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Abstract

Since the realization of zero-energy modes localized at the ends of a 1D topological p-wave
superconductor, these zero-modes (Majorana modes) have been vigorously pursued, and many
heterostructures to engineer them have been proposed. These theoretical proposals have moti-
vated the development of hybrid systems which include topological insulators, spin-orbit coupled
semiconductors, and integer quantum Hall edges all in combination with a superconductor. But
Majorana modes are not the only exotic particles that can appear with topological properties
at such heterostructures. As preliminary works have predicted, Fractional Quantum Hall/su-
perconductor hybrids devices can host parafermions. Parafermions, unlike Majoranas, require
electron-electron interactions to form, which result in richer non-Abelian braiding statistics.

This thesis aims to construct a field theoretical model based on Bosonization and other ana-
lytical techniques to describe such Fractional Quantum Hall/superconductor hybrid devices. In
particular, it aims to model the Crossed Andreev pairing between counter-propagating quan-
tum Hall edge modes induced by the proximity with a superconductor with strong spin-orbit
coupling (NbN), motivated by recent (by the time of writing) experimental results [1]. At First,
it is studied the Integer Quantum Hall (non-Interacting) case by means of Perturbation Theory
and the Feynman Path Integral where an estimation of the induced gap is given and next, by
bosonizing the system it is studied the Interacting FQH system, and an estimation about the
induced gap using the Renormalization Group analysis is provided.
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Introduction

Theoretical proposals to synthesize a topological superconductor from a topological insulator and a
conventional (s-wave) superconductor have motivated hybrid approaches to realize Majorana modes.
Besides topological insulators, these approaches now include spin-orbit coupled semiconductors,
magnetic atom chains, and integer quantum Hall edges all in combination with a superconductor
offering either a testbed for or a route towards topological qubits. Common to all of these is the non-
interacting description of charge carriers and Ising topological order which is insufficient for universal
quantum computation. These approaches, however, can be extended to the computationally universal
Fibonacci order predicted to emerge in a coupled parafermion array.

Parafermions, unlike Majoranas, require electron-electron interactions to form, which result in
richer non-Abelian braiding statistics. A standard condensed matter system that forms with inter-
actions is the Fractional Quantum Hall (FQH) state, which is the basis of different approaches for
synthesizing parafermions. The primary approach combining FQH, appearing in semiconductor het-
erostructures, with superconductivity has so far presented a major experimental challenge. That is
because FQH thrives in high magnetic fields, whilst the superconductor loses his superconductivity.
The solution to this problem was given from a recent experiment performed by Philip Kim and his
group [1]. They used graphene-based Van der Waals (VdW) heterostructures coupled to supercon-
ducting niobium nitride (NbN). The high device quality decreases the magnetic fields required for
robust FQH to the regime where NbN remains superconducting owing to its large critical field. The
superconductor edge-contact to graphene provides an interface transparent enough to allow Crossed
Andreev Reflection (CAR)1 in quantum Hall edges. The most important thing used in this setup is
choice of the superconductor. Even in high magnetic fields, as high as 14T, the NbN does not lose
its superconductivity. Another equally important property is the large spin-orbit coupling in NbN
superconductor, which provides a necessary ingredient for a spin-flip process allowing for a pairing
between electrons with the same spin polarization. The experimental results they found were encour-
aging, because a negative resistance (RCAR < 0) indicates that the electron-like carriers drained from
the superconductor produce hole-like carriers with opposite charge, a direct result of Crossed Andreev

1Crossed Andreev Reflection (CAR) is a non-local process that converts an incoming electron (hole) from
one normal electrode to an out-going hole (electron) in another normal electrode through a superconductor
(SC). Such a non-local process occurs only when the separation between two normal metals (N1 and N2), who
are in contact with a SC, is comparable to or less than the superconducting coherence length ξs.
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Reflection, which reverses the sign of the edge potential.
The goal of this thesis is to construct a field theoretical model based on Bosonization that describes

Crossed Andreev Reflection of particles with the same spin between the counter propagating (Integer
and Fractional) Quantum Hall edges and a conventional Superconductor. This describes an electron
entering the SC from one side and a hole leaving from other side. For this purpose, we choose our
Superconductor to be the NbN, because of its uniqueness, as mentioned before. These CAR pairings
of the same spin will induce a proximity superconducting gap to our system, which we are called to
estimate. The outline of this thesis is as follows: In Chapter 1 we give a theoretical Background
to the physics that is important to us in order to understand better how such heterostructures work.
In Chapter 2 we introduce our model and focus on deriving a field theoretical description that de-
scribes CAR for the non-Interacting (Integer Quantum Hall) case only. This is achieved by using 3
methods (2 analytical and 1 computational). The first one is by using 2nd order Perturbation theory.
For the second, we use the Feynman Path Integral approach and for the third we plot our system and
show the induced gap. In Chapter 3 we focus on estimating the gap by using the Bosonization
technique, which is based on an effective low-energy theory, and the Renormalization Group which
is a transformation that maps a system with a set of coupling constants and a scale (representing the
short-distance or high-energy cutoff) to another equivalent system with a different set of (renormal-
ized) coupling constants and a different scale. Finally, in Chapter 4 we present the Conclusions
and Outlook.
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Chapter 1

Background

In this Chapter, we present a background introduction of the theory for the physics that is hidden in
the model that we are describing in this project. For that purpose, we will use a lot of material that
can be found in the book of Fradkin [2] and in [3], [4], [5].

1.1 Majorana modes

In order to characterize fermions that are their own antiparticle, Ettore Majorana found real solutions
to Dirac equation in 1937. This solution is commonly referred to as the Majorana equation. Even
though this was a "ancient" notion, it continues to influence many areas of contemporary physics.
Majorana’s original hypothesis that neutrinos could actually be Majorana fermions is still taken se-
riously in the context of high energy. Furthermore, according to supersymmetric theories, bosonic
particles like photons have a Majorana "super partner" that corresponds to them. This "super part-
ner" might hold the solution to the mystery of dark matter. In a wide range of solid state systems,
condensed matter physicists are also ardently pursuing Majorana’s vision due to their interest in both
novel basic physics and quantum computing applications.

The Majorana fermions pursued in solid state systems are not basic particles, in contrast to the
Majorana fermions sought by high-energy physicists. The likelihood of success in this quest is greatly
constrained by the fact that regular electrons and ions are unavoidably the components of condensed
matter. For instance, electron and hole excitations in ordinary metals can annihilate, but since they
carry the opposite charge, they are unquestionably not Majorana fermions. Such excitations are natu-
rally being seeked out in superconductors (and other systems where fermions couple and condense).
Indeed, quasiparticles in a superconductor require superpositions of electrons and holes because
spontaneous Cooper pair condensation defies charge conservation in its mean field theory descrip-
tion. Unfortunately, this does not meet the requirements for Majorana fermions to appear. Majorana
fermions are best supported by "spinless" superconductors, which are paired systems with just one ac-
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CHAPTER 1. BACKGROUND 1.1. MAJORANA MODES

tive fermionic species as opposed to two. Spinless superconductors, i.e. paired systems with only one
active fermionic species rather than two, provide ideal platforms for Majorana fermions. Cooper pair-
ing, which produces p-wave superconductivity in one dimension (1D) and px ± ipy superconductivity
in two dimensions, must take place with odd parity in a "spinless" metal according to Pauli exclusion
(2D). Because they achieve topological phases that enable exotic excitations at their borders and at
topological defects, these superconductors are highly unique. Most crucially, in the 2D px±ipyăsitua-
tion, zero-energy modes bond to superconducting vortices and localize at the ends of a 1D topological
p-wave superconductor. These zero-modes are precisely the Majorana fermions in condensed matter
that are the subject of current active research. Topological superconductivity is therefore a fascinat-
ing state of matter, in part because it is linked to Majorana fermion-based quasiparticle excitations
(MFs). As a result, the presence of (spatially separated) MFs is an invariant of topology (hence the
name topological superconductors). As a result, they will be present in all systems that have p-wave
or px ± ipy-wave superconductors’ topological features.

Let γ be the operator that corresponds to one of these modes. Being its own anti-particle implies
that γ = γ† (hermitian) and γ2 = 1. Also, γ should be seen as a fractionalized zero-mode consisting
of ’half’ of a normal fermion. Any fermion may be expressed as a combination of two MFs, which
essentially means separating the fermion into a real and an imaginary part, each of which is an MF.
To be more specific, to generate a fermionic state with a well-defined occupation number, a pair
of Majorana zero modes, say γ1 and γ2, must be combined through f = γ1+iγ2

2
. This new operator

clearly represents a standard fermionic operator that satisfies f 6= f † and obeys the standard fermionic
anticommutation relations.With this definition, there are two essential features that support by far the
most intriguing Majorana fermion consequence. The first is that γ1 and γ2 can locate arbitrarily far
away; as a result, f encodes strongly non-local entanglement. Similarly, when we discuss MFs here,
we imply that a fermionic state may be expressed as a superposition of two spatially separated MFs
(or prevented from overlapping in some other manner). "Such a highly delocalized fermionic state is
protected from most types of decoherence, since it cannot be changed by local perturbations affecting
only one of its Majorana constituents. And second, one can empty or fill the non-local state described
by f with no energy cost, resulting in a ground-state degeneracy. These two properties signals the
emergence of non-Abelian statistics" [5].

One of the pillars of quantum theory is exchange statistics, which describes how many-particle
wavefunctions change when interchanges of identical particles take place. Metals, superfluids, su-
perconductors, and many other quantum phases are in fact accessible by a rather direct route from
particle statistics. It has long been understood that 2D systems can contain particles whose statistics
are neither fermionic nor bosonic due to topological considerations. Such anyons are available in both
Abelian and non-Abelian varieties. A statistical phase eiθ that is halfway between -1 and 1 is acquired
by the wavefunction as a result of the exchange of Abelian anyons, which are present in the majority
of fractional quantum Hall states.

4
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From the perspective of basic physics, the observation of Majorana fermions in condensed matter
is a significant accomplishment since it confirms Ettore Majorana’s theoretical finding and, more sig-
nificantly, because they include non-Abelian statistics. The synthesis of a scalable quantum computer
is one of the field’s greatest difficulties, and conquering it may eventually depend on the results of
this quest. The core notion is that "topological qubits" may be encoded using the occupation numbers
nj = 0, 1, which indicate the degenerate ground states of |n1, n2, . . . , nN〉. Due to the arbitrary spatial
separation between pairs of Majorana modes corresponding to a given nj , this quantum information
is stored strongly non-locally. The system effectively stays contained to the ground-state manifold if
we assume that the temperature is low relative to the bulk gap and that the manipulations are done
adiabatically. Due to the availability of non-Abelian statistics, the user is able to controllably alter the
qubit’s state by adiabatically swapping the locations of Majorana modes. In theory, the environment
may potentially cause (unwanted) exchanges, damaging the qubit, however because such processes
are non-local, the likelihood of this happening is quite low. This serves as the foundation for fault-
tolerant topological quantum computing systems that gracefully defeat hardware-level decoherence.
However, the extra unprotected operations required for universal quantum computation have excep-
tionally large error thresholds. While braiding of Majorana fermions alone allows for some limited
topological quantum information processing. Thus, future revolutionary technology applications are
also a driving force behind the quest for Majorana fermions.

1.1.1 Properties of Majorana fermions

The information for this subsection have been taken from an excellent paper of Martin Leijnse and
Karsten Flensberg [4]. Assume now, that we have a system with 2N spatially well-separated MFs,
γ1, . . . , γ2N . Since one MF has half the degrees of freedom of a typical fermion, the number of MFs
must be even. The Majorana operators are created by dividing a normal fermion fi into its real and
imaginary components, just like in the case of Kitaev’s chain:

fi =
γ2i−1 + iγ2i

2
(1.1)

The inverse relation is
γ2i−1 = f † + f, (1.2)

γ2i = i(f † − f) (1.3)

One can easily see that the Majorana operators are hermitian, γj = γ†j . The Majorana operators
compliance with the anti-commutation relation may be easily checked using the fermionic anti-
commutation relations for the fi fermions:

{γi, γj} = 2δij (1.4)

5
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which resembles conventional fermions in certain ways. However, there are some considerable dif-
ferences. There is no Pauli principle (c2 = (c†)2 = 0 for regular fermion operators c) for MFs since,
according to eq. (1.4), γ2 = 1. In fact, we are unable to even discuss Majorana mode occupancy.
By creating a "Majorana number operator," nMF

i = γiγ
†
i , we may attempt to count the occupancy.

However, when we take into consideration the aforementioned characteristics, we can observe that
nMF
i = γiγ

†
i = 1. Therefore, counting is useless since the Majorana mode is paradoxically both

always empty and always filled.
The fi fermionic operators in this case supply the number of states, ni = fif

†
i , and the Pauli

exclusion principle causes its eigenvalues to be ni = 0, 1. It is only natural to select to merge two
MFs into a fermion if they are close enough to overlap. The sole term that can be added to the
Hamiltonian to explain an overlap, t, between γ2i−1 and γ2i is

i

2
tγ2i−1γ2i = t(ni −

1

2
) (1.5)

which indicates that holding the appropriate fermionic state has a finite energy cost (t > 0). The
groundstate is 2N-fold degenerate if the MFs do not overlap, which corresponds to each ni being
equal to zero or one. The total number of electrons in the superconductor is now determined by
whether the sum of all occupancy numbers,

∑N
i=1 ni, is even or odd (even or odd parity). Electrons

must be physically introduced to or withdrawn from the superconductor in order to adjust the parity.
Noting that a single MF includes just "half a degree of freedom," it is clear that discussing the "state
of an MF" is meaningless. The fermionic occupancy numbers are the only physically observables.

1.2 Hall Effect

1.2.1 Classical Quantum Hall

This section aims to show on how from the Classical Hall effect one can end up to the Quantum Hall
effect (Integer and Fractional). The information provided here are based on the work of David Tong
[3] who gathered and presented the information for this consolidated theory.

We will continue here by providing a small introduction first to the classical picture of the Hall
effect.

Our basics ingredients to describe this theory will be a magnetic field
−→
B that causes charged

particles to move in circles with a cyclotron frequency of ωB = eB
me

, where e is the charge of the
particle and me its mass, an electric field

−→
E which will accelerate the charges and, in the absence of

a magnetic field, would result in a current in the direction of E and finally, last ingredient is a linear
friction term, which is supposed to capture the effect of the electron bouncing off whatever impedes
its progress, whether impurities, the underlying lattice or other electrons. This system will correspond

6
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to an equation of motion, of the form:

me
d−→v
dt

= −e
−→
E − e−→v ×

−→
B − me

−→v
τ

(1.6)

where τ in the friction term is called the scattering time and can be thought of as the average time
between collisions. Eq. (1.6) is the simplest model of charge transport and it is called the Drude
model.

The current density is associated with the velocity and has the form:

−→
J = −ne−→v (1.7)

where n is the density of charge carriers. We are interested in solving eq. (1.6) in the equilibrium,
where d−→v

dt
= 0. This means that we have:

−→v +
eτ

me

−→v ×
−→
B = − eτ

me

−→
E ⇒

(
1 ωBτ

−ωBτ 1

)
−→
J =

ne2τ

me

−→
E (1.8)

and by inverting it we get the equation of Ohm’s law, which tells us how the how the current flows in
response to an electric field:

−→
J = σ

−→
E (1.9)

Here, σ is the conductivity and has the matrix form:

σ =
σ0

1 + (ωBτ)2

(
1 −ωBτ

ωBτ 1

)
(1.10)

with σ0 = ne2τ
me

being the conductivity in the absence of a magnetic field and the off-diagonal terms
in the matrix are responsible for the Hall effect.

An important parameter now is the (Hall) resistivity which is defined as:

ρ = σ−1 =
1

σ0

(
1 ωBτ

−ωBτ 1

)
=

(
ρxx ρxy

−ρxy ρyy

)
(1.11)

and shows that the off-diagonal terms are independent of the scattering time τ . Another reason why
this parameter is important, is because it is related to the Resistance which is a parameter we can
measure in experiments. In particular, the Hall coefficient is defined as:

RH =
ρxy
|B|

(1.12)

7
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which in the Drude theory is given by:

RH = − 1

ne
(1.13)

and allows us to measure the density of electrons in a metal [6].

1.2.2 Integer Quantum Hall Effect

In one of the earliest experiments, the integer quantum Hall effect (IQHE) was observed when a very
clean (mobility about 105cm2/V s) two-dimensional electron gas was cooled below 2 K and subjected
to a perpendicular magnetic field of the order of 20 T. Von Klitzing conducted this experiment in 1980
[7]. The intriguing outcome of this experiment is that the Hall resistivity ρxy plateaus for a range of
magnetic fields before abruptly moving to the next plateau (see Fig.(1.1)).

Figure 1.1: "Experimental curves for the Hall resistance RH = ρxy and the resistivity ρxx ≈ Rx

of a heterostructure as a function the magnetic field at a fixed carrier density corresponding to
a gate voltage Vg = 0V . The temperature is about 8 mK" [7].

On these plateau, the resistivity takes the value:

ρxy =
2π~
e2

1

ν
, ν ∈ Z (1.14)

The value of ν is measured to be an integer to an extraordinary accuracy and the quantity 2π~
e2

is called
the quantum of resistivity. The centre of each of these plateaus occurs when the magnetic field takes
the value:

B =
2π~ne

eν
=
ne

ν
Φ0 (1.15)

where ne is the electron density and Φ0 =
2π~
e

is the flux quantum.
Another important finding that is shown in Fig.(1.1) is the surprising behaviour of the longitudinal

8
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resistivity ρxx. In particular, when ρxy sits on a plateau, the longitudinal resistivity vanishes: ρxx = 0.
It spikes only when ρxy jumps to the next plateau. This surprising fact has nothing to do with quantum
mechanics , but instead is a classical of the Drude model in the limit where τ → ∞ where there is no
scattering. In this case, the current is flowing perpendicular to the applied electric field, so

−→
E ·

−→
J = 0.

This means that we have a steady current flowing without doing any work and, correspondingly,
without any dissipation. The fact that σxx = 0 is telling us that no current is flowing in the longitudinal
direction (like an insulator) while the fact that ρxx = 0 is telling us that there is no dissipation of energy
(like in a perfect conductor).

The experimental findings include a hint on the genesis of the plateaus. Typically, experimental
systems are impure and unclean. This is known as disorder in technical terms. Normally, one wishes
to clear away this debris in order to expose the underlying physics. However, the plateaus in the
quantum Hall effect grow more noticeable, not less, when the level of disorder is increased (within
reason). In fact, it is anticipated that the plateaus will totally disappear in the absence of disorder.
How could something as precise and pure as an integer arise from the presence of dirt? To find the
solution to this, it is necessary to observe how these ailments would affect the system. The degenerate
eigenstates that make up a Landau level are first predicted to separate. This comes generally from the
quantum perturbation theory, which states that degeneracies will be broken by any broad disturbance
that does not retain a symmetry. In relation to the separation of the Landau levels, the strength of the
disorder must be minimal:

V � ~ωB (1.16)

This implies that the samples that display the quantum Hall effect must really be quite clean in prac-
tice. Alternatively, we require some chaos, but not too much!

Another kind of disorder causes many quantum states to become localized instead of extended.
In this case, an extended state extends throughout the entire system. A localized state, in contrast, is
constrained to occupy a certain area of space. In a semi-classical model that is valid if the potential,
in addition to abiding by (1.16), fluctuates noticeably on scales far larger than the magnetic length lB,
we can plainly discern the presence of these localized states:

|∇V | � ~ωB

lB
(1.17)

According to this assumption, an electron’s cyclotron orbit occurs in a region of virtually constant
potential. In this instance, there is a division of scales: when the electron motion is viewed classically,
it may be divided into two phases: a rapid cyclotron orbit revolving around an instantaneous guiding
center, and a long drift of this guiding center. The drift is parallel to the local electric field and follows
equipotentials as a result. The energy of the equipotential along which an electron moves displaces the
electron’s energy within each Landau level created by the quantization of the fast cyclotron motion.

The contrast between localized and extended states in conductivity is significant. The only states

9
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that may move charge from one side of the sample to the other are the extended states. So, the
conductivity can only come from these states. Let’s assume that all of the extended states in a certain
Landau level have been filled. Each Landau level may hold fewer electrons when B is reduced while
keeping neăunchanged, hence the Fermi energy will rise. he localised states begin to fill, however,
rather than advance to the next Landau level. The conductivity remains unchanged since these states
cannot add to the current. This results in exactly the same kind of plateaus as those that are seen, with
constant conductivities throughout a range of magnetic field.

If we accept this explanation for how disorder affects electron eigenstates, we can understand
the existence of Hall plateaus, but the precise quantization of Hall conductance is immediately unex-
pected. After all, one might have anticipated that a decrease in the number of extended states would be
accompanied by a decrease in the Hall conductance. In order to precisely make up for their decreased
number, it is obvious that the remaining extended states must carry an additional current.

To understand this, consider a quantum Hall sample in the form of an annulus as shown in Fig.(1.2)
In addition to the magnetic field responsible for the quantum Hall effect, which pierces the surface

Figure 1.2: Geometry considered in Laughlin argument for exactness of quantisation of Hall
conductance

of the annulus, we introduce a second magnetic flux Φ, threading through the hole at the centre of
the annulus. Allowing this flux to vary as a function of time, we generate a voltage V around the
circumference of the quantum Hall sample. From Faradays law, we have:

V = −dΦ
dt

(1.18)

Within a Hall plateau, this produces a current flow:

I = σxyV (1.19)

in the perpendicular direction, which is radial. Integrating the rates of flux change and current flow

10
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over time, a given flux difference ∆Φ corresponds to the transport of a certain charge Q between the
inner and outer edges of the annulus. Now, we expect that a change in Φ of one flux quantum (h/e)
will return the interior of the quantum Hall system to its initial state, implying that an integer number
of electrons have then been transported across the annulus. We have:

ν × e = Q = σxy ·∆Φ = σxy
h

e
⇒ σxy = ν

e2

h
(1.20)

where ν is integer number.

1.2.3 Fractional Quantum Hall Effect

In addition to the integer plateaus we have examined, quantum Hall plateaus with specific straight-
forward fractional values of the Hall conductance are seen in sufficiently high mobility samples. In
particular, one gets σxy = p

q
e2

h
, where p and q are integers and q is almost always odd. The fact that

this is seen in samples with little disorder suggests that interactions are what lift the partially filled
Landau level’s degeneracy and create unique associated ground states at particular filling factors. Ad-
ditionally, the fact that σxx → 0 at low temperatures (with an activated temperature dependency)
denotes the possibility of an excitation gap from these connected ground states. Furthermore, since
we claimed that the charge transferred across an annular system when one flux quantum is introduced
should be equal to σxy × h

e
, Laughlin’s argument for the quantisation of Hall conductance shows that

excitations contain fractional charge. We obtain (p/q)e = ν × e∗ when we assume that this charge is
made up of an integer number of quasiparticles, each with a charge of e∗.

As mentioned in [3], "the integer quantum Hall effect was originally discovered in a Si MOSFET
(this stands for metal-oxide-semiconductor field-effect transistor). This is a metal-insulator semicon-
ductor sandwich, with electrons trapped in the inversion band of width ∼ 30 Å between the insula-
tor and semi-conductor. Meanwhile the fractional quantum Hall effect was discovered in a GaAs-
GaAlAs heterostructure. and a lot of the subsequent work was done on this system, and it usually
goes by the name GaAs (Gallium Arsenide). In both these systems, the density of electrons is around
ne ∼ 1011 − 1012 cm−2"[3].

"More recently, both Integer and Fractional Quantum Hall Effects have been discovered in graphene,
which is a two dimensional material with relativistic electrons. The physics here is similar in spirit,
but differs in details"[3]. These differences will be analyzed in section (1.2.4).

1.2.4 Landau Levels

Let us try to analyze the physics behind the Quantum Hall Effect by reviewing the quantum mechanics
of free particles moving in a background magnetic field and the resulting phenomenon of Landau

11
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levels. In the following we will consider two cases. The first one will be the non-relativistic and the
second will be the relativistic.

Non-relativistic case

We begin with the non-relativistic case. In the presence of a magnetic there is a Zeeman splitting
between the energies of spin up and down ∆B = 2µBB where µB = e~/2me is the Bohr magneton.
In strong magnetic fields, large energies are needed to flip the spin. This means that, if we restrict to
low energies, the electrons act as if they are effectively spinless. Furthermore, the magnetic field is
applied perpendicular to the plane of motion of the particle (the z-axis is taken perpendicular to the
plane) and may be written in the following vector form:

−→
B = (0, 0, Bz) (1.21)

In the presence of a magnetic field, the free particle Hamiltonian can be described as:

H =
1

2m

(−→p + e
−→
A
)2 (1.22)

where
−→
A is the magnetic vector potential and is connected with the magnetic field via the relation

−→
B = ∇×

−→
A . We will work in symmetric gauge potential which has the form:

−→
A (−→r ) = 1

2

−→
B ×−→r =

Bz

2
(−y, x, 0) (1.23)

where −→r = (x, y, 0) and Bz = B > 0. This choice of gauge breaks translational symmetry in both
the x and the y directions. However, it does preserve rotational symmetry about the origin. This
means that angular momentum is a good quantum number.

We define the mechanical momentum operators:

π = −→p + e
−→
A (1.24)

which is gauge invariant, but non-canonical and satisfies the commutation relation [πx, πy] = −ie~Bz.
We will use this to construct the raising and lowering operators:

α =
1√

2e~Bz

(πx − iπy), α† =
1√

2e~Bz

(πx + iπy) (1.25)

which obey
[
α, α†] = 1. In terms of these creation operators, the Hamiltonian takes the harmonic

oscillator form:
H =

1

2m
π · π = ~ωB(α

†α +
1

2
) (1.26)

12
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We can construct the Hilbert space in the same by introducing a ground state |0〉 obeying α |0〉 = 0

and build the rest of the Hilbert space by acting with α†:

α† |n〉 =
√
n+ 1 |n+ 1〉 , α |n〉 =

√
n |n− 1〉 (1.27)

The state |n〉 has energy:

En = ~ωB

(
n+

1

2

)
, n ∈ N (1.28)

This shows that in the presence of a magnetic field, the energy levels of a particle become equally
spaced, with the gap between each level proportional to the magnetic field B. These energy levels are
called Landau Levels.

By starting with a particle moving in a plane, which has two degrees of freedom, we ended up
writing this in terms of the harmonic oscillator which has just a single degree of freedom. What we
lost along the way is the fact that eq. (1.28) does not have a unique state associated to it. Instead there
is a degeneracy of states.

In order to see the degeneracy in this language, we need to introduce another kind of mechanical
momentum:

π̃ = −→p − e
−→
A (1.29)

In contrast to eq. (1.24) this differs by the minus sign which makes this new mechanical momentum
not gauge invariant. Their commutators differ also by a minus sign [π̃x, π̃y] = ie~Bz. By taking the
commutation relations of these 2 mechanical momentum operators, we find that [πi, π̃j] 6= 0 and they
cannot be diagonalized simultaneously. This shows the lack of gauge invariance.

The reason we choose the symmetric gauge of eq. (1.23) is because it solves this problem.
Namely, we get:

[πi, π̃j] = 0 (1.30)

We can now define a second pair of raising and lowering operators:

b =
1√

2e~Bz

(π̃x + iπ̃y), b† =
1√

2e~Bz

(π̃x − iπ̃y) (1.31)

which also obey now the commutation relation
[
b, b†

]
= 1. It is this second pair of creation operators

that provide the degeneracy of the Landau levels. We define the ground state |0, 0〉 to be annihilated
by both lowering operators, so that α |0, 0〉 = b |0, 0〉 = 0. Then the general state in the Hilbert space
is |n,m〉 defined by:

|n,m〉 = α†b†√
n!m!

|0, 0〉 (1.32)

where the energy of this state is given by the usual Landau Level expression of eq. (1.28) and it
depends on n but not on m.

13
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What we want next, is to derive the wavefunctions of the symmetric gauge. We will focus on the
Lowest Landau Level (n = 0) for simplicity. It help to rewrite the annihilation operator α as:

α =
1√

2e~Bz

(πx − iπy) =
1√

2e~Bz

(
px − ipy + e(Ax − iAy)

)
=

1√
2e~Bz

(
− i~

(
∂

∂x
− i

∂

∂y

)
+
eB

2
(−y − ix)

)
(1.33)

We introduce the complex coordinates:

z = x− iy, z̄ = x+ iy (1.34)

which will make our wavefunctions holomorphic1. The corresponding holomorphic derivatives are:

∂z =
1

2

(
∂

∂x
+ i

∂

∂y

)
∂̄z =

1

2

(
∂

∂x
− i

∂

∂y

)
(1.35)

which obey ∂zz = ∂̄z̄ z̄ = 1 and ∂z̄z = ∂̄z z̄ = 0. In terms of these holomorphic coordinates, α b
operators takes the form:

α = −i
√
2
(
lB∂̄z +

z

4lB

)
α† = −i

√
2
(
lB∂z −

z̄

4lB

)
(1.36)

b = −i
√
2
(
lB∂z +

z̄

4lB

)
b† = −i

√
2
(
lB∂̄z −

z

4lB

)
(1.37)

with lB =
√
~/eB the magnetic length. The lowest Landau level wavefunctions ψLLL(z, z̄) are

then those which are annihilated by this differential operator and can be found to be equal with:

ψLLL(z, z̄) = f(z)e−|z|2/4l2B (1.38)

for any holomorphic wavefunction f(z). We can now construct the higher states by acting with b†.
This results to:

ψLLL,m(z, z̄) = f(z)
( z
lB

)m
e−|z|2/4l2B (1.39)

This particular basis of states has another advantage, these are eigenstates of angular momentum.
This means also that m labels the angular momentum. For a system with NΦ flux quanta there are NΦ

linearly independent states. Thus, an arbitrary state in the lowest Landau level is a polynomial in z of
degree NΦ times the exponential factor. For a more detailed solution, one can refer to [2] or [8].

Let us consider now the case of a system with exactly N = NΦ electrons in a magnetic field B
with NΦ flux quanta. The ground-state wave function (for a non-interacting Hamiltonian) ψN for the

1A holomorphic function is a complex-valued function of one or more complex variables that is complex
differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn.
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N-particle system is the Slater determinant:

ψN(z1, . . . , zN) =

∣∣∣∣∣∣∣∣∣∣
z01 . . . z0N
z11 . . . z1N
...

...
...

zN1 . . . zNN

∣∣∣∣∣∣∣∣∣∣
e
− 1

4l2
B

N∑
j=1

|zj |2
(1.40)

This determinant has the form of a Vandermonde determinant. By application of a standard algebraic
identity, the wave function ψN can be written in the form:

ψN(z1, . . . , zN) =
∏

1≤j<k≤N

(zj − zk)

(
e
− 1

4l2
B

N∑
j=1

|zj |2
)

(1.41)

Thus, we derived the many-body wave function of a filled Lowest Landau Level.

The Laughlin wave function

We have so far thought about the issue of how electrons move on a 2D surface when a perpendicular
magnetic field is present. We made the assumption that an integer number of Landau Levels (or bands)
would be fully filled due to the electron density. The interactions are not particularly significant since
there is an energy gap in the system. The IQHE matches the description here.

