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Abstract

Research into a type of quasiparticles known as anyons has been an active branch of research ever since
they where hypothesised to exist in two-dimensional materials in 1977. It was quickly shown that the
modes of the fractional quantum Hall effect exhibit anyonic properties, when the effect was discovered
experimentally in 1982 [1]. A one-dimensional anyonic quasiparticle called the parafermion, which first
emerged in the area of condensed matter physics in the study of the vector Potts model, displays any-
onic properties by having its exchange statistics obey a Zp-symmetry for some p ∈ N [2]. This exchange
statistics makes the parafermions very interesting to study from a theoretical standpoint. In 2014 [3],
it was furthermore shown that parafermions admit for a Fock space representation, which in turn per-
mits these Fock parafermions to be described by particle number degrees of freedom. This realisation
allows for the construction of Fock parafermions tight-binding models, which has been commenced to
be studied over the last couple of years [4, 5].

This thesis seeks to expand upon the literature by developing a field theoretical description of the gen-
eral Zp-symmetric Fock parafermions through bosonisation. Of special note is that the resulting descrip-
tion depends on p − 1 dual bosonic fields. The bosonisation description is applied to the tight-binding
model of the Z3-symmetric Fock parafermions for both single and pair-hopping terms, and it is shown
how the model is a sum of a chiral Luttinger liquid and a Luttinger liquid up to second order Taylor ex-
pansion. Furthermore, the two-point correlation functions of the Fock parafermions are calculated and
it is shown that requiring the model to consist of p− 1 pairs of dual field renders the correct predictions
of the two-point correlation functions as compared to earlier numerical calculations done by Rossini et
al. [4].
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Introduction

Conventional quantum mechanics dictate that two forms of fundamental particles exist, bosons and
fermions [6]. The feature that sets these types of particles apart is the way that the wavefunction of two
interchanged indistinguishable particles behaves. As it is well known, the exchange of two identical
bosons will not change the global wavefunction, whereas fermions, on the other hand, will have their
global wavefunction gain a negative sign upon the interchange. The difference in exchange statistics has
far reaching consequences: one of the biggest is the Pauli exclusion principle that states only one fermion
can be in each state, whereas bosons do not experience such constraint. If we generalise what happens,
we can consider the exchange of the particles as gaining a phase to the global wavefunction. The ques-
tion arises whether this phase has to be real, or if any complex phase would be allowed. Anyons are
exactly such particles, where a complex phase is gained upon exchange of two indistinguishable parti-
cles. The exchange is explicitly done by braiding the particles around each other in a two-dimensional
plane in a clockwise rotation, such that:

ψ(x1, x2) = eiθψ(x2, x1) (clockwise rotation) (1)

Notice that there is a notion of chirality built into the system: if the particles where braided in the
anti-clockwise direction we would gain a phase of e−iθ. From now on we assume all the rotations are
made in a clockwise direction, unless otherwise stated. It is evident that the fermions and bosons can
be explained as special cases of the anyons, where the phase factor is θ = π and θ = 2π, respectively. As
such the notion of an anyon is more general.

Exchanging the particles twice in the clockwise direction makes the global wavefunction gain the over-
all phase factor of ei2θ. This observation makes it impossible for anyons to exist in three or more di-
mensions, but they can arise in two-dimensional systems [1]. In 1982, two experimentalists, Tsui and
Störmer, discovered a phenomena in a two-dimensional material subjected to a strong magnetic field,
which would be known as the fractional quantum Hall effect, since a plateau in the Hall conductance is
observed when the filling factor ν is a nice ratio [7]. By the ”filling factor” is meant the ratio of electrons
in the system to the total magnetic flux quanta. Laughlin discovered that the process can be described
by a condensation of the two-dimensional electron gas into a fractinally charged excited liquid state at
the edges [8]. These edge states were noted by Halperin to be anynonic quasiparticles with fractional
charge [9]. The phenomena is still a major topic of research in condensed matter physics to this day [10].

In this thesis we will study a special subspecies of the anyons called parafermions. What sets the parti-
cles aside from the general anyons is that they arise in one-dimensional systems with the phase achieved
by the exchange of parafermions is a divisor of 2π, ie. θ | 2π. Furthermore, the phase does not depend
on the direction of the braiding, but only on the initial relative position of the parafermions. If we denote
the phase θ = 2πi/p, the parafermions display a Zp-symmetry upon exchange. We distinguish between
parafermions of different classes by denoting them Zp parafermions after their symmetry. Note that the
charge of a Zp parafermion is fractional at 2e/p, where e is the elementary charge of an electron [5]. The
parafermions arise as modes or degrees of freedom of the clock model, which is a generalisation of the
Ising model with p spin states [2]

The parafermions do not readily allow for a second quantised description [3]. This calls for the creation
of a Fock space version of the parafermions, which are called Fock parafermions. Exactly such de-
scription was constructed by Cobanera and Ortiz in 2014 [3]. Compared to the parafermions, the Fock
parafermions display a particle degree of freedom, which makes it possible to consider the particles by
themselves and to count them.
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As we will see, Majorana fermions are a special example of the parafermions, which display a Z2-
symmetry. The Fock space representation of the Majorana fermions are the conventional fermions [11].
Thus, one way of thinking about the Fock parafermions is that they are to parafermions what fermions
are to Majoranas. This realisation leads us to conjecture that the Fock parafermions are in fact abelian
particles (as the fermions are), as compared to the non-abelian parafermions (Majoranas) [12].

Non-abelian anyonic particles, in particular the Majorana fermions, have shown to be promising candi-
dates for realising topologial quantum computing due to their braiding statistics - something that has
ben the subject of heavy research in the recent years [13]. Parafermions show promising theoretical can-
didates for quantum computation due to their non-abelian nature [14]. Note that the Fock parafermions,
which we will be our main point of interest in this thesis, are not suitable for this purpose, since they
do not seem to display non-abelian properties [12]. We refer to the literature for a study of the braiding
statistics of the parafermions and their possible application in quantum computing [3].

Since the Fock parafermions can be considered as particle degrees of freedom, it makes sense to talk
about them in terms of a tight-binding model, where Fock parafermions are effectively bound to some
sites in a lattice and hopping between sites is allowed. The main work of this thesis will be to treat
such a model of Fock parafermions and to develop a field theoretical approach of describing the system
through bosonisation. Notice that the treatment of this system is complicated by the fact that it cannot
be solved directly through integration or by the way of an ansatz similar to Bethe ansatz [4]. However,
earlier works suggest that the system is a conformal field theory that allows for a bosonised description
[4, 5].

Outline of Thesis

Below we will outline the thesis and account for some of the main conclusions in each chapter.

Chapter 1 The theoretical foundation of parafermions is accounted for on the basis of the article by
Cobanera and Ortiz [3]. Fock parafermions are introduced, and it is shown how the Fock parafermions
relate to a type of bosonic particle through a Fradkin-Kadanoff transformation. Some physical
models that give rise to parafermions are introduced.

Chapter 2 The chiral Luttinger liquid is introduced and two-point correlation functions of the fields
that constitute the model are calculated.

Chapter 3 The Fock parafermion tight-binding nearest-neighbour hopping model is introduced. Earlier
work has treated this model numerically and we go over the main points of these articles [4, 5].
Of special note is that the analysis shows that the Z3 Fock parafermions tight-binding model will
require two bosonic modes to be described.

Chapter 4 The Fock parafermions are described in the language of bosonisation. As we will see, the
bosonisation of Zp Fock parafermions requires p− 1 sets of dual bosonic fields.

Chapter 5 The field theoretical description of the nearest-neighbour hopping Hamiltonian of the Z3

Fock parafermions is studied. The newly-defined bosonised description of the Fock parafermions
is utilised in the tight-binding model. It is shown that the bosonisation of the Fock parafermions
yield a chiral Luttinger liquid description up to the second order. Two-point correlation functions
of the Fock parafermion operators are calculated, and it is shown that our description predicts
the correct dynamics of the system when one type of tight-binding hopping is allowed for the Z3

Fock parafermions. However, when both single and pair hopping is allowed simultaneously our
analysis falls short.

