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Abstract

Efficient and robust light-matter interactions schemes are essential for the

advancement of quantum information protocols, quantum communication

and quantum metrology. For this work, an unbalanced Mach-Zehnder inter-

ferometer was constructed, in order to investigate the quantum state of light

that interacted with a solid-state self-assembled quantum dot embedded in a

1D photonic crystal waveguide. After stabilization and phase locking of the

MZI, the visibility was above 99%. The UMZI was then used to probe the

interference of a resonant light field that interacted with the quantum dot as

a function of excitation power. It was demonstrated that the visibility in the

reflected mode decreased as the power increased, whereas in the transmitted

mode, the visibility firstly decreased, but then increased again. The nonlinear

nature of the interaction gave rise to entangled states in the transmitted mode.

To investigate that, a second identical UMZI was used to perform coincidence

measurements as a function of the interferometer’s phase and the excitation

power. The visibility of the coincidence count rate can yield insight as to

whether the state would violate the CHSH inequality and it was found that it

would, under some assumptions. Theoretical fits were performed for all the

measurements, setting the building blocks for the development of a theoretical

model.
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1Introduction

Quantum states of light find numerous applications, such as in precision

metrology [18], [24] and in quantum information processing [10], [16].

Manipulation of well-defined quantum states of light and being able to perform

operations on them are the two fundamental building blocks of quantum

information. Therefore, in the past years there has been an increasing necessity

in having highly efficient and coherent light-matter interactions. To that end,

nanophotonic crystal waveguides have been employed, coupled with solid-

state emitters, specifically solid-state quantum dots. These systems have seen

much use in the recent years and have drawn a lot of focus within the field

of quantum nonlinear optics, because of some very important properties such

as

• light-matter coupling efficiency is almost unity [1]

• strong optical transitions, almost exclusive zero phonon line emission

and ease of integration into optoelectronic devices [20], [23], [2], [3]

• single-photon non-linear interactions [9], [7]

In this thesis, we are interested in the resulting quantum state of light scattered

by a solid-state quantum dot and interfered with the spontaneously emitted

photons, especially the coherent properties of the single photon component

transmitted and reflected from the waveguide as well as the time-energy

entanglement of the two-photon component are analyzed in detail. To accom-

plish this, the phase stabilized unbalanced Mach-Zehnder interferometer built

during this thesis was used.
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1.1 Motivation

Specific focus has been given to the characterization and manipulation of the

quantum state of light scattered by quantum dots embedded in photonic crystal

waveguides, referred to in the bibliography as resonance fluorescence. Light

scattered by an ideal two-level emitter is always antibunched under perfect

detection conditions, but the underlying physical mechanism is dependent on

the driving regime, whether it is weak or strong [8].

In the weak driving regime, often termed as Rayleigh driving regime, the

light shows antibunching that is owed to the interference of the coherent

and incoherent component of the emitted light field. According to the works

of [19], the reflected light showed antibunched photon statistics and it was

demonstrated that the electric field variance was quadrature squeezed simulta-

neously; a surprising effect as single photons do not have a well-defined phase.

This form of squeezing is attributed to the existence of coherences between

the zero and one photon component of the emitted light field. There is no

classical analogue to this phenomenon and it is a fully quantum demonstration

of the wave-particle nature of light. The studies led by [8] and [17] further

investigated this, showing that the emitted light field can be decomposed into

a coherent and an incoherent component; the first one inherits the statistics

of the laser and the latter inherits the statistics of the two-level system. The

interference between these two components is the reason for the antibunched

photon statistics in the reflected component, resulting in quadrature squeez-

ing [8]. This is further corroborated by [17], whereby it was shown that by

varying the fraction of the coherent versus incoherent component by filtering

techniques, the photon statistics changed from antibunched to bunched. In

the strong driving regime, on the other hand, antibunching is a consequence

of the sub-Poissonian photon statistics of the spontaneously emitted single

photons by the saturated quantum emitter.

On the other hand, the transmitted component of the light field shows photon

bunching in the weak driving regime and the strong driving regime the coher-

ent state describing the laser dominates. In the weak driving regime, a laser

beam can be approximated by a weak coherent state
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|ψ⟩ = a0 |0⟩ + a1 |1⟩ + a2 |2⟩ (1.1)

The photon statistics of the reflected component show antibunching, whereas

for the transmitted they show bunching. Therefore, the nonlinear nature of the

light field’s interaction with the quantum dot results in it reflecting the |0⟩ , |1⟩
components and transmitting the |2⟩. Another consequence of the nonlinearity

of the emitter-light interaction is the time-energy entanglement of the emitted

two-photon states. The coherent process of converting the two photon state of

the driving field to the two photon state of the emitted field conserves energy

and thus, ensures energy-time entanglement. Time-energy entanglement is

highly employed in the field of Quantum communication [15].

1.2 Description of this thesis

In Chapter 2, the theory of light-matter interactions is presented. In more

detail, the two-level system and field operators are presented, followed by a

description of their dynamics in Schrödinger and Heisenberg pictures. After-

wards, we consider the case of open quantum systems using System-reservoir
theory, we develop their dynamics using the Master equation and Langevin

equations and noise operators and consider how the properties of the smaller

quantum system are affected. Finally, we use the previous tools to describe to

derive the reduced density matrix of the emitter in the steady state and the

model of resonant transmission through a waveguide.

In Chapter 3, the first and second order coherence functions are presented for

the modes coupled to a chiral and a non-chiral waveguide. A reminder about

the interference pattern and the visibility is given and how the visibility relates

to the first order coherence function. Finally, the time-energy entanglement of

the two-photon state in the transmitted mode is introduced.

In Chapter 4, the constructed interferometer is presented in detail. There, a

detailed description of it can be found as well as of the process of stabilization
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and phase locking. Lastly, a few words of how the UMZI was operated for our

experiments thus far.

In Chapter 5, the experiments that were conducted can be found with the

experimental results. The first experiment describes how the emitter was

excited in order to characterize it and witness the single-photon nonlinearity

that gives rise to all sorts of interesting phenomena. Secondly, using the UMZI,

the visibility of light in the reflected and transmitted modes was explored

as a function of laser excitation power. Finally, the two-photon state of the

transmitted mode was guided into two identical UMZIs to probe the entangled

two-photon state of the transmitted mode using the Franson interferometer.

Lastly, in Chapter 6, a brief summary is given to remind the reader of the

experiments and their results. Following the summary, a few words regarding

the experimental results, deviations from theory, imperfections in the setups

and in generally, conclusions can be found and possible improvements or

suggestions for the future.
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2Theoretical Background.
Light interacting with TLS

The aim of this chapter is to provide the necessary theoretical background and

formalism relevant to a light field interacting with a two-level system. The

system’s dynamics will be presented in the form of the master equation. After-

wards, the model for resonant fluorescence and transmission in a waveguide

will be described.
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2.1 Quantum emitter

The quantum emitter of interest in this work is a solid-state quantum dot. A

quantum dot is an artificial two-level system, therefore the dynamics of interest

are those of a two-level system. The two levels of the emitter are denoted

by |g⟩, ground state, and by |e⟩, excited state. The atomic raising operator is

expressed as σ̂ge = |e⟩ ⟨g| and the lowering operator as σ̂eg = |g⟩ ⟨e|.

The dynamics of the emitter can be expressed using the Schrödinger or the

Heisenberg picture, depending on whether we are interested in the time

evolution of the atomic operators (Heisenberg picture) or the density matrix

(Schrödinger picture).

Figure 2.1: Energy schematic of a two-level system. We denote by |g⟩ the ground
state and by |e⟩ the excited state. The energy of the transition is given by
∆E = h̄ω0. Figure adapted from [21].

2.2 Light field

The quantized light field is described as a harmonic oscillator if we consider a

monochromatic field or a sum of harmonic oscillators for a field containing a

sum of frequencies, with the most realistic case being the latter. For the pur-

poses of this work the monochromatic field is an adequate approximation. We

describe the light field using the bosonic creation and annihilation operators,

â† and â, which act on a number state |n⟩ as
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â† |n⟩ =
√
n+ 1 |n+ 1⟩ , (2.1)

â |n⟩ =
√
n |n− 1⟩ , (2.2)

The dynamics of the electric field are given by the Heisenberg equation of

motion

dâ

dt
= i

h̄
[Ĥ, â], (2.3)

where Ĥ is the Hamiltonian of the system.

2.3 System-reservoir interactions

There are two ways to time-evolve a closed system in quantum mechanics, the

Heisenberg and the Schrödinger picture. Similarly, when a small quantum

system is coupled to a larger system, called a bath or reservoir, there are two

ways to study the dynamics of the system-reservoir interactions. The first one

is based on the Schrödinger picture and leads to the master equation and

the second one is based on the Heisenberg equation of motion and leads to

the existence of quantum noise operators by solving the Langevin equations.

Relevant to this work are both pictures and thus a brief description of both

shall be given.

A quantum emitter in a photonic waveguide is in reality coupled to a continuum

of optical modes; the optical modes of the waveguide and the loss into the

environment. The generic Hamiltonian of any two-level system coupled into a

reservoir is given by equation 2.4

2.3 System-reservoir interactions 7



Ĥtotal = −1
2 h̄ωσ̂z +

∑
j

h̄Ωj b̂
†
j b̂j +

∑
j

h̄(gjσ̂+b̂j + g⋆
j σ̂−b̂

†
j), (2.4)

where the first term expresses the energy of the emitter, with h̄ω being the

energy separation of the two states, the second term expresses the reservoir

with energy h̄Ωj and b̂†
j, b̂j the creation and annihilation operators, respectively,

of the j-th mode and the third term is the interaction term, which expresses

the coupling between the two-level system and the reservoir of modes, with gj

being the coupling strength of the j-th mode and the emitter. Note that the

rotating wave approximation has been applied in the interaction term.

The Hamiltonian can therefore be written as the sum of two terms, H0, which

entails the Hermitian part of the Hamiltonian and Hint, the non-Hermitian

term, expressing the coupling with the reservoir leading to irreversible damping

and decoherence.

2.3.1 Langevin equations

In the Langevin formalism, the reservoir operators can be interpreted in the

same way as Langevin forces in classical statistical mechanics. The time-

evolution of any system operator Â, can be written as

dÂ

dt
= −γ

2 Â+ F̂ (t). (2.5)

Equation 2.5 is called the quantum Langevin equation and F̂ (t) the quantum

noise operator, containing only reservoir operators and the coupling strength

with the system. The noise operator expresses a random fluctuating force and

is responsible for the fluctuations induced on the system by the reservoir and

for the irreversible dissipation of energy from the system to the reservoir.

Properties of the noise operator:

• Expectation value
〈
F̂ (t)

〉
= 0

8 Chapter 2 Theoretical Background. Light interacting with TLS



• Two-time autocorrelation function
〈
F̂ (t)F̂ (t′)

〉
= 0

• Two-time correlation function
〈
F̂ (t)F̂ †(t′)

〉
̸= 0

The two time correlation functions of the noise operators are not equal,〈
F̂ (t)F̂ †(t′)

〉
̸=

〈
F̂ †(t)F̂ (t′)

〉
because on non-commutativity and they yield

the spectral properties of the operators.

