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Abstract

This thesis uses a graph neural network model to reconstruct simu-
lated events in the IceCube Neutrino Observatory by treating sam-
ples in the energy range 1-1000 GeV as 4-dimensional graphs with
edges determined by 4 nearest neighbors in space coordinates. The
GNN model DynedgeEdgepool is developed and tested against
the retro_reco algorithms predictions for the regression targets
energylog10 and zenith angle. The model records a relative improve-
ment in the width of the error distribution to be 25% and 20% for en-
ergy and zenith respectively. The model reconstructs events at a rate
of 6000 Hz, which is a significant improvement over the retro_reco al-
gorithm, which spends 5-40 seconds per event. These improvements
indicate that machine learning models could aid in reconstructing
neutrino events and thus aid in determining the physical parameters
for neutrino oscillations.





5

Dedicated to my family and friends.





Contents

1 Introduction 9

2 Particle physics and the Neutrino 11

3 IceCube Neutrino Observatory 19

4 Icecube Data 23

5 Deep Learning 31

6 Graph Neural Networks 45

7 Development Process 49

8 Results 59

9 Conclusion and Outlook 71

Appendices 73

DynedgeEdgepool Model 75

Dynedge Comparison 79

Bibliography 87





1
Introduction

Deep below the Antarctic ice lies the largest currently existing man-
made structure. The purpose of this structure, the IceCube neutrino
telescope is to detect neutrinos. The detection of neutrinos through
this telescope is intended to aid in solving many currently open
problems in the fields of physics and astronomy. Currently, we
understand very little about the properties of the neutrino. The
fact that neutrinos interact only with the weak force is partly to
blame, due to that fact making their rate of interaction very low
and thus very hard. Neutrino detection systems can act as "cosmic
messengers" allowing us map the universe with other means than
normal electromagnetic light. For the first time in history, it will
be possible to employ all four fundamental forces to explore the
universe. Currently, the data from the telescope is reconstructed
using a likelihood minimization method that heavily employs table
look-up. The accuracy of these reconstructions is fairly decent, but
the computational cost is prohibitively expensive, with a single
neutrino detection taking 10-40 seconds to reconstruct. This forms
a significant barrier to research because the telescope collects raw
data at a rate of 2500 Hz. This problem gets further compounded
when the algorithm has to be changed to consider different problems,
as well as when the algorithm is updated and changes have to be
applied to existing processed data. Machine-learning algorithms are
known to produce sophisticated outputs at a very fast rate. However,
the irregular structure of the IceCube detector and the low signal-
to-noise ratio has inhibited the use of ML in IceCube, only applying
Boosted Decision Trees for classification purposes quite late in the
selection process, using statistical derived features instead of the
direct data. Further development has been limited because of the lack
of Machine-learning architectures that fit the IceCube data structure.
With the advent of Graph Neural Networks, which views data as
a graph, we can develop models that reconstruct events with both
accuracy and speed. A graph is a data structure that models data
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as individual data-points connected to other data-points in a matter
which can be specified by the creator of the graph. This allows for
the modeling of arbitrary data-structures. The intent of this work
is to add more weight to the argument that ML has developed to
the point where it can be used on IceCube data, an argument which
has to a degree been substantiated by previous masters theses GRU
and T-CNN models. The model in this work demonstrates a relative
change in the width of the error distribution for the reconstruction
of energylog10 and zenith of 25% and 20% over retro_reco, with world
leading precision in the lower ends of the energy spectrum. The
model reconstructs events at a pace of 6000 events per second, a
significant improvement over current algorithms.



2
Particle physics and the Neutrino

2.1 Motivation

In 2012, experimental researchers at CERN confirmed the existence
of the Higgs boson, and with it this all the particles of the standard
model were confirmed to exist1. There are still many problems 1 ATLAS collaboration. "observation

of a new particle in the search for
the standard model higgs boson
with the atlas detector at the lhc”.
https://arxiv.org/abs/1207.7214,
July 2012

remaining in physics which the model can not explain, and some of
those involve neutrinos.

The neutrinos were initially thought to be massless particles,
but evidence instead points to them having such a low mass that
implicates them working in a fundamentally different physical
manner than the other particles. The observed matter-antimatter
asymmetry in the universe can potentially be explained by a charge-
parity violating phase in the PMNS matrix.

Neutrinos are observed to oscillate between their three flavors, and
this lets us constrain the CP-violating phase, and so the better we
are able to measure the oscillations the better our constraint will be.
Sterile neutrinos, which interact only with gravity, are a dark matter
candidate.

All of these things combined make the neutrino of great interest
to physicists, and that is why any information about neutrinos is
valuable.

2.2 The Standard model

The standard model is the foundation of modern particle physics
research, and describes two types of particles, fermions and bosons
and three out of four fundamental interactions 2. The difference 2 B.R Martin. "nuclear and particle

physics”. Wiley Online books, March
2006

between the two types of particles is that fermions have half-integer
spin and bosons have integer spin, thus fermions follow Fermi-Dirac
statistics and bosons follow Bose-Einsteins statistics. Fermions make
up the matter of the universe and bosons are the force carriers which
mediate interactions through the fundamental forces.

https://arxiv.org/abs/1207.7214
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Figure 2.1: The figure on the
left shows the particles and the
figure on the right shows the
possible interactions. Graphic
generated by wikimedia

The fermions consist of the leptons and the quarks, which are
differentiated by whether or not they interact with the strong force
as mediated by the gluon. The gluon acts only on quarks. The gluon
is the reason that new particles are created when quarks are pulled
apart and why we can only directly detect hadrons( a composite
made of two or more quarks).

As seen in figure (2.1)The electron, muon and tau leptons as well
as the quarks interact electromagnetically by the photon and weakly
by the W and Z bosons. The neutrinos however are special in that
they interact only weakly, and this is the reason that they are so hard
to spot in detection systems.

The matter particles can be divided into three generations, where
each generation differs by their flavour quantum number and mass.
The first generation has in it the electron, electron neutrino and the
up and down quarks, the second the muon, muon neutrino,charge
and strange quark and the third contains the tau, tau-neutrino,top
and bottom quarks.

The potential interactions between particles are most easily de-
scribed using feynman diagrams dependant on Fermi’s golden rule,
the Lorentz-invariant matrix element and in the case of fermions the
Dirac Equation.

Paul Dirac extended the Schrodinger equation to incorporate
relativity. Constraining it with the Einstein energy-momentum
relation, Dirac found the following quantum mechanical relation:

(iγµdµ −m)ψ = 0 (2.1)

Which requires a four component wave function. This equation
governs the behavior of all fermions. In particle physics we collect in-
formation about particles and their interactions by either accelerating
particles as in the case of LHC, or we try to passively detect particles
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as in IceCube, and compare our detected particle rates with the ones
we expect from our calculations using Fermi’s golden rule,

Γ f i = 2π|Tf i|2ρ(Ei) (2.2)

Where the left hand side of Eq (2.2) denotes the transition rate
from the initial quantum state |i〉 to the final quantum state | f 〉. The
right hand side has the transition matrix Tf i gained from expanding
the interaction with the Hamiltonian of the perturbation and the
energy-dependent density of states ρ. Using this, we can calculate the
differential cross section

dσ

dΩ∗
=

1
64π2s

p∗f
p∗i
|M f i|2 (2.3)

Which gives us the quantum mechanical probabilities that an
interaction will happen. Eq. (2.3) is valid in the center-of-mass (COM)
frame as denoted by *, which is the inertial frame where the center of
mass remains at the origin. S denotes the squared COM energy, p the
momentums of the particles and Ω the solid angle a particle scatters
into.

As long as we can calculateM, we can use the standard model
to test observable parameters. In the case of fermions we can use
Eq. (2.2) to calculate the matrix elements. This process can be quite
cumbersome, but fortunately for us we are born in a universe where
the great physicist Richard Feynman has provided us with Feynman
diagrams. Feynman diagrams are a set of rules by which we can
draw interactions and calculate the results from the diagrams, which
greatly simplifies the process.

2.3 Weak interaction

The neutrino was first posited to fix problems arising from exper-
iments investigating the phenomena of beta decay. In beta decay
a neutron turns into a proton, emitting an electron and an anti-
neutrino. Without the neutrino in this equation, physicists expected
the emitted electron to be mono-energetic, but what they found in-
stead was that the process produced an energy distribution. Secondly,
for certain atomic isotopes, the spin could not be conserved if only an
electron was emitted. Thus the neutrino was proposed, and with it
both of these problems were solved.

The neutrino interacts only with the weak force, and the weak
force has the special property that it interacts only with left-handed
particles and right handed anti particles. A left handed particle
is a particle whose spin is pointing the opposite direction of its
momentum, and a right handed particle has its spin pointing along
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its momentum. Since neutrinos only interact with the weak force
and only one "hand" of neutrinos or anti neutrinos interact in such
a way, it is possible that there are neutrinos of the other handedness
out there that interact only with gravity. These sterile neutrinos could
possibly be the explanation for dark matter3 . 3 K. N. Abazajian et al. "light sterile

neutrinos: A white paper”. https:

//arxiv.org/abs/1204.5379, April 2012

The weak force is mediated by the two charged W+ and W−

bosons and the neutral Z boson. These bosons have a very large rest
mass and thus a very short lifetime. This is what makes the weak
force "weak" in comparison to the electromagnetic- and strong forces.
The fact that two of the bosons are charged and the third is not is
what gives rise to the phenomenon of charged- and neutral currents.
The difference between the two is that a charged current allows
a charged lepton to turn into a neutral lepton, and it can change
the flavor of a quark as well as its electrical charge, while a neutral
current leaves the interacting particles quantum numbers unaffected,
only transferring momentum, spin and energy. This has experimental
consequences since we can only observe charged leptons in our
detectors.

Figure 2.2: Feynman diagrams
for beta decay, charged current
and neutral current processes.2.4 Neutrino oscillations

2.4.1 Solar Neutrino problem

In 1964, a paper was published reporting on a search for solar neu-
trinos 4. The premise was quite simple; the sun undergoes a fusion 4 John N. Bahcall. “solar neutrinos. i.

theoretical. Physical review Letters page
300-302, March 1964

process known as the proton-proton cycle. A product of this pro-
cess is an electron neutrino, the number of which can be estimated
using established physics. A large container filled with 615 tons of
perchloroethylene was placed in a closed underground mine, and the
solar neutrinos would interact with the chlorine in the tank through
the process:

νe + 37CL −→ 37 Ar + e− (2.4)

The theoretical prediction was that they should see 1.7 neutrinos
per day from the sun, but instead they found 0.48± 0.04. This was

https://arxiv.org/abs/1204.5379
https://arxiv.org/abs/1204.5379
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a surprising result because of the large discrepancy between the
predictions and the data. Another experiment was done much later
by the SNO collaboration 5, which was able to detect all three types 5 SNO Collaboration. “direct evidence

for neutrino flavor transformation
from neutral-current interactions in the
sudbury neutrino observatory”. Physical
Review Letters 89.1, June 2002

of neutrinos, and this experiment was consistent with predictions
that neutrinos would oscillate.