Chapter 6 Conclusion and outlook.
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Chapter 1

Parafermions

In this chapter we will introduce and study the mathematical foundations of the group of non-abelian
anyonic quasiparticles called parafermions that we presented in the introduction. These quasiparticles
can be understood as a generalisation of the Majorana fermions whose commutation displays a Zp-
symmetry (rather than a Z2-symmetry in the case of the Majoranas).

The original description of the parafermions does not translate to a second-quantisation description,
which is necessary for the particles to exist independently [12]. In 2014, Cobanera and Ortiz constructed
a mathematical description to describe these pseudoparticles over a Fock space [3]. In order to realise
the importance of this description, note that these Fock parafermions allow for a second quantised de-
scription to exist. Such a description in turn allows for the conservation of particle numbers and tight
binding models [4, 5]. Compared to the regular parafermions, the Fock parafermions are not said to be
non-abelian, however.

In the end of this chapter, we will discuss a couple of systems in which the parafermions arise and
recount for potential candidates for a physical realisation of the parafermions.

1.1 Weyl Algebra and parafermions

In this section we will see how the Weyl algebra naturally arises as an answer to the problem of con-
structing a finite dimensional representations of the quantum mechanical operators through a discreti-
sation of the space. This is not obvious, since Heisenberg’s canonical commutation relations [Xi, pj ] =
i~δi,j1, does not allow for finite dimensional matrix representations [3, p. 33]. To be able to describe
quantum mechanics by finite dimensional representations Weyl suggested considering a discretised
form of quantum mechanics by studying the algebra generated by the translations in position and mo-
mentum space in (1+1)-dimensions:

Vi,x = eixpi/~ Uj,p = eipXi/~ (1.1)

For i, j ∈ {1, . . . ,M}, where M is the number of particles. Note, the commutation relation of these
unitary operators is:

[Vi,x, Uj,p] = eixp/~δi,j (1.2)

Now we introduce a (fundamental) lattice spacing a making x and p discrete:

xm = ma pn =
2π~n
pa

(1.3)

With m,n ∈ Z. In this case we may redefine the (fundamental) translation operators:

Vi = eiapi/~ Uj = ei2πXi/pa (1.4)

Note that we have Vim = Vi,xm and Uj
n = Uj,pn . Commuting the two types of operators yields a

non-standard commutation relation:

ViUj = ωδi,jUjVi V †i Uj = ω−δi,jUjV
†
i ω = e2πi/p (1.5)
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These commutation relations admit the construction of a finite dimensional representation, Wp(M), of
the operators Vi and Ui in a Hilbert space of dimension pM over the complex numbers, C, such that:

Vi = 1⊗ · · · ⊗ V ⊗ · · · ⊗ 1 (i’th position)
Uj = 1⊗ · · · ⊗ U ⊗ · · · ⊗ 1 (j’th position)

(1.6)

For i, j ∈ {1, . . . ,M}. Where the Hermitian matrices U and V are called the Weyl generators with finite
period p, and are defined as the p× p-matrices:

V =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0


U =



1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

...
0 0 0 · · · 0
0 0 0 · · · ωp−1


(1.7)

One of the simplest cases of our system, where p = 2 gives rise to a system where ω = −1, such that
V = σx and U = σz , with σx/z being the pauli matrices defined in the standard way. This fact renders
two observations: First of all, we notice how this fact implicitly shows that the system with p = 2 should
be related to the system consisting of indistinguishable fermions. Second of all, the p = 2 case also hints
at us an important physical interpretation of the Weyl generators V and U as a pair of spin operators: U
is unitary and represents an observable, which corresponds to the spin of a Zp-symmetric spin system,
while V is a ’ladder’ operator that makes it possible to jump between the different spin states.

1.1.1 Weyl parafermions

Recall that the Jordan-Wigner transformation maps the fermionic spin operators to the creation and
annihilations operators of the fermion [15]. By a Jordan-Wigner-like transformation of our generalised
spin operators, U and V , it should thus be possible to define a family of pseudoparticles, which we will
denote (Weyl) parafermions. This allows us to define the (Weyl) parafermion operators:

Γi ≡ Vi

i−1∏
j=1

Uj

 ∆i ≡ ViUi

i−1∏
j=1

Uj

 = ΓiUi (1.8)

They define an alternative set of generators of the Weyl algebra, Wp(M), since we may describe the
original Weyl operators in terms of the parafermionic operators:

Ui = Γ†i∆i Vi = Γi

i−1∏
j=1

∆†jΓj

 = Γi

i−1∏
j=1

U†j (1.9)

These newly defined operators commute as:

ΓiΓj = ωΓjΓi ∆i∆j = ω∆j∆i for i < j

Γi∆j = ω∆jΓi for i ≤ j
(1.10)

It is important to note that the commutation of the operators would look different were i > j. In this
case we would find the commutation relations to be the following, ΓiΓj = ω−1ΓjΓi, ∆i∆j = ω−1∆j∆i,
and Γi∆j = ω−1∆jΓi. Powers of our operators at the same site tell us:

(Γi)
p = (∆i)

p = 1 (Γi)
† = (Γi)

−1 (∆i)
† = (∆i)

−1 (1.11)

The algebra created by our parafermion operators is known as the generalised Clifford algebra [16].
Specifically for p = 2, the algebra generated parafermionic operators is that of the Majorana fermions:
Recast ai = Γi and bi = i∆i, which are two operators that will construct the well known Clifford algebra:

{ai, aj} = 2δi,j {bi, bj} = 2δi,j {ai, bj} = 0 (1.12)

ai and bi are the Majorana fermions when regarded as quantum degrees of freedom [3].
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Weyl parafermions in Spatial Dimensions Bigger than One

To define the parafermions in spatial dimensions, N > 1, we need to define some sort of lexicographical
order that each site in the constructed N -dimensional hypercubic lattice goes into. For example for two
dimensions, N = 2, we could define the order:

(1, 1)→ (1, 2)→ (2, 1)→ (3, 1)→ (3, 2)→ · · · (1.13)

This way of counting in a zig-zag pattern is rather special since it allows for a lexicographical order of
non-finite system sizes. Now the parafermionic operators are defined as:

Γr = Vr
∏
x<r

Ux ∆r = VrUr

∏
x<r

Ux (1.14)

This construction still obeys the generalised Clifford algebra structure that we have defined earlier. Thus
the operators Γr and ∆r will be parafermions when regarded as degrees of freedom of the system.

1.2 Fock parafermions

In the previous section it was shown how the p = 2 case of the Weyl parafermions are the Majorana
fermions. The Majorana fermions by themselves cannot exist, but appear as quasiparticle edge modes
in a Kitaev chain, due to the collective interactions of the super conducting electrons in the material. If
fermions were the underlying particles that gave rise to the p = 2 case of the Weyl parafermions, it is
natural to ask if particles with a Fock description (be they quasiparticles or regular particles) exist for the
general p case. This question is answered by the introduction of the Fock parafermions. These particles
are defined to have a Fock space representation, which in term means that they are defined through
second quantisation. That the Fock parafermions have a second-quantisation description tells us that
they can exist individually and be used in models like tight-binding models.

We define the Fock space of indistinguishable, independent particles in terms of the following pieces of
information:

1. The state space of a single particleH and its available orbitals;

2. A rule for multiplying N single-particle states to generate an N -body state with the correct ex-
change and exclusion statistics.