2.3.2 Master equation

The master equation yields the dynamics of the reduced density matrix of the

system in the Schrödinger picture. The whole derivation will not be presented

here, but rather the methodology and the assumptions made. We begin by

defining the density operator of the system-reservoir

ρ̂sr =
∑

i

pi |ψi⟩ ⟨ψi| , (2.6)

The time-evolution of a density matrix in the Schrödinger picture is given by

the von Neumann equation

˙̂ρsr = − i

h̄

[
Ĥ, ρ̂sr

]
, (2.7)

In order to derive the exact form of the master equation, we switch to the

interaction picture, then integrate the von Neumann equation and then trace

out the reservoir, since the dynamics of only the small quantum system are of

interest. Afterwards, we make three very important assumptions:

• Separability assumption: at t = 0 the system and the reservoir are

independent, meaning that ρ̂sr(0) = ρ̂s(0) ⊗ ρ̂r(0)

2.3 System-reservoir interactions 9



• Born approximation: the reservoir is unaffected by the system, meaning

that ρ̂sr(t) = ρ̂s(t)ρ̂r and ˙̂ρr = 0

• Markoff approximation: the correlation time of the reservoir is infinitely

short compared to all times of interest for the system

Finally, in the Schrödinger picture the master equation of a two-level system

coupled to a reservoir of harmonic oscillators can be written as:

˙̂ρs = − i

h̄

[
Ĥ0, ρ̂s

]
+ L[ρ], (2.8)

where the term L[ρ] is called the Liouvillian or Lindblad operator and it

expresses the non-Hermitian evolution of the system because of its coupling

to the reservoir. It is the term that describes the dissipative and decoherence

processes of the Hamiltonian.

L[ρ] = − 1
h̄2

∑
ij

γij

2 (σ̂jσ̂iρ̂s + ρ̂sσ̂jσ̂i) + 1
h̄2

∑
ij

γijσ̂iρ̂sσ̂j, (2.9)

where γij is the rate of dissipation and/or decoherence, depending on the

exact nature of the reservoir the system is coupled to.

The master equation can be used to calculate any expectation value of the

system operators. Suppose Â is a system operator, then its expectation value is

equal to

〈
Â(t)

〉
= Trs(Âρ̂s(t)), (2.10)
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2.3.3 Pure dephasing

Suppose we have a two-level system, such as a solid-state quantum emitter,

described by the following Hamiltonian (Equation 2.11)

Ĥ = h̄ωσz + h̄δω(t)σz, (2.11)

The first term expresses the energy of the two-level system and the second

perturbs the energy transition as a function of time, as illustrated in Figure 2.2.

Ĥdeph = h̄δω(t)σz describes the mechanism of pure dephasing. By making use

of the master equation we can see the Liouvillian of such a Hamiltonian:

L[ρ] = γdeph

 0 −ρeg

−ρge 0

, (2.12)

The Liouvillian of Equation 2.12 demonstrates that a system under the influ-

ence of dephasing loses its coherences with rate γdeph, while its populations do

not change over time. In the case of solid-state quantum dots, pure dephasing

can be induced by phonon inelastic scattering and is irreversible.

Figure 2.2: Energy schematic of a two-level system under a mechanism of dephasing.
The two distinct energy levels of the TLS turn into a continuum of fre-
quencies because of some δω(t) term in the Hamiltonian. Figure adapted
from [21].

2.3 System-reservoir interactions 11



2.4 Light-matter interaction I. Dynamics of
the emitter

To investigate the influence of the driving laser field on the emitter in the

presence of dephasing and coupling to the reservoir, a semi-classical approach

is sufficient, as there is no need to quantize the electric field. The total

Hamiltonian describing the system is given by equation 2.13

Ĥ = −h̄∆σ̂z + h̄ΩRâ
†â− h̄ω(σ̂eg + σ̂ge) + Ĥr + Ĥsr + Ĥdeph, (2.13)

Description of the Hamiltonian terms:

1. energy of the TLS in the rotating frame, meaning that we consider the

detuning of the laser from the TLS ∆ = Ω − ω with Ω and ω the laser

and TLS, frequencies, respectively.

2. energy of the laser with ΩR = d∗E+

h̄
the classical Rabi frequency which

indicates the strength of the coupling between the light and the TLS

3. Interaction term between TLS and laser; the field creation and annihi-

lation operators are missing because we are taking the semi-classical

approach here

4. Hamiltonian of the reservoir coupled to the TLS

5. System-reservoir interaction

6. Pure dephasing Hamiltonian of the form of equation 2.11

The derived master equation of the Hamiltonian is

12 Chapter 2 Theoretical Background. Light interacting with TLS



˙̂ρs = − i

h̄

[
Ĥ0, ρ̂s

]
− γ

2 (2σ̂egρ̂sσ̂ge − σ̂geσ̂egρ̂s − ρ̂sσ̂geσ̂eg)

+ γdeph

2 (σ̂zρ̂sσ̂z − ρ̂s),

(2.14)

where Ĥ0 = −h̄∆σ̂z + h̄ΩRâ
†â− h̄ω(σ̂eg + σ̂ge).

The first term of the master equation describes the free evolution of the two-

level system and the light field. The second term describes the emitter’s decay

with rate γ due to the coupling with the reservoir and finally, the third term

describes the dephasing of the system, causing decoherence with rate γdeph.

The reduced density matrix of the emitter is given by

ρs =
ρgg ρeg

ρge ρee

 (2.15)

where ρgg, ρee are the populations of the ground and excited state of the TLS,

respectively, and ρge, ρeg are the coherences between the two states. Solving

the master equation (2.14) for each of the matrix elements of Equation 2.15

above yields the following system of coupled differential equations:

ρ̇gg = iΩR(ρeg − ρge) + γρee,

ρ̇ge = −(γ2 + i∆) + iΩR(ρee − ρgg),

ρ̇eg = −(γ2 − i∆) − iΩR(ρee − ρgg),

ρ̇ee = −iΩR(ρeg − ρge) − γρee,

(2.16)

where we define the total decay rate γ2 = γdeph + γ
2 .

We note that in the master equation 2.14, if we set γ = γdeph = 0, i.e. if we

consider the system TLS-laser closed with no coupling to the environment and

2.4 Light-matter interaction I. Dynamics of the emitter 13



no dephasing mechanisms present, the result are the Rabi oscillations with

no decay and no dephasing. There would be no loss of energy and the state

would always be pure. On the contrary, in the presence of only dephasing,

the coherences ρge, ρeg will damp out to zero and the populations ρgg, ρee to

1/2. The state will evolve from a pure state to a maximally mixed state. If we

consider the system open, then the TLS will reach a steady state that we find

by solving the coupled equations of 2.16.

2.4.1 Steady-state solution

In the presence of both dephasing and coupling to a reservoir, a two-level

system excited by a cw laser will reach a steady state solution, where ρ̇gg =
ρ̇ge = ρ̇eg = ρ̇ee = 0. In this case, the elements of the two-level system’s

reduced density matrix are

ρee = 2γ2Ω2
R

γ(γ2
2 + ∆2 + 4Ω2

R
γ2
γ

) ,

ρgg = 1 − ρee,

ρge = − ΩR(∆ + iγ2)
γ2

2 + ∆2 + 4Ω2
R

γ2
γ

,

ρeg = ρ⋆
ge,

(2.17)

The lineshapes of the excited state population and of the real and imaginary

part of the coherences as a function of detuning can be seen in Figure 2.3.

Due to stimulated emission, the population of the excited state cannot exceed

the population of the ground state as ρmax
ee is a fixed number, determined by

the values of the parameters ∆,ΩR and γ2. In the absence of detuning and

dephasing, the excited state’s population maximum value is ρmax
ee = 1/2 and

we can define the mean photon field flux per emitter lifetime as

η = 2Ω2
R

γ2 , (2.18)

14 Chapter 2 Theoretical Background. Light interacting with TLS



Figure 2.3: Left: Excited state population as a function of the laser detuning ∆. ρee

has a Lorrentzian lineshape with linewidth proportional to the total rate
of decay γ2 and the laser power ΩR. Right: Real and imaginary part of
the emitter’s coherences. Figure taken from [12]

Similar to the photon flux, but including detuning and dephasing, we define

the emitter’s saturation parameter

S = 4γ2Ω2
R

γ(γ2
2 + ∆2) . (2.19)

We can see from Equation 2.19, that for a high dephasing rate γdeph and/or

detuning ∆, higher laser power is necessary to saturate the emitter. The

saturation parameter is proportional to the population of the excited state and

so is the emission rate (equation 2.20).

γemission = γρee = γS

2(S + 1) . (2.20)

The result of Equation 2.20 is important but not surprising; as the laser power

increases, the rate of emission increases as well. However, at some power the

emitter will get saturated and effectively become transparent to the incoming

light field.

Also influenced by the driving field is the linewidth or the spectral response of

the emitter. As we saw from Equation 2.17, the population of the excited state

ρee and thus the rate of spontaneous emission as a function of detuning are

2.4 Light-matter interaction I. Dynamics of the emitter 15



Figure 2.4: The blue curve corresponds to the rate of the spontaneous emission as
a function of the saturation parameter S. The red curve demonstrates
the linewidth of the spontaneous emission as a function of the saturation
parameter S. It can be seen that the rate of spontaneous emission can get
saturated at high powers and the linewidth can get broadened. Figure
taken from [12]

described by a Lorentzian, with a power dependent linewidth. Expressed in

terms of the saturation parameters, the FWHM of the emission rate is given

by

γF W HM = 2γ2
√
S + 1. (2.21)

We see from Equation 2.21 that in the low power limit, the linewidth of the

emitter is equal to 2γ2 and in the special case of no dephasing it is γ. In this

case the emitter resonance is termed lifetime limited. As the power increases,

the linewidth increases as well. This effect is called power broadening and it is

demonstrated in Figure 2.4
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2.5 Light-matter interaction II. Dynamics of
the driving field

In the previous section, we studied the dynamics of the emitter under the

inflcuence of the light field, in the presence of dephasing and coupling to the

environment. Now we turn our attention towards the light field itself and

the objective is to investigate how the interaction with the emitter influences

the light field and how the coupling to the environment and the dephasing

modify the properties of the scattered and transmitted light. In this section, a

semi-classical approach might conceal some of the physics as we are interested

in the photons themselves, there we have to use the Hamiltonian for the

quantized field, in the rotating frame and after having applied the rotating

wave approximation.

Ĥ = −h̄∆σ̂z + h̄ΩRâ
†â− h̄d̂Ê + Ĥr + Ĥsr, (2.22)

where the terms of the Hamiltonian are:

1. Hamiltonian of the emitter in the rotating frame

2. Hamiltonian of the light field

3. Interaction Hamiltonian between quantized field and emitter

4. Hamiltonian of the reservoir

5. Interaction Hamiltonian describing the coupling between system and

reservoir

In this case, we shall consider that the system TLS-light field is coupled to two

distinct reservoirs, namely the waveguide and the environment. Thus, some

modes couple out of the waveguide with rate γ′ and other modes couple into

the waveguide, with rate γ1D. This distinction is necessary since the driving
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field is in the waveguide itself. We define the β factor, expressing how well the

light field is coupled to the waveguide, in comparison to the coupling with the

environment.

β = γ1D

γ1D + γ′ . (2.23)

The generic electric field operator can be written as

Ê+(r, t) =
∑

k

E+
k (r)âk(t), (2.24)

where âk(t) is the field annihilation operator of the k-th mode.

The spontaneous emission rate into the waveguide can be calculated by Green’s

function

γ1D = 2π
h̄2

∑
k

[d̂⋆Ê+
k Ê

−
k d̂]δ(ωk − ωA), (2.25)

where ωk is the frequency of the k-th mode of the electric field, ωA the frequency

of the emitter’s transition and Ê+
k , Ê

−
k are calculated at the position of the

emitter, rA.