2.4.2 PMNS-Matrix

An explanation for why all three types of neutrinos were detected
from the sun had already been provided by Pontecorvo in 1957

6; 6 B. Pontecorvo. “direct evidence for
neutrino flavor transformation from
neutral-current interactions in the
sudbury neutrino observatory”. https:
//inspirehep.net/literature/42736,
October 1957

namely that the neutrinos would oscillate between the different types.
In 1962 the model was further developed by Maki, Nagakagawa
and Sakata 7. In their model the weak eigenstates of the neutrinos

7 Masami Nakagawa Ziro Maki and
Shoichi Sakata. “remarks on the unified
model of elementary particles". Progress
of Theoretical Physics 28.5 page 870-880,
November 1962

are linear combinations of mass-states who obey the Dirac equation
Eq.(2.1). The weak eigenstates are related to the mass states by a 3x3

unitary matrix: νe

νµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


ν1

ν2
ν3

 (2.5)

Named the PMNS-matrix afer the three japanese authors and Pon-
tecorvo. In general a 3x3 complex matrix has 18 free parameters,
but with the condition of unitarity U†U = I, where I is the identity
matrix, we can reduce this to 3 mixing angles and 6 complex phases.
5 of which can be absorbed into the lepton states leaving 4 free pa-
rameters 8. The 4 parameters are often chosen as three angles Θij and 8 J. W. F. Valle. “neutrino physics

overview". Journal of Physics: Confer-
ence Series 53 page 473-505, November
2006

one complex phase δ which violates charge-parity.

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

1 0 0
0 c23 s23

0 −s23 c23


 c13 0 s13e−iδ

0 1 0
s13eiδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


(2.6)

The solutions for Eq.(2.1) can be written as

|ψ(t)〉 = e−iEt|ψ(0)〉 (2.7)

where ψ is the quantum state, E is the energy of the particle and
t is the time at which we evaluate. The evolution of the quantum
neutrino state can be written as

ψ(t)〉 =
3

∑
i=1

Uαi|νi(t)〉 (2.8)

where alpha denotes the type and the sum is over all the types. To
proceed with finding the oscillation probabilities, we have to expand

https://inspirehep.net/literature/42736
https://inspirehep.net/literature/42736
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Eq.(2.8) in the weak eigenbasis. If we invert the unitary matrix U in
Eq. (2.5) using the unitarity condition giving us the inverted matrix
U∗, and solving for the oscillation probability from state α to state β,
we get the following

P(να → νβ) =
3

∑
i,j=1

UαiU∗βiU
∗
αjUβje

−i(Ei−Ej)t (2.9)

We can see from Eq.(2.9) that if the terms in the exponential differ, os-
cillations are possible. For our purposes, we can assume the neutrino
waves propagate as plane waves with the same momentum, so we let
pi = pj = p and use Einsteins energy-momentum relation

E2 = p2 + m2 (2.10)

Which we can use to find the differences in energy using a first order
taylor approximation

Ei − Ej ≈
m2

i −m2
j

2p
(2.11)

If we assume the neutrinos propagate at the speed of light (not
an unfair assumption to make considering their low mass and that
they rarely interact), we can set t = L, which is the distance the wave
has traveled, approximate the energy E ≈ p and introduce the term
∆m2

ij = m2
i −m2

j , we can rewrite the exponential terms in Eq.(2.9)

ei(Ei−Ej)t ≈ 1− 2sin2(
∆m2

ijL

4E
) + isin(

∆m2
ijL

2E
) (2.12)

After some algebra and replacing the relevant terms in Eq. (2.11)
with Eq (2.12), we can calculate the oscillation probability to be

P(να → νβ) = σαβ− 2
3

∑
i,j=1

Re(U′)sin2(
∆m2

ijL

4E
)+

3

∑
i,j=1

Im(U′)sin(
∆m2

ijL

2E
)

(2.13)
where U′ = UαiU∗βiU

∗
αjUβj. From Eq.(2.13) we can see the oscillation

frequencies depend on the squared mass differences, their energies,
the distance travel and the elements on the PMNS matrix. When
detecting neutrinos, we are attempting to indirectly arrive at the
values of that equation. We can extend Eq. (2.5) to include sterile
neutrinos by simply adding another dimension:

νe

νµ

ντ

νs

 =


Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4




ν1
ν2
ν3
ν3

 (2.14)
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We can derive oscillation frequencies the same way as we did be-
fore. The only known way of observing sterile neutrinos is through
their oscillations. The precise determination of the neutrino oscil-
lation parameters is the most important challenge in the field of
neutrino physics. The parameters concerning electron and muon neu-
trinos are relatively well determined, but the parameters for muon
and tau neutrinos are not. In Eq (2.13, the terms in the sine depend
on the square of the mass difference and the ratio of the length to
the energy of the particle. The mass difference for muon and tau
neutrino is much smaller then the difference for the electron and
muon neutrino. To observe the oscillation requires a large ratio L/E,
and that is where IceCube is hoped to lead the field, since it will be
the world leader in detection of low-energy particles with the coming
upgraded detection system.





3
IceCube Neutrino Observatory

3.1 Mission

Figure 3.1: An overview over
the research in the Icecube
collaboration. Graphic by the
IceCube collaboration.

The IceCube Collaboration has over 400 physicists and covers a
wide range of fields, all of them studying data collected from deep
under the antarctic ice. Listed below is an overview of some of the
research being done as depicted in figure (3.1)

3.1.1 Cosmic alert system

Because neutrinos have such a uniquely low rate of interaction, their
speed in mediums typically exceeds that of light. This is particularly
relevant for highly energetic events in space such as gamma ray
bursts, where the neutrinos are created and subsequently escape
before the light. Thus, on earth, with our neutrino detection systems,
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we can detect a burst of neutrinos coming from a certain direction
and point our telescopes in that direction to see the supernova in
its full glory. IceCube is a member of the Supernova Early warning
System, which is a collaboration between many neutrino detection
experiments all around the world. In this system each experiment
records possible cosmic alerts and if these alerts pass a series of
quality checks within a 10 second window, a message is sent out to a
list of interested astrophysicists who redirect their telescopes 1. 1 K. Scholberg. “the supernova early

warning system”. https://arxiv.org/
abs/0803.0531, March 2008

3.1.2 Mapping the universe

Similar to how we use light to get a picture of the universe, we
can also use neutrinos to understand the structure of the universe
better. By reconstructing the angles from which neutrinos come
from and measuring their flux over a long period of time, we can
hopefully detect emission sources such as gamma-ray bursts, which
are extremely highly energetic bursts that last at the most a few
hours, and are thought to be extremely rare. For a trivial example,
it is possible to get a picture of the moon using the small deficit in
events coming from that direction. This can also be used for angular
calibration of muons.

3.1.3 Neutrino oscillations

In chapter 2, we ended up with Eq 2.13 to describe the oscillation
frequencies. These frequencies depend on parameters we are very
interested in, and in IceCube we determine these neutrino mixing
parameters by observing patterns in the atmospheric neutrino flux
created by the oscillation. The atmospheric neutrino flux is created
by the interaction of cosmic rays with our atmosphere, creating
neutrinos that then oscillate into other states. Icecube has been
able to measure neutrinos with energies as low as 5 GeV 2. The low 2 M. G. Aartsen et al. “measurement

of atmospheric neutrino oscillations
at 6– 56 gev with icecube deepcore”.
https://arxiv.org/abs/0803.0531,
February 2018

energy regime is particularly interesting since it lets us observe muon
neutrino disappearance( it’s oscillation into different types) over a
range of distances up to the diameter of the earth.

3.1.4 Searching for the unknown

While neutrinos are interesting, IceCube constitutes the largest detec-
tor volume ever considered. It is therefore interesting to consider, if
other types of interactions beyond those of the Standard Model can
be observed in the detector. To that end there are teams working on
strange and unexplained phenomena that can not be attributed to
noise.

 https://arxiv.org/abs/0803.0531
 https://arxiv.org/abs/0803.0531
 https://arxiv.org/abs/0803.0531
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3.2 Current detection system

The basic unit of the detection system is the DOM(digital optical
module). The digital optical module is a device that uses photo-
multiplier tubes (PMT) to detect the light stemming from Cherenkov
radiation. The system has 5160 DOM’s on 86 vertical strings. These
strings are placed in a hexagonal structure with 125 meters between
them, and the DOM’s in the strings are placed 17 meters apart. The
entire system has a volume of about one kilometer, with a specialized
smaller array called Deepcore in its center. The overarching struc-
ture is hexagonal in shape, which means that it is not rotationally
invariant.

The DOMS are all located between 1450 and 2450 meters below the
surface, where the ice is clearest, with no DOM’s between 2000 and
2100 meters due to the existence of a region with low clarity referred
to as the dust layer. The deepcore section consists of 6 strings in the
center of the detector at a depth starting about 2100 meters. Above
the dust layer deepcore strings have 10 DOM’s spaced 10 meters
apart and under the dust layer, they have 50 special high quantum
efficiency (HQE) DOM’s spaced 7 meters apart. The deepcore section
is the section that allows us to detect the lowest energy neutrinos,
because of the better DOMs and tighter spacing, as well as the em-
ployment of non-deepcore sections to filter unwanted background
(mainly from muons).

Far above the rest of the sections and on top of the ice, a pair of
frozen water tanks are installed close to each individual string, with
each tank containing two DOM’s spaced 58 cm apart. This is known
as IceTop and is used to study cosmic muons as well as inform the
rest of the detector that an event potentially stems from a cosmic
muon.