Let the single-particle state space H be spanned by an orthonormal basis {φ1, . . . , φM}. Assume that
each of these Fock parafermions are independent particles. Specify a many-body state, where ni Fock
parafermions occupy the φi orbital, then the occupation numbers may be organised into a unique or-
dered list denoting the many-body state, |n1, . . . , ni, . . . , nM 〉. For ease of notation we use the following
notation |ni〉 = |0, . . . , 0, ni, 0 . . . , 0〉. The general structure of the Fock space is:

Fp(M) =
⊕
N=0

span

{
|n1, . . . , ni, . . . , nM 〉

∣∣∣∣∣
M∑
i=1

ni = N

}
(1.15)

This Fock space also being a Hilbert space allows for the construction of an inner product, which is
physically motivated to be orthogonal for states with distinct orbital occupations, defined as:

〈n1, . . . , nM |n′1, . . . , n′M 〉 =

M∏
i=1

δni,n′i (1.16)

The present description of the Fock space contains no information on the exchange statistics of the Fock
parafermions. To encode this information in the Fock space we define an associative multiplication, ×,
which physically describes the process of adding Fock parafermions to any fixed orbital:

|ni = 1〉 × · · · × |ni = 1〉︸ ︷︷ ︸
m times

≡ |ni = m〉 (1.17)

We may also denote this by an exponent (|ni = 1〉)m = |ni = m〉. In the case of fermions, we recall that
only one particle per orbital may exist. This motivates the definition of an exclusion parameter nE ≥ 2,
as the smallest integer such that:

(|ni = 1〉)ne = |ni = nE〉 = 0 (1.18)
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The parafermions do not commute under exchange. Hence to capture the exchange statistics of the
parafermions, the multiplication of two different orbital must obey the following property, for i < j:

|ni, nj〉 ≡ |ni〉 × |nj〉 = ωninj |nj〉 × |ni〉 (1.19)

Where ω ≡ ei2π/p. We note that any state in Fock space may be generated by multiplying single-particle
states:

|n1, . . . , nM 〉 = (|1, 0, . . . , 0〉)n1 × · · · × (|0, . . . , 0, 1〉)nM (1.20)

Define the Fock space vacuum, |0〉:

|0〉 ≡ |n1 = 0, . . . , nM = 0〉 = (|1, 0, . . . , 0〉)0 × · · · × (|0, . . . , 0, 1〉)0 (1.21)

And note that this state must be the multiplicative identity:

|n1, . . . , nM 〉 = |0〉 × |n1, . . . , nM 〉 = |n1, . . . , nM 〉 × |0〉 (1.22)

We assume if a state |ψ〉 commutes with any other state |φ〉 ∈ Fp(M), then |ψ〉must be a scalar multiple
of the Fock vacuum. With this piece of information, we try and determine the exclusion parameter. We
observe that:

|ni = p〉 × |nj〉 =

{
ωp |nj〉 × |ni = p〉 = |nj〉 × |ni = p〉 for i < j

ω−p |nj〉 × |ni = p〉 = |nj〉 × |ni = p〉 for i > j
(1.23)

While for i = j the same trivially holds. To sum up |ni = p〉 × |nj〉 = |nj〉 × |ni = p〉, which is true for all
|nj〉, thus as per our assumption |ni = p〉 = αi |0〉 for i ∈ {1, . . . ,M}. These states contain p particles, so
the inner product with the Fock vaccum is:

αi = 〈0|αi|0〉 = 〈0|ni = p〉 = δp,0 = 0 (1.24)

In other words |ni = p〉 = 0. It turns out that this is the lowest such exponent that exists, hence nE = p.
The dimension of the Fock space is thus:

dimC (Fp(M)) = pM (1.25)

In fact the Fp(M) algebra is the p-Grassmann algebra with M generators [3]. To distinguish between
different types of Fock parafermions we will denote Zp Fock parafermions as the Fock parafermions for
which p is the smallest integer such that (eq. 1.30) is obeyed. We will further more denote p as the order
of the Fock parafermions.

1.2.1 Second Quantisation of the Fock parafermions

Having defined a Fock space over which the parafermions may exist, we wish to define a pair of creation
and annihilation operators that will allow us to capture the physics of the Fock parafermions. Funda-
mentally, we want to define the creation operator F †i as adding one Fock parafermion to any given
state in the i’th orbital. This may be done by multiplication from the left of any given state by the state
|ni = 1〉. The creation operator becomes:

F †i |n1, . . . , ni, . . . , nM 〉 = ω−
∑
j<i nj |n1, . . . , ni + 1, . . . , nM 〉 (1.26)

The annihilation operator, Fi, is similarly defined:

Fi |n1, . . . , ni, . . . , nM 〉 = ω
∑
j<i nj |n1, . . . , ni − 1, . . . , nM 〉 (1.27)

By application of these definitions, we get for i < j the relations:

F †i F
†
j = ωF †j F

†
i FiFj = ωFjFi F †i Fj = ω−1FjF

†
i FiF

†
j = ω−1F †j Fi (1.28)

The first two commutation relations can be expressed in terms of each other through a Hermitian conju-
gation, and the same is true for the two last commutation relations. Thus the four commutation relations
can be condensed to two commutation relations for general i 6= j:

FiFj = ωsgn(i−j)FjFi F †i Fj = ω−sgn(i−j)FjF
†
i (1.29)
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Applying the creation operator to vacuum p times yields F †i
p
|0〉 = |ni = p〉 = 0, whereby it must be true

that:
F †i

p
= 0 Fi

p = 0 (1.30)

Furthermore, it is noted how the Fock parafermions will obey the p− 1 relations:

(F †i )m(Fi)
m + (Fi)

p−m(F †i )p−m = 1 m ∈ { 1, . . . , p− 1 } (1.31)

Which stems from the fact that (F †i )m(Fi)
m |n1, . . . , ni, . . . , nM 〉 = |n1, . . . , ni, . . . , nM 〉, if ni − m ≥ 0

and zero otherwise, while the second term (Fi)
p−m(F †i )p−m |n1, . . . , ni, . . . , nM 〉 = |n1, . . . , ni, . . . , nM 〉,

if p −m + ni < p and zero otherwise. Hence, if ni ≥ m the first term of (eq. 1.31) will be the identity
while the second term is zero, and if ni < m the first term is zero, while the second term is the identity.

If we let p = 2, we see how our relations (Eqs. 1.28-1.31) simplify to the standard fermionic algebra with
F †i Fj + FjF

†
i = δi,j and (F †i )2 = (Fi)

2 = 0. Therefore, the Fock parafermion operators with p = 2 obey
the anti-commutation relations of the standard fermions, which is exactly what we would expect. In
other words, the p = 2 case of the Fock parafermions yields the system of the standard fermions.

In closing, we define the number operator such that:

Ni |n1, . . . , ni, . . . , nM 〉 ≡ ni |n1, . . . , ni, . . . , nM 〉 (1.32)

As we noted earlier (F †i )m(Fi)
m |n1, . . . , ni, . . . , nM 〉 = |n1, . . . , ni, . . . , nM 〉 ifm ≤ ni and zero otherwise.

Hence, we can count how many Fock parafermions are in the i’th orbit by adding together the number
of non-zero (F †i )m(Fi)

m. Mathematically this is expressed as the equation:

Ni =

p−1∑
m=1

F †i
m
Fi
m (1.33)

This operator commutes with the Fock parafermions like so:

[Ni, Fi] = −Fi [Ni, F
†
i ] = F †i (1.34)

These commutation relations witness that the operator Ni is a generator of the U(1) Lie algebra over the
Fock parafermions [17]. Thus on the defined Fock space, the operator, Ni, generates a U(1)-symmetry.
This underlines the important point about the nature of the Fock parafermions that U(1)-symmetric
systems conserve the number of Fock parafermions as is the case with fermions and bosons.