We define the positive component of the incoming light as Ê+
P and the total

transmitted light as Ê+, as demonstrated in Figure 2.5. The fraction of the

light that is scattered into the waveguide is represented by Ê+
S . We therefore

define the transmission and reflection coefficients as

t =

〈
Ê+

〉
〈
Ê+

P

〉 ,
r =

〈
Ê+

S

〉
〈
Ê+

P

〉 .
(2.26)
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Figure 2.5: Electric field components scattered, reflected and transmitted in and out
of the waveguide by the quantum emitter.

We aim to see the signature of the emitter in the transmitted and reflected

component, so we need to express the field operators in terms of the emitter

coherence operators. With the use of the Heisenberg-Langevin equation of

motion we derive the evolution of the field operator âk

dâk(t)
dt

= −iωkâk(t) + i

h̄
d̂Ê−

k (rA)σeg(t), (2.27)

Afterwards, we formally integrate the above equation from t0 to t

âk(t) = âk(t0)e−iωk(t−t0) + i

h̄
d̂E−

k (rA)
∫ t

t0
dt′σeg(t)e−iωk(t′−t0)

= âfree(t) + âscattered(t),
(2.28)

The first term of equation 2.28 describes the part of electric field that evolves

without interacting with the emitter, while the second term corresponds to

the electric field component that is due to the interaction with the emitter.

This interaction is represented by σeg and it can represent an actual decay

from the excited to the ground state or a scattering event. We insert âk(t) of

Equation 2.28 into Equation 2.24 and we derive the expression for the positive

component of the electric field
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Ê+(r, t) =
∑

k

(E+
k (r)âk(t0)e−iωk(t−t0) + i

h̄
d̂E−

k (rA)
∫ t

t0
dt′σeg(t)e−iωk(t′−t0))

= Êfree(t) +
∑

k

d̂E+
k (r)E−

k (rA)
∫ t

t0
dt′σeg(t)e−iωk(t′−t0)

= Êfree(t) + Êscattered(t).
(2.29)

Similarly to âk(t) of Equation 2.28, we see that the first term corresponds to

the evolution of the electric field component that did not interact with the

emitter, while the second term yields the time evolution of the electric field

that was scattered by the emitter at position r = rA.

We now introduce the slowly varying operator Ŝeg(t) = σ̂eg(t)eiωAt. We can use

the approximations presented in the previous sections and derive the scattered

component of the electric field

Ê+
S (r, t) = i

π

h̄
δ(ωk − ωA)Ŝeg(t)

∑
k

E+
k (r)E−

k (rA)d, (2.30)

We want to express the scattered field in terms of the incident field, so we

multiply and divide by d⋆E+
P (rA, t) = h̄Ω̂R

Ê+
S (r, t) = i

π

h̄

[∑k d
⋆E+

k (r)E−
k (rA)d]

d⋆E+
P (rA, t)

E+
P (rA, t)δ(ωk − ωA)Ŝeg(t)

= i
π

h̄2Ω̂R

[
∑

k

d⋆E+
k (r)E−

k (rA)d]δ(ωk − ωA)E+
P (rA)Ŝeg(t).

(2.31)

The equation written above is quite similar to Fermi’s Golden rule expression

of the spontaneous emission rate, with the sole difference that instead of

having E−
k (r), we have E−

k (rA). Therefore, we need to express how the field

propagates from the position of scattering, rA, to a generic position r in the

one-dimensional waveguide. A photon that propagates in such a medium will
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simply gain a phase due to propagation that depends on the optical distance

from the point of scattering, such that

E+
k (r) = eikP |r−rA|E+

k (rA), (2.32)

where kP is the waveguide’s propagation constant. Finally, the expression for

the scattered field is

Ê+
S (r, t) = i

βγ

2Ω̂R

E+
P (r, t)Ŝeg(t). (2.33)

As we can see from Equation 2.33, the scattered component of the electric

field is proportional to the coupling to the waveguide, β factor, the incident

field and the coherence operator Ŝeg(t), but decreases with the Rabi frequency

operator Ω̂R. Another important thing to note is that the interaction with the

emitter induced a phase shift of π/2 on the scattered field.

We now recall the form of the transmission and reflection coefficients (equation

2.26); their corresponding observables are T = |t|2 and R = |r|2. As such, the

expression for the intensity of the transmitted and reflected components of the

electric field yields

R = β2γ2

4Ω̂2
R

〈
Ŝge(t)Ŝeg(t)

〉
, (2.34)

T = 1 + i
βγ

2Ω̂R

(
〈
Ŝeg(t)

〉
−

〈
Ŝge(t)

〉
) + ( βγ

2Ω̂R

)2
〈
Ŝge(t)Ŝeg(t)

〉
. (2.35)

We see from equation 2.35, that the intensity of the transmitted light is com-

prised of three different terms that correspond to three different processes.

The first term, 1, is due to the field that is transmitted through the waveg-

uide without interacting with the emitter. The second term, proportional

to
〈
Ŝeg(t)

〉
−

〈
Ŝge(t)

〉
= 2iIm(ρeg), describes the photons that are scattered

off the emitter without being absorbed by it. This term is referred to as the
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Figure 2.6: Matrix elements of emitter’s the density matrix that influence the transmit-
ted field as a function of excitation power. As we can see, at low powers,
the coherent component is dominant, while as the power increases, so
does the infuence of the incoherent component. Figure adapted from
[12]

coherent term as in the steady state it is dependent on the coherence ρeg of the

TLS. Notice that this term is multiplied by i, meaning that the photons that are

scattered by the emitter without being absorbed by it are scattered with a π/2
phase difference and thus they interfere destructively with the incident light

field. Finally, the last term is known as the incoherent term and it corresponds

to the photons that the TLS emits as it decays, after having absorbed a photon

from the incident field. This term is proportional to the population of the

excited state
〈
Ŝge(t)Ŝeg(t)

〉
=

〈
Ŝee

〉
= ρee.

At low excitation power, the coherent component dominates while as the

power increases the incoherent component takes over, as it is proportional to

the population of the excited state (Figure 2.6).

We can use the steady-state solutions of the density matrix of the previous

section to derive expressions for the transmitted, reflected and scattered out

of the waveguide intensities of the electric field.
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Figure 2.7: Transmitted, reflected and scattered components as a function of detuning
per limit (ΩR− > 0), for β = 0.8 and γdeph = 0.1γ. Figure adapted from
[12]

T = 1 − βγγ2(2 − β)
2(γ2

2 + ∆2 + 4Ω2
R

γ2
γ

) ,

R = β2γγ2

2(γ2
2 + ∆2 + 4Ω2

R
γ2
γ

) ,

S = βγγ2(1 − β)
γ2

2 + ∆2 + 4Ω2
R

γ2
γ

,

(2.36)

The intensities of the transmitted and reflected fields (given by equation 2.36)

are plotted against the detuning per emitter lifetime ∆/γ in Figure 2.7 in

the low excitation power limit (ΩR− > 0), for β = 0.8 and γdeph = 0.1γ. On

resonance, most of the photons are reflected in and out of the waveguide. The

ratio of how many photons are scattered into the waveguide in relation to out

of the waveguide is proportional to the β factor and for good coupling such

as β = 0.8, we see that most of the photons are scattered into the waveguide.

On the contrary, close to resonance we see a transmission dip, which we call

coherent extinction since it is due to the interference of the coherently scattered

photons with the emitted photons. The interference is owed to the fact that

the scattered photons have undergone a phase shift of π/2 due to interaction

with the emitter.

Finally, we plot the coherent extinction as a function of excitation power (Fig-

ure 2.8) and notice the nonlinear behavior. In the low-power limit, almost no

light is transmitted while for higher powers the emitter is saturated and thus all
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Figure 2.8: Transmission as a function of average photon number for ∆ = 0, β = 0.8
and γdeph = 0.1γ. Figure adapted from [12]

of the light can be transmitted. This is referred to as single photon nonlinearity
of the quantum dot, stating that when the field can be approximated with

single photons most of them are reflected by the emitter. On the other hand,

at higher powers, the incoherent contribution increases as the population of

the excited state increases and photons are emitted in both directions, rather

than being mostly reflected as in the low-power limit. Additionally, we observe

that the emitter is saturated, meaning that during one emitter lifetime, more

than one photons pass through the TLS without interacting with it.

2.5.1 Decoherence mechanisms and their influence
on transmission

In order to connect the theoretical foundation built in this chapter and explain

the deviations from it that shall be seen in Chapter 5, we need to understand

how the various emitter parameters and decoherence mechanisms affect the

behavior of the emitter and of the driving field. To that end, we use the

Hamiltonian of equation 2.22 to simulate the behavior of the transmitted

light as a function of the parameters that characterize the emitter and its

environment.
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Figure 2.9: Transmission dips for an ideal system, where β = 1 and γdeph = 0, for
two different values of Rabi frequency, Ωblue < Ωorange. We note that not
only the transmission dip decreases with the increased Rabi frequency,
but we also observe broadening of the dip.

Firstly, we recognise the special case of having perfect coupling to the waveg-

uide modes and no decoherence mechanisms present, meaning that β = 1
and γdeph = 0, in the low power limit. In this case, the coherent extinction is

maximum and we can see in Figure 2.9 the transmission dip reaching zero.

This is the ideal case of the TLS fully reflecting the single photons that impinge

on it, since in the low power limit the coherent component of the transmis-

sion dominates, the coherences don’t decay as there is no dephasing and the

scattered photons remain in the waveguide.

The effect of decoherence can be seen in Figure 2.10 (left plot), where the

transmission on resonance has been plotted for perfect coupling β = 1 and

for very low coupling β = 0.2. Decoherence results in fewer coherently

scattered photons and consequently higher transmission on resonance, as the

interference is decreased. Finally, in Figure 2.10 (right plot) the saturation of

the quantum emitter is demonstrated, as for high values of excitation power

per emitter lifetime, more photons of the incident field pass right through the

emitter without interacting with it.

There is a plethora of mechanisms that broaden and/or shift the transition

energy between the two levels of the QD. They can be due to phonons, which

are lattice vibrations of the medium or due to carriers in the environment. As

stated earlier in this chapter, phonons cause pure dephasing which results in
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Figure 2.10: Transmission on resonance as a function of dephasing rate per emitter
lifetime (plot on the left) and as a function of mean photon flux per
emitter lifetime. Plotted both for β = 1 and β = 0.2.

decoherence, a highly undesired effect. More specifically, the coupling between

the excitons of the QD and the phonons can result in sidebands in the emission

spectrum and broadening of the ZPL line [22]. The decoherence induced by

phonons happens in short time scales compared to the emitter’s lifetime and is

irreversible. It is very much dependent on the ambient temperature and on the

degree of confinement. At cryogenic temperatures and 3D/0D confinement,

decoherence is highly suppressed. However, this is not the case for 1D/2D

confinement, where decoherence is enhanced by long-wavelength vibrations

that can be significant even at sub-Kelvin temperatures. As decoherence is

increased, the indistinguishability of the emitted photons is limited.

Additionally, carriers in the solid-state environment may induce an energy shift

of the two level transition, known as spectral diffusion. This mechanism occurs

at long time scales compared to the emitter lifetime and is reversible. Spectral

diffusion is modelled as variations from the QD’s resonant frequency by δ, such

that ωsd = ω0 + δ, and is described a Gaussian distribution with a mean value

of zero and a width of σsd [21]

P (δ) = 1√
2πσ2

sd

e
− δ2

2σ2
sd . (2.37)
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The model for the transmission has to be modified to include fluctuations from

the transition by time averaging with the Gaussian of Equation 2.37.

Tsd(∆) = [T (∆) ∗ P (δ)] =
∫
dδT (∆ − δ)P (δ). (2.38)
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3Coherence functions and
Visibility

In this chapter, the first and second order coherence functions will be described.