3.3 IceCube Upgrade

Sometime in the year 2022/2023 the detection system will be up-
graded. The upgrade consists of 7 strings which will have a total of
700 detector modules. The upgrade will have 3 types of detectors;
Ordinary DOM’s, Multi-PMT DOM’s (mDOM’s) and Dual Optical
modules(D-eggs). An mDOM has 24 PMTs evenly spaced throughout
it’s spherical shape. This gives us a better a sense of the direction of
the pulses. D-eggs consists of Two HQE DOMs, one pointing up and
one pointing down, along with 12 LED’s installed for calibration pur-
poses. This is referred to as the IceCube Upgrade and i will refer to
the data from there as Upgrade Data. The intent behind Upgrade is
that it will increase the resolution in the low energy regime and make
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Figure 3.2: The Detection
system. The strings are indi-
cated in grey with black boxes
on them indicating DOM’s.
Graphic generated by Wikime-
dia

it easier to calibrate the system/detectors. Upgrade is the first step
towards IceCube Gen2, which is a large expansion that will double
the amount of DOMs in the array3. 3 Aya Ishihara (for the IceCube Col-

laboration). “the icecube up-
grade – design and science goals e”.
https://arxiv.org/abs/1908.09441,
August 2019

Figure 3.3: The different
types of DOMs in Ice-
Cube Upgrade and their
placement. Graphic from
https://icecube.wisc.edu/gallery/nsf-
approves-funding-for-icecube-
upgrade/

 https://arxiv.org/abs/1908.09441


4
Icecube Data

The data that the IceCube collaboration has stems from two sources.
The first is data that comes from the detector array, and the second
is simulated data. Both of these are catalogued in the file format .i3,
which has been developed for Icecube. This file format can be read
using Icetray, which is an environment developed for the file format.
The data is structured like an ordered dictionary, wherein a principal
key corresponds to either a particle attribute or a given detectors
output in a feature. Luckily, previous students have gone through the
trouble of dealing with this file format and created pipelines allowing
me to deal with databases which accept SQL queries(in python
SQlite), thus removing the need for a deep dive into the specifics. The
databases in this work have been created through Mads Ehrhorns
pipeline1. As the goal of this thesis is to improve upon the current 1 Mads Ehrhorn Kjær. "convolutional

neural network neutrino reconstruction
in icecube”, December 2020

algorithm Retro-Reco, only simulated data will be considered, as this
is the data which allows us to directly compare performance.

4.1 Simulation data

The simulated data has been generated by Monte Carlo simulations
developed and implemented by various people and groups in Ice-
cube. This class of simulation algorithms is used because it simulates
events probabilistically, which is necessary for interactions that are
probabilistic in nature. The simulations themselves are very complex
and are the results of extensive development, and so their internal
mechanics and ideas will not be expounded upon. What they have
in common is their overarching goal. What they seek is to simulate
is what happens in the detector array for a given particle or event,
or more broadly, what happens when a specific configuration for a
generative process of particles interacts with the detector. The sim-
ulations model not only the particle interactions from a theoretical
particle physics perspective, but also models environmental and
experimental details that are crucial to ensure accuracy, such as the
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properties of the ice, detector efficiences and the existence of the dust
layer. They also model the noise inherent in the detectors, which reg-
ularly produce readout even with no particles present. For this work
only the event generator GENIE 2 has been used, which simulates the 2 C. Andreopoulos et al.). "the genie

neutrino monte carlo generator”. https:
//www.sciencedirect.com/science/

article/abs/pii/S0168900209023043?

via%3Dihub, February 2010

interaction between neutrinos and ice molecules.
To get a full picture of how to deal with the real data it would

be necessary to use many simulators, since they typically deal with
different sources of signal. Furthermore, different simulations exist
for the standard Icecube setup and the Upgrade setup, which have
different entries in their databases. The SQlite databases are struc-
tured around events stemming from a single particle, which is not
always the case in the real array.

4.2 Events

The SQLITE databases each consist of two tables,features and truth.
The truth table is structured such that each event has one row in it,
with an amount of columns equal to the reconstructable attributes of
the particle, such as energy, particle type, interaction vertex etc. The
feature table consists of pulses, which is a read-out from the detector
containing such things as time of detection, placement of DOM and
other attributes of the DOMs. The features have a variable amount of
rows for each event with an entry in each row corresponding to the
event number, an unique identifier for that event(unique only for a
given simulation run, not across simulations!).

https://www.sciencedirect.com/science/article/abs/pii/S0168900209023043?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0168900209023043?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0168900209023043?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0168900209023043?via%3Dihub
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Feature Description Current Upgrade
event_no event number

string string number
dom DOM number

dom_x x-position
dom_y y-position
dom_z z-position

time time-position
charge measured charge

lc local coincidence
pulse_width the width of the pulse

SplitInIcePulses If it comes from a split pulse
SRTInIcePulses Whether or not it survives SRT

pmt_x x-component of vector
pmt_y y-component of vector
pmt_z z-component of vector

pmt_area surface area of PMT
pmt_type type of DOM

Table 4.1: Table of the column
names in the feature tables of
the SQlite databases.
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Going through the entries in table (4.1), event_no is the previously
mentioned event number, string refers to which string the detec-
tor is attached, dom refers to the individual DOM on a given string,
dom_xyz are numbers that refers to their spatial coordinates in the
detector, time refers to its temporal placement in the given window of
time it records a signal, charge refers to the mean value of the charge
waveform when fitted to a gaussian, lc stands for Local coincidence,
a boolean that signifies that a pulse close in time and space has also
been detected, pulse_width denotes the uncertainty on the recording
in nanoseconds, SplitInIcePulses denotes whether or not a given wave-
form signal has been split into two pulses, SRTInIcePulses denotes
whether or not a pulse survives the SRT cleaning algorithm, pmt_xyz
is a vector denoting the individual PMT’s relative position on the
new DOM types D-egg and mDOM, pmt_area denotes the area of the
DOM and finally pmt_type denotes which type of DOM it belongs to.

Truth Description
event_no event number

energy_log10 base 10 logarithm to the energy in GeV
position_x x-position of interaction vertex
position_y y-position of interaction vertex
position_z z-position of interaction vertex
direction_x x-component of particle path
direction_y y-component of particle path
direction_z z-component of particle path

azimuth azimuth angle of interaction vertex
zenith zenith angle of interaction vertex

pid particle type
stopped_muon whether or not the muon stopped in the detector

muon_tracklength length of the path of muon

Table 4.2: Table of column
names in the truth tables of the
SQlite databases

Going through each entry in table (4.2), we start with the same
identifier event_no as in the feature table, then we have the true
energy of the particle given in GeV and transformed with base 10

logarithm called energy_log10. We have the three coordinates of
the interaction vertex position_xyz and the three components of the
direction of the particles velocity direction_xyz. Applying a spherical
coordinate transformation we can get the two angles azimuth and
zenith. The PID of the particle denotes which type of particle gave
rise to the event and follows the particle numbering convention 3. 3 T. Sjostrand L. Garren, I.G. Knowles

and T. Trippe). "monte carlo particle
numbering scheme”. https://link.

springer.com/article/10.1007/

BF02683426, January 2000

The last two entries only apply if the instigating particle is a muon,
with stopped_muon whether or not the particle stopped inside the
detector or continued through it and muon_tracklength denoting the
length of the track that the muon scored through the detector.

https://link.springer.com/article/10.1007/BF02683426
https://link.springer.com/article/10.1007/BF02683426
https://link.springer.com/article/10.1007/BF02683426
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4.3 Data cleaning

The Icecube detectors are constantly recording tons of data, a large
majority of which does not stem from any particle interactions. To
be able to analyze this data, we make several selections and discard
a lot of detections. We can consider these cleanings to be organized
into 7 levels. The data selection comes from the OscNext team 4. The 4 oscNext team. "oscnext”. https:

//wiki.icecube.wisc.edu/images/8/

82/OscNext_v00.04.pdf, April 2020

extensive cleaning and selection processes are necessary due to the
difficulty of reconstructing events with low signal-to-noise ratios and
the long reconstruction time.

4.3.1 Level 1 cleaning

The first cleaning occurs on the raw data. Data that passes this level
must pass a single multiplicity trigger Check(SMT). This check labels
a detection as an event if several detectors also trigger within a short
window of time.

4.3.2 Level 2

The first step on this level is to discard all events that do not have
more than 3 SMT’s. Then the SRT algorithm is run on this selection,
wherein events that do not survive are discarded. SRT stands for
Seeded Radius-time, and it is an algorithm that starts at pulses that
survive the local coincidence condition( another pulse close by in
time and space) which acts as the "seed", and then classifying other
pulses within 150 meters and 1 nanosecond (hence Radius-Time)
as also surviving SRT-cleaning. These newly added pulses are then
used as seeds to further expand the collection of SRT-surviving
pulses, ending only when there are no more pulses within the correct
Radius and time of already surviving pulses. This essentially acts
as a causality check, using pulses we are more sure about to discard
pulses that can’t be related to them. Furthermore, since certain
events(depending on their particulars) must have both detections in
Deepcore and the rest of the detector, we can use a lack of detection
outside Deepcore to act as a veto. Currently all Upgrade Data is at
most cleaned to this level.

4.3.3 Level 3

In this level cuts are made across entire events using derived features
that allow us to remove events which are exceptionally different from
real data. The exact features can be found in OscNext.

https://wiki.icecube.wisc.edu/images/8/82/OscNext_v00.04.pdf
https://wiki.icecube.wisc.edu/images/8/82/OscNext_v00.04.pdf
https://wiki.icecube.wisc.edu/images/8/82/OscNext_v00.04.pdf
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4.3.4 Level 4

After data survives level 3 it has a decent resemblance to real data,
and this justifies using the machine learning algorithm LightGBM,
a Boosted Decision Tree (BDT) algorithm, to classify events into
either Muon events, Pure noise events and Events which are neutrino
candidates.

4.3.5 Level 5

Due to the hexagonal structure of the detector arrays, muons can
occasionally pass through "corridors" in the detector array and thus
survive up to this level. At this level all events that do not exist in
the Deepcore section are removed, and an additional cut is made to
decrease the amount of muons passing through corridors.

4.3.6 Level 6

At this level the retro-Reco algorithm is run on the high statistics area
of the level 5 data. The Retro-Reco calculates likelihoods and uses a
table look-up method to do it’s regression/classifications, timing out
if convergence is not reached within 10 iterations. This leaves some
event/ event targets unreconstructed.

4.3.7 level 7

The level 6 data is run through machine learning algorithms (BDT)
for the same purposes as in level 4 but this time on the data from
level 6, and final results come from this level.

Figure 4.1: Event rate compar-
ison across filters. All filters is
the general level 2 filter used
in the collaboration, DC is the
level 2 Deepcore filter described
above.
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As seen in figure (4.1) borrowed from a paper by the IceCube col-
laboration 5, each successive cleaning level significantly increases the 5 M.G AArtsen et al. "measurement of

atmospheric tau neutrino appearance
with icecube deepcore ”. https:

//journals.aps.org/prd/abstract/10.