1.2.2 Fock vs Weyl Representation of the parafermions

Relating the Fock parafermions to the Weyl parafermions is not as straightforward as one would sug-
gest. However Cobanera and Ortiz [3, p. 27] found out that the following definition yields two sets
of operators that simultaneously obey the right commutation relations of Weyl and Fock parafermions
(Eqs. 1.10, 1.11 1.28, 1.30, 1.31):

Γi = Fi + F †i
p−1

∆i =
(
Fi + F †i

p−1
)
ωNi (1.35)

The number operator in the ω exponent can be rewritten as:

ωNi = 1 + (ω − 1)

p−1∑
m=1

ωm−1F †i
m
Fi
m (1.36)

Inserting this result in (eq. 1.35) and solving the resulting system of equations for the Fock parafermions
yields:

Fi =
p− 1

p
Γi −

1

p

p−1∑
m=1

ωm(m+1)/2Γi
m+1∆†i

m

F †i =
p− 1

p
Γ†i −

1

p

p−1∑
m=1

ω−m(m+1)/2∆i
mΓ†i

m+1

(1.37)

This result is not readily available to us, but will nonetheless be easily derived when the main result of
the subsequent section is derived.
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1.2.3 Fradkin-Kadanoff Transformation (Weyl Hard-core Bosons)

Weyl hard-core bosons as we will define them are related to the Fock parafermions by a Jordan-Wigner-
like transformation generalisation that is called the Fradkin-Kadanoff transformation. To see how this
transformation arises, express the Weyl generators in terms of Weyl parafermions:

Ui = Γ†i∆i =
(
F †i + Fi

p−1
)(

Fi + F †i
p−1
)
ωNi = ωNi (1.38)

This result is rather interesting as it shows that the unitary operator, Ui, is equal to the exchange statistics
factor, ω, to the power of number of particles at site i. Furthermore:

Vi = Γi

i−1∏
j=1

U†j =
(
Fi + F †i

p−1
) i−1∏
j=1

U†j = Bi +B†i
p−1

(1.39)

Where we have defined the bosonic-like creation and annihilation operators, B†i = F †i
∏
j<i Uj and

Bi = Fi
∏
j<i U

†
j , that we will call the Weyl hard-core bosons. To see that these operators, B†i and Bi, are

in fact bosonic-like, we consider the commutation:

0 = [Vj , Vj ] = [Bi, Bj ] + [Bi, B
†
j ]B
†
j

p−2
+B†i

p−2
[B†i , Bj ] +B†i

p−2
[B†i , B

†
j ]B
†
j

p−2
(1.40)

Notice that the equation above is always zero, whereby each of the terms must also yield zero. Hence it
is noted that the operators obey the hard-core boson commutation relations:

[Bi, Bj ] = 0 [Bi, B
†
j ] = 0 [B†i , B

†
j ] = 0 (1.41)

And by insertion of the definition of the Bi’s in terms of Fi’s we see that B†iBi = F †i Fi, which renders:

Bi
p = B†i

p
= 0 (B†i )

m(Bi)
m + (Bi)

p−m(B†i )
p−m = 1 for m ∈ { 1, . . . , p− 1 } (1.42)

We have thus arrived at a generalised version of the Jordan-Wigner transformation, also in the literature
called the Fradkin-Kadanoff transformation [3, 5], which maps from the Fock parafermions to the Weyl
hard-core bosons :

Fi = Bi

i−1∏
j=1

Uj F †i = B†i

i−1∏
j=1

U†j (1.43)

Due to the lemma that B†iBi = F †i Fi, the number operator in terms of the hard-core boson operators is:

Ni =

p−1∑
m=1

(B†i )
m(Bi)

m (1.44)

Notice that V †i Bi = B†iBi + Bi
p = B†iBi = F †i Fi. This operator will yield the identity, 1, as long as

ni ≥ 1. In other words, Bi is the inverse of the Hermitian matrix V †i , which is Vi, except for in the state
where ni = 0. In the matrix representation defined earlier the Weyl hard-core boson operator is thus:

Bi = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗B ⊗ 1⊗ · · · ⊗ 1 B =



0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0


(1.45)

Notice how the matrix B is exactly the same as the matrix representation V , with the only difference
being the 1 turned into a 0 in the bottom right corner. The similarity between Bi and Vi will make Bi
inherit the commutation relations with Ui:

BiUj = ωδi,jUjBi B†iUj = ω−δi,jUjB
†
i ω = e2πi/p (1.46)
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Notice that the sum of all the powers of the roots of unity in the complex plane is 0, hence excluding 1

itself we find that
∑p−1
m=1 ω

m = −1. Thus:

p−1∑
m=1

(Ui)
m =

p−1∑
m=1

(U†i )m =


(p− 1)

−1
. . .

−1

 (1.47)

This observation is used to isolate the first column of Vi from the other columns, such that we may
remove it to get Bi. What it means is that the expression below must be true:

Bi =
p− 1

p
Vi −

1

p

p−1∑
m=1

Vi(U
†
i )m (1.48)

One may check that the above equation is true in the matrix representation that we have defined. This
result is used in conjunction with the definition of the Weyl parafermions (eq. 1.8) and the Fradkin-
Kadanoff transformation (eq. 1.43) to derive (eq. 1.37).

1.3 Physical Models Where Parafermions Arise

Our treatment of the Weyl- and Fock parafermions have so far been purely mathematical and hypothet-
ical. It is not trivial that such particles as discussed should arise in systems in the real world. However,
as we will see in this chapter, proposals for the experimental realisation of these quasiparticles have
been made. The most promising method is to use the edges of the Laughlin and Read-Rezayi states
of the fractional quantum Hall effect [18, 19]. Therefore, this work is not purely theoretical, but also of
practical importance.

1.3.1 Vector Potts Model

The vector Potts or clock model model is not technically physically realisable, but is an interesting sys-
tem that arises in theoretical condensed matter physics. This model is a generalisation of the Ising and
Heisenberg models, where the regular two spin states at each site are expanded to a total of n spin states.
The possible values of the spin, Uj , at site j, by 1, ω, ω2, . . . , ωn−1, where ω = e2πi/n. The Potts model
has been given its nickname the clock model due to the resemblance of the spin states to the hands of a
clock. That this model gives rise to edge modes that are expressed by parafermions was first derived by
Fendley in 2012 [2].

In one dimension the vector Potts model with nearest neighbour interaction on a lattice consisting of
sites 1, . . . , L is:

Hvp[hi, ji] = −1

2

(
L∑
i=1

hiUi +

L−1∑
i=1

JiV
†
i+1Vi

)
+ H.c. (1.49)

The first term can be understood as the coupling of the spin states Ui to an external magnetic field ~h,
and the second term is the interaction of the spins at adjacent sites, which seeks to align the spins for
J > 0 and anti-align them when J < 0. As is evident, the model bears a close resemblance to the Ising
model, but with an arbitrary number of spin states rather than only two spin states.

We note that by insertion of the definitions we have V †i+1Vi = Γ†i+1∆i and Ui = Γ†i∆i. Hence we note
that we may write the Hamiltonian in terms of the Weyl parafermionic operators through the Jordan-
Wigner-like transformation (eq. 1.8):

Hvp = −1

2

(
M∑
i=1

hiΓ
†
i∆i +

M−1∑
i=1

JiΓ
†
i+1∆i

)
+ H.c. (1.50)

The vector Potts model may be defined in terms of the parafermions, but the physical interpretation
of these operators eludes us. We will try and remedy that here. First, we note that the operator Qp =
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∏M
j=1 Uj is a global Zp symmetry of the system. Let r(i) = L + 1 − i, be the reflection through the

midpoint of the system, and define the ”dual” mapping, φd:

U1
φd7−→ V †L Ui

φd7−→ V †r(i)Vr(i)+1 for i ∈ {2, . . . , L}

VL
φd7−→ U1 VjV

†
j+1

φd7−→ Ur(j) for j ∈ {1, . . . , L− 1}
(1.51)

The mapping φd is an isomorphism which guarantees the structure of the algebra is conserved even
after the mapping. This guarantees that the transformed operators also obey the relations required for a
set of Weyl generators. If we map the vector potts hamiltonian (eq. 1.49) under this transformation we
get:

Hvp[hi, Ji]
φd7−→ −1

2

(
h1Vr(1) +

L∑
i=2

hiV
†
r(i)Vr(i)+1 +

L−1∑
i=1

JiUr(i)

)
+ H.c. = Hvp[hi∗, Ji∗] (1.52)

By defining the dual couplings h∗i ≡ Jr(i) and J∗i ≡ hr(i). In other words, any pair of vector Potts
Hamiltonian associated to the points {hi, Ji} and {h∗i , J∗i } is isospectral - the model is in other words
self-dual. The dual Hamiltonian however is not globally symmetric under the action of Qp:

Qp =

L∏
j=1

Uj
φd7−→ Vr(1)

L∏
j=2

V †r(j)Vr(j)+1 =

L−1∏
j=1

Vr(j)V
†
r(j)

V †r(M) = V †1 (1.53)

This means that the dual Hamiltonian is symmetric in Qp 7→ V †1 only on the boundary. Such symmetry
that is globally symmetric and becomes a local symmetry on the boundary under a dual mapping, is
denoted as a holographic symmetry. The existence of such a symmetry makes V †1 an edge mode [20].