The first order coherence function yields information about the spectral proper-

ties of the field according to the Wiener-Khinchin theorem and is connected to

the visibility of interference fringes. The second order correlation function pro-

vides information about the photon statistics of the fields in an HBT setup. For

the derivation of the correlation functions we will use the quantum regression

theorem and input/output equations of the TLS [11]. Lastly, we will describe

the two-photon time-energy entanglement analyzed using the Franson inter-

ferometer, consisting of two unbalanced Mach-Zehnder interferometers. The

visibility of the two-photon component is used to predict the violation of the

CHSH inequality, which can be used to certify two-photon entanglement.
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Figure 3.1: Two-level system with energy separation Ω and natural linewidth τ em-
bedded in an chiral 1D-waveguide. With rin and rout we denote the
incoming and outgoing electric fields. The blue, green and red outgoing
fields represent the Mollow triplet of the strong driving regime, while in
the weak we would only have the green. Figure is adapted from [11].

3.1 1st-order Coherence function

The 1st-order coherence function is given by the following equation

G(1)(t, τ) =
〈
E(−)(r, t)E(+)(r, t+ τ)

〉
. (3.1)

We shall start our analysis of g(1) for TLS embedded in a chiral waveguide, i.e.

the light field can only propagate in one direction, as it is a simpler case and

afterwards the analysis will be extended for a non-chiral waveguide.

3.1.1 Propagation in chiral waveguide

Our system is comprised of a two-level system embedded in a chiral 1D

photonic waveguide, as shown in Figure 3.1, driven by a light field that can be

described by a coherent state. The Hamiltonian of such a system is
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H = H0 +H1,

H0 =
∫
dωωa†

ωaω,

H1 = 1
2Ωσz + V

√
ug

∫
dω(σgeaω + a†

ωσeg),

(3.2)

where by ω we denote the frequency of the light field, aω and a†
ω are the

annihilation and creation operators of the field at frequency ω, σge and σeg

the raising and lowering operators of the TLS such that σz = [σge, σeg], by

V we denote the coupling strength between the atom states and the field

at frequency ω and ug is the group velocity of the propagating waveguide

mode assuming linearized dispersion. Thus, the first term of the Hamiltonian

expresses the energy of the field, the second the energy of the TLS and the

third term is the interaction term.

We define the input and output fields as

rin(t) = ain(t) = 1√
2π

∫
dωaω(t0)e−iω(t−t0),

rout(t) = aout(t) = 1√
2π

∫
dωaω(t1)e−iω(t−t1),

(3.3)

where t0 and t1 represent times long before and after, respectively, of the

interaction with the atom. The fields are related by

aout(t) = ain(t) − i

√
2
τ
σeg(t), (3.4)
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where τ = ug/πV
2 is the natural linewidth of the TLS transition. Using the

Heisenberg equations of motion, we can write the input/output relations for

an atom interacting with a light field

dσeg(t)
dt

= i

√
2
τ
σz(t)ain(t) − (1

τ
+ iΩ)σeg(t),

dσge(t)
dt

= −i
√

2
τ
σz(t)a†

in(t) − (1
τ

− iΩ)σge(t),

dσz(t)
dt

= −i2
√

2
τ

[σge(t)ain(t) − σeg(t)a†
in(t)] − 2

τ
[σz(t) + 1],

(3.5)

We consider a coherent state of frequency k

|α+
k ⟩ = e−|αk|2/2

∞∑
n=0

αn
ka

†
ink

n

n! |0⟩ , (3.6)

such that

ain(t) |α+
k ⟩ = 1

2π

∫
dk′ain(k′)e−ik′t |α+

k ⟩

= αk√
2π
e−ikt |α+

k ⟩ = ωR

2

√
τ

2e
iϕ−ikt |α+

k ⟩ ,
(3.7)

where ωR = 2|α|/
√
πτ is the Rabi frequency.

In order to describe the spectral properties and the statistics of the reflected

and transmitted fields we need to be able to calculate the following three

classes of correlation functions:

c1(t = 0, t′) =


⟨σeg(t)⟩
⟨σge(t)⟩
⟨σz(t)⟩

 (3.8)
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c2(t, t′) =


⟨σge(t)σeg(t′)⟩
⟨σge(t)σge(t′)⟩
⟨σge(t)σz(t′)⟩

 (3.9)

c3(t, t′) =


⟨σge(t)σeg(t′)σeg(t)⟩
⟨σge(t)σge(t′)σeg(t′)⟩
⟨σge(t)σz(t′)σeg(t′)⟩

 (3.10)

In order to calculate the correlation functions of equations 3.8 - 3.10, we use

the input/output equations of the TLS (3.5), we multiply from left and/or

right with the suitable terms and then compute the expectation value. Also,

we use equation 3.7 and the commutator [ain(t′), σeg(t)] = 0 for t′ ≫ t to

derive the following set of differential equations for all three necessary classes

of correlation functions, the so-called optical Bloch equations with radiative
damping.

d

dt′
cn(t, t′) = B(t′)cn(t, t′) + bn, (3.11)

where

B =


−( 1

τ
+ iΩ) 0 i

2ωRe
−ikteiϕ

0 −( 1
τ

− iΩ) − i
2ωRe

ikte−iϕ

iωRe
ikt′
e−iϕ −iωRe

−ikt′
eiϕ − 2

τ

 (3.12)

and

bn =


0
0
bn

 (3.13)

where
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Figure 3.2: Two-level system with energy separation Ω and natural linewidth τ em-
bedded in a non-chiral 1D-waveguide. With rin we denote the incoming
electric field. With lout and rout we denote the reflected and transmitted,
respectively, outgoing electric fields. The blue, green and red outgoing
fields represent the Mollow triplet of the strong driving regime, while in
the weak we would only have the green. Figure is adapted from [11].

b1 = −2
τ
,

b2 = −2
τ

⟨σge(t)⟩ ,

b3 = −2
τ

⟨σge(t)σge(t)⟩ .

(3.14)

The results derived above are usually derived in the bibliography by the use

of the quantum regression theorem, however here we only used the relations

between input and output fields for the calculation.

3.1.2 Propagation in non-chiral waveguide

In this section, we shall extend our analysis to a TLS embedded in a non-chiral

1D photonic crystal waveguide, such as the system depicted in Figure 3.2. In

this case, we can decompose the right and left going input or output states
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rin/out(t) = ain/out(t) + åin/out(t)√
2

,

lin/out(t) = ain/out(t) − åin/out(t)√
2

.

(3.15)

As a result, the Hamiltonian of the system can be written as

H = H0 +H1,

H0 =
∫
dωω(a†

ωaω + å†
ωåω),

H1 = 1
2Ωσz +

√
2 V

√
ug

∫
dω(σgeaω + σega

†
ω).

(3.16)

The fields a and å are even and odd combinations of the right and left prop-

agating fields. H0 is the free Hamiltonian of the field and H1 represents the

interaction between the electric field and the TLS.

A right going coherent state of frequency k can be written as:

|α⟩ = exp
{
αr†

in(k) − α⋆rin(k)
}

|0⟩ . (3.17)

We can decompose this into two channels, even and odd

|α⟩ = exp
{
α
a†

in(k) + å†
in(k)√

2
− α⋆ain(k) + åin(k)√

2

}
|0⟩

= |α
+
k√
2

; α
+
k√
2

⟩ ,
(3.18)

where the first and second terms represent the even and odd channels such

that
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ain(t) |α
+
k√
2

; α
+
k√
2

⟩ = åin(t) |α
+
k√
2

; α
+
k√
2

⟩ = åout(t) |α
+
k√
2

; α
+
k√
2

⟩

= αk

2
√
π
e−ikt |α

+
k√
2

; α
+
k√
2

⟩

= ωR

2

√
τ ′

2 e
iϕ−ikt |α

+
k√
2

; α
+
k√
2

⟩ ,

(3.19)

where τ ′ = τ/2 and τ is the natural linewidth of the TLS.

The first order coherence function of the transmitted field can be calculated

by

〈
r†

out(t)rout(t+ δt)
〉

= 1
2

〈
[a†

out(t) + å†
out(t)][aout(t+ δt) + åout(t+ δt)]

〉
.

(3.20)

The output and input fields are related by Equation 3.4, which we combine

with Equation 3.20 and we get that the first order coherence function is given

by

= ω2
R

τ ′

4 e
−ikδt − i

2ωRe
−iϕ+ikt ⟨σeg(t+ δt)⟩

+ i

2ωRe
−iϕ+ik(t+δt) ⟨σge(t)⟩

+ 1
τ ′ ⟨σge(t)σeg(t+ δt)⟩

(3.21)

It can be shown that the two-channel expectation values are the same as their

single channel analogues, thus we can use the Bloch equations derived for

propagation in chiral waveguide for the case of the non-chiral. The whole

derivation won’t be presented here, but rather the steady state solutions in the

frequency domain.
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We decompose the correlation function to two parts, its coherent ω = k, and

its incoherent, ω ̸= k. The incoherent part is the same for the transmitted and

reflected fields, but the coherent differs.

g
(1)
t,coh = 1

1 +D2 + 1
2R

2 (D2 + 1
2R

2 D2 + 1
2R

2

1 +D2 + 1
2R

2 ),

g
(1)
r,coh = 1 +D2

1 +D2 + 1
2R

2 ,

g
(1)
incoh = 1

π

1
1 +D2 + 1

2R
2
R2

τ ′5
(ω − k)2τ ′2 + 4 + 1

2R
2

|P [−i(ω − k)]|2 ,

(3.22)

where

D = (Ω − k)τ ′,

R = ωRτ
′.

(3.23)

The coherent and incoherent spectrum of the transmitted and reflected fields

are shown in Figure 3.3.

3.1.3 Visibility

The visibility of interference fringes is defined as [6]

V = Imax − Imin

Imax + Imin

, (3.24)

where
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Figure 3.3: Coherent spectrum of the transmitted and reflected fields. Transmitted
field is plotted with solid lines and the reflected with dashed. R = 0.1, 2, 5
shown in blue, red and green, respectively. In the inset, the incoherent
spectrum is shown with the Mollow triplet for zero detuning. Figure
taken from [11].

Imax/min = I1 + I2 ± 2
√
I1I2|g(1)(x1, x2)|, (3.25)

where I1 and I2 are the intensities measured by detectors at the positions

x1, x2.

Therefore, the visibility is related to the 1st-order coherence function as

V = 2
√
I1I2|g(1)(x1, x2)|

I1 + I2
, (3.26)

meaning that, both in classical and in quantum physics, in order to observe

interference the light must be temporally and spatially coherent and since they

are proportional, the higher the coherence of the light, the higher the visibility

and vice versa.
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Figure 3.4: Blue: 2nd-order coherence function of the reflected field. We notice that
the zero-time g0

RR = 0, meaning that the quantum dot reflects only single
photons. Red: Correlations occur between the reflected and transmitted
components. The bunched statistics of the transmitted field overtake the
antibunched nature of the reflected for zero-time. Both the coherence
functions decay to 1 for a longer time delay. Figure taken from [21].