1103/PhysRevD.99.032007, February
2019

fraction of signal. What is not indicated on the figure is the amount
of pulses that are cut away by things like the SRT-cleaning, but these
are not that important since the precision of the data is proportional
to
√

N, where N is the amount of pulses, and we typically dont
significantly impact the magnitude of the amount of pulses.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.032007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.032007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.032007




5
Deep Learning

5.1 The types of machine learning and their uses

In earlier decades, most of the work using computers has been fo-
cused on developing and optimizing algorithms that solve equations
and provide mathematically rigorous estimates , and for a long time
, this was the best and perhaps only way to efficiently use digital
technology. However, with the incredible advancements in com-
puting power, data storage and data collection, a lot of attention is
being given instead to methods and algorithms that rely on setting
up a system which by itself learns underlying patterns in the data.
These methods are known as Machine learning or Deep learning,
named so because of the extensive use of machine intelligence or as
a reference to deep neural networks, which are networks designed
to emulate the human brain using many layers of artificial neurons.
Deep learning can be most generally thought of as consisting of three
different types, all structurally different in their approach and thus
better suited for different problem setups. Furthermore, these sub-
types can be further divided into more sub-types and this process of
sub-division can continue for quite a while. For brevity ( and because
i found a neat image) i will not descend lower than three levels.

The first is termed Reinforcement Learning. In Reinforcement
Learning, score functions or KPI, key performance indicators, are
constructed such that the algorithm is rewarded when it performs
well and punished when it performs poorly. An example of this
could be to create an AI that plays a competitive video game, where
the AI is rewarded for the number of enemies it kills or the time
it stays alive. It could also be a robot with that learns to traverse a
landscape efficiently that is punished for falling over. The interplay
between data and machine here is that the machine calculates a state
from past and present data, uses the state to calculate an output that
produces a new state, and then evaluates the movement from one
state to the other. This type is not well-suited to the problem at hand.
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Figure 5.1: The most gen-
eral types of machine
learning. Graphic gener-
ated by Vincent Granville
https://www.datasciencecentral.com/profiles/blogs/types-
of-machine-learning-algorithms-
in-one-picture

The second type is termed Unsupervised Learning. With these
methods the machine is fed data with no labels, meaning data that
has no truth values, and the machine is then asked to perform some
sort of operation. For example, upon being fed a data-set consisting
of geological data from the earth and the moon, such a machine can
be asked to perform a clustering algorithm to find two clusters, and
hopefully those two clusters will neatly separate the earth data from
the moon data. A potential use for IceCube could be attempting to
separate data from noise.

Lastly, but certainly not least, is Supervised Learning. In Super-
vised learning, the machine is fed labelled data, and then asked to
predict the labels for the data. The two sub-types of this is regres-
sion, wherein a value is predicted, and classification, wherein the
data is divided into different classes and the machine is asked to
predict which class each part of the data belongs to. For reconstruc-
tion, this could be regressing on any number of features of the event,
such as energy, location and angle etc. or classifying which type of
particle resulted in the event. There are many different types of su-
pervised learning algorithms such as decision trees, genetic algorithm
, support-vector machines etc. but we will only limit ourselves to
neural networks.
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5.2 Neural Networks

The basic component of artificial neural networks is the neuron. The
Neuron takes in N inputs, applies a weight wi to each of them, adds
them together and adds a bias b, after which it applies an activation
function σ. The final result is then z, the output of the neuron.

zi = σ(bi + Σwixi) (5.1)

Where xi is the input and biwi are learnable parameters. A neural
network consists of multiple connected neurons, where one neuron’s
output gets forwarded as the input to another neuron. This is where
the term feedforward and forward pass originates from. This gives
rise to the fully-connected feedforward network, which is a network
consisting of layers of unconnected neurons that feedforward to each
of the neurons in the next layer. In this setup, each neuron j from
layer k zjk learns a set of parameters and a bias. The input to the first The amount of functions a network can

represent generally increases faster. for
an example see the following:

Rongjie Lai Feng-Lei Fan and
Ge Wang. Quasi-equivalence of
width and depth of neural networks.
https://assets.researchsquare.com/

files/rs-92324/v1_stamped.pdf?c=

1603402581, October 2020

layer comes from the data as such:

zi0 = σ(bi0 + Σwi0xi) (5.2)

and the following layers treat the outputs of the previous layer as
inputs:

zik = σ(bik + Σwikzik−1) (5.3)

The final layer acts as the output layer. By convention, when refer-
ring to the first layer, it is not a reference to the layer described by 5.2
but rather the set of neurons who contain the input information and
are thus termed the input layer. The layers between this first layer
and the final output layer are known as the hidden layers, since the
states of the individual neurons and their weights are difficult if not
impossible to analyze and thus almost never inspected.

The forward pass describes how the network generates an output
from an input. In the case of labelled data, we know what the output
should be, but initially the network will generate an effectively
random output. The difference between the generated output and
the output we believe the input data should provide is known as
the error. To improve the networks capability to accurately predict
the output, we need to update the networks weights and biases in a
corrective manner. This updating process is known as training the
network and the method used is called backpropagation.

5.3 Backpropagation

In the previous section i mentioned that we train the network to
minimize the error. Formally, if we consider the input data to be a set

https://assets.researchsquare.com/files/rs-92324/v1_stamped.pdf?c=1603402581
https://assets.researchsquare.com/files/rs-92324/v1_stamped.pdf?c=1603402581
https://assets.researchsquare.com/files/rs-92324/v1_stamped.pdf?c=1603402581
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Figure 5.2: Diagram of
fully connected feedfor-
ward network. Graphic
generated by Arden Dertat
https://towardsdatascience.com/applied-
deep-learning-part-1-artificial-
neural-networks-d7834f67a4f6

of examples of the form (x1, y1)....(xN , yN , where xi denotes the set
of variables forming the input data , known as features, yi denotes
the label and N is the amount of training example , we can view the
entire network as a function g : X− > Y , where X is the (input
space) and Y is (output space). Each function g is an element of G,
which is the set of possible functions a given network configuration
can become by applying different weights and biases known as
the hypothesis space. The error between the output and the label is
transformed according to a loss function f (g(x)|y)− > R, where R is
the set of real numbers. The objective of training is then to find the Optimizing for the traversal of hypoth-

esis space can be quite difficult and is
indeed why loss functions are necessary.
More on this in later sections

g that minimizes f (g(X), Y), where we are using the joint probability
model for the loss functions transformation. The key to traversing the
hypothesis space is to move in the opposite direction of the gradient
with regards to f .This method is known as gradient descent. Given
an example network g with L layers and a training example (xi, yi) ,
we apply the forward pass and end up with the error ε in the output
layer with the loss f (ε, yi) . We can now calculate the error for each
neuron j in the output layer

δLj =
∂ f (ε, yi)

∂zLj
z
′
Lj(cLj) (5.4)

where zLj is the previously mentioned output, cl j is the weighted

input before σ is applied to it, ∂ f (ε,yi)
∂zLj

denotes the partial derivative of

the loss function with regards to the activation function,z
′
Lj(cLj) is the

derivative of zLj with regards to cLj and δL is the error for the neuron
in the layer. We can rewrite this in matrix form using element-wise
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matrix multiplication known as the Hadamard product �.

δL = ∇z f (ε, yi)� z
′
L(cL) (5.5)

where ∇z f (epsilon, yi) is a vector whose components are the partial
derivatives of the loss function with regards to each individual
activation z. δL is the vector containing each neurons error and is
equivalent to δLj from 5.4.

We can then propagate this error back to the layer L− 1 and from
there to L− 2 and so on until we reach the first layer. This is where
the term backpropagation stems from. In general, the error vector for
layer k is given by:

δk = ((wT
k+1)δl+1)� z

′
ck

(5.6)

where wT
k+1 is the transposed weight matrix for layer k + 1. Now

that we have the errors for each neuron, we can find the gradient of
the bias which is simply:

f (ε, yi)

bkj
= δkj (5.7)

which lets us apply a update to the bias:

bupdate
kj = bkj − α

f (ε, yi)

bkj
(5.8)

Where α is the learning rate parameter, which is a scaling for the
correction. For the gradient of the weights we have the following:

f (ε, yi)

wkjv
= δkjz(k−1)jv (5.9)

where wkjv is the weight going between neuron k j and k−1j. z(k−1)jv is
the activated output that gets passed through to wkjv. To correct the
weights we apply:

wupdate
kjv = wkjv − α

f (ε, yi)

wkjv
(5.10)

We have now arrived at how to update the network given a single
training example. When this process is applied to an entire set of
training data, it is referred to as a training epoch.We want to make
full use of our data, and the naive way to proceed would be to cal-
culate the changes made to the weights and biases over an epoch
running through the entire data set and then apply them. One of the
reasons this is not done is that is is computationally much less expen-
sive to run through training epochs to convergence if we update as
soon as we have calculated a change in parameters. This is usually
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done in batches of examples, where the amount of examples in a
given batch is called the batchsize. The principal reason the naive way
is undesirable is that the intention behind any predictive model is not
to perfectly fit a given labelled data set( since this can be done with
any sufficiently complex model), but to be able to generalize and
correctly predict unseen and unlabelled data. To aid in this cause,
we need to further analyze the data, the hypothesis space and the
traversal of the hypothesis space.

5.4 Data as Probability distribution

I previously mentioned that we are using a joint probability model
for the loss functions transformation. For the data we are using a con-
ditional probability model. The conditional probability model comes
from treating the data as arising from an underlying distribution of
features which give rise to different labels. For classification, we are
assuming that the distribution of the data is a function of different
and potentially overlapping distributions. For an example, consider
a data set consisting of the height in meters of adult males, where
some of the data is labelled as coming from the Netherlands and the
other is labelled as coming from India. We know that the underly- An assumption is also made that the

data set is large and varied enough to
represent the two distributions.

ing distributions from the two countries are gaussian functions, one
with a mean value of 183cm and the other has a mean value 165cm.

The data set itself will then look like two gaussian peaks with

Figure 5.3: Histogram of fic-
tional height values for Nether-
lands and India.

some overlap as in figure 5.3.A neural network trained to classify
these heights as either stemming from the Netherlands or India pre-
dicting with certainty, that is giving either the label Netherlands or
India would be mathematically unsound, since the information is
simply not present in the data itself. For an example, consider a point
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where the height is 173cm. This height could very easily be either
an adult male from either country. Therefore, the network has to be
necessarily trained to predict the probability with which each height
stems from one of the given distributions. In the case of regression,
the picture is slightly muddled. In our assumptions up until this
point, we have not yet dealt with the problem of random error or
"noise". If we were to regress on data wherein each set of features
only leads to one specific label, i.e the input space forms a bijective
mapping to output space, it would be quite simple to train a network.
Unfortunately this is almost never the case in machine learning, and
for IceCube it certainly isn’t. The noise is perhaps the most signifi-
cant aspect when considering the theoretical capacity for any network
to generalize to unseen data, and as previously mentioned, providing
a general model for unseen data is the entire point!