1.3.2 Fractional Quantum Hall Edge Modes

The Laughlin states, a type of quasi particle states that arise in the fractional quantum Hall effect, display
a very interesting behaviour similar to the parafermions [21, pp. 480-484]. The Laughlin states with
filling factor ν = 1/p, have quasi-particle operators eiφ(x) that create right-moving charge e/p excitations,
for which:

eiφ(x)eiφ(x′) = eiφ(x′)eiφ(x)ei
π
p sgn(x′−x) (1.54)

This commutation looks nearly identical to the commutation relation of the parafermions, which seems
to suggest we can use Laughlin states to physically realise parafermions. Clarke et al. [19] used this
fact to propose an experimental setup for the realisation of the parafermions. We will go through this
construction here.

Recall that the fractional quantum Hall effect arises when a two dimensional electron gas is subjected to a
strong magnetic field at low energies. The electron gas is confined to two dimensions by the construction
of an effective quantum well which is then doped at different filling factors. The Laughlin states (or the
fractional quantum Hall effect) are created when the doping is such that the filling factor (which are the
number of electrons to magnetic flux quanta in the quantum well) take on a nice rational number [22].

The setup proposed by Clarke et al. [19] works as follows: the Laughlin edge states run along the edges
of the quantum well, so a series of steps is taken to localise them in a type of particle, which will be our
parafermions. To create a localised edge mode, a gap is needed to be created. The gap is constructed by
running two counter-propagating Laughlin states through a setup of superconductors and spin-orbit-
coupled insulators in the region between two quantum wells (see fig. 1.1). The desired gap can appear
through (1) tunneling of electrons across the junction of the setup, (2) facilitating electrons from each
edge into Cooper pairs. In the latter case a pairing gap opens at the interface between superconductor
and spin-orbit-coupling insulator via the proximity effect with ordinary s-wave superconductors. A
tunnelling gap can arise from the spin orbit induced back-scattering between the edge states, either
through the quantum wells or the insulator.

Assume the electrons only tunnel through the interface by the spin-orbit-coupled insulator. We may con-
sider the momenta of the right-/left-moving e/p charged quasiparticles, φR/L, and their commutation
relations: [

φR/L(x), φR/L(x′)
]

= ±iπ
p

sgn(x− x′) [φL(x), φR(x′)] = i
π

p
(1.55)
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Figure 1.1: Proposed experimental setup for realisation of parafermions. Two counter-propagating
Laughlin states are made to run through a series of superconducting and spin-orbit-coupling insulator
regions. Back scattering in the intermediate region localises the Laughlin states such that the anyonic
parafermions are formed. Figure is borrowed from Clarke et al. [19].

The electron operators are proportional to some vertex operator, ψR/L ∼ eiφR/L , where the φR/L fields
are bosonic. By the theory of bosonisation1, we can split up the chiral bosonic fields as φR/L = ϕ±θ with
ρ = ∂xθ/π, where ϕ and θ are bosonic fields. The commutation relation of the newly defined bosonic
fields is from (eq. 1.55).

[ϕ(x), θ(x′)] = i
π

p
Θ(x− x′) (1.56)

Which is exactly what one would expect from the bosonic fields (see appendix A). The Hamiltonian of
the interface is assumed to be H = H0 +H1, where H0 is the Luttinger liquid Hamiltonian:

H0 =
pv

2π

∫
dx
[
(∂xϕ)2 + (∂xθ)

2
]

(1.57)

H1 is the Hamiltonian of the superconductor and the spin-orbit-coupled insulator combined into one:

H1 =

∫
dx


superconductor︷ ︸︸ ︷
∆(x)ψRψL +

SOC-insulator︷ ︸︸ ︷
M(x)ψ†RψL +H.c.

 ∼ ∫ dx (−∆(x) cos(2pϕ(x))−M(x) cos(2pθ(x)))

(1.58)

The p = 1-case has previously been extensively studied, and leads to the formation of Majorana fermions
at the edges of the insulator.

For the p > 1-cases we assume the terms, ∆(x) andM(x), are so big in the superconductor and spin-
orbit insulator, respectively, that they will dominate in each of these regions, but will otherwise be
negligible. This results in the fields φ and θ being pinned down in the superconducting and spin-orbit
insulator domain, respectively. For example, in the superconductor the minimal Hamiltonian will be
achieved when the term,−∆(x) cos(2pϕ(x)), is minimal, which renders ϕ ∈

{
0, πm , 2

π
m , . . . , (2m− 1) πm

}
.

Define n̂ as a integer valued operator, such that in our experimental setup, ϕ(x < x1) = π
m n̂

(1)
ϕ and

ϕ(x > x2 + `) = π
m n̂

(2)
ϕ in the left and right superconductors, while ϕ(x1 + ` < x < x2) = π

m n̂θ in the
spin-orbit-coupled insulator. Note by the commutation relation of ϕ and θ we get:

[n̂(1)
ϕ , n̂θ] = 0 [n̂(2)

ϕ , n̂θ] = i
m

π
(1.59)

Assuming the fields are pinned as prescribed in the superconductors and insulators, then at low energies
of the system we can focus on the regions (xi, xi+`) between the superconductors and insulators, where

1See appendix A.
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∆(x) andM(x) both vanish. The effective Hamiltonian of the system is thus only displaying an gapless
bosonic mode in the these regions:

Heff =
mv

2π

∑
i=1

2

∫ xi+`

xi

dx
[
(∂xϕ)2 + (∂xθ)

2
]

(1.60)

The following operators αj , j = 1, 2,, commute with this effective Hamiltonian, and represent, therefore,
zero-modes that are bound to the domain wall in the system (black parts of fig 1.1):

αj = ei
π
m (n̂(j)

ϕ +n̂θ)

∫ xi+`

xi

dx
[
e−i

π
m (n̂(j)

ϕ +n̂θ)ei(ϕ+θ) + e−i
π
m (n̂(j)

ϕ −n̂θ)ei(ϕ−θ) + H.c.
]

(1.61)

In the ground state limit, the integral in the above expression evaluates to a constant. Hence the opera-
tors αj become:

αj ∼ ei
π
m (n̂(j)

ϕ +n̂θ) (1.62)

These two operators are (Weyl) parafermions, since they obey the relations (provable by use of the BCH
formula and our definitions and commutators):

(αj)
2m = 1 αjαj′ = αj′αje

i πm sgn(j′−j) (1.63)

Notice that the constructed fermion is of even order with p = 2m. To get odd orders of parafermions
more steps need to be taken. The construction of a parafermion like the Z3 parafermion cannot be made
by the simple description that has ben outlined here. The Z3 parafermion has to be constructed through
a Read-Rezayi edge state rather than a Laughlin edge state [18].

The astute reader might say that this proposed setup seems impossible, since it requires a quantum well
with a strong magnetic field to be right next to a superconducting region, which famously does not
like such fields, and a magnetic field is not something that can just be isolated to exist in local regions.
The practicality of the setup was consequently dubious until 2020 when Gül et.al. [23] constructed a
heterostructure device that displays superconducting behaviour at the edge of a fractional quantum
Hall edge.
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Chapter 2

Chiral Luttinger Liquids

Before proceeding to the main point of this thesis, which is to treat the Fock parafermions through boson-
isation, we will study a system which seems unrelated at first, but turns out to be of great importance in
our future analysis. The system in question is the one-dimensional chiral Luttinger liquid. This system
arises as a hydrodynamic description of the edge excitations of the fractional quantum Hall effect, the
derivation of which is made in [24] and [21, pp. 609-615]. In this chapter we will however derive the
system differently in a rather unorthodox way.