Let’s assume that one Landau Level (or band) has some remaining space. As a result, perturbation
theory will break down. The filling fraction ν = N

NΦ
in the straightforward scenario of N particles in

a magnetic field B with NΦ flux quanta penetrating the surface is not an integer. We will focus on the
more straightforward (and well-known) scenario of ν = 1/m, where m is an odd number and there
are m flux quanta for each electron. Furthermore, we assume that the magnetic field is sufficiently
enough to provide all of the Zeeman energy necessary for full spin polarization of the system. The
majority of the experimentally available systems are represented by this instance, although not all of
them.

Now, a non-interacting fractionally filled state would still exhibit a fractional Hall conductance σxy
since, at least for a Galilean-invariant system, the conductance is determined by the amount of charge
present. But such a state would not support the very precise plateaus which are seen in experiments,
since additional particles can be added at almost no energy cost. The fact that the FQHE is seen only
in the purest samples indicates that the effect is the result of electron correlations due to the Coulomb
interactions. Moreover, the quenching of the single-particle kinetic energies by the magnetic field
is telling us that the interactions play a dominant role. The FQHE is the result of the competition
between degeneracy and interactions. In this sense, the FQHE is an example of strongly correlated
electron systems.
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The model which naturally describes the essential features of the physical system consists of an
assembly of N electrons that occupy a fraction of the NΦ states of the lowest Landau Level and
interact with each other via Coulomb interactions. The ground state of the system should not support
any gapless excitations (otherwise the plateaux of σxy could not be so sharp), with an exemption
the edges, and it should be essentially insensitive to the presence of impurities. Furthermore, the
wave function should be a complex function of the electron coordinates, because in the presence of
a magnetic field time-reversal invariance is broken explicitly. Finally, Fermi statistics demands that
the wave function ψN(z1, . . . , zN) should be anti-symmetric under the permutation of the positions of
any pair of particles. Thus, ψN vanishes as the positions of two particles approach each other.

Laughlin was the first to realize that the liquid state is fundamentally different from other known
condensed states, such as magnetism or superconductivity. Drawing on intuition he gained by study-
ing systems with small numbers of particles, Laughlin proposed the following class of wave functions
[9]:

ψN(z1, . . . , zN) =
∏

1≤j<k≤N

f(zj − zk)

(
e
− 1

4l2
B

N∑
j=1

|zj |2
)

(1.42)

Fermi statistics demands that f(zj−zk) be an odd function of zj−zk that vanishes as zj → zk. These
requirements, together with the demand that ψN should be an eigenstate of the total Lz orbital angular
momentum, can be met by the simple choice of f(z) ∼ zm, where m is an odd integer. We thus arrive
at the Laughlin wave function ψm:

ψm(z1, . . . , zN) =
∏

1≤j<k≤N

(zj − zk)
m

(
e
− 1

4l2
B

N∑
j=1

|zj |2
)

(1.43)

The ground state is determined by just finding the values of m that minimize the energy. But m is in
fact determined by the total angular momentum.

Relativistic case

As we mentioned earlier, both Integer and Fractional Quantum Hall Effects have been discovered
in graphene. Electrons in graphene behave as if they were relativistic massless particles. This
means, that their quantum-mechanical behaviour is no longer described in terms of a (non-relativistic)
Schrödinger equation, but rather by a relativistic 2D Dirac equation. As a consequence, Landau quan-
tisation of the electrons kinetic energy turns out to be different in graphene than in conventional
(non-relativistic) 2D electron systems.

Here we will focus on the relativistic Hamiltonian:

HD = v
(−→p + e

−→
A
)−→σ (1.44)
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For more details on how to arrive from the Honeycomb lattice in the tight binding model Hamiltonian
to the Dirac Hamiltonian, one can look at [10].

The relativistic case (1.44) for electrons in graphene may be treated exactly in the same manner
as the non-relativistic one. In terms of the ladder operators, the Hamiltonian reads:

HD = v

(
0 πx − iπy

πx + iπy 0

)
=

√
2
~v
lB

(
0 α

α† 0

)
(1.45)

One remarks the occurrence of a characteristic frequency ω′ =
√
2v
lB

, which plays the role of the
cyclotron frequency in the relativistic case. Note, however, that this frequency cannot be written in
the form eB/mb because the band mass is strictly zero in graphene, so that the frequency would
diverge.

In order to obtain the eigenvalues and the eigenstates of the Hamiltonian (1.45), one needs to solve
the eigenvalue equation HDψn = Enψn. where the eigenstates are 2-spinors:

ψn =

(
un

vn

)
(1.46)

Thus, we need to solve the system of equations:

~ω′αvn = Enun and ~ω′α†un = Envn (1.47)

which results to the equation:

α†αvn =

(
En

~ω′vn

)2

(1.48)

for the second spinor component. One may therefore identify, up to a numerical factor, the second
spinor component vn with the eigenstate |n〉 of the usual number operator α†α = n, with α†α |n〉 =
n |n〉 in terms of the integer n ≥ 0. Furthermore, one observes that the square of the energy is
proportional to this quantum number, En = (~ω′)2n. This equation has two solutions, a positive and
a negative one, and one needs to introduce another quantum number λ = ±, which labels the states
of positive and negative energy, respectively. We thus obtains the spectrum:

Eλ,n = λ
~ω′

lB

√
2n (1.49)

of relativistic Landau Levels that disperse as λ
√
Bn as a function of the magnetic field.

Once we know the second spinor component, the first spinor component is obtained from eq.
(1.47), which reads un ∝ αvn ∼ α |n〉 ∼ |n− 1〉. One then needs to distinguish the zero-energy LL
(n = 0) from all other levels. Indeed, for n = 0, the first component is zero. In this case one obtains

17



CHAPTER 1. BACKGROUND 1.3. THE LUTTINGER LIQUID

the spinor:

ψn=0 =

(
0

|n = 0〉

)
(1.50)

In all other cases (n 6= 0), one has positive and negative energy solutions, which differ among each
other by a relative sign in one of the components. A convenient representation of the associated
spinors is given by:

ψλ,n6=0 =
1√
2

(
|n− 1〉
λ |n〉

)
(1.51)

It is worth noting, that in the massive Dirac Hamiltonian:

Hm
D =

(
M v(πx − iπy)

v(πx + iπy) −M

)
=

(
M

√
2~v
lB
α√

2~v
lB
α† −M

)
(1.52)

one can obtain the eigenvalues in the same manner as in the M = 0 case, and finds:

Em
λ,n = λ

√
M2 + 2

~2v2
l2B

n (1.53)

for the massive relativistic LLs with n 6= 0. The case of n = 0 needs special care.For more details
one can look at [10].

1.3 The Luttinger Liquid

In this section we will present why the description of the Luttinger liquid is important to us. We will
however not go into much of the technical details of the theory, which is a very rich one, but instead
we discuss the most important parts which will be useful for our final steps of the project. Again, if
one wants to take a more in-depth look into Luttinger liquid theory, we recommend to take a look into
the book of Fradkin [2] from where we take a lot of the material for this Chapter.

We will look at the situation where the Landau theory fails in one-dimensional (1-D) Fermi sys-
tems. How about 1-D systems, though? Our environment is three dimensional, hence it is only
approximate to describe a system in terms of just one space dimension. This approximation is based
on the fact that we may consider the degrees of freedom in the transverse directions ŷ and ẑ frozen
in their ground state at low enough temperatures and low enough energy scales for motion along the
direction x̂.

A wide range of physical systems, including nanowires, chains or ladders of ultracold atoms,
optical waveguides, the edge states of 2D topological materials, and many more, may be described
using this type of 1D approximation.
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Now, by starting from the 1D system of non-interacting spinless fermions with fermions hopping
along a chain:

H0 = −t
∑
r

[
c†r+αcr + H.c.

]
+ µ

∑
r

c†rcr (1.54)

where t is the hopping coefficient and α the lattice spacing, we can manipulate it by considering the
physics at low temperature and energies and linearize the dispersion close to the Fermi surface to end
up to the Hamiltonian of the form:

H0 =

∫
ivFψ

†
L∂xψL − ivFψ

†
R∂xψR (1.55)

where we introduced two fermionic chiral fields ψL and ψR and vF = ∂E(k)/∂k the Fermi velocity.
By introducing the the spinor ψ = (ψL, ψR)

T we finally obtain:

H0 =

∫
ivFψ

†σz∂xψ (1.56)

which is the 1-D Dirac Hamiltonian with σz the Pauli matrix.
This Dirac Hamiltonian can be expressed in terms of non-interacting boson fields as:

HFQH =
vF
2π

∫
dx
(
K(∂xφ(x))

2 +
1

K
(∂xθ(x))

2
)

(1.57)

where the fields φ(x) and θ(x) obey the duality relation:

∂τθ = ivFK∂xφ, ∂xθ = i
K
vF
∂tφ (1.58)

Here K is called the Luttinger parameter and encodes many information for the system.
A process known as bosonization is used to describe interacting models of fermions (or bosons)

on the basis of the (Tomonaga and) Luttinger model, a model of interacting and linearly dispersing
fermions that can be precisely solved. The Luttinger liquid Hamiltonian will be described by the
following , for instance, if we take into account a density-density interaction:

H = H0 +Hint = H0 + U
∑
r

c†r+1cr+1c
†
rcr (1.59)

where H0 is the free Hamiltonian of eq. (1.54). This interacting model of spinless 1D fermions can
be recast into a non-interacting model of bosons of the form of eq. (1.57). In this case however, the
Fermi velocity will be a new renormalized velocity and the Luttinger parameter K will encode all the
informations for interacting term whereas in the non-interacting case it has value K = 1.

The above results can be extended also to the case of spin 1/2 fermions, where the results will be
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a bit more complicated. This will be the case similar to ours in this project.
This is just an introduction for the reader to have an idea of what is about to follow. More details

about bosonization will come at Chapter (3).

1.4 Physics at the edge

The oscillations in the bulk result in fluctuations at the border in an incompressible quantum fluid,
such as the Laughlin state. Local fluctuations in the bulk are linked to local changes in density,
whereas local fluctuations in the states at the border are linked to variations in the appearance of the
electron fluid’s "droplet." The only gapless excitations of the system are these "edge waves." Although
it may seem strange that even incompressible fluids have gapless excitations, typical fluids like water
frequently exhibit gapless modes near the surface. The gaplessness in the FQHE is caused by the
fact that the geometric edge of the fluid corresponds with the locus of sites where the Fermi energy
crosses the external potential that limits the fluid. As a result, the fluid’s border behaves like a "Fermi
surface," and as we proceed from the edge into the bulk, we get deeper and deeper into the Fermi sea
of occupied states. Edge waves are chiral excitations that travel at the drift velocity of the particles
at that place due to the presence of a magnetic field. As a result, edge states may only travel in one
direction, which is determined by the magnetic field.

The Fractional Quantum Hall Effect may alternatively be thought of as an IQHE of an analogous
system of fermions within a mean (or average)-field approximation. As a result, we will discuss the
FQHE edge states.

1.4.1 Hydrodynamic theory of the edge states

Consider a 2-Dimension Electron Gas (2DEG) confined by a confining potential to a limited (but
huge) area of a sample. A quantum Hall state (integer or fractional), of such a system is an in-
compressible fluid because all states in the bulk contain a gap that may be made arbitrarily big by
increasing the external magnetic field (while keeping the filling fraction of the Landau level fixed).
A weak external electromagnetic disturbance acting on this charge fluid can only have a net influ-
ence on its border, resulting in slow and long-wavelength changes in its form. Because of the fluid’s
incompressibility, adiabatically adding or removing some charge from the bulk of the fluid is equal
to adding or removing the same amount of charge from the edge. To put it another way, the entire
fluid (bulk plus edge) must preserve charge. A fluid with local charge conservation obeys a continuity
equation, which implies that its electromagnetic response must be gauge-invariant. This indicates
that the charge cannot be preserved independently in the bulk or at the edge, but only in the system
as a whole. This leads to the key discovery that breaches of gauge invariance in the bulk and at
the edge must cancel out perfectly. This local conservation of charge leads to a simple and elegant
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hydrodynamic theory.
We will not get into more details about the construction of this hydrodynamic theory since it is

explained in Chapter 15 of [2]. We will however note here an important result of the calculation that
can be found there.

After the construction of the hydrodynamic theory for the edge states, the Hamiltonian that de-
scribes one chiral edge state is:

H =

∫
dx

v

4πν
(∂xφ)

2 (1.60)

where ν = 1/m is the filling factor. Hence, the edge states of a fractional quantum Hall fluid constitute
a chiral Luttinger liquid.

In this hydrodynamic theory it is assumed all along that the incompressible fluid has a unique
edge with natural properties. The results of this quantized theory are telling that, without assuming
any additional structure, a fractional quantum Hall state with a single edge can exist only for the
Laughlin states at ν = 1/m. As a result, for the Laughlin states, the electron operator at the edge is
provided by (up to a normalization):

ψe(x) = eimφ(x) (1.61)

These are some of the basic results of this Hydrodynamic theory for the edge states that we are going
to use to our analysis for the bosonized description of our model.
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1.5 Motivation

A theoretical proposal to synthesize a topological superconductor from a topological insulator and a
conventional (s-wave) superconductor has motivated hybrid approaches to realize Majorana modes.
Besides topological insulators, these approaches now include spin-orbit coupled semiconductors,
magnetic atom chains, and integer quantum Hall edges all in combination with a superconductor
offering either a testbed for or a route towards topological qubits. Common to all of these is the non-
interacting description of charge carriers and Ising topological order which is insufficient for universal
quantum computation. These approaches, however, can be extended to the computationally universal
Fibonacci order predicted to emerge in a coupled parafermion array. Thus, in this subsection we are
going to answer 3 important questions that may arise to the reader:

1. Why parafermions?

2. How exactly can one engineer parafermions?

3. How can they be detected experimentally?

Let’s answer the first question, Why parafermions? Parafermions, unlike Majoranas, require
electron-electron interactions to form, which result in richer non-Abelian braiding statistics. A stan-
dard condensed matter system that forms with interactions is the Fractional Quantum Hall (FQH)
state, which is the basis of different approaches for synthesizing parafermions. The primary ap-
proach combining FQH, appearing in semiconductor heterostructures, with superconductivity has so
far presented two major experimental challenges. First, the strong magnetic fields required for FQH
suppress superconductivity. Second, coupling a superconductor to a semiconductor heterostructure
can be difficult, often leading to a nontransparent interface.

In order to answer the second question , How exactly can one engineer parafermions?, we take a
look at the theory. Theory predicts that Fractional Quantum Hall/superconductor hybrids devices can
host parafermions, (since parafermions are Fractional Majorana modes it is only natural to search for
them in the Fractional Quantum Hall systems). But FQH thrives in high magnetic fields, whilst the
superconductor loses his superconductivity. The solution to this problem was given from a recent ex-
periment performed by Önder Gül who belongs in Philip Kim’s group [1]. They used graphene-based
Van der Waals (VdW) heterostructures coupled to superconducting niobium nitride (NbN), basically
they cut the graphene and place the superconductor as shown in Figure (1.3). The high device quality
decreases the magnetic fields required for robust FQH to the regime where NbN remains supercon-
ducting owing to its large critical field. The superconductor edge-contact to graphene provides an
interface transparent enough to allow Crossed Andreev Reflection (CAR) in quantum Hall edges. The
most important thing used in this setup is choice of the superconductor. Even in high magnetic fields,
as high as 14T, the NbN does not loses its superconductivity. Another equally important property
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Figure 1.3: Image taken from [11].The downstream resistance change (∆RD) exponentially
decreases as W increases, due to the suppression of the CAC in a wide SC electrode. The
data is fitted to the exponential function of ∆RD = ∆RD,0exp(−W/ξs), with the supercon-
ducting coherence length ( ξs) of NbN and the zero-width-limit value (∆RD,0) as fitting pa-
rameters. Upper inset, False-coloured scanning electron microscope images of the devices of
W = 98, 111, 146, 188, 200, 600nm, from the left to the right, respectively. Lower inset, A de-
tailed schematic of the cross-section along the dotted red line in upper inset. Owing to the finite
slope of the etching profile of the top h-BN, the effective width (W) between two graphene/NbN
contacts is smaller than the apparent width of the superconducting electrode measured by the
scanning electron microscope on the order of top h-BN thickness.

is the large spin-orbit coupling in NbN superconductor, which provides a necessary ingredient for
a spin-flip process allowing for a pairing between electrons with the same spin polarization. The
experimental results they found (shown in Figure (1.4)) are very important, because an RCAR < 0

indicates that the electron-like carriers drained from the superconductor produce hole-like carriers
with opposite charge, a direct result of Crossed Andreev Reflection, which reverses the sign of the
edge potential. RCAR acquires positive values either when RXY is non-quantized and the bulk of the
device conducts, or when superconductivity is suppressed with increasing T, both destroying CAR as
expected. These results answer our third question of How can they be detected experimentally?
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Figure 1.4: Image taken from [1]. Indication of CAR in FQH. RCAR = VCAR/Iexc and
RXY = VXY /Iexc as a function of gate voltage measured at B=14 T for different temperatures
T. An RCAR at Fractional Quantum Hall plateaus indicates hole conductance (CAR).

1.5.1 Parafermion properties

Having introduce the motivation behind this project it is time to introduce some of the algebraic prop-
erties of these exotic particles, the parafermions. For this purpose, we present here the parafermion
properties as they are derived in [12].

According to [12], by implementing a non-local transformation on the generalized N-state quan-
tum clock model, one can access some exotic zero modes. The clock model Hamiltonian is:

H = −J
L−1∑
j=1

(
σ†
jσj+1 + H.c

)
− h

L∑
j

(
τ †j + τj

)
(1.62)

where J ≥ 0 couples neighboring spins ferromagnetically, h ≥ 0 is the transverse field, j labels sites
of an L-site chain, and σj, τj are operators defined on an N-state Hilbert space that satisfy σN

j = 1,
σ†
j = σN−1

j and similarly for τj . The only non-trivial commutation relation among these operators
reads σjτj = σjτje

2πi/N . When N = 2 eq. (1.62) reduces to the familiar transverse field Ising model,
though the phases realized in this special case appear also for general N. For example, with J = 0,
h > 0 there exists a unique paramagnetic ground state with τj = +1, while in the J > 0, h = 0

regime an N-fold degenerate ferromagnetic ground state with σje2πiq/N emerges (q = 1, . . . N ).
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By considering the non-local transformation:

α2j−1 = σj
∏
i<j

τi, α2j = −eiπ/Nτjσj
∏
i<j

τi (1.63)

The properties of σj , τj dictate that these new operators satisfy

αN
j = 1, (1.64)

α†
j = αN−1

j (1.65)

and
αjαj′ = αj′αje

i 2π
N

sgn(j′−j) (1.66)

these operators are unitary and exhibit eigenvalues of the form e2πiq/N for integral q. Eq. (1.65) and
(1.66) imply that:

α†
jαj′ = αj′α

†
je

−i 2π
N

sgn(j′−j) (1.67)

Moving αj′ past αj therefore produces the opposite phase factor compared to moving αj′ past α†
j .

Consequently we obtain the following commutation relations:

[
α†
iαj, αk

]
=
[
α†
iαj, α

†
k

]
= 0, (k < i, j or k > i, j) (1.68)

which further imply that:

[
α†
iαj, α

†
kαl

]
= 0 (1.69)

so long as neither k nor l lie between i and j.

Figure 1.5: Image taken from [12]. Schematic illustration of the parafermion chain Hamil-
tonian in Eq. (1.62) when (a) J = 0 and (b) h = 0. In the latter case the ends of the chain
support unpaired parafermion zero-modes that give rise to an N-fold ground-state degeneracy.

From eq. (1.68) and (1.69) one can simultaneously diagonalize each of the "dimers" sketched
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in Figure 1.5 (a) and (b), as well as the combination of zero-mode operators α†
2Lα1 in case (b). To

deduce the allowed eigenvalues, one can show from the above properties that:

(
α†
iαj

)N
= (−1)N+1, (1.70)

which constrains the eigenvalues of α†
iαj to the form −ei 2πN sgn(q−1/2) where q is an integer. In the

quantum clock model context, the eigenvalues of the relevant "dimer" operators can alternatively be
found using the relations: gather*

α†
2j−1α2j = −eiπ/Nτj

α†
2jα2j+1 = −eiπ/Nσ†

jσj+1 (1.71)

α†
2Lα1 = −eiπ/N

( L∏
i

τ †i

)
σ†
Lσ1

that arise from the non-local transformation specified in eq. 1.63. Equations (1.71) yield the same
eigenvalue spectrum for the operators on the left-hand side as noted above since τj and σj both exhibit
non-degenerate eigenvalues e2πiq/N for q = 1, . . . , N .

Consider now the case where α1 and α2L represent zero-modes and deduce the action of these
operators on the ground state manifold. If |q〉 is a ground state satisfying α†

1α2L |q〉, then by using the
parafermion commutation relations one can show that:

(α†
1α2L)αj = e−i 2π

N αj(α
†
1α2L) (1.72)

for either j = 1 or j = 2L. "This equation implies that α†
1,2L |q〉 ∝ |q + 1〉 where the proportionality

constants have unit magnitude. One can always fix the relative phases of the ground states such that"
[12]:

α†
1 |q〉 = |q + 1〉 , α1 |q〉 = |q − 1〉 (1.73)

By using this convention, α2L acts as:

α†
2L |q〉 = −e−i 2π

N
(q−1/2) |q + 1〉 , α2L |q〉 = −ei

2π
N

(q−1/2) |q − 1〉 (1.74)

Having introduce the properties of these parafermion operators one can write the Hamiltonian in
eq. (1.62) as:

H = J

L−1∑
j=1

(
e−i π

N α†
2jα2j+1 + H.c

)
+ h

L∑
j

(
ei

π
N α†

2j−1α2j + H.c
)

(1.75)

"In the paramagnetic limit with J = 0 the operators "pair up" as sketched in Figuge 1.5(a).
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Simultaneously diagonalization of this collection of "dimers", gives the eigenvalues α†
2j−1α2j =

−ei 2πN (nj−1/2) for integer nj . Here there exists a unique ground state with nj = 0 that is fully gapped
since exciting any of these dimers costs finite energy. More interestingly, the ferromagnetic case
h = 0 produces the shifted dimerization shown in Fig. 1.5(b). A bulk gap arises here for the same
reason, though the ends of the chain now support "unpaired" zero-modes α1 and α2L that encode the
N-fold degeneracy of the clock models ferromagnetic phase (α†

2Lα1 admits N distinct eigenvalues that
do not affect the energy). At N = 2 the zero-mode operators α1,2L form the unpaired Majoranas, while
for N > 2 they correspond to parafermion zero-modes" [12].

1.6 Single Particle of 1D Quantum Wires

Previously, we noted the importance of a strong spin orbit coupling (SOC) and a strong magnetic
field. What we want now, is to define a Hamiltonian that describes a 1D Quantum Wire with a SOC
and a high magnetic field. This Hamiltonian will have the form:

Hwire =
∑
ss′

∫
dk
[
ψ†
s,k(ξk + αkσy + B̃σz)ψs′,k

]
(1.76)

where s, s′ denotes the spin components, ξk = k2

2m
− µ the kinetic term with µ the chemical potential,

α the strength of spin-orbit Rashba interaction and B̃ = gµBB the Zeeman field with µB the Bohr
magneton, g is the Landé g-factor, B the magnetic field and −→σ = (σx, σy, σz) the Pauli matrices.(The
precise spin-orbit and magnetic field axes are unimportant so long as they are perpendicular cause
this help to induce topological superconductivity). By taking the magnetic field in ẑ-direction the
spin orbit coupling will be in ŷ-direction. To see why, let’s consider that the chemical pontential
is µ(z) = µ0ẑ (in 3D systems it is not entirely correct, but it is a good approximation considering
the average chemical potential contribution for systems like in Figure 1.3). The Rashba effect is
a direct result of inversion symmetry breaking in the direction perpendicular to the 2-dimensional
plane. Thus, it enters the Hamiltonian as a term that breaks this symmetry in the form of an electric
field. The direction of the electric field is found by solving the Poisson equation:

−→
E = −

−→
∇µ(z) = E0ẑ

Assuming that we have a 1D quantum wire (or 2D, still the same) we will have the momemtunm
along x̂-direction. i.e −→px = pxx̂ , with vx velocity. Due to relativistic corrections, an electron moving
with velocity −→v in the electric field, will experience an effective magnetic field

−→
B . The Magnetic

field experienced due to Electric field is:

−→
B = −(−→v ×

−→
E )/c2
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where −→v = (vx, 0, 0) the velocity,
−→
E = (0, 0, E0) the Electric field and c is the speed of light. This

magnetic field couples to electron spin in a spin orbit term:

HSO =
gµB

2c2
−→σ · (−→p ×

−→
E ) = −gµB

2c2
−→σ · (E0ẑ × pxx̂)

⇒ HSO = −gµB

2c2
E0px

−→σ · ŷ = αpxσy

where α = −gµBE0

2c2
the Rashba coefficient, µB = eh

4πme
the Bohr magneton and −→σ = (σx, σy, σz)

the Pauli matrices. Note here, that these coefficients are for a signle particle, i.e that for our later
calculations we will not have these values, but in terms of directions are the same.

We proceed by solving the 1D Quantum wire Hamiltonian for a single particle:

Hsp = ξk + αkσy + B̃σz (1.77)

which can be written in a matrix form as :

Hsp =

(
ξk + B̃ −iαk
iαk ξk − B̃

)
(1.78)

To find its eigenvalues, we solve the determinant of the matrix:∣∣∣∣∣ξk + B̃ − E −iαk
iαk ξk − B̃ − E

∣∣∣∣∣ = 0 ⇒ E± = ξk ±
√
B̃2 + (αk)2 (1.79)

Let’s analyze its spectrum:

• For α = B̃ = 0, we have :

E± = ξk

Figure 1.6: Here we see the spectrum of the kinetic term only where we do not include the
strong SOC, the magnetic field is turned off (B̃ = 0) and the superconducting pairing potential
∆ = 0.

28



CHAPTER 1. BACKGROUND 1.6. SINGLE PARTICLE OF 1D QUANTUM WIRES

• For α 6= 0, B̃ = 0, we have :

E± = ξk ± αk

the spectrum is shifted.

Figure 1.7: Here we see that the spectrum is shifted when we include the strong SOC and we
get 2 energy bands, the magnetic field is turned off (B̃ = 0) and the superconducting pairing
potential ∆ = 0.

• For α 6= 0, B̃ 6= 0, we have :

E± = ξk ±
√
B̃2 + (αk)2

A gap opens between the 2 energy bands E+(k),E−(k) that depends on B̃ and is equal to 2B̃.

Figure 1.8: Here we see that the spectrum is shifted when we include the strong SOC, the
magnetic field is turned on now (B̃ 6= 0) which result to the Zeeman splitting between the 2
energy bands and the superconducting pairing potential ∆ = 0.

In the previous calculations we assumed µ = 0 for simplicity. Therefore, if µ is placed inside the
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gap, spinless superconductivity can be induced by the proximity effect. Note, that larger B̃ makes the
effectively spinless regime larger and provides a larger window to place the chemical potential, which
is important if disorders causes the chemical potential to vary. However, the larger field also enforces
the alignment to the spin within each band and makes it harder to induce superconductivity. This is
what meant when we mentioned earlier that high magnetic fields destroy superconductivity and why
using the NbN superconductor is very important.

Our next step is to calculate the eigenvectors corresponding to eq. (1.79). We define these eigen-
vectors as:

ψ =

(
ψ+

ψ−

)
= ψ+ |↑〉+ ψ− |↓〉 . (1.80)

where |↑〉 and |↓〉 are the eigenstates in σz-basis. To dermine them, we solve the Schrödinger equation:

Hspψ± = E±ψ± ⇒

(
ξk + B̃ − E± −iαk

iαk ξk − B̃ − E±

)(
ψ+

ψ−

)
= 0 ⇒

(
ψ+

ψ−

)
=

( B̃±
√

B̃2+(αk)2

iαk

)
ψ−

ψ−

 =
(B̃ ±

√
B̃2 + (αk)2

iαk

)
ψ− |↑〉+ ψ− |↓〉 (1.81)

We want our state to be normalized, so it needs to obey the relation:

|ψ+|2 + |ψ−|2 = 1 ⇒ ψ− = ± ak((
B̃ ±

√
B̃2 + (αk)2

)2
+ (αk)2

)1/2 (1.82)

Thus, we get also:

ψ+ =
(B̃ ±

√
B̃2 + (αk)2

iαk

)
ψ− =

B̃ ±
√
B̃2 + (αk)2

iαk

±ak((
B̃ ±

√
B̃2 + (αk)2

)2
+ (αk)2

)1/2 ⇒

ψ+ = ±

(
B̃ ±

√
B̃2 + (αk)2

)
i
((
B̃ ±

√
B̃2 + (αk)2

)2
+ (αk)2

)1/2 (1.83)

Thus, we have:

ψ =

(
ψ+

ψ−

)
=



(
B̃+

√
B̃2+(αk)2

)
i

((
B̃+

√
B̃2+(αk)2

)2
+(αk)2

)1/2

ak((
B̃+

√
B̃2+(αk)2

)2
+(αk)2

)1/2

 (1.84)
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In genetal, a quantum state can be expressed as a projection to the Bloch sphere as:

|ψ〉 = cos
ϑ

2
|↑〉+ eiφ sin

ϑ

2
|↓〉 (1.85)

(keeping the notation of our previous σz-basis) where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. We can get rid
of of the φ angle by multiplying our whole state by a so-called global phase. This multiplication does
not change the state as two states which differ in global phase are identical. If we want to project
the states of eq, (1.84) in the Bloch sphere, we have first (for the state with the − sign in front of αk
because this gives us the lowest energy band) to define:

cos
ϑ(k)

2
=

(
B̃ +

√
B̃2 + (αk)2

)
((
B̃ +

√
B̃2 + (αk)2

)2
+ (αk)2

)1/2 , sin ϑ(k)2
=

−ak((
B̃ ±

√
B̃2 + (αk)2

)2
+ (αk)2

)1/2
(1.86)

Thus, we get:

∣∣ψ+
〉
= i
(
cos

ϑ

2
|↑〉 − i sin

ϑ

2
|↓〉
)
= eiφ

′
(
cos

ϑ

2
|↑〉+ eiφ sin

ϑ

2
|↓〉
)

(1.87)

where φ′ = 1
2
(4πn+π), n ∈ Z a global phase, φ = 1

2
(4πn−π) with 0 ≤ φ ≤ 2π and the dependence

over momentum k (for ψ±(k) and ϑ(k)) is implied. Here, the + sign in the state denotes that we are
considering the upper energy band. In order to calculate the angle θ, we need to determine first the
tan θ. Thus, we have:

tanϑ =
2 tan ϑ

2

1− tan2 ϑ
2

= 2

sin ϑ
2

cos ϑ
2

1− sin2 ϑ
2

cos2 ϑ
2

= 2

sin ϑ
2

cos ϑ
2

cos2 ϑ
2
−sin2 ϑ

2

cos2 ϑ
2

=
2 cos ϑ

2
sin ϑ

2

cos2 ϑ
2
− sin2 ϑ

2

(1.88)

By replacing the above expressions for cos ϑ
2

and sin ϑ
2

we can determine the expression for θ by
writting y = tanϑ and calculating:

ϑ = arctan y (1.89)

This is the more general way on how to treat the angles in the Bloch sphere. As we will show in
Chapter (3) we use another way to determine the angle ϑ. The state orthogonal to |ψ+〉 is:

∣∣ψ−〉 = sin
ϑ

2
|↑〉+ i cos

ϑ

2
|↓〉 (1.90)

where we can neglect the global phase. We ensured, by writing these states in the Bloch sphere
representation, that these are pure states and can be treated as qubits.
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In this project we are considering high magnetic fields, which means that our Quantum Hall will
be polarized in the σz-direction (direction of the magnetic field). But as we will explain later it will
be more time consuming, in terms of calculations, to keep our SC eigenstates in this basis. Thus,
it would be good to express our eigenstates in the σy-basis. To do so, we need to find the relations
between the σy and σz eigenstates.