5.5 Generalization error

The most general purpose of training a model is to generalize to data
that the model has not been trained on. It can be shown 1 that the 1 Wassily Hoeffding. "probability

inequalities for sums of bounded
random variables”. https://www.

tandfonline.com/doi/abs/10.1080/

01621459.1963.10500830, 2012

more ways a network can represent a given set of data, the higher
the generalization error becomes. This is known as the bias-variance
tradeoff. High-variance models can represent the variance in the data
well, but are at the mercy of noisy or unrepresentative data.This is
typically known as overfitting to the training data. High-bias models
can whisk away the noise, but faulty assumptions can lead to not
capturing the real variance in the data. This is typically known as
underfitting to the training data. It is easiest to think in terms of this
trade-off by analyzing where we inject bias into the model, since
we generally introduce variance by changing the various ways we
introduce bias. The most general ways we introduce bias are by
how we traverse the data set, the choice of loss functions, choice of
optimizer and network configuration.

5.6 Train-test split and validation

Data sets are usually constructed in a manner according to the data
collection process, and this can bias the model towards this collection
process. The first step is therefore randomly shuffle the training
examples. Then we split the data into two sets, a training set and
a test set, where the test set is not used when training the model
or tuning the model parameters. The size of the split here is what
determines the bias-variance tradeoff. The larger the training set is in
relation to the test set, the larger the bias, and inversely, a larger test
set increases variance and decreases bias.

https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
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A further splitting of the training set into a training set and val-
idation set can also be made. This can give us an early estimate of
the viability of the model and allow for easier fine-tuning of model
parameters. After using these sets to generate the model architecture
and being sufficiently sure of its generalization ability, we can then
train and evaluate the model on the complete data set. For the anal-
ysis of the validation set it is typically sufficient to use the average
value of the loss function, but to determine the general viability of a
model we need to introduce metrics by which we can evaluate it, but
first we need to understand how the biases inherent in the ways we
use the training data affect our models.

5.7 Training on data

The way we traverse the data set is one of the most important sources
of biases possible in a neural network, since it fundamentally deter-
mines the structure of the patterns the network is taught to discern.
Furthermore, the choices we make here also determine the type of
networks we can employ for meaningful results. In the previous sec-
tion i mentioned that we randomly shuffle the training examples so
as to not unduly bias towards the data collection process. While this
process would be sufficient in the formal example of data of the type
(x1, y1)....(xN , yN), where xi is a vector of features in a training exam-
ple, this is not the structure of the data we have in Icecube. Each of
our training examples in Icecube consists of N pulses with M features
in them, where the example itself is given a single label y, and the
way we iterate through these pulses is a source of bias. The neural
network structure discussed in previous sections would be somewhat
incompatible with our data, since the label is not associated with any
one pulse but with the entire training example. Previous work has
had some success viewing the examples as a time ordered series of
pulses, and iterating through them using something called a Gated
Recurrent Unit, as per Bjørn Mølvig’s masters thesis, or viewing
the time ordered series as an image and applying a temporal convo-
lutional kernel to the image as per Mads Ehrhorn’s masters thesis.
In this thesis i have used the representation of data as a graph and
applied graph neural network operations to it, both of which will be
expanded upon in the next chapter. The choices made with regards
to the data set determine which general network architectures and
operators we can employ. As previously mentioned, we wish to run
the model training process to convergence, by which we mean that
we want to train the model until it is not capable of becoming more
accurate by changing its weights and biases. This training process
is determined largely by the traversal of hypothesis space. Since the
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aim is to minimize the error which stems from a given point in hy-
pothesis space, we can design a transformation of the error space by
the use of loss functions into a loss space, which combined with the
network architecture gives us the loss landscape. We traverse the loss
landscape using the backpropagation method with the free parameter
called the learning rate. Before we can make our choices regarding
the learning rate, we need to understand the loss landscape and how
it determines the viability of any general model.

5.8 Loss landscapes

Figure 5.4: An example of
the convergence process. The
model could be considered to
have converged around 25-30

iterations.

We run training epochs until the model has converged. If we have
a well designed loss landscape, the average loss as a function of the
number of training epochs will look something like figure (5.4):

We understand the model to have converged somewhere at the
right-hand tail of the plot, where it either does not significantly
change the loss upon training another epoch or it oscillates around
some central loss value. We usually use early stopping to determine
which point in hypothesis we use, wherein we stop the training
process once there has been no improvement for a set number of
epochs.

Figure (5.4) can be hard to replicate, since loss landscapes are
generally highly non-convex, where the complexity of the landscape
usually rises very quickly with the number of parameters in the
architecture. The Cost is often used as a synonym for Loss.

The loss landscape is determined by not only the network archi-
tecture, but also by the choice of loss function. Which loss function
is chosen is crucial, since the properties of the loss function transfer
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Figure 5.5: An example of a
non-convex landscape. Height
and color indicates the value
of the loss function, where the
blue area returns the lowest
value. Image generated by
varying two weights in a model
with more than 10000 weights.
Image from losslandscape.com

onto the properties of landscapes that is derived from it. Typically
the loss landscapes of ML models are highly complex and non-
convex and a example of such a loss landscape is displayed in fig
(5.5).

5.9 Loss functions and labels

The properties that we are seeking in the loss function depend on
the properties of the labels we are aiming at predicting and will also
determine the type of optimization the network will be trained for.
For an example, consider a data set where the labels can differ in
magnitude by dozens or hundreds of orders. If we were to attempt to
model this purely by using the absolute error as our loss function, the
network would be heavily weighted towards representing the higher
end of the distribution well and ignoring the lower end. That is why
we must carefully consider which loss functions we use with regards
to a given goal. A common goal for all loss functions is the width of
the error distribution:

w(ε) = IQR(ε) (5.11)

Where IQR is the interquartile range.The inter-quartile range is the
difference between two quartiles, where a quartile is a value that
splits the data set in two according to a percentile. The percentile
for the first quartile we will be using is 16, that is the value at which
16% of the lowest errors lie beneath. The percentile for the second
quartile is 84, the value at which 84% of the errors lie beneath.These
percentiles are chosen to simulate a gaussian distribution.
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5.9.1 Energy regression

The ultimate goal of energy regression is to minimize the error, and
the quantity we are most interested in is the relative error in the
following form:

ε =
ENN − ETrue

ETrue
(5.12)

Where the NN subscript denotes the result from the neural net-
work. This measure is also known as the percentage error, since it
gives the error in percentages of the true value. While this would
technically avoid the aforementioned problem of weighting the
higher end of the distributions too heavily, the fact that the network
needs to be able to give outputs that cover several orders of mag-
nitude is undesirable, since it is generally known that this causes a
decrease in prediction quality. We can somewhat fix this by prepro-
cessing the data a bit and taking the logarithm to the energies:

ε =
log10ENN − log10ETrue

log10ETrue
(5.13)

This is not sufficient, since this effectively changes the base of
the logarithm to be the true energy. This means that we need to
remove the denominator, and if we do that, we can use the property
of logarithms that a subtraction equals division:

ε = log10ENN − log10ETrue = log10(
ENN
ETrue

) (5.14)

We can not use this directly, since it is unbounded from below and
so a network attempting to minimize this will just continue giving
a lower value. To fix this we can take the absolute value of this
quantity, but this quantity is both quite steep in its curve and also not
differentiable at 0. That is why we use the log10 hyperbolic cosine of
the difference, whose slope is easier to traverse.

ε = log10Cosh(EN N − ETrue) (5.15)

5.9.2 Angular regression

For the case of the Angular regression, we have the problem of
periodicity. In short, a prediction that is "off" by 2 pi in the case of
zenith angle should in fact give the same result as one which has the
"correct angle", and our choice of loss function should reflect that. We
have a multitude of choices in this regard. In the approach called Von
Mises-Fisher Sine-cosine loss approach we transform the truth value



42 neutrino reconstructionwith graphneural networks

to be:

p(φtruth) =

sin(φtruth)

cos(φtruth)

1

 (5.16)

and ask the model to produce three outputs:

output =

a
b
c

 (5.17)

The loss function is chosen such that it minimizes the angle between
vector p and a version of the output vector where c=1. It does this by
using the negative log likelihood trick as such:

ε = −ln(c) + ln(4π) + c + ln(1− e2c)− c ∗ cos(δφ) (5.18)

where δφ is the angle difference between the two previously men-
tioned vectors. A full derivation is available in a paper on training
seq2seq models 2. 2 Sachin Kumar and Yulia Tsvetkov. "von

mises-fisher loss for training sequence
to sequence models with continuous
outputs ”. https://arxiv.org/pdf/

1812.04616.pdf, March 2019

5.10 Learning rate optimization

I previously introduced the learning rate parameter α. The choice
of this parameter is perhaps the most important one with regards to
the networks ability to traverse the loss landscape and computational
time.

Figure 5.6: A fictional loss land-
scape, with loss on the vertical
axis and parameters of the
network on the horizontal axis

To understand why, consider the fictional loss landscape in figure
(5.6).The place we want to end up in is the bottom of the valley on
the right, but our starting position might be on any place on the line.
If we start anywhere on the right valley, we balance lowering the
learning rate such that we overshoot the bottom of the valley less
and increasing it to lower computation time. However, if we start

https://arxiv.org/pdf/1812.04616.pdf
https://arxiv.org/pdf/1812.04616.pdf
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somewhere in the valley on the left, we have the additional problem
that we want to ultimately "jump" over to the valley on the right. This
ends up imposing a lower bound for the learning rate parameter,
since for a given point there is a value for the parameter that must be
exceeded for the jump to be possible.

While this hopefully has illustrated the central concerns with
choosing α, we must remember that our loss landscapes are typically
highly complex and so too our networks, and thus the parameter
can be very hard to optimize. We need an optimization strategy
for α, and of the many that exists we choose the ADAM optimizer,
due to its robustness and relative insensitivity compared to other
optimizers. Full documentation for this optimizer can be found at 3, 3 Jimmy Ba Diederik P. Kingma. Adam:

A method for stochastic optimization.
https://arxiv.org/abs/1412.6980,
December 2014

but in brief terms, the optimizer calculates individual learning rates
for each neuron using the "momentum", a measure that allows it to
statistically determine which neurons would be most impacted by a
learning rate that is set too high or too low.

https://arxiv.org/abs/1412.6980




6
Graph Neural Networks

6.1 Brief introduction to graph Theory

Graph theory is the theory of Graphs, which are a mathematical
structure that models pairwise relations between mathematical
objects. Formally, a simple graph G = (V, E) consists of a set of
vertices V,also commonly called nodes, and edges E ⊆ {{x, y}|x, y ∈
V and x 6= y}. An edge starts at one node and ends at another. The
neighborhood of a node n is f (n) = {m ∈ V|(n, m) ∈ E. An adjacency
matrix is a |V| ∗ |V| matrix, where |V| denotes the amount of elements
in V, each element Aij is 1 if (i, j) ∈ E or 0 if (i, j) /∈ E.

