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Abstract

The two dimensional Heisenberg J1-J2 square lattice model with nearest- and next nearest
neighbor antiferromagnetic interactions is an example of a frustrated magnetic system. The
interactions tend to compete because they cannot both be minimized simultaneously. In the
regime where J1 < 2J2 this leads to a highly degenerate ground state consisting of two coupled
Néel lattices with an arbitrary relative angle, θ. Due to thermal and quantum fluctutations
the true ground states are instead those with θ = 0 or θ = π. This is a manifestation of the
phenomenon known as order by disorder. These two states break the x-y symmetry of the
lattice by having ferromagnetic structure along one direction and antiferromagnetic along the
other. A system displaying this symmetry breaking is said to have a finite nematic moment.
When the temperature is finite there can be no long range magnetic order in the system, but
there can still be approximate magnetic order within domains of length scale Λ−1 as long as it
satisfies a� Λ−1 � ξ, where ξ is the magnetic correlation length and a is the lattice constant.
Within these domains spin waves exist, and they affect the long range behavior of the magnet.
The magnetically ordered domains consist of two approximately Néel ordered lattices, and due
to the spin waves, they minimize their energy by choosing a relative angle θ = 0, π. They
can be therefore be interpreted as nematic moments. This in turn gives rise to a nematic
phase transition of the whole system at finite temperature, as shown by Chandra, Coleman and
Larkin[1].
Despite the prediction of a nematic phase transition being confirmed numerically, their result for
the critical temperature has been shown to be incorrect at strong frustration, J1/2J2 ∼ 1. The
aim of this thesis was to explore whether incorporating spin wave interactions in the domains of
magnetic order minimizes the difference between the CCL and numerical result. The method for
incorporating the spin wave interactions has been to make a mean field approximation inspired
by the non-interacting spin wave correlation functions. While the mean field theory did lower
the free energy of the system, it failed to bridge the gap between CCL and the numerical critical
temperature, and either a better mean field must be utilized or another way of incorporating
the interactions must be found.



i

Acknowledgements

I would like to thank my supervisor, Jens Paaske, for his untiring help and enthusiasm and for
the many long and inspiring discussions on physics both within and outside the field of this
thesis. I would also like to thank Mads Kruse, Gorm Steffensen and Ida Egholm Nielsen for
their help in reviewing and proof reading. I would like to thank my friends and family for
keeping my spirit up whenever the workload would become too big and the CMT group for the
friendly atmosphere and lovely lunchclub. Finally I would like to thank Selena Broge for her
patience and unwavering support throughout the past five years.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basics of magnetism 5
2.1 Origins of magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The ground state of the Heisenberg Hamiltonian . . . . . . . . . . . . . . . . . . 7
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Coherent state path integral 12
3.1 Schwinger bosons and spin coherent states . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Coherent state path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Real time path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Susceptibility from partition function . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Classical ground state and spin wave fluctuations 25
4.1 Ground state for general Jij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Fluctuations - Spin waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Order by disorder - classical free energy . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Quantized spin waves: magnons 34
5.1 Holstein-Primakoff representation of spin-operators . . . . . . . . . . . . . . . . . 34
5.2 Canonical diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Order by disorder - quantum free energy . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Symmetries and the eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Magnons on one lattice 54
6.1 Canonical diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Magnon expectation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Lowest order magnetization correction . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Magnon interactions and an effective field theory 63
7.1 Interaction terms in the one sublattice picture . . . . . . . . . . . . . . . . . . . . 63
7.2 Effective field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Conclusion and Outlook 75

ii



CONTENTS iii

Appendices 79

A Fourier transformation convention 80
A.1 Translation invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B Hubbard-Stratonovich decoupling of quadratic Néel fields 81
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Chapter 1

Introduction

1.1 Motivation

In magnetic systems frustration, the competition between non compatible magnetic configura-
tions, can lead to a wide variety of physical phenomena that continually elude simple descrip-
tions. A frustrated magnet is one where the minimization of the energy of one magnetic moment
precludes the minimization of the energy of another. Quite simple systems can be frustrated.
One canonical example is the two-dimensional triangular lattice with antiferromagnetic nearest
neighbor interactions where all three moments on a triangle cannot simultaneously anti-align.
This is an example of geometric frustration. Other examples of geometrically frustrated mag-
nets are those with kagomé and pyrochlore lattice structures[2]. One can also induce frustration
through extended interactions. One example is the case of a square lattice with antiferromag-
netic next nearest neighbor interactions and ferromagnetic or antiferromagnetic nearest neighbor
interactions, and that particular model is called a Heisenberg J1-J2 square lattice model. It is
easy to imagine frustration playing an important part in many physical materials when it can
be achieved simply by extending the interaction beyond just nearest neighbors. Considering
classical magnetic moments, when 2J2 < J1 the ground state of the J1-J2 model is a simple Néel
lattice, but when J1 < 2J2 the ground states are all the configurations of two interpenetrating
Néel lattices with an arbitrary relative angle. It turns out that thermal and quantum fluctu-
ations pick out as the ground states the two collinear antiferromagnetic configurations where
the relative angle between the Néel lattices is either 0 or π, corresponding to the configurations
where magnetic moments are parallel along one lattice direction and Néel ordered along the
other. This is an example of a phenomenon called order by disorder[3], [4]. These states do
not possess the x-y symmetry of the underlying Hamiltonian, and one can define the direction
of parallel spins as the nematic moment of the states. The highly frustrated point 2J2 = J1 is
special and does not prefer any kind of order, but it is the point between the two phases of the
magnet, and is therefore of great interest.

The J1-J2 square lattice is a two dimensional model and it therefore does not exhibit long
range magnetic order at any finite temperature, since no continuous symmetry, such as the
O(3) symmetry of a disordered spin system, may be broken in two dimensions or below as
stated by the Mermin-Wagner theorem. In a pioneering paper by P. Chandra, P. Coleman and
A.I. Larkin [1] it was shown that the system could have a different phase transition at a finite
temperature, a nematic phase transition, where the discrete symmetry between two equivalent
directions is broken. The crucial assumption is the existence of an intermediate length scale
Λ−1 between the lattice constant (the smallest length scale of the system) and the correlation
length ξ of magnetic moments. Even though the whole system is not magnetically ordered,
magnons, quantized spin-waves, can exist within domains of size Λ−1 and their ultimate effect
is the nematic ordering of the lattice below some critical temperature.

1
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Figure 1.1: Left: Monte Carlo results of the critical temperature of the nematic phase transition.
For large J2, the critical temperature scales linearly with J2 but drops to zero with infinite slope
as we approach the critical point 2J2/J1 = 1. Figure taken from the paper by Weber et al.[5].
Right: CCL result for the critical temperature. The critical temperature increases as one
approaches 2J2/J1 = 1.

Although the idea of spin-waves being the source of a non-zero nematic order parameter is a
great proof of concept, the critical temperature calculated by [1] is at odds with later numerical
calculations. In a paper by Weber et al. [5], Monte Carlo calculations show that the critical
temperature follows 2J2/J1 linearly in the large J2 limit as predicted by Chandra, Coleman and
Larkin, but that it goes to 0 as 2J2/J1 → 1, as shown in Figure 1.1a (Figure taken from [5]).
In contrast, the CCL result does not go to zero as one approaches the highly frustrated point
as shown on Figure 1.1b.

The main goal of this thesis is to go beyond linear spin-wave theory and incorporate inter-
actions between magnons through a mean-field approximation inspired by the single particle
correlation functions of linear spin-wave theory. This is one of many possible mean-fields one
could use, and it has the primary effect of renormalizing the on-site spin parameter S. It will
be shown how this affects the magnon dispersion and by extension the critical temperature
calculated by [1]. The aim is to solve the discrepancy between the CCL result and the Monte
Carlo simulation or at least show that the correction betters the CCL critical temperature.

1.2 Experimental realization

Though the primary motivation of this thesis is theoretical, experimental research in the J1-J2

model is of course of great interest, so we mention here an experimental realization.

The two dimensional J1-J2 square lattice model with 0.5J1 < J2 and 0 < J2 has been realized
in AMoOPO4Cl (A =K, Rb) compounds [6]. Measurements indiciate that the material can en-
ter the collinear antiferromagnetic (CAF) state. In contrast to the Néel antiferromagnetic state,
CAF is ferromagnetic along one direction and antiferromagnetic along the orthogonal direction
in the crystal. The crystal is composed of MoO5Cl octahedra connected by PO4 tetrahedra. It
is three dimensional, but is composed of stacks of bilayered sheets separated by planes of K or
Rb, making interstack coupling small, and each bilayered sheet separate from the others.
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Figure 1.2: A bilayer MoOPO4Cl stack from the c
direction. MoO5Cl octahedra are green while the
connecting PO4 tetrahedron is yellow. Octahedron
height is constant along a.

The interstack direction is called c.
The bilayered sheet consists of rows of
octahedra at two different heights, con-
nected by tetrahedra. The direction of
constant height is called a while the or-
thogonal is called b. Rows adjecent are
of different height. Thus each stack
can be considered a two dimensional
square lattice. At the same time, the
Mo5+ ions have spin 1/2, so each stack
acts as a square spin lattice. Pow-
der neutron diffraction and NMR ex-
periments indicates [6] that the struc-
ture of the AMoOPO4Cl compounds are
CAF in a regime of the H,T (external
magnetic field, temperature) parameter
space. This suggests a nearest neighbor
(J1) and a next nearest neighbor (J2) in-

teraction between spins on the lattice. Measurements of the magnetic susceptibility fits well
with the J1-J2 model with parameters (J1, J2) = (−2K, 19K), (0K, 29K) for A = K,Rb respec-
tively. Theoretical calculations suggest CAF ground states, if taking into account order by
disorder effects, for 0.5J1 < J2, which fits well with these parameters. Most interestingly, the
authors suggest changing parameters through crystal structure change, which could increase
J1/J2. If that is possible when growing the crystals one could approach the highly frustrated
point J1/J2 = 2 which is still not well understood theoretically.

1.3 Thesis outline

The structure of the thesis is chosen so as to give a coherent introduction to quantum magnetism.
We have tried to cover a lot of ground to give a picture of the overall landscape of the field
while emphasizing the points which are most relevant to the goal of the thesis.

• Chapter 2 is a brief introduction to magnetic interactions, how magnetism is inherently a
quantum mechanical phenomenon and the role of quantum fluctuations.

• In chapter 3 the spin quantum partition function or spin path integral is introduced by
means of spin coherent states. Several ideas, including spin quantization and classical
spins, are touched upon simply because they are interesting and can help establish a
coherent picture of interacting spins, but the main point of the chapter is to show how
the quantum partition function naturally leads to the classical partition function in the
large spin S limit.

• Classical spin systems are explored in chapter 4, the spin-wave spectrum of the J1-J2

model is found and the concept of order by disorder is introduced.

• In chapter 5 spin waves are quantized (magnons) using the Holstein-Primakoff (H.P.)
transformation. To diagonalize the Hamiltonian the Bogoliubov transformation is em-
ployed, a procedure complicated by the fact that magnons are bosons and not fermions.
The analysis is based on defining magnons on four ferromagnetic sublattices.

• In chapter 6 the system is once again analyzed with the H.P. transformation but this time
on a single ferromagnetic sublattice. The eigenvectors of the Hamiltonian are found and
using these the single particle correlation functions at arbitrary temperature are found.
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• The next term in the large S expansion is found in chapter 7 and a mean field approxima-
tion is used to include the effect on the spin wave spectrum. The setup of the field theory
calculation made by [1] is shown, and it is explored how the mean field approximated
interaction term affects the critical temperature of the nematic phase transition.



Chapter 2

Basics of magnetism

One of the most widely known macroscopic manifestations of quantum physics is the phe-
nomenon of magnetism. As well known as it is the origins of magnetic materials can be elusive.
Niels Bohr, and later Hendrika van Leeuwen, famously showed[2] that magnetic materials can-
not exist in classical mechanics. This was resolved with the advent of quantum mechanics and
several different mechanisms are now known that lead to the Heisenberg Hamiltonian, one model
of interactions between magnetic moments with parameters strong enough to support magnetic
order at known temperatures.

2.1 Origins of magnetism

In this section we will briefly go through the argument of Bohr and van Leeuwen, go on to study
the exchange interaction between two electrons and finally set up the Heisenberg Hamiltonian.

2.1.1 Bohr-van Leeuwen theorem

A magnet, both in classical and quantum mechanics, consists of a set of magnetic moments.
In classical electrodynamics a magnetic moment, µ is usually modeled by be a steady current
flowing through a closed wire. In that case

µ = Ia (2.1.1)

One can use this simple picture as a crude model of an electron moving in orbit around an
atomic nucleus, at least as a first attempt at modeling magnets. In the limit where the area
of the circuit vanishes, the limit of an infinitesimal magnetic moment, we denote the magnetic
moment dµ. Then the total magnetization of a material of volume V is given by

M =

∫
V
dµ. (2.1.2)

The magnetic moment is related to its’ angular momentum through the relation

µ = γL, (2.1.3)

where γ is known as the gyromagnetic ratio. Finally, the moment interacts with external
magnetic fields through the relation

E = −µ ·B = −γL ·B = −γr× p ·B. (2.1.4)

In other words, the energy associated with a set of magnetic moments stem from the momenta
and positions of the particles giving rise to these moments. With this in mind, we take a step

5
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back and look at the Hamiltonian for a set of such particles

H = p2/2m+ V (x). (2.1.5)

In the presence of a magnetic field, B = ∇ × A, the momentum is in general no longer a
constant of motion. Rather the conserved quantity is the canonical momentum p − q

cA, and,
more importantly, the Hamiltonian becomes

H = (p− e

c
A)2/2m+ V (x). (2.1.6)

This is sometimes called minimal coupling. The partition function of an ensemble of such
particles is

Z =

∫ ∞
−∞

dp

∫ ∞
−∞

dxe−β[(p−
e
c
A)2/2m+V (x)]. (2.1.7)

The momentum can be shifted by the value of the vector potential, a change of coordinates
which neither changes the measure nor the limits of the integral (since they extend to ±∞). In
other words, the partition function for a set of classical particles does not change in the presence
of a magnetic field. The result is that the magnetic moments of a material cannot affect each
other through their magnetic fields and nor can they be affected by any external magnetic
field. Assuming these are the only ways magnetic order could be formed the conclusion is that
magnets do not exist.

2.1.2 Quantum magnetism

In classical mechanics no magnets exist but several different mechanisms circumvent the argu-
ment by Bohr and van Leeuwen in quantum mechanics. Most prominent is the existence of
spin in quantum mechanics, an intrinsic quality of particles which resembles regular angular
momentum. Spin couples directly to magnetic fields through the Zeeman interaction

HZ ∝ −S ·B, (2.1.8)

a term which for electrons (and other spin-half particles) appears in the low-energy limit of the
Dirac equation. Heuristically (but paradoxically) spin can be thought of as angular momentum
from a non-extended object. Since it has nothing to do with position and momentum variables,
the interaction cannot be produced by a minimal coupling, and will therefore appear by itself
in the Hamiltonian and ultimately change the partition function. In general, the Bohr-van
Leeuwen theorem does not hold in quantum mechanics.

2.1.3 The exchange interaction

The dipole-dipole interactions between two magnetic moments, due to the magnetic dipole field
associated with a magnetic moment, give rise to the Hamiltonian

Hdip-dip =
µ0

4πr3

(
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

)
. (2.1.9)

The energy typically associated with this type of interaction for moments seperated by 1Å is of
order 1K. Comparing this to the temperature TC = 1043K where iron loses its ferromagnetic
properties, it is clear that the dipole-dipole interaction cannot account for magnetic iron, and
therefore other interactions must exist.

As mentioned, there are in fact several mechanisms which lead to an effective interaction
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between magnetic moments. Here we will discuss one which is due to the Coulomb interaction
and the Pauli exclusion principle. Let |ψ〉 be the collective state of two electrons. The elec-
trons are fermions meaning they change sign under exchange, and so the collective state can be
written

|ψ〉 = (|χ〉1 |φ〉2 ± |χ〉2 |φ〉1)⊗ |σ〉s,t (2.1.10)

where |σ〉 is the spin state of the two electrons, which can either be one of the symmetric triplet
states or the antisymmetric singlet state and the first parenthesis represents the spatial part of
the electron state. The indices associated with the spatial part refer to each electron. If the
first part of the wavefunction is symmetric in an exchange of the two electrons (relative positive
sign between the terms in the parenthesis), the spin state must be a singlet state and vice versa.
We now assume that the electrons do not interact directly through their spins, as they would
for example do through the dipole-dipole interaction. Instead they only interact through the
Coulomb interaction, VC = e2

4πε0
1

|r1−r2| , and the energy associated with this interaction is

〈ψ|VC |ψ〉 =
e2

4πε0

∫
d3r

[ |χ(r1)|2|φ(r2)|2
|r1 − r2|

± χ∗(r1)φ(r1) + φ∗(r2)χ(r2)

|r1 − r2|
+ h.c.

]
, (2.1.11)

where the first term (and its identical hermitian conjugate) represent the ”classical interaction”
between the two electrons, in the sense that it depends on the overlap of the absolute square
of the wave-function of the two electrons. Whether the electrons are in the singlet or triplet
state is inconsequential to this term. The second term, called the exchange term, is due to
quantum mechanical interference and changes sign depending on the spin state of the electrons.
It is the exchange term that is of interest here. Denote it Cex. We can now deduce an effective
interaction between the spins of the two electrons

Heff = −Cex

2
(1 + 4S1 · S2) , (2.1.12)

which, due to the singlet (triplet) state being an eigenstate of S1 ·S2 with eigenvalue −3/4 (1/4)
with ~ = 1, give exactly the energies from eq. (2.1.11). Thus, an effective spin-spin interaction
emerges through an interplay between the Coulomb interaction and fermion statistics (the
exclusion principle).

2.1.4 Heisenberg Hamilton

The general interaction between electrons of the form in eq. (2.1.12) is the Heisenberg Hamil-
tonian

H =
1

2

∑
ij

JijSi · Sj , (2.1.13)

where i, j label the particle in question, usually the site at which a localized electron sits in a
lattice, and Jij is the interaction constant arising through the underlying mechanism that gives
the effective interaction. The sign, range and strength of the exchange constants Jij lead to a
wide range of different ground states.

2.2 The ground state of the Heisenberg Hamiltonian

The information about the ground state of the Heisenberg Hamiltonian lies in the exchange
constants Jij [3]. In this section the terms ferromagnetic and antiferromagnetic exchange con-
stant is defined and are used to explore the difference between the classical ground state of the
Heisenberg Hamiltonian and the quantum mechanical.
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2.2.1 Classical ferromagnetic and antiferromagnetic exchange

What will be called a classical spin in this section is just a three dimensional arrow Si which can
point in any direction. Consider a square lattice with one spin on each site, and only nearest
neighbor interaction, with the exchange parameter Jij constant everywhere on the lattice. Then

H =
J

2

∑
〈ij〉

Si · Sj . (2.2.1)

Now, assuming J < 0, the whole lattice minimizes its energy by assuming a ferromagnetic
configuration, one in which all arrows point along the same direction. Thus, whenever J is
negative it is heuristically called ferromagnetic. Note that the ground state of the system is
degenerate, and an O(3) rotation of the whole lattice corresponds to a rotation within the
degenerate eigenspace. We can denote the state of the whole ferromagnetic lattice by a vector
pointing along one of the spins. On the other hand, if 0 < J the system minimizes its energy by
assuming an antiferromagnetic configuration, often called a Néel configuration, where arrows
next to each other point in opposite directions. This can be thought of as two ferromagnetic
lattices overlapping. The antiferromagnetic state can be denoted by a vector pointing along the
spins of a sublattice. We call this the Néel vector. Note that it makes no difference in terms of
energy which sublattice the Néel vector points along, which might suggest another symmetry
of the system, namely invariance under sublattice exchange. This however is nothing but a π
rotation in the plane of the spins.

2.2.2 Quantum ferromagnetic and antiferromagnetic exchange

To find the eigenstates of the quantum Heisenberg Hamiltonian we first rewrite it

H =
1

2

∑
ij

JijSi · Sj =
1

2

∑
ij

Jij

[
Szi S

z
j +

1

2
(S+
i S
−
j + S−i S

+
j )

]
, (2.2.2)

where 1
2(S+

i S
−
j + S−i S

+
j ) = Sxi S

x
j + Syi S

y
j is called the XY -term. For a spin state |S,m〉 where

S is the total spin and m is the component in the z direction, S± |S,m〉 ∝ |S,m± 1〉. The
states are annihilated if they cannot be further raised or lowered. Now, the ferromagnetic state
(here defined as states with every spin polarized in a direction defined as the z-direction) is
an eigenstate of this Hamiltonian. The XY -term in the parenthesis annihilates the state and
therefore has eigenvalue 0, while the state is an eigenstate of the Szi operators by definition. If
we assume nearest neighbor coupling and J < 0, the ferromagnetic state is in fact the ground
state. On the other hand, the Néel state is not an eigenstate, because it is not an eigenstate of
the XY -term. To get a better understanding of this, we scale the lattice down to two spin-1/2
particles instead of N spin-S particles. The eigenstates of S1 · S2 for two spin 1/2-particles are
the well known singlet/triplet states. The states and their eigenvalues are

|ψT 〉 =


|↑↑〉

1√
2

(|↑↓〉+ |↓↑〉) , ET = 1
4

|↓↓〉

|ψS〉 =
1√
2

(|↑↓〉 − |↓↑〉) , ES = −3

4
.

(2.2.3)

We now see that in the case of 0 < J it is the singlet state which is the ground state, and
the configuration of spins in the singlet state resembles that of the Néel state. The crucial
difference is that the singlet state is an antisymmetric linear combination of the two possible
”Néel” states. If measuring the spin of one the particles in a series of experiments one would
measure ±1/2 equally often, and in this sense the system exhibits quantum fluctuations. This
generalizes to magnetic systems of more particles with general S, as we will now discuss.
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2.2.3 Quantum fluctuations

We will now turn to a general discussion of quantum fluctuations which will be connected with
magnetism by the end of the discussion. The first example we will look at is the usual harmonic
oscillator, the Hamiltonian of which can be written as

H =
p2

2m
+

1

2
mω2x2. (2.2.4)

It is worth it to emphasize that this representation of the Hamiltonian is nothing but a choice.
It could be represented by different operators, as we shall see in a moment. What we should
note is that both the momentum of a state, and its position contribute to the energy. But
since momentum and position are canonically conjugate operators, the operators cannot be
simultaneously diagonalized. If for example we wanted to find the lowest energy state of the
momentum term, |p = 0〉, it has no well defined position and consequently is not an eigenstate
of H. Therefore the classical choice minimizing both the position and momentum term at the
same time is not a viable state. Instead the ground state of the harmonic oscillator (written in
terms of its coordinates in the x-basis) is

|0〉 =
(mω

2π

)1/2
∫
dx e

−mωx2
2 |x〉 , (2.2.5)

which is manifestly not of well defined position, and equally not of well defined momentum.
Because the ground state does not have a well defined position at x = 0, the position operator
of H contributes a non-zero term to the energy of this state. Essentially this is the origin
of zero-point energy. It manifests itself clearly when writing the Hamiltonian in terms of the

operator a =
(√

mω
2 x+ ip√

2mω

)
and its hermitian conjugate. In that case

H = ω

(
a†a+

1

2

)
, (2.2.6)

with ω real. In terms of these operators, the ground state is the state annihilated by a, and so the
ground state energy is ω/2. This form of the Hamiltonian is more ”natural”, in the sense that
the operator a†a has a well defined eigenbasis with one state having eigenvalue 0, and no other
terms appear in the Hamiltonian which do not commute with a†a. Putting the Hamiltonian in
this form the constant addition may seem a bit out of place. Why could we not simply start from
this Hamiltonian without the constant term? In fact this is a manifestations of the ordering
problem of quantum mechanics. Since the traditional way of obtaining a quantum mechanical
Hamiltonian is to write up the classical counterpart and set up canonical commutation relations
between classically canonically conjugate variables, we have a choice of which expression for the
classical Hamiltonian we start with. For example, the classical Hamiltonian of the harmonic
oscillator may just as well be written as

H = ω

(√
mω

2
x− ip√

2mω

)(√
mω

2
x+

ip√
2mω

)
. (2.2.7)

If we quantize [x, p] = i now, eq. (2.2.7) yields.

H = ω a†a. (2.2.8)

In other words, the concept of a zero-point energy in the harmonic oscillator hinges on which
expression of the classical Hamiltonian one quantizes. This may seem uncomfortably arbitrary
but it is just an indication that the world is fundamentally quantum mechanical. In other words
one should start with a quantum mechanical Hamiltonian and derive the classical Hamiltonian
from it. So which of eqs. (2.2.6) and (2.2.8) is the correct quantum mechanical expression?
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Canonical quantization gives no answer. To determine the answer we should turn to experi-
ments and in the case of the electromagnetic field, which in essence is a harmonic oscillator at
each point in space, the answer is eq. (2.2.6). The zero-point energy in that case gives rise to
the experimentally observed phenomenon known as the Casimir effect[7].

The point of analyzing the harmonic oscillator was to show that zero-point energy arises due
to the constituents of its Hamiltonian not being simultaneously diagonalizable. In the case of
the harmonic oscillator the constituents of the Hamiltonian are x and p. Using another picture
of the same system, formulating it through the a†a operators, one can instead talk about the
ground state as the vacuum of quanta or particles represented by a. Each excitation to a higher
energy eigenstate is just an addition of one of these particles to the system. If instead we started
with a Hamiltonian of the form

H = ω(a†a+ aa†) + ∆(aa+ a†a†), (2.2.9)

the terms in the Hamiltonian no longer commute, and the previous states counting the number
of a particles are no longer eigenstates. To find the eigenstates of the Hamiltonian one can
instead define new particles through a Bogoliubov transformation

α = ua† + va. (2.2.10)

The coefficients u, v must satisfy certain relations in order for the α particles to be meaningful
particles (in this case ”meaningful” means that [α, α†] = [a, a†]). In the end, one finds the
Hamiltonian can be written as

H = ω̃
(
α†α+ 1/2

)
. (2.2.11)

Therefore the ground state of the Hamiltonian is not the vacuum of the a particles but instead
the vacuum of the α particles. Excitations from the ground state are additions of the α particles.
The point is that there may now be a non-zero expectation value of the a particles even in the
ground state. For example, in the case where u, v are real, we find

a† = uα− vα† (2.2.12)

and so

〈0|a†a|0〉 = u2 〈0|αα†|0〉 = u2. (2.2.13)

This we call quantum fluctuations, and its emergence should not surprise us too much. After
all, we had no right to expect that there are no a particles in the vacuum state of the α particles
from the form of H. But it does lead to a somewhat counterintuitive result for the case of a Néel
state and other non-ferromagnetic states, namely that there are small fluctuations about such
states (spin waves/magnons in the classical/quantum system) even in the ground state of the
system, as will be shown later in the thesis. In the case of thermal fluctuations one can think
of a magnon being created/destroyed in the system by its interaction with the environment.
Heuristically one can have a similar picture in mind when thinking of quantum fluctuations, but
it seems to be a different type of fluctuation, since nothing actually fluctuates in an eigenstate
of the Hamiltonian (it is stationary).

2.3 Conclusion

The quantum mechanical origin of magnetic interactions has been discussed and a mechanism
for effective spin-spin interactions has been shown (the exchange interaction). The difference
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between the ferromagnetic and antiferromagnetic exchange between two spin half particles has
been analysed and importantly the antiferromagnetic exchange leads to a ground state which
is a superposition of two ”Néel” states (the singlet state). This is an illustration of how the
ground state of antiferromagnet systems, in contrast to the ferromagnetic counterparts, are
manifestly non-classical. One is led to the same conclusion when considering magnons on non-
ferromagnetic systems. It was illustrated in the final section how the number of magnons
of a magnetic lattice may be non-zero even in the ground state as a result of magnons not
diagonalizing the Hamiltonian. This will be the definition of quantum fluctuations in this
thesis.