Consider the Tomonga-Luttinger liquid in one dimension defined on the system of size L. The Hamil-
tonian of such system, which is derived in appendix A, looks like:

HLL =
~v
2π

∫ L

0

dx K (∂xϕ)
2

+
(∂xθ)

2

K
=

~v
4π

∫ L

0

dx

(√
K∂xϕ+

∂xθ√
K

)2

+

(√
K∂xϕ−

∂xθ√
K

)2

(2.1)

Where we in the last equality have split up the Hamiltonian of the system in two parts. Our idea is to
consider each of the part by themselves. As we will see, each of these parts corresponds to one of the
dispersions of the Luttinger liquid that has velocity±v. The model is dubbed the chiral Luttinger liquid
for this reason. We let ε = ~vK/4π and κ = 1/K and consequently define the chiral Luttinger liquid on
a system of size L:

HCLL = ε

∫ L

0

dx (∂xϕ+ κ∂xθ)
2 (2.2)

Where ε > 0 and κ are real numbers. Note that we should impose the restraint ε > 0, since ε < 0
will favour a system where ∂xϕ → ±∞ and ∂xθ → ±∞, which will be unphysical, while ε = 0 is a
pathological case of the system which will not correspond to any real system. The two fields ϕ and θ are
a pair of dual bosonised fields, which commute as:[

∂xθ

π
(x), ϕ(y)

]
= −iδ(y − x) (2.3)

Note that the chiral Luttinger liquid is not Lorentz invariant, because of the mixing between the dual
fields ∂xϕ and ∂xθ. This makes it impossible to go the standard way of finding a canonical diagonal
representation of the Hamiltonian that readily yields eigenvectors and such of the system. Instead, we
will study this system by deriving its correlation functions using the Feynman path integral formulation.
To do so we must first determine the Lagrangian of the system through a Legendre transformation of
the Hamiltonian.

2.1 Lagrangian Dynamics

2.1.1 ϕ-Field Lagrangian

Our first step in studying the Lagrangian of our system in the field ϕ, is to define the canonical momen-
tum field, Πϕ(x), such that it obeys the standard canonical commutation relation with the field ϕ(x),
ie.:

[ϕ(x),Π(y)] = i~δ(x− y) (2.4)
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By the definition, (eq. 2.3), the following operator obeys exactly this relationship:

Πϕ(x) =
~
π
∂xθ(x) (2.5)

Substituting ∂xθ in the Hamiltonian by the canonical momentum, Πϕ, we find the time derivative of the
ϕ-fields by Hamilton’s equation:

∂tϕ =
∂

∂Πϕ
HCLL =

2πεκ

~

(
∂xϕ+

πκ

~
Πϕ

)
(2.6)

These two equations make it possible to conduct a Legendre transformation of the Hamiltonian density,
getting the Lagrangian density of the system in terms of the ϕ-field only:

LCLL = Πϕ∂tϕ−HCLL =
1

4ε

(
~
πκ

)2

(∂tϕ)
2 − ~

πκ
∂xϕ∂tϕ (2.7)

The quantum field theoretical Euler-Lagrange equations in (1 + 1)-dimensions1 give us the equations of
motions of the ϕ-field:

∂t

(
1

2ε

~
πκ
∂tϕ− 2∂xϕ

)
= 0 (2.8)

In this partial differential equation we carry out the integration over time. Assuming the integration
constant is zero, we find the dispersion relation:

∂tϕ = vϕ∂xϕ vϕ =
4πεκ

~
(2.9)

Only one direction is present in the dispersion relation, which is why we called the chiral Luttinger
liquid chiral. With this velocity defined, the Lagrangian density can take on a simpler form:

LCLL(ϕ) =
~
πκ

(
1

vϕ
(∂tϕ)

2 − ∂xϕ∂tϕ
)

(2.10)

Comparison to the Regular Luttinger Liquid and Considerations for κ = 0

That the dispersion relation of the chiral Luttinger liquid only has one direction is in contrast to the case
of the regular Luttinger liquid, where the dispersion is in both directions with velocities ±v. The chiral
Luttinger liquid is in fact a more general case of the standard Luttinger liquid. To see why this is the
case, note that we may construct a Luttinger liquid with velocities ±v, from two chiral Luttinger liquids
each with velocity +v and −v, respectively:

HCLL,−v +HCLL,+v = ε

∫
dx (∂xϕ− κ∂xθ)2

+ (∂xϕ+ κ∂xθ)
2

= ε

∫
dx (∂xϕ)

2
+ κ2 (∂xθ)

2
= HLL (2.11)

In our analysis we have so far assumed κ 6= 0. Letting2 κ→ 0 the chiral Luttinger liquid becomes:

HCLL −−−→
κ→0

ε

∫
dx (∂xϕ)2 (2.12)

This Hamiltonian is that of the Luttinger liquid with K → ∞. This is a zero dispersion mode since the
canonical momentum of the ϕ-field, Πϕ, will not appear in the Hamiltonian. For this reason, Hamilton’s
equations will render ∂tϕ = 0. The same will be true for the θ-field in this limit.

2.1.2 θ-Field Lagrangian

We want to construct the canonical momentum to the θ-field, Πθ. By the fundamental theorem of cal-
culus, the derivative of an integral of a function is the function itself. Using this theorem and partial
integration, it is noted that:

[ϕ, ∂xθ] = ∂x

∫
dx [ϕ, ∂xθ] = ∂x

∫
dx (ϕ∂xθ − (∂xθ)ϕ) = ∂x

(
[ϕθ − θϕ]

∞
−∞ −

∫
dx ((∂xϕ)θ − θ∂xϕ)

)
= −[∂xϕ, θ] = [θ, ∂xϕ]

(2.13)
1See appendix D.2.
2The exact limit κ→ 0 cannot be taken directly, however, as ε→∞
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Where we assume that the derivative of the fields ϕ and θ die off as x → ∞. By invoking the commu-
tation relation of the fields (eq. 2.3), we determine the canonical momentum to the θ-field, Πθ = ~

π∂xϕ.
Hamilton’s equations are then used to determine the temporal derivative ∂tθ = 2πε

~
(
κ∂xθ + π

~Πθ

)
.

Whereby, it is possible to determine the Lagrangian through a Legendre transformation:

LCLL(θ) =
~κ
π

(
1

vθ
(∂tθ)

2 − ∂xθ∂tθ
)

(2.14)

Where we have used the Euler-Lagrange equation to determine the dispersion relation and velocity, vθ:

∂tθ = vθ∂xθ vθ =
4πεκ

~
(2.15)

It is observed that the two dual fields θ and ϕ have exactly the same dispersion with v = vϕ = vθ.

2.2 Partition Functions

The Lagrangians of the chiral Luttinger liquid in the two fields ϕ and θ (Eqs. 2.10 and 2.14) proved very
similar. This will render calculations of the two-point correlation functions very easy to infer for one of
the fields, say θ, provided the other field’s correlation functions have been calculated, say that of ϕ. To
do this we introduce a small abstraction as the constant α, and denote the velocity v = vθ = vϕ such
that:

LCLL = α~
(

1

v
(∂tϕ)2 − ∂xϕ∂tϕ

)
(2.16)

Where α = 1/πκ for the ϕ-field. The calculation of the two-point correlation function of the θ-fields will
be exactly the same as the one for the θ-field, but letting α = κ/π.