Figure 6.1: An example of a
directed graph with 7 nodes
and a total of 9 edges.

When we associate features X with nodes and features XE with
edges, it is called an attributed graph, which is the focus of this work.
We are dealing with simple graphs where each node can have at most
one edge to a given other node and there are no nodes with edges to
themselves. Furthermore, we will be dealing with directed graphs,
where a node m can have an edge going to node n without the
reverse being true. See figure (6.1) for an example of this structure.

The intent behind representing data as a graph is to use the fact
that some data points are associated with others. This has previously
been exploited with techniques such as CNNs, convolutional neural
networks, which view the data as images and directly associates
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neighboring points. The successful use of CNN models inspired the
development of graph neural networks, since graphs are the most
general form of modeling relational data.

There are two fundamentally different ways of extracting informa-
tion from a graph. The difference lies in how the Graph Laplacian
is interpreted. The Graph Laplacian is the difference between the
adjacency matrix and the degree matrix, which is a diagonal matrix
whose elements contain information about the total amount of edges
a given node has. In Spectral Graph Theory, a eigen-decomposition
is performed on the graph laplacian and the information is inter-
preted as a frequency space. In Spatial Graph theory, the Laplacian
is directly interpreted as a measure of the spatial connectivity of the
graph. For more see Paul Kurasovs paper 1. 1 Pavel Kurasov. Graph laplacians and

topology. https://projecteuclid.org/
journals/arkiv-for-matematik/

volume-46/issue-1/

Graph-Laplacians-and-topology/

10.1007/s11512-007-0059-4.full,
2008

Since our data does not come prepackaged as graphs, we need to
process into ones. The choices made in this regard are discussed in
later chapters.

6.2 Message Passing

Just like standard neural networks, graph neural networks can be
thought of as a function that takes an input, namely graphs, and
produces an output in the form of a label. GNNs, same as NNs
can be either thought of as constructed in layers or as a series of
operations. The fundamental difference is that where NNs building
blocks are layers of neuronal activations, the GNN’s building block is
the message passing scheme.

The basic idea behind a message passing scheme is that you take
a graph G and produce a new graph representation G’, by having
each node pass a message to its neighbors. For a given node m with
a neighbor n, it receives the message message = f (n)W from its
neighbor, where f is some operator and W is a learnable parameter.
G’ is then constructed by having all nodes receive all messages from
all their neighbors, and then either including or excluding their own
values from G.

How you proceed from the new graph G’ depends entirely on the
purpose of the GNN. GNN’s are very powerful in the sense that they
can not only be used to predict labels for nodes or labels for graphs,
but also properties of the graphs themselves. For example, a time
evolution of a social media network is to some degree possible to
predict2. 2 Shengjie Min, Zhan Gao, Jing Peng,

Liang Wang, Ke Qin, and Bo Fang.
"stgsn — a spatial–temporal graph
neural network framework for time-
evolving social networks ”. https:

//arxiv.org/pdf/1905.10990.pdf,
February 2021

For our problem, we need to proceed from the graph G’ to pos-
sibly G” or some other number of more complex representations
to a single label for a graph. The general term for such a function
or operator is called an aggregation function. In this thesis, we will

https://projecteuclid.org/journals/arkiv-for-matematik/volume-46/issue-1/Graph-Laplacians-and-topology/10.1007/s11512-007-0059-4.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-46/issue-1/Graph-Laplacians-and-topology/10.1007/s11512-007-0059-4.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-46/issue-1/Graph-Laplacians-and-topology/10.1007/s11512-007-0059-4.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-46/issue-1/Graph-Laplacians-and-topology/10.1007/s11512-007-0059-4.full
https://projecteuclid.org/journals/arkiv-for-matematik/volume-46/issue-1/Graph-Laplacians-and-topology/10.1007/s11512-007-0059-4.full
https://arxiv.org/pdf/1905.10990.pdf
https://arxiv.org/pdf/1905.10990.pdf
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typically only use aggregation functions consisting of pooling oper-
ators followed by a standard neural network decoding layer. When
we add more layers of different graph operators to our network, we
encounter a fundamental constraint of GNNs that NNs do not seem
to have, namely that past a certain point, adding more message pass-
ing schemes starts to quickly reduce the quality of predictions, even
on data that has been trained on. This limit is even reached rather
quickly, with most GNNs worsening after 4 or 5 layers 3. 3 Thomas N. Kipf and Max welling.

"semi-supervised classification with
graph convolutional networks ”.
https://arxiv.org/abs/1609.02907,
September 2016

The reason this happens is quite simple. A message passing
scheme is essentially a way to accumulate information about a nodes
neighborhood. When two are applied, the new graph G” and its
nodes have information about their neighborhoods neighborhood.
This process continues as more schemes are added, and the more it
continues, the more it washes the information present in the relations
given by the edges and the more noise is introduced. Furthermore,
a node is also it’s neighbors neighbor, and so increasing the amount
of layers has the additional effect of considering a node to be its own
neighbor in a sense. For an intuitive example, consider your own
acquaintances on social media. It should be immediately apparent
why there is meaningful information in your relation to them. If we
hop to your acquaintances acquaintances, the link between you is
significantly weaker. If we hop 6 degrees away, we cover most of the
world, per the common myth of six degrees of separation.

https://arxiv.org/abs/1609.02907




7
Development Process

This section will detail the broader strokes of the work i have done on
this masters thesis. As all Masters students do, i spent the first period
of time familiarising myself with the literature and the projects
involved. Thus i became aware of the fact that the employment of
Neural networks in IceCube was relatively new, but had shown
promising results through the Masters theses of Mads Ehrhorn and
Bjørn Mølvig. Bjørn paved the way and showed that an improvement
of the Retro-Reco algorithm was possible using a Bi-directional GRU
model, and Mads’s success with a Temporal Convolutional neural
(T-CNN) network model indicated that models which took advantage
of temporal patterns could be the way forward. This section includes
a description of the work i did on the simulated upgrade data, but it
can be skipped entirely if so desired.

7.1 Choice of library

One of the first steps involved in developing machine learning al-
gorithm is the choice of programming language and library. I chose
Python, both because i was familiar with the language and, because
most research in machine learning is done using python libraries.
When it became time to choose a library i had settled on attempting
to develop a Graph neural network, since Rasmus Ørsøe, who was
currently doing his masters thesis on the same subject, had outper-
formed the rest using these kinds of models. Rasmus Ørsøe had
become aware of a new extension to pytorch-geometric, which is
a library for graph networks in pytorch, called pytorch-geometric-
temporal. He was about to finish his thesis and thus could not at-
tempt an entirely new library, but i was more than willing to try,
since i believed that the success with the T-CNN had shown building
time-dependence more directly into the model would be fruitful.
Pytorch-geometric-temporal was developed by a machine learning
engineer working for Astra-Zeneca, Benedek Rozemberczki, and had
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only been released July 2020. I spent a bit more than a month trying
most operators and models in the library. After writing to the li-
brary’s author and explaining what i was trying to achieve with what
kind of data, i had, he advised me to not proceed with the library. By
this time, i had become familiar with pytorch and pytorch-geometric
and so that ended up being my choice.

7.2 Pytorch-geometric

The pytorch-geometric library contains a multitude of layers and
operators. I knew that Rasmus Ørsøe had primarily used the Edge-
conv operator for his model called Dynedge, and so i wished to use
a model using something different to either beat or reach his models
performance. At this time, i developed models using every single
other operator i thought could be used for our purposes, which was
about half the operators in the library. The one i had the most success
with was the Gated Graph operator, which excited me since it used a
GRU( Gated Recurrent Unit), which is a neural network method also
used by Bjørn Mølvug. After spending a bit more than a week devel-
oping this model on energy regression and making steady progress, i
decided to test the very simplest application of the Edgeconv i could
think of ( one application of the operator, a pooling operator and
a single neural network decoding layer) and found that this easily
beat the average logcosh loss after training by a factor of 10. With
my deadline steadily approaching, i decicded to change tactics and
instead work on improving the model that Rasmus had developed.
This would prove to be quite difficult, because many of the choices
that had been made in its construction, such as number of neurons
in each layer, number of Edgeconv Operators and configuration of
pooling layers had already been extensively optimized. I did end up
with some improvement, especially in the low-energy regime, which
we will see in a later chapter, but first i have to explain the dynedge
model.

7.3 Dynedge

The dynedge model fundamentally uses four different building
blocks. The first is the Edgeconv operator, the second is the K-nearest
neighbor algorithm, the third a feature concatenation, the fourth a
node aggregation operator and the fifth a simple Fullyconnected
Feedforward. Before i show what the final model looks like, i will
explain what these individual blocks do.
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7.3.1 FF-layer

The FF-layer is the simplest layer structure described in Chapter (5), a
layer where each neuron is connected to each feature. Note that some
of these are in fact two feedforward layers, one feeding into the other.
The exact structure is available in the appendix.

7.3.2 Edgeconv Operator and KNN

The Edgeconv operator originates from a paper released in 2018
1. 1 Yongbin Sun et al. Yue Wang. "dynamic

graph cnn for learning on point clouds
”. https://arxiv.org/abs/1801.07829,
June 2018

The operator acts as the workhorse of their point-cloud model that
is meant to learn geometric shapes. Edgeconv acts on nodes per the
following:

x
′
j = Aggr({ f (xj, xi)|xi ∈ E(nj)}) (7.1)

where xj, xi are the node features of node i and j and E(nj) denotes
the neighborhood of node j.Aggr() is a message aggregation scheme
and f (xj, xi) is a function that acts on two sets of node features.In
dynedge, Aggr() is chosen to be the addition function, and f (xj, xi)
is chosen to be two FF networks, one feeding into the other, with
a LeakyRELU activation between them and after them. The neigh-
bors are chosen using the KNN algorithm, which finds the K nearest
neighbors over certain features. The model with which I’m compet-
ing uses 8 neighbors in the three spatial coordinates.

Figure 7.1: An example of the
application of the Edgeconv
operator from . The colors in
the edgeconv layers denote the
distance from the red point
to the rest. Notice how it gets
better at grouping together
things we as humans recognize
as similar like the wings.

7.3.3 Node Aggregation

Node aggregation is the method by which many nodes are con-
densed down to one node, thus allowing for the many-to-one casting
necessary to get a single label for the graph.The four agggregation
schemes used here involve taking the mean, adding them all together,
taking the minimum value and taking the maximum value.

https://arxiv.org/abs/1801.07829
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7.3.4 Feature concatenation

Feature concatenation is very simple, in that it takes different graph
representation and simply concatenates their features together. For
example, if we have 4 graphs each with N nodes and M features, a
feature concatenatation would result in 1 graph with N nodes and
M ∗ 4 features.