Chapter 3

Coherent state path integral

In this section the quantum mechanical system consisting of spins of size S on a lattice structure
is introduced. We will consider the case where the spins interact through a general Heisenberg
Hamiltonian. The quantum partition function can be written as a path integral built from
coherent spin states, and it is shown how the classical partition function arises in the limit S →
∞. Further, gauge-invariance, spin-quantization and a classical definition of spins are discussed.
The differences between the usual coherent state path integrals of bosons and fermions and the
spin coherent path integral is also explored. This chapter is mostly based on [8], and if otherwise
it will be stated.

3.1 Schwinger bosons and spin coherent states

There exists a mapping from spin operators to bosons called Schwinger bosons, and in three
dimensions it is

Ŝ+ = Sx + iSy = a†b (3.1.1)

Ŝ− = Sx − iSy = b†a (3.1.2)

Ŝz =
1

2

(
a†a− b†b

)
. (3.1.3)

Using the commutation relations of bosons it is straightforward to check that the spin operators
satisfy the spin commutation relations

[Si, Sj ] = iεkijS
k. (3.1.4)

Of course such bosons act on states in an infinite dimensional Fock space and so in the boson
picture the Hilbert space is much larger than in the spin state picture, which for finite S is a
finite dimensional Hilbert space. There is a physical subspace of the Fock space in the boson
picture, and there is a one to one correspondence between states in this subspace and spin states
in the usual spin Hilbert space. The physical subspace of the bosonic Fock space is that which
obeys the restriction

na + nb = 2S (3.1.5)

such that the eigenvalues of Sz are neither above S or below −S in the physical subspace. The
mapping between spin states and states in the Fock space is

|S,m〉ẑ =
(a†)(S+m)√

(S +m)!

(b†)(S−m)√
(S −m)!

|0〉 , (3.1.6)

with |0〉 being the vacuum state of Schwinger bosons.

12
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3.1.1 Rotation of spin states

When faced with the operator corresponding to the spin in the n̂ direction

Ŝ(θ, φ) = Ŝ · n̂, (3.1.7)

with n̂ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)), one may find the eigenstates through a rotation
of, for example, the spin state fully polarized in the z-direction. Rotations are unitary trans-
formations generated by the spin-operators and one can check that the state

|Ω〉 = R|S, S〉ẑ = e−iφŜze−iθŜye−iχŜz |S, S〉ẑ , (3.1.8)

is indeed an eigenstate of Ŝ(θ, φ) which will be called a coherent state. Here it should be noted
that the operators are spin-operators on the usual spin Hilbert space. It is clear that the first
rotation simply corresponds to an arbitrary phase choice and can therefore be set to 1. The
unit vector

Ω =
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
, (3.1.9)

parameterizes the eigenstate. Correspondingly, the Fock states transform by rotations of the
operators

(a†)′ = R−1a†R, (b†)′ = R−1b†R. (3.1.10)

3.1.2 Transformation of linear operators

A general bilinear operator in the second quantized form is

Â = a†iAijaj , (3.1.11)

where A is a matrix. A linear operator generally takes the form

v̂† = via
†
i . (3.1.12)

The unitary transformation generated by Â and applied to v̂† is

eiθÂv̂†e−iθÂ = v̂† + iθ[Â, v̂†] +
(iθ)2

2
[Â, [Â, v̂†]] + ..., (3.1.13)

where we used the Baker-Hausdorff lemma. Assuming a†i are all bosonic operators, and using
the bosonic commutation relations

[Â, v̂†] = Aijvk[a
†
iaj , a

†
k] = Aijvja

†
i = (A · v)i a

†
i , (3.1.14)

the transformed linear operator becomes

eiθÂv̂†e−iθÂ = v̂† + iθ (A · v)i a
†
i +

(iθ)2

2
(A ·A · v)i a

†
i + ... =

(
eiθA · v

)
i
a†i , (3.1.15)

which establishes a one-to-one mapping between the transformation of a vector v through uni-
tary matrices generated by A and linear operators v̂† through unitary operators generated by
Â.
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3.1.3 Rotation of Schwinger bosons

The rotated spin eigenstates are also called spin coherent states. To write any coherent state
through Schwinger bosons we must obtain an expression for the operators in eq. (3.1.10). Using
the definition of Schwinger bosons the spin operators can be written as

Ŝi = (a†, b†) · Si ·
(
a
b

)
, (3.1.16)

where Si are the 2× 2 Pauli matrices. Using

a† =
(
a†, b†

)
·
(

1
0

)
, (3.1.17)

and eq. (3.1.15) we find

(a†)′ =
(
a†, b†

)
·
(
e−iφSze−iθSye−iχSz ·

(
1
0

))
= e−iχ/2

(
a†, b†

)
·
((

e−i
φ
2 0

0 ei
φ
2

)
·
(

cos( θ2) − sin( θ2)

sin( θ2) cos( θ2)

)
·
(

1
0

))

= e−iχ/2
(
a†, b†

)
·
((

e−i
φ
2 cos( θ2) −e−iφ2 sin( θ2)

ei
φ
2 sin( θ2) ei

φ
2 cos( θ2)

)
·
(

1
0

))

= e−i
χ
2

(
a†e−i

φ
2 cos

(
θ

2

)
+ b†ei

φ
2 sin

(
θ

2

))
.

(3.1.18)

Similarly we find

(b†)′ = ei
χ
2

(
b†ei

φ
2 cos

(
θ

2

)
− a†e−iφ2 sin

(
θ

2

))
. (3.1.19)

We could rewrite this result more neatly as(
(a†)′

(b†)′

)
=

(
e−i

χ+φ
2 cos

(
θ
2

)
e−i

χ−φ
2 sin

(
θ
2

)
−eiχ−φ2 sin

(
θ
2

)
ei
χ+φ
2 cos

(
θ
2

) ) · (a†
b†

)
. (3.1.20)

3.1.4 Coherent States

A general coherent state can be generated through the rotation of a spin state fully polarized
in the z-direction. Thus

|Ω〉 =
((a†)′)2S

√
2S!

|0〉 = e−iSχ
(ua† − vb†)2S

√
2S!

|0〉 = e−iSχ
√

2S!

S∑
m=−S

(ua†)S+m(−vb†)S−m
(S +m)!(S −m)!

|0〉 ,

(3.1.21)

where u = e−iφ/2 cos (θ/2) , v = eiφ/2 sin (θ/2), and where the binomial expansion was used in
the last equality. The overlap between two coherent states is then

〈Ω|Ω′〉 = e−iS(χ′−χ)(2S)!
S∑

m=−S

(u∗u′)S+m(v∗v′)S−m

(S +m)!(S −m)!
= e−iS(χ′−χ)

(
u∗u′ + v∗v′

)2S
, (3.1.22)

where we used the orthonormality of different Fock states. This result shows that the coherent
states are not orthogonal. One can rewrite this expression such that

〈Ω|Ω′〉 =

(
1 + Ω ·Ω′

2

)S
eiSψ,

ψ = 2 arctan

[
tan

(
φ− φ′

2

)
cos
[

1
2(θ + θ′)

]
cos
[

1
2(θ − θ′)

]]+ χ− χ′.
(3.1.23)
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From this expression it is clear that different coherent states approach orthogonality as S →∞.
By constructing the identity operator through coherent states we can show they span the whole
Hilbert space. The coherent states are parametrized through continuous parameters on the unit
sphere, so the identity must be an integral∫

dΩ |Ω〉 〈Ω|

=

∫ π

0
dθ sin(θ)

∫ 2π

0
dφ
∑
m,m′

(2S)!(cos(θ/2))2S+m+m′(sin(θ/2))2S−m−m′ei2φ(m′−m)√
(S +m)!(S +m′)!(S −m)!(S −m′)!

|S,m〉 〈S,m′|

= 2π

∫ π

0
dθ sin(θ)

∑
m

(2S)!(cos2(θ/2))S+m(sin2(θ/2))S−m

(S +m)!(S −m)!
|S,m〉 〈S,m|

= 2π

∫ π

0
dθ sin(θ)

∑
m

(2S)!

(S +m)!(S −m)!

(
1 + cos θ

2

)S+m(1− cos θ

2

)S−m
|S,m〉 〈S,m| .

(3.1.24)

To proceed, we must evaluate the θ integral. First of all

IS,m =
1

2

∫ π

0
dθ sin(θ)

(
1 + cos θ

2

)S+m(1− cos θ

2

)S−m
=

∫ 1

0
dx xS+m (1− x)S−m . (3.1.25)

Next we invoke the generating function

f(z) =
2S∑
n=0

(2S)!

(2S − n)!n!
IS,n−Sz

n =

∫ 1

0
dx (1− x)2S

2S∑
n=0

(2S)!

(2S − n)!n!

(
xz

1− x

)n
=

∫ 1

0
dx (1− x)2S

(
xz

1− x + 1

)2S

=

∫ 1

0
dx (x(z − 1) + 1)2S

=
1

(2S + 1)(z − 1)

(
z2S+1 − 1

)
=

1

2S + 1

2S∑
n=0

zn.

(3.1.26)

By comparing the expression after the first equality with the expression after the last we find

(2S)!

(2S − n)!n!
IS,n−S =

1

2S + 1
, (3.1.27)

and have thus found an expression for IS,m. Inserting this back into the expression we find∫
dΩ |Ω〉 〈Ω| = 4π

2S + 1

∑
m

|S,m〉 〈S,m| = 4π

2S + 1
, (3.1.28)

where we used the fact that the set of states, |S,m〉 is a complete orthonormal basis. In other
words,

2S + 1

4π

∫
dΩ |Ω〉 〈Ω| = 1, (3.1.29)

and therefore the coherent states span the Hilbert space of spin states, but does so with some
degree of redundancy. In other words, the coherent states form an overcomplete basis. Eq.
(3.1.29) will be one of the ingredients in constructing a path integral expression of the partition
function. Another important ingredient is the equation

〈Ω|Si · Sj |Ω〉 = S2Ωi ·Ωj , (3.1.30)
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where i, j denote spins at different sites, for instance in a lattice, and |Ω〉 =
∏
i |Ω〉i. To show

this, we use

Ωi · Si |Ω〉 = S |Ω〉 , (3.1.31)

which is true by definition of the coherent states, and can also be shown by a basis change of the
vectors Ωi,Si. If we let R−1 be the rotation matrix rotating x̂, ŷ, ẑ to x̂′, ŷ′, ẑ′, where ẑ′ = Ωi

and x̂′, ŷ′ are two orthonogal unit vectors also orthogonal to Ωi, then

Ωi · Si = (ẑR) · Si = ẑ · (RSi) = Ŝ ẑ
′
i , (3.1.32)

which explicitly shows Eq. (3.1.31). Using this

〈Ω|Si · Sj |Ω〉 = Rαα
′

i Rββ
′

j 〈Ω|Sα′i Sβ
′

j |Ω〉 = S2Rα,3
′

i R3′,β
j = S2Ωi ·Ωj , (3.1.33)

where the primed indices denote coordinates in the x̂′i, ŷ
′
i, ẑ
′
i basis, and where we used 〈Ωi|Sα′i |Ωi〉 =

δ3′,α′S. This last property is derived from Eq. (3.1.31) and the fact that if a particle is in an
eigenstate of the spin along some direction on the unit sphere, the expectation value along the
two orthogonal directions is zero. We also used the fact that rotation matrices are orthogonal,
and that the rows/columns of such a matrix is composed of the unit vectors of the basis one is
rotating to. Using Eq. (3.1.29) the expectation value of the Heisenberg Hamiltonian is

〈Ω|H|Ω〉 =
S2

2

∑
ij

JijΩi ·Ωj , (3.1.34)

which is the classical Heisenberg Hamiltonian.

3.2 Coherent state path integral

The starting point in constructing the coherent state path integral is the partition function

Z = Tr (exp (−βH)) =

∫
dΩ 〈Ω| exp (−βH) |Ω〉 = lim

Nε→∞

∫
dΩ 〈Ω|(1− εH)Nε |Ω〉 , (3.2.1)

where dΩ =
∏
i dΩi

2S+1
4π and ε = β/Nε. One obtains this expression for the trace straight-

forwardly by use of the identity operator written in terms of coherent states. Next, we insert
identity operators in between each parenthesis and label each with a number n ∈ 0, ..., Nε so

Z = lim
Nε→∞

∫
d{Ω}n 〈ΩNε |(1− εH)|ΩNε−1〉 〈ΩNε−1|(1− εH)|ΩNε−2〉 ... 〈Ω1|(1− εH)|Ω0〉 ,

(3.2.2)

where Ω0 ≡ ΩNε . This means we have to evaluate the expectation values

〈Ωn|(1− εH(S))|Ωn−1〉 = 〈Ωn|Ωn−1〉
(
1− εH(Ωn,Ωn−1)

)
, (3.2.3)

where H(Ωn,Ωn−1) = 〈Ωn|H(S)|Ωn−1〉
〈Ωn|Ωn−1〉 = S2

2

∑
ij JijΩ

n
i Ω

n−1
j , which is obtained in analogy with

Eq. (3.1.29). The overlap between coherent states is given by (3.1.23), and so

〈Ωn|Ωn−1〉 =
1 + Ωn ·Ωn−1

2
eiSψ(n,n−1)

ψ(n, n+ 1) = 2 arctan

[
tan

(
φn − φn−1

2

)
cos
[

1
2(θn + θn−1)

]
cos
[

1
2(θn − θn−1)

]]+ χn − χn−1.

(3.2.4)
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The next step is to make the assumption, that ∆Ω = Ωn − Ωn−1 is small in the limit Nε →
∞. This does not seem fair, since each vector Ωn is integrated over the entire unit sphere
independently of the others. As will be seen, this assumption is equivalent to assuming that
smooth functions (in the sense that the function and it’s first derivative are continuous) Ωi(τ)
dominate the path integral[8]. The motivation is to arrive at an expression for the action
containing first derivatives of the fields, and we therefore assume∆Ω ∝ ε+O(ε2). Making use
of this assumption we find

ψ(n, n− 1) = 2 arctan

[
tan

(
φn − φn−1

2

)
cos
[

1
2(θn + θn−1)

]
cos
[

1
2(θn − θn−1)

]]+ χn − χn−1

≈ 2 arctan

[
φn − φn−1

2

cos [(θn +O(ε))]

1 +O(ε2)

]
+ χn − χn−1

≈
(
φn − φn−1

)
cos θn + χn − χn−1 +O(ε2),

(3.2.5)

where we used that the tan-function and it’s inverse are linear to small orders of it’s argument.
Now reinsert this expression in Z and use that to dominant order in ε Ωn · Ωn−1 = 1. Next
reexponentiate 1−εH(Ωn,Ωn−1) (an approximation which becomes exact in the limit Nε →∞),
which leads to the result

Z = lim
Nε→∞

∫
d{Ω}n exp

−ε Nε∑
n=1

−iS [φn − φn−1

ε
cos θn +

χn − χn−1

ε

]
+

1

2

∑
ij

JijΩ
n
i Ω

n−1
i


=

∮
DΩ exp

(
−
∫ β

0
dτ
[
−iSφ̇(τ) cos(θ(τ)) +H(Ω(τ))

])
,

(3.2.6)

where the arbitrary phases χ were set to 0. The circle in the path integral is to denote the
periodic boundary condition Ω(β) = Ω(0). Also note that φ̇ cos(θ) =

∑
i φ̇i cos(θi), where i

denotes lattice site. Now note that one can reformulate this phase by making use of

Ω̇ = θ̇θ̂ + sin(θ)φ̇φ̂. (3.2.7)

Defining A = − cos θ
sin θ φ̂ we can write

−φ̇ cos(θ) = A · Ω̇, (3.2.8)

which yields the expression for the quantum partition function

Z =

∮
DΩ exp

(
−
∫ β

0
dτ
[
iSA · Ω̇ +H(Ω(τ))

])
. (3.2.9)

3.2.1 Spin coherent path integral and bosonic/fermionic coherent state path
integral

At this point it might seem as if the spin coherent path integral is more or less just another
path integral, and indeed the procedure for obtaining it is quite reminiscent of the procedure
for obtaining the coherent state path integral of bosons and fermions

Z =

∮
D{ψ,ψ}e−

∫ β
0 dτ

∫
dx ψψ̇+H(ψ,ψ), (3.2.10)

where the circle in the integration symbol denotes periodicity/antiperiodicity of the boson-
ic/fermionic fields. Despite this, there are a few differences we should observe:
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• The fields of the spin coherent path integral are defined on the base manifold S2, the unit
sphere, whereas those of the bosons and fermions are over Rn, with n being the dimension
of the system. Several things could be said about this, but one important feature of S2 is
that it cannot be covered by a single coordinate system.

• Contrary to the case of bosons and fermions, the τ -dynamics are included as a phase in
the spin coherent path integral.

Turning now to the case of bosons, these are usually, if not always, defined through small
distortions of an otherwise rigid ground state. The distortions are small in the sense that
the energy cost associated with them are assumed to be quadratic, i.e. all distortions behave
as harmonic oscillators. This, of course, is only generally valid near minima of the potential
landscape. The excitations of the ground state are represented by bosons, and these are therefore
only defined in the ”background” of a rigid ground state. This stands in contrast to the spin
coherent path integral. The degrees of freedom one integrates over are well defined even in the
absence of some background ground state (although if the spins are not sitting on a lattice we
might be interested also in their positional dynamics). It may be the case that some subset
of states completely dominate the partition function - in that case it might be more fruitful
to restrict the partition function over these states and the set of states representing small
fluctuations about them. These fluctuations are called spin-waves and are the analogues of
phonons of a lattice. But the point is that the spin-coherent path integral is more general than
that. It is the equivalent of finding the (quantum) partition function of a set of particles before
assuming that they crystallize.

3.2.2 Gauge invariance and spin quantization

In this subsection we touch upon the gauge invariance of the phase term in the coherent state
path integral, and how this leads to spin quantization. Of course we started with a spin quan-
tized quantum mechanical description to obtain the path integral in the first place, but it is
nice to see that the path integral leads to the same results as the usual operator formalism.
As seen, we can obtain an expression for the quantum partition function of spins as an integra-
tion of classical fields over the unit sphere and the parameter τ . The term

S = −iS
∫
dτ cos(θ)φ̇ = iS

∫
dτφ̇(1− cos(θ)) (3.2.11)

is a geometric phase, and the equality is valid as long as the trajectory of Ω does not cross the
domain boundary of φ ∈ [0, 2π)1. The choice of gauge S = iS

∫
dτφ̇(1 − cos(θ)) corresponds

to A = 1−cos(θ)
sin(θ) φ̂. We choose this gauge so that A is singular only at the south pole. The

vector potential A can be interpreted as the potential of a Dirac magnetic monopole, since
Bm = ∇ × A = Ω̂. Of course this magnetic field seems to have a non-zero divergence and
should therefore not be due solely to the curl of another field, but the fact that it can be written
as such is just due to the singular behavior of A at the south pole. If we consider some closed
path on the unit sphere, ∂A, then we may write

S = iS

∫ β

0
dτA · Ω̇ = iS

∮
∂A
dΩ ·A = iS

∫
A
da ·Bm, (3.2.12)

where the area enclosed by ∂A is that which does not enclose the singularity of A. The point
is that we could have chosen another gauge, A = −1−cos(θ)

sin(θ) φ̂, where the singularity is on the

1In the case where it does cross the domain boundary, Auerbach argues that the discrepancy is resolved by
deforming the path such that it goes through the north pole [8].
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north pole, but which otherwise yields the same expression for the geometric phase. This seems
to lead to an ambiguity in S since the difference between the two choices is

∆S = iS

∫
An

da ·Bm + iS

∫
As

da ·Bm = iS

∫
S2

da = iS4π, (3.2.13)

where the first equality is due to the sign convention in Stokes theorem2. Thus we see that for
the ambiguity in geometric phase to be resolved, the spin of a particle must be a half integer.
It is in this way that the spin coherent path integral quantizes spin.

3.2.3 From the quantum to the classical and semiclassical partition function

The expression for the quantum partition function readily yields the classical partition function.
We first adjust the parameters of H, namely Jij such that

Jij = JijS
2, (3.2.14)

where Jij is independent of S. This is allowed since these are just parameters of the theory.
Doing this, H(Ω) is just the classical Hamiltonian. In that case, by letting S → ∞, no field
configuration with a non-constant Ω(τ) contributes to the partition function, due to the fast
oscillating term proportional to S. Thus

Z =

∮
DΩ exp

(
−
∫ β

0
dτ
[
iSA · Ω̇ +H(Ω(τ))

])
−→

∮
DΩ exp (−βH(Ω)) . (3.2.15)

It is worth noting what the difference between the quantum and classical partition function is.
It all lies in the τ dependency of the fields. The partition function is a sum over weights, and
in the classical case these weights depend only on the energies associated with the coordinates
on the unit sphere, of the spins in the systems. In contrast, the quantum mechanical weights
depend on the whole function of Ω(τ) through both the energies of these fields and through a
geometric phase. One can also make a systematic expansion in 1/S. The first step is to rescale
τ and β by S

τ = τ/S

β = β/S,
(3.2.16)

where τ , β are independent of S. We can then scale out S from the action S

S = S

∫ β

0
dτ [iA · (∂τΩ) +H(Ω)] . (3.2.17)

Now the partition function may be rewritten

Z = e−S = Z0Z
′, (3.2.18)

where Z0 = exp
(
−S

∫ β
0 dτ

[
iA · (∂τΩcl) +H(Ωcl)

])
is the factor of the partition function due

to the saddle point and Z ′ is the corrective factor to higher orders in 1/S. The 1/S expansion
also appears in a setting different from the path integral, namely in the use of the Holstein-
Primakoff transformation as will be shown in chapter 5. Both in the path integral formalism
and with Holstein-Primakoff bosons, the lowest order contribution in 1/S, that is the lowest
order fluctuations from the saddle point, are spin-waves.

2In the case where one of the areas which the path encloses contains neither the north nor south pole one can
change coordinates to define the north pole within one this area.
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3.3 Real time path integral

The Green functions

G(t, 0; Ωf ,Ωi) =

∫
DΩ exp

(
i

∫ t

0
dt
[
Sφ̇ cos(θ)−H(Ω(t))

])
, (3.3.1)

is obtained in analogy with the expression for the partition function. In this case, one starts
with the overlap 〈Ωf |Ωi(t)〉 where the time dependency is generated through the Hamiltonian
in the interaction picture. Now denoting

q = φ p = S cos(θ), (3.3.2)

it is clear that q, p make up canonical conjugate variables in the Hamiltonian, and that the action
in the Green function is formulated in terms of a Legendre transformed Lagrangian L(q, q̇).

3.3.1 Classical spin

Without dwelling too much at it, we will now see how the concept of a classical spin can be
defined. While it may not be so useful at this point, it is an interesting idea and might help
clarify some points of confusion when looking at classical systems of spin. Here we follow [9].

At this point we have seen how the quantum dynamics are obtained from a path inte-
gral over some action. Usually this action is the action of the classical system corresponding
to the quantum mechanical system, so we could now define a classical spin as an arrow on the
unit sphere with the action

S =

∫ T

0
dt
(
SΩ̇ ·A−H(Ω)

)
. (3.3.3)

It is in fact possible to show that the Poisson brackets of the classical arrows correspond to the
commutation relations of spin operators. Notice that this action stands in contrast to one of an
extended object with some angular momentum. For example, a rod with moment of inertia I
in a field, B, which couples to its angular frequency, has the action

Srod =

∫ T

0
dt

(
1

2
Iω̇2 + B · ω

)
, (3.3.4)

which involves the second power of the first derivative. To have any sensible dynamics in this
classical theory, the moment of inertia must be non-zero, but this is not so for the classical spin.
A crucial difference between the coordinates of the classical spin and those of the ordinary
system of particles considered in classical mechanics, is that the classical spin is defined on the
unit sphere. This manifold is non-euclidean, and a general set of coordinates, a set covering
the whole sphere, does not exist. Instead one must restrict oneself to local patches on the
manifold and define phase space on these. The phase space is then a symplectic manifold
with a closed two-form ω (such that dω = 0), and ”d” is the exterior derivative defined by
ω =

∑
i dpi∧dqi, where the wedge product is the anti-symmetric product between two n-forms.

We will not do a thorough examination of the generalized classical framework which makes it
possible to treat such a set of coordinates, but will use some of the results of this framework. If
we restrict ourselves to the parts of the sphere defined by φ, θ ∈ (0, 2π), (0, π), we can use these
as coordinates of the phase space. We note that the action, in terms of θ, φ is

S =

∫ T

0
dt
(
Sφ̇(1− cos(θ))−H(φ, θ)

)
. (3.3.5)
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This leads us to define the generalized momenta pφ = −S cos(θ), pθ = 0. In terms of these
(local) coordinates,

ω =
1

2
ωµνdqµ ∧ dqν = S sin(θ)dθ ∧ dφ, (3.3.6)

with ωθφ = S sin(θ) = −ωφθ. The inverse matrix ωµν has components ωθφ = 1
S sin(θ) = −ωφθ.

We need this expression because the Poisson brackets in the generalized Hamiltonian formalism
is

{f, g} = ωµν(∂µf)(∂νg). (3.3.7)

Using that Ωx = sin(θ) cos(φ),Ωy = sin(θ) sin(φ), it is clear that

(∂θΩx)(∂φΩy) = (cos(θ) cos(φ))(sin(θ) cos(φ)),

(∂φΩx)(∂θΩy) = (− sin(θ) sin(φ))(cos(θ) sin(φ)),
(3.3.8)

so

{Ωx,Ωy} =
1

S
cos(θ) =

1

S
Ωz, (3.3.9)

which is exactly analogous to the commutation relation between spin operators in quantum
mechanics.
We finally consider the case of a spin fluctuating about Ωz = 1. In that case Ωx,Ωy are small
quantities, and to first order in these small quantities

{Ωx, SΩy} = 1. (3.3.10)

Due to the small fluctuations we are naturally in a local patch of the two-sphere and may
consider the coordinates Ωx, SΩy as defined in the usual Euclidean space (despite the fact that
the previous coordinates were not defined on the north pole, we could still have described
fluctuations about another point on the two-sphere which should yield the same kind of Poisson
brackets). Thus for small oscillations, (Ωx, SΩy) ≡ (Q,P ) are canonically conjugate coordinates
in the usual Euclidean space. It is in fact these coordinates one would use to describe spin-waves
on a spin lattice.

3.4 Susceptibility from partition function

With the quantum partition function we are now in principle in a position to evaluate physical
observables. One will be considered here, the magnetic- or spin-susceptibility. As will be seen,
the naive approach one usually employs in calculating Gaussian integrals is obstructed due to the
geometric phase in the path integral. The conclusion of this section is that other methods than
the usual employment of source terms in the action must be employed to calculate correlation
functions from the spin path integral. This section is based on [10], [11] and [12].

3.4.1 Spin susceptibility

The spin susceptibility is the linear response tensor of the magnetization, the average magnetic
moment per site, to an external magnetic field H. For a translationally invariant system it is
defined through the relation

Mµ(ri, t) =
∑
j

∫
dt′χµν(ri − rj , t− t′)Hν(rj , t

′). (3.4.1)
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If the system is isotropic, the magnetization will align with the magnetic field, i.e. the suscep-
tibility is diagonal

Mµ(ri, t) =
1

2π

∑
j

∫
dt′χµµ(ri − rj , t− t′)Hµ(rj , t

′). (3.4.2)

Thus

χµµ(ri − rj , t− t′) =
δMµ(ri, t)

δHµ(rj , t′) |H=0

, (3.4.3)

δ/δH is a functional derivative, and where the external magnetic field is set to zero at the end
of the functional differentiation reflects the fact that the susceptibility is the linear response
function. The magnetization is itself derivable from

Mµ(ri, t) = −kBT
δ ln(Z)

δHµ(ri, t)
, (3.4.4)

By replacing t with the parameter iτ , we get an expression in the quantum partition function.
In the end the real time result may be retrieved by analytical continuation. We obtain the
result

χµµ(ri − rj , τ − τ ′) =

(
1

Z[H]

δ2Z[H]

δHµ(ri, τ)δHµ(rj , τ ′)

)
|H=0

=
1

Z[0]

δ2Z[H]

δHµ(ri, τ)δHµ(rj , τ ′) |H=0

.

