
dr
∫ π

0
dθ
∫ 2π

0
dφ Tr

[
M †∂αM ·M †∂βM ·M †∂γM

]
εαβγ .

We now use the cyclic property of the trace as well as the identity ∂MM † = −M∂M † to get

W = 1
8π2

∫ δk

0
dr
∫ π

0
dθ
∫ 2π

0
dφ Tr

[
M †∂rM∂θM

†∂φM
]
− θ ↔ φ. (B.4)
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Having rewritten the integral to polar coordinates, let us now see how M looks in terms of these
coordinates. We have

M(r, θ, φ) = (−1)ν exp
(−iπn

δk
~p · ~τ

)
, (B.5)

where ~p = (r− r0), and τi = Rijσj . Defining r̂(θ, φ) = ~p/r, we evaluate each of the factors in the
integrand

M †∂rM = iπν

δk
r̂ · ~τ

∂θM = i sin
(
iπνr

δk

)
∂θr̂ · ~τ

∂φM = i sin
(
iπνr

δk

)
∂φr̂ · ~τ .

Hence

W = in

16π

∫ π

0
dθ
∫ 2π

0
dφTr [r̂ · ~τ ∂θr̂ · ~τ ∂φr̂ · ~τ ]− θ ↔ φ. (B.6)

We now look for a simpler expression for the integrand:

Tr [r̂ · ~τ ∂θr̂ · ~τ ∂φr̂ · ~τ ] = r̂i∂θr̂j∂φr̂kRiaRjbRkcTr [σaσbσc] .

Now, the Pauli matrices satisfy Tr[σiσjσk] = 2iεijk. Hence

Tr [r̂ · ~τ ∂θr̂ · ~τ ∂φr̂ · ~τ ] = r̂i∂θr̂j∂φr̂k · 2iRiaRjbRkcεabc
= r̂i∂θr̂j∂φr̂k · 2i|R|εijk,

where we used the Levi-Civita symbol identity (B.3) and the fact that |R|−1 = |R|. Restoring
antisymmetrization in θ and φ, and going back to vector notation, we then get

Tr [r̂ · ~τ ∂θr̂ · ~τ ∂φr̂ · ~τ ]− θ ↔ φ = 4i|R| r̂ · ∂θr̂ × ∂φr̂ = 4i|R| sin θ. (B.7)

Hence the integrand in Eq. (B.6) is simply 4i times the surface area element of the sphere. We
thus have

W = iν

16π

∫ π

0
dθ
∫ 2π

0
dφ(−4i sin θ)

= −ν|R|
= −q. (B.8)

This was what we wanted to prove.

B.2 Z2 indices for a particle-hole symmetric 1-d system
In this appendix we derive (5.10) from the the topological indices we obtained in Eqs. (5.7) and
(5.8). To do this, we note that for k ∈ {0, π/a} we can define the eigenstates |ψk(t)〉 and |ψ∗k(t)〉
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of U(k, t) to be continuous in t. A main point in this paper is that it is not always possible to
define the eigenstates of U(k, t) globally in a continuous way. However, it is always possible to
define the eigenstates and eigenvalues such that they are continuous along some arbitrary line in
k, t-space. For k ∈ {0, π/a} we can thus write

U(k, t) =
∑
n

[
P̃n,k(t)e−iφ̃n,k(t) + P̃ ∗n,k(t)eiφ̃n,k(t)

]
, (B.9)

where both Pn,k(t) and φn,k(t) are continuous, but in contrast to earlier, the functions {φk,n,−φk,n}
are allowed to cross. It is convenient to choose {φn(t)} in Eq. (B.9) such that φn(t) → 0+ in
the limit t → 0. A singularity occurs at phase 0 or π, whenever one of the φ′n,ks reach 2πZ
or(2Z + 1)π. Then N0(k) counts how many times {φn(k, t)} cross 2πZ, and we have

(−1)N0(k) = sgn
∏
n

sin(φn(k, t)/2). (B.10)

We can find the rhs directly from the time-evolution operator: with
√
U(k, t) defined by analytical

continuation from
√
U(k, 0) = 1, we introduce for k ∈ {0, π/a} Qk(t) = 1

2i [
√
U(k, t)† −

√
U(k, t)].

We have

Qk(t) =
∑
n

[
Pn,k(t) sin φn,k(t)2 − P ∗n,k(t) sin φn,k(t)2

]
. (B.11)

We see that Qk(t) is skew-symmetric and takes eigenvalues {± sinφn,k(t)/2}. General results for
Pfaffians [28] then tell us that

Pf[Qk(t)] = sk
∏
n

sin(φn(k, t)/2), (B.12)

where sk ∈ {±1} depends on the basis we choose. We can find sk by taking the limit t→ 0 of
the above equation. Since we choose φn(t)→ 0+ in this limit, we get

sk = sgn Pf[h0(k)]. (B.13)

Hence, combining the above with Eqs. (B.12) and (B.10)

sgn Pf[Qk(T )] = sgn Pf[h0(k)](−1)N0(k). (B.14)

In Ref. [27] it was found that ν[h0] = sgn Pf[h0(0)]Pf[h0(π/a)]. Thus

ν0 = ν[h0](−1)N0(0)+N0(π/a) = sgn
∏

k∈{0,π/a}
Pf[Qk(T )]. (B.15)

In order to obtain a similar expression for νπ, we note that the index ν0 for the particle-hole
symmetric system with time-evolution operator Ũ(k, t) = U2(k, t) is given by

(−1)N0+Nπν[h0] = ν0νπ. (B.16)
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This is because the static Z2 index of the initial Hamiltonian is the same for the systems with
time-evolution operators U(k, t) and U2(k, t), and U2(k, t) has a zero-phase singularity of for
each π or 0-phase singularity of U(k, t). This gives us

ν0νπ = sgn
∏

k∈{0,π/a}
Pf
[ 1

2i [U
†(k, T )− U(k, T ))

]
. (B.17)

The expressions for ν0 and νπ obtained here are equivalent to the ones found in Ref. [12]. Here,
the expressions for ν0 and νπ take the same form, but with Qk(T ) = log

√
U(k, t), where the

logarithm is taken with branch cut at −π, and similarly for the νπν0-expression. The expression
is seemingly different because (−1)N0(k) can be obtained from the phases {φn,k(T )} in many ways.
For example, we could in Eq. (B.10) also have taken

(−1)N0(k) = sgn
∏
n

f [φn(k, T )/2] (B.18)

where f(x) is the unique function that satisfies f(x) ≡ x mod 2π and takes values between −π
and π. When one repeats the subsequent steps, the expressions found in Ref. [12] are obtained.

B.3 Proof for the bulk-edge correspondence for a 2d system with
time-reversal symmetry

In this appendix we show that the invariant in Eq. (5.18) gives the parity of the number of edge
mode pairs, in a 2-dimensional driven system with time-reversal symmetry. To do this, we recall
that it was possible to continuously deform U(k, t) into the time-evolution operator

Ũξ(k, t) =
{
Vξ(k, t), t < T/2
SV ∗ξ (−k, T − t)S, t > T/2 (B.19)

without breaking time-reversal symmetry or closing the quasi-energy gap at ξ. Now consider the
following continuous deformation of Vξ(k, t):

V s
ξ (k, t) =

{
Vξ(kx, ky/s, , t), ky < 2πs
SV ∗ξ (kx, 0, t)S, ky > 2πs (B.20)

for s from 1 to 2. Under this deformation Uξ(k, t) stays continuous and time-reversally symmetric,
since Vξ(k, T/2) = 1. Suppose now open boundary conditions are imposed on the system along the
y-direction, such that the Floquet eigenstates, including any edge modes, still have well-defined
y-momentum. The deformed system will then have a well-defined number of chiral edge modes in
the ky ∈ [0, π] part of the 1-dimensional Brillouin zone. The net number of chiral edge modes
here is given by W [Vξ]. The system is still time-reversal symmetric however, so each of the edge
modes in the ky ∈ [0, π] part of the Brillouin zone has a time-reversal (TR)-conjugate partner in
the ky ∈ [π, 2π] part. Hence the system has W [Vξ] TR-conjugate pairs of edge modes on each
edge, and the number of pairs has parity νξ. It is well-established that the parity of this number
is a topological invariant [37]. Hence the number of edge-mode pairs in the quasi-energy gap ξ of
the original system also parity νξ.
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B.4 Direct expressions for the chiral indices ν0 and νπ

In this appendix we show that the indices ν0 and νπ given in Eqs. (5.26) and (5.31) can be found
from directly from time-evolution operator U(k, T/2) in the expressions in Eq. (5.35). These
expressions were also obtained in Ref. [13].