If we solve the eigenvalue problem for σy, it is easy to see that:

|+〉 = 1√
2

(
1

i

)
=

1√
2
(|↑〉+ i |↓〉) (1.91)

and

|−〉 = 1√
2

(
1

−i

)
=

1√
2
(|↑〉 − i |↓〉) (1.92)

Now, we can project our eigenstates from σz to σy-basis, by inverting the previous relations as follows:

∣∣ψ+(k)
〉
= cos

ϑ

2
|↑〉 − i sin

ϑ

2
|↓〉 ⇒∣∣ψ+(k)

〉
=

1√
2

(
cos

ϑ

2
− sin

ϑ

2

)
|+〉+ 1√

2

(
cos

ϑ

2
+ sin

ϑ

2

)
|−〉 (1.93)

Similar, we get for |ψ−(k)〉:

∣∣ψ−(k)
〉
=

1√
2

(
sin

ϑ

2
+ cos

ϑ

2

)
|+〉+ 1√

2

(
sin

ϑ

2
− cos

ϑ

2

)
|−〉 (1.94)

In a matrix form, these states can be written as:(
|ψ+(k)〉
|ψ−(k)〉

)
=

1√
2

(
cos ϑ

2
− sin ϑ

2
cos ϑ

2
+ sin ϑ

2

sin ϑ
2
+ cos ϑ

2
sin ϑ

2
− cos ϑ

2

)(
|+〉
|−〉

)
(1.95)

Since these states were found in momentum space, we can perform a Fourier transformation to go to
real space where we will get: ∣∣ψ±(x)

〉
=

∫
dk√
2π
eikx

∣∣ψ±(k)
〉

(1.96)

We are gonna make use of these definitions again in the beginning of Chapter (3).
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Chapter 2

Model

As we mentioned previously, in Chapter 1.6 we defined the 1-D Hamiltonian that describes a quantum
wire with a SOC and a high magnetic field. The reason we chose our Hamiltonian to be 1-D is because
it is the simplest case to describe the physics that governs our model. At first glimpse, one might
wonder how can this 1-D model find applications in a 3-D world? To answer that question we will
follow the same procedure as they do in [13].

Their starting point is a BCS Hamiltonian describing an s-wave SC in a magnetic field:

HBCS =
∑
σ

∫
d3r

[
c†(r)

( [−i∇+ eA(y)]2

2ms

− µs

)
c(r)−

(
∆0c

†
↑(r)c

†
↓(r) +H.c.

)]
(2.1)

where c(r) is the annihilation operator for an electron with spin σ at position r = (x, y, z), ms is
the effective electron mass, µs is the chemical potential, ∆0 is the superconducting order parameter
in the form of a complex-valued constant and A(y) is a suitable gauge potential. By making some
approximations they end up to describing the SC surface states by the Hamiltonian:

Hsurface
BCS =

∑
σ

∫
d3r

[
c†(r)

(
− 1

2ms

∇2 − µs

)
c(r)−

(
∆0e

−2iksxc†↑(r)c
†
↓(r) +H.c.

)]
(2.2)

where ks = |ks| = eB0λ = λ/l2 is the constant value of the vector potential at the interface with λ
the magnetic penetration depth and l the magnetic length. Then, in order for Andreev reflection to
occur between an s-wave SC and a spin-polarized edge state, they want some spin-flip mechanism to
be present. Thus, they include a SOC term in their Hamiltonian.

HSOC = α
∑

k

(kz + ikx)c
†
k,↑ck,↓ + h.c (2.3)

But as they state, the origin of Andreev reflection is the tunneling of single electrons from the
QH edge state into the SC near the interface. Weak tunneling across the interface can be described as
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single-electron tunneling between electronic states with identical spins states within a limited range in
the y and z dimensions. Assuming the tunneling to be local in the fields ψ(x) and c↑(r) the tunneling
Hamiltonian is given by:

Htunn = Γ
∑
q,k

δq,kx

(
ψ†
qc↑,k +H.c.

)
(2.4)

where Γ represents an effective tunneling amplitude and the Kronecker delta δq,kx reflects the fact that
local tunneling and translational invariance along the x axis implies conservation of x-momentum.
Thus tunneling can only occur between electron states with the same momentum in x direction.

This observation is enough for us to treat our model in one dimension and examine its results for
future practical applications.

2.1 Model

In our project we are interested in describing the Crossed Andreev Reflection (CAR) between the
Superconductor and the Quantum Hall edge system. This system can be described by the Hamiltonian:

H(k) = HSC(k) +HQH(k) +Ht(k) (2.5)

where

HSC(k) =
∑
ss′

∫
dk[ψ†

SC,s,k(ξk + αkσy + B̃σz)ψSC,s′,k −∆ψ†
SC,↑,kψ

†
SC,↓,−k −∆∗ψSC,↓,−kψSC,↑,k]

(2.6)

HQH(k) =
v

2π

∫
dk[(ψ†

QH,↑,k,L(k)ψQH,↑,k,L − ψ†
QH,↑,k,R(k)ψQH,↑,k,R)+

µQH(ψ
†
QH,↑,k,LψQH,↑,k,L + ψ†

QH,↑,k,RψQH,↑,k,R(k))]

(2.7)

Ht(k) = −t
∫
dk
∑
j=L,R

[ψ†
QH,↑,k,jψSC,↑,k + ψ†

SC,↑,kψQH,↑,k,j] (2.8)

where t is the tunneling coefficient and µQH 6= µSC . The HSC(k) will be presented in the Chapter
(2.2) analytically. As for the form the Quantum Hall Hamiltonian, it describes the 2 propagating chiral
edge modes which we denote as Left- and Right-movers. Furthermore, the due to the strong magnetic
field the spin in the quantuma hall is polarized the in the direction of the magnetic field, which in
our case is the ẑ-direction and corresponds to spin ↑. Finally, the Ht(k) is the classical tunneling
Hamiltonian between 2 systems. We will approach the derivation of these CAR with 2 analytical
methods. The first will be via perturbation theory (2.3) and the second will be by performing the path
integral technique (2.4) for field theory.
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2.2 S-wave Superconductor

We start by constructing our conventional 1-D wire. The basic ingredients are a 1D wire with appre-
ciable spin-orbit coupling, a conventional s-wave superconductor, and a modest magnetic field. This
is the general way that we construct an a Hamiltonian that describes an s-wave Superconductor. In
our case, the superconductor will be the NbN which as we mentioned already it contains the SOC
mechanism. Thus, we present the Hamiltonian for s-wave Superconductor with a SOC and in a strong
magnetic field to be of the form:

HSC =
∑
ss′

∫
dk[ψ†

s,k(ξk + αkσy + B̃σz)ψs′,k −∆ψ†
↑,kψ

†
↓,−k −∆∗ψ↓,−kψ↑,k] (2.9)

where ξk = k2

2m
+ µ is the kinetic term and the chemical potential µ, α states the intensity of the

Rashba interaction, B̃ is the Zeeman energy arising from a magnetic field applied along z-direction
and ψs,k is the fermionic field. We can write the Bogoliubov de Gennes Hamiltonian in the Nambu
space by introducing the the Nambu spinors:

Ψ =


ψ↑,k

ψ↓,k

−ψ†
↓,−k

ψ†
↑,−k

 (2.10)

This Nambu spinor has been written in the σz basis. In the matrix form, our Bogoliubov de Gennes
Hamiltonian is written as:

HBdG(k) =

(
H0(k) −∆I
−∆I −σyH∗

0 (−k)σy

)
=


ξk + B̃ −iαk −∆ 0

iαk ξk − B̃ 0 −∆

−∆ 0 −ξk + B̃ iαk

0 −∆ −iαk −ξk − B̃

 (2.11)

where I labels the 2 × 2 identity matrix. The term −σyH∗
0 (−k)σy in eq. (2.11) denotes the time-

reversal of H0(k) and appears since holes are time-reversed electrons. In particular here, the time
reversal operator is T̂ = IK, where K is the operator for complex conjugation. The magnetic field
breaks this time-reversal symmetry as can easily be seen.

We are writing now the BdG Hamiltonian in the form:

HBdG = ξkτz + αkσyτz + B̃σz −∆τx (2.12)

where τ(x, y, z) are the Pauli matrices in Nambu space and we have assumed ∆ is real for simplicity
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(σ and τ operate in spin and particle-hole space respectively). In particular, the τ(x, y, z) matrices
have the same form as the Pauli matrices σ(x, y, z) but act in different sub-block in the 4 × 4 matrix
of eq. (2.11). In order to construct this 4 × 4 matrix one has to calculate the tensor product of the
τ(x, y, z) matrices with the identity and with the σ(x, y, z) matrices where it is needed. For example:

τr = τr ⊗ I, r = x, y, z (2.13)

In this way, we can express our original Superconducting Hamiltonian in the Nambu base as:

HSC =

∫
dkΨ†(HBdG)Ψ (2.14)

What we manage so far was not to introduce some new physics in the system, but to unveil the
hidden physics of our model. This means, that by doubling the dimensions of our Hamiltonian by
introducing the holes, we also doubled the number of eigenstates. Therefore, there must be some
symmetry relation between the eigenstates such that the number of independent solutions remains the
same. This symmetry is called electron-hole symmetry and is expressed through the operator:

P = τy ⊗ σyK =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

K (2.15)

whereK is the operator for complex conjugation. One can easily verify by using the anti-commutation
relations of the Pauli matrices, that:

PH0(k)P
† = −H0(k) (2.16)

P∆P † = −∆ (2.17)

By writing our Hamiltonian in the form of eq. (2.12) we manage to make an eigenstate problem into
an eigenvalue problem. We can easily find analytically the eigenvalues of eq. (2.12) as shown in
Appendix (A.1). Thus, we found them to be:

E2
BdG,± = ξ2k + (αk)2 + B̃2 +∆2 ± 2

√
ξ2k
(
(αk)2 + B̃2

)
+ B̃2∆2 (2.18)

This trick is general and we can use it whenever our Hamiltonian consists of matrices (or their tensor
products) which satisfy Clifford algebra.
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(a) Spin splitting (b) Zeeman splitting

(c) Topological Phase of the SC (d) Transition from Normal to Topological phase

Figure 2.1: Here are shown the plots for the eigenvalues of eq. (2.18). In the first image we see
the spin splitting of the two bands with B̃ = 0. In the second image we turn on the magnetic
field and we see the Zeeman splitting of the bands. In the third image we see that as we switch
on also the proximity-induced superconducting pairing, for small values of ∆ > 0, we are in the
topological phase of the Superconductor, provided that the chemical potential is placed within
the spinless regime, |B̃| > |µ|. Finally, the gap at zero momentum decreases with increasing ∆
and closes completely when |B̃cr| = |∆| (assuming µ = 0). For larger values of ∆ the gap opens
again, but now in a non-topological superconducting state. Therefore, in this critical value of
B̃cr a phase transition occurs from the topological to the normal state.

We notice that we have 4 eigenvalues, 2 for particles and 2 for holes. In particular, we have:

E1 =
(
B̃2 +∆2 + ξ2 + α2k2 − 2(B̃2ξ2 + B̃2∆2 + α2k2ξ2)1/2

)1/2
(2.19)

E2 =
(
B̃2 +∆2 + ξ2 + α2k2 + 2(B̃2ξ2 + B̃2∆2 + α2k2ξ2)1/2

)1/2
(2.20)

E3 = −
(
B̃2 +∆2 + ξ2 + α2k2 − 2(B̃2ξ2 + B̃2∆2 + α2k2ξ2)1/2

)1/2
(2.21)

E4 = −
(
B̃2 +∆2 + ξ2 + α2k2 + 2(B̃2ξ2 + B̃2∆2 + α2k2ξ2)1/2

)1/2
(2.22)

where E1, E2 correspond to the particle energy, E3, E4 correspond to the hole energy, and as expected
the relations E1 = −E3 and E2 = −E4 are true since the holes are the anti-particles. We set as M1

the term :
M1 = (B̃2ξ2 + B̃2∆2 + α2k2ξ2)1/2 (2.23)
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that is inside the eigenvalues for reasons that will be obvious later.
In order to determine the critical value for which the phase transition that we see in Fig.(2.1d)

occurs, we need to take the eigenvalues of eq. (2.18) to be equal to zero at zero momentum (k = 0).
If we do so, we see that the critical value for the Zeeman term is equal to:

B̃cr =
√
∆2 + µ2 (2.24)

Therefore, the criteria for topological superconductivity, which is associated to Majorana edge states,
is:

B̃cr >
√
∆2 + µ2 (2.25)

2.2.1 Diagonalization

Now that we have the form of our Bogoliubov de Gennes Hamiltonian, eq. (2.12), we will proceed
by diagonalize it. In order to so, we need to find a suitable unitary transformation, that is why we
introduce the following Bogoliubov operators (following [14] and [15]):

γ†i,k =
∑
i=1,2

∑
s=↑,↓

ui,s,kψ
†
s,k + vi,s,−kψs,−k (2.26)

γi,k =
∑
i=1,2

∑
s=↑,↓

u∗i,s,kψs,k + v∗i,s,−kψ
†
s,−k (2.27)

Note that the spin degree of freedom has now been transferred to the wave functions rather than the
quasiparticle operators. By inverting these unitary transformations we obtain:

ψs,k =
∑
i=1,2

ui,s,kγi,k + v∗i,s,kγ
†
i,−k (2.28)

ψ†
s,k =

∑
i=1,2

u∗i,s,kγ
†
i,k + vi,s,kγi,−k (2.29)

where the eigenvalues of theHBdG correspond to the four Bogoliubov operators γ†1,k, γ1,−k, γ
†
2,k, γ2,−k.

Since the ψs,k are fermionic operators, then the Bogoliubov quasiparticles must also be fermionic
operators. That means that they must satisfy the usual fermionic anti-commutation relations in order
to be well defined. Thus, we have the relations:{

ψs,k, ψ
†
s′,k′

}
= δs,s′δk,k′ , and

{
γi,k, γ

†
j,k′

}
= δi,jδk,k′ (2.30)

Furthermore, we have {ψs,k, ψs,k′} =
{
ψ†
s,k, ψ

†
s,k′

}
= 0 for k = k′ or k 6= k′. Similar we have

{γi,k, γi,k′} =
{
γ†i,k, γ

†
i,k′

}
= 0. These anti-commutation relations will put some restrictions to the
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elements of our Unitary matrix.
Since the Bogoliubov quasiparticles describe particle-hole one must note that creating a particle

with momentum k is like annihilating a hole with momentum −k. This comes from the Particle-hole
operator (2.15). To make this more clear, let’s consider the following:

H(k)γi,k = Ei(k)γi,k ⇒ −P †H∗(−k)Pγi,k = Ei(k)γi,k ⇒

H∗(−k)
(
Pγi,k

)
= −Ei(k)

(
Pγi,k

)
⇒
(
γ†i,kP

†)H(−k) = −
(
γ†i,kP

†)Ei(k)

or H(k)
(
Pγ∗i,−k

)
= −Ei(−k)

(
Pγ∗i,−k

)
(2.31)

This means that state Pγ∗i,−k is also an eigenstate of H(k) and we know also from eq. (2.18) that
E(k) = E(−k).

P †γ†i,k = γi,−k ⇒ ui,s,k = −v∗i,s′,k (2.32)

where s, s′ =↑ or ↓ spin and are bind by the restriction in the above equation that they have to be
different, i.e s 6= s′. Eq. (2.32) is the first restriction for our Unitary matrix elements. By taking the
anti-commutation relations of eq. (2.30) we find that:{

ψs,k, ψ
†
s,k

}
= 1 ⇒

∑
i=1,2

(
|ui,s,k|2 + |vi,s,k|2

)
= 1 (2.33)

and {
γi,k, γ

†
i,k

}
= 1 ⇒

∑
s=↑,↓

(
|ui,s,k|2 + |vi,s,−k|2

)
= 1 (2.34)

These are the second and third restrictions. Let us write now explicitly the operators that we are going
to use in order to define our Unitary matrix. We are going to need the operators:

ψ↑,k =
∑
i=1,2

ui,↑,kγi,k + v∗i,↑,kγ
†
i,−k = u1,↑,kγ1,k + v∗1,↑,kγ

†
1,−k + u2,↑,kγ2,k + v∗2,↑,kγ

†
2,−k (2.35)

ψ↓,k =
∑
i=1,2

ui,↓,kγi,k + v∗i,↓,kγ
†
i,−k = u1,↓,kγ1,k + v∗1,↓,kγ

†
1,−k + u2,↓,kγ2,k + v∗2,↓,kγ

†
2,−k (2.36)

ψ†
↑,−k =

∑
i=1,2

u∗i,↑,−kγ
†
i,−k + vi,↑,−kγi,k = u∗1,↑,−kγ

†
1,−k + v1,↑,−kγ1,k + u∗2,↑,−kγ

†
2,−k + v2,↑,−kγ2,k (2.37)
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ψ†
↓,−k =

∑
i=1,2

u∗i,↓,−kγ
†
i,−k + vi,↓,−kγi,k = u∗1,↓,−kγ

†
1,−k + v1,↓,−kγ1,k + u∗2,↓,−kγ

†
2,−k + v2,↓,−kγ2,k (2.38)

The matrix form of our spinor in the Nambu space is defined by the Bogoliubov transformation that
we introduced and has the form:

ψ↑,k

ψ↓,k

−ψ†
↓,−k

ψ†
↑,−k

 =


u1,↑,k u2,↑,k v∗1,↑,k v∗2,↑,k
u1,↓,k u2,↓,k v∗1,↓,k v∗2,↓,k

−v1,↓,−k −v2,↓,−k −u∗1,↓,−k −u∗2,↓,−k

v1,↑,−k v2,↑,−k u∗1,↑,−k u∗2,↑,−k



γ1,k

γ2,k

γ†1,−k

γ†2,−k

 (2.39)

Before we continue, it would be very helpful, in terms of notation, to write the positive energies
as γ1,k and γ2,k (as it is), and the negative energies as γ†1,−k = γ4,k (γ1,k = γ†4,−k) and γ†2,−k = γ3,k

(γ2,k = γ†3,−k). To have a more visual understanding of what this mapping means, one can take a look
in the Fig.(2.2).

(a) First mapping of positive-negative energies (b) Second mapping of positive-negative energies

Figure 2.2: The above graphs corresponds to the four energy bands(2 for particles and 2 for
holes) of the single particle system with µ 6= 0, α = 0, B̃ = 0 and ∆ = 0. In the first image we
see our original mapping of positive-negative energies. In the second image we see the mapping
that we prefer to use.

Now we can diagonalize our Hamiltonian, by writing:

HSC =

∫
dkΨ†(HBdG)Ψ =

∫
dk

4∑
i=1

Eiγ
†
i,kγi,k (2.40)

To perform the diagonalization analytically is a "brutal" task. For that reason we use matlab to
diagonalize it. To find the elements of this Unitary matrix we used the normalized eigenvectors of eq.
(2.11) which they form a Unitary matrix by taking each column vector to represent each eigenenergy.
Since the results were obtained in matlab (same in every program that can compute with symbolic
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matrices), one must be very careful because once he calculates the normalized eigenvectors of our
BdG Hamiltonian, these vectors will be represented in the diagonal basis, i.e in our case in the basis
of eq. (2.26), (2.27). Thus, one needs to inverse the matrix in order to get our results. By comparing
this unitary matrix with the results from matlab, we get the results:

u1,↑,k =
∆ak(B̃ − ξ)

4iE1M1

(2.41)

u2,↑,k =
∆B̃

4M1

+
∆B̃2(∆2 + ξ2 −M1) + (αk)2ξ2

16M2
1

(2.42)

v∗1,↑,k =
−αkξ
4iM1

− 4αkξ2(α2k2 + B̃2 +∆2 −M1)

16iM2
1E1

(2.43)

v∗2,↑,k =
M2

1E1 + B̃ξE1(E
2
1∆

2 − (αk)2 − B̃2) + 4M1(B̃ξ2 + B̃2ξ + (αk)2ξ + B̃∆2 − B̃ − ξ)

16M2
1E1

(2.44)
These will be the terms that we are gonna be interested later.

2.3 Perturbation Theory

In order to find an effective description of the Quantum Hall edge modes, we will perform the pertur-
bation theory assuming weak tunneling ∆ � t. Thus, we treat the tunneling Hamiltonian as a small
perturbation to our system.

Before starting applying the perturbation theory in our system, we need to define the ground state
of it. Let us take it to be equal with:

|GS〉 = |ΨGS,QH〉 ⊗ |ΨBCS〉 (2.45)

where |ΨGS,QH〉 is the IQH ground state. We start by calculating an effective Hamiltonian, Heff
QH (k).

The idea is that we take a small window around µQH and we "forget" for now the |ΨGS,QH〉. This
way, allows us to treat the ψQH,↑,k,j and ψ†

QH,↑,k,j operators as "constants", i.e that they have no effect
on the |ΨBCS〉 but they still obey the fermionic rules of operators and one must keep track of the right
signs. The BCS ground state is defined as the state where for ∀ positive energies γi and any momenta
k

γi,k |ΨBCS〉 = 0, i = 1, 2 ∀k (2.46)
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and are equivalent to (based on the new mapping):

γ†4,k |ΨBCS〉 = γ†3,k |ΨBCS〉 = 0, i = 1, 2 ∀k (2.47)

Note that the above relations are true for each k. In addition, states with negative energies γ†i,−k and
γ†i,k create excitations:

γ†i,k |ΨBCS〉 = |i, k〉 , for i = 1, 2 ∀k (2.48)

which are equivalent to:

γ3,−k |ΨBCS〉 = γ4,−k |ΨBCS〉 = |i, k〉 , for i = 1, 2 ∀k (2.49)

where |i, k〉 is the new excited state. Furthermore, our definition implies the condition:

γi,kγ
†
i,k |ΨBCS〉 = |ΨBCS〉 (2.50)

One more important property of our definition of the BCS ground state that we are going to use later
is that:γj,q |i, k〉 = δi,jδq,k |ΨBCS〉

γ†j,q |i, k〉 6= |ΨBCS〉
⇒ 〈ΨBCS| γ†j,qγ

†
i,k |ΨBCS〉 = 0 (orthogonal) (2.51)

which implies that later will take only the diagonal terms of the expectation value. The ground state
|ΨBCS〉 is a superposition of states built up of Cooper pairs, i.e it obeys the bosonic commutation
rules (since a Cooper pair is a composite boson with total spin 0 or 1 . This also means, that the wave
functions are symmetric under particle interchange).

In order to apply perturbation theory in our model we write eq. (2.5) as:

H(k) = H0(k) +Hp(k) (2.52)

where H0(k) = HSC(k) +HQH(k) the unperturbed part of our Hamiltonian, and Hp(k) = Ht(k) the
perturbation. Since we have a BCS ground state it is better to write Hp(k) in terms of the Bogoliubov
quasiparticles. This means that we will replace the ψ†

SC,↑,k and ψSC,↑,k with the eq. (2.37) and (2.35)
to get:
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Hp(k) = Ht(k) = −t
∫
dk
∑
j=L,R

[ψ†
QH,↑,k,jψSC,↑,k + ψ†

SC,↑,kψQH,↑,k,j] =

−t
∫
dk
∑
j=L,R

[ψ†
QH,↑,k,j(u1,↑,kγ1,k + v∗1,↑,kγ4,k + u2,↑,kγ2,k + v∗2,↑,kγ3,k)+

(u∗1,↑,kγ
†
1,k + v1,↑,kγ

†
4,k + u∗2,↑,kγ

†
2,k + v2,↑,kγ

†
3,k)ψQH,↑,k,j] (2.53)

We have now:

Heff
QH (k) = 〈ΨBCS|HpPexc.BCSstates

1

EGS −HBCS

Pexc.BCSstatesHp |ΨBCS〉 =

〈ΨBCS|Hp

∑
i′′∈1,2

∫ +∞

−∞
dk′′ |i′′k′′〉 〈i′′k′′| 1

EGS −HBCS

∑
i′∈1,2

∫ +∞

−∞
dk′ |i′k′〉 〈i′k′|Hp |ΨBCS〉 (2.54)

where

Pexc.BCSstates =
∑

n∈single exc. states

|n〉 〈n| =
∑
i∈1,2

∫ +∞

−∞
dk |ik〉 〈ik| (2.55)

is the projection on the BCS excited states. By performing these calculations (exact calculations can
be found in (A.2)), we end up to an Effective description for the Quantum Hall edge modes of our
system of the form:

Heff
QH (k) =

∫
dk
∑
i∈1,2

t2

−Ei(k)

(
ψ†
QH,↑,k,Lψ

†
QH,↑,−k,L(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,LψQH,↑,k,L(ui,↑,ku
∗
i,↑,k)+

ψ†
QH,↑,k,Lψ

†
QH,↑,−k,R(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,LψQH,↑,k,R(ui,↑,ku
∗
i,↑,k)

−ψQH,↑,−k,Lψ
†
QH,↑,−k,L(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,LψQH,↑,k,L(vi,↑,−ku

∗
i,↑,k)

−ψQH,↑,−k,Lψ
†
QH,↑,−k,R(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,LψQH,↑,k,R(vi,↑,−ku

∗
i,↑,k)+

ψ†
QH,↑,k,Rψ

†
QH,↑,−k,L(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,RψQH,↑,k,L(ui,↑,ku
∗
i,↑,k)+

ψ†
QH,↑,k,Rψ

†
QH,↑,−k,R(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,RψQH,↑,k,R(ui,↑,ku
∗
i,↑,k)

−ψQH,↑,−k,Rψ
†
QH,↑,−k,L(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,RψQH,↑,k,L(vi,↑,−ku

∗
i,↑,k)

−ψQH,↑,−k,Rψ
†
QH,↑,−k,R(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,RψQH,↑,k,R(vi,↑,−ku

∗
i,↑,k)

)
(2.56)

or in a composite form we can write the above equation as:

Heff
QH (k) =

∫
dk
∑
i∈1,2

∑
η=L,R

∑
η′=L,R

t2

−Ei(k)

(
ψ†
QH,↑,k,ηψ

†
QH,↑,−k,η′(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,ηψQH,↑,k,η′(ui,↑,ku
∗
i,↑,k)

−ψQH,↑,−k,ηψ
†
QH,↑,−k,η′(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,ηψQH,↑,k,η′(vi,↑,−ku

∗
i,↑,k)

)
(2.57)
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where we have used the fact that HBCS |i, k〉 = (EGS + Ei) |i, k〉 and from the particle-hole
symmetry Ei(k) = Ei(−k). The EGS is considered to be the energy where every energy band is
filled.

From the above expression, we are most interested in the terms that Induce Superconductivity.
These terms are the ones that couples the chiral particles with different momentum (in order to have
the desired momentum conservation on the axis) and have the form:∫

dk
∑
i∈1,2

t2

−Ei(k)
ψ†
QH,↑,k,Lψ

†
QH,↑,−k,R(ui,↑,kv

∗
i,↑,−k) (2.58)

where

∆ind =
∑
i∈1,2

t2ui,↑,kv
∗
i,↑,−k

−Ei(k)
(2.59)

From the above calculations, we ended up to an Effective Hamiltonian describing our Quantum
Hall system in the momentum space. Since we are interested to develop a theoretical model based on
bosonization to describe our system, it is essential to perform a Fourier transformation to go to real
space.

To do so, one should check if the integral over all k for the ∆ind, eq. (2.58), is converging or not
and it can be done by checking the dependence of k for each term, i.e that he checks what happens
in big values for momentum. By taking all the dominants powers in k we can easily see that this
integral converges. One more important thing before starting evaluating the integrals, is to check if
it has poles. This can be done by checking the denominator of each term in eq. (2.59), where ui,↑,k
and v∗i,↑,k are defined by eq. (2.41-2.44). Since these denominators are depend on E2

2 − E2
1 = M2

1 ,
M1 and E1, which are all quadratic functions of k, we can see by comparing the leading terms of the
numerator and denominator that the integral of the induced gap as found in eq. (2.59) converges and
by definition the e−kx term of the Fourier transformation is convergent for k ≥ 0.

To get an analytical result after the integration is very difficult, even with computational methods.
What we can do however, is to take eq. (2.59) and Taylor expanded in to orders of ∆. This can be
done, because we already made the assumption that ∆ � t to use perturbation theory. Once we do so,
we will find the Induced gap depends on ∆ and the α, i.e ∆ind ∼ α2t2∆. This is a reasonable result,
because if we set the value of ∆ = 0, we expect no induced gap to appear. What is also important
here, is that the induce gap dependents on the Rashba coefficient α, which is also expected since we
couple the edge modes with different spin. When the α = 0 there is no induced gap in the system.

44



CHAPTER 2. MODEL 2.4. FEYNMAN PATH INTEGRAL FORMALISM

2.4 Feynman Path Integral Formalism

In this section we will try a different approach to our problem. Namely, we will try to integrate out
the superconducting degrees of freedom of our system. To do so, we are going to use the Feynman
Path Integral methods. In case one wants to know how to construct this path integral, he can check in
[16] which is explained perfectly.