(3.4.5)

An external magnetic field couples to a spin through the Zeeman Hamiltonian, and it can thus
be incorporated in the coherent state path intergral through a term H ·Ω in the action

Z[H] =

∮
DΩ exp

−∫ β

0
dτ

iS∑
i

Ai · Ω̇i +
S2

2

∑
ij

JijΩi ·Ωj + S
∑
i

Hi(τ) ·Ωi(τ)

 .

(3.4.6)

Since the fields in the partition function are defined on the unit-sphere we cannot immediately
use the usual procedure of Gaussian integration. To circumvent this, a constraint field, λ is
introduced by the term i

∑
i λi(|Ωi|2 − 1) in the action and the integration is relaxed to one

over all of R3

Z[H] =

∮
DΩDλ exp

−∫ β

0
dτ

S2

2

∑
ij

JijΩi ·Ωj

+S
∑
i

Hi(τ) ·Ωi(τ) + iAi · Ω̇i + iλi(|Ωi|2 − 1)

])
.

(3.4.7)

Fourier transforming in the lattice and τ we obtain

Z[H] =

∮
DΩDλ exp

−∑
ωn,q

S2

2
JqΩ−q,−ωn ·Ωq,ωn +

∑
q′

iλq−q′,ωn−ω′n(Ω−q′,−ω′n ·Ωq,ωn − 1)

+SH−q,−ωn ·Ωq,ωn − ωnA−q,−ωn ·Ωq,ωn ]) .

(3.4.8)
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The action can be rewritten

S =
1

2

∑
ωnω′n,qq

′

(
Ω∗q,ωn + SH∗q,ωnG−1

)
G(q, q′;ωn, ω

′
n)
(
Ωq′,ω′n + SG−1Hq′,ω′n

)
− ωnA∗q,ωn ·Ωq,ωn

− S2

2

∑
ωnω′n,qq

′

Hq,ωnG−1Hq′,ω′n .

(3.4.9)

with G(q, q′;ωn, ω
′
n) =

(
S2Jqδqq′δωnω′n + 2iλq−q′,ωn−ω′n

)
. Usually one would redefine the Ωq,ωn

fields, so as to incorporate the constant addition in the parenthesis and do the Gaussian inte-
gration. The problem is the vector potential A which depends on φ, θ in a not so obvious way.
One can in fact write the term in a coordinate-independent way, so that it only depends on Ω.
The first step is to expand the function Ωq(τ) to Ωq(τ, u), such that Ωq(τ, u = 1) = Ωq(τ) and
Ωq(τ, u = 0) = (1, 0, 0). Then if we return to the original expression of the geometric phase

iS

∫
dτ(∂τφ) cos(θ) = iS

∫
dτ

∫ 1

0
du∂u ((∂τφ) cos(θ))

= iS

∫
dτ

∫ 1

0
du(∂τφ)(∂u cos(θ)) + (∂u∂τφ) cos(θ)

= iS

∫
dτ

∫ 1

0
du(∂τφ)(∂u cos(θ))− (∂uφ)(∂τ cos(θ)),

(3.4.10)

where we used partial integration on the last term in the last equality. The boundary term
vanishes due to the periodic boundary conditions Ωq(β) = Ωq(0). This is an integration over
the area of a two-sphere which can be realized in the following way. The area measure on the
unit sphere can be defined as

Ω · (∂xΩ)× (∂yΩ), (3.4.11)

with Ω(x, y) a unit vector on the unit parametrized by x, y tracing out a path on the sphere.
For instance, if x, y are θ, φ we find

Ω · (∂θΩ)× (∂φΩ) = sin θ, (3.4.12)

and so ∫
dθ

∫
dφ Ω · (∂θΩ)× (∂φΩ) =

∫
dθ sin θ

∫
dφ =

∫
d(cos θ)

∫
dφ, (3.4.13)

which is the usual integration over a unit sphere in polar coordinates. Letting cos(θ), φ be
parametrized by τ, u and changing the integration over cos θ, φ to one over these τ, u we would
obtain the last line in eq. (3.4.10), since the integrand is nothing but the Jacobian determinant
between the two sets of coordinates. Since the parameters used in defining the area measure
can be chosen as we want, we thus find

iS

∫ β

0
dτ

∫ 1

0
du(∂τφ) cos(θ) = iS

∫ β

0
dτ

∫ 1

0
du Ω · (∂τΩ)× (∂uΩ). (3.4.14)

We now have a coordinate independent expression for the geometric phase. This unfortunately
has three factors of Ω, making it impossible to incorporate into the quadratic term. Thus even
in a coordinate independent notation, the straightforward approach to using the coherent state
path integral to calculate correlation functions is not viable, and other means must be used. In
chapter 7.2 it is shown how one may obtain an effective field theory in the classical limit and
how this can be used to understand the J1-J2 model.
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3.5 Conclusion

We have established the quantum partition function for spin systems and shown various results
using this. In particular it was shown how the large S limit leads to the classical, τ -independent
partition function. This can be used to justify the semiclassical approximation in systems
where one only wants to consider the small deviations from the classical ground state. We
will use this fact in chapter 5. The other main conclusion from this chapter is that, due to
the existence of the phase term in the action of the quantum partition function illustrated in
equation (3.4.10) a straightforward Gaussian integration of the Ω fields is not tenable. For
this reason other methods must be used to calculate correlation functions of the spin system,
such as considering only the classical (τ -independent) contribution or integrating out variables
in a renormalization scheme. The latter is the method used in Haldanes mapping [8] from a
Heisenberg antiferromagnet to the non-linear sigma model. A similar method will be used in
section 7.2.



Chapter 4

Classical ground state and spin wave
fluctuations

Having established that the large S limit reduces the quantum partition function to the classical
partition function, we set out to find the classical ground states of magnetic systems at zero
temperature. It is about this ground state that spin waves, both classical and quantum, can be
defined, and it is the effect of the spin waves on the classical, magnetically ordered ground state
we are interested in. In this chapter we find the classical ground state of magnetic systems,
and then move on to study fluctuations about the ground state (spin waves), through which
the notion of order by disorder is introduced. Some of the results are for general systems while
we will also show how they apply to the J1-J2 square lattice. The chapter is based on [3], [4],
[13] and [14].

4.1 Ground state for general Jij

The energy of a system of classical spins in three dimensions sitting on a lattice of general
dimension is

E =
∑
ij

JijSi · Sj , (4.1.1)

where Jij is invariant under translations and reflections, and the spins satisfy the local constraint

S2
i = S2. (4.1.2)

To proceed, the constraint (4.1.2) is relaxed to
∑

i S
2
i = NS2, where N is the number of lattice

sites. Next, the Fourier transformed versions of the energy and the global constraint are

E =
∑
q

JqS−q · Sq =
∑
qq′

(Sαq )∗
[
Jqδ

αβδqq′
]
Sβq′ , NS2 =

∑
q

S−qSq =
∑
q

(Sαq )∗Sαq , α ∈ {x, y, z}

(4.1.3)

where we used the symmetries of Jij and the fact that Sαi is real. With this in mind, a new
vector is defined, S =

(
{Sαq }

)
, in a 3 × N -dimensional vector space. Note that even though

Sαq is complex, its complex-conjugate is equal to Sα−q, which is the reason why the space is not
3× (2N) dimensional. The relaxed constraint is equivalent to the normalization of this vector,
and the energy is equivalent to a matrix inner product. Since the only restraint on S is that
it be normalized, we could now choose it to point along any direction Ŝαq we want. This is
essentially the difference between the local constraint and the global constraint on the spins.
The reason for doing this is that any non-zero component of S is associated with some energy,

25
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which contributes to the overall energy of the system, and we can therefore minimize E by
choosing only the components with the smallest Jq to be non-zero. If we choose a vector S
where only SαQ, and by extension Sα−Q is non-zero, the energy is of this vector is

E = JQ (SQ · S−Q + S−Q · SQ) . (4.1.4)

The energy of the system is then minimized by choosing Q0 to minimize JQ
1. Finally, this

choice of S gives us

Si =
1√
N

(
SQe

iQ·Ri + S−Qe
−iQ·Ri

)
, (4.1.5)

or

Sαi = Aα cos(Q ·Ri + φα). (4.1.6)

The parameters Aα, φα have up to now been chosen so as to satisfy the normalization of S,
but are otherwise arbitrary. We must now impose the full constraint (4.1.2) which fixes the
parameters Aα, φα. One choice is

Sxi = S cos(Q ·Ri + φ),

Syi = S sin(Q ·Ri + φ),

Siz = 0,

(4.1.7)

which can also be written as

Si/S = u cos(Q ·Ri) + v sin(Q ·Ri), (4.1.8)

where u,v are orthogonal unit vectors and Q is called the structure vector of the state.

4.1.1 Ground state of J1-J2 model

J1

J2

J1

J2

Figure 4.1: On the left, the
N.N. interaction minimizes
the energy of the system, at
the expense of the N.N.N. in-
teraction and vice versa on
the right.

We will now find the ground state of the J1-J2 model. The Hamil-
tonian of the model is the Heisenberg Hamiltonian

H =
1

2

∑
ij

JijSi · Sj . (4.1.9)

defined on a two dimensional square lattice. The interactions
considered are nearest neighbor (N.N.), with exchange constant
J1, and next nearest neighbor (N.N.N.), with exchange constant
J2. We will consider the case where both exchange constants are
positive, and, as has previously been discussed, they are there-
fore called antiferromagnetic. Interactions which prefer N.N.
and N.N.N. to anti-align cannot both be satisfied simultaneously.
They therefore compete, as illustrated on Figure 4.1. This is an
example of a phenomenon called frustration and it is in particu-
lar an example of frustration through interaction, in contrast to
frustration due to lattice geometry. The Fourier transform of the exchange function is

Jq = 2J1 (cos(qxa) + cos(qya)) + 4J2 cos(qxa) cos(qya), (4.1.10)

and three representative plots for Jq are shown in Figure 4.2. As can be seen, the structure

1Note that it is not guaranteed that a single Q0 minimizes the energy, i.e. the ground state may be degenerate.
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(a) J1 = 1, J2 = 0.2 (b) J1 = 1, J2 = 0.5 (c) J1 = 1, J2 = 1

Figure 4.2: Jq for different values of J1, J2. The lattice constant a is set to one. As can be
seen, at J2 = J1/2 a transition occurs, where the minimum changes position from Q = (π, π)
to Q = (0, π), (π, 0).

vector Q0 changes from Q0 = (π, π) to either Q1 = (0, π) or Q2 = (π, 0) as 2J2 is increased
from 2J2 < J1 to 2J2 > J1. In other words, the system is now at least twice degenerate. The
degeneracy is in fact even larger, due to the fact that 2Q0 is a reciprocal lattice vector. In such a
case, the ground state is a linear combination of the solutions given by the structure vectors[3],
that is

Si/S = u cos(Q1 ·Ri) cos(φ) + v cos(Q2 ·Ri) sin(φ), (4.1.11)

where the sines of Eq. (4.1.8) are 0, due to 2Q0 · Ri = 2πn, with n an integer. The φ is
abstractly defined, since we were simply looking for some normalized linear combination of the
two ground states. But it also has a physical meaning. Take a point Ri on the lattice such that
cos(Q1 ·Ri) = cos(Q2 ·Ri) = 1, and for concreteness let this be (0, 0). For the point Rj = (1, 0)
to the right of Ri, cos(Q1 ·Rj) = − cos(Q2 ·Rj) = 1. Using this we find

Si · Sj = cos2(φ)− sin2(φ) = cos(2φ). (4.1.12)

Thus θ = 2φ is the angle between two such neighboring spins. Furthermore, if we had chosen
Rj = (0, 1) we would have found that the relative angle would be 2φ + π and for Rj = (1, 1)
that the relative angle would be π. Thus the ground state of the J1-J2 spin lattice is one of two
Néel lattices with an arbitrary angle θ = 2φ between them. When ground state is one in which
θ = 0, π we will call it columnar or collinear. This is because the θ = 0 (θ = π) state consists
of ferromagnetically aligned rows (columns) stacked antiferromagnetically.

4.2 Fluctuations - Spin waves

We will now study fluctuations about the classical ground state for both of the cases of 2Q0

being a reciprocal lattice vector and of 2Q0 not being a reciprocal lattice vector.

4.2.1 Fluctuations for 2Q0 not a reciprocal lattice vector

To study fluctuations about a ground state with structure vector Q0, a state we will denote S0
i ,

we add two terms to Eq. (4.1.8) which are orthogonal to S0
i

Si = Szi (u cos(Q ·Ri) + v sin(Q ·Ri)) + Syi (u sin(Q ·Ri)− v cos(Q ·Ri)) + Sxi t, (4.2.1)

and assume Sy, Sx � Sz. We note that the local constraint on the spin must still be respected,
so

Szi = S

√
1−

(
Syi
S

)2

−
(
Sxi
S

)2

≈ S
(

1− 1

2
(Qyi )

2 − 1

2
(Qxi )2

)
, (4.2.2)
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where we defined Qai = Sai /S. Up to the lowest non-zero order in the fluctuations, the energy
of the system becomes

E =
∑
ij

Jij

[(
Szi S

z
j + Syi S

y
j

)
cos(Q · [Ri −Rj ]) + Sxi S

x
j −

(
Szi S

y
j − S

y
i S

z
j

)
sin(Q · [Ri −Rj ])

]
.

(4.2.3)

Due to translational invariance of Jij , the sum over i, j could be changed for one over i, δ, with
δ an index denoting the difference between two sites. It then follows straightforwardly that the
factor in front of the sine term sums to zero. This, together with the fact that the ground state
energy is E0 = S2

∑
ij Jij cos(Q · [Ri − Rj ]), gives us the energy of the system up to second

order in the fluctuations

E = E0 + S2
∑
ij

Jij

[(
−1

2

(
(Qyi )

2 + (Qxi )2 + (Qyj )
2 + (Qxj )2 − 2QyiQ

y
j

))
cos(Q · [Ri −Rj ]) +QxiQ

x
j

]

= E0 −
S2

2

∑
ij

Jij

[((
Qyi −Q

y
j

)2
+
(
Qxi −Qxj

)2)
cos(Q · [Ri −Rj ])

−2QxiQ
x
j (1− cos(Q · [Ri −Rj ]))

]
= E0 −

S2

2N

∑
iδ

Jδ
∑
qq′

[(
QyqQ

y
q′ +QxqQ

x
q′

) (
1− eiq·Rδ

) (
1− eiq′·Rδ

)
ei(q+q

′)·Ri cos(Q ·Rδ)

−2QxqQ
x
q′e

i(q+q′)·Rieiq
′·Rδ (1− cos(Q ·Rδ))

]
= E0 −

S2

2

∑
q

QyqQ
y
−q
∑
δ

Jδ
(
2− eiq·Rδ − e−iq·Rδ

)
cos(Q ·Rδ)

− S2

2

∑
q

QxqQ
x
−q
∑
δ

Jδe
−q·Rδ(1− cos(Q ·Rδ))

= E0 + S2
∑
q

[(
1

2
(JQ+q + JQ−q)− JQ

)
QyqQ

y
−q + (Jq − JQ)QxqQ

x
−q

]
,

(4.2.4)

where Jq =
∑

δ Jδe
−iq·Rδ . Thus we have found a set of independent fluctuations that each

contribute some energy to the system. To relate these to spin-waves, we must first recognize
that SQy−q and Qxq are canonically conjugate variables. To see this we use eq. (3.3.10). Denote
Qxq = Qq and SQy−q = Pq. Then

{Qq, Pq′} = {Qxq , SQyq′} =
1

N

∑
ij

eiq·Rieiq
′·Rj{Qxi , SQyj} =

1

N

∑
i

ei(q+q
′)·Ri = δq,−q′ . (4.2.5)

This can be rewritten as

E = E0 + S2
∑
q

1

2
Mqω

2QqQ−q +
PqP−q
2S2Mq

, (4.2.6)

with M−1
q = 2

(
1
2 (JQ+q + JQ−q)− Jq

)
and ω2 =

(
1
2 (JQ+q + JQ−q)− Jq

)
(Jq−JQ). We now see

that the energy is almost that of a set of independent harmonic oscillators. Using Hamilton’s
equations, we obtain the equations of motion

Ṗq = S2Mqω
2Q−q,

Q̇q =
1

Mq
P−q.

(4.2.7)
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Assuming solutions of the form Qq(t) = Qqe
iω′t, Pq(t) = Pqe

−iω′t, we obtain

− iω′Pq = S2Mqω
2Q−q = S2Mqω

2 −i
M−qω′

Pq =⇒ ω′ = ±Sω, (4.2.8)

where we used Mq = M−q. Thus the frequency of the spin-waves is

S|ωq| = S

√(
1

2
(JQ+q + JQ−q)− JQ

)
(Jq − JQ). (4.2.9)

4.2.2 Spin-wave frequency of the J1-J2 model in the columnar phase

We can now apply the expression for the spin-wave frequency to the Q = (0, π) ground state,
one of the ground state structure vectors of the J1-J2 model with 2J2 > J1. As we have seen,
the Fourier transform of the exchange coupling in this model is

Jq = 2J1 (cos(qx) + cos(qy)) + 4J2 cos(qx) cos(qy), (4.2.10)

in the case a = 1. Then

JQ±q = 2J1 (cos(qx)− cos(qy))− 4J2 cos(qx) cos(qy). (4.2.11)

Therefore

1

2
(JQ+q + JQ−q)− JQ = 4J2 (1− cos(qx) cos(qy) + η(cos(qx)− cos(qy)))

Jq − JQ = 4J2 (1 + cos(qx) cos(qy) + η(cos(qx) + cos(qy)) ,
(4.2.12)

so that we obtain the spin wave frequencies

4J2|ωq| = 4J2

√
1− cos2(qx) cos2(qy) + η2(cos2(qx)− cos2(qy)) + 2η cos(qx) sin2(qy)

= 4J2

√
1− ξ2

xξ
2
y + η2(ξ2

x − ξ2
y) + 2ηξxξy

2
,

(4.2.13)

with η = J1/2J2 and ξi = cos(qia), ξi = sin(qia).

4.2.3 Fluctuations for 2Q0 a reciprocal lattice vector

Although the method of this section follows that of the previous one, which was based on [13],
[14], we have not yet seen the fluctuation spectrum derived from eq. (4.2.14) from another
source.

As seen previously, when 2Q0 is a reciprocal lattice vector, that is when 2Q0 · Ri = 2πm
with m an integer and Ri a lattice site, the ground state of the classical spin lattice is

S0
i /S = u cos(Q1 ·Ri) cos(φ) + v cos(Q2 ·Ri) sin(φ), (4.2.14)

where Q1, Q2 are structure vectors with the same energy. To study fluctuations we consider the
energy of the state

Si/S =Szi (u cos(Q1 ·Ri) cos(φ) + v cos(Q2 ·Ri) sin(φ))

+ Syi (u cos(Q2 ·Ri) sin(φ) + v cos(Q1 ·Ri) cos(φ)) + Sxi t,
(4.2.15)
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where once again we assume Syi , S
x
i � Szi . Inserting this in the expression for the energy we

obtain

E =
∑
ij

Jij

[
(Szi S

z
j + Syi S

y
j )E + Sxi S

x
i

+ cos(φ) sin(φ)(Szi S
y
j cos(Q1 ·Ri) cos(Q2 ·Rj)− Syi Szj cos(Q1 ·Rj) cos(Q2 ·Ri))

]
,

(4.2.16)

with E = cos(Q1 · Ri) cos(Q1 · Rj) cos2(φ) + cos(Q2 · Ri) cos(Q2 · Rj) sin2(φ). First of all, since
i, j sum over the same sites they can be switched under the sum and then it is easy to see that
the cross term with SzSy cancels. Next,

E = cos(Q1 ·Ri) cos(Q1 ·Rj) cos2(φ) + cos(Q2 ·Ri) cos(Q2 ·Rj) sin2(φ)

=
1

2
(cos(Q1 · (Ri +Rj)) + cos(Q1 · (Ri −Rj))) cos2(φ)

+
1

2
(cos(Q2 · (Ri +Rj)) + cos(Q2 · (Ri −Rj))) sin2(φ)

= cos(Q1 ·Rδ) cos2(φ) + cos(Q2 ·Rδ) sin2(φ),

(4.2.17)

where Rδ = Rj − Ri and we used 2Qa · Ri = 2πN . Using that the exchange constant only
depends on the distance between sites Rδ we find

E =
∑
iδ

Jδ
[
(Szi S

z
i+δ + Syi S

y
i+δ)

(
cos(Q1 ·Rδ) cos2(φ) + cos(Q2 ·Rδ) sin2(φ)

)
+ Sxi S

x
i+δ

]
.

(4.2.18)

Defining E0 =
∑

ij JijE and approximating Szi S
z
j ≈ S2

(
1− 1

2(Qxi +Qxi+δ +Qyi +Qyi+δ)
)

with

Qki = Ski /S, we obtain

E = E0 −
S2

2

∑
iδ

Jδ
[(

(Qyi −Q
y
i+δ)

2 + (Qxi −Qxi+δ)2
)
E − 2QxiQ

x
i+δ (1− E)

]
= E0 −

S2

2

∑
qδ

Jδ
[
2(QyqQ

y
−q +QxqQ

x
−q)(1− cos(q ·Rδ))E − 2QxqQ

x
−q cos(q ·Rδ)(1− E)

]
= E0 − S2

∑
q

[
(QyqQ

y
−q +QxqQ

x
−q)

(∑
δ

Jδ(1− cos(q ·Rδ))E
)
−QxqQx−q

∑
δ

Jδ cos(q ·Rδ)(1− E)

]
.

(4.2.19)

Using∑
δ

Jδ(1− cos(q ·Rδ))E =

[
JQ1 −

1

2
(JQ1+q + JQ1−q)

]
cos2(φ) +

[
JQ2 −

1

2
(JQ2+q + JQ2−q)

]
sin2(φ),

∑
δ

Jδ cos(q ·Rδ)(1− E) = Jq −
1

2
(JQ1+q + JQ1−q) cos2(φ)− 1

2
(JQ2+q + JQ2−q) sin2(φ),

(4.2.20)

we find that

E = E0 + S2
∑
q

JQyQ
y
qQ

y
−q + JQxQ

x
qQ

x
−q, (4.2.21)

with JQy =
([

1
2 (JQ1+q + JQ1−q)− JQ1

]
cos2(φ) +

[
1
2 (JQ2+q + JQ2−q)− JQ2

]
sin2(φ)

)
and JQx =

Jq − JQ1 cos2(φ)− JQ2 sin2(φ). As before, Qxq , SQ
y
−q are conjugate variables, and the spin-wave

spectrum is given by

ω2
q = S2JQyJQx , (4.2.22)
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and the system energy

E = E0 +
∑
q

1

2Mq
PqP−q +

1

2
Mqω

2
qQqQ−q, (4.2.23)

with Mq = 1
2JQy

.

4.2.4 Spin-wave spectrum in the general ground state of the J1-J2 model

In the J1-J2 model the Fourier transform of the exchange coefficient is given by eq. (4.2.10). In
the case 2J2 > J1 the structure vectors of the ground state are Q1 = (0, π) and Q2 = (π, 0). In
that case

JQ1 = −4J2, JQ2 = −4J2,

JQ1±q = 2J1(ξx − ξy)− 4J2ξxξy, JQ2±q = −2J1(ξx − ξy)− 4J2ξxξy,
(4.2.24)

and then

JQx = 4J2(1 + ξxξy + η(ξx + ξy))

JQy = (2J1(ξx − ξy)− 4J2ξxξy + 4J2) cos2(φ) + (−2J1(ξx − ξy)− 4J2ξxξy + 4J2) sin2(φ)

= 4J2 (η(ξx − ξy) cos(2φ) + 1− ξxξy) ,
(4.2.25)

so

JQxJQy = (4J2)2
(
1− ξ2

xξ
2
y + cos(2φ)η2

(
ξ2
x − ξ2

y

)
+η cos(2φ)(ξx(1− ξ2

y)− ξy(1− ξ2
x)) + η(ξy(1− ξ2

x) + ξx(1− ξ2
y))
)

= (4J2)2
(
1− ξ2

xξ
2
y + cos(2φ)η2

(
ξ2
x − ξ2

y

)
+ η(1 + cos(2φ))ξx(ξy)

2 + η(1− cos(2φ))ξy(ξx)2
)

= (4J2)2

(
1− ξ2

xξ
2
y + cos(θ)η2

(
ξ2
x − ξ2

y

)
+ 2η

(
cos2

(
θ

2

)
ξx(ξy)

2 + sin2

(
θ

2

)
ξy(ξx)2

))
,

(4.2.26)

where in the last line we wrote the expression in terms of the relative angle between the Néel
lattices θ. Thus we have obtained the spin wave frequency

4J2S|ωq| = 4J2S

√
1− ξ2

xξ
2
y + cos(θ)η2

(
ξ2
x − ξ2

y

)
+ 2η

(
cos2

(
θ

2

)
ξx(ξy)

2 + sin2

(
θ

2

)
ξy(ξx)2

)
.

(4.2.27)

In the case where θ = 0 we obtain the spin-wave frequency of the columnar phase, eq. (4.2.13).

4.3 Order by disorder - classical free energy

The classical partition function of a spin lattice is

Z =

∫
DSe−β

∑
ij JijSi·Sj , (4.3.1)

with
∫
DS denoting integration over all spin configurations at each site. Assuming the system

is a J1-J2 spin lattice, the ground states are those of two interpenetrating Néel lattices with
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an arbitrary angle between them. Let us approximate the partition function with one for the
ground states and the small oscillations (spin waves) about these.∫ 2π

0
dθZ(θ), Z(θ) = e−βE0

∫
DPDQe−β

∑
q

(
1

2Mq
P ∗q Pq+

1
2
Mq(4J2S)2ω2

qQ
∗
qQq

)

= e−βE0
∏
q

(2πMqT )

(
2πT

(4J2S)2Mqω2
q

)
= e−βE0

(
πT

2J2S2

)2N∏
q

1

ω2
q (θ)

,

(4.3.2)

where we have carried out a Gaussian integration over P,Q. Strictly speaking, the integral
should not be over a large range since we have assumed P,Q to be small numbers, but for large
values of P,Q the exponent is small anyway, so the Gaussian integral is approximately equal to
the partition function. The free energy is then

F (θ) = −T ln(Z(θ)) = E0 − 2NT ln

(
πT

2J2S2

)
+ 2T

∑
q

ln(ωq(θ)). (4.3.3)

As seen, an entropy term dependent on θ emerges in the free energy. Letting∑
q

ln(ωq(θ)) = N

∫
d2q

(2π)2
ln(ωq(θ)), (4.3.4)

and expanding the integrand in η we obtain

ln(ωq(θ)) ≈
1

2
ln
(
1− ξ2

xξ
2
y

)
+

cos2(θ/2)ξxξ
2
y + sin2(θ/2)ξyξ

2
x

1− ξ2
xξ

2
y

η

+

[
cos(θ)(ξ2

x − ξ2
y)

2(1− ξ2
xξ

2
y)

−
(cos2(θ/2)ξxξ

2
y + sin2(θ/2)ξyξ

2
x)2

(1− ξ2
xξ

2
y)2

]
η2.