3.2 2nd-order Coherence function

An analytical expression for the g(2)(τ) can be derived only in the limit of

ΩR/γ ≪ 1 or ∆ = 0. The derivation is not the focus of this work, but it follows

the same procedure followed for g(1) or we can use the quantum regression

theorem and then take the Laplace transform. The final expressions for the

2nd-order coherence function of the transmitted and the reflected field will be

presented here; [21].

g
(2)
T (τ) = 1 + γ2γ2β

4e−γτ − γβ2[2γ2 + γ(β − 2)]2e−γ2τ

(γ − γ2)[2γ2 + γβ(β − 2)]2 , (3.27)

g
(2)
R (τ) = 1 − γe−τγ2 − γ2e

−τγ

γ − γ2
. (3.28)

Notice that g(2)
R (τ) is independent of the coupling to the waveguide, β. The beta

factor, doesn’t influence the statistics of the reflected field, but merely reduces

the its intensity as photons escape out of the waveguide for β < 1.0. The
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Figure 3.5: 2nd order coherence function of the photons in the transmitted mode
as a function of delay time per lifetime. Three different cases are under
investigation depending on the degree of coupling, β = 0.9, β = 0.5 and
β = 0.2. We observe that for very good coupling, β = 0.9, the statistics
show bunching, for β = 0.5 we have antibunching and for β = 0.2
coherent statistics.

zero-delay 2nd order coherence function is zero, g(2)
R = 0, for any dephasing

rate, demonstrating that in the low-power limit and close to resonance, the

quantum dot only reflects single photons.

In the special case of no pure dephasing, γdeph = 0, then g(2)
T reduces to

g
(2)
T (τ) = e−γτ ( β2

(1 − β)2 − e− γ2
2 τ )2. (3.29)

The g(2)
T is plotted against the delay time per emitter lifetime τ/γ in the absence

of dephasing in Figure 3.5. When the emitter is well coupled, the g2
T > 1 and

in this case the transmitted mode photons are bunched. In the case of very low

power, the transmitted photons are photon pairs ideally. On the contrary, when

β = 0.5, both the reflection and the transmission is made of single photons and

the statistics are antibunched. Lastly, when the emitter-waveguide coupling

is too low, the photons don’t interact with the quantum dot and as such

we observe the statistics of a weak coherent beam, for which we know that

g(2)(τ) = 1.
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Figure 3.6: Zero-delay time 2nd order coherence function of the photons in the trans-
mitted mode as a function of waveguide-emitter coupling, β. Efficient
coupling is crucial for the observation of bunched and antibunched statis-
tics. Figure taken from [12].

The zero-delay time g(2)
T is plotted as a function of the waveguide coupling

efficiency, β, in Figure 3.6. It demonstrates the necessity of efficient coupling

for the observation of bunched and antibunched statistics and the influence

of the dephasing on them. In the absence of dephasing, blue line, we see

that for coupling close to β = 0.5 the photon statistics are antibunched. This

means that both the reflected and the transmitted modes of the waveguide

are governed by single photons. As the coupling efficiency grows larger, the

statistics are becoming bunched. This is a consequence of the interference

between the scattered photons, that as β is increased couple more efficiently

into the waveguide, and the emitted photon field.

3.2.1 Effect of decoherence on 2nd-order
coherence function

Pure dephasing mechanisms cause decay of the coherences σeg, σge, of the TLS.

This results in loss of coherence in the scattered field and it has a high impact
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Figure 3.7: (a) 2nd order coherence function of the photons in the transmitted mode
as a function of delay time τ in the presence of dephasing. Red, green,
orange, blue correspond to γd/γ = 1, 0.5, 0.2, 0.1 respectively, plotted
in the low power limit and for β = 1. (b) Zero-delay time 2nd order
coherence function of the photons in the transmitted mode as a function
of the dephasing rate per emitter lifetime γd/γ in the low power limit.
The blue curve is plotted for β = 1 and the orange for β = 0.9. Figure
taken from [21].

on the behavior of the system TLS-light field. Specifically, the photon statistics

of the transmitted field are highly influenced by the pure dephasing.

The influence of dephasing is demonstrated in Figure 3.7. In (a) we can see the

influence of various dephasing rates on the second order coherence function

in the ideal case of perfect coupling, β = 1. For a large dephasing rate, the

coherences of the system decay faster and as such, the field in the transmitted

mode is not exclusively made of two-photon states. For γd/γ = 1 (red) we see

that g(2)(0) is a bit larger than 2, indicating that the dephasing almost destroys

the bunched photon statistics. In (b) we see the dependence of the zero-delay

time 2nd order coherence function g(2)(0) on the dephasing rate per emitter

lifetime. Even if γd/γ = 0.01, then g(2)(0) is reduced by approximately 90%.
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Figure 3.8: 2-photon inelastic scattering by the TLS. The uncertainty in the energy of
the emitted photons simultaneously with the energy conservation of the
process gives rise to correlations.

3.3 Time-energy entanglement

In the weak driving regime, we can approximate the light field as a weak

coherent state, as in Equation 1.1. The two-photon component of the driving

field can be elastically or inelastically scattered by the emitter. The energy is

conserved in both cases and in the case of inelastic scattering, 2ωp = ω1 + ω2,

where ωp is the frequency of the pump photons and ω1, ω2 are the frequencies

of the emitted photons, the emitted photons inherit an uncertainty in energy

which is proportional to 1/τ . The two-photon emitted state can be written

as:

|ψ2⟩ =
∫
dωin

1 dω
in
2 f(ωin

1 )f(ωin
2 )∫

dω1dω2[χ(ωin
1 )χ(ωin

2 )δ(ω1 − ωin
1 )δ(ω2 − ωin

2 )

+ 1
2Tωin

1 ωin
2 ω1ω2δ(ω1 + ω2 − ωin

1 − ωin
2 )] |1ω1 |1ω2⟩⟩,

(3.30)

where χ(ωin
1 ), χ(ωin

2 ) represent independent scattering events, with each pho-

ton conserving its own energy [13].

For a laser with a narrow linewidth ωin
1 = ωin

2 = ωp and f(ω) = δ(ω − ωp) and

so we can write the two-photon state as:
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|ψ2⟩ = 1
2

∫
dω1dω2Tωpωpω1ω2δ(ω1 + ω2 − 2ωp) |1ω1 |1ω2⟩⟩

= 1
2

∫
dω1Tωpωpω12ωp−ω1 |1ω1 |12ωp−ω1⟩⟩,

(3.31)

The term Tωpωpω1ω2 expresses the scattering matrix of the emitter, including

the spectral entanglement. For a quantum dot embedded in a waveguide, the

scattering matrix is given by the following expression

Tωpωpω12ωp−ω1 = 4
πβΓ

r(ωin
1 )r(ωin

2 )r(ω1)r(ω2)
r((ωin

1 + ωin
2 )/2)

= 4
πβΓr(ωp)r(ω1)r(2ωp − ω1).

(3.32)

We can use the reflection and transmission coefficients, in the absence of

dephasing, and on resonance ωp = ω0, we can write the scattering matrix as

Tωpωpω12ωp−ω1 = − 4
π
r(ω1)r(2ωp − ω1)

= − 4β2

πγ(1 − 2i∆/γ)(1 + 2i∆/γ) ,
(3.33)

where ∆ = ω1−ωp is the detuning between the driving photons and the emitted

photons. The final expression for the scattering matrix is the following

T∆ = − 4β2

πγ(1 + 4∆2

γ2 )
, (3.34)

which contains all the spectral information given by the Lorentzian profile.

The two-photon state can be written as

|ψ2⟩ = 1
2

∫
d∆T∆ |1∆⟩ |1−∆⟩. (3.35)
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The state written in this form clearly demonstrates the energy correlation

between the two photons.

The joint time distribution of the driving photons and the emitted photons can

be described in terms of the two-photon amplitude

A(t, t′) = ⟨0, 0|E(+)
1 (0, t)E(+)

2 (0, t′) |ψ2⟩ =

=
∫
dω1aω1e

−iω1t
∫
dω2aω2e

−iω2t′
∫
d∆T∆a

†
ωp+∆a

†
ωp−∆ |0⟩

=
∫
d∆e−i(ωp+∆)t′

e−i(ωp−∆)t′
T∆

= e−iωpte−iωpt′
∫
d∆ei∆(t−t′)T∆.

(3.36)

The last integral represents the Fourier transform of the two-photon spectral

amplitude. Each of the photons has a Lorentzian profile and thus the Fourier

transform of their multiplication would be the same as the convolution of their

individual Fourier transforms. Therefore, the two-photon correlation function

[3.36] will be a double-exponential decay with a linewidth proportional to

1/γ.

3.3.1 Franson interferometry

To probe the properties of time-energy entanglement of the two photon state,

we can use the Franson interferomter [5]. It consists of two identical UMZI

to which two photons can go. The control of the phase difference between

the two interferometers and two photon detection at the outputs of each

interferometer can be used to probe properties of the time-energy entangled

state and can be used to test of local hidden-variable theories probing the Bell

theorem. For this the CHSH ineqaulity violation can be used [4]. The visibility

V extracted from the two photon correlations can be used to estimate the S

parameters that can be achieved with the setup.
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S = 2
√

2V (3.37)

If S > 1/
√

2 then the state is entangled and if S > 2 the state does not obey

local realism.

The coincidence count rate measured between the two detectors is proportional

to:

Rc(t, t′) ∝ ⟨0|E†(r, t′)E†(r, t)E(r, t)E(r, t′) |0⟩ . (3.38)

The interferometer introduces a time delay δt which transforms the electric

field amplitudes as

E(r, t)− >
1
2(Ei(r, t) + ei(ϕ1+ϕ2)E(r, t− δt)). (3.39)

Thus we can rewrite the coincidence count rate as

Rc(t, t′) ∝ 1
16 ⟨0| (E(r′, t)E(r, t) + e−i(ϕ1+ϕ2)E(r′, t− δt)E(r, t− δt) + h.c.) |0⟩ .

(3.40)

The uncertainty of the individual photons ω1 and ω2 is much larger than the

total energy ω1 + ω2 uncertainty and so we can write

E(r′, t− δt)E(r, t− δt) |0⟩ = eiωpδtE(r′, t)E(r, t) |0⟩ . (3.41)

The phase factors introduced by the UMZIs is the reason we observe interfer-

ence in the coincidence count rate
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Rc(t, t′) ∝ (1 + e−i(ωpδt+ϕ1+ϕ2))(1 + ei(ωpδt+ϕ1+ϕ2)) = 1
2 + cos(ωpδt+ ϕ1 + ϕ2).

(3.42)

It should be noted here, that the reason we don’t observe interference due

to the elastically scattered two-photon component is that the total energy

uncertainty is equivalent to the uncertainty of the individual photons.
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4Mach-Zehnder
interferometer

A substantial part of this work was the construction of an unbalanced Mach-

Zehnder interferometer, drawn in Figure 4.1. It is constructed in such a way

that it can be used to probe the interference of the quantum state of light that

we insert into it or to control the relative phase between laser pulses that can

be used to excite the quantum dot. In this work, the interferometer was used

to interfere the light from the transmitted or the reflected mode and measure

the visibility as a function of the excitation power. Additionally, it was used to

estimate if the CHSH inequality would be violated by the two-photon state of

the transmitted mode by measuring the visibility of the coincidences.

49



4.1 Interferometer description

As we can see, the interferometer has two inputs. One of them is used to insert

light from the cryostat and investigate its interference pattern, we denote this

path as the detection path. The second input can be used either for phase

stabilization or for excitation of the quantum dot, stabilization/excitation path.

For the purposes of the experiments discussed here, the stabilization path was

used to set and stabilize the phase of the interferometer. All the optical fiber

adapters are cage mounted along with their collimation lenses for precise

adjustment. The half-waveplates (HWP) and quarter-waveplates (QWP) are

also cage mounted and can be automatically rotated in order to change the

polarization of the light beam. It should be noted that the propagation path

along the translation stage is referred to as long path and the one passing

through the beamsplitters as short path. Two mirrors are mounted on the

translation stage with a maximum path length difference of 1m. The path

length of 1m is chosen such that we can distinguish between short and long

paths. One of the two mirror mounts of the mirrors on the translation stage

is attached to a PZT and thus we can set and stabilize the phase of the

interferometer.