We rewrite the Lagrangian in imaginary time by letting t → τ = it. This substitution makes the partial
derivates ∂t = ∂τ

∂t ∂τ = i∂τ . The Lagrangian in terms of this new imaginary time coordinate is:

LCLL = −α~
(
i∂xϕ∂τϕ+

1

vϕ
(∂τϕ)2

)
(2.17)

Cf. the Feynman path integral approach, we can define the partition function over the Lagrangian, L(ϕ),
by:

Z ≡
∫
Dϕ exp

[
−1

~

∫
dxdτ L(ϕ)

]
(2.18)

To calculate this partition function, we define the Fourier transformation of the ϕ-field:

ϕ̂(k, ω) =

∫
dxdτ ϕ(x, τ)e−i(kx−ωτ) ϕ(x, τ) =

1

2π

∫
dkdω ϕ̂(k, ω)ei(kx−ωτ) (2.19)

By these definitions, we see that the partial derivatives on the ϕ-fields can be written as:

∂xϕ(x, τ) =
i

2π

∫
dkdω k · ϕ̂(k, ω)ei(kx−ωτ)

∂τϕ(x, τ) =
−i
2π

∫
dkdω ω · ϕ̂(k, ω)ei(kx−ωτ)

(2.20)

By insertion of these definitions in the integral, (eq. 2.17), we find:∫
dxdτ LCLL(x, τ) = −α~i · 1

(2π)2

∫
dxdτdkdωdk′dω′ kω′ · ϕ̂(k, ω)ϕ̂(k′, ω′)ei((k+k′)x−(ω+ω′)τ)

− α~
vϕ
· (−1)

(2π)2

∫
dxdτdkdωdk′dω′ ωω′ · ϕ̂(k, ω)ϕ̂(k′, ω′)ei((k+k′)x−(ω+ω′)τ)

(2.21)

We may carry out the integration over the τ and x, realising the integration will yield a Dirac-delta
function [25]: ∫

dxdt ei((k+k′)x−(ω+ω′)t) = (2π)2δ(k + k′)δ(ω + ω′) (2.22)
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The delta functions make the integration over k′ and ω′ simple, such that we can effectively just replace
k′ = −k and ω′ = −ω. All in all we find:∫

dxdτ LCLL(x, τ) = α~
∫
dkdω

[
ϕ̂(−k,−ω)

(
ω2

vϕ
− ikω

)
ϕ̂(k, ω)

]
≡
∫
dkdω L̂CLL(k, ω) (2.23)

The partition function of the chiral Luttinger liquid (eq. 2.16) is:

ZCLL =

∫
Dϕ exp

[
−α

∫
dkdω ϕ̂(−k,−ω)

(
ω2

vϕ
− ikω

)
ϕ̂(k, ω)

]
(2.24)

2.3 Two-point Correlation Functions

In this section we calculate the two point-correlation functions of the ϕ field first, and then extend the
calculations such that the two-point correlation functions of the θ fields can be found. We may do
this since the Lagrangian of the system in the two fields are very similar. We now define some small
generating function, η(x, τ):

Z(η) ≡
∫
Dϕ exp

[ ∫
dkdω

(
−1

~
· L̂CLL(k, ω) + η(−k,−ω)ϕ̂(k, ω)

)]
(2.25)

This partition function will evaluate as [26]:

Z(η) = ZCLL · exp

[∫
dkdω η(−k,−ω)G(k, ω)η(k, ω)

]
(2.26)

Where we have defined the Greens functions, which can easily be calculated in momentum space as:

G(k, ω) = α−1

(
ω2

vϕ
− ikω

)−1

(2.27)

The reason why we defined this partition function in terms of some generating function is that we
can easily infer the two-point correlation functions from this function. Cf. [27, p. 15] the two-point
correlation function is:

〈ϕ(k, ω)ϕ(−k,−ω)〉 = lim
η→0

∂η(k,ω)∂η(−k,−ω)
Z(η)

ZCLL
= G(k, ω) (2.28)

Using an inverse Fourier transformation we can thus determine the real-space correlation functions:

〈ϕ(x, τ)ϕ(x′, τ ′)〉 = G(x, τ ;x′, τ ′) =
1

(2π)2

∫
dkdω ei(k(x−x′)−ω(τ−τ ′))G(k, ω) (2.29)

The explicit calculation of the real space correlation function is a bit long, and is therefore relegated to
appendix B. At its heart, the calculation makes use of the Cauchy integral formula to evaluate (eq. 2.29).
It is noted that the velocity plays a big role on the domain for which the integral will converge and be
non-zero. The results for the two-point correlation functions are enumerated below for varying values
of v. Note that we have defined ξ ≡ k(x− x′)/ω − i(τ − τ ′) = (x− x′)/v + (t− t′).

Case v > 0

Other than the sign of the velocity we also need to take into account the sign of (x− x′). If (x− x′) > 0,
we find the two-point correlation function:

〈ϕ(x, t)ϕ(x′, t′)〉 = −κ
2

∫ 0

−∞
dω

eωξ

ω
=

{
sgn(κ) · ∞ for ξ < 0 and (x− x′) > 0

−κ2 (log(|ξ|Λmin) + γ) for ξ > 0 and (x− x′) > 0
(2.30)

Where we have defined some cut-off frequency Λmin, and γ is the Euler-Mascheroni constant. While the
case (x− x′) < 0 renders the correlation function:

〈ϕ(x, t)ϕ(x′, t′)〉 =
κ

2

∫ ∞
0

dω
eωξ

ω
=

{
−κ2 (log(|ξ|Λmin) + γ) for ξ < 0 and (x− x′) < 0

sgn(κ) · ∞ for ξ > 0 and (x− x′) < 0
(2.31)
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Case v < 0

Other than the sign of the velocity we also need to take into account the sign of (x− x′). If (x− x′) > 0,
we find the two-point correlation function:

〈ϕ(x, t)ϕ(x′, t′)〉 = −κ
2

∫ ∞
0

dω
eωξ

ω
=

{
κ
2 (log(|ξ|Λmin) + γ) for ξ < 0 and (x− x′) > 0

−sgn(κ) · ∞ for ξ > 0 and (x− x′) > 0
(2.32)

While the case (x− x′) < 0 renders the correlation function:

〈ϕ(x, t)ϕ(x′, t′)〉 =
κ

2

∫ 0

−∞
dω

eωξ

ω
=

{
−sgn(κ) · ∞ for ξ < 0 and (x− x′) < 0
κ
2 (log(|ξ|Λmin) + γ) for ξ > 0 and (x− x′) < 0

(2.33)

Case v = 0

v → 0, means either that the Hamiltonian approaches the limit:

HCLL −−−→
κ→0

ε

∫
dx (∂xϕ)2 (2.34)

Or that the entire thing is zero due to ε → 0. Both cases will however yield 〈ϕ(x, t)ϕ(x′, t′)〉 = const, as
noted earlier and evidenced by the calculation in appendix B.

Summary: General v 6= 0 and Equal Time Correlation Function

Note that v ∝ εκ, cf. (Eqs. 2.9 and 2.15). However, earlier it was argued that we must require ε > 0 for
the system to be physically sound. This is due to the fact that if ε < 0 the state that will minimise the
energy of the Hamiltonian is the state for which ∂xϕ→∞ and ∂xθ →∞, which is rather an unphysical
system. This will make the sign of v be the sign of κ. One can quickly check that the results above, where
the two-point correlation function 〈ϕ(x, t)ϕ(x′, t′)〉 = ∞, corresponds to the impossible case where the
sign of v and κ are different, and would as such not be attainable. This underlines our intuition that
such a system should be unphysical.