(4.3.5)

The first order term integrates to zero due to the factors of sine- and cosine functions and the
fact that the Brillouin zone extends over (−π, π) in both directions. Also, because the the
integration is invariant under an exchange x ↔ y, the first term in the square bracket η2 also
integrates to zero. Finally

(cos2(θ/2)ξxξ
2
y + sin2(θ/2)ξyξ

2
x)2 = cos4(θ/2)

(
ξxξ

2
y

)2
+ sin4(θ/2)

(
ξyξ

2
x

)2

+ 2 cos2(θ/2) sin2(θ/2)ξxξyξ
2
xξ

2
y,

(4.3.6)

where the cross term integrates to zero. Under the integration the integrand becomes

ln(ωq) ≈
1

2
ln
(
1− ξ2

xξ
2
y

)
− η2(1 + cos2 θ)

4

(
ξxξ

2
y

)2
+
(
ξyξ

2
x

)2

(1− ξ2
xξ

2
y)2

. (4.3.7)

Since ∫
d2q

(2π)2
ln
(
1− ξ2

xξ
2
y

)
= −0.22,

∫
d2q

(2π)2

1

2

(
ξxξ

2
y

)2
+
(
ξyξ

2
x

)2

(1− ξ2
xξ

2
y)2

= 0.318, (4.3.8)

we find to lowest order in η the θ dependent free energy term

F (θ, η)− F (θ, 0) = −0.318 NT η2(1 + cos2 θ). (4.3.9)

Thus we have found that when coupling the two interpenetrating Néel lattices with a coupling
factor η, the free energy of the system is minimized if their relative angle is either θ = 0 or
θ = π. In other words the disorder due to thermal fluctuations (spin wave fluctuations) lifts the
continuous θ degeneracy of the ground state energy and replaces it with a discrete symmetry
between the θ = 0 and θ = π state.
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4.4 Conclusion

The ground state of classical spin (arrow) systems have been found, and it has been shown
how the J1-J2 square lattice has a ground state manifold consisting of coupled Néel lattices
with an energetically arbitrary relative angle θ. Importantly, this ground state will be used in
the next chapter to define Holstein-Primakoff bosons. It was also shown how spin waves affect
the free energy of the system. In particular it was shown that a temperature dependent term
arises which lifts the continuous ground state degeneracy. The new ground states are those with
θ = 0, π, and this is a manifestation of the order by disorder phenomenon.



Chapter 5

Quantized spin waves: magnons

In this section we explore quantum mechanical spin-wave excitations of the classical, degenerate
ground state of the J1-J2 model. We have seen that in the regime 0 < J1 < 2J2, the classical
ground states of the frustrated lattice are those of two coupled Néel lattices, where the coupling
is characterized by η = J1/(2J2). The angle between the two lattices distinguishes the different
ground states and does not affect the energy. As will be shown, the ground state of the quantum
system is not the vacuum of quantized spin waves. This fact leads to a zero-point energy
which prefers collinear states with the relative angles θ = 0, π. Thus, similar to temperature
fluctuations of the classical spin system, the ”disorder” of vacuum fluctuations picks two system
states from the degenerate classical subspace of ground states. This section is based on [8], [15]
and appendix A of [16].

5.1 Holstein-Primakoff representation of spin-operators

We consider a square lattice with N.N. and N.N.N. coupling, 0 < J1 < 2J2. The system is a
Heisenberg model

H =
1

2

∑
ij

JijSi · Sj . (5.1.1)

The Holstein-Primakoff bosons (H.P. bosons) are defined through the relations

Sz = S − b†b, S+ =
√

2S − b†bb, S− = b†
√

2S − b†b, (5.1.2)

which preserve the spin-algebra. As can be seen, each boson lowers the spin along the z direction
by 1 and can be thought of as spin 1 bosons. As with Schwinger bosons, the Fock space
associated with the bosons is larger than the Hilbert space of spin-states. The physical subspace
(P.S.) of the Fock space is the space of states for which

〈〉 b†b |n〉 = n |n〉 , n ≤ 2S ∀ |n〉 ∈ P.S.. (5.1.3)

This representation has general applicability, but is quite hard to work with due to the square
root in the definition. It is useful in the case where one can make an expansion of the square
root, treating b†b/2S as a small parameter. To this end, one assumes some lattice configuration,
usually motivated by other methods (for instance a classical calculation), and then assumes
〈b†b〉 /2S � 1 for the states of interest. At the end of the program one must therefore make sure
that this assumption is still valid. To this end, we consider a spin-configuration corresponding
to a ground state of the classical system, as illustrated in Fig. 5.1, and define local frames in
which the z-axes are parallel to the spins. It is with respect to these axes that the H.P. bosons
are defined.

H =
1

2

∑
ij
ab

Jabij S̃
i,a
k Ri,akl (R−1)j,blmS̃

j,b
m , (5.1.4)

34
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Figure 5.1: Member of the degen-
erate space of ground states. In-
side red boundary is site i of a su-
perlattice. The sublattice index
increases in the counterclockwise
direction starting topleft.

where we have introduced the Euler-rotation matrices

Ri,a = Rxy(φi,a)Ryz(θi,a)

=

cosφi − sinφi 0
sinφi cosφi 0

0 0 1

1 0 0
0 cos θi,a − sin θi,a
0 sin θi,a cos θi,a

 ,

=

cosφi,a − sinφi,a cos θi,a sinφi,a sin θi,a
sinφi,a cosφi,a cos θi,a − cosφi,a sin θi,a

0 sin θi,a cos θi,a

 ,

(5.1.5)

and S̃ are spin-operators defined through the local frame
of reference. The S̃ operators fulfill the same commutation
relations as the S, since

[S̃i, S̃j ] = RilRjm[Sl, Sm] = iεlmnR
ilRjmSn

= iεlmnR
ilRjmRknS̃k = iεijkS̃

k,
(5.1.6)

where we used εlmnR
ilRjmRkn = εijkdet(R) = εijk. We have

also introduced the indices ab which sum over different sub-
lattices (i.e. a ∈ 1, ..., 4) with a = a + 4. For the degenerate ground state, we choose φi = 0,
which means the rotation matrices become particularly simple and, due to the property

Ryz(θi)R
−1
yz (θj) = Ryz(θi − θj), (5.1.7)

it is only the relative angle between the spins that is important. We will denote the angle
between the upper left spin and upper right spin in the unit cell θ.

5.1.1 Nearest neighbor contribution

We now consider the N.N. coupling and denote its contribution to the Hamiltonian H1.

H1 =
J1

2

∑
〈(i,a),(j,b)〉

S̃i,ak
(
R(θi,a)(R

−1)(θj,b)
)
km

S̃j,bm

=
J1

2

∑
〈(i,a),(j,b)〉

S̃i,a1 S̃j,b1 + cos(θi,a − θj,b)
(
S̃i,a2 S̃j,b2 + S̃i,a3 S̃j,b3

)
− sin(θi,a − θj,b)

(
S̃i,a2 S̃j,b3 − S̃i,a3 S̃j,b2

)
.

(5.1.8)

The two cross-terms between different components of the spin-operators is zero. To see this we
note that for any (i, a) in the sum,

sin(θ(i,a)+δ − θi,a) =

{
sin(π − θ) = sin(θ) if Ri,a + δ is above or below Ri,a

sin(−θ) = − sin(θ) if Ri,a + δ is to the right or left of Ri,a
. (5.1.9)

Where δ is a vector from site (i, a) to one of its’ N.N.. Therefore, we might as well pull out the
sine-function in the sum, letting the sign depend on δ and then sum over i. Now we see that
the terms from a particular site coupled to the the site above it will cancel due to the relative
sign between the two cross terms. This is also true of any site and the site to the right of it,
and since we assume a translationally invariant system (e.g. by periodic boundaries) the whole
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sum is zero.
Making a large-S approximation to order O((1/S)−1), such that

S̃i,a1 S̃j,b1 =
1

4

(
Si,a+ + Si,a−

)(
Sj,b+ + Sj,b−

)
≈ S

2

(
b†i,abj,b + b†j,bbi,a + bi,abj,b + b†i,ab

†
j,b

)
(5.1.10)

S̃i,a2 S̃j,b2 =
−1

4

(
Si,a+ − Si,a−

)(
Sj,b+ − Sj,b−

)
≈ S

2

(
b†i,abj,b + b†j,bbi,a − bi,abj,b − b

†
i,ab
†
j,b

)
(5.1.11)

S̃i,a3 S̃j,b3 ≈ −S(b†i,abi,a + b†j,bbj,b) + S2, (5.1.12)

the Hamiltonian can be written

H1 =
J1

2

∑
〈(i,a),(j,b)〉

S

[
1 + cos(θj,b − θi,a)

2

(
b†i,abj,b + b†j,bbi,a

)
+

1− cos(θj,b − θi,a)
2

(
bi,abj,b + b†j,bb

†
i,a

)]
+ S2 cos(θj,b − θi,a)− S cos(θj,b − θi,a)

(
b†i,abi,a + b†j,bbj,b

)
(5.1.13)

We next evaluate the classical contribution to the energy, and see if there is a preferred θ
that minimizes the energy. This term is the only one which is not proportional to the boson
operators:

Ecl1 =
J1S

2

2

∑
〈(i,a),(j,b)〉

cos(θj,b − θi,a) = 0. (5.1.14)

due to the fact that

cos(θj,b − θi,a) =

{
cos(π − θ) = − cos(θ) if Rj,b is above or below Ri,a

cos(−θ) = cos(θ) if Rj,b is to the right or left of Ri,a
. (5.1.15)

This, together with the fact that the N.N.N. term in the Hamiltonian never depends on θ (this
term represents a coupling between each AFM-sublattice with itself), shows that the classical
ground state does not depend on θ, in correspondence with the result from chapter 4. Thus the
Hamiltonian becomes

H1 =
J1S

2

∑
ia,δ

[
cos2

(
θj,b − θi,a

2

)(
b†i,abj,b + b†j,bbi,a

)
+ sin2

(
θj,b − θi,a

2

)(
bi,abj,b + b†j,bb

†
i,a

)
−2 cos(θj,b − θi,a)

(
b†i,abi,a + b†j,bbj,b

)]
,

(5.1.16)

where we let δ be a vector from the site (i, a) to any of its N.N., and we let b depend on the
choice of δ. Next we note that the choice of δ to be horizontal or vertical corresponds to choosing
sines of θ with different phases as seen from (5.1.15). Thus

H1 =
J1S

2

∑
ia,δ

[
cos2

(
θ + φ(δ)

2

)(
b†i,abj,b + b†j,bbi,a

)
+ sin2

(
θ + φ(δ)

2

)(
bi,abj,b + b†j,bb

†
i,a

)
−2 cos(θ + φ(δ))

(
b†i,abi,a + b†j,bbj,b

)]
,

(5.1.17)
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with φ(δ) =

{
0, δ = (±1, 0)

π, δ = (0,±1)
. Then we decompose our operators into their Fourier compo-

nents:

H1 =
J1S

2N

∑
ia,δ

∑
qq′

[
cos2

(
θ + φ(δ)

2

)
b†q,abq′,be

i(q−q′)·Ri,a
(
e−iq

′·δ + eiq
′·δ
)

+ sin2

(
θ + φ(δ)

2

)(
bq,abq′,be

−i(q+q)·Ri,ae−iq
′·δ + ei(q+q)·Ri,ab†q′,bb

†
q,ae

iq′·δ
)

−4 cos(θ + φ(δ))ei(q−q
′)·Ri,ab†q,abq′,a

]
,

(5.1.18)

where we used b†q,abq′,b = b†q,bbq′,a under the summation in question. Doing the i sum we obtain

H1 =
J1S

2

∑
qa,δ

[
2 cos2

(
θ + φ(δ)

2

)
cos(q · δ)b†q,abq,b + sin2

(
θ + φ(δ)

2

)(
bq,ab−q,be

iq·δ + b†−q,bb
†
q,ae
−iq·δ

)
−4 cos(θ + φ(δ))b†q,abq,a

]
.

(5.1.19)

Finally we must do the δ sum, the result of which becomes

H1 =
J1S

2

∑
qa

[
4

(
cos2

(
θ

2

)
cos(qx)b†q,abq,a+σ(a) + sin2

(
θ

2

)
cos(qy)b

†
q,abq,a−σ(a)

)
+ 2 sin2

(
θ

2

)(
bq,ab−q,a+σ(a) + b†−q,a+σ(a)b

†
q,a

)
cos(qx)

+ 2 cos2

(
θ

2

)(
bq,ab−q,a−σ(a) + b†−q,a−σ(a)b

†
q,a

)
cos(qy)

]
.

(5.1.20)

Where we have defined

σ(a) =

{
1 if even a

−1 if odd a
.

The rationale behind this is that if a is odd, then a horizontal δ will connect the boson on a
with one on a − 1 and a vertical δ with one a + 1. Vice versa for a even. We can write the
Hamiltonian in a much neater form by using a vector notation

H1 =
J1S

2

∑
q

b†qT1bq, (5.1.21)

with

bTq =
(
bq,1, ...bq,4, b

†
−q,1, ..., b

†
−q,4

)
, T1 =

(
Tn Tan

Tan Tn

)
, (5.1.22)

and

Tn =


0 Tv 0 Th
Tv 0 Th 0
0 Th 0 Tv
Th 0 Tv 0

 , Tan =


0 Tav 0 Tah
Tav 0 Tah 0
0 Tah 0 Tav
Tah 0 Tav 0

 , (5.1.23)

where Th = 2 cos2
(
θ
2

)
cos(qx), Tv = 2 sin2

(
θ
2

)
cos(qy) and Tah = 2 sin2

(
θ
2

)
cos(qx), Tav =

2 cos2
(
θ
2

)
cos(qy)
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5.1.2 Next nearest neighbor contribution

Before continuing, we derive the expression for the N.N.N. contribution to the Hamiltonian,
H2. The relative angle between a spin and all of its’ N.N.N. is π, and so the Hamiltonian, to
the relevant order, is

H2 =
J2

2

∑
〈〈(i,a),(j,b)〉〉

Si,ax Sj,bx − Si,ay Sj,by − Si,az Sj,bz

=
J2

2

∑
iδa

b=a+2

2S

2

(
bi,abj,b + b†i,ab

†
j,b

)
− S2 + S(b†i,abi,a + b†j,bbj,b)

= Ecl2 +
J2S

2

∑
iδa

b=a+2

(
bi,abj,b + b†i,ab

†
j,b + b†i,abi,a + b†j,bbj,b

)

= Ecl2 +
J2S

2N

∑
iδa,qq′

b=a+2

[
b†a,qba,q′e

i(q−q′)·Ri,a
(

1 + ei(q−q
′)·δ
)

+e−i(q+q
′)·Ri,a

(
ba,qbb,q′e

iq′·δ + b†b,q′b
†
a,qe
−iq′·δ

)]
= Ecl2 +

J2S

2

∑
qaδ

2b†a,qba,q +
(
ba,qba+2,−qe

−iq·δ + b†a+2,−qb
†
a,qe

iq·δ
)

= Ecl2 +
J2S

2

∑
qa

8b†a,qba,q + 4
(
ba,qba+2,−q + b†a+2,−qb

†
a,q

)
cos qx cos qy,

(5.1.24)

with δ being a vector from site (i, a) to one of its’ N.N.N. and Ecl2 = −8NJ2S
2. To add it to

the N.N. term we also write H2 as an inner product:

H2 = Ecl2 − 8J2SN +
J2S

2

∑
q

b†qT2bq

≡ Ecl2 +
J2S

2

∑
q

b†qT2bq,

(5.1.25)

where we redefined Ecl2 = −8J2NS(S + 1). Note that N is the number of unit cells shown in
Fig. 5.1.

T2 =

(
4I Tan,2

Tan,2 4I

)
, (5.1.26)

where I is the 4-by-4 identity and

Tan,2 =


0 0 T2 0
0 0 0 T2

T2 0 0 0
0 T2 0 0

 , (5.1.27)

with T2 = 4 cos(qx) cos(qy).

5.1.3 Full Hamiltonian

Collecting the two terms we obtain the full Hamiltonian

H = Ecl0 +
S

2

∑
q

b†q (J1T1 + J2T2) bq ≡ Ecl0 +
S

2

∑
q

b†qH(q)bq, (5.1.28)

where Ecl0 = Ecl1 + Ecl2 = −8J2NS(S + 1).
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5.2 Canonical diagonalization

In this subsection the Hamiltonian will be diagonalized. Since H is a hermitian matrix, the
Hamiltonian can straightforwardly be diagonalized by inserting factors of the unitary diagonal-
izing matrix U in the Hamiltonian

b†qUU
†H(q)UU †bq ≡ a†qDaq, (5.2.1)

with aq = U †bq. The issue with this procedure is that the new operators aq are not bosonic,
as can be straightforwardly shown. To sensibly diagonalize the Hamiltonian, that is in terms
of bosonic operators, another procedure for diagonalization must be used, canonical diagonal-
ization, and the transformation we will use to do this is called a Bogoliubov transformation.
The procedure is as follows: arbitrary transformation matrices are defined and we will put con-
straints on these so as to ensure that the operators defined through these matrices are bosonic.
Due to these constraints, the matrices will have certain properties and these kinds of matrices
can be chosen so as to diagonalize H [15] .

5.2.1 Bogoliubov transformation

The first step is to define new operators and demand they be bosonic. We define the following
two 8× 8-matrices in terms of four 4× 4-matrices

A =

(
U(q) S(q)
V(q) T (q)

)
A′ =

(
Ũ(q) Ṽ(q)

S̃(q) T̃ (q)

)
,

(5.2.2)

where U ,V,S, T and Ũ , Ṽ, S̃, T̃ are 4×4 matrices. Through these matrices we define new boson
operators

β†q =
(
β†1,q, ..., β

†
4,q, β1,−q, ..., β4,−q

)
= b†qA

αq =
(
α1,q, ..., α4,q, α

†
1,−q, ..., α

†
4,−q

)
= A′bq.

(5.2.3)

Then the new operators can be written (using implicit summation of repeated indices) as

β†i,q = b†j,qUji(q) + bj,−qVji(q), βi,−q = b†j,qSji(q) + bj,−qTji(q)
αi,q = Ũij(q)bj,q + Ṽij(q)b†j,−q, α†i,−q = S̃ij(q)bj,q + T̃ij(q)b†j,−q.

(5.2.4)

These matrices are going to be used to diagonalize the Hamiltonian, in the same way as unitary
matrices U are usually used. Therefore, since H(q) = H(−q), it must be such thatA(q) = A(−q)
and similarly for A′. The following things are required for the new operators to be bosonic:

• βi,q = αi,q, β
†
i,q = α†i,q

• (βi,q)
† = β†i,q

• [βi,q, β
†
j,q′ ] = δijδqq′ and [βi,q, βj,q′ ] = [β†i,q, β

†
j,q′ ] = 0.

First we demand that

αi,q = Ũij(q)bj,q + Ṽij(q)b†j,−q = b†j,−qSji(−q) + bj,qTji(−q) = βi,q

α†i,q = S̃ij(−q)bj,−q + T̃ij(−q)b†j,q = b†j,qUji(q) + bj,−qVji(q) = β†i,q.
(5.2.5)
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This yields

(Ṽ)T (q) = S(−q), (Ũ)T (q) = T (−q), (S̃)T (q) = V(−q), (T̃ )T (q) = U(−q). (5.2.6)

This, together with the fact that the matrices are even around q = 0 means they can be written

A =

(
U ṼT
V ŨT

)
, A′ =

(
Ũ Ṽ
VT UT

)
, (5.2.7)

where the q dependency is implicit. Then the second requirement also yields the constraint

(βi,q)
† = (Ũijbj,q + Ṽijb†j,−q)† = Ũ∗ijb†j,q + Ṽ∗ijbj,−q = b†j,qUji + bj,−qVji = β†i,q, (5.2.8)

such that

Ũ† = U , Ṽ† = V, (5.2.9)

and

A =

(
U V∗
V U∗

)
, A′ =

(
U† V†
VT UT

)
, (5.2.10)

where we note that we have obtained

A′ = A†. (5.2.11)

If we define F =

(
0 I
I 0

)
, where I is the 4× 4 identity matrix, we also note that

FAF = A∗. (5.2.12)

This property we call F-canonical conjugacy of the vectors making up the columns of A. Finally
we need the third criterion to be met

δij = [βi,q, β
†
j,q] =

[
U∗ikbk,q + V∗ikb†k,−q, b

†
l,qUlj + bl,−qVlj

]
= U∗ikUkj − V∗ikVkj ,

(5.2.13)

or simply

U†U − V†V = I, (5.2.14)

for any q. Also we see that

0 = [βi,q, βj,−q] =
[
U∗ikbk,q + V∗ikb†k,−q,U∗jlbl,−q + V∗jlb†l,q

]
= −V∗ikU∗jk + U∗ikV∗jk =⇒ VUT − UVT = 0,

(5.2.15)

From these equations, we make the observation that

A†GA = G, (5.2.16)

where

G =

(
I 0
0 −I

)
. (5.2.17)
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which, using G2 = I, is straightforwardly seen to be equivalent to

A−1 = GA†G, AGA† = G. (5.2.18)

Due to these properties we callA G-paraunitary. Thus we have seen that imposing the constraint
on the new operators that they be bosonic is equivalent to assuming that the transformation
matrices, A, are G-paraunitary and F-canonically consistent.

Now, if A is G-paraunitary and is made of columns of F-canonically consistent vectors, then
so is GAG. Thus we could define a new matrix

B = GAG, (5.2.19)

which is also G-paraunitary and F-canonically consistent, since

FBF = FGFFAFFGF = (−1)2GA∗G = (GAG)∗ = B∗. (5.2.20)

Therefore we have a set of matrices obeying the following relations

B = GAG, B−1 = A†

A = GBG, A−1 = B†.
(5.2.21)

Also note that if either A or B has an inverse, the other one is guaranteed to have an inverse.
Assuming for example B to have an inverse:

1 = B−1B = B−1GAG =⇒ 1 = (GB−1G)A, (5.2.22)

i.e. A−1 = GB−1G.

5.2.2 Diagonalizing H

Having established the necessary qualities of the transformation matrices, the expression for
the Hamiltonian is rewritten

H = Ecl0 +
S

2

∑
q

b†qGMbq (5.2.23)

where M ≡ GH. One can prove[15] that such a matrix M may be diagonalizable with a
G-orthonormal basis. The eigenbasis can also be chosen to be F-canonically consistent if

M∗ = −FMF =⇒ H∗ = H = FHF , (5.2.24)

which is true of our Hamiltonian matrix. In this case, the eigenvalues of M come in pairs with
opposite sign, and the eigenvectors associated with each eigenvalues have opposite G-norm,
defined for a vector v as

v† · (Gv) = ±1. (5.2.25)

Notice that it is not guaranteed that the eigenvector with positive G-norm has a positive eigen-
value. One caveat to the proof, associated with this fact, will be considered in a moment. With
this in mind we insert factors of the G-orthonormal, F-canonically consistent matrix B which
diagonalizes M and whose first four column vectors have positive G-norm, into H,:

H = Ecl0 +
S

2

∑
q

b†qGBB−1MBB−1bq = Ecl0 +
S

2

∑
q

b†qGB
(
ω 0
0 −ω

)
B−1bq

= Ecl0 +
S

2

∑
q

b†qAG
(
ω 0
0 −ω

)
A†bq = Ecl0 +

S

2

∑
q

β†q

(
ω 0
0 ω

)
βq

= Ecl0 + S
∑
a,q

ωa,q

(
β†a,qβa,q + 1/2

)
,

(5.2.26)
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where ωa,q, the elements of ω, are the eigenvalues associated with the positive G-norm eigen-
vectors of M, where we used ωa,q = ωa,−q and where A = GBG. As we have shown, A defined
like this is G-orthonormal and F-canonically consistent, and the new operators are therefore
genuine bosonic operators. Now comes the caveat of the diagonalization procedure. It is now
clear that it is essential that ωa,q all be positive. If they are not, the system is unstable towards
creation of the quasi-particles, signaling that this type of diagonalization is not possible.

A few notes before moving on. We have to choose B to be the matrix that diagonalizes
M such that the first four columns of B have positive G-norm, and the last four have negative
G-norm. This is due to (5.2.14). Then, if the first four columns have positive G-norm, the last
four will have negative G-norm. This is because the last four columns are the F-canonically
conjugate of the first four, and the because F-switches the sign of a vectors’ G-norm, due to
FGF = −G.
We finally note, that the a index no longer can refer to a specific sublattice, since the Bogoliubov
quasiparticles are linear combinations of the H.P. bosons defined on different sublattices. We
thus simply treat a as another quantum number.

5.2.3 Eigenvalues

We now set out to find the eigenvalues of M. The first step is to write out the Hamiltonian
matrix H in terms of Pauli-matrices in three different two dimensional spaces. We will denote
Pauli matrices in these spaces σ, τ, λ, and as usual a zero index denotes the identity. Then

T1 = Tn ⊗ λ0 + Tan ⊗ λ1,

Tn = Thσ1 ⊗ τ1 + Tvσ1 ⊗ τ0

Tan = Tahσ1 ⊗ τ1 + Tavσ1 ⊗ τ0,

(5.2.27)

and

T2 = 4σ0 ⊗ τ0 ⊗ λ0 + Tan,2 ⊗ λ1

Tan,2 = T2σ0 ⊗ τ1.
(5.2.28)

One can then write H = J1T1 + J2T2. But we are interested in M and, as one can straightfor-
wardly check from GH = M, this can be written as

M = J1 (Tn ⊗ λ3 + Tan ⊗ (iλ2)) + J2 (4σ0 ⊗ τ0 ⊗ λ3 + Tan,2 ⊗ (iλ2)) . (5.2.29)

From now on we will omit the ⊗ symbol and let it be implicit. Also, if no Pauli-matrices appear
in a term, it is implicitly multiplied by all three identities. Next we square M:

M2 = J2
1

[(
T2
n −T2

an

)
λ0 + TnTanλ3(iλ2) + TanTn(iλ2)λ3

]
+ J2

2

[
(42 −T2

an,2)λ0 −Tan,2{λ3, (iλ2)}
]

+ J1J2 [2(4Tn)λ0 + TnTan,2λ3(iλ2) + Tan,2Tn(iλ2)λ3 + 4Tan,2{iλ2, λ3} − {Tan,Tan,2}λ0] .

(5.2.30)

We will now make use of the identity

ABσiσj +BAσjσi = AB{σi, σj} − [A,B]σiσj , (5.2.31)

where A and B are matrices in the space and σ are Pauli-matrices in a different space. Using
this the following relations are true

[Tn,Tan] = ThTah + TvTav + (TvTah + ThTav)σ0τ1 − (ThTah + TvTav + (TvTah + ThTav)σ0τ1) = 0

[Tn,Tan,2] = T2Th [σ1τ1, σ0τ1] + T2Tv [σ1τ0, σ0τ1] = 0

{Tan,Tan,2} = T2Th{σ1τ1, σ0τ1}+ T2Tah{σ1τ0, σ0τ1} = 2T2 (Tahσ1τ0 + Tavσ1τ1) .

(5.2.32)
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Using all of this, together with the fact that different Pauli-matrices anti-commute we obtain

M2 =
(
J2

1

[
T2
n −T2

an

]
+ J2

2

[
42 −T2

an,2

]
+ J1J2 [2(4Tn)− 2T2 (Tahσ1τ0 + Tavσ1τ1)]

)
λ0.