4.1.1 Detection path

As detection path we are referring to the propagation path that inputs light

from the cryostat that ends up fiber coupled and led to photon detectors.

The light from the cryostat is brought to the interferometer via an optical

fiber. The optical fiber is a single mode optical fiber in combination with an

aspheric collimation lens of f=11mm. Afterwards, the beam goes through
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HWP1 and QWP1. The role of those components is to allow us to change the

polarization of the incoming light, as they are mounted on rotation mounts.

As a result, we have an adjustable power ratio of the intensity going through

each arm of the interferometer, since it is split by a polarizing beam splitter

(PBS1). The vertical polarization component of the beam is transmitted, while

the orthogonal is reflected when the beam passes through the beamsplitter.

HWP1 and QWP1 were rotated such that the light was linearly polarized at 45°

and thus the beam intensity was split in half after propagation through PBS1.

The orthogonal component of the beam propagates through the long path,

acquiring a relative phase in relation to the vertical polarization, proportional

to the difference in path length. A constant phase shift is introduced by the

fixed path length difference and also a variable phase proportional to the

difference in path length owed to the movement of the mirror mounted on

the piezo-mount. After reflection by the mirrors, the long path beam passes

through a HWP that is rotated by 45° so that the polarization of the beam

is rotated by 90°, setting the polarization from orthogonal to vertical. That

is necessary as the beams must be by all aspects as similar as possible so

that interference occurs. The two beams overlap at the 50:50 beamsplitter

denoted as BS and then are coupled into optical fibers that are connected onto

photon detectors. In order to observe (and maximize) interference fringes,

the two separate beams must be in the same mode, spectrally, spatially and

polarization-wise. The spatial overlap of the beams plays a very important

role and it is very iterative process that has to be done perfectly to observe

interference. It was achieved by precisely adjusting all the optical elements

of the detection path, focusing mostly on the two mirrors on the translation

stage, after numerous iterations. Finally, it should be noted here that after

careful adjustment of the components, the collection efficiency at each arm

from each path was between 65-75% and the visibility at each arm of the BS,

was above 99%, as measured by each APDs placed at each detection arm.

4.1.2 Stabilization path

The light was brought to the interferometer via a polarization maintaining

single mode optical fiber (PM fiber). Upon exiting the PM fiber, it passed
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Figure 4.1: Schematic of the UMZI that was constructed. Light is inserted from optical
fibers shown as: From Cryo and Laser. Det1 and Det2 are used to record
interference, Det3 is used to stabilize the interferometer phase. The gray
rectangle represents the translation stage, where on of the mirrors (left)
is mounted on a PZT mount, to set and stabilize the phase.
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through a collimation lens, of focal length f = 11mm. After being reflected

by two mirrors, it was guided onto a PBS2 where the orthogonal polarization

component was reflected and the vertical was transmitted. The orthogonal

component of the beam was incident on the 50:50 BS where half of the

photons go through the long path and the other half go through the short

path. It should be noted here that the beam of the stabilization path was

propagating in parallel to the detection path to minimise the overlap. The

long path photons firstly pass through the HWP at 45°where their polarization

becomes vertical and then are reflected by the mirrors. Same as for the case

of the detection path, the photons that travel through the long path have

undergone a phase shift proportional to the path length difference and the

path length variation due to the PZT on the mirror mount. The long path

beam is transmitted by PBS1 as it is vertically polarized at this point. On the

other hand, the short path beam is reflected as it has orthogonal polarization

and as such they both end up travelling in the same spatial mode. Finally,

before coupling into the optical fiber or APD, the beams go through a series

of polarization elements, namely a QWP, a linear polarizer and a HWP. The

HWP is placed there in order to rotate the polarization of the beam and align it

with the polarization axis of the PM fiber. The role of the QWP is to select the

ratio of the long/short path intensity; it essentially acts as a variable polarizing

beam splitter. The linear polarizer projects onto the linear polarisation defined

by its orientation. The combination of the QWP at 45 °and rotating LP allows

to vary the phase of the interference fringe as it defines the phase difference

between two orthogonal polarisation propagating through different paths.
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4.2 Interferometer stabilization and
locking

Small fluctuations of the path length difference due to environmental noise

can induce noise and instability of the interferometer, thus it was necessary to

lock it usign the PZT that was connected to one of the mirror mounts on the

translation stage. The locking technique we used is called Lock-in amplification.

It is generally used when we have a noisy periodic signal. It removes the noise

by multiplying the signal with another periodic signal called reference signal of

the same frequency and then time average it. The noise will effectively be time

averaged to zero and all that will be left will be the signal, which we finally

amplify with low noise amplifiers.

In our case, the lock in amplification is implemented by a microcontroller

[14]. We detect the interference signal using an APD, which is connected

to one of the inputs of the FPGA of the microcontroller. The interference

signal is then modified by the PID of the microcontroller and output to a

piezo controller, which applies a voltage signal to our piezo mirror mount.

By implementing this feedback process, essentially the piezo moves one of

the mirrors of the translation stage such that the signal remains locked at a

maximum or minimum value.
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Figure 4.2: Photon counts measured by the photodetector as we scan the interfer-
ometer phase. We can see the interference fringes with a rather large
visibility.

4.3 Interferometer operation

The rotation mounts of the polarizing elements at the end of the excitation

path are motorized for precise and automated adjustment by the PC. The

operation of the interferometer was fully automated and ran by a MATLAB

program. The program changes the phase of the interferometer by rotating

the linear polarizer and then tests if the interferometer is locked. If necessary,

it relocks the interferometer. The resulting intensity on either of the detectors

will be proportional to a sinusoidal function of the constant delay and of the

phase induced by the piezo moving the mirror mount
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I ∝ sin(ϕ∆l + ϕLP ), (4.1)

where ϕ∆l would be the constant phase difference due to the path length

difference of the short and long path and ϕLP the variable phase induced by

the piezo. Then the visibility is given by

V = Imax − Imin

Imax + Imin

. (4.2)

An example of the interference fringes as we scan the phase of the interferom-

eter can be viewed in Figure 4.2.
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5Experiments

In this chapter, the experiments and optical setups will be presented. Three

experiments were conducted; one aimed to demonstrate the single photon

non-linearity of the quantum dot and extract system parameters by applying a

theoretical fit on the experimental data. The second made use of a double-pass

Mach Zehnder type interferometer to investigate how the visibility of light that

interacted with the quantum dot changes as a function of the laser power that

drives it. The final experiment made use of two identical UMZIs to measure

the visibility of the 2nd-order correlation function of the 2-photon component

of the transmitted field in order to estimate the S parameter of the CHSH

inequality and probe the time-energy entanglement introduced by interaction

with the quantum dot.
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5.1 Saturation of emitter

5.1.1 Characterization of quantum dot

The quantum dot allows for different fraction of the light to be transmitted,

depending on the excitation power. For low powers, light is primarily reflected

while for higher powers it is mostly transmitted until the quantum dot is satu-

rated. In order to observe that phenomenon and to extract system parameters,

we excited the quantum dot with a frequency tunable continuous-wave laser

via one of the waveguide’s grating couplers. The laser intensity was stabilized

by passing through a PID feedback loop, employing an AOM double-pass

configuration. The details of this technique are beyond the scope of this thesis,

however the principle is the following: the acousto-optic modulator is used

to modulate the intensity of the laser and to correct the intensity fluctuations

(read by an avalanche photodetector) by driving the AOM with a correction

signal determined by the photodiode signal and the proportional, integral and

derivative components of the PID feedback circuit. The sample quantum dot

was a self-assembled InGaAs quantum dot embedded in a one-dimensional

photonic crystal waveguide, mounted in a cryogenic temperature environment

(T = 4K) to suppress phonon-induced decoherence.

The range of the excitation power was from 1µW to 300µW . The resonant

frequency of the quantum dot shifts as the driving power changes, therefore for

each value of laser power we scanned the laser frequency from 318.657GHz

to 318.675GHz. In Figure 5.1 we can see how the resonant frequency changes

with the driving power. Additionally, for each value of laser power and while

scanning the laser frequency, the intensity of light transmitted by the quantum

dot was recorded by a single photon counter module. We measured 30 different

transmission curves, one for each value of the laser power, some of which

can be seen in Figure 5.2 , while all of them can be viewed in the inset. The

transmission curves approximate a Lorentzian with linewidth inherited by

the quantum dot, proportional to γ2, that is subject to power broadening [Eq

2.21]. The slight asymmetry of the transmission curves is due to the Fano
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Figure 5.1: The quantum dot’s resonant frequency shifts with the laser power. The
detuning is measured as the frequency shift from the mean value of all
recorded frequencies.

resonance, the effective existence of a low quality factor cavity created by

weak reflections at the gratings of the waveguide. The dip of the transmission

at ∆ = 0 is a signature of the quantum dot; the photons that are emitted by

the quantum dot interfere destructively with the photons that are scattered by

it. However, as the excitation power increases the aforementioned interference

is suppressed as we no longer operate in the Rayleigh regime and we see the

transmission dip decreasing.

A fit of the transmission dips was performed in order to extract system pa-

rameters and to investigate accordance between theory and experiment. In

more detail, the system parameters were namely: the β factor, spontaneous

emission rate γ, the rate of dephasing γd, the Fano parameter ξ, detuning from

resonance f0, the spectral diffusion σsd and the photon flux η. The results can

be seen in the following table:

γ(GHz) γd(GHz) β σsd η ξ

1.999 ± 0.008 0.05 0.9 0.56 ± 0.01 0.0572 ± 0.0005 0.131 ± 0.001

Note here that γd and β have no accompanied error values because they were

fixed parameter during the fitting.
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Figure 5.2: Transmission dips as a function of laser detuning for different values of
excitation power. We observe that as the power increases, the resonant
frequency and the width of the dip increases (power broadening), while
the transmission dip decreases. In the inset all the recorded transmission
dips are shown.

Some examples of the experimental data of the transmission curves with the

fitted curves are shown in Figure 5.3.

The same measurements and subsequent analysis were performed for the

reflected component. The acquired spectra can be viewed in Figure 5.4.

Similarly to the transmission spectra, we notice the asymmetry of the curve,

owed to the Fano resonance, the shift of the resonance frequency and the power

broadening as the excitation power changes. Contrary to the transmission

spectra, we observe that the peak increases, as the excitation power increases

and the incoherent component is predominant.

5.1.2 Single photon nonlinearity

Finally, in order to show the saturation of the quantum dot, we plot the value

of transmission at ∆ = 0 as a function of excitation power and mean photon

number per lifetime (see Figure 5.5),
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Figure 5.3: Transmission dips as a function of laser detuning for different values of
excitation power with the fitted curves. The experimental data are shown
as points, the initial fit as a dashed curve and the best fit as a solid curve.

Figure 5.4: Reflection peaks as a function of laser frequency detuning for different
values of excitation power. All of the acquired reflection spectra are
shown in the inset.
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Figure 5.5: Saturation curve of the quantum dot. The dots represent the measured
values of transmitted intensity on resonance and the solid line is the
corresponding fit. On the lower horizontal axis the curve is plotted as a
function of excitation power and on the upper as a function of the mean
photon number per lifetime.

n = 2Ω2

Γ2 (5.1)

where

Ω2 = ηP (5.2)

For the calculation of the Rabi frequency Ω the fitted values were used for the

aforementioned parameters.