Expression for ν0

We found in Eq. (5.26) that ν0 can be found as the Z index ν[h0] of the static chirally symmetric
Hamiltonian h0, given in Eq. (5.25). In the basis of eigenstates of S used in Eq. (A.2), h0 takes
the block off-diagonal form

h0(k) =
[

0 M(k)
M †(k) 0

]
. (B.21)

ν0 can then be found as [30]

ν0 = 1
2πi

∫ 2π

0
dkTr[M−1(k)∂kM(k)]. (B.22)

We note that the rhs is invariant under any continuous deformation of M(k) that keeps M(k)
invertible for all k. In the basis of S-eigenstates used in Eq. (B.21), we remember U(k, T/2) takes
the form

U(k, T/2) =
[
A(k) B(k)
C(k) D(k)

]
. (B.23)

We recall from our analysis of 1-dimensional chirally symmetric systems Sec. 5.4, that U(k, t) can
be deformed into e−ih0(k)t without breaking chiral symmetry or closing the quasi-energy gap at
quasi-energy 0. From Eq. (5.25), we have that e−ih0(k)T/2 = −ih0(k)T/π. This means that under
the deformation from U(k, t) to e−ih0(k)t, B(k) gets deformed into −iM(k)T/π. We claim that
this deformation can be done without B(k) ever becoming non-invertible.

To show this, suppose that somewhere during the deformation, B(k0) becomes non-invertible
for some momentum k0. At this point in the deformation, B(k0)v = 0 for some nonzero vector v.
However we always have

1 = U †(k, T/2)U(k, T/2)
U †(k, T ) = U(k, T/2)SU †(k, T/2)S.

The first identity follows from unitarity of U(k, T/2), while the second can be derived from the
chiral symmetry condition eq. (5.22). By considering the matrix representation of U(k, T/2) and
S in this basis (B.23),(A.1), we deduce that at this point in the deformation,

U †(k0, T )
[
v
0

]
=
[
v
0

]
. (B.24)

Hence if B(k0) becomes non-invertible, during the deformation, the quasi-energy gap at 0 closes
at k0. However, we know that the quasi-energy gap at 0 stays open during the deformation. This
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must mean that B stays invertible under the deformation, and hence it is possible to continuously
deform B(k) into M(k) without B(k) at any point becoming non-invertible. Thus

ν0 = 1
2πi

∫ 2π

0
dkTr[B−1(k)∂kB(k)]. (B.25)

Expression for νπ

The proof follows an argument similar to the previous. We have that, in the same basis as the
one used in Eq. (B.23), Uπ(k, T/2) takes the form

Uπ(k, T/2) =
[
N↑(k) 0

0 N↓(k)

]
, (B.26)

where N↑(k) and N↓(k) are unitary matrices. As mentioned in our analysis of chirally symmetric
systems, νπ can be found directly from Uπ(k, T/2) as the winding number of the eigenvalues of
Uπ(k, T/2) that correspond to eigenstates with S-eigenvalue 1, when k goes from 0 to 2π. In
other words

νπ = 1
2πi

∫ 2π

0
dkTr[N−1

↑ (k)∂kN↑(k)]. (B.27)

As before, the rhs is invariant under any continuous deformation of N↑(k) that keeps it invertible
for all k. Consider the representation (B.23) of U(k, T/2) in the same basis. Under the deformation
from U(k, t) to Uπ(k, t), A(k) gets continuously deformed into N↑(k). Suppose that at some point
along the deformation, A(k) becomes non-invertible. From a similar argument as for ν0, it would
then mean that U †(k, T ) would have eigenvalue −1, and the quasi-energy gap at π/T would
close at k0. We know that it is possible to continuously deform U(k, t) into Uπ(k, t) without ever
closing the quasi-energy gap at π/T . Hence it is possible to continuously deform A(k) into N↑(k)
with A(k) staying invertible under the entire deformation. This means that

νπ = 1
2πi

∫ 2π

0
dkTr[A−1(k)∂kA(k)] (B.28)



Appendix C

Frequency space approach

In this chapter, we present another complementary approach to the topological classification of
periodically driven systems, namely the frequency space picture approach that was mentioned
in Ref. [10]. This approach was followed in the first half of 2014. While the band-structure
approach turned out to be more useful, the frequency space approach provides a complementary
description of the problem that gives some further insight. Some of the contents of this chapter
are furthermore helpful for the general understanding of periodically driven systems.

The basic idea is that there exists a well-defined mapping of any periodically driven systems in
n dimensions a non-driven system in n+1 dimensions with an unbounded spectrum. The presently
unknown topological invariants of the periodically driven system correspond to well-understood
topological invariants of the non-driven system. The bulk-edge correspondence of a periodically
driven system can thus be found form translating the time-dependent system to the non-driven
system. This translation also requires imposing energy cutoff to deal with the unboundedness of
the spectrum.

The challenge consists of finding a general way of doing this. I.e. using the approach to find
the topological invariants directly from the time-evolution operator of the driven system.

The approach succeeded in deriving the bulk-edge correspondence for a 2d system without
symmetries (the winding number obtained in Ref. [10]), and we found a generalization to 2n
dimensions. In particular, we derived the Floquet analouge of the second Chern number, an
invariant defined for a 4+1D system (see Ref. [48]). However, the approach turned out to be
inconvenient when symmetries were introduced, and so it was eventually abandoned.
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C.1 Setup of the system
The system we consider is a 2-dimensional lattice withM sites per unit cell, subject to a T -periodic
time-dependent Hamiltonian with periodic boundary conditions.The Hamiltonian of the system is
represented as an operator H(k, t) on the M -dimensional space H of periodic Bloch functions on
the lattice. This space is spanned by the orbital eigenstates {|αi〉|i = 1...M}. Throughout this
paper, Greek letters will indicate orbital eigenstates. The time evolution operator of the system is

U(k, t) = T exp
(
−i
∫ t

0
dt′H(k, t′)

)
(C.1)

Where T the time-ordering operator. U(k, t) can be represented by an M ×M matrix. Let us
now take the k-dependence to be implicit. Consider the operator U(T ), where T is the driving
period. We can find and label the eigenstates of U(T ):

U(T )|n〉 = e−iEnT |n〉, n = 1...M (C.2)

We will refer to these eigenstates as Floquet eigenstates, and the parameter En as the quasi-energy.
This equation only defines En modulo 2π/T = ω however, so there exists a Brillouin zone for
quasi-energy, in the same way as there exists one for x and y-momentum.

The Floquet theorem and the frequency space picture

In general, it is impossible to obtain a nicer expression than (C.1) for the time evolution of the
system, when the Hamiltonian is time-dependent. But when the time dependence is periodic,
there is an exception. In the same way as a system with discrete translational symmetry can be
solved with Bloch Functions, a system with discrete time-translation symmetry can be solved
with a plane wave times a periodic pertubation. This is the central statement of the Floquet
Theorem: for any eigenstate |n〉 of U(T ) with quasi-energy En, we can for some vector φnα(z)
write

U(t)|n〉 = e−iEnt
∑
α,z

φnα(z)|α〉eiωzt. (C.3)

In other words, we can write the time evolution |n〉(t) of the Flouqet eigenstates as some periodic
function

∑
φnα(z)eiωzt|α〉 times a "plane wave" e−iEnt. The vector components {φnα(z)} depend

on the convention chosen for the quasi-energy: let En be a quasi-energy for the Floquet eigenstate
|n〉 with φnα(z) solving the above equation. Then En + ωm is also a quasi-energy for the same
eigenstate with φnα(z − m) solving the above equation. Here, m must be an integer. Hence
picking a different "Brillouin zone" for the quasi-energy corresponds to a z-translation of φnα(z).

Extended Hilbert Space

Substituting (C.3) into the Schrodinger equation H(t)U(t)|n〉 = i∂tU(t)|n〉 and projecting out
the z’th Fourier component on both sides, we get∑

z′,α

HF
βα(z, z′)φnα(z′) = Enφ

n
β(z) (C.4)
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where
HF
αβ(z, z′) = 〈β|H(z − z′) + ωzδ(z, z′)|α〉, H(t) =

∑
z

eiωztH(z). (C.5)

Here, H(z) is the z’th fourier component of H(t).
We can look at this as the Schrodinger equation of another system: Let H′ be the Hilbert

space spanned by the states |α, z⟫, where z is an integer, and α runs over the M orbital indices.
On this new 3d lattice, we define the state |n⟫ by

⟪α, z|n⟫ = φnα(z) (C.6)

and the operator HF , which is called the Floquet Hamiltonian, by

⟪z, β|HF |z′, α⟫ = HF
βα(z, z′) = 〈β|H(z − z′) + ωzδzz′ |α〉. (C.7)

In this picture, eq. (C.4) translates to an eigenvalue equation:

HF |n⟫ = En|n⟫. (C.8)

|n⟫ is related to the Flouqet eigenstate |n〉 through eq. (C.3), which in this picture becomes

U(t)|n〉 =
∑
α,z

|α〉⟪α, z|n⟫e−i(En−ωz)t (C.9)

Eqs. (C.8) and (C.9) determines the correspondence between the time evolution in the original
Hilbert space H and the extended Hilbert space H′. From now on, a single bracket |〉 indicates
that the state lives in H, while a double bracket |⟫ indicates that the state lives in the extended
Hilbert space H′. Single-bracket states can be represented as M -dimensional vectors, while
double-bracket states are represented by infinitely-dimensional vectors.