The system we are interested in is the same as before, i.e it will be described by eq. (2.5), where
the Superconductor, the Quantum Hall and the Tunneling parts are described by eq. (2.6),(2.7),(2.8)
respectively. We define now as Ψ and Ψ† the nambu spinors of the Superconductor, and as Φ and Φ†

the nambu spinors of the Quantum Hall, where

Ψ =
[
Ψ†

↑,Ψ
†
↓,−Ψ↓,Ψ↑

]
(2.60)

and
Φ =

[
Φ†

↑,Φ↑

]
(2.61)

where the k dependence of the spinors is implied, i.e Ψ = Ψ(k) and Φ = Φ(k). Note, that these
Nambu spinors will be treated as Grassmann variables for our purposes. We continue by writing the
action of the full system. We have:

S = SSC + SQH + St (2.62)

where
SSC = −∂τ −HSC =

∫
dω

2π

∫
dk ΨH̃SCΨ, (2.63)

SQH = −∂τ −HQH =

∫
dω

2π

∫
dk ΦH̃QHΦ, (2.64)

St =

∫
dk
(
ΨTΦ + ΦT †Ψ

)
(2.65)

where H̃SC = iω − HSC , H̃QH = iω − HQH and HSC , HQH the 4 × 4 matrix representation of
the Superconductor and the 2 × 2 Quantum Hall respectively. Furthermore, T is the 4 × 2 tunneling
coupling matrix and gets its form from the coupling between the nambu spinors, in particular:

T =


−t 0

0 0

0 0

0 −t

 . (2.66)

In the above description, τ stands for the imaginary time and iω is its Fourier transform in the

45



CHAPTER 2. MODEL 2.4. FEYNMAN PATH INTEGRAL FORMALISM

frequency space (∂τ → −iω) and since we are dealing with fermions we need to impose anti-periodic
boundary conditions. Therefore, we need to set:

eiωβ = −1 or ω = ωn =
2n+ 1

β
= (2n+ 1)T (2.67)

where β = 1
kBT

with kB → 1 the Boltzmann constant and T the temperature.
The fermionic coherent state path integral representation for the partition function of this system

is given by:

Z =

∫
D[Φ,Φ]

∫
D[Ψ,Ψ]e−SSC [Ψ,Ψ]−SQH [Φ,Φ]−St[Ψ,Ψ,Φ,Φ] (2.68)

where Ψ,Ψ are the Grassmann variables corresponding to the superconducting fermionic fields Ψ†,Ψ

and Φ,Φ correspond to Quantum Hall fermionic fields Φ†,Φ respectively and they are k dependant.
By manipulating the action in eq. (2.62) as shown in eq. (A.10), the path integral over supercon-

ducting fields takes the form of a Gaussian integral with exponent:

SSC [Ψ,Ψ] + SQH [Φ,Φ] + St[Ψ,Ψ,Φ,Φ] =∫
dω

2π

∫
dk
[(

Ψ+ ΦT †H̃−1
SC

)
H̃SC

(
Ψ+ H̃−1

SCTΦ
)
+ ΦH̃QHΦ− ΦT †H̃−1

SCTΦ
]

(2.69)

In this form we can integrate the superconducting degrees of freedom by using the property of the
Grassmann variables:∫

dη†
∫
dηe−η†Aη−η†J−J†η =

∫
dη†
∫
dηe−(η†+J†A−1)A(η+A−1J)+J†A−1J (2.70)

= det(A)eJ
†A−1J (2.71)

where A is an n × n matrix, η†, η the Grassmann variables and J†, J the Grassmann source fields.
Evaluating now the path integral with respect to the superconducting degrees of freedom we obtain
the Effective Action:

Seff =

∫
dω

2π

∫
dk
[
ΦH̃QHΦ− ΦT †H̃−1

SCTΦ
]

(2.72)

and our partition function eq. (2.68), becomes:

Z = det
(
H̃SC

)∫
D[Φ,Φ]e−Seff = det(H̃SC)

∫
D[Φ,Φ]e−ΦH̃QHΦ+ΦT †H̃−1

SCTΦ (2.73)
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where det
(
H̃SC

)
= det

(
G−1
SC

)
= ZSC is just the partition function and GSC = H̃−1

SC = 1
iω−HSC

the
Green function of our superconductor. Similarly we can define the Green function for the Quantum
Hall as GQH = H̃−1

QH = 1
iω−HQH

. Our next step will be to find the matrix H̃−1
SC . We can do this

inversion analytical as we show in eq. (A.11). The result is:

GSC =
((iω − B̃σz) + (ξk + αkσy)τz −∆τx)((−ω2 − ξ2k − (αk)2 + B̃2 −∆2) + 2iωB̃σz + 2ξkαkσy)

(−ω2 − ξ2k − (αk)2 + B̃2 −∆2)2 − (2iωB̃)2 − (2ξkαk)2

(2.74)

In Appendix (A.3) one can find the analytical results (A.12 and A.13) of eq. (2.74).
By performing the same calculations computationally, i.e calcutaling the G0 = H̃−1

SC = 1
iω−HSC

matrix in matlab, we got the same results for the numerator and the denominator of eq. (2.74) as in
the analytical method which is a verification of what we calculate was correct.

The Emerging pairing that came from integrating out the superconducting degrees of freedom:

Seff =

∫
dω

2π

∫
dkΦSeff,pair(k, ω)Φ =

∫
dω

2π

∫
dkΦT †H̃−1

SCTΦ =

∫
dω

2π

∫
dkΦ

−t2

D
BΦ (2.75)

where we denote as B the matrix elements of the numerator of eq. (2.74). In particular, the matrix
elements of B are:

B11 = iω3 + ξ3 + B̃3 + B̃2(iω − ξk) + B̃(ω2 − ξ2k + (αk)2 − 2iωξk −∆2) + (αk)2(iω − ξk)

+ξk(ω
2 +∆2) + iω(ξ2 +∆2) (2.76)

B22 = iω3 − ξ3 − B̃3 + B̃2(iω + ξk) + B̃(−ω2 + ξ2k − (αk)2 − 2iωξk +∆2) + (αk)2(iω + ξk)

−ξk(ω2 +∆2) + iω(ξ2 +∆2) (2.77)

B12 = −2iαk∆(B̃ − ξk) (2.78)

B21 = 2iαk∆(B̃ − ξk) (2.79)

and
D = (ω2 + E2

1)(ω
2 + E2

2) (2.80)

is the denominator. Note here, that the diagonal terms will give the Backscattering or Forwardscatter-
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ing and the off-diagonal will give the Induced Superconductivity. Furthermore, the term

Seff,pair(k, ω) =

∫
dω

2π

∫
dkΦT †G0TΦ (2.81)

can be viewed as the self-energy of our system. similar to [14].
What we want now to find now is the local term in time and space of eq. (2.75). For that purpose,

we will perform Fourier transformation to this effective action. We define the Fourier transformation
of the fermionic Quantum Hall fields as:

Φ(k, ω) =

∫
dx1dt1
(2π)2

Φ(x1, t1)e
−ikx1+iωt1 (2.82)

Φ(k, ω) =

∫
dx2dt2
(2π)2

Φ(x2, t2)e
ikx2−iωt2 (2.83)

We insert now eq. (2.82) inside eq. (2.75) and we get:

Seff =

∫
dkdωdx1dt1dx2dt2

(2π)5
Φ(x1, t1)Seff,pair(k, ω)e

ik(x2−x1)−iω(t2−t1)Φ(x2, t2) (2.84)

The first integration and most important will be the integration over the ω. To evaluate this integral
we will use the Residue Theorem for every term in the Seff,pair(k, ω).

Here we will not present the analytical methods that were performed to evaluate these integrals.
For more details, one can check in the Appendix (A.3).

We are interested in the terms that give the induced superconductivity, i.e the off-diagonal terms
of the B matrix. The result for the off-diagonal term B12 (by taking also x2 = x1, local in space) is
now:

−πB12

E2E1(E2 + E1)
(2.85)

where in the above expression we replace the momentum k with kf,QH . Next, we perform a Taylor
expansion in the above expressions in terms of ∆, where we assume it weak, but still have in mind
that we have weak tunneling ∆ � t.

As we can see from the result we have again:

∆ind ∝ α2t2∆. (2.86)

as was expected. Thus, so far we have found (not an analytical result) an approximation with 2
different methods on how to estimate the Induced gap of our system.
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2.5 Integer Quantum Hall Description

Let us take a closer look at the Quantum Hall system. We mentioned in the previous section that
we take a small window around the chemical potential µQH . Here we are going to analyze why we
are interested in that small energy window. Now, we are considering that µQH can take values in the
whole band area where the condition µQH 6= µSC is still true. In the case where µQH = µSC we have
a resonance and we will discuss it a little bit in the Bosonization Chapter (3). As we said before, we
have the Hamiltonian:

HQH(k) =
v

2π

∫
dk[(ψ†

QH,↑,k,L(k)ψQH,↑,k,L − ψ†
QH,↑,k,R(k)ψQH,↑,k,R)+

µQH(ψ
†
QH,↑,k,LψQH,↑,k,L + ψ†

QH,↑,k,RψQH,↑,k,R(k))]

(2.87)

After the tunneling the Quantum Hall will be described by the Hamiltonian:

Htot,QH(k) = HQH(k) +Heff
QH (k) (2.88)

where now the effective Hamiltonian of the Quantum Hall will have terms like:

Heff
QH (k) :

ψ
†
L(k)ψ

†
R(−k), ψ

†
R(k)ψ

†
L(−k), ψ

†
L(−k)ψ

†
R(k), ψ

†
R(−k)ψ

†
L(k) ⇒ that induces SC

ψ†
L(k)ψL(k), ψ

†
R(k)ψR(k), ψ

†
L(−k)ψL(−k), ψ†

R(−k)ψR(−k) ⇒ that shifts µQH

(2.89)
and terms like:

Heff
QH (k) :

ψ
†
L(k)ψ

†
L(−k), ψ

†
R(k)ψ

†
R(−k), ψ

†
L(−k)ψ

†
L(k), ψ

†
R(−k)ψ

†
R(k) ⇒ more Energy costly

ψ†
L(k)ψR(k), ψL(−k)ψ†

R(−k), ψ
†
R(k)ψL(k), ψR(−k)ψ†

L(−k) ⇒ gives δm terms

(2.90)
where the δm corresponds to backscattering procedure .Now, what we mean by more energy costly,
is that we consider |vkF | � ∆j

ind = ∆ind, for j = RR,LL where ∆j
ind is the coefficients in front of

those pair terms.
The 2× 2Htot,QH(k) Hamiltonian can be written now in the form:

H2×2(k) = vkσz + (−vkF )I+ δmσx (2.91)

where we can write the Bogoliubov de Gennes version of the Hamiltonian in the nambu spinor basis
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as a 4× 4 Hamiltonian:

Htot,QH(k) =
(
ψ†
R(k) ψ†

L(k) ψR(−k) ψL(−k)
)
HBdG,QH(k)


ψR(k)

ψL(k)

ψ†
R(−k)
ψ†
L(−k)

 (2.92)

where we used the σz-basis for the nambu spinors, since the spin is polarized there, and

HBdG,QH(k) =


v(k − kF ) δm 0 ∆ind

δm −v(k + kF ) ∆ind 0

0 ∆ind −v(−k − kF ) −δm
∆ind 0 −δm v(−k + kF )

 (2.93)

and ψ†
R(k) = ψ†

QH,↑,k,R(k) and ψ†
L(k) = ψ†

QH,↑,k,L(k) (similar of the Hermitian conjugate). In the
above description, we included terms like δmψ†

R(k)ψR(k), δmψ
†
L(k)ψL(k) and their H.c., where

their values can be determined from one of the two above Effective descriptions. We expect that δm
opens a normal gap at k = 0 and ∆ind opens a BCS gap at k = ±kF and this can be seen in the figure
(2.3).

The eigenvalues of eq. (2.93) are found to be:

E2
QH = (vk)2 + (vkF )

2 + (δm)2 +∆2
ind ± 2

√
(vkF )2

(
(δm)2 + (vk)2

)
(2.94)

Note here, that in eq, (2.94), the δm terms will be important if we fix the Fermi level to a value
that allows δm to be considerable to ∆ind then we need to take them into consideration because it
will also be a "battle" between those terms on whose gap will prevail. By taking k = 0 we found the
relation:

|∆ind| =
√(

vkF + δm
)2

(2.95)

But we are not interested in this model on terms like these. In order to avoid them, we fix the
chemical potential in a value such that the system does not allow these pairs of eq. (2.90) to be
created, because it will be very costly in Energy. To give an idea of the values, the chemical potential
will be µ ≈ EQH

2
, EQH ≈ 10meV (very large for Integer Quantum Hall), Bc ≈ 8T (critical value of

the magnetic field), the fermi momentum of Quantum Hall is kQH,F = π
α

with α = 4.391Å the lattice
spacing and ∆ ≈ 3meV . More details about the the value of ∆ are presented in the discussion after
deriving eq. (3.129).
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(a) Dirac cone (b) Normal gap

(c) BCS gap (d) Topological Phase

Figure 2.3: In the first image we see the Dirac cone of our Quantum Hall system. In the second
Image we see that a normal gap opens (trivial phase transition) if we only have the dm 6= 0
terms and ∆ind = 0. In the third image we see that a BCS gap opens if we have dm = 0 terms
and ∆ind 6= 0, i.e we have induced superconductivity (superconducting phase). Finally, in the
fourth image we see that we have a topological phase transition if both terms are dm 6= 0 and
∆ind 6= 0.
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2.6 Computational results

In this section we will show the plotting results of the Total system, eq. (2.5) without deriving an
effective Hamiltonian. By writing the BdG form of the Total Hamiltonian (HBdG(k)), we get the
matrix:

ξk + B̃ −iαk −∆ 0 −t −t 0 0

iαk ξk − B̃ 0 −∆ 0 0 0 0

−∆ 0 −ξk + B̃ iαk 0 0 0 0

0 −∆ −iαk −ξk − B̃ 0 0 −t −t
−t 0 0 0 v(k − kF ) 0 0 0

−t 0 0 0 0 −v(k + kF ) 0 0

0 0 0 −t 0 0 −v(−k − kF ) 0

0 0 0 −t 0 0 0 v(−k + kF )


(2.96)

Next, we present the results by plotting the eigenvalues of this 8× 8 matrix.

Figure 2.4: Trivial regime of the HBdG(k).
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Figure 2.5: Phase transition of the HBdG(k).

Figure 2.6: Topological regime of the HBdG(k).
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Figure 2.7: Induced Gap shown in topological regime of the HBdG(k).

We start by showing the Trivial phase of our system in Fig. (2.4) where ∆ > B̃cr. Next, we show
in Fig. (2.5) we show that as we lower the value of ∆ we are going to have a phase transition from
the Normal to Topological state. In Fig. (2.6) our system is in the Topological state and if we zoom
in in this plot, we can see as shown in Fig. (2.7) that a gap opens. This is the induced gap that we
were trying to estimate in this Chapter. Note also, that in the above plots, the values that are indicated
in the axis do not represent the true values of the terms but are some random (but they still follow
the restrictions and the approximations we made so far) numerical values to check how our system
behaves.
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Chapter 3

Bosonization

In this section, we will be studying the bosonised description of our model. Our guide for this theory
will be the lectures notes of [17]. As a starting point, we begin by introducing again the single particle
Hamiltonian where we have now the pairing potential ∆ = 0:

Hsp = ξk + αkσy + B̃σz (3.1)

where again ξk = k2

2m
−µ is the kinetic term and the chemical potential µ sets the filling µ =

k2SC,F

2m∗ with
m∗ the effective mass, α is the strength of spin-orbit Rashba interaction and B̃ = gµBB the Zeeman
field with µB the Bohr magneton, g is the Landé g-factor, B the magnetic field and −→σ = (σx, σy, σz)

the Pauli matrices. The spectrum can easily be found to be

E± = ξk ±
√
B̃2 + (αk)2 (3.2)

and the corresponding eigenstates that belong in the σz-basis are

ψ =

(
ψ+

ψ−

)
=



(
B̃+

√
B̃2+(αk)2

)
i

((
B̃+

√
B̃2+(αk)2

)2
+(αk)2

)1/2

± ak((
B̃+

√
B̃2+(αk)2

)2
+(αk)2

)1/2

 (3.3)

If we want to project these states in the Bloch sphere, we have first for the state with the + sign (the
state of the upper band):

∣∣ψ+
〉
= cos

ϑ

2
|↑〉+ eiφ sin

ϑ

2
|↓〉 (3.4)
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and the state orthogonal to this one is the state of the lower band:

∣∣ψ−〉 = sin
ϑ

2
|↑〉 − eiφ cos

ϑ

2
|↓〉 (3.5)

where we showed in Chapter 1.6 that:

cos
ϑ(k)

2
=

(
B̃ +

√
B̃2 + (αk)2

)
((
B̃ +

√
B̃2 + (αk)2

)2
+ (αk)2

)1/2 , sin ϑ(k)2
=

−ak((
B̃ +

√
B̃2 + (αk)2

)2
+ (αk)2

)1/2
(3.6)

with φ = π
2

= i. Note here, that when the ± sign is being used like a superscript on the state
it will denote that we are in the upper/lower band respectively. The lower band will be the most
important, as will be shown later, and is the band that we keep the − sign in sin ϑ(k)

2
. It is quite easy

to see that these two expressions have the usual trigonometric properties of cosϑ(k) = cosϑ(−k)
and sinϑ(−k) = − sinϑ(k). We are going to make use of these properties when we try to derive the
Bosonized description of our System. Furthermore, tt might be useful for future calculations to point
out here that by replacing B̃ = 0 in eq. (3.6), we find that:

cos
ϑ(k)

2
=

1√
2
, and sin

ϑ(k)

2
=

−sign(αk)√
2

(3.7)

which means that we get the eigenstates of z-basis.
Note here, that from now on, when we write σ = ± and σ =↑, ↓ denotes the spin in σy and σz

basis respectively.
Another way to consider the above is by writing eq. (3.1) in the form:

H = ξk + αkσy + B̃σz = ξkI+−→η · −→σ (3.8)

where −→η =
(
0, αk, B̃

)
is a vector in the Bloch sphere and −→σ =

(
0, σy, σz

)
the Pauli matrices. In this

representation is more clear to see that the angle ϑ in the Bloch sphere will get the values of:

ϑ(k) =
αk

B̃
(3.9)

Here we need to consider 2 limits. The first one is when αk → 0. This gives us ϑ = 0 which
corresponds to |ψ−〉 = |↑〉 (pollarized in spin ↑). The second limit is when B̃ → 0. This gives us
ϑ = π/2 which corresponds to |ψ−〉 = 1√

2
|↑〉+ i√

2
|↓〉 (the spin is conserved in the σy-basis). This is
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in consistent with previous analysis and in particular we see that for B̃ = 0 we get:|ψ+〉 = |+〉 = |↑〉−i|↓〉√
2
, for k < 0

|ψ−〉 = |−〉 = |↑〉+i|↓〉√
2
, for k > 0

(3.10)

(a) Energy bands of the kinetic term only (b) Band splitting due to SOC

(c) Band splitting due to SOC and Zeeman splitting
with small magnetic field

(d) Band splitting due to SOC and Zeeman split-
ting with bigger magnetic field

Figure 3.1: In the figure (a) we see the the energy spectrum of the kinetic term where we
suppose α = 0, B̃ = 0,∆ = 0. In Figure (b) we include the strong SOC and we see the bands
split with spin |±〉. In the Figure (c), we open the magnetic field and keep it small. In the
Figure (d), we raise the value of B̃ and see how the bands split.

In Figure (3.1) we said small magnetic field and bigger magnetic field. These terms will be clear
in the next section where we analyze the Low-energy field approximation of our system.

3.1 Quantum Field Theory in Condensed Matter

The many-body problem in condensed matter physics generally relies on the machinery of pertur-
bative quantum field theory to obtain solutions to model systems. Solutions to the field theories
are obtained in terms of Greens functions, or equivalently, correlation functions. However, quantum
fluctuations being at work on all length scales, a purely continuum theory makes no sense, and a
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momentum cutoff has to be introduced in order to enable meaningful calculations. Such a regulariza-
tion of the field theory invariably introduces a length scale Λ−1, which is part of the definition of the
theory as one of its parameters, along with various coupling constants, masses, and so on. A change
in the cutoff Λ (through a trace over the high-momentum degrees of freedom) is accompanied by a
modification of all other parameters of the theory. A field theory is then characterized not by a set of
fixed parameter values, but by a Renormalization Group (RG) trajectory in parameter space, which
traces the changing parameters of the theory as the cutoff is lowered.

Most important is the concept of fixed point, i.e., of a theory whose parameters are the same
whatever the value of the cutoff. Most notorious are free particle theories (bosons or fermions), in
which degrees of freedom at different momentum scales are decoupled, so that a partial trace in a mo-
mentum shell has no impact on the remaining degrees of freedom. Theories close (in a perturbative
sense) to fixed points see their parameters fall into three categories: relevant, irrelevant and marginal.
Relevant parameters grow algebraically under renormalization, irrelevant parameters decrease alge-
braically, whereas marginal parameters undergo logarithmic variations. The theory has no predictive
power on its irrelevant parameters because if the the momentum cutoff is taken to infinity, then an
arbitrary number of irrelevant parameters can be added to the theory without measurable effect on the
low-energy properties determined from experiments. Thus, the cutoff Λ does not have to be taken
to infinity, but has some natural value Λ0, determined by a more microscopic theory (maybe even
another field theory) which eventually supersedes the field theory considered at length scales smaller
than Λ−1. In condensed matter physics, the natural cutoff is the lattice spacing (≈ 10− 8cm).

In practice, field theories should not be pushed too close to their natural cutoff Λ0. It is expected
that a large number (if not an infinity) of irrelevant couplings of order unity exist at that scale, and
the theory then loses all predictive power. The general practice is to ignore irrelevant couplings alto-
gether, and this is credible only well below the natural cutoff Λ−1. The price to pay for this reduction
in parameters is that the finite number of marginal or relevant parameters remaining cannot be quan-
titatively determined from the underlying microscopic theory (i.e., the lattice model). However, the
predictions of the field theory can (in principle) be compared with experiments and the parameters of
the theory be inferred.

Experiments on many-body electron systems normally measure properties at energy scales small
compared to the Fermi energy. This means that only a few degrees of freedom in the system are
excited, and only the low energy sector of a model need to be compared against experiment. The
low energy, long distance physics also determines any long range order and cooperative phenomena
present in a system. Divergences in certain correlation functions are indicative of the presence of
ordering phase transitions in the system, such as ferromagnetic transitions or the Cooper pairing
superconductivity phase transition. The field theory methodology has been extremely successful, with
the properties of a number of simple metals accurately modeled by using Landaus Fermi liquid theory.
However, many materials have emerged that have non-Fermi liquid properties and their behaviour can
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be studied in 1D many body systems.
Normal perturbative methods of solution can no longer be justified in one dimension. This is

because the non-interacting one dimensional fermion gas is unstable against the switching on of in-
teractions. This is a form of the orthogonality catastrophe, where the interacting ground state is
orthogonal to the non-interacting ground state.

3.1.1 Introduction to Bosonization

Bosonization of a quantum field theory describes a method by which fermionic operators in the the-
ory, obeying anti-commutation relations, are replaced by bosonic operators obeying commutation
relations. But the replacement of one field theory with another would appear to merely replace the
problem of solving the original fermionic field theory with the problem of solving a bosonic field the-
ory. The usefulness of this technique was realised when it was discovered that certain one dimensional
interacting fermionic field theories, were equivalent to non-interacting bosonic field theories, i.e prop-
erties of the fermionic system can be described in terms of certain boson fields, whose properties are
simpler to calculate than those of the original fermion fields.

Given the exact solution to the bosonic field theory, the properties of the fermionic theory can
be calculated by use of a bosonization dictionary. For example, correlation functions in terms of
fermionic operators can be re-written as expectations for bosonic operators, and solved.

Bosonization may be derived by defining a set of boson fields φ(x), and their conjugate momenta
fields Π(x), with given commutation relations, and then determining the commutation relations and
Greens functions of the exponentials of these fields. The Greens functions and commutation relations
are fermionic in nature, and an identity between the boson fields, φ(x) and Π(x), and fermion fields
ψ(x) is made.

3.2 Low-Energy field approximation

We will now proceed to construct an effective low-energy theory. The low-energy theory is defined
in terms of creation and annihilation operators in the vicinity of the Fermi points. In particular, we
restrict ourselves to the modes of the momentum expansion in a ± neighborhood of kSC,F of width
2α, with α the Rashba spin-orbit coefficient.

For a starting point, we take the case where we include only the strong SOC in our system (B̃ =

0,∆ = 0). We see in Figure (3.2a) the 4 modes around kSC,F (lowest dotted lines) and this depends
on where we set our Fermi level to be.
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(a) Band splitting due to SOC for the 4 modes
in both energy bands

(b) Band splitting due to SOC only for the 4 modes
in the lower energy band

Figure 3.2: In the figure (a) we see the the low-energy spectrum of the strong SOC and we see
the bands split with spin |±〉. The dotes lines denotes the fermi level and the modes we have
for each of our choice. In the Figure (b), we consider only the modes in the lower energy band
since these are the ones we are interested. In both figures we have set B̃ = ∆ = 0 and µ < α2

2m
.

If we set the chemical potential to start from the bottom of the lowest energy band and set k = 0,
we see that the chemical potential should satisfy the relation µ < α2

2m
. When we turn on the magnetic

field we are in the case that is depicted in Figures (3.1c 3.1d). These 2 cases are of big interest and
worth analyze it further so we will label them as I and II correspondingly. In the low-energy field
approximation we will have 4 modes only in the case I. We will consider only the lower band which
correspond to state |ψ−〉 (k) because we are considering that µ < α2

2m
and ∆, t, T < 2B̃ where 2B̃ is

the gap between the 2 energy bands due to Zeeman splitting. In particular, in the case I (of Figure
(3.1c)) we are treating the magnetic field as small perturbation and our states are represented in the
σy-basis, i.e that the SOC is stronger than the magnetic field. The critical value for the magnetic field
is found by taking the second derivative of eq. (3.2) equal to zero and setting k = 0, µ = α2

2m
and

is found equal with B̃I,cr = α2

m
. In the case II, the spin is polarized in ẑ-direction and our states

are represented in the σz-basis, but now we have 2-modes in the lower energy band. We can find the
lowest point in the spectrum for case II by taking the second derivative of eq. (3.2) equal to zero and
set k = 0. By doing so, we find B̃II,cr = α2m.

As we mentioned at the beginning of Chapter (2), we can integrate out the 2 dimensions and have
an effective 1D theory. This will be the ideal case in which we built our model. It will be a good
approximation for theoretical descriptions but it is not easy for experimental setups.

Since we consider a 1D quantum wire, we will assume that the electron density is such that the
Fermi energy lies below the energy of the first excited state. The result is that the single-particle states
with momenta in the range −α − kSC,F < k < kSC,F + α are occupied and the states outside this
range are empty. Thus the Fermi surface of this system reduces to four Fermi points at ±α ± kSC,F .
We will also assume that the wire is long enough, L � w (where L is the length and w the width of
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the wire), so that the single particle states fill up densely the momentum axis, and that the density is
high enough that ∆k = 2π}/L � kSC,F . On the other hand, we will assume that the wire is narrow
enough that the next band of (excited) states can effectively be neglected, εSC,F � }2/(2mw2). At
higher electronic densities, more than one band can intersect the Fermi energy. Each new partially
occupied band is labeled by a pair of Fermi points. In practice we will work in a regime in which the
following inequality holds:

L

w
� 1 � w

λSC,F

(3.11)

where λSC,F = }/kSC,F is the wavelength, and we have only four Fermi points.
Having set up the problem properly, it is time to make a very important observation. We saw that

eq. (3.5) is written in the σz-basis. If we continue our analysis in this basis, we will encounter a
difficulty in the Renormalization procedure. To be more specific, we will have to calculate 3rd terms
in order to estimate the gap. This can be avoided by changing the basis of the SC eigenstates from σz

to σy -basis. This can be done by simple replacing the terms:

|↑〉 = |+〉+ |−〉√
2

and |↓〉 = |+〉 − |−〉
i
√
2

(3.12)

in eq. (3.5). This will result to the lower band eigenstate in the σy-basis to be equal with:

∣∣ψ−(k)
〉
=

1√
2

(
sin

ϑ(k)

2
+ cos

ϑ(k)

2

)
|+〉 − 1√

2

(
sin

ϑ(k)

2
− cos

ϑ(k)

2

)
|−〉 (3.13)

In order to describe our original states in this low-energy field approximation, we perform first a
Fourier transformation in our lower band state:

∣∣ψ−(x)
〉
=

∫
dk√
2π
eikx

∣∣ψ−(k)
〉

(3.14)

where α̃ is the lattice spacing and especially for NbN it is approximately α̃ = 4.357Å. Next, we
integrate in a very small window around fermi momentum and this will result to our 4-modes (2-Left
and 2-Right) as shown in Figure (3.2b) with expressions in the bosonized picture of the form:

ψL,1(x) =
1√
4π
ei(−kSC,F−α)x

[
k+

1√
2

(
sin

ϑ(−kSC,F − α)

2
+ cos

ϑ(−kSC,F − α)

2

)
ei(φ+(x)+θ+(x))

−k−
1√
2

(
sin

ϑ(−kSC,F − α)

2
− cos

ϑ(−kSC,F − α)

2

)
ei(φ−(x)+θ−(x))

]
(3.15)
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ψR,1(x) =
1√
4π
ei(kSC,F−α)x

[
k+

1√
2

(
sin

ϑ(kSC,F − α)

2
+ cos

ϑ(kSC,F − α)

2

)
ei(φ+(x)−θ+(x))

−k−
1√
2

(
sin

ϑ(kSC,F − α)

2
− cos

ϑ(kSC,F − α)

2

)
ei(φ−(x)−θ−(x))

]
(3.16)

ψL,2(x) =
1√
4π
ei(−kSC,F+α)x

[
k+

1√
2

(
sin

ϑ(−kSC,F + α)

2
+ cos

ϑ(−kSC,F + α)

2

)
ei(φ+(x)+θ+(x))

−k−
1√
2

(
sin

ϑ(−kSC,F + α)

2
− cos

ϑ(−kSC,F + α)

2

)
+ ei(φ−(x)+θ−(x))

]
(3.17)

ψR,2(x) =
1√
4π
ei(kSC,F+α)x

[
k+

1√
2

(
sin

ϑ(kSC,F + α)

2
+ cos

ϑ(kSC,F + α)

2

)
ei(φ+(x)−θ+(x))

−k−
1√
2

(
sin

ϑ(kSC,F + α)

2
− cos

ϑ(kSC,F + α)

2

)
ei(φ−(x)−θ−(x))

]
(3.18)

or, we can write them in a more composite form like:

ψσ,η,j =
∑

σ=±=±1

∑
η=L/R=±1

∑
j=1,2=∓1

1√
8π

kσCσ,η,jei(−ηkSC,F+jα)xei(φσ(x)+ηθσ(x)) (3.19)

where in the above description we defined as C+,η,j(k) =
(
sin

ϑ(−ηkSC,F+jα)

2
+ cos

ϑ(−ηkSC,F+jα)

2

)
and C−,η,j(k) = −

(
sin

ϑ(−ηkSC,F+jα)

2
+ cos

ϑ(−ηkSC,F+jα)

2

)
. Also, in the above description σ = ±

denotes the spin in the σy, η = L/R = ±1 denotes the Left and Right movers and j = ∓1 = 1, 2

denotes the modes 1 or 2 and was chosen like this to always give the right sign for eq. (3.15-3.18).
We should note here one important property for these coefficients that we are gonna use for later
derivations, which is C+,η,−σ(−k) = C−,η,−σ(−k) and is easy to check that it is true. Furthermore,
we introduced the k± Klein factors. These operators are necessary because they ensure the proper
fermionic anti-commutation relations between Right and Left-movers and have the properties:

{
kσ,α, kσ′,β

}
= 2δσσ′δαβ, k

2
σ,α = 1, kσ,α = k†σ,α = k−1

σ,α (3.20)

where α, β = SC, (F )QH here denotes the (F)QH or the SC. We have also introduced the bosonic
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fields φσ(x), θσ(x), with φσ(x) = φSC
σ (x) and θσ(x) = θSCσ (x) which obey the commutation relations:[

φSC
σ (x), φQH

σ′ (x)
]
=
[
φSC
σ (x), φSC

σ′ (x′)
]
=
[
φQH
σ (x), φQH

σ′ (x′)
]
= 0, (3.21)[

θSCσ (x), θQH
σ′ (x)

]
=
[
θSCσ (x), θSCσ′ (x′)

]
=
[
θQH
σ (x), θQH

σ′ (x′)
]
= 0 (3.22)[

φSC
σ (x), θQH

σ′ (x′)
]
=
[
φQH
σ (x), θSCσ′ (x′)

]
= 0 (3.23)[

φSC
σ (x), θSCσ′ (x′)

]
=
[
φQH
σ (x), θQH

σ′ (x′)
]
= iδσσ′πΘ(x− x′) (3.24)

where again σ = σ′ = ± is the spin in the σy-basis when we are talking about our Superconductor
and σ′ =↑, ↓ the spin in σz-basis when we refer to (Fractional or Integer) QH and

Θ(x− x′) =


Θ(x− x′ > 0) = 1

Θ(x− x′ = 0) = 1
2
for fermions

Θ(x− x′ < 0) = 0

(3.25)

is the Heaviside step function. In above commutation relations for the Quantum Hall indices corre-
spond to 1 electron. As we will see later for the case of FQH these relations will slightly change but
will have a huge physical meaning. The expressions of the modes derived above are shown in the
Figure (3.3).