7.3.5 Model architecture

Now that the building blocks are here, we can dissect the diagram in
figure (7.2).

Figure 7.2: The Dynedge Model.
Arrows denote the flow of
information.

Starting from the input, we see that the input feeds forward to an
Edgeconv operator, which feeds forward to KNN operator. In fact,
we calculate new neighbors a total of three times in the block to the
left, and the reason that it is exactly this recalculation which allows
the network to tease out the higher ordering geometric groupings.
The column furthest to the left tells us that each of the 5 graphs,
the input graph and the four generated by successive Edgeconv
operations are fed into a feature concatenation scheme. This has
shown itself to be superior than to simply taking the output of the
last Edgeconv operator, and this is perhaps because it allows the
network to find a pattern in how it gets from one representation to
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the next. The output from the feature concatenation is then fed to
a FF-layer which acts to decode these complex graph representa-
tion. Four node aggregation schemes are run in tandem, taking the
Mean,minimum,maximum and the addition, and the results from
these aggregation are fed to another feature aggregation. In the de-
velopment process, it was found that each node aggregation scheme
by itself varied in the quality it added to the network across multiple
feature ranges, but none of them could be conclusively said to be
superior to the others( This concurs with my experience in using
node aggregation when developing other models). Using all four in
tandem and allowing the network figure out for itself how to deter-
mine which one is best suited for a given case was found to be the
best option.

Note here that the KNN graphs that are fed the output from an
Edgeconv operation no longer calculate their neighbors in real space
but in a representational space. Fortunately, it seems like we can still
limit ourselves to three dimensions when calculating neighbors in
this space, since the model learns to put the appropriate features
such that when it calculates neighbors it does so in a meaningful
way.

7.4 Developing on Dynedge

Dynedge was already a well optimized when i got to it. After ac-
quiring an overview over the optimization that had already been
done, i attempted several things which had not. I will give only
a brief overview of some of these since none of them ended in
success. Note that some of them were also tested with each other,
meaning that i both tested them as being the only change and
also while changing multiple things. All development was on the
databasedev_numu_train_l5_retro_001, which is a database containing
level 5 data with only muon neutrinos and muon antineutrinos. The
dynedge training was done with a learning rate of 0.01 using the
ADAM optimizer and was trained over 10 epochs.

7.4.1 Graph Architecture

In chapter (6) i stressed the importance of how the graph is con-
structed conveys certain information to the network. For example,
there is certainly some information to be had when detectors are not
even detecting anything even when they should be, which is in fact
something we use to veto certain events occurring in Deepcore but
not detected outside it. Most of my changes to the graph architecture
involved either adding features to each node that contained some
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sort of information about the nodes( such as adding a feature that
involved a coordinate transform of its spatial coordinates) or adding
entirely new nodes to the graph which contained global information
about the graph ( such as adding a new node whose features were
the averages of the features in the node). Sadly, i could not optimize
dynedge enough or my choices were too poor to gain a performance
improvement.

7.4.2 Hyperparameter optimization and configuration

Another category of attempts was attempting to optimize things
which i felt had not been sufficiently optimized. For example, i found
out that Dynedge’s number 8 for the KNN algorithm was the same
for each KNN-algorithm run, and i ran a time consuming computa-
tion varying the different K’s in each KNN block. This had perhaps
the best result of my attempts, in that some of these configurations
were not significantly worse than Dynedge with some even being
almost entirely similar.I got similar results when attempting to imple-
ment my own version of attention and context layers into the various
concatenation and aggregation layers. Nevertheless, i determined that
this was not the way to proceed, due to there being no improvement
in any energy range. To improve dynedge i decided that i needed
more than what dynedge had to offer.

7.5 Extending Dynedge

After i decided that it was not fruitful to directly optimize dynedge,
i revisited the different operators and layers in pytorch-geometric.
Now that i had more experience, i could also better understand the
conditions by which i could justify developing a certain approach.
Firstly, i came to understand that initial attempts at models were
almost entirely guaranteed to give worse results than dynedge, and
so the condition for developing a given extension should be that the
hit in performance is "reasonable" and that the quality I’m looking
for is any improvement at all, for example an improvement in a given
energy range. Furthermore i had the deep suspicion that adding
more layers that simply produced a new graph representation would
not provide an improvement, and this was confirmed with the few
i did test. I turned my attention to the pooling layers. A pooling
layer is a layer that acts through some process coarsen the graph
by acting on node features, nodes or both. For example, a simple
pooling layer could be a average_pool layer which creates a new
graph representation. This type of pooling has shown itself to be
useful in CNN’s where it acts to transform local data into regional
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data. Pooling can also act on nodes and serve to reduce the total
amount of nodes in the graph by selecting nodes to discard through
some function. I tested all the applicable ones on Dynedge, setting
the pooling layers at various places in the network architecture.
Through this i discovered that the Edgepooling pooling layer had a
very slight improvement in the lower energy range spectrum.

7.5.1 Edgepooling

The Edgepooling operator comes from 2. It is an operator that iterates 2 Frederik Diehl. "edge contraction
pooling for graph neural networks ”.
https://arxiv.org/pdf/1905.10990.

pdf, May 2019

over the nodes and their neighbors, scores them and then contracts
nodes together according to this scoring. The first step is to compute
the raw score for a given neighbor:

r(Eij) = W ∗ (xi||xj) + b (7.2)

where xi amd xj are the node features, W and b are learnable param-
eters. Once all the scores for each neighbor has been calculated, a
scoring function is applied to it. I found the best performing scoring
function to be the softmax function, so the final score becomes:

sij = 0.5 + so f tmaxr∗j(rij (7.3)

where the subscript r ∗ j denotes that the softmax function has been
taken over all neighbors, and the 0.5 is added for numerical stability.
With these edge scores we iteratively contract node ignoring those
which have a newly-merged node incident. By contracting, we com-
bine the edges and add their node features multiplied by their final
score:

https://arxiv.org/pdf/1905.10990.pdf
https://arxiv.org/pdf/1905.10990.pdf
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x̃ij = sij(xi + xj) (7.4)

Figure 7.3: Edgepool operating
on four nodes. Both direction
of a node are assumed to have
the raw score. The first figure
shows the raw scores for each
edge, the second the computed
score score and the sum over all
incoming raw scores, the third
showing final scores for each
edge Arrows denote the flow of
information

7.5.2 DynedgeEdgepool

Having settled on optimizing the extension of Dynedge with the
Edgepooling operator, i decided to called the model DynedgeEdge-
pool. In the development process, the first thing i had to figure out is
where to place it in the architecture. I knew i could not place it inbe-
tween the different Edgeconv operators in figure (7.2), since it would
lead to the feature concatenation receiving different amount of nodes
and that this simply does not compute. I found a slight amount of
success placing it after the feature concatenation, but i determined
that this was a mirage, since it merely acted to decrease its influence
on the final result. I settled on setting it in front of the entire dynedge
model and developing from that point on. My initial suspicion on
it’s lopsided performance(better on low energy, worse on higher) was
that it the model was too complex, and so most of my optimization
involved changing the specific parameters of the layers. This was not
a fruitful approach and eventually i found that the best approach
was fiddling with the learning rate and number of epochs. The final
model trains on a learning rate of 0.0002 and trains for 50 epochs.
The final graph architecture was chosen as 4 nearest neighbors in
position. Exact parameters for the model are in the appendix and so
is a comparison with Dynedge.
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Figure 7.4: The final model ar-
chitecture. Note that the input
no longer feeds in to the first
feature concatenation, and that
the contracted nodes edges are
recalculated





8
Results

In this chapter i present the reconstruction of energy and zenith angle
from the final model in chapter (7). These are the two most important
parameters for our purposes, since the probability of observing a
tau neutrino that arises from a muon neutrino decreases with higher
energies and a smaller volume of matter traversed in the detector
(abs(cos(zenith)>0)). It consists of ∼ 4 million muon neutrinos and The level 5 database used can be found

at https://sid.erda.dk/wsgi-bin/ls.
py?share_id=ETCAbdoluA;current_dir=

dev_numu_train_l5_retro_001;flags=

f.

∼ -14 muon anti neutrinos, for a total of ∼ 5.8 million particles.
Both interaction types are included. All training and prediction was
done on SRT-cleaned inputs. The training takes 16 hours, with the
reconstruction of events done at a rate of an average of 6000 Hz on
a Nvidia 3090 GPU. In the following i will plot various performance
measures on which DynedgeEdgepool is evaluated as well as retro-
reco. Several of these will have an outline of a histogram of events
in the background to let the reader visually identify the areas where
there is more information. All data is preprocessed with the Robust-
scaler transformation from scikit-learn, which transforms the data in
the following manner

xi
trans f orm =

xi −median(x)
IQR(x)

(8.1)

Where xi is the i’th element of set x and IQR signifies the interquar-
tile range. This transformation rescales and reduces the impact of
large outliers of a distribution, thus making it more "robust". Prior to
plotting the values are transformed back.

8.1 Energy Reconstruction

https://sid.erda.dk/wsgi-bin/ls.py?share_id=ETCAbdoluA;current_dir=dev_numu_train_l5_retro_001;flags=f
https://sid.erda.dk/wsgi-bin/ls.py?share_id=ETCAbdoluA;current_dir=dev_numu_train_l5_retro_001;flags=f
https://sid.erda.dk/wsgi-bin/ls.py?share_id=ETCAbdoluA;current_dir=dev_numu_train_l5_retro_001;flags=f
https://sid.erda.dk/wsgi-bin/ls.py?share_id=ETCAbdoluA;current_dir=dev_numu_train_l5_retro_001;flags=f
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Figure 8.1: A direct comparison
of predicted values as a func-
tion of true values. The error
bars are chosen as the standard
deviation of the prediction.The
blue line is a theoretical perfect
fit.
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,

Figure 8.2: The median of the
Error. The error bars are the
width of the error distribution.
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Figure 8.3: The width of the er-
ror distribution. The error bars
are the errors on the width.
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Figure 8.4: A histogram of
the residual values. Note that
retroreco is not centered.
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Figure 8.5: Histograms of re-
constructed values. Note the
existence of two "valleys" at
around 0.7 and 2 log10 GeV
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8.2 Zenith angle reconstruction

Figure 8.6: A direct comparison
of predicted values as a func-
tion of true values. The error
bars are chosen as the standard
deviation of the prediction.
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Figure 8.7: The median of the
Error. The error bars are the
width of the error distribution.
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Figure 8.8: The width of the er-
ror distribution. The error bars
are the errors on the width.
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Figure 8.9: A histogram of the
residual value.s
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Figure 8.10: A histogram of
reconstructed values shown
against the histogram of true
values.
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8.3 Interpretation

In the case of energy regression, my model outperforms retro_reco
across almost all energy ranges. In particular, significant improve-
ments are gained in the low energy range (0-1.5 Log10(GeV)), which
is the most important for neutrino oscillations as seen in fig(3).Across
the entire energy range, the relative improvement given as:

relativewidth =
widthdynedgeEdgepool

widthretro_reco
(8.2)

comes out to ∼ 1.25 or a 25% improvement. The histogram of values
fig (5) shows retro_reco having a distribution that resembles the true
distribution more. Especially troubling is the appearance of two
valleys, one at around 0.7 log10 GeV and the other at 2 log10 GeV,
where the count of values is low. This seems to show a structural bias
that i failed to ascertain the cause of. In my investigations it seemed
to have a weak correlation to the number of pulses in an event. The
existence of the peak to the left of 1.5 log10 GeV is consistent with
figure (8.1, where values higher than 1.5 are consistently predicted
too low and thus shifted to the left in the histogram.