C.1.1 Labelling of Eigenstates

We now provide a labelling scheme for the eigenstates of HF that will prove useful later on.
We found before that by translating an eigenstate of HF in the z-direction, we can generate

new eigenstates of HF that all result in the same Floquet eigenstate. It therefore seems natural
to split the set of eigenstates of HF into families, where all eigenstates in one family corresponds
to the same Floquet eigenstate. This means we will have to label the eigenstates of HF with two
indices: one index n denoting which Floquet eigenstate the state corresponds to and one index
m distinguishing the different eigenstates in the same family. An obvious choice for the latter
would be to sort the eigenstates according to their eigenvalues. Eigenstates with the same n but
different m will then be copies of each other, just translated a number of steps in the z-direction,
such that m by 1 means translating the state once in the z-direction. The space spanned by all
eigenstates with the same m will be referred to as the m’th quasi-energy zone. This concept will
be important later on for the derivation of anomalous bands.

In order to make the labelling complete, we have to pick out which states lie in the 0’th
quasi-energy zone, since m runs from minus infinity to infinity. Later on, when we look at the
number of edge modes in a gap, this free choice of the 0’th quasi-energy zone provides a compact
way of dealing with the gap. I will now present the labelling scheme.
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Figure C.1: Labelling of the bands of HF for a 1-dimensional 2-level system with the scheme in
C.1.1, given different values of ξ. The shaded area marks the first quasi-energy zone. The bands
continue indefinitely in both directions

Labelling scheme Consider the Floquet eigenstate |n〉. For any ξ ∈ R, we define the state
|n,m⟫ξ to be the unique eigenstate of HF that results in the Floquet eigenstate |n〉 and has
eigenvalue in the interval [ξ + ωm, ξ + ω(m+ 1)).
For the state |n,m⟫ξ, n indicates the Floquet eigenstate, and m denotes the number of the
quasi-energy zone. The 0’th quasi-energy zone is defined to be spanned by all the eigenstates with
eigenvalue between ξ and ξ + ω. In this way, ξ marks the bottom of the 0’th quasi-energy zone.
The index m corresponds to the variable z in the same way as the band number n corresponds to
the orbital index α. A schematic example of the labelling scheme is provided in Fig. C.1.

For any choice of ξ,m, the physical solution to the time-dependent Schrodinger equation is
simply

U(t)|n〉 =
∑
α,z

|α〉⟪α, z|n,m⟫ξe−i(E(n)|ξ+ω(m−z))t (C.10)

where |n〉 is a Floquet eigenstate, and E(n)|ξ is the unique quasi-energy of |n〉 that lies in the
interval [ξ, ξ + ω). In the subsequent sections, it turns out to be natural to define

Uξ(t) = U(t)eiH
ξ
efft. (C.11)

Here Hξ
eff = i

T log(U(T )) is the effective Hamiltonian, defined with the branch cut along e−iξT .
With this definition, Heff returns the quasi-energy E(n)|ξ when acting on the Floquet eigenstate
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Figure C.2: Example of edge modes when edges are introduced in the x-direction. In this figure,
the number of edge modes is −1

|n〉. As a result, eq. (C.10) becomes

Uξ(t)|n〉 =
∑
α,z

|α〉⟪α, z|n,m⟫ξe−iω(m−z))t. (C.12)

The operator Uξ(t) will be important for calculating the number of edge modes, as we will find in
the next section.

C.2 Edge modes

In the same way as with energy, we can look at the quasi-energy spectrum as a band structure,
the only difference being that the spectrum is not bounded above or below, but instead ω-periodic.
We want to look at the number of edge modes arising when edges are introduced to the system.
This number is defined as follows.

Consider a periodic system, whose bulk spectrum has a gap around some quasi-energy ξ. Now
introduce edges in the x-direction, maintaining translational invariance in the y-direction. Thus
ky is still a good quantum number. As we wind ky from 0 to 2π, consider the adiabatic evolution
of the eigenstates and their quasi-energies. The number of edge modes in the gap, nedge(ξ), is
defined as the net number of states on the upper edge of the sample which cross the gap during
this evolution. See Fig C.2 for a picture of the system. By eq. (C.8), this is the same as the
number of edge states of the Floquet Hamiltonian whose energies cross the gap at ξ.

There are two ways of calculating the number of edge modes, which we now review:

C.2.1 Method 1: Directly from the time evolution of the system

The following method is described in [10]. With this method, the number of edge modes is found
directly from the time evolution operator U(t) (the k-dependence of U is implicit). Referring to
the proof in the article, let Uξ(t) be any operator that satisfies the following criteria

• Uξ(T ) = 1



84 APPENDIX C. FREQUENCY SPACE APPROACH

• For some integer m, it is possible to smoothly deform Uξ(t)eiωmt to U(t)1.

• Throughout this deformation, the quasi-energy spectrum keeps its gap around ξ.

Then the number of edge modes crossing the gap at E = ξ is

nedge(ξ) = 1
8π2

∫
dtdkxdky Tr[U †ξ∂tUξ · U

†
ξ∂kxUξ · U

†
ξ∂kyUξ]− x↔ y (C.13)

An operator that has the above property property is

Uξ(t) = U(t)eiH
ξ
efft. (C.14)

Note that this operator is different from the one used in ref. [10].

Proof of property 1 The first property is trivially satisfied.

Proof of property 2 Let ξ be any real number. We note that there exists a ξ′ and an integer
m, such that Hξ

eff = Hξ′

eff + ωm, where ξ′ ∈ [−ω, 0). Consider the family

U s(t) = U(t)eiH
ξ′
effts (C.15)

for s ∈ [0, 1]. This defines a smooth deformation as a function of s, and has U s=0(t) = U(t),
U s=1(t) = Uξ(t)e−iωmt. Thus property 2 is satisfied.

Proof of property 3 With the interpolation scheme above, consider the evolutions of quasi-
energies {E(s)}. For requirement 1 to be satisfied the quasi-energy bands must be pushed to
integer multiples of ω during the evolution, by property 3 the bands must never cross the gap
during this evolution. Thus property 3 is equivalent to the requirement that if an evolution E(s)
satisfies E(0) ∈ (ξ′, ξ′ + ω), we must have E(s) ∈ (ξ′, ξ′ + ω) for all s between 0 and 1. Using
−ω ≤ ξ′ ≤ 0, we have

ξ′ ≤ (1− s)ξ′ < (1− s)E(0) < (1− s)(ω + ξ′) ≤ (ω + ξ′) (C.16)

Now consider E(s). We have that E(s) = E(0)− sE(0)|ξ′ = (1− s)E(0). Thus the requirement
is fulfilled.

C.2.2 Method 2: From the bands of the Floquet Hamiltonian

Another method also described in [10] is to calculate the number of edge modes by considering
the Floquet Hamiltonian defined in eq. (C.7). This can be seen as a Hamiltonian on a 3-d-lattice
with translationally invariant local hopping terms. In addition to the hopping terms, a constant
electric field of magnitude ω/e is applied in the z-direction, corresponding to the term ωz. The
eigenstates of HF on this lattice - including the edge states - will be localized in the z direction due

1That this is equivalent to the requirement in [10] can be seen by noting that the winding number in (C.13) is
unchanged by the gauge transformation Uξ(t) → eiωmtUξ(t)
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to the boundedness of the kinetic energy. It is therefore meaningful to talk about the z-position
of some energy.

If we place edges on the lattice in the z-direction, the eigenstates localized far away from the
cutoff z’s should therefore stay unchanged. In particular, the number of edge states in a gap
should stay the same. Thus the number of edge states in the gap should be the same with or
without the cutoff, if the "position" of the gap is far enough away from the cutoff.

With edges introduced, we can also look at the system as a 2-d system again, with the z index
now denoting an additional orbital index rather than position. Due to the edges, the spectrum of
HF will be bounded. The number of edge states in a gap can then be found by summing the
chern numbers of the bands below the gap. If we look at a gap far away from the cutoff, this gives
a way of finding the number of edge modes in the untruncated system, c.f. the argument above.