Figure 3.3: Here we see the 4 modes we are considering in the low-energy band where we include
the strong SOC, the magnetic field is turned on (B̃ 6= 0), the superconducting pairing potential
∆ = 0. When the momentum is fixed in the value k = kSC,F (dotted line), we are considering
the low-energy approximation, which results to those 4 modes and their precise expressions
found in eq. (3.15-3.18).
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A more fundamental way to express the commutation relation (3.21) is to write it as:[
∂xθσ′(x′)

π
, φσ(x)

]
= −iδσσ′δ(x− x′) (3.26)

It is an equal-time commutation relation, both the fields are here taken at the same time. It states
indeed that ∂xθσ′(x′) is the canonically conjugate operator of φ, thus ∂xθσ′(x′) ∝ ∂tφσ(t). To be more
precise, in the above description when we defined the fields φ to be the dual field of θ, we mean that
they must fulfill the following relations (which are valid for K = 1 only):

∂tθ = veF∂xφ, ∂xθ =
∂tφ

veF
(3.27)

Based on equation (3.27) we encoded the chiral behaviour of our vortex operations in eq. (3.15-3.18)
by defining the Left and Right bosonic fields as:

φL,σ = φσ + θσ, φR,σ = φσ − θσ (3.28)

where σ = ± is the spin.
In order to ensure that the above definitions of our Left and Right movers are well defined, we

need to check that they obey the anti-commutation relations for fermions:

{
ψx,σ, ψ

†
x′,σ′

}
=

1

2πα
δσσ′δxx′ ,

{
ψx,σ, ψx′,σ′

}
=
{
ψ†
x,σ, ψ

†
x′,σ′

}
= 0 (3.29)

where after some simple calculations and apply the commutation relations of the bosonic fields φ(x)
and θ(x) and considering the properties of Klein factors, we see that they obey eq. (3.29).

Here is a good point to introduce the charge (c) and spin (s) fields as follows:

φc =
φ+ + φ−√

2
, θc =

θ+ + θ−√
2

(3.30)

φs =
φ+ − φ−√

2
, θs =

θ+ − θ−√
2

(3.31)

The inverse relations that are going to be useful when we calculate the tunneling term are:

φSC
+ =

φc + φs√
2

, θSC+ =
θc + θs√

2
(3.32)

φSC
− =

φc − φs√
2

, θSC− =
θc − θs√

2
(3.33)

and φSC
± , θSC± have a periodicity of φSC

± = φSC
± + 2πm and θSC± = θSC± + 2πm respectively, where

m = 0, 1, 2, . . . an integer number. By changing the basis we are rotating our original lattice space

64



CHAPTER 3. BOSONIZATION 3.2. LOW-ENERGY FIELD APPROXIMATION

by 45◦. In this basis our Hamiltonian should be diagonal. The spin and charge excitations will appear
separately, therefore it is possible to regard the spin and charge particles as the new independent
fundamental excitations instead of the old spin up and spin down particles. Indeed, because of the
degeneracy of the spin up and spin down channel, we could have used any canonical rotation to
define new particles, but spin and charge are particularly useful when interactions are present. This
is intuitively clear because realistic interactions will couple total charge densities and thereby lift the
degeneracy between the spin and the charge channel. With interactions, we are therefore forced to
use the picture of spin and charge excitations, since the freedom of rotating degenerate channels is
lost. Note however, that the spin and charge separation is not obeyed exactly for the particle numbers,
because the new zero modes still must obey the old quantization formula. Both numbers must be
integers, but cannot be changed independently. Adding a spin particle must always be accompanied by
adding or removing a charge particle and vice versa, i.e. the total sum of spin and charge particles must
always remain even. This just reflects the fact that we always have to add and remove real electrons,
instead of spin/charge quasi-particles. We are gonna use these definitions in our next calculations.

By turning on the magnetic field, the system tends to couple the modes ψR,1(x) and ψL,2(x), in
the point where the 2 parabolas are crossing in Figure(3.2b). Let’s analyze this pairing term a bit. The
magnetic pairing can be described in a Hamiltonian of the form:

HB̃ = B̃(ψ†
+(x)ψ−(x) + H.C) =

B̃
((
ψ†
L,1(x) + ψ†

R,1(x)
)(
ψL,2(x) + ψR,2(x)

)
+ H.C

)
(3.34)

We consider here the magnetic term as a small perturbation and by performing the calculations ex-
plicitly (check Appendix (B.2)), we find terms of the form:

• ψ†
L,1(x)ψL,2(x) + ψ†

R,1(x)ψR,2(x) + H.C ∼ e2iαx + H.C

• ψ†
L,1(x)ψR,2(x) + ψ†

R,1(x)ψL,2(x) + H.C ∼
(
e2i(kSC,F+α)x + e2i(kSC,F−α)x

)
+ H.C

For these terms it easily to see that they are Fast Oscillating (F.O), i,e they will be irrelevant at first
order in the RG sense for our system and we can neglect them. Although, if we set the value of fermi
momentum at kSC,F = ±α we get some relevant terms which will play an important role for future
analysis. It is possible to get some exotic excitations in the final results and might be a good idea for
future calculations, but for our case we consider that kSC,F 6= α, i.e we do not consider any resonance
in the system. It of importance to note here that in the description the 4-modes in eq. (3.15-3.18) we
have already included the magnetic field in our Hamiltonian in order to get a more rigorous picture
of our system. One can set the B̃ = 0 and will get the correct results as in the case of considering
the Hamiltonian (3.1) without the Zeeman term. In case someone wonders about the critical value
of magnetic B̃cr in which the superconductor remains in the topological regime, as in the previous
analytical methods, we must note what we aim here is not consider if the SC is topological, but to
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consider whether it induces a gap into the QH. The Majorana (or Parafermions) modes will come
from the Integer (or Fractional) Quantum Hall in this case. If however the SC is in topological regime
then we expect to have additional Majorana (or Parafermion) modes in our system. Finally, NbN is
a Type-2 SC, this means the london penetration length λL and coherence length ξ should satisfy the
relation λL > ξ and in order to remain in the case I as mentioned before, we want the width w of the
SC to be small. Typically, it should be w � λL.

Proceeding next, we turn on ∆ 6= 0, we are inducing superconductivity via an s-wave pairing to
our system which takes the coupling between opposite spins in the modes (check Appendix (B.3)):

H∆ = −∆(ψ†
L,1(x)ψ

†
R,2(x) + ψ†

R,1(x)ψ
†
L,2(x) + H.C) =

ik+k−
∆

π

(
C+,L,−1C−,L,−1 + C+,R,+1C−,R,+1

)[
sin
(√

2(φc(x) + θs(x))
)
+ sin

(√
2(φc(x)− θs(x))

)]
(3.35)

where again we have here the prefactors C+,η,j =
(
sin

ϑ(−ηkSC,F+jα)

2
+ cos

ϑ(−ηkSC,F+jα)

2

)
and

C−,η,j = −
(
sin

ϑ(−ηkSC,F+jα)

2
+cos

ϑ(−ηkSC,F+jα)

2

)
and we see that appears 2 sine-Gordon terms. The

operators φc(x) and θs(x) commute with each other, thus they can simultaneously minimized. This
observation will be useful later. From these two terms we can see that:

θs = 0 ⇒

jc = 0

ρs = 0
(3.36)

where jc is the charge density and ρs the spin density in the semiclassical picture.
The final step is to write the bosonized description of our tunneling Hamiltonian. Previously, we

had:
Ht(x) = −t

∫
dx
∑
j=L,R

[ψ†
FQH,↑,j(x)ψSC,↑(x) + ψ†

SC,↑(x)ψFQH,↑,j(x)] (3.37)

It is worth noting again that due to the strong magnetic field, the spin of the Quantum Hall will be
polarized in the ẑ-direction. So, we only consider the ψFQH,↑,j(x) states, for which we can neglect the
spin indices but it will always be implied. Furthermore, in the previous methods we considered the
Integer Quantum Hall and now since we do not want to calculate again the same things, we consider
the Fractional Quantum Hall, hence the indices FQH in eq. (3.37).

Let’s take a closer look to what we mean in this low-energy approximation description when we
write ψSC,↑(x). We can write this term in real space by Fourier transforming as:

ψSC,↑(x) =

∫
dk√
2π

(
α(k)ψ−

SC(k) + β(k)ψ+
SC(k)

)
eikx (3.38)
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where the factors α(k), β(k) take the value of 1√
2

when we consider B̃ = 0. This also means that for
B̃ = 0 the bands are polarized along ŷ and to be more presice, we get |↑〉z =

1√
2
(|+〉y + |−〉y). From

the above expression, we neglect the upper band (ψ+
SC(k)) and take only the projection in the lower

band. This means that our tunneling Hamiltonian eq. (3.37) becomes:

Ht(x) = −t
∑
j=L,R

[ψ†
FQH,↑,j(x)ψSC,↑(x) +H.C] ≈

−t
∫
dx
∑
j=L,R

[ψ†
FQH,↑,j(x)

∫
dk√
2π

[
α(k)ψ−

SC(k) +H.C
]
≈

−t
∫
dx
[(
ψ†
FQH,↑,L(x) + ψ†

FQH,↑,R(x))
) 1√

2π

( ∑
σ=±=±1

∑
η=L,R

∑
j=1,2

ψ−
σ,η,j(x)

)
+H.C

]
=

−t√
2π

∫
dx
[(
ψ†
FQH,↑,L(x) + ψ†

FQH,↑,R(x))
)( ∑

σ=±=±1

∑
η=L,R

∑
j=1,2

ψ−
σ,η,j(x)

)
+H.C

]
(3.39)

where in above steps we considered the approximation that we take the projection only in the lower
band and the low-energy approximation where we have 4-modes. Also the factor of α(k) was ab-
sorbed inside ψ−

η,j(x) so that we can take the general case with B̃ 6= 0. In particular, we have:

ψSC,↑(x) =
1√
4π
ei(−kSC,F−α)x

[
kSc,+C+,+1,−1e

i(φ+(x)+θ+(x)) − k−C−,+1,−1e
i(φ−(x)+θ−(x))

]
+

1√
4π
ei(kSC,F−α)x

[
kSc,+C+,−1,−1e

i(φ+(x)−θ+(x)) − k−C−,−1,−1e
i(φ−(x)−θ−(x))

]
+

1√
4π
ei(−kSC,F+α)x

[
kSc,+C+,+1,+1e

i(φ+(x)+θ+(x)) − k−C−,+1,+1e
i(φ−(x)+θ−(x))

]
+

1√
4π
ei(kSC,F+α)x

[
kSc,+C+,−1,+1e

i(φ+(x)−θ+(x)) − k−C−,−1,+1e
i(φ−(x)−θ−(x))

]
(3.40)

where Cσ,η,j as defined before. In a more composite form, it can be written as:

ψ−
σ,η,j =

∑
σ=±

∑
η=L/R=±1

∑
j=∓1

1√
4π

kσCσ,η,jei(−ηkSC,F+jα)xei(φσ(x)+ηθσ(x)) (3.41)

where Cσ,η,j coefficients were defined earlier but here we replaced j with −σ. It is important to note
here that in eq. (3.41) the sign of the Fermi momentum is locked to the opposite sign of θ field, in
particular, as will be shown later, in the sign of θc field and the sign of the Rashba coefficient it is
locked to the the opposite sign of spin. In this way, when we consider the case B̃ = 0, and by taking
into consideration eq. (3.7) we will get the correct states. In the case where B̃ 6= 0 the extra term will
be considered as a small correction to the previous case. So far, we have defined every term in the
bosonized picture except the FQH operators

∑
j=L,R ψFQH,↑,j(x). In the low-energy approximation,
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we can write FQH operators as:

ψFQH,↑(x) = kFQH,↑ψFQH,↑,L(x)e
−ikFQH,F x + kFQH,↑ψFQH,↑,R(x)e

ikFQH,F x (3.42)

where we can write it in the bosonized picture as:

ψFQH,↑(x) = kFQH,↑

(
e−ikFQH,F xei(φe(x)+θe(x)) + eikFQH,F xei(φe(x)−θe(x))

)
(3.43)

or in a composite form as :

ψη′(x) =
∑

η′=L,R=±1

kFQH,↑

(
e−η′ikFQH,F xei(φe(x)+η′θe(x))

)
(3.44)

where again, we see that the sign of the Fermi momentum kFQH,F is fixed to the opposite sign of
θe. The bosonic fields for the FQH that we are going to use are φ′(x) 6= φe(x) and θ′(x) = θe(x),
which means that one of them is different from the one in the IQH. Furthermore, for simplicity we
will neglect the notation of FQH in the above bosonic fields and the spin ↑ polarization is implied.
Let’s try to make these definitions of the FQH bosonic fields more understandable.

We start by writing the wave function of a bare electron in edge state. This will be:

ψe = ei(φe±θe)

where ± denotes left and right mover. By considering the composite fermion (i.e 1 electron + 2
magnetic flux ) we are describing the Laughlin state of ν = 1/3 and it can be described by:

ψcf = ei(3φe±θe)

This means that our fractional quasiparticle can be described by the wave function:

3
√
ψcf = ψqp = ei(φ

′±θ′)

Thus, the connection between FQH and the IQH bosonic fields is:

φ′(x) =
φe(x)

3
and θ′(x) = θe(x) (3.45)

Since we are considering here the FQH of filling factor ν = 1
3
, the FQH fields must obey the commu-

68



CHAPTER 3. BOSONIZATION 3.2. LOW-ENERGY FIELD APPROXIMATION

tation relations:

[φe,σ(x), θe,σ′(x′)] = iπδσσ′Θ(x− x′) ⇐⇒
[
3φ

′FQH
σ (x), θ

′FQH
σ′ (x′)

]
= iπδσσ′Θ(x− x′)

⇐⇒
[
φ

′FQH
σ (x), θ

′FQH
σ′ (x′)

]
= iδσσ′

π

3
Θ(x− x′) (3.46)

The reason why they have this form is becoming more clear when we consider the interacting Lut-
tinger liquid. Now, the role of interactions, is easily encoded the Luttinger parameter, which will be
Ke = 1

3
(strong Coulomb interaction), and the Hamiltonian of the Luttinger liquid will be described

in our case as:

Hqp = HFQH =
veF
2π

∫
dx
(
Ke(∂xφe(x))

2 +
1

Ke

(∂xθe(x))
2
)
=

veF
2π

∫
dx
(
Ke(3∂xφ

′(x))2 +
1

Ke

(∂xθ
′(x))2

)
=
veF
2π

∫
9

3
(∂xφ

′(x))2 + 3(∂xθ
′(x))2 =

3veF
2π

∫
dx
(
(∂xφ

′(x))2 + (∂xθ
′(x))2

)
(3.47)

where veF is the Fermi velocity of the interacting system. That’s why we chose this definition of the
above fields. In more general case, one can define them as:

φ′(x) = Kφe(x) and θ
′(x) = θe(x) (3.48)

as was defined in our case.
What we managed so far, is that we mapped our original interacting Hamiltonian to a non-

interacting. Furthermore, it is very important to note here that in this description basically the edge
states of our Quantum Hall (Fractional or Integer) are being described by the Luttinger Liquid Hamil-
tonian. The transformation of the fields φe(x), θe(x) to φ′(x), θ′(x) respectively, implies that the
commutation relations for these fields are not canonical any longer, and, for example, it modifies the
definition of the duality relations:

∂tθ
′ = KveF∂xφ′, ∂xθ

′ =
K
veF
∂tφ

′ (3.49)

Let’s take a moment here to remind ourselves some of the important physical meanings that the
Luttinger parameter has to a system. For values of:

• K < 1, we have an interacting system with repulsive interactions,

• K = 1, we have a non-interacting system and for

• K > 1 we have an interacting system with attractive interactions.
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Going back to calculate the bosonized description of our tunneling Hamiltonian, we get the result
in a composite form as:

Ht(x) =
−t2i√
4π

∫
dx
∑
σ=±

∑
η=L/R=±1

∑
η′=L/R=±1(

kFQH,↑kSc,+C+,η sin
(
3φ(x)− η′θ(x)− φc + φs√

2
− η

θc + θs√
2

− η′(kFQH,F − ηη′kSC,F − σα)x
)

−kFQH,↑kSc,−C−,η sin
(
3φ(x)− η′θ(x)− φc − φs√

2
− η

θc − θs√
2

− η′(kFQH,F − ηη′kSC,F − σα)x
))

(3.50)

where again in the above notation η and η′ takes the values ±1 for L/R modes respectively and the
term Cσ,η is similar to the Cσ,η,j by changing now j = 1, 2 = −σ which denotes the modes. For
simplicity, above we replaced φ′(x) = φ(x) and θ′(x) = θ(x) and we will keep these notations from
now on. An important observation here is that in eq. (3.2) the sign of the θ(x) field is locked with
the sign of kFQH,F . This means that in second order of RG later we do not expect to have Slow
Oscillating terms that depends on θ(x). If we did, these terms would represent back scattering terms.
The analytic calculations of the above result can be found in the Appendix (B.4).

3.3 The Renormalization Group Analysis

The renormalization group is a central conceptual framework for understanding the behavior of
strongly coupled and critical systems. It was originally formulated in the context of perturbative
quantum field theory (particularly in relation to quantum electrodynamics), and found its crisper and
most powerful realization in the explanation of critical phenomena in statistical physics. The most
important ideas derived from the renormalization group are the concepts of a fixed point and univer-
sality. These ideas, due primarily to Wilson and Kadanoff, in turn provided a definition of a quantum
field theory outside the framework of perturbation theory.

In its simplest representation the renormalization group is a transformation that maps a system
with a set of coupling constants and a scale (representing the short-distance or high-energy cutoff)
to another equivalent system with a different set of (renormalized) coupling constants and a different
scale. This is done by a procedure known as a block-spin transformation (in the language of classi-
cal statistical mechanics), by which some of the degrees of freedom, representing the short-distance
physics, are integrated out and a subsequent scale transformation is performed to restore the original
scale (or units).

Both in classical statistical mechanics and in a quantum field theory we can formally represent the

70



CHAPTER 3. BOSONIZATION 3.3. THE RENORMALIZATION GROUP ANALYSIS

system in terms of a path integral:

Z =

∫
Dφe−S(φ) (3.51)

where the field φ may obey Fermi or Bose statistics, in which case it will be represented by a set of
Grassmann or scalar (or vector) fields, depending on the case.

In our case, the quadratic terms of our Hamiltonian have the form of Luttinger liquids and are
represented by:

H0 = HFQH +Hc +Hs (3.52)

where

• The FQH hamiltonian is:

HFQH =
3veF
2π

∫
dx
(
(∂xφ(x))

2 + (∂xθ(x))
2
)

(3.53)

• The charge Hamiltonian is:

Hc =
veF,c
2π

∫
dx
(
Kc(∂xφc(x))

2 +
1

Kc

(∂xθc(x))
2
)

(3.54)

• and the spin Hamiltonian is:

Hs =
veF,s
2π

∫
dx
(
Ks(∂xφs(x))

2 +
1

Ks

(∂xθs(x))
2
)

(3.55)

where usually veF,c 6= veF,s and Kc 6= Ks. In the case however of a free fermion system the Luttinger
parameters Kc = Ks = 1 and hence the charge and spin velocities are equal in that case , veF,c = veF,s.
We replace the term ∂xθs(x) by using the duality relation, eq. (3.49), and express the quadratic
Hamiltonians in terms of φ fields. Moreover, we resort to Euclidean space, i.e., we use coordinates
z = (x, t ≡ iτ), and we denote d2z = dxdτ such that the following duality relations hold:

∂τθq = iveF,qKq∂xφq, ∂xθq = i
Kq

veF,q
∂tφq (3.56)

where q = FQH, s, c denotes the fields for the FQH, the spin and the charge components.

3.3.1 2-step RG

Many of the techniques that we are going to use form now on were based on lecture notes [17]. The
way we will proceed with the RG analysis in our model, is by working on a 2-step RG procedure
which is a simple way of improving the RG predictions. In the adoption of a two-step RG approach,
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the flow is divided into separate parts, where each part is terminated when a coupling constant reaches
a suitable upper threshold, which indicates when a given interaction semiclassically pins the related
fields. After each separate flow, an effective Hamiltonian for the remaining unpinned sectors is con-
sidered. In particular, this means that we will divide the flow in two different steps. In the first one, we
will consider the unperturbed action of our system as the one that includes only the quadratic terms
(Luttinger liquids). This means that we have:

S0 = SLuttinger =
1

2π

∫
d2z
[ ∑
q=FQH,s,c

Kq

veF,q
(∂τφq(z))

2 + veF,qKq(∂xφq(z))
2
]

(3.57)

Then, we let the parameters or coupling constants flow until a parameter reaches the threshold (cutoff)
or all of the parameters flow below some minimum for which a gapless phase is expected. By doing
so, we will find that at first-order perturbation that the ∆ term will be most relevant and so will pin the
fields φc and θs to zero and our system is now gapped (or massive), or equivalent that the ∆ term is
strong and relevant, thus we open the ∆ gap. The second step is to find the relevant terms in 2nd-order
perturbation and from there we let our parameters flow again until the threshold where we will find
a different parameter. By solving next the RG flow equations we will be in position to determine the
induced gap. The role of the perturbative action will play the tunneling action and the ∆ term, and it
is equal to:

SI = S∆ + St =

ik+k−
∆

π

(
C+,L,−1C−,L,−1 + C+,R,+1C−,R,+1

)∫
d2z

[[
sin
(√

2(φc(z) + θs(z))
)
+

sin
(√

2(φc(z)− θs(z))
)]]

+
2it√
2π

∫
dx

∑
η=L/R=±1

∑
η′=L/R=±1(

kFQH,↑kSc,+C+,η sin
(
3φ(x)− η′θ(x)− φc + φs√

2
− η

θc + θs√
2

− η′(kFQH,F − ηη′kSC,F − σα)x
)

−kFQH,↑kSc,−C−,η sin
(
3φ(x)− η′θ(x)− φc − φs√

2
− η

θc − θs√
2

− η′(kFQH,F − ηη′kSC,F − σα)x
))

(3.58)

One could also define the perturbative action to be only the tunneling term, but in this case the defini-
tion of the correlation functions change (since we include a massive term) of eq. (3.64), (3.65) and it
makes it more complicated to to define the function C(r), but not impossible.

The idea behind the Wilsonian renormalization group is the following. For each of the bosonic
fields, we distinguish fast and slow modes, separated by an effective cutoff in momentum space, which
we define as Λ̃ = Λe−l (or Λ̃ = Λ/bwith b > 1). Furthermore, we introduce an ultraviolet momentum
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cutoff Λ > Λ̃ (the new short distance cutoff is α′ = bα). Thus, we need to rescale the lengths and the
time in order to restore the units (x′ = x/b or k′ = kb). The fast oscillating modes are characterized
by Λ̃ < k < Λ and we are interested in the limit Λ̃/Λ = 1− dl (or equivalent Λ/Λ̃ = 1 + dl), with dl
infinitesimal. The bosonic fields can thus decomposed to the following:

φq(z) = φs,q(z) + φf ,q(z) (3.59)

θq(z) = θs,q(z) + θf ,q(z) (3.60)

where again q = FQH, s, c and s, f denotes the slow and fast modes respectively. These transfor-
mations must obey some basic principles. The most important one is that this procedure should be
compatible with the underlying symmetries of the physical system. We will assume that the rescaling
is isotropic both in space and in space-time. Thus, we are assuming that there will be an effective
Lorentz invariance in the system of interest.

The full action of our system is written as:

S = S0 + St (3.61)

To understand the renormalization flow, we must derive and effective action for the slow modes only,
by averaging over the fast modes. Thus, by integrating out the fast degrees of freedom we obtain:

Seff (Λ̃) = S0(φs)− ln〈e−St(φs+φf )〉f ≈

S0(φs) +
〈
St(φs + φf )

〉
f︸ ︷︷ ︸

A

−1

2

(〈
S2
t (φs + φf )

〉
f︸ ︷︷ ︸

B

−
〈
St(φs + φf )

〉2
f︸ ︷︷ ︸

A2

)
+ . . . (3.62)

where the expectation values are taken on the (fast) Gaussian action only, and we identified the effec-
tive action at the second order of perturbation theory. In the following we make extensive use of the
following well-known key property of Gaussian integrals:

〈
ei

∑
k αkφk

〉
= e−

1
2

∑
k,k′ αkαk′ 〈φkφk′ 〉 (3.63)

with φ the fields over which the integration is carried out and αk here are the coefficients in front of
the φ fields. Consider the following relations:

〈
φf ,q(z1)φf ,q(z2)

〉
f
=

∫ Λ

Λ̃

dk

2

J0(kr)

Kqk
=
Cq(r)

2Kq

ln
Λ

Λ̃
(3.64)
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〈
θf ,q(z1)θf ,q(z2)

〉
f
=
Cq(r)Kq

2
ln

Λ

Λ̃
(3.65)

where q = e, c, s and the logarithm captures the scaling behaviour, and C(r) is a short-range function
of r =

√
ve

2

F,q(τ1 − τ2)2 + (x1 − x2)2 such that C(0) = 1. In the following we will consider Cq(r)

to be suitably short-ranged; in the case of a sharp cutoff, Cq(r) = J0(Λr) and the Bessel function J0
does not satisfactorily fulfill this assumption, but Cq(r) can be made sufficiently short-ranged with
more refined cutoffs.

Before we proceed any further, we will introduce first the vertex operators that is a shorthand
notation for the corresponding sine-Gordon terms that appear in our Interacting action. In particular,
we denote as:

Oν
∆,± = eiν

√
2(φc(z)±θs(z)) (3.66)

the operator that describes the ∆ sine-Gordon terms with ν = ± to get the operator and its Hermitian
Conjugate. For the tunneling term, we set:

Oν
t,σ,η,η′,± = e

iν
(
(3φ−η′θ−φc±φs√

2
−η θc±θs√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)
(3.67)

Let’s proceed by evaluating in first order the ∆ term. We have now for the first sin term that:〈
2i sin

√
2(φc(z) + θs(z))

〉
=
〈
O+

∆,+ −O−
∆,+

〉
〈
ei

√
2(φc(z)+θs(z)) − e−i

√
2(φc(z)+θs(z))

〉
=〈

ei
√
2(φs,c(z)+φf ,c(z)+θs,s(z))+θf ,s(z)) − e−i

√
2(φs,c(z)+φf ,c(z)+θs,s(z))+θf ,s(z))

〉
=

ei
√
2(φs,c(z)+θs,s(z))

〈
e
√
2(φf ,c(z)+θf ,s(z))

〉
f
− e−i

√
2(φs,c(z)+θs,s(z))

〈
e
√
2(φf ,c(z)+θf ,s(z))

〉
f
=

ei
√
2(φs,c(z)+θs,s(z))e−2(〈φ2

f ,c(z)〉f+〈θ2f ,s(z)〉f ) − e−i
√
2(φs,c(z)+θs,s(z))e−2( 1

2
〈φ2

f ,c(z)〉f+
1
2
〈θ2f ,s(z)〉f ) =

2i sin
(√

2(φs,c(z) + θs,s(z))
)
e−2 1

2
( 1
2Kc

+Ks
2
) ln Λ

Λ̃ = 2i sin
(√

2(φs,c(z) + θs,s(z))
)(

1− (
1

2Kc

+
Ks

2
)dl
)

(3.68)

and similar for the terms Oν
∆,−. From here it is easy to see that the scaling dimensions of the above

operators are D∆ = 1
2Kc

+ Ks

2
. We consider now the Non-Interacting (N-I) case by choosing the values

Kc = Ks = 1 for the Luttinger parameters of the charge and spin sector. This results to the scaling
dimension of the ∆ term to be equal to D∆ = 1, thus it is relevant. What this means for our 2-step
RG procedure is that for the I-step we consider our pairing potential ∆ to scale as ∆′ ∼ ∆(l = 0)el,
where ∆(l = 0) = const. is the value that we choose for the pairing potential similar to our previous
methods. Since ∆′ grows exponential (D∆ = 1), means that at I-step it opens gap.
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Let us now calculate the first part of the tunneling first-order term At,1:

At,1 = t
kFQH,↑kSc,+√

2π
C+,η∑

η=L/R=±1

∑
η′=L/R=±1

∑
σ=±1

〈
e
i
(
(3φ−η′θ−φs+φc√

2
−η θs+θc√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)
−e−i

(
(3φ−η′θ−φs+φc√

2
−η θs+θc√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)〉
f
∼

e
i
(
(3φs−η′θs−

φs,s+φs,c√
2

−η
θs,s+θs,c√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)〈
e
i
(
(3φf−η′θf−

φf ,s+φf ,c√
2

−η
θf ,s+θf ,c√

2

)〉
f

−e−i
(
(3φs−η′θs−

φs,s+φs,c√
2

−η
θs,s+θs,c√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)〈
e
−i
(
( 9
2
φf−η′θf−

φf ,s+φf ,c√
2

−η
θf ,s+θf ,c√

2

)〉
f
=

e
i
(
(3φs−η′θs−

φs,s+φs,c√
2

−η
θs,s+θs,c√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)
e−
(
( 9
2
〈φ2

f 〉f+
1
2
〈θ2f 〉f+

〈φ2f ,s〉f+〈φ2f ,c〉f
4

+
〈θ2f ,s〉f+〈θ2f ,c〉f

4

)
−e−i

(
(3φs−η′θs−

φs,s+φs,c√
2

−η
θs,s+θs,c√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)
e−
(
( 9
2
〈φ2

f 〉f+
1
2
〈θ2f 〉f+

〈φ2f ,s〉f+〈φ2f ,c〉f
4

+
〈θ2f ,s〉f+〈θ2f ,c〉f

4

)
=

e
i
(
(3φs−η′θs−

φs,s+φs,c√
2

−η
θs,s+θs,c√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)
e−
(
( 9
12

+ 1
12

+
1

2Ks
+ 1

2Kc
4

+
Ks
2 +Kc

2
4

)
ln Λ

Λ̃

−e−i
(
(3φs−η′θs−

φs,s+φs,c√
2

−η
θs,s+θs,c√

2
−η′(kFQH,F−ηη′kSC,F−σα)x

)
e−
(
( 9
12

+ 1
12

+
1

2Ks
+ 1

2Kc
4

+
Ks
2 +Kc

2
4

)
ln Λ

Λ̃ =

−2i sin
(
3φs − η′θs −

φs,s + φs,c√
2

− η
θs,s + θs,c√

2
− η′(kFQH,F − ηη′kSC,F − σα)x

)
(Λ̃
Λ

) 9
12

+ 1
12

+ 1
8Ks

+ 1
8Kc

+Ks
8
+Kc

8 =

−2i sin
(
3φs − η′θs −

φs,s + φs,c√
2

− η
θs,s + θs,c√

2
− η′(kFQH,F − ηη′kSC,F − σα)x

)
(
1−

(
9

12
+

1

12
+

1

8Ks

+
1

8Kc

+
Ks

8
+

Kc

8

)
dl

)
(3.69)

where in the above calculations, we used the fact that the correlation functions for the FQH are given
by:

〈φe(x)φe(y)〉 ≈ − 1

Ke

ln (x− y) ⇐⇒ 9〈φ(x)φ(y)〉 = − 1

2Ke

ln (x− y)

〈φ(x)φ(y)〉 = −1

6
ln (x− y) (3.70)

〈θ(x)θ(y)〉 = −1

6
ln (x− y) (3.71)

with Ke = 1
3
. Similar, we get the results for the other sin term. We thus obtain the first-order
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contribution:

A = −t2i
∑

η=L/R=±1

∑
η′=L/R=±1

∑
σ=±1(

kFQH,↑kSc,+√
2π

sin
ϑ(−ηkSC,F + jα)

2

∫
d2z′

(
1 +

(
2−

(
9

12
+

1

12
+

1

8Ks

+
1

8Kc

+
Ks

8
+

Kc

8

))
dl

)
sin
(
3φs − η′θs −

φs,s + φs,c√
2

− η
θs,s + θs,c√

2
− η′(kFQH,F − ηη′kSC,F − σα)x

)
−

kFQH,↑kSc,−√
2π

cos
ϑ(−ηkSC,F + jα)

2

∫
d2z′

(
1 +

(
2−

(
9

12
+

1

12
+

1

8Ks

+
1

8Kc

+
Ks

8
+

Kc

8

))
dl

)
sin
(
3φs − η′θs −

φs,c − φs,s√
2

− η
θs,c + θs,s√

2
− η′(kFQH,F − ηη′kSC,F − σα)x

)
(3.72)

where Dt = 9
12

+ 1
12

+ 1
8Ks

+ 1
8Kc

+ Ks

8
+ Kc

8
is the scaling dimension of the tunneling part and

we included also the rescaling term d2z = (1 + 2dl)d2z′. Note also, that in the above calculations
appears also a term

〈
φf ,q(z)θf ,q(z

′)
〉
f
= iπ

2
Θ(x − x′) (if q=FQH appears an extra term of 1

3
). This

correlation does not carry much information though, but the usual commutation relation between θ
and φ. One can for practical purposes ignore it after considering the right phase given by the CBH
formula. For that reason we choose to ignore it from our expressions and not carrying it around but if
someone wants to be as rigorous as possible he should include it. Finally, we are using that in 1+ 1D

the rescalling of the slow components of the fields is remaining the same, i.e that φ′
s,q = φs,q and

θ′s,q = θs,q.
From now on, when we want to calculate the scaling dimensions of an operator O we will use the

relation
〈O(x)O(y)〉 ∼ 1

|x− y|2DO
(3.73)

and we will drop the notation of s and f for the slow and fast oscillating fields respectively, for the
sake of saving space but it will always be implied that we average on fast oscillating fields and what
remains are the slow oscillating. As we can easily see, the first-order contribution A of the interacting
action provides the standard dependence from the scaling dimensions of the RG equations and is
also a F.O. term due the dependence of the Fermi momentum. At this point we should make a very
important observation. Our Superconductor here is 3-D. By integrating out the 2 dimensions it is
like giving the kSC,F a distribution for its values. Now if at some point the value of kSC,F is such
that η′(kFQH,F − ηη′kSC,F − σα) = 0, then at first-order of RG, the terms in eq. (3.72) become
relevant, cause we do not have any F.O. term when we are tuning to this special case. This will result
in having in our system different quasiparticles and therefore different phases of matter. This might
be very interesting to work with and one can find amazing results. But for the purposes of our project
we consider that we are not in this special case (in this resonance) and we take the integral over the
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average positions x this term is "dying" fast and thus is considered F.O. term.
To get more information of the system, we must focus in the second-order contributions and, in

particular, on the non-trivial terms appearing in B term. In particular, we have:

B =
〈
S2
t (φs + φf )

〉
f
=
〈(

St(φs(z1) + φf (z1)
)(
St(φs(z2) + φf (z2)

)〉
f

(3.74)

To calculate all these terms is a very painful procedure for that reason we need to make some
observations that will make our lives easier. Again here is it very easy to see that we are going to
have many F.O terms which are going to be irrelevant in the RG sense. For that reason, we focus
only on terms that are relevant. To distinguish these terms from our expression of the perturbative
Hamiltonian, one must find the combinations between the terms〈(

St(φs(z1) + φf (z1)
)(
St(φs(z2) + φf (z2)

)〉
f

that "kills" the F.O terms, i.e the terms that depend on the position x. We can combine these terms by
writing them in a composite form like:〈

Oν
t,η,η′,σ,±Oν′

t,η,η′,σ,±

〉
f

(3.75)

where here we are taking the combinations where η 6= η′, j 6= j′ and ν = ν ′. In this way we emphasize
the fact that the S.O (Slow Oscillating) terms will appear by coupling Left- and Right-movers with
different energy modes.

The interesting part about the S.O. terms of eq. (3.75) is that we get 2 kinds of S.O. In particular,
we get terms of form:

〈
Oν

t,η,η′,j,±Oν′

t,η,η′,j′,±

〉
f
∼

eiν(6φ−
√
2(φc+µθs))

eiν(6φ−
√
2(φc+µφs)))

(3.76)

We will not proceed by calculating explicitly these 2nd-order terms but we will benefit from this quick
analysis in the II-step RG.

Let us recall again our analysis so far. In the I-step of RG, we started from the Interacting action
of eq. (3.58) where in 1st-order of perturbation we found that the ∆ term opens a gap. This means
that we can minimize the fields φc and θs simultaneously since the commute with each other. We
choose then to pin their value to their minimum, thus we choose:

φc = const. θs = const. (3.77)

This also implies that the fields φs and θc are flat and can take any value. This is an important
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observation and will be very useful in the II-step of RG. It will be useful at this point to calculate
these minima. We have that:

sin
(√

2(φc + θs)
)
+ sin

(√
2(φc − θs)

)
=

sin
(√

2φc

)
cos
(√

2θs
)
+ cos

(√
2φc

)
sin
(√

2θs
)
+ sin

(√
2φc

)
cos
(√

2θs
)
− cos

(√
2φc

)
sin
(√

2θs
)
=

2 sin
(√

2φc

)
cos
(√

2θs
)

(3.78)

From here it is easy to see that we have different combinations for the minima. Namely, we have:

1. For sin
(√

2φc

)
= −1 and cos

(√
2θs
)
= 1, we get:

φc =
4πη − π

2
√
2

or φc =
4πη + 3π

2
√
2

, and θs =
√
2πη, η ∈ Z (3.79)

2. For sin
(√

2φc

)
= 1 and cos

(√
2θs
)
= −1, we get:

θs =
2πη − π

2
√
2

or θs =
2πη + π

2
√
2

, and φc =
4πη + π

2
√
2

, η ∈ Z (3.80)

These minima will be useful in later calculations.
Proceeding now to the II-step of RG we will consider now an effective Interacting action of the

remaining fields but we will include also an extra term. So, our Effective Interaction has the form:

SII
I,eff = St + Sh (3.81)

This extra term will include all the relevant terms that we would expect to find in the second order of
perturbation if we were following the standard methods in RG and it has the form (check Appendix
(B.5) for more details):

Sh = kSc,+kSc,−

∫
d2z

∑
µ=±1

(
hµ cos

(
6φ−

√
2(φc + µθs)

))
+ h′µ cos

(
6φ−

√
2(φc + µφs)

))
(3.82)

where hµ and h′µ is used to distinguish the two different kind of S.O terms that appear. If we take
again the 1st-order of perturbation for this term, we will see that we have:〈

h′µ cos
(
6φ−

√
2(φc + µφs)

)〉
f
= 0 (3.83)

and the reason is that we are averaging over all the fields φs which as we said earlier are flat and
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therefore they have zero average contribution. This will leave us only with the terms:

Sh =

∫
d2z

∑
µ=±1

kSc,+kSc,−hµ cos
(
6φ−

√
2(φc + µθs)

))
(3.84)

From now on we drop the µ subscript from hµ for simplicity. Now, at first-order of perturbation we
just get the rescaling of it and we found it equal with:

Sh = h

(
1 +

(
2− 6 · 6

6 · 2
− 1

2Kc

− Ks

2

)
dl

)∫
d2z′

∑
µ=±1

kSc,+kSc,− cos
(
6φ−

√
2(φc + µθs)

))
(3.85)

where the scaling dimension of the term Sh is Dh = 3+ 1
2Kc

+ Ks

2
. At this point we need to distinguish

two cases for the scaling dimension Dh which corresponds to the 1st and the 2nd step of RG. In
particular we will get:

Dh =

3 + 1
2Kc

+ Ks

2
= 3 + 1

2
+ 1

2
= 4, for I − step of RG

3 + 1
2Kc

+ Ks

2
= 3 + 0 + 0 = 3, for II − step of RG

(3.86)

From here it easy to see that we get the first-order RG flow equations for the parameter hµ to be equal
with:

dhµ
dl

=
(
2− 3− 1

2Kc

− Ks

2

)
hµ =

−2hµ, for I − step of RG

−hµ, for II − step of RG
(3.87)

These corresponds to the equations:

hµ(l) =

hµ,0e−2l, for I − step of RG

hµ,0e
−l, for II − step of RG

(3.88)

here hµ(l = 0) = hµ,0 corresponds to the bare value of l and we take it to be equal with the result
of the II-order in perturbation theory that we calculated in Section (2.3). The above results tells us
that in 1st order of perturbation at I-step of RG the h term is strongly irrelevant. Furthermore, at
II-step of RG (still in 1st order of perturbation) it remains irrelevant and we do not open a gap, as
shown in Fig. (3.4). Thus, in order to get any extra information and how to open a gap, we need to
investigate further orders. For that purpose, to get a more realistic scenario we will investigate the
2nd order in perturbation in II-step of RG where the fields φc and θs are pinned. This means that we

79



CHAPTER 3. BOSONIZATION 3.3. THE RENORMALIZATION GROUP ANALYSIS

Figure 3.4: Here we see the schematic representation of steps I and I of RG in the 1st order. We
see that the ∆ term is relevant at I-step (blue line) and it grows until it reaches the threshold
at l∗ where it pins the φc and θs fields. The red line represents the h term at I-step where
we can see that it is irrelevant. When the h term reaches the end of the I-step at l∗ we see
that the scaling dimensions changes at II-step and it scales as h(l∗)e−l, where h(l∗) = h0e

−2l∗ ,
where we can see that it is still irrelevant.

can manipulate a bit further eq. (3.84). We can write it as:

Sh =

∫
d2z

∑
µ=±1

ikSc,+kSc,−hµ cos
(
6φ−

√
2(φc + µθs)

)
=

∫
d2z

∑
µ=±1

ikSc,+kSc,−hµ

(
cos (6φ) cos

(
−

√
2(φc + µθs)

)
+ sin (6φ) sin

(
−

√
2(φc + µθs)

))
=

∫
d2z

∑
µ=±1

ikSc,+kSc,−hµ

(
cos (6φ) cos

(√
2(φc + µθs)

)
− sin (6φ) sin

(√
2(φc + µθs)

))
(3.89)

From here it easy to see that by choosing one of the combinations of eq. (3.79) or (3.80) for deter-
mining the minima we get:

cos
(√

2(φc + µθs)
)
= 0, sin

(√
2(φc + µθs)

)
= −1 (3.90)

Thus, we end up with the sine-Gordon term:

Sh = 2ikSc,+kSc,−

∫
d2z h sin (6φ) (3.91)
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where the additional factor of 2 comes from the fact that we get the same contribution regardless of
the value of µ. From here, we can manipulate the last equation a bit more. We can introduce a gauge
transformation that shifts the φ field by π/2. In particular we get:

Sh = 2ikSc,+kSc,−

∫
d2z h sin

(
6(φ+

π

12
)
)
= 2ikSc,+kSc,−

∫
d2z h cos (6φ) (3.92)

We define now the operators:
Oν

h(z) = eiν(6φ(z)) (3.93)

where again ν = ±1. In this way we can write the Sh as:

Sh =
h

2i
kSc,+kSc,−

∫
d2z

∑
ν=±1

Oν
h(z) (3.94)

We will begin our analysis by focusing on the non-trivial terms B of eq. (3.3.1) by using the effective
Interacting action of eq. (3.81) that we introduced in II-step of RG. This means that we have now:〈

SII
I,eff (z1)SII

I,eff (z2)
〉
f

(3.95)

where it is easy to see that all the mixed terms of form:〈
St(z1)Sh(z2)

〉
f

(3.96)

will be F.O terms and so we can neglect them since they will be irrelevant in the RG sense. For the
terms of the form: 〈

St(z1)St(z2)
〉
f

(3.97)

we will end up to a similar analysis like the one we made for eq. (3.76) where now the fields φc and
θs are pinned. The most important terms will be the ones we introduced in the II-step of RG:〈

Sh(z1)Sh(z2)
〉
f

(3.98)

In particular, we see that we have terms like:

〈
Sh(z1)Sh(z2)

〉
f
=

h2

(2i)2

∫
d2z

∑
ν=±1

∑
ν′=±1

〈
Oν

h(z)Oν′

h (z)
〉

(3.99)
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where these terms can be written as:〈
Oν

h(z1)Oν′

h (z2)
〉
f
=
〈
eiν(6φ(z1))eiν

′(6φ(z2))
〉
f
= ei(6(νφ(z1)+ν′φ(z2)))

(
1−

(
6νν ′C(z1 − z2) + 6

)
dl
)

(3.100)

In total we will get in second-order for the non-trivial term B for Sh that:

〈
Sh(z1)Sh(z2)

〉
f
=

h2

(2i)2

∫
d2z

∑
ν=±1

∑
ν′=±1

〈
Oν

h(z1)Oν′

h (z2)
〉
= −h

2

4

∫
d2z′1d

2z′2(〈
O+

h (z1)O
+
h (z2)

〉
︸ ︷︷ ︸

ν=ν′=+1

+
〈
O−

h (z1)O
−
h (z2)

〉
︸ ︷︷ ︸

ν=ν′=−1

+
〈
O−

h (z1)O
+
h (z2)

〉
︸ ︷︷ ︸

ν=−1,ν′=+1

+
〈
O+

h (z1)O
−
h (z2)

〉
︸ ︷︷ ︸

ν=+1,ν′=−1

)
=

−h
2

2

∫
d2z′1d

2z′2

(
1 +

(
4−

(
6C(z′1 − z′2) + 6

))
dl
)
cos
(
6(φ1 + φ2)

)
+
(
1 +

(
4−

(
− 6C(z′1 − z′2) + 6

))
dl
)
cos
(
6(φ1 − φ2)

)
(3.101)

where we wrote the fields as φ(z′1) = φ1 and φ(z′2) = φ2. By taking the square of the first-order result
we get in second order the terms A2:

〈
Sh(z)

〉2
f
=
〈
Sh(z1)

〉
f

〈
Sh(z2)

〉
f
=

h2

(2i)2

∫
d2z′1d

2z′2
∑
ν=±1

∑
ν′=±1

〈
Oν

h(z1)
〉
f

〈
Oν′

h (z2)
〉
f
=

−h
2

4

∫
d2z′1d

2z′2

(〈
O+

h (z1)
〉
f

〈
O+

h (z2)
〉
f︸ ︷︷ ︸

ν=ν′=+1

+
〈
O−

h (z1)
〉
f

〈
O−

h (z2)
〉
f︸ ︷︷ ︸

ν=ν′=−1

+
〈
O−

h (z1)
〉
f

〈
O+

h (z2)
〉
f︸ ︷︷ ︸

ν=−1,ν′=+1

+
〈
O+

h (z1)
〉
f

〈
O−

h (z2)
〉
f︸ ︷︷ ︸

ν=+1,ν′=−1

)
=

−h
2

2

(
1 + (4− 6)dl

) ∫
d2z′1d

2z′2

(
cos
(
6(φ1 + φ2)

)
+ cos

(
6(φ1 − φ2)

))
(3.102)

Now it is very easy to see that by combining these terms we left with:

B −A2 = −h
2

2

∫
d2z′1d

2z′2

((
1− 6C(z′1 − z′2)dl

)
cos
(
6(φ1 + φ2)

)
−
(
1 + 6C(z′1 − z′2)dl

)
cos
(
6(φ1 − φ2)

))
(3.103)

Let us note here, that we can get the same results if we decide to carry around the φc and θs fields as
shown in Appendix (B.5). To evaluate these terms, we will use the approximation that the function
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C(z1−z2) is assumed to have a short-range character and for that reason it can be made very localized
by using a suitable cutoff. In this situation we will consider that z1 − z2 < ā. This constrains the two
points to be in a neighbourhood of size dz ≈ (ā, ā/vq) from each other, where ā can be considered of
the order of the Quantum Hall energy veF/EQH .

Let us analyze now the first term of equation (B.36). We will use the substitution of C(z′1 − z′2) ≈
γδ(z1 − z2), with γ ≈ ā2/vq. This means that φ(z′1) = φ(z′2) and in particular we will have that:

−h
2

2

∫
d2z′1d

2z′2

(
1− 6C(z′1 − z′2)dl

)
cos
(
6(φ1 + φ2)

)
≈ −h

2

2

∫
d2z′

(
1− 6γdl

)
cos
(
12φ(z′)

)
(3.104)

At second order, we see that emerges the operator cos
(
12φ(z′) . If we follow again the same procedure

of the second step in RG, i.e if we introduce a new effective action which will contain now this new
operator that emerged and has the form:

Shnew =

∫
d2zhnew cos

(
12φ(z′)

)
(3.105)

we will see that by finding its RG equation in first order we will get:

dhnew
dl

= hnew(2−Dhnew) (3.106)

where its scaling dimension is Dhnew = 12. This means that it will be highly irrelevant.
Let us continue our analysis with the second term of eq. (B.36). If we take again the same

approximation as for the first term, where we approximate the short-range function with a δ-function,
C(z′1 − z′2) ≈ γδ(z′1 − z′2), we do not get anything. The most relevant term must therefore be obtained
by considering a better expansion for the localized function C(z′1 − z′2). The way of dealing with this
is to change variables from z1 and z′2 to center of mass (z′R) and relative coordinate (z′r):

z′R =
z′1 + z′2

2
, z′r = z′1 − z′2 (3.107)

The correlation function C(z′1 − z′2) depends only on |z′r| and we may assume that it is non-negligible
only in a neighborhood of size ā around |z′r = 0|. We observe that ā is in general a non-universal
quantity of the system (might miss a factor) and depends on the microscopic behavior of the model,
although we can set the length scale of ā = veF/EQH for practical purposes. Based on this observation,
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and assuming that ā is small, we can approximate:

h2

2

∫
d2z′1d

2z′26C(z′1 − z′2)dl cos
(
6(φ1 − φ2)

)
≈ h2

2

∫
d2z′Rd

2z′r6C(|z′r|dl cos
(
6(φ1 − φ2)

)
≈

6h2

2

ā2

vq
dl

∫
d2z′R cos

(
6(z′1 − z′2︸ ︷︷ ︸

ā

)∂z′Rφ(
z′1 + z′2

2
)
)
=

6h2

2

ā2

vq
dl

∫
d2z′R cos

(
6(z′1 − z′2︸ ︷︷ ︸

ā

)∂z′Rφ(z
′
R)
)

(3.108)

here we got the term ā2

uq
by integrating out the relative coordinates. In order to continue from here, we

make the assumption that ā∂z′Rφ(
z′1+z′2

2
) � 1 and we Taylor expand it around the minima. Of course

we can not expand it around all minima, and for that reason we will choose one of the minima of eq.
(3.79) (does not matter which one). By Taylor expanding eq. (3.108) around θs = 0 (good choice in
case someone follows the procedure shown to derive eq. (B.36)) and ignoring the constant term, we
get:

2
6h2

2

ā2

vq
dl

∫
d2z′R cos

(
6(z′1 − z′2︸ ︷︷ ︸

ā

)∂z′Rφ(z
′
R)
)
≈

−6h2
62ā4

2vq
dl

∫
d2z′R

(
∂z′Rφ(z

′
R)
)2

= −63h2
ā4

2vq
dl

∫
d2z′

[(
∂z′φ(z

′)
)2

+
1

v2q

(
∂τ ′φ(z

′)
)2] (3.109)

where here vq = veF , the velocity of the FQH particles. We can see that the term in eq. (3.109)
modifies the quadratic part of the Hamiltonian. In particular, if we neglect the operator in eq. (3.104),
we obtain in second order:

A2 − B
2

≈ 63h2

4

ā4

veF
dl

∫
d2z′

[(
∂z′φ(z

′)
)2

+
1

ve
2

F

(
∂τ ′φ(z

′)
)2] (3.110)

At this point it would be useful to go back into the description of the bare electron instead of con-
tinuing with our quasiparticle description. The reason is that we will be able to write that way the
Kosterlitz and Thouless equations for the Luttinger parameter Ke. This can easily be done by revers-
ing eq. (3.70). Thus, eq. (3.110) can be written as:

A2 − B
2

≈ 24h2

4

ā4

2KeveF
dl

∫
d2z′

[(
∂z′φe(z

′)
)2

+
1

ve
2

F

(
∂τ ′φe(z

′)
)2] (3.111)

The factor of 24 comes form the fact that the sine-Gordon term is written as cos (6φ) = cos(2φe). We
are now in position to write the effective action with the contributions from 1st and 2nd order for the
II-step of RG. In particular, we get:

SII
eff (Λ̃) = S0 +A+

A2 − B
2

(3.112)
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But as it was shown before, at 1st order the Sh term is still irrelevant, thus we can neglect it. Also, in
the II-step of RG, the S0 will include only the quadratic terms for FQH because the φc and θs fields
are fields. And so, we are left with:

SII
eff (Λ̃) ≈ S0 +

A2 − B
2

=∫
d2z′

[(
Kev

e
F

2π
+

24h2ā4

8KeveF
dl

)(
∂z′φe(z

′)
)2

+

(
Ke

2πveF
+

24h2ā4

8Keve
3

F

dl

)(
∂τ ′φe(z

′)
)2] (3.113)

Differentiating SII
eff we can derive the RG equations for the Luttinger parameter. In particular we

obtain:

K′
e

2π
=

√√√√(KeveF
2π

+
24h2ā4

8KeveF
dl

)(
Ke

2πveF
+

24h2ā4

8Keve
3

F

dl

)
≈ Ke

2π
+

1

2π

π24h2ā4

4Keve
2

F

dl (3.114)

where K′
e is the new rescaled Luttinger parameter of our SII

eff action. Similarly, we get the velocity
veF

′ = 1. We can calculate now the RG equation for the Luttinger parameter and the velocity, and we
find them to be equal with:

dKe

dl
=

24h2ā4π

4Keve
2

F

(3.115)

and
dveF

′

dl
= 0 (3.116)

and means that the velocity does not change under the RG flow, which is consistent with the Lorentz
invariance of the system. At first order, we found the scaling dimension for h to be equal with:

Dh =
22

4Ke

=
1

Ke

(3.117)

and the corresponding RG equation for h at first order was:

dh

dl
= h

d
(
1 +

(
2− 1

Ke

)
dl
)

dl
⇒ dh

dl
= h

(
2− 1

Ke

)
dl (3.118)

To summarize the RG equations of the system at second order are:

dKe

dl
=

24h2ā4π

4Keve
2

F

,
dh

dl
= h

(
2− 1

Ke

)
(3.119)

and from eq. (3.118) we can see that the critical point corresponds to the value Ke =
1
2
.
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Figure 3.5: Here we see the schematic representation of steps I and I of RG in the 2nd-order.
We see that the ∆ term is relevant at I-step (blue line) and it grows until it reaches the
threshold at l∗ where it pins the φc and θs fields. The red line represents the h term at I-step
where we can see that it is irrelevant (same as before in Figure 3.4). When the h term reaches
the end of the I-step at l1∗ we see that the scaling dimensions changes at II-step and it scales
as h(l1∗)ecl1

∗
, where h(l∗) = h0e

−2l1
∗
, where we can see that it is relevant for the values of the

prefactor c− 2 > 0.
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Figure 3.6: Here we see the RG flow at 1st-order. As it represented, the flow is only relevant
when the Luttinger parameter takes the value Ke =

1
2
.

We are interested now in the behavior close to the phase transition that occurs at Dh = 1
2
, thus

Ke = 1
2
, therefore we define the small parameter t’ and the effective coupling constant y’ which are

associated with dh
dl

and dK′
e

dl
respectively. In particular, we define them as:

t′ = Ke −
1

2
, y =

22ā2
√
π

veF

h

Ke

(3.120)

In this way, when we differentiate t′, it will be inconsistent with:

dt′

dl
=
dK′

e

dl
=

24h2ā4π

4Keve
2

F

=
Ah2

Ke

(3.121)

where A = 22ā4π

ve
2

F

and for Ke =
1
2
, we get:

dt′

dl
=
dK′

e

dl
= 2Ah2 = y2 (3.122)
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By taking now the derivative for the coupling constant y we find that:

dy

dl
=

22ā2
√
π

veF

1

Ke

dh

dl
=
(
2− 1

Ke

)
y =

(
2− 1

t′ + 1
2

)
y =

2
(
1− 1

2t′ + 1

)
y ≈ 2

(
1− (1− 2t′)

)
y = 4t′y (3.123)

To summarize, we have delivered the Kosterlitz and Thouless equations:

dt′

dl
= y2,

dy

dl
= 4t′y (3.124)

The first step to solve them is to realize that µ = 4t2 − y2 is invariant under the RG flow defined by
these equations. Therefore the flow trajectories in the plane (t, y) are always hyperboles and y = ±2t

are the separatrices defininig the critical lines.
We can now choose the value of Ke =

1
3

which corresponds to Laughlin state ν = 1
3
, to estimate

at which point we are going to have phase transition. We find that corresponds to the critical values
of:

t′(Ke =
1

3
) = −1

6
, ycr = −2t =

1

3
(3.125)

Figure 3.7: Here we see the RG flow at 2nd-order after the linearization. As it is represented,
the flow is only relevant when the parameters take the values that are above the critical values
that found on eq. (3.125).

Gap estimation

Based on the RG equations and on the conservation of the parameter µ under the RG flow, it is also
possible to refine the estimate of the gap. As we said before, at the beginning of I-step of RG we start
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from an initial value for ∆ = ∆(l = 0) = ∆0 = const.. We set the UV cutoff to be given by the QH
gap EQH , where after that value, our RG procedure breaks down. We denote as l∗1 the value in which
the our pairing potential scales to reach the UV cutoff. This means that at the l∗1 we will have:

EQH = ∆0e
l∗1 ⇒ EQH

∆0

= el
∗
1 ⇒ l∗1 = ln

EQH

∆0

(3.126)

where to get the scaling dimensions of the ∆ term we have assumed that Kc = Ks = 1 and results to
D∆ = 1. Then, for the parameter h(l), by starting from an initial value of h(l = 0) = h0 = const.,
we find that at the end of I-step, or equivalent at the beginning of II-step, it has a value of:

h(l∗1) = h0e
−2l∗1 = h0e

(
−2 ln

EQH
∆0

)
= h0e

(
ln
(

EQH
∆0

)−2)
⇒ h(l∗1) = h0

( ∆0

EQH

)2
(3.127)

This is the value at the beginning of II-step of RG and this is the one that we will put inside the
Kosterlitz and Thouless equations. By substituting the value of ā = veF/EQH and eq. (3.127) into eq.
(3.125) we find that;

y = h0

( ∆0

EQH

)2( veF
EQH

)222√π
veFKe

= 4
√
πh0v

e
F

∆2
0

E4
QH

1

Ke

(3.128)

Thus, the constrain in order for h to flow to strong coupling, is:

y > ycr → y >
1

3
⇒ h0 >

Ke

12
√
πveF

E4
QH

∆2
0

(3.129)

According to, [18], typically, the FQH bulk energy gap isEQH ∼ 0.016e2/εlB ∼ 1.7meV in graphene
setups where ε ≈ 1 is the dielectric constant in suspended graphene and lB is the magnetic length.
The velocity of the edge modes is equal to veF = 105m/s. They also state, that for strong induced
pairing (∆ → EQH), and sufficiently long islands, ∆e (quasielectron gap) grows much beyond EC

(charging energy of the island). In this case, the system is deeply in the topological regime and
coherent tunnelling mediated by parafermions is the dominant transport channel.

Let us take a moment here to discuss what eq. (3.129) means to us. Till now, we mentioned all the
parameters expect one, the value of the superconducting gap ∆ for NbN which in typical graphene
setups it is usually ∆ ≥ EQH .

According to [19] and [20] they say that the superconducting energy gap is ∆0 ≈ 3meV at zero
magnetic field. If we consider this value for the RG procedure we see that we have ∆ > EQH which
means that the whole RG procedure was for nothing, since we considered the UV cutoff to be the
EQH , and after that value the Bosonization breaks down. In this situation, we can take ∆ ≈ EQH and
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this will have as a result to get:

h0 >
KeE

2
QH

12
√
πveF

(3.130)

This means that our RG procedure starts from the II-step without having a step I.But the exact value
of ∆ depends on many factors, for example depends on the value of the magnetic field, on magnetic
flux vortices into the system or from the fabrication of the Superconductor.

What is more encouraging is that in [1] they do not take a particular value for ∆, but rather it
varies uniformly in the range [−∆,∆] over distances comparable to the minimum coherence length
ξ0 ∼ uf

∆
. Although, as they state, this is a heuristic ansatz for an actual experimental setup, they

motivate their model by noting that the leading order effect of having finite chemical potential disorder
within the superconductor or near the junction and the presence of magnetic flux vortices within the
superconductor cause variations in the induced pairing in the edge modes. In this case, we will have
∆ ≤ EQH and the Bosonization and the RG procedure will still be valid. Thus, our field theoretical
model can still give an estimate result for the gap.

Let’s try now to give an estimate value of the Induced Gap, based on true values of the parameters.
To do so, we must first check the dimensions of the parameter h0. In order for eq. (3.130) to hold, we
see that h0 should have dimensions Energy/length. Our guess is that it should be associated with
the QH. When we were constructing the step I and step II of the RG procedure, we said that we take
energy scale of h0 to be the value of ∆ind that we calculated previously in Ch. 2. Since we also need
a length scale it makes sense to assume that h0 depends on the lattice spacing of the QH αQH and we
take it to be equal to αQH = veF/EQH , because αQH will be the Ultraviolet cutoff (the length scale)
for the edge modes. By replacing the above in eq. (3.130), we get:

∆ind >
KeEQH

12
√
π

⇒ ∆ind > 0, 2664 meV (3.131)

This is the numerical result that we estimate from the RG procedure for the Induced Gap in graphene.
At this point there is another question that may rise. As we said before, one factor that may

affect the value of ∆ are vortices. How sure are we that in our system we will not have vortices?
Preliminary work [21] shows that the high magnetic fields required to sustain the FQH state clash
with superconductivity. This leads to a proliferation of Abrikosov vortices in the superconductor
supplying the proximity coupling with in-gap states residing in the vortex cores. Thus, we can not say
for sure that in our system we will not have vortices. This is an open question for us and can motivate
us for future work.
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Chapter 4

Conclusion and Outlook

In this thesis, we studied an (Integer, Fractional) Quantum Hall/superconductor hybrid device with
the sole purpose to derive an effective field theory based on Bosonization to describe it. An important
factor that enabled the study of such a system was the choice of the Superconductor, the NbN. This
special Superconductor, as was already mentioned, keeps his superconductivity in very high magnetic
field, and high magnetic are needed for Fractional Quantum Hall system to thrive. Another equally
important property is the large spin-orbit coupling in NbN superconductor, which provides a neces-
sary ingredient for a spin-flip process allowing for a pairing between electrons with the same spin
polarization.