In the case of the zenith regression, the competition is fiercer.
While i do beat it in the lower energy ranges and in the high sample-
size area as per fig (8.8), there is still a significant portion in the high
energy( 2.5-3 Log10(GeV)) area where retro_reco wins out. The rela-
tive improvement comes out over all energy ranges to be about 20%,
which signifies that for both targets my model is significantly more
consistent. In the histogram of values fig (8.10) retro_reco performs
significantly better. Part of that bias stems from the general behav-
ior that ML does not like to guess at the far ends of a distributions,
which is further compounded by the fact that a guess at the tail has a
good chance of simply applying the periodic conditions to them and
being "rolled" over.



9
Conclusion and Outlook

9.1 Conclusion

The central issue that this work tries to address is whether or not
machine learning models have developed to the point where they
can applied to IceCube data. The results of the investigation lead
me to believe that the answer to this is a resounding yes. The gains
in the accuracy can not necessarily be extrapolated to all the data
that comes out of IceCube, since this was run over a level 5 database
that had already had many layers of processing applied to it, but
the question of whether or not it is worth the time and effort to
pursue the development of ML methods must be answered in the
affirmative when considering the hurdle that computation time poses.
I would venture that even had the model been slightly worse than
retro_reco rather than better, this would still given weight to the
argument for ML. The most important measure for our purposes is
the relative improvement in width of error, since this is the measure
that directly indicates whether or not the architecture can represent
the variance in the data, and in this regard the model demonstrates
an improvement. The results of this thesis, when combined with the
results from previous masters theses, provide a strong argument
for the development of ML in IceCube. It is possible that many of
the cleaning levels described in chapter (4) could be replaced with
GNN, especially the levels selections are made on classifications,
since GNN’s are generally capable of producing good classifications.

9.2 Outlook

If i were to extend this project, there are a couple of things i would
have liked to investigate:

• Develop the model to act as a full replacement for retro_reco. Cur-
rently the model has to be trained separately on each individual
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target to be able to reconstruct, and thus it can not use informa-
tion about its reconstruction of other targets. The ultimate goal
would be to make a model that takes in the pulses of an event and
returns out all the targets in the truth tables.

• Develop ML models for cleaning noise from the data. I briefly
experimented with replacing the SRT-algorithm with a ML model
that would try to emulate it, which did not work, but i think the
general idea could still be fruitful.

• Perhaps i would have taken the time to rewrite the Edgepool op-
erator from scratch. As it stands, the operator from the library
method seems to use significant amount of CPU-calculations
which takes up more than half the time of reconstruction. Rewrit-
ing it to use GPU calculations could reduce the time by more than
half.

• I would have like to have worked more on the upgrade data,
especially with the noise-labelling that was being simulated.
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DynedgeEdgepool Model

1 class dynedgeEdgepool(torch.nn.Module):

2 def __init__(self, input_size=4, output_size = 1,x_col = 0,y_col = 1,

z_col = 2, mode = ’custom’, k = [4,4,4,4], c=3, device = ’cuda’ ):

3 ####

4 # INPUTS:

5 # input_size : INTEGER - dimension of input tensor.DEFAUlT -4

6 # output_size : INTEGER - dimension of output tensor. DEFAUlT -1

7 # x : INTEGER - column index in input tensor for x-

coordinate of DOM position. DEFAULT - 0

8 # y : INTEGER - column index in input tensor for y-

coordinate of DOM position. DEFAULT - 1

9 # z : INTEGER - column index in input tensor for z-

coordinate of DOM position. DEFAULT - 2

10 # k : INTEGER - number of neighbours. DEFAULT - 4

11 # device : STRING - the device ID on which the model is run.

DEFAULT - ’cuda’

12 # c : INTEGER - the dimension factor. DEFAULT - 3

13 # target : STRING - specifies which version of dynedge to

run. [’energy’, ’angle’, ’classifcation’]

14 # target = energy : Regresses energy_log10.

Use in conjuction with ’logcosh’ loss function.

15 # target = angle : Regresses either zenith

or azimuth. Use in conjunction with ’vonMisesSineCosineLoss

16 # target = pid : Use in conjuction with

torch.loss.CrossEntropyLoss

17 #

18

19 super(dynedgeEdgepool, self).__init__()

20 self.k = k

21 self.mode = mode

22 self.device = device

23 self.pos_idx = [x_col,y_col,z_col]

24

25

26 l1, l2, l3, l4, l5,l6,l7 = input_size,c*16*2,c*32*2,c*42*2,c*32*2,c

*16*2,output_size

27

28 if mode == ’angle’:

29 output_size = 3 # VonMisesSineCosineLoss requires

three dimensionsional output

30 if mode == ’energy’:

31 output_size = 1 # logcosh requires one-dimensional

output

32 if mode == ’pid’:

33 output_size = 2 # CrossEntropyLoss requires two-

dimensional output

34
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35 self.nn_conv1 = torch.nn.Sequential(torch.nn.Linear(l1*2,l2),torch.

nn.LeakyReLU(),torch.nn.Linear(l2,l3),torch.nn.LeakyReLU()).to(device)

36

37 self.conv_add = EdgeConv(self.nn_conv1,aggr = ’add’)

38

39 self.nn_conv2 = torch.nn.Sequential(torch.nn.Linear(l3*2,l4),torch.

nn.LeakyReLU(),torch.nn.Linear(l4,l3),torch.nn.LeakyReLU()).to(device)

40

41 self.conv_add2 = EdgeConv(self.nn_conv2,aggr = ’add’)

42

43 self.nn_conv3 = torch.nn.Sequential(torch.nn.Linear(l3*2,l4),torch.

nn.LeakyReLU(),torch.nn.Linear(l4,l3),torch.nn.LeakyReLU()).to(device)

44

45 self.conv_add3 = EdgeConv(self.nn_conv3,aggr = ’add’)

46

47 self.nn_conv4 = torch.nn.Sequential(torch.nn.Linear(l3*2,l4),torch.

nn.LeakyReLU(),torch.nn.Linear(l4,l3),torch.nn.LeakyReLU()).to(device)

48

49 self.conv_add4 = EdgeConv(self.nn_conv4,aggr = ’add’)

50

51 self.edgepool=EdgePooling(l1,add_to_edge_score=0.5,)

52

53 self.nn1 = torch.nn.Linear(l3*4+ l1,l4)

54 self.nn2 = torch.nn.Linear(l4,l5)

55 self.nn3 = torch.nn.Linear(4*l5,l6)

56 self.nn4 = torch.nn.Linear(l6,l7)

57 self.relu = torch.nn.LeakyReLU()

58 self.tanh = torch.nn.Tanh()

59 self.Softmax=torch.nn.Softmax(dim=0)

60

61 def forward(self, data):

62 k = self.k

63 device = self.device

64 mode = self.mode

65 pos_idx = self.pos_idx

66 x, edge_index, batch = data.x, data.edge_index, data.batch

67 x,edge_index,batch,_=self.edgepool(x,edge_index,batch)

68 edge_index = knn_graph(x=x[:,pos_idx],k=k[0],batch=batch).to(device)

69

70

71 a = self.conv_add(x,edge_index)

72

73

74 edge_index = knn_graph(x=a[:,pos_idx],k=k[1],batch=batch).to(device)

75

76 b = self.conv_add2(a,edge_index)

77

78 edge_index = knn_graph(x=b[:,pos_idx],k=k[2],batch=batch).to(device)

79

80 c = self.conv_add3(b,edge_index)

81

82 edge_index = knn_graph(x=c[:,pos_idx],k=k[3],batch=batch).to(device)

83

84 d = self.conv_add4(c,edge_index)

85

86 x = torch.cat((x,a,b,c,d),dim = 1)

87 del a,b,c,d

88 x = self.nn1(x)

89 x = self.relu(x)

90 x = self.nn2(x)

91
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92

93 x=self.pool4cat(x,batch)

94 x = self.relu(x)

95 x = self.nn3(x)

96

97 x = self.relu(x)

98 x = self.nn4(x)

99

100 if mode == ’angle’:

101 x[:,0] = self.tanh(x[:,0])

102 x[:,1] = self.tanh(x[:,1])

103

104

105 return x

106 def pool4cat(self,x,batch):

107 a,_ = scatter_max(x, batch, dim = 0)

108 b,_ = scatter_min(x, batch, dim = 0)

109 c = scatter_sum(x,batch,dim = 0)

110 d = scatter_mean(x,batch,dim= 0)

111 x = torch.cat((a,b,c,d),dim = 1)

112 return x





Dynedge Comparison

Figure 1: A direct comparison
of predicted values as a func-
tion of true values. The error
bars are chosen as the standard
deviation of the prediction.The
blue line is a theoretical perfect
fit.
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,

Figure 2: The median of the
Error. The error bars are the
width of the error distribution.
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Figure 3: The width of the error
distribution. The error bars are
the errors on the width.
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Figure 4: A histogram of the
residual values. Note that
retroreco is not centered.
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Figure 5: Histograms of recon-
structed values.





Github repository

The code used to create graphs, run models and plot can be found
at https://github.com/sinjako/Neutrino-reconstruction-GNN. It
requires pytorch, pytorch-geometric and sqlite packages installed
with python version 3.7 or greater. The graphsaving module and the
various Run_model modules are run using multiprocessing, with
Run_model modules using both CPU and GPU’s concurrently. The
CPU’s are used to feed data into the GPU to reduce idling time.

https://github.com/sinjako/Neutrino-reconstruction-GNN
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