C.3 Example: Edge modes of a 2-level system with single reso-
nance and RWA

We consider a 2-level system subject to a time-dependent perturbation: H(t) = H0 + V cos(ωt)
such that system has a single resonance. Here, V is a matrix. We have a time evolution
operator associated with H(t), defined by U(t) = T e−i

∫ t
0 dt

′H(t′). We label the two Floquet bands
associated with this Hamiltonian |a〉 and |b〉:

U(T )|a〉 = e−iEaT |a〉, U(T )|b〉 = e−iEbT |b〉. (C.17)

We will also make use of the bands |±〉 of the unperturbed Hamiltonian:

|±〉 =
∑
α

u±,α|α〉, H0|±〉 = E±|±〉. (C.18)

We now look at the extended Hilbert space for the system. The Floquet Hamiltonian is

HF = H0 + ωẑ + 1
2
∑
s

V (s)(T + T−1) (C.19)

Where V (s) is the s’th harmonic of the driving potential, and T is the z-translation operator:
T |α, z⟫ = |α, z + 1⟫. V (s) and H0 only act on the 2-dimensional orbital space. The eigenstates
of the unperturbed Floquet Hamiltonian are the states {|±, z⟫}, where

|±, z⟫ =
∑
α

u±,α|α, z⟫, (H0 + ωẑ)|±, z⟫ = (E± + ωz)|±, z⟫ (C.20)

In order to find the eigenstates of HF , we do the rotating wave approximation. This means
that we only consider the driving potential to be relevant when there is a resonance. In the
extended Hilbert space picture, this translates to only considering the perturbation when it
couples bands that become degenerate somewhere in k-space. We assumed the existence of a
single resonance, which means that the bands |+, z⟫ and |−, z + 1⟫ become degenerate for some
values of k. Degeneracy between any other pair of bands will imply higher resonances, which we
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assumed didn’t exist. Hence the perturbation can only mix the unperturbed bands two by two,
and we can write the perturbed bands of the form

|a⟫z = A+a|+, z⟫+A−a|−, z + 1⟫
|b⟫z = A+b|+, z⟫+A−b|−, z + 1⟫

(C.21)

See fig C.3. Here the a-states correspond to the Floquet eigenstate |a〉 through (C.9); the same
holds for b. A is some matrix that can be found using perturbation theory in V .

Knowing the form of the eigenstates of HF , we can now try to find the number edge modes
that appear when edges are introduced. We will try to calculate this number using both methods
described in the previous section.

Method 2

If we truncate the system at z = 0, we will get the 2d anomalous edge state |−, 0⟫ (see Fig. C.3),
corresponding to the unperturbed eigenstate |−〉. It is easy to show that the Chern number of
the a-bands equals minus the Chern number of the b-bands. Thus, summing the Chern numbers
below the gap, we get (again referring to the figure)

nedge(ω) = C− nedge(ω/2) = C− + Ca (C.22)

where C− is the Chern number of the band |−, 0⟫ which is the same as the chern number of the
real-space band |−〉. In the same way, C(a) is the Chern number of the real-space band |a〉.

Method 1

We now show that this is the same result gotten when using method 1. The energies of the states
|a〉z and |b〉z are, respectively

Ea(z) = ω(z + 1/2)− ε
Eb(z) = ω(z + 1/2) + ε, (C.23)

(C.24)

Where 0 < ε < ω/2. We now try to express the eigenstates in terms of the labelling scheme we
developed in sec. C.1.1. If we take ξ = 0, we must have the eigenvalue corresponding to |a, 0⟫ω
lying between 0 and ω. Looking at the expression for Ea(z), we see that z must be zero for this
to hold. Thus |a, 0⟫ξ=0 = |a⟫0. In this way, we get

|a, 0⟫ξ=0 =|a⟫0

|b, 0⟫ξ=0 =|b⟫0

|a, 0⟫ξ=ω/2=|a⟫0

|b, 0⟫ξ=ω/2 =|b⟫−1
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Figure C.3: Labelling of the bands of a truncated 2-level system (see eq. (C.21)). On the left is
the unperturbed system, and on the right the system with the driving field pertubation. With
the truncation, the lowest level state |−, 0⟫ is unaffected by the perturbation

Thus, setting m = 0 and ξ = 0 in eq. (C.12), and using the above

U0(t)|a〉 =
∑
α,z

|α〉⟪α, z|a, 0⟫0e
iωzt = A+a|+〉+ eiωtA−a|−〉

Doing the same for the other states, we get

U0(t)|a〉 = A+a|+〉+ eiωtA−a|−〉
U0(t)|b〉 = A+b|+〉+ eiωtA−b|−〉

Uω/2(t)|a〉 = A+a|+〉+ eiωtA−a|−〉
Uω/2(t)|b〉 = e−iωtA+b|+〉+A−b|−〉 (C.25)

Putting t = 0 we see that A+a = 〈+|a〉, and so on. Thus

U0(t) = |+〉〈+|a〉〈a|+ |+〉〈+|b〉〈b|+ |−〉〈−|a〉〈a|eiωt + |−〉〈−|b〉〈b|eiωt

= P+ + P−e
iωt (C.26)

Where P± = |±〉〈±|. We can do the same for Uω/2.

Uω/2(t) = (P+ + eiωtP−)(Pa + e−iωtPb) (C.27)

Where Pa = |a〉〈a| and same with b. We now look at the number of edge modes in the quasi-energy
gap around E = ω. We make use of

U †0∂tU0 = iωP−, ∂kU0 = (1− eiωt)∂kP+
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Thus, using the formula given in [10]

nedge(0) = − 1
8π2

∫
dtd2kTr

(
U †0∂tU0 ∂kxU

†
0 ∂kyU0

)
− x↔ y

= − iω

8π2

∫
dtd2kTr

(
P−∂kxP−∂kyP−

)
(1− eiωt)(1− e−iωt)− x↔ y

= − iω

8π2 · 2 ·
2π
ω

∫
dkxdkyTr(P−∂kxP−∂kyP−)− x↔ y

= 1
2πi

∫
dkxdkyTr(P−∂kxP−∂kyP−)− x↔ y

= C− (C.28)

Where C− is the Chern number of the −-band. In the same way, we can look at the number of
edge modes in the gap around E = ω/2. There, we should use Uω/2 from (C.27) instead of U0.
Plugging in this operator in the above equation, one gets,

nedge(ω/2) = Ca + C−

Although this requires some more algebra to show. Hence the two methods give the same result
for this system.

C.4 Equivalence of the two methods in the general case

The above result is not a coincidence. We will now prove that method 1 and 2 are equivalent.
We will do this under the assumption that the Floquet eigenstates only contain a finite range
of harmonics. In other words, we assume that some N ∈ Z exists, such that the z’th fourier
coefficient of Uξ(t) is zero if |z| > N . In the extended Hilbert space picture this translates to the
physically sound approximation that the eigenstates of HF are only nonzero within some z-range
of width 2N (recall that they must be localized due to the boundedness of the kinetic energy).

Having proven the equivalence of the two methods under this assumption, we then note that
even if no such N exist, we can still approximate any Uξ(t) arbitrarily well by an operator that
satisfies the assumption for some sufficiently large N . We also expect the number of edge modes
to be locally continuous as a function of Uξ(t): a small enough change of Uξ(t) shouldn’t affect
the presence of absence of edge modes. Thus, if the result holds for all finite N , the result will
also hold in the limit N →∞.

C.4.1 Relating Uξ(t) to the extended Hilbert space picture

In order to relate the two methods, we begin by finding an expression for Uξ(t) in the extended
Hilbert space picture. We found this operator in the end of sec. C.1.1. Beginning with eq. (C.12),
we can write Uξ(t) in the spectral representation

Uξ(t) =
∑
α,n,z

|α〉⟪α, z|n,m⟫ξ〈n|e−iω(m−z))t. (C.29)
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This holds for any choice of quasi-energy zone ξ,m. The relation between the frequency space
picture and the time evolution of the system can thus be summed up as follows: Let U(T )|n〉 =
e−iEnT |n〉. Then

HF |n,m〉ξ = (E(n)|ξ + ωm)|n,m⟫ξ and Uξ(t) =
∑
α,n,z

|α〉⟪α, z|n,m⟫ξ〈n|e−iω(m−z))t (C.30)

Now, we make some general considerations about the state |n,m⟫ξ. We know that |n,m⟫ξ lives
in the extended Hilbert space H′. It can therefore can be written in terms of the basis states
{|α, z⟫}. We also know that changing m by one means translating |n,m⟫ξ once in the z-direction.
Hence, for any choice of unit cell n, ξ, we can write |n,m⟫ξ on the form

|n,m⟫ξ =
∑
α,z

F ξnα(z)|α, z +m⟫

Also, the Floquet eigenstates can be expressed on the form

|n〉 =
∑
α

Anα|α〉 (C.31)

The matrices F ξ(z) and A are unitary, with F ξ(z) satisfying
∑
z F

ξ(z)F ξ†(z) = I. Due to the
boundedness of the kinetic energy, |n,m⟫ξ will be localized at some z, meaning F ξ(z) will go to
zero for large |z|. Define now Bξ(z) by

Bξ
αβ(z) = A†F ξβα(z). (C.32)

Fixing m = 0 this allows us to write

Uξ(t) =
∑
α,z,n

|α〉⟪α, z|n, 0⟫ξ〈n|eiωzt =
∑
αβz

|α〉〈β|Bξ
αβ(z)eiωzt (C.33)

Thus Bξ(z) =
∑
αβ |α〉〈β|B

ξ
αβ(z) is simply the z’th fourier coefficient of Uξ. Our assumption

about Uξ(t) then means that Bξ(z) = 0 for |z| > N . .
In the following, we will make extensive use of the projector into the m’th quasi-energy zone.