It can be seen from Figure 5.5 that when the excitation power is low, light

doesn’t go through the quantum dot but is mostly reflected, while for higher

power the quantum dot is saturated. The fact that the transmission coefficient

depends on the input power is referred to as a single photon non-linearity and

it is a powerful result. Non-linearities usually occur at high intensities, but

in the case of a quantum dot in a PCW driven by a resonant laser it is at the

single photon level. Due to the single photon non-linearity the system has

been referred to as "photon sorter", as it reflects single photons and transmits

the higher order components, and can be used for deterministic Bell state

analyzers and for operations such as gates [13].
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Figure 5.6: Saturation curve of the quantum dot using the reflection data. The dots
represent the measured values of the reflected intensity on resonance.
It should be noted here that the intensity of the reflected component
was not normalized and as such, in high powers the reflection is due to
spontaneous emission.

The saturation of the quantum dot can also be demonstrated by the reflection

data. Similarly to the transmission, we plot the value of reflection on resonance,

∆ = 0 and we can see (Figure 5.6) that for higher powers the quantum

dot is saturated. In this regime, most of the power is transmitted and the

reflected component is almost exclusively comprised of spontaneously emitted

photons.
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5.2 Visibility as a function of excitation
power

For this experiment, we excited the quantum dot by coupling the laser light

into one of the gratings of the waveguide and collected light either by the

same port (collection of the reflected light) or by the other port (collection of

the transmitted light). The collected light was input into the unbalanced Mach-

Zehnder type interferometer, described in Chapter 4, in order to measure the

visibility of the light as the excitation power changes. According to the theory,

we expect to see different behavior between the reflected and transmitted light

as we change the power, due to the nonlinear interaction with the quantum

dot.

5.2.1 Experimental setup and process

The experimental setup and process were identical, whether the visibility of

interest was of the reflected or the transmitted light, with the only difference

being the collection port.

The experimental setup consisted of the aforementioned interferometer and

a quantum dot embedded in a one-dimensional photonic crystal waveguide

placed in a cryostat to isolate the system from the environment and suppress

decoherence mechanisms. The laser was a frequency tunable cw-laser that

was split by a beamsplitter with a 90:10 ratio. The 10% fraction of the laser

beam passed through a PID feedback loop for intensity stabilization. The

intensity-stabilized beam was lead to excite the quantum dot and thus, the

power that drove the quantum dot was adjustable by adjusting the voltage

applied to the AOM. The 10% fraction of the laser beam was coupled into the

"Laser" input of the interferometer and was used to stabilize its phase.

The whole measurement process was completely automated and run by a
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computer program. The program firstly set the value of the excitation power.

Various rounds of measurements were performed, with the power range being

subject to minor changes, usually from 0.1µW to 300µW . In contrast to the

quantum dot saturation measurements, the laser frequency was locked at

f = 318.67GHz and in order to be resonant with the quantum dot at all

driving powers, different values of voltage were applied to the quantum dot

to slightly shift the energy transition, by use of the DC Stark effect, for every

value of power. Thus, for each value of excitation power the voltage was

scanned from 1.232V to 1.262V and for each value of voltage the number of

counts was recorded in order to find the resonant value of voltage. The same

measurement was then performed for a value of voltage that was off resonant

at all powers. For each value of power and voltage (both on and off resonance),

the linear polarizer was rotated by 180 degrees, effectively scanning the phase

of the interferometer, in order to see interference fringes. Finally, the power

was set at zero in order to measure the background counts.

5.2.2 Reflected light

To record interference fringes of the reflected light as a function of power,

we changed the power from Pmin = 0.15µW to Pmax = 300µW and for each

power, the linear polarizer was rotated by 360 degrees with a step of 7.5

degrees. The same procedure was conducted twice, one for voltage applied

on the quantum dot to bring it on resonance with the laser and once for off

resonant voltage.

The recorded counts can be seen in Figure 5.7. No pre-processing or data-

cleaning was conducted as it was not necessary, with the sole exception of

subtracting the measured background. We notice that the minimum value of

the recorded counts was higher for the on resonant voltage in comparison to

the off resonant, thus the quantum dot is effectively decreasing the visibility.

In the case of the reflected signal, the off resonant counts should be equal to

the background as the light shouldn’t interact with the quantum dot and pass

through the waveguide. The signal in this case is due to imperfections in the
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Figure 5.7: Top left: Intensity of light in the reflected mode for resonant voltage, as a
function of interferometer phase and excitation power. The interference
fringes are shown as blue-white stripes. We notice that as the power
increases the fringes are smoothed out and the visibility decreases. Top
right: Intensity of light in the reflected mode for non-resonant voltage,
as a function of interferometer phase and excitation power. We note
that the normalized intensity doesn’t reach the maximum, but rather
approximately half. In the case of the reflected light for non-resonant
voltage no light should be reflected. Bottom left: Each interference curve
corresponds to the interference of the light in the reflected mode for
resonant voltage for each power as a function of interferometer phase.
Bottom right: Each interference curve corresponds to the interference of
the light in the reflected mode for non-resonant voltage for each power
as a function of interferometer phase. When comparing the two bottom
plots, we observe that when the light interacts with the quantum dot
(left) the visibility decreases in comparison to when it doesn’t (right).
In addition, we notice that the maximum number of counts for the non-
resonant plot is smaller than the on-resonant, as in this case we are
measuring background.
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Figure 5.8: Interference fringes of the reflected light as a function of interferometer
phase for three different values of excitation power. The experimental
data are depicted as dots, the initial fit as a dashed line and the final fit
as a solid line. The residuals of the fit are plotted as well.

way we collect the light and thus, the off resonant case shall not be further

analysed for the reflected light.

A fit was performed on the recorded interference fringes in order to investigate

how the visibility changes as a function of the driving laser power. Some

examples can be seen in Figure 5.8.

It can be seen that the visibility drops as the excitation power increases. To

further support that, we plot the value of the visibility as provided by the

fit as a function of power (Figure 5.9). In the same figure, we also plot the

visibility as calculated from the experimental data. Firstly, we see that the fit

agrees quite well with the experimental data, however when it does not it

tends to underestimate the visibility. We also notice that the error of the fitted

visibility is larger in comparison to the estimated. The estimated visibility is

derived by a very straightforward calculation and the error associated with it

is given by the error propagation of the data. On the other hand, the fitted

visibility for each power is the best fit of all the experimental points and is

more sensitive to deviations from the expected sinusoidal behavior. However,

the most important aspect of Figure 5.9 is the fact that the visibility decreases

as the excitation power increases. When the power increases, the ratio of

the coherent scattering and spontaneous emission decreases and as such the

visibility decreases as well.
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Figure 5.9: Fitted and estimated visibility as a function of laser power. As the coherent
component takes over at high powers, the visibility drops.

5.2.3 Transmitted light

We follow the same procedure for acquiring and analyzing the data as in the

previous section. The recorded interference fringes of the transmitted light,

both for resonant and off resonant voltages are shown in Figure 5.11.

Similarly to the reflected light, we observe that the minimum value of intensity

was higher for the resonant voltage than the off resonant, a signature of

interaction with the quantum dot. In the case of transmission, the off resonant

interference fringes characterize the performance of the interferometer and of

the phase locking and therefore, shall be included in the analysis just as the

resonant counts. The fit was performed here for both the on and off resonant

counts and some examples can be viewed in Figures 5.11 and 5.12.

In the case of the off resonant counts, the visibility should be the same re-

gardless of the excitation power, since the quantum dot is not interacting with

the light field. To demonstrate this, we plot the off resonant visibility given

by the fit and the visibility estimated by the experimental data, Figure 5.13

- plot on the right. We calculate the average value of visibility, both as fitted
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Figure 5.10: Top: Intensity of light in the transmitted mode for resonant voltage (plot
on the left) and non-resonant voltage(plot on the right), as a function of
interferometer phase and excitation power. The interference fringes are
shown as blue-white stripes. We notice that at low powers the data are
rather noisy and at larger powers the fringes become asymmetrical, due
to the saturation of the photodetectors. Bottom: Each interference curve
corresponds to the interference of the light in the transmitted mode for
resonant (left plot) and non-resonant voltage (right plot) for each power
as a function of interferometer phase. When comparing the two bottom
plots, we observe that when the light interacts with the quantum dot
(left) the visibility decreases in comparison to when it doesn’t (right).
The visibility of the fringes for the non-resonant voltage should not
change as the power changes, as it characterizes the interferometer
performance.
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Figure 5.11: On resonant interference fringes of the transmitted light on resonance as
a function of interferometer phase for three different values of excitation
power. The experimental data are depicted as dots, the initial fit as a
dashed line and the final fit as a solid line. The residuals of the fit are
plotted as well.

Figure 5.12: Off resonant interference fringes of the transmitted light on resonance as
a function of interferometer phase for three different values of excitation
power. The experimental data are depicted as dots, the initial fit as a
dashed line and the final fit as a solid line. The residuals of the fit are
plotted as well.
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Figure 5.13: Fitted and estimated visibility as a function of driving power, both on
and off resonant counts.

and estimated, to characterize the performance of the interferometer and the

phase locking.

Vfit = 0.986 ± 0.019
Vest = 0.991 ± 0.008

Once more, we observe that the fit slightly underestimates the visibility and

the errors associated with it are quite larger. A visibility of 99% means that

the interferometer is stable and well-suited for applications where precision is

essential.

We shall now move on to the more interesting case of the on resonant visibility.

We observe that the visibility is rather high in the limit of very low power,

where the coherent component of the transmission is dominant, i.e. photons

are scattered by the TLS without interacting with it.

In the limit of very low excitation power, if the parameters characterizing the

system were perfect then the transmission would be zero. The fact that there

are dephasing mechanisms, messes up the coherences between the two states

of the quantum dot and as a result the interference between the driving field

and the scattered photons without absorption by the quantum dot - coherent

component - is reduced. As such, there is a portion of the light field that passes
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through the quantum dot, yielding non zero T that in the very low power

limit is comprised of single photons. As the power is increased, the excitated

state population increases and thus the incoherent component starts to come

into play in the form of emission. In this power region, the coherent and

incoherent components interfere and produce squeezing in the two-photon

state which is produced by the destructive interference of the driving field

with the scattered photons and the visibility is decreased. At higher powers,

what we see is mostly the signal that doesn’t interact with the quantum dot

and spontaneous emission.

5.3 Time-energy entanglement

The objective for this series of measurements was to record the interference

pattern of the two-photon 2nd-order coherence function using a Franson

interferometer, i.e. two identical UMZIs, one with constant phase and another

with a variable phase. Thus, the transmitted light from the cryostat was split in

half and each half was guided into the one of the unbalanced interferometers.

At each of the interferometers, the photon can either propagate through the

short or the long path and then we measure the coincidence count rate. The

interference in the coincidence counts arises from the fact that the emitted

photons are energy and time correlated. More specifically, the emitted photons

have a time uncertainty τ , inherited by the natural linewidth of the quantum

dot. Conversely, the energy uncertainty of each individual photon is much

larger than the uncertainty in the total energy ω1 +ω2 which allows us to write

equation 3.41 and derive the coincidence count rate 3.42 as a function of

interferometer phase.
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5.3.1 Phase scan experimental process

In order to measure the visibility and demonstrate the entangled state, by

using Equation 3.37, we performed interferometer phase scans and recorded

histograms at each of the two detectors (note here that only one of the two

detectors of each interferometer were used). The scans were repeated for

three different values of power, namely P = 2.5, 5, 15µW , however the power

was kept constant for the duration of each scan. The frequency of the laser

was also kept constant, f = 318.67GHz and thus, we scanned the voltage

to be resonant with the quantum dot. The interferometer phase scan was

from 0° to 180° with a step of 12°. We define four CHSH angles for the first

interferometer, 0°, 45°, 90°, 135° and four more for the second, +22.5° from the

first one such that the bases of the two interferometers are at 45° with each

other. The aforementioned angles are often termed as the Bell angles and

they yield the maximum violation of Bell and CHSH inequalities. However,

in practise those angles have to be corrected and therefore the first step of

measurement process was to calibrate the UMZIs to find the Bell angles of

our experiment. After finding them, we rotate the interferometers such that

they are at those angles. Once again, the whole measurement process was

completely automated. We perform voltage scan to find the resonant voltage

and afterwards we apply it on the quantum dot. Finally, while maintaining one

of the interferometers at a constant phase, we scan the phase of the other and

record histograms in each detector in order to compute the coincidence count

rate and consequently the 2nd-order coherence function of the two-photon

state.