At first, there was made an attempt to find an effective description of the Induced gap that appears
from the same spin electron pairings to describe the counter propagating edge modes for the Integer
Quantum Hall case. This attempt was made by using 2nd-order Perturbation Theory and the Feynman
Path Integral method for field theories. In both these approaches, the results were a successful. Both
of them provided an effective description of approximating the Induced gap in momentum space. For
this project however, it is important to be able to translate these results in real space, because then it
will be possible to compare them with the result of the Bosonized description. As was already seen,
due to the complicated form of the Induced gap, in both approaches, it was not possible to provide an
analytical result for the ∆ind in real space.

Next, there was made the Bosonized description for this Quantum Hall/superconductor hybrid
device. This method, has the advantage that the mapping to the Integer or to the Fractional Quantum
Hall case can be very easily. The reason is, because the chiral edge state of the Quantum Hall can
be described from the Luttinger Liquid Hamiltonian. In this description, the Interactions (FQH) are
hidden in the Luttinger parameter. For the IQH which is non-Interacting, the Luttinger parameter
takes the value Ke = 1 and for the FQH takes the value of the laughlin state. In this particular case the
value is Ke =

1
3

(ν = 1
3
). Furthermore, in this description it is not required for the Superconductor to

be in the topological phase in order to acquire the zero modes at the edges. It was taken in the trivial
phase, because these modes are expected to appear due to Quantum Hall. If the Superconductor was
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taken to be in the topological state, there might another pair of exotic particles that appear in the edges
of the Quantum wire. This is probably a good starting point for future research.

Finally, after the Bosonized description of the system in established, an estimation of the Induced
gap is pursued via Renormalization Group methods. A 2-step RG procedure is concluded to be well
defined in order to reach a result. In this way, the flow is divided into separate parts, where each
part is terminated when a coupling constant reaches a suitable upper threshold, which indicates when
a given interaction semiclassically pins the related fields. In the I-step of RG, it is found that a
Superconducting gap opens by the ∆ term until it reaches the threshold which is taken to be the EQH .
After the related fields are pinned (φC and θs), it is found that all the other terms are irrelevant at
first order, thus, a 2nd-order term is calculated. After that, the Kosterlitz and Thouless equations are
derived and an estimation about the gap is being made. It is concluded that in order to open a gap ∆

and Eq must be comparable, which for NbN it might not always be the case because the value of ∆
depends on many factors.

In conclusion, based on the Bosonized description of the Fractional Quantum Hall/superconductor
hybrid device, one could use our result to make an approximation about the gap. As was shown, even
in the case of NbN, which is a very disordered SC, these description might give encouraging results.
But it can also be used in case another Superconductor with the same properties is studied. Last but
not least, in the Bosonized description, there were encountered 2 different resonances. In case of
these values for the Fermi momentum a further investigation could occur, which will probably result
to more exotic particles. Future work must also include the study of transport phenomena and the
construction of a Bosonized description for them. As one continues to investigate such systems more
and more questions will arise and he can never be sure of how rich the physics behind such devices
is.
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Chapter 5

Appendices

A Appendix

A.1 Supplementary for the Superconductor

In this Appendix, we present a way to calculate analytically the eigenvalues of the Hamiltonian of eq.
(2.12). This can be done by taking the square of eq. (2.12):

HBdG = ξkτz + αkσyτz + B̃σz −∆τx ⇒ H2
BdG =

(
ξkτz + αkσyτz + B̃σz −∆τx

)2 ⇒
H2

BdG = ξ2k + (αk)2 + B̃2 +∆2 + 2ξαkσy + 2ξB̃τzσz − 2B̃∆σzτx−

ξ∆ {τz, τx}︸ ︷︷ ︸
=0

+αkB̃ {σy, σz}︸ ︷︷ ︸
=0

τz − αk∆σy {τz, τx}︸ ︷︷ ︸
=0

⇒

H2
BdG − ξ2k − (αk)2 − B̃2 −∆2 = 2ξαkσy + 2ξB̃τzσz − 2B̃∆σzτx (A.1)

Here we square it again and collecting the terms to make the anti-commutation relation as before, we
get:

(
H2

BdG − ξ2k − (αk)2 − B̃2 −∆2
)2

=
(
2ξαkσy + 2ξB̃τzσz − 2B̃∆σzτx

)2 ⇒(
H2

BdG − ξ2k − (αk)2 − B̃2 −∆2
)2

= 4ξ2kB̃
2 + 4ξ2k(αk)

2 + 4B̃2∆2 ⇒

H2
BdG − ξ2k − (αk)2 − B̃2 −∆2 = ±2

√
ξ2k
(
(αk)2 + B̃2

)
+ B̃2∆2 ⇒

H2
BdG = ξ2k + (αk)2 + B̃2 +∆2 ± 2

√
ξ2k
(
(αk)2 + B̃2

)
+ B̃2∆2 (A.2)
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where H2
BdG = E2

BdG,± and we used the anti-commutation relations of the Pauli matrices
{σi, σj} = 2δi,j . Similar for the τ matrices.

A.2 Supplementary for the Perturbation theory

In this Appendix we present the exact calculations we performed to derive a final result for the
Perturbation Theory approach. By starting from eq. (2.3), we try to calculate each term separately.

• We start the calculations from:

Hp |ΨBCS〉 = −t
∫
dk
∑
j=L,R

[ψ†
QH,↑,k,jψSC,↑,k + ψ†

SC,↑,kψQH,↑,k,j] |ΨBCS〉 =

−t
∫
dk
∑
j=L,R

[ψ†
QH,↑,k,j(u1,↑,kγ1,k + v∗1,↑,kγ4,k + u2,↑,kγ2,k + v∗2,↑,kγ3,k)−

ψQH,↑,k,j(u
∗
1,↑,kγ

†
1,k + v1,↑,kγ

†
4,k + u∗2,↑,kγ

†
2,k + v2,↑,kγ

†
3,k)] |ΨBCS〉 =

−t
∫
dk
∑
j=L,R

[ψ†
QH,↑,k,jv

∗
1,↑,k |1,−k〉+ v∗2,↑,k |2,−k〉)− ψQH,↑,k,ju

∗
1,↑,k |1, k〉+ u∗2,↑,k |2, k〉)] =

−t
∫
dk
∑
i=1,2

∑
j=L,R

[ψ†
QH,↑,k,j(v

∗
i,↑,k) |i,−k〉 − ψQH,↑,k,j(u

∗
i,↑,k) |i, k〉] (A.3)

• For the next term, we are not interested for extra excitation but we want to end up back in the
BCS ground state. That means that the operators with negative energy will obey γ3,k |2, k〉 =

γ4,k |1, k〉 6= 0 (create extra excitations) but 〈ΨBCS| γ3,k |2, k〉 = 〈ΨBCS| γ4,k |1, k〉 0. Thus, we
neglect them in the next calculation for the simplicity not to carry them around. We have:

Hp |i′′, k′′〉 = −t
∫
dk′′′

∑
j=L,R

[ψ†
QH,↑,k′′′,jψSC,↑,k′′′ + ψ†

SC,↑,k′′′ψQH,↑,k′′′,j] |i′′, k′′〉 =

−t
∫
dk′′′

∑
j=L,R

[ψ†
QH,↑,k′′′,j(u1,↑,kγ1,k′′′ + v∗1,↑,k′′′γ4,k′′′ + u2,↑,k′′′γ2,k′′′ + v∗2,↑,k′′′γ3,k′′′) |i′′, k′′〉−

ψQH,↑,k′′′,j(u
∗
1,↑,k′′′γ

†
1,k′′′ + v1,↑,k′′′γ

†
4,k′′′ + u∗2,↑,k′′′γ

†
2,k′′′ + v2,↑,k′′′γ

†
3,k′′′) |i

′′, k′′〉] =

−t
∫
dk′′′

∑
j=L,R

[ψ†
QH,↑,k′′′,j(u1,↑,k′′′δ1,i′′δk′′′,k′′ |ΨBCS〉+ u2,↑,k′′′δ2,i′′δk′′′,k′′ |ΨBCS〉)−

ψQH,↑,k′′′,j(v1,↑,k′′′δ1,i′′δ−k′′′,k′′ |ΨBCS〉+ v2,↑,k′′′δ2,i′′δ−k′′′,k′′ |ΨBCS,〉] =

−t
∫
dk′′′

∑
i′′′=1,2

∑
j=L,R

[ψ†
QH,↑,k′′′,j(ui′′′,↑,k′′′)δi′′′,i′′δk′′′,k′′ |ΨBCS〉−

ψQH,↑,k′′′,j(vi′′′,↑,k′′′)δi′′′,i′′δ−k′′′,k′′ |ΨBCS〉] (A.4)
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We want now to put these terms in our relation for Heff
QH (k), but first let’s try to simplify it a bit. We

take:

〈i′, k′|Hp |ΨBCS〉 = −t 〈i′, k′|
∫
dk
∑
i=1,2

∑
j=L,R

[ψ†
QH,↑,k,j(v

∗
i,↑,k) |i,−k〉 − ψQH,↑,k,j(u

∗
i,↑,k) |i, k〉] =

−t
∫
dk
∑
i=1,2

∑
j=L,R

[ψ†
QH,↑,k,j(v

∗
i,↑,k) 〈i′, k′|i,−k〉 − ψQH,↑,k,j(u

∗
i,↑,k) 〈i′, k′|i, k〉 =

−t
∫
dk
∑
i=1,2

∑
j=L,R

[ψ†
QH,↑,k,j(v

∗
i,↑,k)δ−k,k′δi,i′ − ψQH,↑,k,j(u

∗
i,↑,k)δk,k′δi,i′ ] (A.5)

The second terms that we simplify are:

∑
i′∈1,2

〈i′′, k′′| 1

EGS −HBCS(k′)
|i′, k′〉 =

∑
i′∈1,2

〈i′′, k′′| 1

EGS − (EGS + Ei′(k′))
|i′, k′〉 =

∑
i′∈1,2

1

−Ei′(k′)
〈i′′, k′′|i′, k′〉 =

∑
i′∈1,2

1

−Ei′(k′)
δi′′,i′δk′′,k′ (A.6)

Finally, the last term will be:

〈ΨBCS|Hp |i′′, k′′〉 = (A.7)

−t 〈ΨBCS|
∫ +∞

−∞
dk′′

∫
dk′′′

∑
i′′′=1,2

∑
j=L,R

(
ψ†
QH,↑,k′′′,j(ui′′′,↑,k′′′)δi′′′,i′′δk′′′,k′′ |ΨBCS〉−

ψQH,↑,k′′′,j(vi′′′,↑,k′′′)δi′′′,i′′δ−k′′′,k′′ |ΨBCS〉
)
=

−t 〈ΨBCS|
∫
dk′′

∑
i′′=1,2

∑
j=L,R

(
ψ†
QH,↑,k′′,j(ui′′,↑,k′′) |ΨBCS〉 − ψQH,↑,−k′′,j(vi′′,↑,−k′′ |ΨBCS〉

)
=

−t
∫
dk′′

∑
i′′=1,2

∑
j=L,R

(
ψ†
QH,↑,k′′,j(ui′′,↑,k′′)δi′′,iδk′′,k − ψQH,↑,−k′′,j(vi′′,↑,−k′′)δi′′,iδk′′,k

)
=

−t
∫
dk
∑
i=1,2

∑
j=L,R

(
ψ†
QH,↑,k,j(ui,↑,k)− ψQH,↑,−k,j(vi,↑,−k)

)
(A.8)
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Putting all these terms back together, we get:

Heff
QH (k) =

〈ΨBCS|Hp

∑
i′′∈1,2

∫ +∞

−∞
dk′′ |i′′k′′〉 〈i′′k′′| 1

EGS −HBCS

∑
i′∈1,2

∫ +∞

−∞
dk′ |i′k′〉 〈i′k′|Hp |ΨBCS〉 =(

t

∫
dk′′

∑
i′′=1,2

∑
j=L,R

[ψ†
QH,↑,k′′,j(ui′′,↑,k′′)δi′′,iδk′′,k − ψQH,↑,−k′′,j(vi′′,↑,−k′′δi′′,iδk′′,k]

)
∫ +∞

−∞
dk′

∑
i′∈1,2

1

−Ei′(k′)
δi′′,i′δk′′,k′(

t

∫
dk
∑
i=1,2

∑
j=L,R

[ψ†
QH,↑,k,j(v

∗
i,↑,k)δ−k,k′δi,i′ − ψQH,↑,k,j(u

∗
i,↑,k)δk,k′δi,i′ ]

)
=(

t

∫
dk
∑
i=1,2

∑
j=L,R

1

−Ei(k)
[ψ†

QH,↑,k,j(ui,↑,k)− ψQH,↑,−k,j(vi,↑,−k)]

)
(
t

∫
dk
∑
i=1,2

∑
j=L,R

[ψ†
QH,↑,−k,j(v

∗
i,↑,−k)− ψQH,↑,k,j(u

∗
i,↑,k)]

)
=∫

dk
∑
i∈1,2

t2

−Ei(k)

(
ψ†
QH,↑,k,L(ui,↑,k)− ψQH,↑,−k,L(vi,↑,−k) + ψ†

QH,↑,k,R(ui,↑,k)− ψQH,↑,−k,R(vi,↑,−k)
)

(
ψ†
QH,↑,−k,L(v

∗
i,↑,−k)− ψQH,↑,k,L(u

∗
i,↑,k) + ψ†

QH,↑,−k,R(v
∗
i,↑,−k)− ψQH,↑,k,R(u

∗
i,↑,k)

)
=∫

dk
∑
i∈1,2

t2

−Ei(k)

(
ψ†
QH,↑,k,Lψ

†
QH,↑,−k,L(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,LψQH,↑,k,L(ui,↑,ku
∗
i,↑,k)+

ψ†
QH,↑,k,Lψ

†
QH,↑,−k,R(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,LψQH,↑,k,R(ui,↑,ku
∗
i,↑,k)

−ψQH,↑,−k,Lψ
†
QH,↑,−k,L(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,LψQH,↑,k,L(vi,↑,−ku

∗
i,↑,k)

−ψQH,↑,−k,Lψ
†
QH,↑,−k,R(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,LψQH,↑,k,R(vi,↑,−ku

∗
i,↑,k)+

ψ†
QH,↑,k,Rψ

†
QH,↑,−k,L(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,RψQH,↑,k,L(ui,↑,ku
∗
i,↑,k)+

ψ†
QH,↑,k,Rψ

†
QH,↑,−k,R(ui,↑,kv

∗
i,↑,−k)− ψ†

QH,↑,k,RψQH,↑,k,R(ui,↑,ku
∗
i,↑,k)

−ψQH,↑,−k,Rψ
†
QH,↑,−k,L(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,RψQH,↑,k,L(vi,↑,−ku

∗
i,↑,k)

−ψQH,↑,−k,Rψ
†
QH,↑,−k,R(vi,↑,−kv

∗
i,↑,−k) + ψQH,↑,−k,RψQH,↑,k,R(vi,↑,−ku

∗
i,↑,k)

)
(A.9)

where we have used the fact thatHBCS |i, k〉 = (EGS+Ei) |i, k〉 and from the particle-hole symmetry
Ei(k) = Ei(−k). The EGS is considered to be the energy where every energy band is filled.
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A.3 Supplementary for the Feynman Path Integral Formalism

In this Appendix, we present the derivation in the various calculations we performed during the
Feynman Path Integral formalism. First we begin by manipulating a little bit the action in eq. (2.62).
That way, the path integral over superconducting fields is a Gaussian integral with exponent:

SSC [Ψ,Ψ] + SQH [Φ,Φ] + St[Ψ,Ψ,Φ,Φ] =∫
dω

2π

∫
dk
[
ΨH̃SCΨ+ΨTΦ + ΦT †Ψ+ ΦH̃QHΦ

]
=∫

dω

2π

∫
dk
[(

ΨH̃
1/2
SC + ΦT †H̃

−1/2
SC

)(
H̃

1/2
SC Ψ+ H̃

−1/2
SC TΦ

)
+ ΦH̃QHΦ− ΦT †H̃−1

SCTΦ
]
=∫

dω

2π

∫
dk
[(

Ψ+ ΦT †H̃−1
SC

)
H̃

1/2
SC

(
H̃

1/2
SC Ψ+ H̃

−1/2
SC TΦ

)
+ ΦH̃QHΦ− ΦT †H̃−1

SCTΦ
]
=∫

dω

2π

∫
dk
[(

Ψ+ ΦT †H̃−1
SC

)
H̃SC

(
Ψ+ H̃−1

SCTΦ
)
+ ΦH̃QHΦ− ΦT †H̃−1

SCTΦ
]

(A.10)

where the H̃−1
SC can be calculated analytically as follows:

H̃−1
SC =

1

iω −HSC

=
1

iω − ξkτz − αkσyτz − B̃σz +∆τx
=

iω + ξkτz + αkσyτz − B̃σz −∆τx

(iω − ξkτz − αkσyτz − B̃σz +∆τx)(iω + ξkτz + αkσyτz − B̃σz −∆τx)
=

(iω − B̃σz) + (ξk + αkσy)τz −∆τx

((iω − B̃σz)− (ξk + αkσy)τz +∆τx)((iω − B̃σz) + (ξk + αkσy)τz −∆τx)
=

(iω − B̃σz) + (ξk + αkσy)τz −∆τx

(iω − B̃σz)2 − (ξk + αkσy)2 −∆2
=

(iω − B̃σz) + (ξk + αkσy)τz −∆τx

−ω2 + B̃2 − 2iωB̃σz − ξ2k − (αk)2 − 2ξkαkσy −∆2
=

((iω − B̃σz) + (ξk + αkσy)τz −∆τx)((−ω2 − ξ2k − (αk)2 + B̃2 −∆2) + 2iωB̃σz + 2ξkαkσy)

((−ω2−ξ2k−(αk)2+B̃2−∆2)−2iωB̃σz−2ξkαkσy)((−ω2−ξ2k−(αk)2+B̃2−∆2)+2iωB̃σz+2ξkαkσy)

=
((iω − B̃σz) + (ξk + αkσy)τz −∆τx)((−ω2 − ξ2k − (αk)2 + B̃2 −∆2) + 2iωB̃σz + 2ξkαkσy)

(−ω2 − ξ2k − (αk)2 + B̃2 −∆2)2 − (2iωB̃)2 − (2ξkαk)2

(A.11)

By performing the calculations on the numerator N and the denominator D, we end up with the
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expressions:

N =
[
iω
(
(−ω2 − ξ2k − (αk)2 + B̃2 −∆2)− 2B̃2

)
− B̃(2ω2 + (−ω2 − ξ2k − (αk)2 + B̃2 −∆2))σz+

2iωξkαkσy + 2iξkαkB̃σx

]
+
[
−∆(−ω2 − ξ2k − (αk)2 + B̃2 −∆2)− 2ξkαk∆σy − 2iωB̃∆σz

]
τx+(

ξk(−ω2 − ξ2k − (αk)2 + B̃2 −∆2) + (2iξk(αk)
2 − 2ωαB̃)σx +

(
αk(−ω2 − ξ2k − (αk)2 + B̃2 −∆2)

+2ξ2kαk
)
σy + 2iωξkB̃σz

)
τz (A.12)

and

D = ω4 + ξ4k + (αk)4 + B̃4 +∆4 + 2ω2(ξ2k + (αk)2 + B̃2 +∆2)+

2B̃2(−ξ2k + (αk)2 −∆2) + 2(αk)2(−ξ2k +∆2) + 2ξ2k∆
2 (A.13)

It is worth noting (for reasons that will be obvious later), that the denominator D can be written as:

D̃ = (iω − E1)(iω − E2)(iω − E3)(iω − E4) = (ω2 + E2
1)(ω

2 + E2
2) = D (A.14)

By performing the above calculations we end up to the same result.

Next, we present the results of the analytical methods trying to estimate the result of eq. (2.84).
We start by finding the poles of eq. (A.14), where it is easily to see that the poles are:

ω1 = +iE1, ω2 = −iE1, ω3 = +iE2, ω4 = −iE2 (A.15)

The residues for each pole are:
• For ω1 = +iE1, we have:

res

(
1

D(ω)
, ω1

)
= lim

ω→ω1

(ω − ω1)

D(ω)
= lim

ω→ω1

(ω − iE1)

(ω + iE1)(ω − iE1)(ω2 + E2
2)

=

lim
ω→ω1

1

(ω + iE1)(ω2 + E2
2)

=
1

(iE1 + iE1)(−E2
1 + E2

2)
=

1

2iE1(E2
2 − E2

1)
=

−i
2E1(E2

2 − E2
1)

(A.16)
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• For ω2 = −iE1, we have:

res

(
1

D(ω)
, ω2

)
= lim

ω→ω2

(ω − ω2)

D(ω)
= lim

ω→ω2

(ω + iE1)

(ω + iE1)(ω − iE1)(ω2 + E2
2)

=

lim
ω→ω2

1

(ω − iE1)(ω2 + E2
2)

=
1

(−iE1 − iE1)(−E2
1 + E2

2)
=

1

−2iE1(E2
2 − E2

1)
=

i

2E1(E2
2 − E2

1)
(A.17)

• For ω3 = +iE2, we have:

res

(
1

D(ω)
, ω3

)
= lim

ω→ω3

(ω − ω3)

D(ω)
= lim

ω→ω3

(ω − iE2)

(ω + iE2)(ω − iE2)(ω2 + E2
1)

=

lim
ω→ω3

1

(ω + iE2)(ω2 + E2
1)

=
1

(iE2 + iE2)(−E2
2 + E2

1)
=

1

2iE2(E2
1 − E2

2)
=

1

−2iE2(E2
2 − E2

1)
=

i

2E2(E2
2 − E2

1)
(A.18)

• For ω4 = −iE2, we have:

res

(
1

D(ω)
, ω4

)
= lim

ω→ω4

(ω − ω4)

D(ω)
= lim

ω→ω4

(ω + iE2)

(ω + iE2)(ω − iE2)(ω2 + E2
1)

=

lim
ω→ω4

1

(ω − iE2)(ω2 + E2
1)

=
1

(−iE2 − iE2)(−E2
2 + E2

1)
=

1

−2iE2(E2
1 − E2

2)
=

1

2iE2(E2
2 − E2

1)
=

−i
2E2(E2

2 − E2
1)

(A.19)

Putting now also the exponential term e−iω(t2−t1), we proceed by evaluating each term of the B matrix
in a closed contour C. For that purpose, we perform now the calculations in a closed contour C1
where it contains the singularities of the lower half-plane. The reason we choose this half for our
integration is because we assume t2 > t1 and in order for our exponential term to be convergent we
need to replace ω = −iEn so that we will get e−iω(t2−t1) = e−En(t2−t1) which will ensure that our
integral is convergent. We also have to take into account if the terms Bij

D(ω)
are also convergent. They

will be convergent if and only if they depend on Bij

D(ω)
∝ 1

|ω|a with a > 1.This is easy to see, because∫
dx 1

x
= log(x), and the logarithm is a divergent function. Hence,going back to the residue theorem,

we get:
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• For the term B11:∮
C1

B11e
−iω(t2−t1)

D(ω)
dω = 2πi

∑
n=2,4

res

(
B11e

−iω(t2−t1)

D(ω)
, ωn

)
=

2πi

[
res

(
B11e

−iω(t2−t1)

D(ω)
, ω2

)
+ res

(
B11e

−iω(t2−t1)

D(ω)
, ω4

)]
=

2πi(−i)

[
− eE1(t2−t1)(E3

1 − E2
1C1 + E1C2 + C3)

2E1(E2
2 − E2

1)
+
eE2(t2−t1)(E3

2 − E2
2C1 + E2C2 + C3)

2E2(E2
2 − E2

1)

]
(A.20)

• For the term B12:∮
C1

B12e
−iω(t2−t1)

D(ω)
dω = 2πi

∑
n=2,4

res

(
B12e

−iω(t2−t1)

D(ω)
, ωn

)
=

2πi

[
res

(
B12e

−iω(t2−t1)

D(ω)
, ω2

)
+ res

(
B12e

−iω(t2−t1)

D(ω)
, ω4

)]
=

2πiB12

[
−ie−E1(t2−t1)

2E1(E2
2 − E2

1)
+

ie−E2(t2−t1)

2E2(E2
2 − E2

1)
+

]
=

2πiB12(−i)

[
− e−E1(t2−t1)

2E1(E2
2 − E2

1)
+

e−E2(t2−t1)

2E2(E2
2 − E2

1)
=

2πB12

[
− e−E1(t2−t1)

2E1(E2
2 − E2

1)
+

e−E2(t2−t1)

2E2(E2
2 − E2

1)

]
(A.21)

• Similar we get the terms B22 and B21.

As we said before, we are interested in finding the local term in time. This means that we will take
in the above relations the condition t2 = t1, which will effect the term e0 = 1 Calculating again each
term separately, we get:

• For the diagonal term B11 in t2 = t1:

2π

2(E2
2 − E2

1)

[
− E3

1 − E2
1C1 + E1C2 + C3

E1

+
E3

2 − E2
2C1 + E2C2 + C3

E2

]
=

2π

2(E2
2 − E2

1)

[
− E2

1 + E1C1 − C2 −
C3

E1

+ E2
2 − E2C1 + C2 +

C3

E2

]
=

π − πC1

E2 + E1

− C3

E1E2(E2 + E1)
(A.22)
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• For the off-diagonal term B12 in t2 = t1:

2πB12

2(E2
2 − E2

1)

[
− 1

E1

+
1

E2

]
=

2πB12

2(E2
2 − E2

1)

[
− E2

E2E1

+
E1

E1E2

]
=

2πB12

2(E2
2 − E2

1)

[
E1 − E2

E2E1

]
=

−πB12

E2E1(E2 + E1)
(A.23)

Our next step is to apply again the Residue theorem but this time we want integrate out the depen-
dence in momentum k. Before proceeding with the calculation on the integral, we need to make sure
that these integrals are well defined, i.e that they converge. As before, we assume r2 > r1 and the ex-
ponential e−ik(r2−r1) converges. The important part will be to check if the terms we calculated above
are analytical. We know from mathematics that an analytical function f(x) is analytic in a region R,
if it has a derivative at each point of R and if f(x) is single valued. Furthermore, the summation and a
product of 2 analytic functions remains analytic. Our eigenvalues E1 and E2 follow these rules. This
means that the whole integral in real space converges. But is not hard to see that trying to perform
these integrals even computationally one encounters some difficulties and can not get an analytical
result. Luckily for us, we are physicists and not mathematicians which means that in order to over-
come these difficulties we do not have to integrate all the momentum space. For our case, the frame
of interest is a small window around the Fermi momentum kf,QH . By changing the integration over
k to a summation we are able to keep only the values of interested and "throw out" the rest of them.
We are interested in the terms that give the induced superconductivity, i.e the off-diagonal terms in
the previous calculations. The result for the off-diagonal term B12 (by taking also x2 = x1, local in
space) is now:

−πB12

E2E1(E2 + E1)
(A.24)

where in the above expression we replace the momentum k with kf,QH . Next, we perform a Taylor
expansion in the above expressions in terms of ∆, where we assume it weak, but still have in mind
that we have weak tunneling ∆ � t.

As we can see from the result we have

∆ind ∝ α2t2∆. (A.25)
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B Appendix

In this Appendix we will show some of the explicit calculations during the bosonization procedure.

B.1 Bosonized form of the terms

B.2 Bosonized form of magnetic pairing

First, we calculate the magnetic pairing terms and show that all of them are Fast-Oscillating terms.
We have:

HB̃ = B̃(ψ†
+(x)ψ−(x) + H.C) =

B̃
((
ψ†
L,1(x) + ψ†

R,1(x)
)(
ψL,2(x) + ψR,2(x)

)
+ H.C

)
(B.1)

where we have:
• For the term ψ†

L,1(x)ψL,2(x) + ψ†
L,2(x)ψL,1(x):

ψ†
L,1(x)ψL,2(x) + ψ†

L,2(x)ψL,1(x)

=
1

4π
e2iαx

(
C+,+1,−1C+,+1,+1(1− iε[∂xφ+(x) + ∂xθ+(x)])e

iπ
2 + C−,+1,−1C−,+1,+1

−k+k−C+,+1,−1C−,+1,+1e
−i

√
2(φs(x)+θs(x)) + k+k−C−,+1,−1C+,+1,+1e

i
√
2(φs(x)+θs(x))

)
+

1

4π
e−2iαx

(
C+,+1,−1C+,+1,+1(1− iε[∂xφ−(x) + ∂xθ−(x)])e

iπ
2 + C−,+1,−1C−,+1,+1

+k+k−C+,+1,−1C−,+1,+1e
i
√
2(φs(x)+θs(x)) − k+k−C−,+1,−1C+,+1,+1e

−i
√
2(φs(x)+θs(x))

)
(B.2)
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• For the term ψ†
R,1(x)ψR,2(x) + ψ†

R,2(x)ψR,1(x):

ψ†
R,1(x)ψR,2(x) + ψ†

R,2(x)ψR,1(x)

=
1

4π
e−2iαx

(
C+,−1,−1C+,−1,+1(1− iε[∂xφ+(x)− ∂xθ+(x)])e

− iπ
2 + C−,−1,−1C−,−1,+1

−k+k−C+,−1,−1C−,−1,+1e
−i

√
2(φs(x)−θs(x)) + k+k−C−,−1,−1C+,−1,+1e

i
√
2(φs(x)−θs(x))

)
+

1

4π
e2iαx

(
C+,−1,−1C+,−1,+1(1− iε[∂xφ−(x)− ∂xθ−(x)])e

−iπ
2 + C−,−1,−1C−,−1,+1

+k+k−C+,−1,−1C−,−1,+1e
i
√
2(φs(x)−θs(x)) − k+k−C−,−1,−1C+,−1,+1e

−i
√
2(φs(x)−θs(x))

)
(B.3)

where in the above calculations we used the fact that:

ψ†
L,1,+(x+ ε)ψL,2,+(x) ∼ e2iαxe−i(φ+(x+ε)+θ+(x+ε))ei(φ+(x)+θ+(x)) =

e2iαxe−i(φ+(x+ε)+θ+(x+ε)−φ+(x)−θ+(x))+ 1
2
[θ+(x+ε),φ+(x)] =

e2iαxe−i(φ+(x)+θ+(x)+ε[∂xφ+(x)+∂xθ+(x)]−φ+(x)−θ+(x))+ iπ
2 = e2iαxe+

iπ
2 (1− iε[∂xφ+(x) + ∂xθ+(x)]

(B.4)

with ε > 0 and small. In the first equality we used the CBH formula, then we Taylor expand
the bosonic fields and then we Taylor expand again the exponential. Similar for the rest of the
terms where the φ, θ fields tend to vanish.