(5.2.33)

Next we find

T2
n = T 2

h + T 2
v + 2ThTvσ0τ1 T2

an = T 2
ah + T 2

av + 2TahTavσ0τ1, (5.2.34)

and using ThTv = TahTav, it is clear that

T2
n −T2

an = T 2
h + T 2

v − T 2
ah − T 2

av = 4
(
cos4(θ/2)− sin4(θ/2)

) (
ξ2
x − ξ2

y

)
= 4 cos(θ)

(
ξ2
x − ξ2

y

)
,

(5.2.35)

where ξi = cos(qi). Also

T2
an,2 = T 2

2 = 42ξ2
xξ

2
y . (5.2.36)

Putting this together we find

M2 = M0 + 2J1J2 [(4Tv − T2Tah)σ1τ0 + (4Th − T2Tav)σ1τ1]λ0

≡M0 + 2J1J2 [κvσ1τ0 + κhσ1τ1]λ0,
(5.2.37)

and M0 = 4J2
1 cos(θ)

(
ξ2
x − ξ2

y

)
+ (4J2)2(1− ξ2

xξ
2
y). Then

(M2 −M0)2 = 4J2
1J

2
2

[
κ2
h + κ2

v + 2κhκvσ0τ1

]
= M1 + 4J2

1J
2
2 (2κhκv)σ0τ1. (5.2.38)

Therefore

((M2 −M0)2 −M1)2 = (4J2
1J

2
2 )2κ2

hκ
2
v =⇒ (M2 −M0)2 = M1 ± 4J2

1J
2
2κhκv = (2J1J2)2 (κh ± κv)2 .

(5.2.39)

Using

κh = 4Th − T2Tav = 8 cos2(θ/2)ξx(1− ξ2
y), κv = 4Tv − T2Tah = 8 sin2(θ/2)ξy(1− ξ2

x),

(5.2.40)

and defining (ξi)
2 = 1− ξ2

i , we obtain

M2 = M0 ± 2J1J2(κh ± κv)
= 4J2

1 cos(θ)
(
ξ2
x − ξ2

y

)
+ (4J2)2(1− ξ2

xξ
2
y)± 16J1J2

(
cos2(θ/2)ξx(ξy)

2 ± sin2(θ/2)ξy(ξx)2
)

= (4J2)2

((
J1

2J2

)2

cos(θ)
(
ξ2
x − ξ2

y

)
+ (1− ξ2

xξ
2
y)± 2

J1

2J2

(
cos2(θ/2)ξx(ξy)

2 ± sin2(θ/2)ξy(ξx)2
))

= (4J2)2
(
(1− ξ2

xξ
2
y) + η2 cos(θ)

(
ξ2
x − ξ2

y

)
± 2η

(
cos2(θ/2)ξx(ξy)

2 ± sin2(θ/2)ξy(ξx)2
))
.

(5.2.41)

This implies the eigenvalues of M are the positive and negative square root of the expression
on the right side of Eq. (5.2.41). The energies of the bosons is the positive choice of the square
root, which is

4J2 ωa,q(θ)

= 4J2

√(
1− ξ2

xξ
2
y

)
+ η2 cos(θ)

(
ξ2
x − ξ2

y

)
± 2η

(
cos2(θ/2)ξx

(
ξy
)2 ± sin2(θ/2)ξy

(
ξx
)2)

,

(5.2.42)
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with η = J1
2J2

, ξi = cos(qi) and ξi = sin(qi).

What should be noted at this point, is that within the reduced Brillouin zone q ∈ (π/2, π/2),
the four spectra overlap. That is taking one of the spectra, say the one with only positive signs
for each term, and folding it into the reduced Brillouin zone by the identification qi = qi + π,
we obtain the same bands as in the case of folding all four spectra into the reduced zone. Note
that the spectrum is equivalent to the classical spectrum in the reduced zone, as it should be.
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5.2.4 Vacuum fluctuations and breaking degeneracy

As seen before, the classical contribution to the energy of the system is not affected by the
relative angle θ between the two AFM sublattices. The spectra of the bosonic excitations,
however, do depend on θ and therefore so does the zero-point energy of each excitation mode.
The collective zero-point energy can be evaluated numerically, resulting in the energies shown
in Fig. 5.2
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Figure 5.2: Plot of the results of a numerical integration of the sum of the energy spectra. Here
J1=1, and θ is the relative angle between sublattices. Minimum for all η is at θ = 0, and θ = π.
As can be seen, it becomes less energetically advantageous to be at an optimal θ as η decreases,
reflecting the decoupling of the two AFM sublattices for large η.

We can also expand the zero-point energy to smallest non-zero order in η

2J2S
∑
q,a

ωa,q ≈ 4N2J2S

∫
d2q

(2π)2

[√
1− ξ2

xξ
2
y − η2(1 + cos2 θ)

(ξx(ξy)
2)2 + (ξy(ξy)

2)2

8(1− ξ2
xξ

2
y)3/2

]
= 4N2J2S[κQ − η2(1 + cos2 θ)

γQ
2

],

(5.2.43)

with κQ = 0.842 and γQ = 0.130. The factor of 4 in front of N is from summing all four
spectra. We conclude that the quantum fluctuations pick out the states with θ = 0, π as the
two degenerate ground states for the system. As η decreases, the coupling between the two
AFM sublattices becomes still more negligible, and therefore the ground state depends less and
less on θ. On Fig. 5.3 is shown the spectrum of one of the bosonic excitations with θ = 0.
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(a) η = 1 (b) η = 0.5

Figure 5.3: Energy spectrum with the choice of two positive relative signs in the expression for
ωa,q. Here θ = 0. A choice of θ = π will in general flip the figure 90 degrees counterclockwise.

5.2.5 Group velocity of low energy modes

Let us for a moment consider only the low energy eigenstates of the system, and let us restrict
ourselves to θ = 0 based on the results of the effect of vacuum fluctuations in section 5.2.4. We
could analyse the spectrum in the proximity of either of the points q = (0, 0), (π, 0), (0, π), (π, π)
but for now we consider q = (0, 0). The results for other momenta are similar, since a shift
qi → qi + π at most changes signs of ξi. Then we find

ωa,q ≈
√
q2 − η2(q2

x − q2
y)± 2ηq2

y =
√

(1− η2)q2 + 2(η2 ± η)q2
y . (5.2.44)

There is manifestly a difference between the x-, and y-directions in the energy, which is a result
of the choice of θ = 0 and not θ = π. Notice, that when η = 1, the highly frustrated point,
there is no energy dependence on qx. That is, we get a whole spectrum of zero-energy modes,
which is worrisome when considering the validity of the large-S expansion. Let us now look at
the group velocity of the system excitations,

vy =
∂ωa,q
∂qy

=
1

ωa,q
(1− η2 + 2η2 ± 2η)qy =

1

ωa,q
(1± η)2qy

vx =
∂ωa,q
∂qx

=
1

ωa,q
(1− η2)qx.

(5.2.45)

First of all, in every expression so far we have set a = ~ = 1 for simplicity, with a being the
lattice constant. To get back to regular units, we must multiply the velocity with 4J2~a. Next,
notice that, at qx = 0

vy =
1√

(1± η)2q2
y

(1± η)2qy = 1± η, (5.2.46)

that is, we have a linear dispersion for qx = 0 and qy small. Similarly for qy = 0

vx =
√

1− η2. (5.2.47)

What we see now is, that as η → 1 the velocity along x goes to zero, but for two of the spectra,
those that have group velocity vy = 1 +η, the velocity goes to 2. Thus, as we enter the strongly
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frustrated region, only two low-energy excitations have a finite velocity, and this will be constant
in the y-direction. More generally, we may look at the fraction

vy
vx

=
1± η
1∓ η

qy
qx
, (5.2.48)

where the sign in the denominator depends on the sign in the numerator. This shows, that
when keeping qy, qx fixed and non-zero, vy becomes much greater than vx as η → 1 for the
excitations with positive sign choice in their eigenvalue. All in all, the quasi-particles move only
in the y-direction at the fully frustrated point η = 1.

(a) ω+-spectrum (b) ω−-spectrum

Figure 5.4: Dispersion relation for the excitations. Here θ = 0 and η = 1 for greater illustrative
effect. As can be seen, near q = (0, 0), (π, 0), (0, π), (π, π), in the qx direction the band is always
flat.

5.3 Order by disorder - quantum free energy

Just like in the classical case, we will now consider the partition function and the contribution
to the free energy due to spin waves. Assuming that a set of ground states exist composed
of two decoupled, Néel ordered sublattices, these states will dominate in the low temperature
limit. The partition function is again an integral over the partition functions for each of these
ground states and their excitations. Thus we need to find

Z(θ) = e−E
cl
0

∮
D{φ∗, φ} exp

(
−S

∑
q,ωn

φ∗q,ωn(−iωn + 4J2ωq(θ))φq,ωn + 2J2βωq(θ)

)
, (5.3.1)

where the summation over sublattices is implicit. Evaluating the path integral yields

Z(θ) = e−βE
cl
0

∏
q,ωn

e−β2J2Sωq(θ) 1

Sβ(−iωn + 4J2ωq(θ))
. (5.3.2)

Instead of evaluating the product, we go directly to the free energy which is

F (θ) = Ecl0 + 2J2S
∑
α,q

ωq,α(θ) +
1

β

∑
q,ωn

ln (βS(−iωn + 4J2ωq(θ)))

= Ecl0 + 2J2S
∑
q

ωq(θ) +
1

β

∑
q

ln
(

1− e−βS4J2ωq
)
,

(5.3.3)
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where what is a product in the partition function is a Matsubara sum in the free energy and
has been evaluated by the standard method of integration over the complex plane with the
summand expanded to an integrand with an additional factor of a Bose-function. At this point
it is useful to scale out S by the identification JiS

2 = Ji. Since the parameters are free for us
to choose, we can choose them such that Ji is independent of S. Then the free energy is

F (θ) = Ecl0 +
2J2

S

∑
q

ωq(θ) +
1

β

∑
q

ln
(

1− e− βS 4J2ωq
)
. (5.3.4)

We may now consider the classical limit,

J2β/S � 1 =⇒ J2 � TS, (5.3.5)

such that the relevant temperature is in fact TS and the classical limit may be reached by either
increasing T or S. Thus in the large S limit we find

F (θ) ≈ Ecl0 +
2J2

S

∑
q

ωq(θ) +
1

β

∑
q

ln
(
4J2βωq(θ)/S

)
= Ecl0 +NT ln

(
4J2/TS

)
+

2J2

S

∑
q

(
ωq(θ) +

TS

2J2

ln(ωq(θ))

)
≡ Ecl0 +NT ln

(
4J2/TS

)
+ FQ(θ) + FT (θ).

(5.3.6)

As we see, we obtain two terms, one identical to the free energy from classical spin waves, and
one from the magnon zero point energy. Note that this is only the case in the large TS limit,
where bosonic statistics approaches classical statistics of distinguishable particles. We also see
a contribution to the free energy solely due to quantum fluctuations which does not depend on
temperature. The free energy may also be written in the more compact form

F (θ) = Ecl0 +NT ln(2) + T
∑
q

ln

(
sinh

(
2J2ωq
TS

))
. (5.3.7)

By expanding eq. (5.3.6) in η and keeping only lowest non-zero orders in η, similar to how it
was done in eq. (4.3.9), we find that

F (θ, η)− F (θ, 0) ≈ −(4N)(2J2) η2(1 + cos2 θ)

(
γQ

1

2S
+ γT

T

2J2

)
, (5.3.8)

where γQ = 0.130 and γT = 0.159. The factor of four in front of N is due to the implicit
summation over sublattice indices. We now see that for any finite T , the large S limit will
render the thermal contribution to the free energy dominant already seen for classical spin-
waves. The free energy is now minimized both due to quantum and thermal fluctuations.
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5.4 Symmetries and the eigenvectors

As seen, the system minimizes its ground-state energy by choosing θ = 0, π, where θ is the
relative angle between Néel sublattices. Assuming it has picked one of these states, we can go
back to the Hamiltonian (or M) and find its’ eigenvectors. Choose θ = 0. Then Th = 2 cos(qx),
Tav = 2 cos(qy) and Tv = Tah = 0, and this yields

M = Thσ1τ1λ3 + Tavσ1τ0(iλ2) + (4J2)σ0τ0λ3 + T2σ0τ1(iλ2)

= (2J1ξx)σ1τ1λ3 + (2J1ξy)σ1τ0(iλ2) + (4J2)σ0τ0λ3 + 4J2ξxξyσ0τ1(iλ2).
(5.4.1)

What is apparent now, is that M commutes with the following operators

A = σ3τ3λ3 (5.4.2)

B = σ1τ0λ0 (5.4.3)

C = σ0τ1λ0. (5.4.4)

We can use these symmetries to provide constraints on the eigenvectors of M, and ultimately
find an expression for these. As will be seen, this is only possible because M is reducible from an
8×8 matrix to a 2×2 matrix in the cases θ = 0, π. This is what we should expect since in these
cases the unit cell has been reduced from four spins to two. We could also find an expression
for H in the case θ = 0, π and Bogoliubov transform this expression to find the eigenvectors.

5.4.1 Eigenvectors

Since θ = 0, we see from Eq. (5.2.42) that every eigenvalue is twice degenerate. When we say
M is diagonalizable we assume that the whole vector space is spanned by the eigenvectors. This
means first that each eigenspace of the twice degenerate eigenvalues must be two-dimensional,
and second that the two dimensional subspaces of each degenerate eigenvalue span the whole
vector space. Now take an eigenvector of M with eigenvalue ω, and assume it to be in the very
general form

vT =
(
a b c d e f g h

)
(5.4.5)

Then, since A commutes with M

M (Av) = AMv = ω (Av) . (5.4.6)

That is Av lives in the eigenspace of ω. The explicit form of this vector is

(Av)T =
(
a −b −c d −e f g −h

)
. (5.4.7)

Now we can make a much simpler eigenvector of M which also has eigenvalue ω:

v′ =
1

2
(v +Av) =

(
a 0 0 d 0 f g 0

)
. (5.4.8)

Next, use that B,C also commute with M. Then

CBv′ =
(
d 0 0 a 0 g f 0

)
,

Bv′ =
(
0 a d 0 f 0 0 g

) (5.4.9)

both live in the eigenspace with eigenvalue ω. The second of these two vectors is orthogonal
to v′, and these two vectors could therefore make up a nice basis for the eigenspace. The next
step is to create two new vectors

v1 = v′ + CBv′ =
(
a+ d 0 0 d+ a 0 f + g g + f 0

)
v2 = v′ − CBv′ =

(
a− d 0 0 d− a 0 f − g g − f 0

)
.

(5.4.10)
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These vectors are orthogonal and both are orthogonal to Bv′. The subspace is two dimensional,
so one of the three vectors must be the zero vector. If Bv′ is, all of them are, so either v1 or
v2 must be zero. This is equivalent to the condition

a = d, f = g or a = −d, f = −g. (5.4.11)

Thus we conclude that an eigenvector of the subspace associated with ω can be written as

v′ =
(
a 0 0 ±a 0 b ±b 0

)
. (5.4.12)

where we renamed f . For each of the two possible eigenspaces with positive eigenvalue, an
eigenvector of the form v′ can be chosen, and an orthogonal one with the same eigenvalue
may be made through the B-operator. Each of these four eigenvectors in turn generate a new
eigenvector (with an eigenvalue of opposite sign) through the operator F which anticommutes
with M. Thus we have reduced the problem of finding eight-eigenvectors, with 32 independent
parameters, to finding just 4 independent parameters.
We end this subsection by noting the following properties of A on the eigenvectors

Av′ = v′

A
(
Bv′

)
= −BAv′ = −Bv′.

(5.4.13)

The last equation is due to {A,B} = 0.

5.4.2 Finding a, b

To find a, b we start by noting, that the 8×8 representation of M must obviously be reducible due
to the form of the eigenvectors. In fact, the eigenvalue equation is reducible to two equivalent
4× 4 matrix equations, namely

4J2 Th Tav T2

Th 4J2 T2 Tav
−Tav −T2 −4J2 −Th
−T2 −Tav −Th −4J2

 ·

a
±a
b
±b

 = λ±


a
±a
b
±b

 . (5.4.14)

This can be reduced further to(
4J2 ± Th Tav ± T2

− (Tav ± T2) − (4J2 ± Th)

)
·
(
a
b

)
=

(
M±3 M±2
−M±2 −M±3

)
·
(
a
b

)
= λ±

(
a
b

)
. (5.4.15)

There are two eigenvalues of this matrix, with the same length but opposite sign. The positive
eigenvalue is

λ± =
√

(M±3 )2 − (M±2 )2 =
√

(4J2 ± Th)2 − (Tav ± T2)2

=
√

(4J2 ± Th + Tav ± T2) (4J2 ± Th − Tav ∓ T2)

= 4J2

√
1− ξ2

xξ
2
y + η2

(
ξ2
x − ξ2

y

)
± 1

(4J2)2
((Th + Tav) (4J2 ∓ T2) + (Th − Tav) (4J2 ± T2))

= 4J2

√
1− ξ2

xξ
2
y + η2

(
ξ2
x − ξ2

y

)
± η ((ξx + ξy) (1∓ ξxξy) + (ξx − ξy) (1± ξxξy))

= 4J2

√
1− ξ2

xξ
2
y + η2

(
ξ2
x − ξ2

y

)
± 2ηξx(1− ξ2

y) = 4J2

√
1− ξ2

xξ
2
y + η2

(
ξ2
x − ξ2

y

)
± 2ηξx(ξy)

2,

(5.4.16)

gives us exactly the eigenvalues we expect in the case of θ = 0. Thus we see λ± = 4J2ω
±, the two

positive eigenvalues of M. Furthermore, the (unnormalized) eigenvector with this eigenvalue is

ψ+ =

(
M±3 + λ±

−M±2

)
. (5.4.17)
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Thus we have found

a = M±3 + λ±, b = −M±2 . (5.4.18)

We could now check whether it is in fact true, that all positive eigenvalue eigenstates have
positive G-norm. This amounts to checking whether

2
(
a2 − b2

)
= 2

(
(M±3 + λ±)2 − (M±2 )2

)
= 4

(
(λ±)2 +M±3 λ

±) = 4λ±
(
λ± +M±3

)
, (5.4.19)

is positive. Now λ± is always positive, and since M±3 = 4J2 (1± η cos(qx)), we conclude
λ±
(
λ± +M±3

)
≥ 0. Thus, the positive eigenvalue eigenstates do in fact have positive G-norm.

Note however that states with zero eigenvalue have zero G-norm1. The eigenvectors generated
by F have G-norm

2
(
b2 − a2

)
, (5.4.20)

which is then automatically negative or zero. To sum up we have found that indeed the eigen-
vectors of positive G-norm have positive eigenvalues, and that therefore M is diagonalizable,
with a G-normalized eigenbasis, except for the points where ω± = 0. In fact, since our current
analysis was based on the eigenstates being only twice degenerate, we cannot extend this solu-
tion of eigenvectors to the case of ω± = 0. For all cases with twice-degenerate eigenvalues, the
eigenvectors have been found, and with G-normalization we found that

a = 1/4λ±, b = − M±2
4λ±(λ± +M±3 )

(5.4.21)

5.4.3 The case of four-times degenerate eigenvalues

Had we picked the specific values of q = (qx, 0), (qx, π), the eigenvalues would have in fact been
four times degenerate. We used twofold degeneracy in arguing why either v1 or v2 must be
zero. The symmetries still hold, so we may assume again that

v′ =
(
a 0 0 d 0 f g 0

)
CBv′ =

(
d 0 0 a 0 g f 0

)
.

(5.4.22)

Either CBv′ is proportional to v′, in which case we are back to the situation from earlier, or it
is not. Assuming it is not, we may generate two new vectors

v1 = v′ + CBv′ =
(
a+ d 0 0 d+ a 0 f + g g + f 0

)
v2 = v′ − CBv′ =

(
a− d 0 0 d− a 0 f − g g − f 0

) (5.4.23)

These two vectors are both orthogonal

v†1 · v2 = (a∗ + d∗)(a− d) + (a∗ + d∗)(d− a) + (f∗ + g∗)(f − g) + (f∗ + g∗)(g − f) = 0

(5.4.24)

and G orthogonal

v†1 · Gv2 = (a∗ + d∗)(a− d) + (a∗ + d∗)(d− a)− (f∗ + g∗)(f − g)− (f∗ + g∗)(g − f) = 0,

(5.4.25)

and they are exactly of the same form as the vectors considered earlier. What is different is
that now we cannot assume either one to be zero. But this does not matter. Before we had a
two dimensional subspace, and we showed that in that subspace, an eigenvector must have the
form of v′, and proceeded from there. Now we a have four dimensional subspace, and since we
have no restriction that either v1 or v2 are zero, and they are orthogonal, they are simply two
eigenvectors spanning half the eigenspace. We generate the two others through B, and the four
vectors of the other eigenspace through F . From there we may then continue the analysis as
before.

1It is unclear at this point how to deal with this in a rigorous way. We will not discuss it further in this thesis.
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5.4.4 The Uq,Vq-matrices

Now that we know the explicit form of the eigenvectors, we may construct explicitly the matrix
B and by extension A. The columns of B are the eigenvectors of M so

(
Uq
−Vq

)
=



M+
3 +λ+

4λ+(λ++M+
3 )

0
M−3 +λ−

4λ−(λ−+M−3 )
0

0
M+

3 +λ+

4λ+(λ++M+
3 )

0
M−3 +λ−

4λ−(λ−+M−3 )

0
M+

3 +λ+

4λ+(λ++M+
3 )

0 − M−3 +λ−

4λ−(λ−+M−3 )
M+

3 +λ+

4λ+(λ++M+
3 )

0 − M−3 +λ−

4λ−(λ++M−3 )
0

0 − M+
2

4λ+(λ++M+
3 )

0 − M−2
4λ+(λ−+M−3 )

− M+
2

4λ+(λ++M+
3 )

0 − M−2
4λ−(λ−+M−3 )

0

− M+
2

4λ+(λ++M+
3 )

0
M−2

4λ−(λ−+M−3 )
0

0 − M+
2

4λ+(λ++M+
3 )

0
M−2

4λ−(λ−+M−3 )



, (5.4.26)

or

Uq =


1

4λ+
0 1

4λ− 0
0 1

4λ+
0 1

4λ−

0 1
4λ+

0 − 1
4λ−

1
4λ+

0 − 1
4λ− 0



Vq =



0
M+

2

4λ+(λ++M+
3 )

0
M−2

4λ−(λ−+M−3 )
M+

2

4λ+(λ++M+
3 )

0
M−2

4λ−(λ−+M−3 )
0

M+
2

4λ+(λ++M+
3 )

0 − M−2
4λ−(λ−+M−3 )

0

0
M+

2

4λ+(λ++M+
3 )

0 − M−2
4λ−(λ−+M−3 )


.

(5.4.27)

The matrices VqV†q and −VqU†q tell us about spin-spin correlations, as is shown in appendix C,
and are therefore written for future reference.

VqV†q =


V+ 0 0 V−
0 V+ V− 0
0 V− V+ 0
V− 0 0 V+

 , (5.4.28)

and

V± =
(Tav + T2)2

4λ+(λ+ +M+
3 )
± (Tav − T2)2

4λ−(λ− +M−3 )
, (5.4.29)

due to the normalization of the eigenvectors. Similarly

VqU†q =


0 U+ U− 0
U+ 0 0 U+

U− 0 0 U−
0 U+ U− 0

 . (5.4.30)

Again

U± =
(Tav + T2)

4λ+
± (Tav − T2)

4λ−
(5.4.31)
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5.5 Conclusion

We have used Holstein-Primakoff bosons to find the magnon excitations of the classical ground
state of the J1 − J2 square lattice. Just as in the classical case, the magnonic fluctuations pick
out the angles θ = 0, π between the Néel lattices as the ground states of the system. Contrary
to the classical case where only thermal fluctuations existed, the quantum fluctuations pick out
these angles even at zero temperature. It was also seen that the four independent spectra we
found are equivalent when folded into the reduced Brillouin zone, going from qi = −π/2 to
qi = π/2 suggesting we could abandon the four sublattice picture altogether and just define
H.P. bosons on a single lattice. This we will do in the next chapter to solve for the eigenvectors
of a general (arbitrary θ) state.



Chapter 6

Magnons on one lattice

Having established that the sublattice picture yields four copies of the same spectrum in the
reduced Brillouin zone, we will replicate the analysis based on Holstein-Primakoff bosons on a
single lattice. This analysis yields much simpler expressions which we aim to use to tackle the
first non-linear term in the 1/S-expansion.

As will be shown, quantum fluctuations do not destroy long range magnetic order for η < 1
but steadily become stronger as η −→ 1 and eventually destroy magnetic order at η = 1.
On the other, hand thermal fluctuations destroy the order for any η, in compliance with the
Mermin-Wagner theorem. By introducing an infrared cutoff, magnetic order is preserved even
for thermal fluctuations, but only when η < 1. At the fully frustrated point η = 1 the magnetic
order is destroyed both by quantum and thermal fluctuations and this cannot be mitigated by
any cutoff. The role of the infrared cutoff will be more fully explored in section 7.2, but amounts
to assuming the system is finite sized.

6.1 Canonical diagonalization

Starting from a Hamiltonian identical to the one in eq (5.1.4) except without sublattice indices,
and carrying out a similar analysis one finds the expression

H = Ecl0 +
S

2

∑
q

(
b†qbq + b−qb

†
−q

)
Jn +

(
bqb−q + b†−qb

†
q

)
Jan

= Ecl0 +
S

2

∑
q

(
b†q, b−q

)( Jn Jan
Jan Jn

)(
bq
b†−q

)
= Ecl0 +

S

2

∑
q

(
b†q, b−q

)
G
(

Jn Jan
−Jan −Jn

)(
bq
b†−q,

)
(6.1.1)

where

Jn = J1 (cos(qx) + cos(qy) + cos(θ)(cos(qx)− cos(qy))) + 4J2

Jan = J1 (cos(qx) + cos(qy)− cos(θ)(cos(qx)− cos(qy))) + 4J2 cos(qx) cos(qy),
(6.1.2)

Ecl0 = −2NJ2S(S + 1) and G =

(
1 0
0 −1

)
. Analogously to what was done in the case of four

sublattices, we now diagonalize M =

(
Jn Jan
−Jan −Jn

)
. One can check that the unnormalized

(with respect to G) eigenvectors are

ψ+ =

(
Jn + 4J2ωq
−Jan

)
, ψ− = Fψ+ =

(
−Jan

Jn + 4J2ωq

)
, (6.1.3)

54
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where

ωq =
√
J2
n − J2

an/4J2 =

√
1− ξ2

xξ
2
y + η2 cos(θ)(ξ2

x − ξ2
y) + 2η

(
cos2(θ/2)ξxξ

2
y + sin2(θ/2)ξyξ

2
x

)
,

(6.1.4)

and the eigenvalues of ψ± are ±4J2ωq. These eigenvalues are easily found by squaring M,
similarly to what was done in the case of four sublattices. As can be seen, ωq is identical to one
of the four spectra found in the four sublattice picture. Next, the G norm of the eigenvectors
are

N± = 〈ψ±|Gψ±〉 = ±2(4J2ωq)(Jn + 4J2ωq). (6.1.5)

It is the G-normalized eigenvectors that constitute the columns of the diagonalizing matrices.
Note that the vectors are normalized with respect to the absolute value of their G-norm, which
in this case is common between the two eigenvectors. We denote this N . Defining

B =
1√
N

(
Jn + 4J2ωq −Jan

Jan Jn + 4J2ωq

)
, (6.1.6)

we can diagonalize the Hamiltonian

H = Ecl0 + 2J2S
∑
q

(
b†q, b−q

)
GB
(
ωq 0
0 −ωq

)
B−1

(
bq
b†−q

)

= Ecl0 + 2J2S
∑
q

(
b†q, b−q

)
A
(
ωq 0
0 ωq

)
A†
(
bq
b†−q

)
= Ecl0 + 4J2S

∑
q

ωq

(
β†qβq +

1

2

)
,

(6.1.7)

where A = GBG and we used that M(q) = M(−q). The new operators are defined as(
β†q , β−q

)
=
(
b†q, b−q

)
A =

1√
N
(

(Jn + 4J2ωq)b
†
q + Janb−q, Janb

†
q + (Jn + 4J2ωq)b−q

)
, (6.1.8)

and one can check that these are in fact bosonic. Using A−1 = GA†G, we find the opposite
relation(

b†q, b−q

)
=

1√
N
(

(Jn + 4J2ωq)β
†
q − Janβ−q,−Janβ†q + (Jn + 4J2ωq)β−q

)
(6.1.9)

The ground state of the system is the vacuum of the Bogoliubov operators β, i.e. the state
annihilated by all Bogoliubov annihilation operators.