(see sec. C.1.1 for definition). We can write it in terms of the B matrices

Pm =
∑
n

|n,m⟫ξ ⟪n,m|ξ =
∑

n,β,α,z

Anα1A
∗
nα2B

ξ
α1β1

(z1−m)Bξ∗
α1β2

(z2−m)|β1, z1⟫⟪β2, z2|. (C.34)

Using the unitarity of A, we get

Pm =
∑
z1,z2

∑
α,β1,β2

Bξ
αβ1

(z1 −m)Bξ∗
αβ2

(z2 −m)|β1, z1⟫⟪β2, z2|. (C.35)

C.4.2 The Anomalous Projector

In the rest of this section we will take the ξ dependence of B to be implicit. Also, implicit
summation over repeated orbital indices is used (i.e. summation over repeated greek letters).
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Furthermore, we will make extensive use of the following identity that is equivalent to U †ξ (t)Uξ(t) =
1:

δαβδ(m,n) =
∞∑

z=−∞
Bξ∗
αγ(z +m)Bξ

βγ(z + n). (C.36)

Now we continue with the proof. Let P< be the projector into the subspace of all bands with
quasi-energy below ξ, i.e. below our chosen 0’th quasi-energy zone. With the labelling scheme
introduced in sec. C.1.1, we have

P< =
−1∑

m=−∞
Pm (C.37)

We look closer at the semi-infinite sum of projectors on the rhs using eq. (C.35). We start by
splitting the sum into two parts: the sum over terms where z1 and z2 are both greater than −N ,
and the sum over terms where this is not the case:

−1∑
m=−∞

Pm =
∞∑

z1,z2=−N+1

∞∑
m=1

Bα,β1(m+ z1)B∗α,β2(m+ z2)|β1, z1⟫⟪β2, z2|

+
∑

min z1,z2≤−N

∞∑
m=1

Bα,β1(m+ z1)B∗α,β2(m+ z2)|β1, z1⟫⟪β2, z2|.

(C.38)

Here we also changed the sign of m. For the second term, we notice that if m ≤ 0, the terms
vanish anyway since then either z1 +m ≤ −N or z2 +m ≤ −N , B(z) = 0 for z < −N . Thus we
might as well drop the boundary of summation for m. Then for this term we get, using eq. (C.36)

∑
min(z1,z2)≤−N

∞∑
m=−∞

Bα,β1(m+ z1)B∗α,β2(m+ z2)|β1, z1⟫⟪β2, z2| =
−N∑

z=−∞
|α, z⟫⟪α, z| (C.39)

Thus the second term in eq. (C.38) is just the projector into the part of the lattice below
z = −N + 1. The first term which we call the anomalous projector, P a, gives rise to the winding
number, as will be proven in the following. It is given by

P a =
∞∑

zi=−N

∞∑
m=0

Bα,β1(m+ z1)B∗α,β2(m+ z2)|β1, z1⟫⟪β2, z2| (C.40)

To sum up, we have found

P< =
−N∑

z=−∞
Pz + P a (C.41)

A graphical representation of this identity is shown in Fig. C.4
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Figure C.4: A schematic representation of the Hilbert space and its subspaces. The horizontal
direction indicates some abstract orbital index of the states, and the vertical axis indicates the
harmonic index z. The interpretation is that the m’th subspace (projected into by Pm) consists
of z-eigenstates with eigenvalues within some range. When stacking enough m-subspaces on top
of each other, it should therefore be possible to "build" a complete z-subspace. Stacking infinitely
many m-subspaces on top of each other should then result in an infitite sum of z-projectors, plus
some residue, which we name the anomalous projector .
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Relation between the anomalous projector and the edge modes

We now show that the number of edge modes can be found from the anomalous projector.

A truncation at z0 can be implemented as follows: Let Pc project out all states with z < z0.
Then the Hamiltonian of the truncated system is H̄ = PcHPc. Let P< and P> be the the
projectors into the states with energy below and above the gap centered at ξ, respectively, for the
untruncated system, and let P̄> and P̄> denote the same for the truncated system (excluding the
states that are projected out). We expect that when the system is truncated for some sufficiently
large, negative z0, the eigenstates of the Hamiltonian above the gap should be unaffected2. Thus
the projector into the states with energy above the gap P> is the same for the truncated and
untruncated system:

P̄> = P>.

But then, since P̄> + P̄< = Pc

P̄< = Pc − P̄> = Pc − P> = Pc(1− P>) = PcP<.

Here we used that PcP> = P>, which follows from our hypothesis that P> = P̄>. Now plugging
in P< from eq. (C.41), we thus have

P̄< =
−N∑
z=z0

Pz + P a. (C.42)

In order to find the sum of chern numbers below the gap in the truncated system we use the
formula

nedge(ξ) = 1
2πi

∫
dkxdkyTr

(
P̄<∂kxP̄<∂ky P̄<

)
− x↔ y

= 1
2πi

∫
dkxdkyTr

(
P a∂kxP

a∂kyP
a +

N∑
z=z0

Pz ∂kx

N∑
z=z0

Pz ∂ky

N∑
z=z0

Pz

)
− x↔ y

= 1
2πi

∫
dkxdkyTr

(
P a∂kxP

a∂kyP
a
)
− x↔ y. (C.43)

Between the second and third line we usd the fact that ∂ki
∑−N
z=z0 Pz = 0 to eliminate the second

term. Now all that is left is to prove that the number of edge modes obtained with this formula
is the same as the formula given in [10].

Example: 2-level system

To gain a better understanding for the steps above, we can again consider the single resonance
2-level system. By changing basis from Bαβ to B+a and so on, and examining eqs. (C.27) and
(C.33), we find that

B(1) = P−Pa

B(0) = P+Pa + P−Pb

B(−1) = P+Pb (C.44)
2This can be proven from our assumption about B
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In this case, owing to the rotating wave approximation, we exactly have that B(z) = 0 if |z| > 1.
So the anomalous projector can be taken to be

P a =
∞∑
m=0

∞∑
z1,z2=0

B†(m+ z1)B(m+ z2)

= B†(0)B(0) +B†(0)B(1) +B†(1)B(0) + 2B†(1)B(1)
= Pa + P− (C.45)

Plugging this into (C.43), we obtain the expected Chern number. For the case ξ = ω, it is even
easier to show that P a = P−.

C.4.3 Proof of equivalence of the winding number formula and the sum
anomalous chern numbers

Having defined the sum of chern numbers within the anomalous projector, we have to prove that
this is the same as the winding number in eq. (C.13).

Part 1 - Eliminating redundant variables and summation bounds

Plugging the anomalous projector from eq. (C.38) into eq. (C.43) we have:

nedge(ξ) = 1
2πi

∫
dkxdkyTr[I(ξ)]− x↔ y (C.46)

where the integrand I(ξ) is defined by

I(ξ) =
∞∑

mi=0

∞∑
zi=−N

B(m1 + z1)B†(m1 + z2)∂x
[
B(m2 + z2)B†(m2 + z3)

]
∂y
[
B(m3 + z3)B†(m3 + z1)

]
.

(C.47)

In the subsequent, we will make use of the fact that we are only using the trace of I(ξ), and that
the result has to be antisymmetrized in x and y. Changing variables to

a = m1 + z2 b = m2 + z2 c = m3 + z2 r = z1 − z2 s = z3 − z2

we get for I(ξ)

I(ξ) =
∞∑

abc=−N

min(a,b,c)∑
z2=−N

∞∑
r=−N−z2

∞∑
s=−N−z2

B(a+ r)B†(a)∂x
[
B(b)B†(b+ s)

]
∂y
[
B(c+ s)B†(c+ r)

]
(C.48)

Now, we can perform the sum on z2. In order to save space, we introduce

f(a, b, c, r, s) = B(a+ r)B†(a)∂x
[
B(b)B†(b+ s)

]
∂y
[
B(c+ s)B†(c+ r)

]
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For each (a, b, c, r, s), this term appears several times in the sum, namely once for each z2 in the
interval [−N,min(a, b, c)] for which r ≥ −N − z2 and s ≥ −N − z2. This is just the number of
integers between max(−N,−N − r,−N − s) and min(a, b, c). Thus

I(ξ) =
∞∑

abc=−N

∞∑
r,s=−N−min(a,b,c)

Nabcrsf(a, b, c, r, s), (C.49)

where Nabcrs is
Nabcrs = min(a, b, c) + min(r, s, 0) +N. (C.50)

The fact that number must never be negative is taken care of by the summation bounds: for
all terms, min(r, s, 0) ≥ −N − min(a, b, c). Now, we notice that we can relax the summation
bounds. Firstly, we see that we can take the lower bound on the abc sum to minus infinity
without changing the sum. Secondly, we note, that if r < −N − min(a, b, c), we have that
min(a+ r, b+ r, c+ r) < −N . The only case where this doesn’t result in vanishing terms is when
min(a, b, c) = b. Hence r < −N −min(a, b, c) implies r < −N − b for the nonvanishing terms.
However, if r < −N − b, then −N ≤ r + c < −N − b+ c. This implies c > b. In the same way,
we find a > b. Thus r < −N − b implies min(a, b, c) = b. All together, these arguments provide a
bi-implication for nonvanishing terms:

r < −N −min(a, b, c)⇔ r < −N − b

As well as
r < −N − b⇒ min(a, b, c) = b

With this in mind, we rewrite I(ξ):