• For the term ψ†
L,1(x)ψR,2(x) + ψ†

R,2(x)ψL,1(x):

ψ†
L,1(x)ψR,2(x) + ψ†

R,2(x)ψL,1(x)

=
1

4π
e2i(kSC,F+α)x

(
C2
+,−1,+1e

−2iθ+(x) + C2
−,−1,+1e

−2iθ−(x)

+2k+k−C+,−1,+1C−,−1,+1 cos
(√

2(φs(x)− θc(x))
))

+
1

4π
e−2i(kSC,F+α)x

(
− C2

+,−1,+1e
2iθ+(x) + C2

−,−1,+1e
2iθ−(x)

−2k+k−C+,−1,+1C−,−1,+1 cos
(√

2(φs(x)− θc(x))
))

(B.5)
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• For the term ψ†
R,1(x)ψL,2(x) + ψ†

L,2(x)ψR,1(x):

ψ†
R,1(x)ψL,2(x) + ψ†

L,2(x)ψR,1(x)

=
1

4π
e−2i(kSC,F−α)x

(
− C2

+,−1,−1e
2iθ+(x) + C2

−,−1,−1e
2iθ−(x)

−2k+k−C+,−1,−1C,−1,−1 cos
(√

2(φs(x)− θc(x))
))

+
1

4π
e2i(kSC,F+α)x

(
− C2

+,−1,−1e
−2iθ+(x) + C2

−,−1,−1e
−2iθ−(x)

+2k+k−C+,−1,−1C−,−1,−1 cos
(√

2(φs(x)− θc(x))
))

(B.6)

It is easy to see that all the above terms are Fast Oscillating (for kSC,F 6= ±α), thus we can neglect
them.

B.3 Bosonized form of superconducting pairing

Our next step is to calculate the ∆ pairing term which couples terms with different spin between
the modes:

H∆ = −∆(ψ†
L,1(x)ψ

†
R,2(x) + ψ†

R,1(x)ψ
†
L,2(x) + H.C) (B.7)

where we have:
• For the term ψ†

L,1(x)ψ
†
R,2(x):

ψ†
L,1(x)ψ

†
R,2(x) =

1√
4π
ei(kSC,F+α)x

[
k+C+,+1,−1e

−i(φ+(x)+θ+(x)) − k−C−,+1,−1e
−i(φ−(x)+θ−(x))

]
1√
4π
e−i(kSC,F+α)x

[
k+C+,−1,+1e

−i(φ+(x)−θ+(x)) − k−C,−1,+1 + e−i(φ−(x)−θ−(x))
]
=

1

4π

[
− k+k−C+,+1,−1C−,−1,+1e

−i(φ+(x)+θ+(x))e−i(φ−(x)−θ−(x))

−k−k+C+,−1,+1C−,+1,−1e
−i(φ−(x)+θ−(x))e−i(φ+(x)−θ+(x)) =

1

4π

[
+ k+k−C+,−1,+1C−,−1,+1e

−i
√
2(φc(x)+θs(x))

+k+k−C+,−1,+1C−,−1,+1e
−i

√
2(φc(x)−θs(x))

]
(B.8)
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• For the term ψR,2(x)ψL,1(x):

ψ†
L,1(x)ψ

†
R,2(x) =

1√
4π
ei(kSC,F+α)x

[
k+C+,−1,+1e

i(φ+(x)−θ+(x)) − k−C−,−1,+1 + ei(φ−(x)−θ−(x))
]

1√
4π
e−i(kSC,F+α)x

[
k+C+,+1,−1e

i(φ+(x)+θ+(x)) − k−C−,+1,−1e
i(φ−(x)+θ−(x))

]
=

1

4π

[
− k+k−C+,−1,+1C−,+1,−1e

i(φ−(x)−θ−(x))ei(φ+(x)+θ+(x))

−k−k+C−,−1,+1C+,+1,−1e
i(φ+(x)−θ+(x))ei(φ−(x)+θ−(x)) =

1

4π

[
− k+k−C+,−1,+1C−,−1,+1e

i
√
2(φc(x)+θs(x))

−k+k−C+,−1,+1C−,−1,+1e
i
√
2(φc(x)−θs(x))

]
(B.9)

• Similar for the terms ψ†
R,1(x)ψ

†
L,2(x) + H.c.

Putting everything back together, will result to:

H∆ = −∆(ψ†
L,1(x)ψ

†
R,2(x) + ψ†

R,1(x)ψ
†
L,2(x) + H.C) =

ik+k−
∆

πα̃

(
C+,L,−1C−,L,−1 + C+,R,+1C−,R,+1

)[
sin
(√

2(φc(x) + θs(x))
)
+ sin

(√
2(φc(x)− θs(x))

)]
(B.10)

To derive the above calculations we use some trigonometric identities, the commutation relations
between the dual fields and the anti-commutation relations between the klein factors as defined in the
main text. Furthermore, use made use of the the Baker Campbell Hausdorff formula (BCH) for 2
operators A and B:

eAeB = eA+B+ 1
2
[A,B] (B.11)

to calculate our vortex operators.

B.4 Bosonized form of tunneling pairing

Here, we will calculate the bosonized description of our tunneling Hamiltonian:

Ht(x) = −t
∑
j=L,R

[ψ†
FQH,↑,j(x)ψSC,↑(x) +H.C] ≈

−t√
2π

∫
dx
[ ∑
η′=L,R

ψη′(x)
∑

η=L,R

∑
j=1,2

ψ−
η,j(x) +H.C

]
(B.12)
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where as we noted in the main text, we replace the terms Cσ,η,j = Cσ,η,−σ, because the spin the Rashba
coefficient is locked with the spin now and the terms with Cσ,η,σ are consider small corrections when
B̃ 6= 0. Furthermore, we are gonna make use of the property C+,η,−sigma(−k) = C−,η,−sigma(−k)
(which is easy to check that it is true). By calculating each term explicitly and by starting from the
term

∑
j=L,R ψ

†
FQH,↑,j(x)ψSC,↑(x), we get

• For the L,1 mode, we have:∑
j=L,R

ψ†
FQH,↑,j(x)ψL1,↑(x) = kFQH,↑

(
eikFQH,F xe−i(φ′(x)+θ′(x)) + e−ikFQH,F xe−i(φ′(x)−θ′(x))

)
1√
4π
ei(−kSC,F−α)x

[
kSc,+C+,+1,−1e

i(φSC
+ (x)+θSC

+ (x)) − kSc,−C−,+1,−1e
i(φSC

− (x)+θSC
− (x))

]
=

kFQH,↑kSc,+√
4π

C+,+1,−1

[
ei(kFQH,F−kSC,F−α)xe−i(3φ(x)+θ(x)−φSC

+ (x)−θSC
+ (x))

+e−i(kFQH,F+kSC,F+α)xe−i(3φ(x)−θ(x)−φSC
+ (x)−θSC

+ (x))
]

−kFQH,↑kSc,−√
4π

C−,+1,−1

[
ei(kFQH,F−kSC,F−α)xe−i(3φ(x)+θ(x)−φSC

− (x)−θSC
− (x))+

e−i(kFQH,F+kSC,F+α)xe−i(3φ(x)−θ(x)−φSC
− (x)−θSC

− (x))
]
=

kFQH,↑kSc,+√
4π

C+,+1,−1

[
ei(kFQH,F−kSC,F−α)xe

−i(3φ(x)+θ(x)−φc+φs√
2

− θc+θs√
2

)
+

e−i(kFQH,F+kSC,F+α)xe
−i(3φ(x)−θ(x)−φs+φc√

2
− θs+θc√

2
)]

−kFQH,↑kSc,−√
4π

C−,+1,−1

[
ei(kFQH,F−kSC,F−α)xe

−i(3φ(x)+θ(x)−φc−φs√
2

− θc−θs√
2

)

+e−i(kFQH,F+kSC,F+α)xe
−i(3φ(x)−θ(x)−φc−φs√

2
− θc−θs√

2
)]

=

ψ†
FQH,↑,L(x)ψL1(x) + ψ†

FQH,↑,R(x)ψL1(x) (B.13)

and its H.C is: ∑
j=L,R

ψ†
L,1(x)ψFQH,↑,j(x) =

−kFQH,↑kSc,+√
4π

C+,+1,−1

[
e−i(kFQH,F−kSC,F−α)xe

i(3φ(x)+θ(x)−φc+φs√
2

− θc+θs√
2

)
+

ei(kFQH,F+kSC,F+α)xe
i(3φ(x)−θ(x)−φs+φc√

2
− θs+θc√

2
)]

+
kFQH,↑kSc,−√

4π
C−,+1,−1

[
e−i(kFQH,F−kSC,F−α)xe

i(3φ(x)+θ(x)−φc−φs√
2

− θc−θs√
2

)

+ei(kFQH,F+kSC,F+α)xe
i(3φ(x)−θ(x)−φc−φs√

2
− θc−θs√

2
)]

=

ψ†
L,1,↑(x)ψFQH,↑,L(x) + ψ†

L,1,↑(x)ψFQH,↑,R(x) (B.14)

111



CHAPTER 5. APPENDICES B. APPENDIX

• For R,1 mode, we have:∑
j=L,R

ψ†
FQH,↑,j(x)ψR,1(x) = kFQH,↑

(
eikFQH,F xe−i(φ′(x)+θ′(x)) + e−ikFQH,F xe−i(φ′(x)−θ′(x))

)
1√
4π
ei(kSC,F−α)x

[
kSc,+C+,−1,−1e

i(φSC
+ (x)−θSC

+ (x)) − kSc,−C−,−1,−1e
i(φSC

− (x)−θSC
− (x))

]
=

kFQH,↑kSc,+√
4π

C+,−1,−1

[
ei(kFQH,F+kSC,F−α)xe−i(3φ(x)+θ(x)−φSC

+ (x)+θSC
+ (x))

+e−i(kFQH,F−kSC,F+α)xe−i(3φ(x)−θ(x)−φSC
+ (x)+θSC

+ (x))
]

−kFQH,↑kSc,−√
4π

C−,−1,−1

[
ei(kFQH,F+kSC,F−α)xe−i(3φ(x)+θ(x)−φSC

− (x)+θSC
− (x))+

e−i(kFQH,F−kSC,F+α)xe−i(3φ(x)−θ(x)−φSC
− (x)+θSC

− (x))
]
=

kFQH,↑kSc,+√
4π

C+,−1,−1

[
ei(kFQH,F+kSC,F−α)xe

−i(3φ(x)+θ(x)−φc+φs√
2

+ θc+θs√
2

)
+

e−i(kFQH,F−kSC,F+α)xe
−i(3φ(x)−θ(x)−φs+φc√

2
+ θs+θc√

2
)]

−kFQH,↑kSc,−√
4π

C−,−1,−1

[
ei(kFQH,F+kSC,F−α)xe

−i(3φ(x)+θ(x)−φc−φs√
2

+ θc−θs√
2

)

+e−i(kFQH,F−kSC,F+α)xe
−i(3φ(x)−θ(x)−φc−φs√

2
+ θc−θs√

2
)]

=

ψ†
R,1,↑(x)ψFQH,↑,L(x) + ψ†

R,1,↑(x)ψFQH,↑,R(x) (B.15)

and its H.C is: ∑
j=L,R

ψ†
R,1(x)ψFQH,↑,j(x) =

−kFQH,↑kSc,+√
4π

C+,−1,−1

[
e−i(kFQH,F+kSC,F−α)xe

i(3φ(x)+θ(x)−φc+φs√
2

+ θc+θs√
2

)
+

ei(kFQH,F−kSC,F+α)xe
i(3φ(x)−θ(x)−φs+φc√

2
+ θs+θc√

2
)]

+
kFQH,↑kSc,−√

4π
C−,−1,−1

[
e−i(kFQH,F+kSC,F−α)xe

i(3φ(x)+θ(x)−φc−φs√
2

+ θc−θs√
2

)

+ei(kFQH,F−kSC,F+α)xe
i(3φ(x)−θ(x)−φc−φs√

2
+ θc−θs√

2
)]

=

ψ†
R,1,↑(x)ψFQH,↑,L(x) + ψ†

R,1,↑(x)ψFQH,↑,R(x) (B.16)
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• For L,2 mode, we have:∑
j=L,R

ψ†
FQH,↑,j(x)ψL,2(x) = kFQH,↑

(
eikFQH,F xe−i(φ′(x)+θ′(x)) + e−ikFQH,F xe−i(φ′(x)−θ′(x))

)
1√
4π
ei(−kSC,F+α)x

[
kSc,+C+,+1,+1e

i(φSC
+ (x)+θSC

+ (x)) − kSc,−C−,+1,+1e
i(φSC

− (x)+θSC
− (x))

]
=

kFQH,↑kSc,+√
4π

C+,+1,+1

[
ei(kFQH,F−kSC,F+α)xe

−i(3φ(x)+θ(x)−φc+φs√
2

− θc+θs√
2

)
+

e−i(kFQH,F+kSC,F−α)xe
−i(3φ(x)−θ(x)−φs+φc√

2
− θs+θc√

2
)]

−kFQH,↑kSc,−√
4π

C−,+1,+1

[
ei(kFQH,F−kSC,F+α)xe

−i(3φ(x)+θ(x)−φc−φs√
2

− θc−θs√
2

)

+e−i(kFQH,F+kSC,F−α)xe
−i(3φ(x)−θ(x)−φc−φs√

2
− θc−θs√

2
)]

=

ψ†
FQH,↑,L(x)ψL,2,↑(x) + ψ†

FQH,↑,R(x)ψL,2,↑(x) (B.17)

and its H.C is: ∑
j=L,R

ψ†
L,2(x)ψFQH,↑,j(x) =

−kFQH,↑kSc,+√
4π

C+,+1,+1

[
e−i(kFQH,F−kSC,F+α)xe

i(3φ(x)+θ(x)−φc+φs√
2

− θc+θs√
2

)
+

ei(kFQH,F+kSC,F−α)xe
i(3φ(x)−θ(x)−φs+φc√

2
− θs+θc√

2
)]

+
kFQH,↑kSc,−√

4π
C−,+1,+1

[
e−i(kFQH,F−kSC,F+α)xe

i(3φ(x)+θ(x)−φc−φs√
2

− θc−θs√
2

)

+ei(kFQH,F+kSC,F−α)xe
i(3φ(x)−θ(x)−φc−φs√

2
− θc−θs√

2
)]

=

ψ†
L,2,↑(x)ψFQH,↑,L(x) + ψ†

L,2,↑(x)ψFQH,↑,R(x) (B.18)
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• For R,2 mode, we have:∑
j=L,R

ψ†
FQH,↑,j(x)ψR,2(x) = kFQH,↑

(
eikFQH,F xe−i(φ′(x)+θ′(x)) + e−ikFQH,F xe−i(φ′(x)−θ′(x))

)
1√
4π
ei(kSC,F+α)x

[
kSc,+C+,−1,+1e

i(φSC
+ (x)−θSC

+ (x)) − kSc,−kSc,+C−,−1,+1e
i(φSC

− (x)−θSC
− (x))

]
=

kFQH,↑kSc,+√
4π

kSc,+C+,−1,+1

[
ei(kFQH,F+kSC,F+α)xe

−i(3φ(x)+θ(x)−φc+φs√
2

+ θc+θs√
2

)
+

e−i(kFQH,F−kSC,F−α)xe
−i(3φ(x)−θ(x)−φs+φc√

2
+ θs+θc√

2
)]

−kFQH,↑kSc,−√
4π

kSc,+C−,−1,+1

[
ei(kFQH,F+kSC,F+α)xe

−i(3φ(x)+θ(x)−φc−φs√
2

+ θc−θs√
2

)

+e−i(kFQH,F−kSC,F−α)xe
−i(3φ(x)−θ(x)−φc−φs√

2
+ θc−θs√

2
)]

=

ψ†
FQH,↑,L(x)ψR,2,↑(x) + ψ†

FQH,↑,R(x)ψR,2,↑(x) (B.19)

and its H.C is: ∑
j=L,R

ψ†
R,2(x)ψFQH,↑,j(x) =

−kFQH,↑kSc,+√
4π

kSc,+C+,−1,+1

[
e−i(kFQH,F+kSC,F+α)xe

i(3φ(x)+θ(x)−φc+φs√
2

+ θc+θs√
2

)
+

ei(kFQH,F−kSC,F−α)xe
i(3φ(x)−θ(x)−φs+φc√

2
+ θs+θc√

2
)]

+
kFQH,↑kSc,−√

4π
kSc,+C−,−1,+1

[
e−i(kFQH,F+kSC,F+α)xe

i(3φ(x)+θ(x)−φc−φs√
2

+ θc−θs√
2

)

+ei(kFQH,F−kSC,F−α)xe
i(3φ(x)−θ(x)−φc−φs√

2
+ θc−θs√

2
)]

=

ψ†
R,2,↑(x)ψFQH,↑,L(x) + ψ†

R,2,↑(x)ψFQH,↑,R(x) (B.20)
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Putting together each term and its H.C, we get:

• For L,1 mode and its H.C, we have:∑
j=L,R

(
ψ†
FQH,↑,j(x)ψL,1(x) + ψ†

L,1(x)ψFQH,↑,j(x)
)
=

−2i
kFQH,↑kSc,+√

4π
C+,+1,−1

(
sin
(
3φ(x) + θ(x)− φs + φc√

2
− θs + θc√

2
− (kFQH,F − kSC,F − α)x

)
+sin

(
3φ(x)− θ(x)− φs + φc√

2
− θs + θc√

2
+ (kFQH,F + kSC,F + α)x

))
+

+2i
kFQH,↑kSc,−√

4π
C−,+1,+1

(
sin
(
3φ(x) + θ(x)− φc − φs√

2
− θc − θs√

2
− (kFQH,F − kSC,F − α)x

)
+sin

(
3φ(x)− θ(x)− φc − φs√

2
− θc − θs√

2
+ (kFQH,F + kSC,F + α)x

))
(B.21)

• For R,1 mode and its H.C, we have:∑
j=L,R

(
ψ†
FQH,↑,j(x)ψR,1(x) + ψ†

R,1(x)ψFQH,↑,j(x)
)
=

−2i
kFQH,↑kSc,+√

4π
C+,−1,−1

(
sin
(
3φ(x) + θ(x)− φc + φs√

2
+
θc + θs√

2
− (kFQH,F + kSC,F − α)x

)
+sin

(
3φ(x)− θ(x)− φc + φc√

2
+
θs + θc√

2
+ (kFQH,F − kSC,F + α)x

))

+2i
kFQH,↑kSc,−√

4π
C−,−1,−1

(
sin
(
3φ(x) + θ(x)− φc − φs√

2
+
θc − θs√

2
− (kFQH,F + kSC,F − α)x

)
+sin

(
3φ(x)− θ(x)− φc − φs√

2
+
θc − θs√

2
+ (kFQH,F − kSC,F + α)x

))
(B.22)
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• For L,2 mode and its H.C, we have:∑
j=L,R

(
ψ†
FQH,↑,j(x)ψL,2(x) + ψ†

L,2(x)ψFQH,↑,j(x)
)
=

−2i
kFQH,↑kSc,+√

4π
C+,+1,+1

(
sin
(
3φ(x) + θ(x)− φc + φs√

2
− θc + θs√

2
− (kFQH,F − kSC,F + α)x

)
+sin

(
(3φ(x)− θ(x)− φc + φs√

2
− θc + θs√

2
+ (kFQH,F + kSC,F − α)x

))

+2i
kFQH,↑kSc,−√

4π
C−,+1,+1

(
sin
(
3φ(x) + θ(x)− φc − φs√

2
− θc − θs√

2
− (kFQH,F − kSC,F + α)x

)
+sin

(
(3φ(x)− θ(x)− φc − φs√

2
− θc − θs√

2
+ (kFQH,F + kSC,F − α)x

))
(B.23)

• For R,2 mode and its H.C, we have:∑
j=L,R

(
ψ†
FQH,↑,j(x)ψR,2(x) + ψ†

R,2(x)ψFQH,↑,j(x)
)
=

−2i
kFQH,↑kSc,+√

4π
C+,−1,+1

(
sin
(
3φ(x) + θ(x)− φc + φs√

2
+
θc + θs√

2
− (kFQH,F + kSC,F + α)x

)
+sin

(
(3φ(x)− θ(x)− φc + φs√

2
+
θc + θs√

2
+ (kFQH,F − kSC,F − α)x

))

+2i
kFQH,↑kSc,−√

4π
C−,−1,+1

(
sin
(
3φ(x) + θ(x)− φc − φs√

2
+
θc − θs√

2
− (kFQH,F + kSC,F + α)x

)
+sin

(
(3φ(x)− θ(x)− φc − φs√

2
+
θc − θs√

2
+ (kFQH,F − kSC,F − α)x

))
(B.24)

The above results can be written in a composite form as:

Ht(x) =
−t2i√
2πα̃

∫
dx

∑
η=L/R=±1

∑
η′=L/R=±1

∑
σ=±1(

kFQH,↑kSc,+C+,η sin
(
3φ(x)− η′θ(x)− φc + φs√

2
− η

θc + θs√
2

− η′(kFQH,F − ηη′kSC,F − σα)x
)

−kFQH,↑kSc,−C−,η sin
(
3φ(x)− η′θ(x)− φc − φs√

2
− η

θc − θs√
2

− η′(kFQH,F − ηη′kSC,F − σα)x
))

(B.25)
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B.5 2nd-order of RG

In this sector, we present the main results one should expect to get by performing the 2nd-order
of RG in the tunneling Hamiltonian. We must note here also, that we are not interested to see the
scalling dimension of the second order, but rather we are interested in the combination that will give
us the S.O terms. By keeping that in mind, we present the main results by combining Left and Right
movers with different energy modes. The results are:

• For the combination of∑
j=L,R

(
ψ†
FQH,↑,j(x)ψL,1(x)+ψ

†
L,1(x)ψFQH,↑,j(x)

)(
ψ†
FQH,↑,j(x)ψR,2(x)+ψ

†
R,2(x)ψFQH,↑,j(x)

)
we get the terms:

1. 2
π
C2
+,−1,+1 cos

(
6φ−

√
2(φc + φs)

)
2. −ikSc,+kSc,− 2

π
C+,−1,+1C−,−1,+1 cos

(
6φ−

√
2(φc + θs)

)
3. −ikSc,+kSc,− 2

π
C+,−1,+1C−,−1,+1 cos

(
6φ−

√
2(φc − θs)

)
4. − 2

π
C2
−,−1,+1 cos

(
6φ−

√
2(φc − φs)

)
• and from the combination of∑

j=L,R

(
ψ†
FQH,↑,j(x)ψR,1(x)+ψ

†
R,1(x)ψFQH,↑,j(x)

)(
ψ†
FQH,↑,j(x)ψL,2(x)+ψ

†
L,2(x)ψFQH,↑,j(x)

)
we get the terms:

5. 2
π
C2
+,−1,−1 cos

(
6φ−

√
2(φc + φs)

)
6. ikSc,+kSc,− 2

π
C+,−1,−1C−,−1,−1 cos

(
6φ−

√
2(φc + θs)

)
7. ikSc,+kSc,− 2

π
C+,−1,−1C−,−1,−1 cos

(
6φ−

√
2(φc − θs)

)
8. − 2

π
C2
−,−1,−1 cos

(
6φ−

√
2(φc − φs)

)
We can combine them now to get the S.O terms:

〈S2
S.O,t(x)〉 = t2

2

π

[(
C2
+,−1,+1 + C2

+,−1,−1

)
cos
(
6φ−

√
2(φc + φs)

)
−
(
C2
−,−1,+1 + C2

−,−1,−1

)
cos
(
6φ−

√
2(φc − φs)

)
+ikSc,+kSc,−

(
C+,−1,−1C−,−1,−1 − C+,−1,+1C−,−1,+1

)
(
cos
(
6φ−

√
2(φc + θs)

)
+ cos

(
6φ−

√
2(φc − θs)

))]
(B.26)
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We can rewrite these results in a composite form as:

H2
S.O,t(x) = t2

4

πã

∑
µ=±1

(
ikSc,+kSc,−Hµ cos

(
6φ−

√
2(φc + µθs)

))
+ µH′

µ cos
(
6φ−

√
2(φc + µφs)

))
(B.27)

where we denote as Hµ = H = C+,−1,−1C−,−1,−1 − C+,−1,+1C−,−1,+1, H′
+ = C2

+,−1,+1 + C2
+,−1,−1 and

H′
− = C2

−,−1,+1 + C2
−,−1,−1. These are the terms that we need to introduce the Sh in the new effective

Interacting action for the II-step of RG. For completeness here we include also the Klein factors and
the coefficients for each term. To derive eq. (B.27) we made use of the anti-commutation relation of
the Klein factors and the trigonometric properties for the C terms.

We are now in place to introduce the extra action that we will consider in the 2-step RG analysis.
This action has the form:

Sh =

∫
d2z

∑
µ=±1

(
ikSc,+kSc,−hµ cos

(
6φ−

√
2(φc + µθs)

))
+ µh′µ cos

(
6φ−

√
2(φc + µφs)

))
(B.28)

where hµ and h′µ is used to distinguish the two different kind of S.O terms that appear.
In the main text, we present a more elegant way on how to treat this action. Here we will present

another way which gives the same results.
We define the operators:

Oν
h,µ(z) = eiν(6φ(z)−

√
2(φc+µθs)) (B.29)

where again ν = ±1 and µ = ±1. In this way we can write the Sh as:

Sh =
h

2i
kSc,+kSc,−

∫
d2z

∑
ν=±1

∑
µ=±1

Oν
h,µ(z) (B.30)

We will begin our analysis by focusing on the non-trivial terms B of eq. (3.3.1) by using the effective
Interacting action of eq. (3.81) that we introduced in II-step of RG. This means that now the most
important terms will be the ones we introduced in the II-step of RG:〈

Sh(z1)Sh(z2)
〉
f

(B.31)

In particular, we see that we have terms like:

〈
Sh(z1)Sh(z2)

〉
f
=

h2

(2i)2

∫
d2z

∑
ν=±1

∑
µ=±1

∑
ν′=±1

∑
µ′=±1

〈
Oν

h,µ(z)Oν′

h,µ′(z)
〉

(B.32)
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where these terms can be written as:〈
Oν

h,µ(z1)Oν′

h,µ′(z2)
〉
f
=
〈
eiν(6φ(z1)−

√
2(φc+µθs))eiν

′(6φ(z2)−
√
2(φc+µ′θs))

〉
f
=

ei(6(νφ(z1)+ν′φ(z2))−
√
2(ν(φc+µθs)+ν′(φc+µ′θs)))e−36νν′〈φ(z1)φ(z2)〉f− 1

2
(36〈φ2(z1)〉f )− 1

2
(36〈φ2(z1)〉f ) =

ei(6(νφ(z1)+ν′φ(z2))−
√
2((ν+ν′)φc+(νµ+ν′µ′)θs)))e

(
−36νν′

C(z1−z2)
6

− 2
2

36
6

)
ln
(

Λ
Λ̃

))
=

ei(6(νφ(z1)+ν′φ(z2))−
√
2((ν+ν′)φc+(νµ+ν′µ′)θs)))

(Λ̃
Λ

)6νν′C(z1−z2)−6

=

ei(6(νφ(z1)+ν′φ(z2))−
√
2((ν+ν′)φc+(νµ+ν′µ′)θs)))

(
1−

(
6νν ′C(z1 − z2) + 6

)
dl
)

(B.33)

In total we will get in second-order for the non-trivial term B for Sh that:

〈
Sh(z1)Sh(z2)

〉
f
=

h2

(2i)2

∫
d2z

∑
ν=±1

∑
µ=±1

∑
ν′=±1

∑
µ′=±1

〈
Oν

h,µ(z)Oν′

h,µ′(z)
〉
=

−h
2

4

∫
d2z′1d

2z′2
∑
ν=±1

∑
ν′=±1

∑
µ=±1

∑
µ′=±1(〈

O+
h,µ(z)O

+
h,µ′(z)

〉
︸ ︷︷ ︸

ν=ν′=+1

+
〈
O−

h,µ(z)O
−
h,µ′(z)

〉
︸ ︷︷ ︸

ν=ν′=−1

+
〈
O−

h,µ(z)O
+
h,µ′(z)

〉
︸ ︷︷ ︸

ν=−1,ν′=+1

+
〈
O+

h,µ(z)O
−
h,µ′(z)

〉
︸ ︷︷ ︸

ν=+1,ν′=−1

)
=

−h
2

2

∫
d2z′1d

2z′2
∑
µ=±1

∑
µ′=±1

(
1 +

(
4−

(
6C(z′1 − z′2) + 6

))
dl
)
cos
(
6(φ1 + φ2)−

√
2(2φc + (µ+ µ′)θs)

)
+
(
1 +

(
4−

(
− 6C(z′1 − z′2) + 6

))
dl
)
cos
(
6(φ1 − φ2)−

√
2(µ− µ′)θs

)
(B.34)

where we wrote the fields as φ(z′1) = φ1 and φ(z′2) = φ2. By taking the square of the first-order result
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we get in second order the terms A2:〈
Sh(z)

〉2
f
=
〈
Sh(z1)

〉
f

〈
Sh(z2)

〉
f
=

h2

(2i)2

∫
d2z′1d

2z′2
∑
ν=±1

∑
ν′=±1

∑
µ=±1

∑
µ′=±1

〈
Oν

h,µ(z1)
〉
f

〈
Oν′

h,µ′(z2)
〉
f
=

−h
2

4

∫
d2z′1d

2z′2
∑
µ=±

∑
µ′=±

(〈
O+

h,µ(z1)
〉
f

〈
O+

h,µ′(z2)
〉
f︸ ︷︷ ︸

ν=ν′=+1

+
〈
O−

h,µ(z1)
〉
f

〈
O−

h,µ′(z2)
〉
f︸ ︷︷ ︸

ν=ν′=−1

+
〈
O−

h,µ(z1)
〉
f

〈
O+

h,µ′(z2)
〉
f︸ ︷︷ ︸

ν=−1,ν′=+1

+
〈
O+

h,µ(z1)
〉
f

〈
O−

h,µ′(z2)
〉
f︸ ︷︷ ︸

ν=+1,ν′=−1

)
=

−h
2

2

(
1 + (4− 6)dl

) ∫
d2z′1d

2z′2
∑
µ=±1

∑
µ′=±1

(
cos
(
6(φ1 + φ2)−

√
2(2φc + (µ+ µ′)θs)

)
+cos

(
6(φ1 − φ2)−

√
2(µ− µ′)θs

))
(B.35)

Now it is very easy to see that by combining these terms we left with:

B −A2 = −h
2

2

∫
d2z′1d

2z′2
∑
µ=±1

∑
µ′=±1

((
1− 6C(z′1 − z′2)dl

)
cos
(
6(φ1 + φ2)−

√
2(2φc + (µ+ µ′)θs)

)
−
(
1 + 6C(z′1 − z′2)dl

)
cos
(
6(φ1 − φ2)−

√
2(µ− µ′)θs

))
(B.36)

Note that in the above calculations we treat the φc and θs fields as constants and they do not contribute
in the scaling dimensions of the system.
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