6.2 Magnon expectation values

Having found the ground state as the vacuum of Bogoliubov particles we may calculate expec-
tation values of magnons (the H.P. bosons). For notational simplicity we redefine Jn, Jan −→
(4J2)Jn, (4J2)Jan and so N −→ (4J2)2ωq(Jn + ωq). Using now that J2

n − J2
an = ω2

q , we find

〈b†qbq+Q〉 (T = 0) =
J2
an

N (q)
〈β−qβ†−q〉 δQ,0 =

(Jn + ωq)(Jn − ωq)
N (q)

δQ,0 =

[
Jn
2ωq
− 1/2

]
δQ,0,

(6.2.1)

〈bqb−q+Q〉 (T = 0) = −(Jn + ωq)Jan
N (q)

〈βqβ†q〉 δQ,0 = −Jan
2ωq

δQ,0. (6.2.2)
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These are the expectation values in the ground state of the system, and is thus what we should
expect at zero temperature. Going instead to finite temperatures the number of Bogoliubov
particles follow the Bose-distribution

〈β†qβq〉 = nB(β4J2Sωq) =
1

eβ4J2Sωq − 1
. (6.2.3)

In that case

〈b†qbq+Q〉 (T ) =
1

N (q)
〈(Jn + ωq)

2 β†qβq + J2
anβ−qβ

†
−q〉 δQ,0

= nB(β4J2Sωq)
(Jn + ωq)

2 + J2
an

N (q)
δQ,0 + 〈b†qbq〉 (T = 0)

= δQ,0

[
nB(β4J2Sωq) + coth(β2J2Sωq)

(
Jn
2ωq
− 1/2

)]
= δQ,0

[
coth(β2J2Sωq)

Jn
2ωq
− 1/2

]
(6.2.4)

〈bqb−q+Q〉 (T ) = −(Jn + ωq)Jan
N (q)

〈βqβ†q + β†−qβ−q〉

= − coth(β2J2Sωq)
(Jn + ωq)Jan
N (q)

δQ,0

= −δQ,0 coth(β2J2Sωq)
Jan
2ωq

= 〈b†−q+Qb†q〉 (T ). (6.2.5)

These results indicate that the expectation value of the magnon number operator does not only
depend on the usual Bose-function but is increased due to terms proportional to the quantum
fluctuations. If the quantum fluctuations were zero, the expectation value would be proportional
to nB as usual. On the contrary, the anomalous expectation values are only non-zero when
quantum fluctuations are non-zero, as one would expect.

6.3 Lowest order magnetization correction

The lattice averaged staggered magnetization correction of the whole lattice due to magnons is
to the lowest order given by [8]

∆mz = −〈b†ibi〉 = − 1

N

∑
k

〈b†kbk〉 . (6.3.1)

It is the correction to the spin polarization at each site due to magnons. Since the large
S expansion hinges on the spin lattice being ordered with only small fluctuations about the
ordered state we have implicitly assumed∑

k

〈b†kbk〉 � NS. (6.3.2)

In general ∆mz is non-zero both to temperature and quantum fluctuations. The quantum
fluctuations arise, as we have seen, due to the fact that magnons (represented by H.P. operators)
do not diagonalize the Hamiltonian, and the ground state of the excitations that do (Bogoliubov
particles) has a non-zero magnon number expectation value.
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6.3.1 Zero temperature correction

Assuming we are at T = 0, only the quantum fluctuations give rise to a non-zero ∆mz, and as
we have seen, the expectation value is given by eq. (6.2.1). Thus

− 1

N

∑
k

〈b†kbk〉 = − 1

N

∑
k

[
Jn
2ωk
− 1/2

]
=

1

2
− 1

8π2

∫
d2k

Jn
ωk

=
1

2
− 1

8π2

∫
d2k

[
η
(
ξx cos2

(
θ
2

)
+ ξy sin2

(
θ
2

))
+ 1
]√

1− ξ2
xξ

2
y + η2 cos(θ)(ξ2

x − ξ2
y) + 2η

(
cos2(θ/2)ξxξ

2
y + sin2(θ/2)ξyξ

2
x

) ,
(6.3.3)

where the integrand diverges at the points of vanishing energy. The divergence must be char-
acterized to understand whether the whole integral diverges. We will first consider the fraction
near the point k = (0, 0). In that case

ξi = cos(ki) ≈ 1− 1

2
k2
i , ξi = sin(ki) ≈ ki, (6.3.4)

and so the numerator is

Jn = η

(
ξx cos2

(
θ

2

)
+ ξy sin2

(
θ

2

))
+ 1 ≈ η

(
1− 1

2
(k2
x cos2(θ/2) + k2

y sin2(θ/2))

)
+ 1

= η + 1− η

2

(
cos2(φ) cos2(θ/2) + sin2(φ) sin2(θ/2))

)
k2 = η + 1− η

4
[1 + cos(2φ) cos(θ)]k2,

(6.3.5)

where in the second line the k-vector is written in polar coordinates and k2 = k2
x + k2

y. Next we
find

ω2
k = 1− ξ2

xξ
2
y + η2 cos(θ)(ξ2

x − ξ2
y) + 2η

(
cos2(θ/2)ξxξ

2
y + sin2(θ/2)ξyξ

2
x

)
≈ k2

x + k2
y − η2 cos(θ)(k2

x − k2
y) + 2η

(
k2
y cos2(θ/2) + k2

x sin2(θ/2)
)

= k2
(
1− η2 cos(θ) cos(2φ) + η(1− cos(2φ) cos(θ))

)
= k2(η + 1) (1− η cos(θ) cos(2φ)) ,

(6.3.6)

and so

ωk ≈ k
√
η + 1

√
1− η cos(θ) cos(2φ). (6.3.7)

Inserting these expressions in the diverging fraction of the integrand we find

η + 1

k
√

1 + η
√

1− η cos(θ) cos(2φ)
+O(k), (6.3.8)

and thus we have isolated the pole. Noting that the measure of the integral removes this
simple pole, we have shown that in 2 dimensions the integrand will not in fact have an infrared
divergence at k = (0, 0), so long as η < 1. If θ = 0, π then as η → 1 the result diverges. At
that point the large S expansion is invalid for any finite S, and so we cannot use the spin-wave
picture at all. In other words, at the maximally frustrated point η = 1 the quantum fluctuations
destroy magnetic order. But staying at η < 1, a finite S can always be chosen so as to satisfy
(6.3.2).

We can obtain the expression for k ≈ (π, π) by the mapping ξi → −ξi in the above expression,
which will yield an almost identical term in 1/k, namely

η + 1

k
√

1− η
√

1 + η cos(θ) cos(2φ)
. (6.3.9)
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Once again, the pole in k is simple, and will disappear in the integral in two-dimensions or
above. In this case though, the integrand diverges as η → 1 no matter what θ is. Finally, at
the points k = (0, π), (π, 0) we find that the 1/k terms are

η + 1

k
√

1− η cos(θ)
√

1 + η cos(2φ)
,

η + 1

k
√

1 + η cos(θ)
√

1− η cos(2φ)
, (6.3.10)

which both converge in 2 dimensions when integrated over k, but diverge in the integral over φ
when η = 1.

The conclusion drawn from this analysis is that ∆mz converges for η < 1, and diverges
as η → 1. In other words, quantum fluctuations become steadily stronger as η → 1, and
eventually destroy the long-range order of the system.

6.3.2 Finite temperature correction

We now consider the finite temperature magnetization correction. Due to the Mermin-Wagner
theorem, we should expect to see a divergence at q = (0, 0), destroying the long-range order
even for η < 1. Looking at (6.2.4) we find

∆mz(T ) =
1

2
− 1

2

∫
d2k

(2π)2
coth(2J2Sβωk)

Jn
ωk
. (6.3.11)

The second factor in the integrand has simple poles in k near the points of vanishing energy, as
long as η < 1 as we saw in the zero-temperature case. Once again assuming η < 1, we expand
the temperature dependent function near one of these points (by assuming ωk ≈ 0) and find

coth(2J2βSωk) =
eβ2J2Sωk + e−β2J2Sωk

eβ2J2Sωk − e−β2J2Sωk
≈ 1

2J2Sβωk
∝ T

2J2S

1

k
. (6.3.12)

In other words, for a finite β, another simple pole is added to the simple pole from Jn/ωk.
To show that the system behaves as predicted by the Mermin-Wagner theorem, nothing more
needs to be done. The second order pole leaves the integral divergent, and so no finite S
can be chosen so as to satisfy (6.3.2). Nevertheless, the actual calculation becomes relevant
when considering finite systems in which an infrared cutoff Λ can be made to circumvent the
pole. The Brillouin zone, which is the domain of integration, is halved in both directions (from
(−π, π) to (−π/2, π/2)), and all k outside the new zone are folded into it by the identification
k + ∆k → k, where ∆k is one of the vectors (π, π), (0, π), (π, 0). This amounts to the integral
splitting into four, each defined on the reduced Brillouin zone with k = 0 being respectively one
of the zero-energy points, (0, 0), (π, π), (0, π), (π, 0). Thus we obtain the expression

∆mz(T, η) =
1

2
− 1

2

∑
∆k

∫
Λ<k

d2k

(2π)2
coth(2J2βSωk+∆k)

Jn(k + ∆k)

ωk+∆k
. (6.3.13)

For later reference, the magnetization in the limit of decoupled lattices (η = 0) is

∆mz(T, 0) =
1

2
− 2

∫
Λ<k

d2k

(2π)2

coth(2J2βS
√

1− ξ2
xξ

2
y)√

1− ξ2
xξ

2
y

. (6.3.14)
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Like in section 5.3, we will define J2S
2 = J2, such that J2 is independent of S. Then

∆mz(T, 0) =
1

2
− 2

∫
Λ<k

d2k

(2π)2

coth(2J2

√
1− ξ2

xξ
2
y/TS)√

1− ξ2
xξ

2
y

=
1

2
− 2

∫
Λ<k

d2k

(2π)2

1 + 2nB(4J2

√
1− ξ2

xξ
2
y/TS)√

1− ξ2
xξ

2
y

≈ 1

2
− 2

∫
Λ<k

d2k

(2π)2

 1√
1− ξ2

xξ
2
y

+
TS

2J2

1

1− ξ2
xξ

2
y

 ,
(6.3.15)

where in the last line we assumed the large S limit J2 � TS. The temperature independent
part is

−m0
Q ≡

1

2
− 2

∫
d2k

(2π)2

1√
1− ξ2

xξ
2
y

= −0.197, (6.3.16)

where the integration limit was extended to Λ = 0, due to the integral converging. The tem-
perature dependent part is

−TS
2J2

m0
T ≡ −

TS

2J2

∫
Λ<k

d2k

(2π)2

2

1− ξ2
xξ

2
y

, (6.3.17)

which does not converge if Λ = 0, and so we should characterize the divergence. We split the
integral in two parts, with one such that the limit cos ki ≈ 1− 1

2k
2
i is valid. In that case

m0
T =

1

π

∫ Λ̃

Λ
dk k

1

k2
+

∫
Λ̃<k

d2k

(2π)2

2

1− ξ2
xξ

2
y

=
ln(1/Λ)

π
+ I(Λ̃), (6.3.18)

where I is an irrelevant constant. Thus we find

∆mz(T, 0) = −(m0
Q +

TS

2J2

m0
T ). (6.3.19)

This expression yields an upper bound on Λ in the finite temperature case due to the requirement
−∆mz � S, namely

T

2J2

ln(1/Λ)

π
� 1 =⇒ Λ−1 � ae

π2J2
T = ξ, (6.3.20)

where we defined ξ and reintroduced a for comparison of units. It is noteworthy that ξ is in
fact proportional to the coherence length of an antiferromagnet with only nearest neighbor in-
teractions and interaction strength J2 [8]. Also note that the cutoff is independent of S.

On Figure 6.1 is shown the magnetization correction as a function of η calculated by nu-
merical integration for a certain choice of parameters θ, βS and with a cutoff made at Λ = 0.1.
An important point is that the magnetization correction is negative and only becomes more
negative as η increases.

6.3.3 Small η expansion

We now calculate the integral in the expression for the magnetization correction in the limit of
small sublattice coupling η. To do this we consider the integrand of ∆mZ(T, η)

coth(2J2βSωk)
Jn
ωk

=
(
1 + 2nB(4J2ωk)/TS

) ηEk + 1

ωk
≈
(

1

ωk
+
TS

2J2

1

ω2
k

)
(ηEk + 1), (6.3.21)
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Figure 6.1: A representative example of the magnetization correction as a function of η. Param-
eters chosen: θ = 0, βS = 5. As can be seen, the perpetually negative magnetization correction
diverges as η → 1.

where we defined Ek = cos2(θ/2)ξx + sin2(θ/2)ξy and assumed the large S limit. Define

a = cos(θ)(ξ2
x − ξ2

y)

b = cos2(θ/2)ξxξ
2
y + sin2(θ/2)ξyξ

2
x

c = 1− ξ2
xξ

2
y ,

(6.3.22)

and expand the spectrum in η, keeping only up to second order

1

ωk
≈ 1√

c
− b

c3/2
η +

3b2 − ac
2c5/2

η2,

1

ω2
k

≈ 1

c
− 2b

c2
η +

4b2 − ac
c3

η2.

(6.3.23)

Using these expansion we may calculate the integral. To simplify the calculation we can use
that some of the terms of the integrand will integrate to zero. It turns out that this is the
case for all the terms which are first order in η. To see this note that b has terms linear in ξi.
Under the summation over ∆k, ξi may change sign (for example if ∆k = (π, 0), ξx changes sign
relative to the case ∆k = (0, 0)). Therefore, if b is not multiplied with a factor with the same
property, it will add to zero under

∑
∆k. Ek has the same property, and∑

∆k

bEk =
∑
∆k

[
cos4(θ/2)(ξxξy)

2 + sin4(θ/2)(ξyξx)2 + 2 cos2(θ/2) sin2(θ/2)ξxξy(ξxξy)
2
]

=
∑
∆k

[
cos4(θ/2)(ξxξy)

2 + sin4(θ/2)(ξyξx)2
]
.

(6.3.24)

while ∑
∆k

b2 =
∑
∆k

[
cos4(θ/2)(ξxξ

2
y)

2 + sin4(θ/2)(ξyξ
2
x)2
]
. (6.3.25)

Under the integration we are free to exchange x and y. This means that the two integrand
terms above can further be reduced to

bEk =
1

2

(
cos4(θ/2) + sin4(θ/2)

) (
(ξxξ

2
y)

2 + (ξyξ
2
x)2
)

=
1

4

(
1 + cos2 θ

) (
(ξxξy)

2 + (ξyξx)2
)
,

b2 =
1

4

(
1 + cos2 θ

) (
(ξxξ

2
y)

2 + (ξyξ
2
x)2
)
.

(6.3.26)
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Next we note that a changes sign under the exchange x ↔ y, and so integrates to zero under
the integral. To lowest non-zero order in η, all this leaves us with the integrand(

1

ωk
+
TS

2J2

1

ω2
k

)
(ηEk + 1) ≈

([
1√
c
−
(

3b2 − 2cbEk
2c5/2

)
η2

]
+
TS

2J2

[
1

c
−
(

4b2 − 2cbEk
c3

)
η2

])
,

(6.3.27)

which is invariant under the ∆k sum. Thus

∆mz(T, η)−∆mz(T, 0)

≈ −η2(1 + cos2 θ)
1

2

∫
Λ<k

d2k

(2π)2

3[ξ2
xξ

4
y + ξ2

yξ
4
x]− 2(1− (ξxξy)

2)
[
ξ2
xξ

2
y + ξ2

yξ
2
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4
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4
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2
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2
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≡ −η2(1 + cos2 θ)

(
λQ +

TS

2J2

λT

)
.

(6.3.28)

The first integral converges as Λ→ 0 and in this limit we find λQ = 0.036. The second integral
diverges as Λ → 0, and we must characterize the divergence. For small k we may expand the
integrand

1

2

4
(
ξ2
xξ

4
y + ξ2

yξ
4
x

)
− 2(1− (ξxξy)

2)
[
ξ2
xξ

2
y + ξ2

yξ
2
x

]
(1− (ξxξy)2)3 ≈

2(k4
x + k4

y)− (k2
x + k2

y)
[
k2
y + k2

x

](
k2
x + k2

y

)3
=

cos2(2φ)

k2
.

(6.3.29)

where we switched to polar coordinates from kx, ky. Thus

λT = const. + ln(1/Λ)

∫ 2π

0

dφ

(2π)2
cos2(2φ) = const. +

ln(1/Λ)

4π
, (6.3.30)

where the constant term is positive, but otherwise irrelevant.

We have now found the contributions to the magnetization correction ∆mz(T, η) to smallest
non-zero order in η. The η dependent part is

∆mz(T, η)−∆mz(T, 0) ≈ −(1 + cos2 θ)η2

[
λQ +

TS

2J2

λT

]
. (6.3.31)

This function depends non-trivially on θ and T . We note that the function is only valid in
the large S or high temperature limit, where bosonic statistics are approximately those of
distinguishable classical particles.

6.3.4 Conclusion

Defining the Holstein-Primakoff bosons on a single lattice we have found expressions for the
general (θ dependent) magnonic correlation functions, 〈b†kbk〉 and 〈b†−kb

†
k〉. Using these we found

the magnetization correction ∆mz(η, θ). As expected, this diverges for non-zero temperature in
correspondence with the Mermin-Wagner theorem, since ∆mz � S if the system is to remain
ordered. To circumvent the theorem, an infrared cutoff Λ was introduced which is to be used
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in finite sized systems. Using such a cutoff, the magnetization correction was found to lowest
order in η and only the temperature dependent term diverges as Λ → 0. The magnetization
correction is important for two reasons. First it shows explicitly that long range magnetic order
breaks down for the J1-J2 square lattice. The main point though, is that it shows the existence
of a non-zero magnon density in the system even at zero temperature. Using this as inspiration
we make a mean-field approximation of the magnonic interaction term in chapter 7, and see
how this affects the spectrum of the magnons.



Chapter 7

Magnon interactions and an effective
field theory

7.1 Interaction terms in the one sublattice picture

In this section the next order in the 1/S expansion of H is found. These are terms are bi-
quadratic in H.P. bosons and can be thought of as interactions between magnons. As we shall
see, the form of the interaction terms are quite general, with several anomalous terms (terms
with a non-equal number of creation and annihilation operators), which makes it difficult to
incorporate them in the theory. What we will do is assume mean fields equal to those obtained
from zero-temperature linear spin-wave theory, and it turns out that this amounts to a renor-
malization of S.

In the one sublattice picture, the next order in the 1/S expansion of the spin operators
give the terms

O
(

(1/S)0
)

(S̃xi S̃
x
j ) = −1

8

[(
b†ibibi + b†ib

†
ibi

)(
bj + b†j

)
+
(
bi + b†i

)(
b†jbjbj + b†jb

†
jbj

)]
O
(

(1/S)0
)

(S̃yi S̃
y
j ) =

1

8

[(
b†ibibi − b

†
ib
†
ibi

)(
bj − b†j

)
+
(
bi − b†i

)(
b†jbjbj − b

†
jb
†
jbj

)]
O
(

(1/S)0
)

(S̃zi S̃
z
j ) = b†ibib

†
jbj ,

(7.1.1)

where i, j are indices denoting the site of the spins.
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7.1.1 Expression for the interaction terms

Once again, the N.N. term of the Hamiltonian is found to be

W1 = −J1

2

∑
〈i,j〉


(
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†
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)(
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)
4
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4
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4
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2

)(
b†ib
†
ibibj + b†ibibib
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+
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]
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(7.1.2)

where in the last step the expression was Fourier transformed and subsequently the summation
over i performed. Finally, doing the sum over δ and renaming the momentum indices we find

W1 = − J1

2N
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(7.1.3)

where to ease notation we defined

Ep(θ) = cos(px) cos2

(
θ

2

)
+ cos(py) sin2

(
θ

2

)
,

Ep(θ) = cos(px) sin2

(
θ

2

)
+ cos(py) cos2

(
θ

2

)
.

(7.1.4)
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Next is the N.N.N. interaction term, which is

W2 = −J2

2

∑
〈〈i,j〉〉


(
b†ibibi + b†ib

†
ibi

)(
bj + b†j

)
4

+

(
b†ibibi − b

†
ib
†
ibi

)(
bj − b†j

)
4

+ b†ibib
†
jbj


= −J2

2

∑
〈〈i,j〉〉

[
b†ibibibj + b†ib

†
ibib

†
j

2
+ b†ibib

†
jbj

]

= − J2

4N

∑
pkq

[
4 cos(px) cos(py)

(
b†p+qbpb−kbk+q + b†k+qb

†
−kb
†
pbp+q

)
+8 cos(qx) cos(qy)b

†
p+qbpb

†
kbk+q

]
.

(7.1.5)

7.1.2 Mean field approximation of W1 and W2

At this point we will make a mean field approximation of W1 and W2 inspired by the magnon
expectation values (6.2.4) and (6.2.5). We make the approximations

b†p+qbpb
†
kbk+q ≈ δq0

[
b†pbp 〈b†kbk〉+ b†kbk 〈b†pbp〉

]
+ C1, (7.1.6)

b†p+qbpb−kbk+q ≈ δkp
[
b−pbp 〈b†p+qbp+q〉+ b†p+qbp+q 〈bpb−p〉

]
+ C2, (7.1.7)

where we will not be concerned with the constants C1, C2. Note that due to δq,0 in the first
equation, the third term inW1 will always be zero when making this kind of mean-field. Inserting
the two other terms in W1 we find

WMF
1 = − J1

2N

∑
pk

[
2Ep(θ) 〈b†kbk〉 b†pbp + Ep(θ)

(
〈b†kbk〉 b−pbp + 〈b†kbk〉 b†pb

†
−p

)
+ 2Ep(θ) 〈b†pbp〉 b†kbk + Ep(θ)

(
〈b−pbp〉 b†kbk + 〈b†pb†−p〉 b†kbk

)]
= ecl1 +

J1Sc
2

∑
p

[
Ep(θ)

(
b†pbp + b−pb

†
−p

)
+ Ep(θ)

(
b−pbp + b†pb

†
−p

)]
− 4J2η∆1

∑
k

b†kbk,

(7.1.8)

where Sc = −
∑
k〈b
†
kbk〉

N , ecl1 ∝
∑

p Ep(θ) = 0 and

∆1 =
1

4N

∑
p

2Ep(θ) 〈b†pbp〉+ Ep(θ) 〈b−pbp + b†pb
†
−p〉 . (7.1.9)

The factor Sc is nothing but the lowest order magnetization correction, ∆mz, as seen in section
6.3. For W2 we find that the mean field approximation yields

WMF
2 = − J2

4N

∑
pk

[
4 cos(px) cos(py)

(
b−pbp + b†pb

†
−p

)
〈b†kbk〉+ 8 〈b†kbk〉 b†pbp

+ 4 cos(px) cos(py)b
†
kbk 〈b−pbp + b†pb

†
−p〉+ 8 〈b†pbp〉 b†kbk

]
= ecl2 +

J2Sc
4

∑
p

[
4 cos(px) cos(py)

(
bpb−p + b†−pb

†
p

)
+ 4

(
b†pbp + b−pb

†
−p

)]
− 4J2∆2

∑
k

b†kbk,

(7.1.10)
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with ecl2 = J2NSc = J2N∆mz(T, η) and

∆2 =
1

4N

∑
p

cos(px) cos(py) 〈b−pbp + b†pb
†
−p〉+ 2 〈b†pbp〉 . (7.1.11)

Now using

2J1Ep(θ) + 4J2 = Jn, 2J1Ep(θ) + 4J2 cos(px) cos(py) = Jan, (7.1.12)

we obtain

WMF = ecl0 − 4J2∆
∑
p

b†pbp +
Sc
4

∑
p

(
b†pbp + b−pb

†
−p

)
Jn +

(
bpb−p + b†−pb

†
p

)
Jan, (7.1.13)

where ecl0 ≡ ecl1 + ecl2 and ∆ = η∆1 + ∆2. Thus the mean field approximation yields one term
with a form identical to the original magnon Hamiltonian and another proportional to ∆. The
first term simply renormalizes the spin, S → S + 1

2Sc = S + 1
2∆mz(T, η). The other term,

proportional to ∆ is identical to a chemical potential. The complete Hamiltonian is then

H = Ecl0 + ecl0 +
S + 1

2Sc

2

∑
p

(
b†pbp + b−pb

†
−p

)(
Jn −

8J2∆

S + 1
2Sc

)
+
(
bpb−p + b†−pb

†
p

)
Jan,

(7.1.14)

Which diagonalizes to

H = Ecl0 + ecl0 + 4J2(S +
1

2
Sc)
∑
p

ωp

(
β†pβp +

1

2

)
, (7.1.15)

and

ωp =

√
1− ξ2

xξ
2
y + η2 cos(θ)(ξ2

x − ξ2
y) + 2η

(
cos2

(
θ

2

)
ξxξ

2
y + sin2

(
θ

2

)
ξyξ

2
x

)
+

(
∆

S

)2

− ∆Jn
4J2S

.

(7.1.16)

This spectrum is problematic for the following reason. For simplicity let S � ∆, such that we
can ignore the term (∆/S)2. Since the terms not proportional to ∆ cancel at certain points
in the Brillouin zone (at p = (0, 0), (0, π), (π, 0), (π, π)), and since Jn is positive in the whole
Brillouin zone, the spectrum will become imaginary in the vicinity of these points. This does
not make sense, and is a sign that terms in the Hamiltonian with p near these points cannot be
canonically diagonalized, since the Hamiltonian, which is hermitian, must have real eigenvalues
(see discussion at the end of section 5.2.2). The terms with p sufficiently far away from these
points, e.g. where

∆Jn
4J2S

� 1− ξ2
xξ

2
y + η2 cos(θ)(ξ2

x − ξ2
y) + 2η

(
cos2

(
θ

2

)
ξxξ

2
y + sin2

(
θ

2

)
ξyξ

2
x

)
, (7.1.17)

are still canonically diagonalizable. In other words, only above an infrared cutoff can we still
diagonalize the Hamiltonian in terms of Bogoliubov excitations. Despite this we can make the
cutoff arbitrarily small by increasing S, except in the case where η = 11. From now on, whenever
an infrared cutoff is made, we will assume

ωp =

√
1− ξ2

xξ
2
y + η2 cos(θ)(ξ2

x − ξ2
y) + 2η

(
cos2

(
θ

2

)
ξxξ

2
y + sin2

(
θ

2

)
ξyξ

2
x

)
(7.1.18)

.
1At this point whole lines in the Brillouin zone fulfill 1 − ξ2xξ

2
y + η2 cos(θ)(ξ2x − ξ2y) +

2η
(

cos2
(
θ
2

)
ξxξ

2

y + sin2
(
θ
2

)
ξyξ

2

x

)
= 0
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7.1.3 Mean field correction to the free energy

We will now determine whether the mean field assumptions made in section 7.1.2 will decrease
or increase the free energy (5.3.7). The free energy after the renormalization of S is

F = Ecl0 + ecl0 + TN ln(2) + T
∑
q

ln

(
sinh

(
2J2[S + 1

2∆mz(T, η)]ωq

T

))
. (7.1.19)

Assuming −∆mz(T, η)� S (an assumption that can generally only be valid on a finite lattice,
as seen in 6.3.2) we can expand the free energy

F = F0 +NJ2∆mz(T, η) + TN
∆mz(T, η)

2S

∑
∆q

∫
Λ<q

d2q

(2π)2
x coth(x), (7.1.20)

where x = 2J2βSωq+∆q. The integral∫
Λ<q

d2q

(2π)2
x coth(x) (7.1.21)

is manifestly positive since x is positive over the whole integration domain. Therefore the sign
of the free energy correction

F − F0 = N

2J2S +
∑
∆q

∫
Λ<q

d2q

(2π)2
x coth(x)

 ∆mz(T, η)

2S
, (7.1.22)

depends solely on the sign of the magnetization correction, ∆mz. As seen in section 6.3.2, to
lowest non-zero order in η, ∆mz is negative and so in the limit η2 � 1, the free energy is lowered
by the magnetization correction and the mean field theory is justified. We end by noting that
the self-consistency equation of the magnetization correction is

∆mz(T, η) =
1

2
− 1

2

∑
∆k

∫
Λ<k

d2k

(2π)2
coth(2J2β[S +

1

2
∆mz(T, η)]ωk+∆k)

Jn(k + ∆k)

ωk+∆k
. (7.1.23)

7.2 Effective field theory

In this section we will reformulate the Hamiltonian of the J1-J2 model in terms of new variables
that we call Néel fields, and in terms of these fields we go to the continuum limit of the model.
Due to the Mermin-Wagner theorem, the magnetic correlation length, ξ is finite, and so the
new Néel fields are uncorrelated at length scales greater than ξ. If an intermediate length scale
1/Λ such that ξ � Λ � a−1 exists, then regions of size Λ−1 are approximately magnetically
ordered2. We can define spin waves within these regions and they contribute an effective term
to the action due to their effect on the free energy. Following [1] this contribution will be found
in the limit of η2 � 1. Then by incorporating the magnon interactions through the mean field
approximation of section 7.1.2 we derive a correction to the strength of the effective term in the
action and see how this affects the critical temperature predicted by Chandra, Coleman and
Larking [1]. The CCL critical temperature disagrees with Monte Carlo simulations made by
Weber et al. [5], and the working hypothesis in this section is that the magnon interactions will
lessen this disagreement.