5.3.2 2nd-order coherence function

From the recorded histograms, we sum the measured count rates to retrieve the

coincidence count rate and we plot it as a function of delay τ, ns. Afterwards,

we divide by the average coincidence count rate and thus we normalize g(2).
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Figure 5.14: 2nd-order coherence function g(2) as a function of delay time τ for
three different excitation powers. We can distinguish three different
peaks, corresponding to the three possible states in the interferometers.
The blue curve represents the experimental data while the orange peak
represents the theoretical fit performed convoluted with the detector’s
IRF. The maximum value of g(2) is written as calculated by the data and
as fitted in the case of an ideal detector.

Three different peaks emerge, corresponding to the three possible outcomes.

The central peak corresponds to the case of both the photons choosing the

same path, either short or long, in their respective interferometers while

the side peaks show the interference of the photons propagating in different

paths. The height and width of the peaks is modified by the detector’s internal

response function. In the ideal case, the IRF should be a δ function, however in

reality it is described by a Gaussian distribution with parameters given by the

specifications of the exact model of the detector. The effect of the non-perfect

detection is to broaden the peaks and underestimate the maximum value at

zero delay. We perform a theoretical fit of a double exponential decay and we

convolute it with the Gaussian IRF. The data and fits can be viewed in Figure

5.14.

5.3.3 Visibility of coincidences

We proceed to measure the interference pattern of the coincidence peaks as

we change the phase of one of the UMZIs, while keeping the other one stable.

We perform this three times, one for each of the excitation powers mentioned

in the previous section and for each power we scan the phase four times, one

74 Chapter 5 Experiments



for each of the CHSH angles of the stable interferometer. For every one of the

measurements, the background counts were measured and subtracted from

the peaks. We are interested in the behavior of the central peak, as it is the

one that shows the interference and consequently, will determine if the state is

entangled and if it violates locality.

The interference pattern of the central peak as we scan the phase of the

interferometer for all powers can be seen in Figure 5.15. The experimental

data are shown as dots and the theoretical fit that was performed is shown with

solid lines. The three different plots correspond to three different excitation

powers and for each of them, the interference pattern has been plotted for

each of the CHSH angles determined by the initial calibration for the second

(stable) interferometer. We observe that in the case of P = 2.5µW , the data

are quite noisy as we are close to the detector’s dark count rate. In addition,

we can see from the plots that the visibility of the coincidences reduces as the

driving power increases, same as for the transmitted and reflected light.

Finally, we determine if the state is entangled and if it violates locality. The

theoretical fit of the coincidences provided for each power, 4 fitted values

of the visibility and a corresponding uncertainty, one for each of the CHSH

angles. Using Equation 3.37 we estimate the S parameter for each of the

fitted parameters of visibility and the error is calculated according to the error

propagation. The average values are the mean of the four fitted and the error

represents their standard deviation.

Excitation power P = 2.5µW
ϕ2 = 146° ϕ2 = 191° ϕ2 = 236° ϕ2 = 281° Average

Vfit 0.93 ± 0.06 0.99 ± 0.15 0.82 ± 0.14 0.91 ± 0.13 0.91 ± 0.07
S 2.63 ± 0.17 2.80 ± 0.43 2.32 ± 0.41 2.58 ± 0.38 2.58 ± 0.20

The visibility of the coincidence counts of the central peak for the low power

of P = 2.5µW is quite large, almost unity for ϕ2 = 191° and consequently,

the S parameter of the CHSH is estimated to be close to its maximum value,

Smax = 2
√

2. However, as was also shown in Figure 5.14, for such a low value

of power the data are quite noisy and due to that we have quite large error

in the fitted visibility and the S parameter. Even though the errors are larger
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Figure 5.15: Coincidence count rate as a function of intereferometer phase. The
experimental data are depicted as dots and the solid curves show the
corresponding fits. We can see the interference fringes for three chosen
excitation powers and for the four CHSH angles, chosen by the initial
calibration of the interferometers.
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than ideal, the visibility is significantly above the 1/
√

2 threshold for entangled

state. The S parameter is significant as well, meaning that the post-selected

two-photon state in the transmitted mode is not only time-energy entangled,

but doesn’t obey locality.

Excitation power P = 5µW
ϕ2 = 147° ϕ2 = 192° ϕ2 = 237° ϕ2 = 282° Average

Vfit 0.78 ± 0.03 0.84 ± 0.05 0.68 ± 0.03 0.78 ± 0.03 0.77 ± 0.07
S 2.20 ± 0.08 2.37 ± 0.14 1.93 ± 0.09 2.20 ± 0.07 2.17 ± 0.18

When increasing the power to P = 5µW , the visibility slightly drops and as a

consequence, the S parameter drops as well. In this case, we can claim that

the two-photon state is entangled, however the error of the S parameter is

quite large and as such we cannot claim violation of local hidden variables.

Excitation power P = 15µW
ϕ2 = 151° ϕ2 = 196° ϕ2 = 241° ϕ2 = 286° Average

Vfit 0.68 ± 0.03 0.50 ± 0.03 0.500 ± 0.004 0.65 ± 0.03 0.58 ± 0.09
S 1.93 ± 0.08 1.41 ± 0.07 1.41 ± 0.01 1.84 ± 0.09 1.65 ± 0.28

Finally, when increasing the driving power to P = 15µW we see that the

visibility is significantly reduced. We can still claim that the state is entangled,

however in this driving power regime the state obeys local realism.

In the following plots, we can see the interference fringes of the measurement

of the side peaks, in order to demonstrate the difference between them and

the central peak. It can be seen that the intensity in this case stays mostly

constant, yielding visibilities around 10% − 30%.
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Figure 5.16: Coincidence count rate of the side peaks as a function of intereferometer
phase. The experimental data are depicted as dots and the solid curves
show the corresponding fits. We can see the interference fringes for
three chosen excitation powers and for the four CHSH angles, chosen
by the initial calibration of the interferometers.
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6Conclusions and Future
work

6.1 Summary

For this thesis, the properties of a light field that interacted with a solid-state

emitter embedded in a waveguide were investigated and in the process an

unbalanced Mach-Zehnder interferometer was constructed. The UMZI was

made in order to measure the visibility of the light in the transmitted and

reflected modes of the waveguide, as well as the visibility of the coincidences

of the two-photon component of the transmitted mode. It can also be used

for the control of the relative phase between laser pulses that we can use to

excite the quantum dot. The UMZI introduces a set delay corresponding to

its 1m path length difference and a variable phase that is set by polarization

elements. The variable phase can be controlled precisely and automatically

via PC programs that can be integrated in coding languages. We ensure the

interferometer’s stability by the lock-in amplifier technique, inserting a control

signal into a PID feedback circuit controlled by a microcontroller. The visibility

for a laser beam is above 99%, meaning that the UMZI is stable and the locking

is efficient and consequently, it can be used for applications where precision

is sought. Having in our possesion the UMZI, we measured the visibility of

the driving light and of the coincidence rate, where we made use of another

preexisting identical UMZI to realize the Franson interferometer.
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6.2 Emitter saturation

The first experiment that was conducted aimed to demonstrate the saturation

of the emitter at high powers. To that end, we excited the quantum dot

by coupling the light field into one of the waveguide’s gratings and then

measured the intensity of the light of the transmitted and reflected mode as

a function of detuning. By plotting the value of transmission on resonance

we demonstrated the saturation of the quantum emitter at high powers and

the single-photon nonlinearity in low powers, where the laser beam can be

approximated by a weak coherent state. In this regime, termed as the Rayleigh
regime, the quantum dot effectively reflects the single photon component of

the weak coherent beam and transmits the two photon component due to the

interference between the scattered photons and the emitted field.

6.3 Visibility of transmission and
reflection

We probed the aforementioned interference between the coherent and incoher-

ent component by collecting the reflected or the transmitted light and inserting

it into the UMZI in order to measure the visibility as a function of the laser

driving power. We notice that both for the reflected and for the transmitted

fields, the visibility drops when the light is resonant with the quantum dot,

evidence of the TLS-light interaction, when compared to the non-resonant

voltage. Also similar in both cases is that even though the theoretical fit mostly

agrees with the data, when it deviates, it tends to underestimate the visibility

and produce large errors for the fitted parameters. This could be a sign of

noisy data that could be fixed while simply gathering more statistics or by

implementing a bit of data-cleaning.

A significant difference between the reflected and transmitted fields is the

trend the visibility follows as a function of laser power. In the reflected field

case, the visibility is reduced as the power is increased, while the transmitted

field’s visibility drops to a minimum but then rises again for high powers. In

very low powers, the coherent component of the field is dominant while all
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the population is in the ground state. In this case, the incident field should be

reflected if there are no dephasing mechanisms. Because of the existence of

pure dephasing, some fraction of the incident field manages to pass through

the emitter without interacting with it and this is the reason we see high

visibility in the transmitted mode. As the power increases, the excited state

starts to become populated and thus to emit photons. The emitted photons,

incoherent component, interact with the scattered photons, coherent component,
and we see a drop in the visibility which presumably would approach zero if

not for pure dephasing. In this power region, the incident two-photon states

are scattered inelastically by the quantum dot and the emitted photons are

time-energy correlated with a smaller time uncertainty that the incoming,

squeezing in the transmitted mode. In high powers, the quantum dot starts to

become saturated and the light field just passes through without interaction,

which is why we see the visibility rise.

Regarding the reflected component, for very low powers we see a high value

of visibility, that again would be higher if not for pure dephasing, as most of

the light field is reflected due to destructive interference with the coherent

component. As the power rises, the coherent/incoherent component reduces

and so does the visibility until it drops to zero.

Finally, for the case of the non-resonant phase scans, the transmitted field

in this case is just a coherent laser beam that hasn’t interacted with the

emitter and thus its visibility characterizes the performance and stability of

the interferometer and the phase locking. The reflected field for non-resonant

voltage, should be equal to the background and it is a measure of imperfections

in our collection scheme.

6.4 Time-energy entanglement

Lastly, for the final experiment of this thesis, we used two identical UMZIs

to measure the visibility of the coincidence count rate of the post-selected

two-photon state in the transmitted mode. A visibility larger than 1/
√

2 proves

entanglement in the two-photon state. The visibility is connected to the
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S parameter of the CHSH inequality by Equation 3.37 and if S > 2 then

we can claim that the two-photon state doesn’t obey locality. For all of our

measurements, we found that the two-photon state was indeed entangled

due to time-energy correlations inherited by the scattering by the emitter. We

also found that S > 2 in the case of P = 2.5µW , indicating that the state

doesn’t obey local realism. However for P = 5µW the error was too large

to claim nonlocality and for P = 15µW we found S < 2. The difference

in driving power is not large enough to explain this shift, however many

assumptions were made to derive the aforementioned numbers. For example,

in the theoretical model describing the correlation between the photons of the

two-photon state, pure dephasing, spectral diffusion were not included or the

influence of a non-unity β factor were not included. Another potential reason

for this, could be that the detector’s response is not ideal and it influences the

photon statistics of the incident light. A more careful study of the detector’s

IRF would be a beneficial first step towards improving the reliability of the

CHSH phase scans.
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