I(ξ) =
∞∑

abc=−N

∞∑
r=−∞

∞∑
s=−N−min(a,b,c)

Nabcrsf(a, b, c, r, s)

−
∞∑

abc=−N

−N−min(a,b,c)−1∑
r=−∞

∞∑
s=−N−min(a,b,c)

Nabcrsf(a, b, c, r, s)

For the second term, we use the above results to redefine the summation domain:

∞∑
abc=−N

−N−min(a,b,c)−1∑
r=−∞

∞∑
s=−N−min(a,b,c)

Nabcrsf(a, b, c, r, s)

=
∞∑

abc=−∞

−N−b−1∑
r=−∞

∞∑
s=−N−b

(N + min(r, s, 0) + b)f(a, b, c, r, s)

Then, using the identity (C.36), we can perform the sum over c to obtain zero
∞∑

c=−∞
f(a, b, c, r, s) = B(a+ r)B†(a)∂x

[
B(b)B†(b+ s)

]
∂y

[ ∞∑
c=−∞

B(c+ s)B(c+ r)
]

= B(a+ r)B†(a)∂x
[
B(b)B†(b+ s)

]
∂yδrs = 0. (C.51)
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Thus we don’t have to impose r < −N −min(a, b, c), since the terms below r < −N −min(a, b, c)
cancel each other out anyway. In the same way we can relax the summation bound for s. We are
now left with

C =
∞∑

abcrs=−∞
(min(a, b, c) +N + min(r, s, 0))f(a, b, c, r, s) (C.52)

Now, the two last terms don’t depend on b or c, so for these, we can sum out b or c and obtain a
zero, in the same way as we did in eq. (C.51). Thus we are finally down to

I(ξ) =
∞∑

abcrs=−∞
min(a, b, c)B(a+ r)B†(a)∂x

[
B(b)B†(b+ s)

]
∂y
[
B(c+ s)B†(c+ r)

]
(C.53)

Part 2 - Simplifying the sum

Expanding the derivatives in the above expression, and changing the sign of s, we have

I(ξ) =
∞∑

abcrs=−∞
min(a, b, c)B(a+ r)B†(a)∂x

[
B(b)B†(b− s)

]
∂y
[
B(c− s)B†(c+ r)

]

=
∞∑
−∞

min(a, b, c)
[
B(a+ r)B†(a) · ∂xB(b)B†(b− s) · ∂yB(c− s)B†(c+ r)

]
T1

+
∞∑
−∞

min(a, b, c)
[
B(a+ r)B†(a) ·B(b)∂xB†(b− s) · ∂yB(c− s)B†(c+ r)

]
T2

+
∞∑
−∞

min(a, b, c)
[
B(a+ r)B†(a) · ∂xB(b)B†(b− s) ·B(c− s)∂yB†(c+ r)

]
T3

+
∞∑
−∞

min(a, b, c)
[
B(a+ r)B†(a) ·B(b)∂xB†(b− s) ·B(c− s)∂yB†(c+ r)

]
T4.

(C.54)

Here we have labeled the four terms T1, T2, T3, T4. We will evaluate these terms separately. In
order to do his, we will make use of an identity derived from eq. (C.36):∑

z

∂xB
†(z + y)B(z) = −

∑
z

B†(z + y)∂xB(z) (C.55)

Evaluating T1: For T1, we start by eliminating two B’s using the identity (C.36) for the sum
over r.

T1 =
∑

min(a, b)B†(a)∂xB(b)B†(b− s)∂yB(a− s)

By doing the variable shift a, b→ b+ s, a+ s, we get

T1 =
∑

(min(a, b) + s)B†(a+ s)∂xB(b+ s)B†(b)∂yB(a).

Now we switch a and b and let s→ −s

T1 =
∑

(min(a, b)− s)B†(b− s)∂xB(a− s)B†(a)∂yB(b).
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Exploiting the cyclic property of the trace and xy antisymmetrization:

T1 = −
∑

(min(a, b)− s)B†(a)∂xB(b)B†(b− s)∂yB(a− s)

We recognize the first term as −T1, so we finally have

T1 = 1
2
∑

s B†(a)∂xB(b)B†(b− s)∂yB(a− s) (C.56)

Evaluating T2: To evaluate the second term we make a similar approach. Eliminating two B′s
with the identity (C.36) and changing variables a, b→ a+ s, b+ s:

T2 = (
∑

min(a, b) + s)B†(a+ s)B(b+ s) · ∂xB†(b)∂yB(a)

For the first term we can again sum out 2 B’s to obtain

T2 =
∑

a∂xB
†(a)∂yB(a) + sB†(a+ s)B(b+ s) · ∂xB†(b)∂yB(a) (C.57)

Using the antisymmetrization and restoring x-integration, we can rewrite the first term:

∑
a∂xB

†(a)∂yB(a)− x↔ y =
∑∫

dkx∂x(aB†(kx, a)∂yB(kx, a))− x↔ y

=
∑

a(B†(2π, a)∂yB(2π, a))−B†(0, a)∂yB(0, a))− x↔ y (C.58)

However, we must have B(kx, z) = B(kx + 2π, z)3. Thus we can throw this term away. For the
second term in eq. (C.57), we shift the x-derivative once, using the identity (C.55) to get

T2 = −
∑

sB†(a+ s)∂xB(b+ s) ·B†(b)∂yB(a)

With a proper variable shift and comparing with the expression for T1 (C.56), we recognize this
as

T2 = −2T1 (C.59)

Evaluating T3: Now we look at T3. Here we can also sum out two B’s at first:

T3 =
∑

min(a, b)B(a+ s)B†(a) · ∂xB(b)∂yB†(b+ s)

Making use of the trace cyclicity and shifting the y-derivative

T3 = −
∑

min(a, b)B†(a)∂xB(b) ·B†(b+ s)∂yB(a+ s)

Changing s→ −s we recognize this as
T3 = −T1 (C.60)

3Since the Hamiltonian satisfies H(kx) = H(kx + 2π), and Uξ(k, t) is fully determined by the Hamiltonian at
momentum k, its fourier coefficients B(k, z) must also satisfy B(kx, z) = B(kx + 2π, z).
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Evaluating T4: Finally, we have T4. We cannot sum any pair of B’s out immediately, but
doing the variable shift r → r − s, a, b, c→ a, b, c+ s

T4 =
∑

(min(a, b, c) + s)B(a+ r)B†(a+ s) ·B(b+ s)∂xB†(b) ·B(c)∂yB†(c+ r)

Now we can sum out the s’s for the first term and the a’s for the second term:

T4 =
∑

min(a, c)B(a+ r)∂xB†(a) ·B(c)∂yB†(c+ r) T41

+
∑

sB(a+ r)B†(a+ s) ·B(b+ s)∂xB†(b) ·B(c)∂yB†(c+ r) T42

Where we named the first term T41 and the second T42. For T41 we start by shifting the y
derivative and changing variables a, c→ a− r, c− r:

T41 =
∑

(min(a, c)− r) · ∂yB(a)∂xB†(a− r) ·B(c− r)B†(c)

For the second term, we can sum out the c’s to obtain something xy symmetric, so this can be
thrown away. For the first term we shift the x derivative and use the cyclic property of the trace:

T41 =
∑

min(a, c) ·B†(c)∂yB(a) ·B†(a− r)∂xB(c− r)

Using the antisymmetrization, we recognize this as

T41 = −T1 (C.61)

For T42 we can sum out the a’s to get

T42 =
∑

s ·B(b+ s)∂xB†(b) ·B(c)∂yB†(c+ s)

Shifting both ∂x and ∂y we get

T42 =
∑

sB†(c+ s)∂xB(b+ s) ·B†(b)∂yB(c)

By changing variables, we finally see

T42 =
∑

sB†(c)∂xB(b) ·B†(b− s)∂yB(c− s) = 2T1 (C.62)

So T4 = T1. Remembering T2 = −2T1, T3 = −T1, we finally find

nedge(ξ) = (1− 2− 1 + 1)T1 = −T1 = −1
2
∑

s B†(a)∂xB(b) ·B†(b− s)∂yB(a− s) (C.63)

Part 3 - Relating the sum to the winding number formula

Restoring the prefactor, trace, and integrals

nedge(ξ) = − 1
4πi

∫
dkxdkyTr

s ∞∑
abs=−∞

B†(a)∂kxB(b) ·B†(b− s)∂kyB(a− s)

 (C.64)
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Rearranging the factors and summation variables, and adding a vanishing term gives

nedge(ξ) = 1
4πi

∫
dkxdkyTr

(s+ b)
∞∑

abs=−∞
B†(a+ s)B(b+ s) · ∂kxB†(b)∂kyB(a)


= 1

4πi

∫
dkxdkyTr

 ∞∑
zi=−∞

z2 B
†(z1)B(z2) · ∂kxB†(z3)∂kyB(z4)δ(z2 + z4 − z1 − z3)


(C.65)

Re-expressing the delta function by its Fourier transform:

nedge(ξ) = 1
4πiT

∫
dkxdky

∫ T

0
dtTr

 ∞∑
zi=−∞

z2 B
†(z1)B(z2) · ∂kxB†(z3)∂kyB(z4)eiωt(z2+z4−z1−z3)


= − 1

8π2

∫
dkxdky

∫ T

0
dtTr

 ∞∑
zi=−∞

iωz2 B
†(z1)B(z2) · ∂kxB†(z3)∂kyB(z4)eiωt(z2+z4−z1−z3)


(C.66)

Going back to eq. (C.33) we see that this is just a product of Uξ’s expressed in terms of their
fourier coefficients:

nedge(ξ) = − 1
8π2

∫
dtdkxdkyTr

[
U †ξ (t)∂tUξ(t) · ∂kxU

†
ξ (t)∂kyUξ(t)

]
= 1

8π2

∫
dtdkxdkyTr

[
U †ξ (t)∂tUξ(t) · U †ξ (t)∂kxUξ(t) · U

†
ξ (t)∂kyUξ(t)

]
− x↔ y (C.67)

So the sum of Chern numbers in the anomalous projector gives the winding number, eq. (C.13),
derived in ref. [10]. We have thus shown that method 1 and 2 are equivalent.