2Where the magnetic order is the ground state of the classical J1-J2 model.
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7.2.1 J1-J2 model in continuum limit

We will first reformulate the Hamiltonian of the J1-J2 model. The Hamiltonian is

H =
S2

2

∑
i.e1

J1Ωi ·Ωi+e1 +
S2

2

∑
i,e2

J2Ωi ·Ωi+e2 , (7.2.1)

where e1 couples spins on different sublattices, while e2 couples spins on the same sublattice.
The reformulation essentially amounts to defining the vectors

n1(ri) = (−1)ix+iyΩ(ri), ri ∈ sublattice 1,

n2(ri) = (−1)ix+iyΩ(ri), ri ∈ sublattice 2,
(7.2.2)

and writing the Hamiltonian in terms of ni. The rationale behind this is that ni does not change
sign between nearest neighbors on the same sublattice in the magnetically ordered state. We
have not assumed that it is the case that the spins order. It is merely a notational rewriting
which proves useful. We will call ni(ri) Néel fields even though they are strictly only Néel
vectors when the system orders.

The interaction between spins on the same sublattice in the original Hamiltonian is equiva-
lent to a coupling of the Néel field at different points. Making an expansion around the point
ri on sublattice l we find

Ω(ri) ·Ω(ri+e2) = −nl(ri) · nl(ri+e2) =
1

2
[nl(ri)− nl(ri + ae2)]2 − 1

≈ 1

2
[nl(ri)− nl(ri) + (∂µnl)ae

µ
2 ]

2 − 1 =
a2

2
(∂µnl)(∂νnl)e

ν
2e
µ
2 − 1

(7.2.3)

where in the first line we used that Ω2 = 1 and where e2 = ±(1, 1),±(1,−1). Also, a is the
lattice constant which is later taken to zero (the continuum limit). The greek letters denote
the lattice indices x, y and the summation over them is done implicitly when they are repeated.
When doing the summation over e2 we find∑

e2

eµ2e
ν
2 = 4δµν . (7.2.4)

Next is the interaction between spins on different sublattices. To rewrite this we will consider
the sum of four terms which are identical under the summation over lattice sites

n1(ri + ae1) · (n2(ri)− n2(ri + a(e1 + ê1)))− n1(ri + aê1) · (n2(ri)− n2(ri + a(e1 + ê1)))

≈ [n1(ri + ae1)− n1(ri + aê1)] (∂µn2(ri))a(eµ1 + êµ1 )

≈ a2(∂µn1(ri + ae1))(∂νn2(ri))(e
ν
1 − êν1)(eµ1 + êµ1 ),

(7.2.5)

where e1, ê1 ∈ {±(1, 0),±(0, 1)} and ê1 · e1 = 0. The summation over ê1 is∑
ê1

(eν1 − êν1)(eµ1 + êµ1 ) =
∑
ê1

(eν1e
µ
1 − êν1 êµ1 ), (7.2.6)

and recalling that there is a relative sign between n1(ri+ae1) with e1 = ±(1, 0) and n1(ri+ae1)
with e1 = ±(0, 1) we find∑

e1,ê1

(∂µn1(ri + ae1))(∂νn2(ri))(e
ν
1 − êν1)(eµ1 + êµ1 )

= 4 [(∂xn1)(ri + ae1)(∂xn2(ri))− (∂yn1(ri + ae1))(∂yn2(ri))] ,

(7.2.7)
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Thus the final expression of the Hamiltonian becomes

H = a2S2
∑
i,l

J2(∂µnl)
2 + a2S2

∑
i

J1 [(∂xn1)(∂xn2)− (∂yn1)(∂yn2)]

=
1

2g′

∫
d2x

∑
l

(∂nl)
2 + 2η [(∂xn1)(∂xn2)− (∂yn1)(∂yn2)] ,

(7.2.8)

where the continuum limit of a→ 0 turns the sums into integrals, and where g′ ≡ 1
2J2S2 . This

whole procedure could have just as well have been done in the coherent state path integral, and
assuming that static (τ -independent) fields dominate the partition function (an assumption
which is only valid for large values of T or S[8]), we would have obtained

Z =

∫
Dn e−S , (7.2.9)

with the action

S =
1

2g

∫
d2x

∑
l

(∂nl)
2 + 2η [(∂xn1)(∂xn2)− (∂yn1)(∂yn2)] , (7.2.10)

and g ≡ T
2J2S2 .

RLπ/2

Figure 7.1: Effect of a global rotation RLπ/2 in the lat-
tice plane. If we choose a convention such that the
Neel vectors for each sublattice is the one defined on
the middle stripe we see that the Néel vector of one
of the sublattices changes sign under the transforma-
tion.

Naively the second term of this ac-
tion does not seem to be invariant un-
der all lattice symmetry operations (e.g.
π/2-rotations), but under a π/2-rotation
about a spin on sublattice 1 (for exam-
ple) and the operation n2 → −n2 the ac-
tion is invariant[1]. In other words, a π/2
rotation about a spin on one sublattice
changes the sign of the Néel vector on the
other, and the action is invariant under
rotations when taking this into account.
The fact that it is the partial derivative
in the y direction that has a negative sign

in the action is a consequence of which spin on each of the two sublattices one has chosen to
align the Néel vector with.

7.2.2 Magnonic correction to the action

In the thermodynamic limit there will be no true long range magnetic order of the spins in the
system. Therefore a finite coherence length, ξ exists. Assuming that an intermediate length
scale Λ−1 exists such that

a� Λ−1 � ξ, (7.2.11)

a region of size Λ−1 will be approximately magnetically ordered like the classical J1-J2 lattice
for η < 1. Within these regions magnons contribute a term to the free energy

F0 = E0 +N
∑
∆q

∫
Λ<k

d2q

(2π)2
T ln (sinh (2J2βSωq+∆q)) (7.2.12)
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where the infrared cutoff Λ naturally appears due to the finiteness of the region of order.
Assuming now that η � 1 we can expand the integrand in powers of η. The first order term in
η is zero, but the second order term has a non-zero component

δF0(η) = F0(η)− F0(0) = −NE1(T )
[
1 + cos2 θ

]
, (7.2.13)

where E1(T ) =
J2
1S

2

2J2

[
γQ

1
2S + γT

T
2J2S2

]
and

γQ,T =

∫
d2q

(2π)2

(ξxξ
2
y)

2 + (ξyξ
2
x)2

4(1− (ξxξy)2)αQ,T
, (7.2.14)

where αQ = 3/2 and αT = 2 such that γT = 0.159 and γQ = 0.130. Note that the integration
limits were extended to Λ = 0. This is merely due to the fact that these particular integrals
do not diverge in this limit, and so we formally extend the limit. It does not mean that the
magnetically orderd region has been extended to infinity, and it would be invalid if the extension
changed the qualitative nature of γQ,T e.g. by changing the sign. Now the angle θ is the angle
between the Néel vectors of the two sublattices. By reexponentiating this free energy correction,
and using the fact that cos θ = n1 · n2 we obtain a correction to the action

S′ = −NE1(T )

Ta2

∫
d2x(n1 · n2)2. (7.2.15)

This term which emerges as an effective correction due to the existence of spin-waves in the
ordered regions prefers to either align or anti-align the Néel vectors of the system. The aligned
or anti-aligned states are now the ground states of the system, and if the barrier between these
states becomes big enough the system effectively undergoes spontaneous symmetry breaking[1].

We will mention something which the original article by CCL writes which we disagree
with. It is not a mistake but a misprint, and is mentioned here only to avoid confusion if one
compares these results with those of the original article. The integrals for γQ,T yield almost the
same results as CCL write except for a factor of 1/4 which they do not have3. But when doing
the integration suggested by the CCL the result in fact diverges, which we interpret to there
being a misprint in the article.

Finally one more comment on the article. It seems the barrier height in the article is
proportional to ξ(T )2, the magnetic correlation length, and not Λ−2. Since N is proportional
to the area of the domain of magnetic order, N ∼ Λ−2, and it should be Λ−2 that is included in
the barrier height. It could be that this is simply a way of proceeding with the calculation, since
CCL have an expression for ξ(T ). It could be argued, that if ξ(T ) is very large, Λ−1 ∼ √ξ could
serve as an intermediate length scale. In that case one could proceed in the article without
many changes. We have not otherwise solved this apparent discrepancy and will from now on
treat Λ−1 ∼ ξ.

3This factor also appears in the calculation made by Weber et al.[5].
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7.2.3 Nematic moments

W (T ) � T

Figure 7.2: The nematic moments of the system
become stable at the values ±1 when W (T ) �
T . The moments can now substantiate non-zero
average nematicity of the system.

With the term (7.2.15), the action of the
system affords the following interpretation of
the physical system. The Néel fields couple
through (n1 · n2)2, and minimize the action
by aligning or anti-aligning. The nematic
moment at each point in the system is de-
fined as n1 · n2 = cos(θ), which ranges be-
tween ±1. For a small barrier size the mo-
ment can change in both sign and strength
without decreasing the action, but when the
barrier becomes of the order of the tempera-
ture, that is when W (T ) = E(T )N/a2 ∼ T ,
the moments start to stabilize. As the barrier
increases, it becomes increasingly more diffi-
cult to have other nematicity than ±1 at each
point in the system. The nematic moments
couple through the rest of the action, 7.2.10, and it is possible for a nematic phase transition
to occur. On the illustration of Figure 7.2 the nematicity is represented by lines where hori-
zontal/vertical lines represent nematicity ±1 while lines tilted in between have a value between
±1.

7.2.4 Free energy correction in small η limit

We will now derive the magnon correction term while incorporating interactions through the
mean field theory of section 7.1.3. As seen in that section the free energy in the renormalized
theory is

F (T, η) = E0 +N2J2S0
∆mz(T, η)

2S0
+ T

∑
q

ln

(
sinh

(
2J2

Sωq
T

))
. (7.2.16)

where S = S0 + 1
2∆mz(T, η) and S0 is the non-renormalized spin. Going to the large T limit

F (T, η) ≈ E0 +N2J2S0
∆mz(T, η)

2S0
+ 2J2S

∑
q

ωq + T
∑
q

ln (ωq) + T
∑
q

ln (4J2S/T ) ,

(7.2.17)

and finally expanding in η assuming η2 � 1

F (T, η) ≈ F (T, 0)−N2J2S
2
0η

2(1 + cos2 θ)

[
1

2

(
λQ

1

S0
+ λT

T

2J2S2
0

)(
1

S0
+ κQ

1

S0
+ κT

T

2J2S2
0

)
−
(
γQ
S0 + ∆mz(T, 0)

2S2
0

+ γT
T

2J2S2
0

)]
(7.2.18)

where

F (T, 0) = E0 +N2J2S0
∆mz(T, 0)

2S0
+NT

∑
∆q

∫
Λ<q

d2q

(2π)2
ln

(
sinh

(
2J2βS0

√
1− (ξxξy)2

))
,

(7.2.19)
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is the η-independent free energy and where κQ = 4
∫ d2q

(2π)2

√
1− (ξxξy)2 = 0.842 and κT =

4
∫ d2q

(2π)2
= 1. Thus the free energy with renormalized S and Ji = JiS

2
0 is

F (T, η) = F (T, 0)−NE(T )(1 + cos2 θ) (7.2.20)

with

E(T ) =
J1

2

2J2

(
γQ
S0 + ∆mz(T, 0)

2S2
0

+ γT
T

2J2

+
1

2

(
λQ

1

S0
+ λT

T

2J2

)[
(1 + κQ)

1

S0
+ κT

T

2J2

])
,

(7.2.21)

and the parameters are listed in Figure 7.3.

γQ 0.130

γT 0.159

λQ 0.036

λT
ln(1/Λ)

4π

κQ 0.842

κT 1

Figure 7.3: Numerical parameters of the magnonic free energy correction.

7.2.5 Critical temperature of the nematic phase transition

According to CCL, an Ising phase transition to a phase with non-zero average nematicity σ = n1·
n2 occurs at the critical temperature Tc = 8πJ2

z0 ln(Tc/E(Tc))
, with z0 = 2η/

(
arcsin(η) + η

√
1− η2

)
.

The assumption is that the the phase transition will occur when the barrier height, W (T ) =
NE(T )
a2

is of the order of the temperature, W (Tc) ∼ Tc. In [1], they give an estimate of the mag-

netic correlation length ξ ∼ ae2π/(gz0). Making the assumption that the domains of approximate
magnetic order are of size ξ leads to N ∼ ξ2 and the barrier height

W (T ) ∼ E(T )e4π/(gz0). (7.2.22)

Thus at the critical temperature estimated by CCL

e8πJ2/(z0Tc) = Tc/E(Tc) =⇒ Tc =
8πJ2

z0 ln (Tc/E(Tc))
. (7.2.23)

Inserting the cutoff Λ = e−
4πJ2z0
T , and using Eq. (7.2.21) in the large S0 limit we find

E(T )/T ≈ η2

(
γT +

1

2

η

arcsin(η) + η
√

1− η2
κT

)
, (7.2.24)

and thus

tc/J1 =
η−1

z0 ln

(
η−2

[
γT + 1

2
η

arcsin(η)+η
√

1−η2
κT

]−1
) ,

(7.2.25)

where tc ≡ Tc/4π. On Figure 7.4b is shown the critical temperature before and after the mean
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(a)

0 1 2 3 4
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Figure 7.4: Left: Monte Carlo results of the critical temperature of the nematic phase transition.
For large J2, the critical temperature scales linearly with J2 but drops to zero with infinite slope
as we approach the critical point 2J2/J1 = 1. Figure taken from the paper by Weber et al.[5].
Right: The regular CCL result for the critical temperature tc,0 and the mean-field corrected
critical temperature tc. The mean field correction does not seem to better the discrepancy
between CCL and Monte Carlo calculations, but in fact makes the low J2 critical temperature
behavior further deviate from Monte Carlo.

field correction and (for reference) the numerically calculated critical temperature made in [5].
It is clear that the mean-field assumption, made to lessen the gap of the low J2 behavior of the
critical temperature between CCL and Monte Carlo, actually worsens it. The hypothesis that
the incorporation of the magnonic interactions through the mean field approximation of section
7.1.3 yields a more accurate critical temperature is thus wrong.

It is not clear why incorporating interactions through our choice of mean field worsened
the critical temperature prediction. One could argue that the critical temperature calculated
by CCL is not valid as we approach η → 1 because the magnon correction to the action was
found in the small η limit and only the lowest order contribution in an η expansion was found.
Since all corrections to the field theory made from the mean-field theory have also only been
found in the small η, the compounding of different terms that are all invalid in the regime of
interest could be the reason why the new result is worse than the old. In fact, as we have seen,
the magnetization correction diverges in the limit η → 1, while this is not the case when only
taking into account the lowest order terms in η. It seems at least plausible that this diverging of
the magnetization correction is what destroys the nematic ordering in the system. At this point
this is of course only speculation, but it might be a relevant starting point in future research.
It is also possible that CCL made a wrong estimate of the critical temperature. As we have
seen they estimate that the phase transition occurs when the nematic barrier height, W (T ), is
of the order of the temperature, but this need not be the case. In appendix B we show how
one can arrive at a field theory of not only the Néel fields but of a nematic field σ through
a Hubbard-Stratonovich transformation of the coupling term (n1 · n2)2 as was also done by
Tsvelik [11]. An equation for the critical temperature is found. Unfortunately the calculation
has not been finished but this could also be ground for future work.

7.3 Conclusion

We have found the expression for the first order term in the 1/S expansion of the spin operators
represented by H.P. operators, and thus found the corresponding term in J1-J2 Hamiltonian.
These were two-particle terms (with four bosonic operators), and a mean field approximation
of them, inspired by the non-zero single-particle magnonic correlation functions, turned out to
lower the free energy of the system, at least to smallest order in η. Crucially we limited the
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system to a finite sized one, so as to circumvent the Mermin-Wagner theorem. The effect of
the mean field approximation was primarily a renormalization of S to S + ∆mz/2, but it also
produced a term which made the spectrum imaginary at certain points in the Brillouin zone.
This term turns out to be insignificant in finite sized systems with a sufficiently large S.

Following [1] with the renormalized parameters, an effective action for Néel fields ni in an
infinite system was found. The critical assumption made was for the existence of an intermediate
length scale Λ−1, between the correlation length of the Néel fields and the lattice constant. The
magnons existing within domains of size Λ−1 then contribute a term ∼ (n1 ·n2)2 to the action.
In such a system, a phase transition takes place with order parameter σ = n1 ·n2 and the critical
temperature found in[1] was corrected with the renormalized parameters. This correction did
not solve the discrepancy between Monte-Carlo calculations and the original CCL prediction in
the low J2 regime but actually worsened it. It would therefore seem that this is a bad mean-field
choice and one could try another mean-field to see whether this will do better.



Chapter 8

Conclusion and Outlook

In this thesis we have explored the nematic phase transition in the J1-J2 square lattice first
discussed by Chandra, Coleman and Larkin in 1990 [1]. In their paper, CCL showed that spin
waves in locally magnetically ordered regions affect the effective action of the system. The
underlying assumption was that a length scale Λ−1 which is much smaller than the magnetic
correlation length, i.e. Λ−1 � ξ exists. The effective term was interpreted in this thesis as a
stabilizer of the nematic moment, σ, of the magnetically ordered domains of size Λ−1. CCL
argued that a phase transition would occur when W (T ) the barrier strength between the two
possible nematic moments is of the order of the temperature.

Weber et al. confirmed numerically[5] a phase transition with properties similar to the one
predicted by CCL, but showed that their calculation was wrong in the vicinity of η = J1/2J2 = 1.
We set out to explore whether incorporating interactions between spin waves using a mean field
approximation would resolve this discrepancy. Because the Hamiltonian of the J1-J2 square lat-
tice is not diagonalizable in terms of quantized spin waves (also called magnons), the magnonic

expectation values 〈b†qbq〉 and 〈b†qb†−q〉 are non-zero even at zero temperature. Expressions for
these were found and used to make a mean field approximation of the interaction term between
magnons which served to simply renormalize the spin S of the spins on the lattice.

The incorporation of magnon interactions by use of our mean field approximation did not
solve the discrepancy between the numerical result of Weber et al. and the result of CCL but in
fact made it larger. It would therefore seem that the choice of mean field was not a good one,
which opens up the question of whether another choice might prove more successful. It makes
sense that the mean field theory did not yield correct results very close to η ∼ 1, since at this
point the magnon number diverges which leads to the loss of magnetic order. The hypothesis
was that the mean field theory would extend the range in which the CCL result still compares
well with numerics. It is not clear why this fails, but one reason could be that since both
the CCL result and the correction to it by the mean field approximation become invalid as η
approaches 1, compounding them makes the result even worse. We have also suggested that the
critical temperature estimate made by CCL, based on the assumption that the phase transition
occurs at the temperature where the barrier strength W (T ) is of the order T , could be wrong.
The barrier strength only indicates when nematic moments are stabilizing. A calculation similar
to one made in [11] has been started, but was not finished, in appendix B. Here a new field, σ, is
introduced into the theory by a Hubbard-Stratonovic transformation and the magnetic degrees
of freedom integrated out. The resulting theory of σ is then analyzed to find an equation for
the critical temperature. Unfortunately the necessity of introducing a constraint field, λ, to
integrate out ni, complicates the equations. This would be an excellent point to further explore
in future work.

75



CHAPTER 8. CONCLUSION AND OUTLOOK 76

Finally it would be interesting to study how including the τ -dependency in the field theory
may affect it, as has been done by Lante and Parola in 2006[17]. The τ dynamics become
relevant when both the temperature and spin of the system are small. Therefore it becomes
important for the phase transition at the highly frustrated regime, η = 1, since Weber predicts
that the critical temperature goes to zero at this point.
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[14] Michael Schecter, Olav F. Syljůasen, Jens Paaske Nematic Bond Theory of Heisenberg
Helimagnets, Physical Review Letters 119, (2017)

[15] Osvaldo Maldonado, On the Bogoliubov Transformation for Quadratic Boson Observables,
Journal of Mathematical Physics 34, 5016 (1993).

[16] Luis Seabra, Philippe Sindzingre, Tsutomu Momoi, and Nic Shannon, Novel phases in a
square-lattice frustrated ferromagnet : 1

3 -magnetization plateau, helicoidal spin liquid, and
vortex crystal, Physical Review B 93, (2016).

[17] Valeria Lante and Alberto Parola, Ising phase in the J1-J2 Heisenberg model, Physical
Review B 73, (2006).



Appendices

79



Appendix A

Fourier transformation convention

Throughout this thesis the Fourier transform of a function f(x) with x a space coordinate is

f(k) =
1√
2π

∫ ∞
−∞

ddx e−ik·xf(x), fk =
1√
N

∑
i

e−ik·xifxi , (A.0.1)

with opposite convention for time coordinates

f(ω) =
1√
2π

∫ ∞
−∞

dt eiωtf(t), fω =
1√
N

∑
i

eiωtfti . (A.0.2)

The inverse Fourier transforms are

f(x) =
1√
2π

∫ ∞
−∞

ddk eik·xf(k), fi =
1√
N

∑
k

eik·xifk, (A.0.3)

These conventions are also used for the Fourier transforms of operators. Frequently we will use
identities of the form∫ ∞

−∞
ddxei(k−k

′)·x = 2πδ(k − k′),
∑
xi

ei(k−k
′)·xi = Nδk,k′ . (A.0.4)

A.1 Translation invariance

Assume a function f of two spatial coordinates which only depends on the difference between
the coordinates

f(x1, x2) = f(x1 − x2), (A.1.1)

then f is said to be translationally invariant. Fourier transforming each coordinate we find

f(x1 − x2) =
1

N

∑
k1,k2

eik1·x1−ik2·x2fk1,k2 =
1

N

∑
k1,k2

eik1·(x1−x2)−i(k2−k1)·x2fk1,k2 . (A.1.2)

Now for f to only depend on x1 − x2, fk1,k2 = fk1δk1,k2 , and we obtain

f(x1 − x2) =
1

N

∑
k

fke
ik·(x1−x2). (A.1.3)

80



Appendix B

Hubbard-Stratonovich decoupling of
quadratic Néel fields

We have shown that the mean-field approximation made in section 7.1.2 does not improve the
critical temperature found by CCL. This was attributed to a bad choice of mean field. It could
also be true that the estimate for the critical temperature, as approximately the temperature
where the nematic barrier W (T ) is equal to the temperature, is a bad estimate. As we have
argued, the barrier strength should only determine the stability of nematic moments in the
system and maybe the temperature at which the moments are stable is higher than the critical
temperature of the nematic phase transition.

In this section we will use a Hubbard-Stratonovich transformation to decouple the term
in the action which is biquadratic in the Néel fields, an idea also utilized by [11]. Doing this we
will try to give an estimate of the critical temperature.

B.1 Hubbard-Stratonovich transformation

We begin by writing the effective action of the Néel fields

Sn =
1

2g

∫
d2x

∑
l

∂(nl)
2 + 2η [(∂xn1) · (∂xn2)− (∂yn1) · (∂yn2)]− c

∫
d2x(n1 · n2)2, (B.1.1)

where g = T
2J2

and c = E(T )
T

N
a2

and where E(T ) is, for now, the parameter found by CCL, not

the one changed by mean-field theory. We now multiply the partition function by the unity

1 =

∫
Dσ exp (−Sσ) , (B.1.2)

with Sσ = c−1

4 σ(x)2. Note that the measure of this Gaussian integral is defined so as normalize
it. The field σ is now redefined

σ → σ + 2c(n1 · n2), (B.1.3)

a transformation with Jacobian determinant 1. Doing this, the sum of the two actions yields

Sn + Sσ =
1

2g

∫
d2x

∑
l

∂(nl)
2 + 2η [(∂xn1) · (∂xn2)− (∂yn1) · (∂yn2)]

+
c−1

4
σ(x)2 + 4c(n1 · n2)σ.