C.5 The topological invariant corresponding to the n’th Chern
number

Here, we generalize the result of the previous section to obtain the invariant analogous to the n’th
Chern number. The invariant is defined for a periodically driven system in 2n spatial dimensions.
For 2n dimensional system, the n’th Chern number is [48]

Cn = (−1)n

(2πi)nn!

∫
d2nkTr

[
P<

2n∏
i=1

∂kniP<

]
· εn1n2...n2n (C.68)

Where P< is already defined. Since P< = Pa + Pz<−N , we can replace P< with Pa, since the
derivatives of the other term vanish. Hence

Cn = (−1)n

(2πi)nn!

∫
d2nk I(ξ), I(ξ) = Tr

[
Pa

2n∏
i=1

∂niPa

]
· εn1n2...n2n (C.69)
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Plugging in the expression for Pa,

I(ξ) =
∑
M≥0

∑
zi≥−N

∑
mi≥0

[
U(z2n+1 +M)U †(z1 +M)

2n∏
i=1

∂ni

[
U †(zi +mi)U(zi+1 +mi)

]]
·εn1n2...n2n

(C.70)
Changing variables, zi → zi −M , mi → mi +M ,

I(ξ) =
∑
M≥0

∑
zi≥−N+M

∑
mi≥−M

[
U(z2n+1)U †(z1)

2n∏
i=1

∂ni

[
U †(zi +mi)U(zi+1 +mi)

]]
· εn1n2...n2n

(C.71)
Now, for every configuration of (z1...z2n+1,m1...m2n), the same term appears a number of times,
namely the number of M ’s that satisfy the following

M ≥ 0, zi ≥ −N +M, mi ≥ −M (C.72)

Call this number N(z1...z2n+1,m1...m2n). We have

N(z1...z2n+1,m1...m2n) = min(z1...z2n+1) +N −max(−m1...−m2n, 0)
= min(z1...z2n+1) + min(0,m1...m2n) +N (C.73)

Hence

I(ξ) =
∑

(z1...z2n+1,m1...m2n)∈C
(min(z1...z2n+1) + min(0,m1...m2n) +N)

(
U(z2n+1)U †(z1)

2n∏
i=1

∂ni

[
U †(zi +mi)U(zi+1 +mi)

])
· εn1n2...n2n

Where C is the set of configurations (z1...z2n+1,m1...m2n) where an integer M exists such that

max(0,−m1...−m2n) ≤M ≤ min(z1...z2n+1) +N (C.74)

Hence it is equal to the set of configurations where

max(0,−m1...−m2n) ≤ min(z1...z2n+1) +N (C.75)

This is the set of all configurations (z1...z2n+1,m1...m2n) where zi ≥ −N+max(0,−m1...−m2n) =
−N −min(0,m1...m2n). Thus

I(ξ) =
∞∑

mi=−∞

∑
zi≥−N−min(0,m1...m2n)

(min(z1...z2n+1) + min(0,m1...m2n) +N)

(
U(z2n+1)U †(z1)

2n∏
i=1

∂ni

[
U †(zi +mi)U(zi+1 +mi)

])
· εn1n2...n2n

Now, we note that if zj < −N −min(0,m1...m2n), we have for nonvanishing terms

min(0,m1...m2n) /∈ {mj ,mj−1} (C.76)
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Otherwise either zj +mj < −N or zj +mj−1 < −N , and one of the factors in the product would
be zero4. But this means that min(0,m1...m2n) = min(0,m1...mj−2,mj+1...,m2n). But then the
only part of the summand that depends on mj is the factor

∂nj

[
U †(zj +mj)U(zj+1 +mj)

]
.

Thus the terms with zj < −N −min(0,m1...m2n) will contain the following factor

∞∑
mj=−∞

∂nj

[
U †(zj +mj)U(zj+1 +mj)

]
= ∂nj

[
δzjzj+1

]
= 0

Hence terms with zj < −N −min(0,m1...m2n) vanish. The result can easily be generalized to
cases where multiple z’s are smaller than −N −min(0,m1...m2n) or if j = 1 or j = 2n+ 1. Thus

I(ξ) =
∞∑

mi=−∞

∑
zi≥−N−min(0,m1...m2n)

(min(z1...z2n+1) + min(0,m1...m2n) +N)

(
U(z2n+1)U †(z1)

2n∏
i=1

∂ni

[
U †(zi +mi)U(zi+1 +mi)

])
· εn1n2...n2n

=
∞∑

mi=−∞

∞∑
zi=−∞

(min(z1...z2n+1) + min(0,m1...m2n) +N)

(
U(z2n+1)U †(z1)

2n∏
i=1

∂ni

[
U †(zi +mi)U(zi+1 +mi)

])
· εn1n2...n2n

Now for terms with the prefactor min(z1...z2n+1) +N , we can sum out the m’s as before to get
the vanishing derivative of a delta function, so

I(ξ) =
∞∑

mi,zi=−∞
min(0,m1...m2n)

(
U(z2n+1)U †(z1)

2n∏
i=1

∂ni

[
U †(zi +mi)U(zi+1 +mi)

])
·εn1n2...n2n

(C.77)
We recognize this as

I(ξ) =
∑
mi

min(0,m1...m2n) ·
(
P0

2n∏
i=1

∂niPmi

)
· εn1...n2n (C.78)

Where Pm is the m’th quasi-energy zone projector. This is a nice expression, since it gives the
winding number in terms of bulk operators on Ha. No truncation has to be made to calculate
the winding number.

4Strictly speaking, thiss is only a proof for the case 1 < j < 2n+ 1, but the argument is easily generalized to
j = 1 and j = 2n+ 1
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C.5.1 Calculating the second Chern number

For n = 2, we expand the derivatives and obtain sixteen terms. Using the projector property, we
reduce this to four terms:

I(ξ) =
∑
mi

εµνλσTr

4 min(m1,m2, 0) · ∂µ|m1⟫∂ν⟪m1| · ∂λ|ν, 0⟫∂σ⟪0|Pm2 4T1

+ 3 min(m1,m2, 0) · ∂µ|0⟫∂ν⟪0| · ∂λ|m1⟫∂σ⟪m1|Pm2 3T2

− 1 min(m1,m2, 0) · ∂µ|m1⟫∂ν⟪m1| · ∂λ|m2⟫∂σ⟪m2|P0 −T3

−min(m1,m2,m3, 0) · Pm1∂µ|m2⟫∂ν⟪m2| · Pm3∂λ|0⟫∂σ⟪0| T4

Where we named the terms T1, T2, T3, T4. Doing some long and tedious gymnastics that are
explained in sec. C.6, we obtain

C2 = i

160π3

∫
d4kdtTr[U †∂µU · U †∂νU · U †∂λU · U †∂σU · U †∂τU ]εµνλστ (C.79)

C.5.2 A time domain expression for the n’th Chern number

The above suggests the general formula for the invariant corresponding to the n’th Chern number.

Cn = Kn

∫
d2n+1kTr

[2n+1∏
i=1

U †∂µiU

]
εµ1µ2...µ2n+1 (C.80)

It is easy to show that the above is a topological invariant. Here Kn is some normalization
constant, that can be calculated in the same way as for n = 1, n = 2. The constants are, for
n = 0, 1, 2:

K0 = 1
2πi, K1 = − 1

24π2 , K2 = i

160π3

The case n = 0 is explained below:

C.5.3 Zeroth Chern number

Eq. (C.80) can in fact be generalized to n = 0. In the non-driven case the 0’th Chern number
just tells you the number of occupied bands, as can be easily seen from eq. (C.69). However,
in the driven case, the invariant corresponding to C0 is slightly less trivial. The "zeroth" chern
number is

C0 = 1
2πi

∫
dtU †∂tU (C.81)

The constant in front is chosen such C0 is an integer and can be any integer. This is simply the
winding number of the determinant of Uξ(t). If ξ lies in a gap, C0 is well defined in any dimension,
since it is the same for all k in the BZ.C0 can easily be found directly from the Hamiltonian:

C0 = − 1
ω

[TrH0 − TrHeff(ξ)] (C.82)
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Where H0 is the zeroth fourier component of H(t). (there might be sign errors in the two above
equations).

In non-driven systems, the zeroth Chern number is the number of occupied bands, and in
the Floquet Hilbert space, it determines the dimension danom of the anomalous subspace. The
formula is

danom(ξ) = TrPa = M(N + 1) + C0 (C.83)

Here N is the cutoff, and M the number of orbitals. Note that the invariant corresponding to
the zeroth chern number is not the result gotten when extending eq. (C.69), to n = 0, as this is
ill defined. There seems to appear some kind of "regularization" term M(N + 1). It could be
interesting to examine what this says about winding numbers in general.
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C.6 Deriving eq. (C.79)

Evaluating T4

We have

T4 = −
∑
mi

Trmin(m1,m2,m3, 0) · Pm1∂µ|m2⟫∂ν⟪m2| · Pm3∂λ|0⟫∂σ⟪0|

= −
∑
mi

Trmin(m1,m2,m3, 0) · P0∂µ|m2 −m1⟫∂ν⟪m2 −m1| · Pm3−m1∂λ| −m1⟫∂σ⟪−m1|

= −
∑
mi

Trmin(m1,m2 +m1,m3 +m1, 0) · P0∂µ|m2⟫∂ν⟪m2| · Pm3∂λ| −m1⟫∂σ⟪−m1|

= −
∑
mi

Trmin(−m1,m2 −m1,m3 −m1, 0) · P0∂µ|m2⟫∂ν⟪m2| · Pm3∂λ|m1⟫∂σ⟪m1|

= −
∑
mi

Tr[min(0,m2,m3,m1)−m1] · P0∂µ|m2⟫∂ν⟪m2| · Pm3∂λ|m1⟫∂σ⟪m1|

The first term is

T41 = −
∑
mi

Trmin(0,m2,m3,m1) · P0∂µ|m2⟫∂ν⟪m2| · Pm3∂λ|m1⟫∂σ⟪m1|

= −
∑
mi

Trmin(0,m2,m3,m1) · ∂σ|0⟫∂µ⟪0|Pm2∂ν |m3⟫∂λ⟪m3| · Pm1

Renaming mi and remembering antisymmetrization

T41 = −
∑
mi

Trmin(0,m2,m3,m1) · Pm1∂ν |m2⟫∂λ⟪m2| · Pm3∂σ|0⟫∂µ⟪0|

= +
∑
mi

Trmin(0,m2,m3,m1) · Pm1∂µ|m2⟫∂ν⟪m2| · Pm3∂λ|0⟫∂σ⟪0|

= −T4

Hence

T4 = 1
2
∑
mi

m1P0∂µ|m2⟫∂ν⟪m2| · Pm3∂λ|m1⟫∂σ⟪m1|

= 1
2
∑
mi

m1P0∂µ|m2⟫∂ν⟪m2| · ∂λ|m1⟫∂σ⟪m1|
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Evaluating T2

We have

T2 =
∑
mi

Trmin(m1,m2, 0)∂µ|0⟫∂ν⟪0| · ∂λ|m1⟫∂σ⟪m1|Pm2

=
∑
mi

Trmin(m1,m2, 0)∂µ| −m2⟫∂ν⟪−m2| · ∂λ|m1 −m2⟫∂σ⟪m1 −m2|P0

=
∑
mi

Trmin(m1 +m2,m2, 0)∂µ| −m2⟫∂ν⟪−m2| · ∂λ|m1⟫∂σ⟪m1|P0

=
∑
mi

Trmin(m1 −m2,−m2, 0)∂µ|m2⟫∂ν⟪m2| · ∂λ|m1⟫∂σ⟪m1|P0

=
∑
mi

Tr(min(m1, 0,m2)−m2)∂µ|m2⟫∂ν⟪m2| · ∂λ|m1⟫∂σ⟪m1|P0

= T3 −
∑
mi

m2∂µ|m2⟫∂ν⟪m2| · ∂λ|m1⟫∂σ⟪m1|P0

= T3 + T2R

Where T2R was defined.

Evaluating T1

We have

T1 =
∑
mi

Trmin(m1,m2, 0)∂µ|m1⟫∂ν⟪m1| · ∂λ|0⟫∂σ⟪0|Pm2

=
∑
mi

Trmin(m1,m2, 0)∂µ|m1 −m2⟫∂ν⟪m1 −m2| · ∂λ| −m2⟫∂σ⟪−m2|P0

=
∑
mi

Trmin(m1 +m2,m2, 0)∂µ|m1⟫∂ν⟪m1| · ∂λ| −m2⟫∂σ⟪−m2|P0

=
∑
mi

Trmin(m1 −m2,−m2, 0)∂µ|m1⟫∂ν⟪m1| · ∂λ|m2⟫∂σ⟪m2|P0

=
∑
mi

Tr[min(m1,m2, 0)−m2]∂µ|m1⟫∂ν⟪m1| · ∂λ|m2⟫∂σ⟪m2|P0

= T3 −
∑
mi

Tr m2∂µ|m1⟫∂ν⟪m1| · ∂λ|m2⟫∂σ⟪m2|P0

= T3 −
∑
mi

Tr m1∂µ|m2⟫∂ν⟪m2| · ∂λ|m1⟫∂σ⟪m1|P0

= T3 + T1R

Hence L1 = 4T1 + 3T2 − T3 = −6T3 + 4T1R + 3T2R. Also, by partial integration, it can be easily
shown that T1 + T2 + T3 = 0. But then

T1 + T2 + T3 = 3T3 + T1R + T2R = 0 (C.84)
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Thus T3 = 1
3(T1R + T2R) And

L1 = −2T1R − 2T2R + 4T1R + 3T2R = 2T1R + T2R (C.85)

Now

T2R = −
∑
mi

m2∂µ|m2⟫∂ν⟪m2| · ∂λ|m1⟫∂σ⟪m1|P0

= −
∑
mi

m2∂µ|0⟫∂ν⟪0| · ∂λ|m1 −m2⟫∂σ⟪m1 −m2|P−m2

= −
∑
mi

m2∂µ|0⟫∂ν⟪0| · ∂λ|m1⟫∂σ⟪m1|P−m2

=
∑
mi

m2∂µ|0⟫∂ν⟪0| · ∂λ|m1⟫∂σ⟪m1|Pm2

Since T41 = −T1R/2, we get,

I(ξ) = 3
2T1R + T2R

= −
∑
mi

(3m1/2 +m2)Tr [∂µ|m2⟫∂ν⟪m2| · ∂λ|m1⟫∂σ⟪m1|P0]

Plugging in the expressions for |m,n⟫,
I(ξ) = −

∑
miβizi

(3m1/2 +m2)Tr[

∂µUβ1α1(z1)|z1β1⟫∂νU∗β2α1(z2)⟪z2β2| · ∂λUβ3α2(z3 −m1)|z3β3⟫∂σU∗β4α2(z4 −m1)⟪z4β4|
|z5β5⟫Uβ5α3(z5 −m1)U∗β6α3(z6 −m1)⟪z6β6|]

= −
∑

miβizi

(3m1/2 +m2)

Tr[∂µU(z1 −m2)∂νU †(z2 −m2)∂λU(z2 −m1)∂σU †(z3 −m1)U(z3)U †(z1)]

Letting zi → zi −m1, m2 → m2 −m1,

I(ξ) = −
∑

miβizi

(m1/2 +m2)

Tr[∂µU(z1 −m2)∂νU †(z2 −m2)∂λU(z2)∂σU †(z3)U(z3 −m1)U †(z1 −m1)]

The second term vanishes because it can be written as the integral of a derivative, and adding
another vanishing term,

I(ξ) =
∑

miβizi

(z3 −m1)/2

Tr[∂µU(z1 −m2)∂νU †(z2 −m2)∂λU(z2)∂σU †(z3)U(z3 −m1)U †(z1 −m1)]

= 1
2iωT

∫
dtTr[∂µU∂νU †∂λU∂σU †∂tU · U †]
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Expanding ∂µU †, and restoring the Levi-Civita tensor,

I(ξ) = 1
4πi

∫
dtTr[∂µU · U †∂νU · U †∂λU · U †∂σU · U †∂tU · U †]εµνλσ

= 1
20πi

∫
dtTr[U †∂µU · U †∂νU · U †∂λU · U †∂σU · U †∂τU ]εµνλστ

Plugging this expression into eq. (C.69),

C2 = (−1)2

(2πi)22!

∫
d2·2k I(ξ)

= −1
8π2

1
20πi

∫
d4kdtTr[U †∂µU · U †∂νU · U †∂λU · U †∂σU · U †∂τU ]εµνλστ

= i

160π3

∫
d4kdtTr[U †∂µU · U †∂νU · U †∂λU · U †∂σU · U †∂τU ]εµνλστ
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