(B.1.4)
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Finally the integrations over the Néel fields, which are bound to the unit sphere S2, are relaxed
to include all of R3 by introducing into the path integral

δ(n2
i − 1) =

∫
Dλi exp

(
−iλi

∫
d2x(n2

i − 1)

)
. (B.1.5)

The partition function is now

Z =

∫
D(n1,n2)DσDλ exp(−S), (B.1.6)

where S = Sn + Sσ + Sλ. We now proceed to Fourier transform the action. We will assume
that the λi fields are constant, and then∫

d2x iλi(ni − 1) = i
∑
q

λ
(
|ni(q)|2 −N

)
, (B.1.7)

where n∗i (q) = ni(−q) due to the fields being real. Similarly∫
d2x

c−1

4
σ(x)2 =

c−1

4

∑
q

|σq|2. (B.1.8)

Finally the Fourier transforms of the terms of Sn are∫
d2x ∂(nl)

2 =
∑
q

q2|nl(q)|2, (B.1.9)

∫
d2x 2 [(∂xn1) · (∂xn2)− (∂yn1) · (∂yn2)] =

∑
q

(q2
x − q2

y)(n
∗
1(q) · n2(q) + n1(q) · n∗2(q)),

(B.1.10)∫
d2x σ n1 · n2 =

1

2
√
N

∑
qq′

(
σq−q′n1(q) · n∗2(q′) + σ∗q−q′n

∗
1(q′) · n2(q)

)
. (B.1.11)

Thus the Fourier transformed action is

S = −iN
2g
λi +

∑
qq′

c−1

4
|σq|2δqq′ +

(
n∗1(q′) n∗2(q′)

)
G−1(q, q′)

(
n1(q)
n2(q)

)
, (B.1.12)

where

G−1 =
1

2g

 (
q2 + iλ1

)
δqq′ η(q2

x − q2
y)δqq′ + g

σq−q′√
N

η(q2
x − q2

y)δqq′ + g
σ∗
q−q′√
N

(
q2 + iλ2

)
δqq′ ,

 . (B.1.13)

and λi have been rescaled to absorb 2g. At this point the action is quadratic in the Néel fields
and can therefore be integrated out. The action that follows is

S = −iN
2g
λi +

c−1

4

∑
qq′

|σq|2δqq′ + Tr ln
(
G−1(σ, λ)

)
. (B.1.14)
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B.2 Saddle-point equations

The next step is to find the saddle-point equations of eq. (B.1.13). In the limit of large N
(with N being the number of vector components of the Néel fields), the fields satisfying these
equations are the dominant contribution to the partition function[11]. We will assume that also
the nematic field, σ, is homogeneous and that λ1 = λ2 = λ. Then

δS

δλ
= 0 =⇒ i

N

g
= iTr

[
G
δG−1

δλ

]
= i

1

2g
Tr [G] . (B.2.1)

To proceed we note that per the usual inversion of 2× 2 matrices

G =
2g

(q2 + iλ)2 −
[
η(q2

x − q2
y) + g σ0√

N

]2

(
q2 + iλ −η(q2

x − q2
y)− g σ0√

N

−η(q2
x − q2

y)− g σ0√
N

q2 + iλ,

)
(B.2.2)

and thus the saddle point equation is

1 =
2g

N

∑
q

q2 + iλ

(q2 + iλ)2 −
[
η(q2

x − q2
y) + gσ0

]2
= 2g

∫
d2q

(2π)2

q2 + iλ

(q2 + iλ)2 −
[
η(q2

x − q2
y) + gσ0

]2 , (B.2.3)

where the nematic field was scaled by 1/
√
N . Similarly one can show that the other saddle

point equation yields

c−1

4
σ0 = 2g

∫
d2q

(2π)2

η(q2
x − q2

y) + gσ0

(q2 + iλ)2 −
[
η(q2

x − q2
y) + gσ0

]2 . (B.2.4)

The sum of these equations is

1 +
c−1σ0

4
= 2g

∫
d2q

(2π)2

1

q2 + iλ−
[
η(q2

x − q2
y) + gσ0

] , (B.2.5)

and the difference is

1− c−1σ0

4
= 2g

∫
d2q

(2π)2

1

q2 + iλ+
[
η(q2

x − q2
y) + gσ0

] . (B.2.6)

This is the equation we will use to find the critical temperature. Assume that the nematic field is
non-zero below some critical temperature Tc. The critical temperature can then be determined
by the condition σ0(Tc) = 0. This yields the equation

1 = 2gc

∫
d2q

(2π)2

1

q2 + iλ−
[
η(q2

x − q2
y)
] = 2gc

∫
dq

(2π)2
q

∫ 2π

0
dθ

1

q2 + iλ+ ηq2 cos(2θ)
, (B.2.7)

Where gc = Tc/(2J2). Using the equation∫
dθ

1

a+ b cos(θ)
=

2 arctan
[

a−b√
a2−b2 tan(θ/2)

]
√
a2 − b2

, (B.2.8)

we find

2

∫ π

0
dθ

1

q2 + iλ+ ηq2 cos(θ)
=

2π√
(q2 + iλ)2 − η2q4

. (B.2.9)

Thus we are left with the equation

1 = 2gc

∫
dq

2π

q√
(q2 + iλ)2 − η2q4

. (B.2.10)



Appendix C

Correlation functions in the
magnetically ordered state

C.1 Spin-spin correlation function

To consider the spin-spin correlation functions we first review some general theory. We will
define the imaginary-time correlation functions as

R̃αα
′

ii′ (τ, τ ′) =
1

Z
〈e−βH0Tτ [Sαi (τ)Sα

′
i′ (τ ′)]〉 , (C.1.1)

where

Sαi (τ) = eH0τSαi e
−H0τ , (C.1.2)

and H0 is the Hamiltonian in Eq. (5.2.26), and in the end relate these to the retarded correlation
functions through analytical continuation. In general the interesting object is the dynamical
structure factor

Sαα
′
(q, ω) =

1

2πN

∑
ii′

∫ ∞
−∞

e−iq·(Ri−Rj)+iωtSαα
′

ii′ (t), (C.1.3)

with Sαα
′

ii′ (t− t′) = 〈Sαi (t)Sα
′

i′ (t′)〉, since this can be related to measurable quantities in neutron
diffraction experiments[8]. The structure factor only depends on q, ω due to the assumption of
spatial and temporal homogeneity.
The general expression of the dynamical structure factor is in fact too general. We are interested
in the same-time correlation functions, or the static structure factor, with α = α′

S(q) =
1

N

∑
ij

〈Sαi Sαj 〉 = 〈Sαq Sα−q〉 . (C.1.4)

since no time-dependent external field affects the system. By finding this quantity the magnetic
correlation length could be found.

C.2 Zero temperature correlations - four sublattices

Equipped with the ground state of the spin lattice, namely the state annihilated by all Bo-
goliubov annihilation operators (see equation 5.2.26), we may evaluate spin-spin correlation
functions. First

Si,a · Sj,b = Sxi,aS
x
j,b + cos θ(i,a),(j,b)

(
Syi,aS

y
j,b + Szi,aS

z
j,b

)
+ sin θ(i,a),(j,b)

(
Syi,aS

z
j,b − Szi,aSyj,b

)
.

(C.2.1)
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The vacuum fluctuations pick θ = 0, π so let us assume θ = 0. A completely equivalent
calculation may be done for θ = π. We expand the spin-operators to smallest non-classical
order in S. Using the vacuum state of Bogoliubov bosons

〈Si,a · Sj,b〉 =
S(1 + (−1)λa,b)

2
〈b†i,abj,b + b†j,bbi,a〉+

S(1− (−1)λa,b)

2
〈bi,abj,b + b†j,bb

†
i,a〉

+ (−1)λa,b
(
S2 − S 〈b†i,abi,a + b†j,bbj,b〉

)
≈ S(1 + (−1)λa,b)

2
〈b†i,abj,b + b†j,bbi,a〉+

S(1− (−1)λa,b)

2
〈bi,abj,b + b†j,bb

†
i,a〉+ (−1)λa,bS2,

(C.2.2)

where λa,b is two if a, b are in the same row within the unit cell or are equal and is one if a, b
and in the same column but are unequal, and where we disregarded the contribution from the
same site expectation value, assuming this to much smaller than S. The next step is to Fourier
transform this expression, which will yield terms like

〈b†i,abj,b〉 =
1

N

∑
qQ

〈b†q,abq+Q,b〉 eiq·(Ri,a−Rj,b)eiQ·Rj,b , (C.2.3)

and now

〈b†q,abq+Q,b〉 =
∑
cd

〈β†q,cB†ca(q)Bbd(q +Q)βq+Q,d〉 =
∑
cd

B†ca(q)Bbd(q +Q) 〈β†q,cβq+Q,d〉

=

8∑
c=5

Bbc(q)B†ca(q)δQ,0 = (VqV†q )∗baδQ,0,
(C.2.4)

where in the first equality we simply transformed from H.P.- to Bogoliubov bosons, in the third

equality we used that 〈β†q,cβq+Q,d〉 =

{
δcdδQ,0 if c ≥ 5

0 if c < 5
, in the fourth equality used that

B(q) = GAG =

( Uq −V∗q
−Vq U∗q

)
, (C.2.5)

and finally used that Vq = V−q. Similarly

〈bi,abj,b〉 =
1

N

∑
qQ

〈bq,ab−q+Q,b〉 e−iq·(Ri,a−Rj,b)e−iQ·Rj,b , (C.2.6)

and

〈bq,ab−q+Q,b〉 =
∑
cd

〈β†−q,cB†c,a+4(−q)Bbd(−q +Q)β−q+Q,d〉

=
∑
cd

B†c,a+4(−q)Bbd(−q +Q) 〈β†−q,cβ−q+Q,d〉

=

8∑
c=5

Bbc(q)B†c,a+4(q)δQ,0 = (−VqU†q )∗baδQ,0.

(C.2.7)

Thus we find

δ 〈Si,a · Sj,b〉 =
1

N

∑
q

S
(

1 + (−1)λab
)
<
((
VqV†q

)
ba
e−iq·R

)
+ S

(
1− (−1)λab

)
<
((
−VqU†q

)
ba
eiq·R

)
,

(C.2.8)
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with δ 〈Si,a · Sj,b〉 = 〈Si,a · Sj,b〉 − (−1)λabS2, representing the modification to the correlations
due to spin-waves. R is the relative distance between spins.
Next we consider the Fourier transformed spin-spin correlation function

〈Si,a · Sj,b〉 =
1

N

∑
qQ

〈Sq,a · S−q+Q,b〉 eiq·(Ri,a−Rj,b)eiQ·Rj,b . (C.2.9)

Since the system is translationally invariant, it is reasonable to assume that the spin-spin corre-
lation function only depends on relative distance. Thus we argue Q = 0 is the only contribution
in the Q-sum, such that

〈Si,a · Sj,b〉 =
1

N

∑
q

〈Sq,a · S−q,b〉 eiq·R, (C.2.10)

yielding

〈Sq,a · S−q,b〉 =
1

N
eiq·φ

∑
i,j

〈Si,a · Sj,b〉 e−iq·R =
∑
R

〈Si,a · Sj,b〉 e−iq·R, (C.2.11)

where R is the distance between i and j in the superlattice, and where we introduced a phase
factor, stemming from the difference of position inside the magnetic unit cell. For example if
had we looked at a = 1, b = 2

〈Sq,1 · S−q,2〉 = eiqy
∑
R

〈Si,a · Sj,b〉 e−iq·R. (C.2.12)

In this example, since R = 2 (ix − jx, iy − jy), the periodicity of q from the phase factor in the
sum is π in both directions, but the periodicity from the phase factor outside of the sum is 2π
in the y-direction. Thus, from this correlation function, we would expect a periodicity of 2π in
the y-direction and one of π in the x-direction.
The lowest order correction to the correlation function is then

δ 〈Sq,a · S−q,b〉 = S
[(

1 + (−1)λab
)
<
((
VqV†q

)
ba

)
+
(

1− (−1)λab
)
<
((
−VqU†q

)
ba

)]
. (C.2.13)

Let us consider the correlation between a spin on sublattice 1 and one on each sublattice. From
the explicit forms shown in Eqs. (5.4.28) and (5.4.30), we find

δ 〈Sq,1 · S−q,1〉
4S

= (M+
2 )2 + (M−2 )2 =

(Tav + T2)2

4ω+(ω+ +M+
3 )

+
(Tav − T2)2

4ω−(ω− +M−3 )
,

δ 〈Sq,1 · S−q,2〉
4S

= −M+
2 (M+

3 + ω+)−M−2 (M−3 + ω−) = −
(

(Tav + T2)

4ω+
+

(Tav − T2)

4ω−

)
,

δ 〈Sq,1 · S−q,3〉
4S

= −M+
2 (M+

3 + ω+) +M−2 (M−3 + ω−) = −
(

(Tav + T2)

4ω+
− (Tav − T2)

4ω−

)
,

δ 〈Sq,1 · S−q,4〉
4S

=
(
(M+

2 )2 − (M−2 )2
)

=
(Tav + T2)2

4ω+(ω+ +M+
3 )
− (Tav − T2)2

4ω−(ω− +M−3 )
.

(C.2.14)

Illustrations of these correlation functions are shown in Fig. C.1, but these are only suggestive,
as the actual expressions diverge around the points q = (0, 0), (0, π), (π, 0), (π, π).
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(a) (a, b) = (1, 1) (b) (a, b) = (1, 2)

(c) (a, b) = (1, 3) (d) (a, b) = (1, 4)

Figure C.1: Quantum corrections to the momentum spin-spin correlation function. Parameters:
θ = 0, η = 0.625.

C.3 Finite temperature correlations - four sublattices

We assume now that the temperature is no longer zero. This modifies the expectation value of
the Bogoliubov-operators, namely such that

〈β†q,aβq+Q,b〉 = δabδQ,0

{
nB(ωa,q) if a ≤ 4,

1 + nB(ωa,q) if a ≥ 5
, (C.3.1)

where nB(ω) is the Bose-function. Then

〈b†q,abq+Q,b〉 =
∑
cd

〈β†q,cB†ca(q)Bbd(q +Q)βq+Q,d〉 =
∑
cd

B†ca(q)Bbd(q +Q) 〈β†q,cβq+Q,d〉

=

4∑
c=1

nB(ωq,c)Bbc(q)B†ca(q)δQ,0 +

8∑
c=5

(1 + nB(ωq,c))Bbc(q)B†ca(q)δQ,0

= δQ,0

(
UqnB(q)U†q + Vq

(
1 + nB(q)

)
V†q
)∗
ba
,

(C.3.2)

where

nB(q) =


nB(ωq,1) 0 0 0

0 nB(ωq,2) 0 0
0 0 nB(ωq,3) 0
0 0 0 nB(ωq,4)

 . (C.3.3)
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Similarly

〈bq,ab−q+Q,b〉 = −δQ,0
(
UqnB(q)V†q +

(
Vq
(

1 + nB(q)
)
U†q
)∗)

ba
. (C.3.4)

Thus the temperature-dependent quantum correction to the structure factor is

δ 〈Sq,a · S−q,b〉 (T )

S
=
(

1 + (−1)λab
)
<
[(
UqnB(q)U†q + Vq

(
1 + nB(q)

)
V†q
)∗
ba

]
−
(

1− (−1)λab
)
<
[(
UqnB(q)V†q +

(
Vq
(

1 + nB(q)
)
U†q
)∗)

ba

]
.

(C.3.5)

C.4 Zero-temperature correlation - single lattice

To lowest order in 1/S in the single lattice picture we find

Si · Sj = S2 cos(θj − θi) + S

[
1 + cos(θj − θi)

2

(
b†ibj + b†jbi

)
+

1− cos(θj − θi)
2

(
bibj + b†jb

†
i

)
− cos(θj − θi)

(
b†ibi + b†jbj

)]
.

(C.4.1)

The first term represents the spin-spin correlation due to the assumption of magnetic order on
which the H.P. operators are defined, and is not interesting. The magnonic contribution is the
Fourier transform of

∆S(Rij) = 〈Si · Sj〉 − S(S − 2 〈b†ibi〉) cos(θj − θi), (C.4.2)

where we included the contribution from the magnons which simply reparametrizes S. Now,
consider the relation

cos(θj − θi) = eiQ1·Rij cos2(θ/2) + eiQ2·Rij sin2(θ/2), (C.4.3)

where Q1 = (0, π), Q2 = (π, 0). To see that this relation is true we should in principle check
whether it holds for spins on all different ferromagnetic sublattices. For instance a spin with
θi = 0 and its’ nearest neighbor with θj = θ their relative angle is θ and Rij = Ri −Rj = (1, 0)
(since the lattice constant is set to one). Then

cos(θj − θi) = cos(θ)

eiQ1·Rij cos2(θ/2) + eiQ2·Rij sin2(θ/2) = cos2(θ/2)− sin2(θ/2) = cos(θ),
(C.4.4)

and similar relations may be checked for i, j on other sites. We start by Fourier transforming
cos(θj − θi) 〈b†ibj〉∫

d2Rij e
−iq·Rij

(
eiQ1·Rij cos2(θ/2) + eiQ2·Rij sin2(θ/2)

)
〈b†ibj〉

= cos2(θ/2) 〈b†q−Q1
bq−Q1〉+ sin2(θ/2) 〈b†q−Q2

bq−Q2〉 ,
(C.4.5)

where we used that 〈b†ibj〉 =
∫ d2q

(2π)2
eiq·Rij 〈b†qbq〉, which follows from translation invariance.

Similarly ∫
d2Rij e

−iq·Rij
(
eiQ1·Rij cos2(θ/2) + eiQ2·Rij sin2(θ/2)

)
〈bibj〉

= cos2(θ/2) 〈bq−Q1b−q+Q1〉+ sin2(θ/2) 〈bq−Q2b−q+Q2〉 .
(C.4.6)
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Combining these expressions we find

∆Sq/S = 〈b†qbq〉+ cos2(θ/2) 〈b†q−Q1
bq−Q1〉+ sin2(θ/2) 〈b†q−Q2

bq−Q2〉

+
〈bqb−q〉+ 〈b†−qb†q〉

2
+ cos2(θ/2)

〈bq−Q1b−q+Q1〉+ 〈b†−q+Q1
b†q−Q1

〉
2

+ sin2(θ/2)
〈bq−Q1b−q+Q1〉+ 〈b†−q+Q1

b†q−Q1
〉

2

= −1 +
Jn(q)

2ωq
+ cos2(θ/2)

Jn(q −Q1)

2ωq−Q1

+ sin2(θ/2)
Jn(q −Q2)

2ωq−Q2

−
(
Jan(q)

2ωq
+ cos2(θ/2)

Jan(q −Q1)

2ωq−Q1

+ sin2(θ/2)
Jan(q −Q2)

2ωq−Q2

)
,

(C.4.7)

where in the last line we used the expressions for the zero-temperature magnon expectation
values (6.2.1) and (6.2.2). Thus the magnonic correction to the spin-spin correlation function
in Fourier space is

∆Sq + S =
S

2

[√
Jn(q)− Jan(q)

Jn(q) + Jan(q)
+ cos2(θ/2)

√
Jn(q −Q1)− Jan(q −Q1)

Jn(q −Q1) + Jan(q −Q1)

+ sin2(θ/2)

√
Jn(q −Q2)− Jan(q −Q2)

Jn(q −Q2) + Jan(q −Q2)

]
.

(C.4.8)

Take now the first term in (C.4.8) and expand it to first power in η. We then obtain√
Jn(q)− Jan(q)

Jn(q) + Jan(q)

≈
1− ξqxξqy − η

[
(cos2(θ/2)ξqxξ

2
qy + sin2(θ/2)ξqyξ

2
qx)(1 + ξqxξqy) + cos θ(ξqx − ξqy)

]
√

1− ξ2
qxξ

2
qy

.

(C.4.9)

The coefficient to the zeroth power in η diverges at q = (0, π), (π, 0).



Appendix D

Interaction terms in the four
sublattice picture

We will here write the interaction Hamiltonian in the four sublattice picture. The next order
terms of the large S expansion in eqs. 5.1.10-5.1.12 are

O((1/S)0)(S̃i,a1 S̃j,b1 ) = −

(
b†i,abi,abi,a + b†i,ab

†
i,abi,a

)(
bj,b + b†j,b

)
+
(
bi,a + b†i,a

)(
b†j,bbj,bbj,b + b†j,bb

†
j,bbj,b

)
8

O((1/S)0)(S̃i,a2 S̃j,b2 ) =

(
b†i,abi,abi,a − b

†
i,ab
†
i,abi,a

)(
bj,b − b†j,b

)
+
(
bi,a − b†i,a

)(
b†j,bbj,bbj,b − b

†
j,bb
†
j,bbj,b

)
8

O((1/S)0)(S̃i,a3 S̃j,b3 ) = b†i,abi,ab
†
j,bbj,b.

These are all four-operator terms and mostly resemble interaction terms between the H.P.
bosons, albeit with some anomalous terms containing unequal factors of creation/annihilation
operators.

D.1 N.N. interaction terms

The N.N. interaction term can now be written

W1 = −J1

2

∑
〈(i,a),(j,b)〉


(
b†i,abi,abi,a + b†i,ab

†
i,abi,a

)(
bj,b + b†j,b

)
+
(
bi,a + b†i,a

)(
b†j,bbj,bbj,b + b†j,bb

†
j,bbj,b

)
8

− cos(θj,b − θi,a)

(
b†i,abi,abi,a − b

†
i,ab
†
i,abi,a

)(
bj,b − b†j,b

)
+
(
bi,a − b†i,a

)(
b†j,bbj,bbj,b − b

†
j,bb
†
j,bbj,b

)
8

− cos(θi,a − θj,b)b†i,abi,ab
†
j,bbj,b

]
= −J1

2

∑
〈(i,a),(j,b)〉


(
b†i,abi,abi,a + b†i,ab

†
i,abi,a

)(
bj,b + b†j,b

)
4

− cos(θi,a − θj,b)

(
b†i,abi,abi,a − b

†
i,ab
†
i,abi,a

)(
bj,b − b†j,b

)
4

− cos(θi,a − θj,b)b†i,abi,ab
†
j,bbj,b

 ,
(D.1.1)
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where we used, that some of the terms are equal under the summation. Rearranging and using
1− cos(x) = 2 cos(x/2)2 we obtain

W1 = −J1

4

∑
〈(i,a),(j,b)〉

[
cos2

(
θi,a − θj,b

2

)(
b†i,ab

†
i,abi,abj,b + b†i,abi,abi,ab

†
j,b

)
+ sin2

(
θi,a − θj,b

2

)(
b†i,abi,abi,abj,b + b†i,ab

†
i,abi,ab

†
j,b

)
− 2 cos(θi,a − θj,b)b†i,abi,ab

†
j,bbj,b

]
,

(D.1.2)

which becomes

W1 = −J1

4

∑
i,a,δ

[
cos2

(
θ + φ(δ)

2

)(
b†i,ab

†
i,abi,abj,b + b†i,abi,abi,ab

†
j,b

)
+ sin2

(
θ + φ(δ)

2

)(
b†i,abi,abi,abj,b + b†i,ab

†
i,abi,ab

†
j,b

)
− 2 cos (θ + φ(δ)) b†i,abi,ab

†
j,bbj,b

]
,

(D.1.3)

where δ is a vector connecting (i, a) to one of its’ nearest neighbors and (j, b), φ depend on δ.
The phase φ is defined as in eq. (5.1.17). A Fourier transform of the separate terms yields

b†i,ab
†
i,abi,abj,b + b†i,abi,abi,ab

†
j,b =

1

N2

∑
pqkl

[
b†p,ab

†
q,abk,abl,be

i(p+q−k−l)·Ri,ae−il·δ

+b†p,abq,abk,ab
†
l,be

i(p−q−k+l)·Ri,aeil·δ
] (D.1.4)

b†i,abi,abi,abj,b + b†i,ab
†
i,abi,ab

†
j,b =

1

N2

∑
pqkl

[
b†p,abq,abk,abl,be

i(p−q−k−l)·Ri,ae−il·δ

+b†p,ab
†
q,abk,ab

†
l,be

i(p+q−k+l)·Ri,aeil·δ
]
,

(D.1.5)

which upon an insertion into the interaction term and a subsequent summation over i yields

W1 = − J1

4N

∑
aδ
pqkl

[
b†p,abl,be

−il·δ
(

cos2

(
θ + φ(δ)

2

)
b†q,abk,aδp−l,k−q + sin2

(
θ + φ(δ)

2

)
bq,abk,aδp−l,k+q

)

+

(
cos2

(
θ + φ(δ)

2

)
b†k,abq,aδp−l,k−q + sin2

(
θ + φ(δ)

2

)
b†k,ab

†
q,aδp−l,k+q

)
b†l,bbp,ae

il·δ

− 2 cos (θ + φ(δ)) ei(k−l)·δb†p,abq,ab
†
k,bbl,bδp−q,l−k

]
,

(D.1.6)

which can be rewritten

W1 = − J1

4N

∑
aδ
pqk

[
b†p+q,abp,be

−ip·δ
(

cos2

(
θ + φ(δ)

2

)
b†k,abk+q,a + sin2

(
θ + φ(δ)

2

)
b−k,abk+q,a

)

+

(
cos2

(
θ + φ(δ)

2

)
b†k+q,abk,a + sin2

(
θ + φ(δ)

2

)
b†k+q,ab

†
−k,a

)
b†p,bbp+q,ae

ip·δ

− 2 cos (θ + φ(δ)) eiq·δb†p+q,abp,ab
†
k,bbk+q,b

]
.

(D.1.7)
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Finally, the sum over δ is performed,

W1 = − J1

2N

∑
a,pqk

[
cos(px)b†p+q,abp,a+σ(a)

(
cos2

(
θ

2

)
b†k,abk+q,a + sin2

(
θ

2

)
b−k,abk+q,a

)
+ h.c.

+ cos(py)b
†
p+q,abp,a−σ(a)

(
sin2

(
θ

2

)
b†k,abk+q,a + cos2

(
θ

2

)
b−k,abk+q,a

)
+ h.c.

− 2 cos (θ) b†p+q,abp,a

(
cos(qx)b†k,a+σ(a)bk+q,a+σ(a) − cos(qy)b

†
k,a−σ(a)bk+q,a−σ(a)

)]
,

(D.1.8)

where σ(a) is defined as in eq. (5.1.20). This is equivalent to

W1 = − J1

2N

∑
a,pqk

[
cos(px)b†p+q,abp,a⊕σ(a)

(
cos2

(
θ

2

)
b†k,abk+q,a + sin2

(
θ

2

)
Fabb†k,bbk+q,a

)
+ h.c.

+ cos(py)b
†
p+q,abp,a	σ(a)

(
sin2

(
θ

2

)
b†k,abk+q,a − cos2

(
θ

2

)
Fabb†k,bbk+q,a

)
+ h.c.

+ 2 cos (θ) b†p+q,abp,a

(
cos(qx)b†k,a⊕σ(a)bk+q,a⊕σ(a) − cos(qy)b

†
k,a	σ(a)bk+q,a	σ(a)

)]
,

(D.1.9)

where the symbol ⊕ (	) refers to summation (subtraction) modulo 4, and is not to be confused
with a direct sum. Formally, this may be written in the much neater form

W1 = − J1

2N

∑
pqk

b†p+q,a1bp,b1W1a1,b1,a2,b2(p, q)b†k,a2bk+q,b2 + h.c., (D.1.10)

where we assume implicit summation over repeated sublattice indices, and these range from 1
to 4.

D.2 N.N.N. interaction terms

For the N.N.N. interaction, the relative angle between the interacting spins is always equivalent
to π. From eq. (D.1.2) we may infer

W2 = −J2

4

∑
i,a,δ

(
b†i,abi,abi,abj,b + b†i,ab

†
i,abi,ab

†
j,b

)
+ 2b†i,abi,ab

†
j,bbj,b, (D.2.1)

where δ connects site (i, a) with one of it’s nearest neighbors, and (j, b) depends on δ. A
Fourier-transform and subsequent summation over i yields

W2 = − J2

4N

∑
a,δ
pqkl

[(
b†p,abq,abk,abl,be

−il·δδp−l,k+q + b†q,ab
†
k,abp,ab

†
l,be

il·δδp−l,k+q

)

+2b†p,abq,ab
†
k,bbl,be

i(k−l)·δδp−q,l−k

]
,

(D.2.2)

which upon redefining indices becomes

W2 = − J2

4N

∑
a,δ
pqk

[(
b†p+q,abp,bb−k,abk+q,ae

−ip·δ + b†k+q,ab
†
−k,ab

†
p,bbp+q,ae

ip·δ
)

+2b†p+q,abp,ab
†
k,bbk+q,be

−iq·δ
]
,

(D.2.3)
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and finally doing the δ-sum

W2 = − J2

4N

∑
a,pqk

[
4 cos(px) cos(py)

(
b†p+q,abp,a+2b−k,abk+q,a + b†k+q,ab

†
−k,ab

†
p,a+2bp+q,a

)
+8 cos(qx) cos(qy)b

†
p+q,abp,ab

†
k,a+2bk+q,a+2

]
.

(D.2.4)

Again, this is equivalent to

W2 = −J2

N

∑
pqk

cos(px) cos(py)
(
b†p+q,abp,a⊕2Fabb†k,bbk+q,a + b†k+q,aFabbk,bb

†
p,a⊕2bp+q,a

)
+ cos(qx) cos(qy)b

†
p+q,abp,ab

†
k,a⊕2bk+q,a⊕2,

(D.2.5)

and once more, this can be formally written as

W2 = −J2

N

∑
a,pqk

b†p+q,a1bp,b1W2a1,b1,a2,b2(p, q)b†k,a2bk+q,b2 + h.c. (D.2.6)

D.3 Full interaction term

Due to the results of the two previous subsections, we may write the interaction between
Holstein-Primakoff bosons as

W = − 1

N

∑
pqk

b†p+q,a1bp,b1Wa1,b1,a2,b2(p, q)b†k,a2bk+q,b2 + h.c., (D.3.1)

whereW = J2 (ηW1 +W2). As expected, the interaction due to nearest-neighbor spins vanishes
as η goes to zero, which is the limit where the system decouples into two non-interacting AFM
sublattices.
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