On the other hand, if x − x′ > v(t − t′) (like in the case of equal time correlation function t = t′) the
correlation function is:

〈ϕ(x, t)ϕ(x′, t′)〉 = −|κ|
2

(log(|ξ|Λmin) + γ) (2.35)

If we define the system over some one-dimensional lattice of length L and with lattice spacing a, a
natural definition of our cut-off frequencies Λmin ∝ 2πL−1 and Λmax ∝ 2πa−1 arise due to the periodicity
of the unit cell in momentum space. Notice that we want the unit of the cut-off frequencies to be on
the energy scale, whereby we may let Λmin = 2π |v| /L and Λmax = 2π |v| /a. Hereby the equal time
correlation functions of the Chiral Luttinger liquid on the one-dimensional lattice are:

〈ϕ(x, t)ϕ(x′, t)〉 = −|κ|
2

log |x− x′|+ const (2.36)

At small |x− x′| ≈ a the system approaches a high energy description which is also treated in the
appendix. Here it is shown that the resulting two-point correlation functions are rapidly exponentially
decreasing, which makes them effectively zero at the long-range orders. We find that:

〈ϕ(x, t)ϕ(x′, t)〉 ∝ −|κ|
2
· e−

|x−x′|
a for |x− x′| ≈ a (2.37)

2.3.1 Correlation Functions in the θ-fields

To get the correlation functions of the θ-fields, one simply substitutes κ → 1/κ, in the calculations that
were just made, due to the similarity between (eq. 2.10) and (eq. 2.14). Therefore, the equal time
correlation functions with t = t′ are:

〈θ(x, t)θ(x′, t)〉 = − 1

2 |κ|
log |x− x′|+ const (2.38)
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If we have x = x′ or if κ = 0, we define:

〈θ(x, t)θ(x, t)〉 = const (2.39)

´

2.4 The Chiral Luttinger Field ψ

In this section we will quickly go over an alternative approach of representing the chiral Luttinger liquid.
This is done by defining the chiral field, ψ:

ψ ≡ (ϕ+ κθ) (2.40)

This definition will make it such that [∂xψ(x), ψ(x′)] = −i2πκδ(x−x′). Note that hereby we find that the
canonical momentum is Πψ = ~

2πκ∂xψ. The Hamiltonian density of the chiral Luttinger liquid is thus:

H = ε · (∂xψ)2 = ε ·
(

2πκ

~

)2

(Πψ)2 (2.41)

From the Hamilton equations we find that the time derivative ∂tψ = 4πκε
~ ∂xψ, which makes the velocity

vψ = 4πκε
~ - exactly the same velocity as those of the two fields ϕ and θ. A Legendre transformation

yields the Lagrangian:

L =
~

4πκ

(
∂tψ∂xψ −

1

vψ
(∂tψ)2

)
(2.42)

The Lagrangian is on the same form as we studied in previous sections, where we let the abstraction
constant α = −(4κ)−1. The calculation of the two-point correlation functions saw that this size was
proportional to the absolute value of half of this value, ie. 〈ψψ〉 ∝ |α| /2. The two-point correlation
functions are thus:

〈ψ(x, t)ψ(x′, t)〉 = −2 |κ| log

∣∣∣∣ (x− x′)− vψ(t− t′)
a

∣∣∣∣ (2.43)

Notice that this value is different from the two-point correlation function of the normalised chiral field
where with [∂′xψ(x), ψ′(x′)] = −iπκδ(x− x′) by a factor of 2.
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Chapter 3

Fock Parafermion Tight Binding Model

3.1 The Model

In the rest of this thesis we will analyse the nearest neighbour tight-binding model of the Zp Fock
parafermions. It can be considered as a generalisation of the Hubbard model for Zp Fock parafermions.
We define the model in one dimension but it is possible to expand this to multiple spatial dimensions
by the introduction of some lexicological order that we touched upon in section 1.1.1.

The model assumes a one-dimensional chain of length L of tight-binding sites, with equilateral lattice
spacing a, to which Zp Fock parafermions can bind. The nomenclature, tight-binding sites, are meant
to denote sites where it is assumed that the overlap of the wave functions of the Fock parafermions of
adjacent sites is small such that it is effectively ignored, and the Fock parafermions at each site can be
treated by themselves. A system such as this is achieved by a deep potential well at each lattice site,
which will effective bind the Fock parafermions to them.

Up to p− 1 Fock parafermions can be bound to each site of the lattice. This stems from the fact that p is
the smallest integer such that (F †i )p = 0, cf. (eq. 1.30). This means (F †i )p−1 |0〉 6= 0, and we may interpret
F †i as creating the Fock parafermions at site i by the second quantisation.

Occasionally, a Zp Fock parafermion may jump from one site, i, to another, j, by quantum tunneling.
This action is described in the language of second quantisation as the operator F †j Fi. Nothing prevents
us from only allowing more than one Fock parafermion to make the jump, in fact m Fock parafermions
can make the jump, which is described by (F †j )m(Fi)

m. Each hop ofm Fock parafermions from site i to j
has an energy associated with them, which we will denote tm,i,j . In general the Hamiltonian describing
the physics of this Fock parafermion tight-binding model is:

HTB = −
L∑

i,j=1

p−1∑
m=1

tm,i,j(F
†
j )m(Fi)

m + H.c. (3.1)

The locality of the wave function makes nearest-neighbour hopping much more likely than hopping
over distances that are bigger than this. These other types hopping are thus ignored. We derive at this
by assuming the potential at each site is a quantum well, which makes the shape of the wave function
sinusoidal on the inside of the well but exponentially decreasing at the edges and outside the well.
Furthermore, if we assume translational invariance, it can be assumed that no site is favoured over
another such that tm,i,i+1 = tm,j,j+1 = tm for all i, j ∈ [1, L]. This gives us the model:

HNN = −
p−1∑
m=1

tm

L∑
i=1

(F †i+1)m(Fi)
m + H.c. (3.2)

Arguably tm should be a real number bigger than 0 to make the Hamiltonian an observable and facilitate
the hopping. The total number of parafermions in the system will be:

N =

L∑
i=1

Ni =

L∑
i=1

p−1∑
m=1

(F †i )m(Fi)
m (3.3)
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This operator is very clearly a symmetry of the system, since it will commute with each of the terms in
the nearest-neighbour Hamiltonian. Intuitively the number of particles should also be conserved in the
model with Hamiltonian (eq. 3.2). It is in fact a U(1)-symmetry, since it generators the algebra for such
a symmetry as described in (eq. 1.34).

To this model might be added other terms as we please to describe our system. One such term could be
the chemical potential:

Hµ = −µN = −µ
L∑
i=1

p−1∑
m=1

(F †i )m(Fi)
m (3.4)

Another term is the on-site interaction energy, which will seek to spread out the Fock parafermions
such that they are not all concentrated on the same sites. The term is constructed such that each Fock
parafermion at site i interacts each of the other Fock parafermions at site i with energy U (which is Ni
choose 2):

HU = U

L∑
i=1

Ni(Ni − 1)

2
=
U

2

L∑
i=1

p−1∑
m=2

(
(m− 1)(F †i )m(Fi)

m +

p−1∑
n=m

(F †i )n(Fi)
n

)
(3.5)

With the help of some algebra this interaction term has been written out. However, doing so yields no
further insight.

Particle-Hole-like Symmetry

In this section we prove that a form of particle-hole symmetry exists, which makes it possible to study
the system for filling factors n = N/L ≤ p−1

2 only. The following argumentation is based on a generali-
sation of the argumentation by Rossini et al. [4]. Define the transformation T : FL/2+j → F †L/2−j , which
both takes the Hermitian conjugate of the Fock parafermion operators and mirror them in the midpoint.
The translation conserves the generalised Clifford algebra of the Fock parafermions. For example, since
for 0 < i < j < L/2:

F †L/2+iFL/2+j −→ FL/2−iF
†
L/2−j = ωF †L/2−jFL/2−i −→ ω−1FL/2+jF

†
L/2+i (3.6)

Where we have used the commutation relations (eq. 1.28). This is exactly what one would expect. The
rest of the commutation relations can be similarly calculated.

For real values of tm, this transformation does not alter the tight binding or nearest-neighbour hopping
Hamiltonians (eqs. 3.1 and 3.2), since all powers of (F †j )m(Fi)

m are transformed into their complex
conjugate mirrored around the midpoint L/2. Summing over all sites keeps the Hamiltonian intact.
Hereby it is concluded that the transformation T : FL/2+j → F †L/2−j is a symmetry of the system. The
total number operator N is however not preserved:

T : N =

L∑
i=1

p−1∑
m=1

(F †i )m(Fi)
m −→

L∑
i=1

p−1∑
m=1

(Fi)
m(F †i )m =

L∑
i=1

p−1∑
m=1

(1− (F †i )p−m(Fi)
p−m)

= (p− 1)L−N

(3.7)

Where the second to last equality is per the general anti-commutation relations of the Fock parafermions
(eq. 1.31). Furthermore, we have not bothered with the mirror inversion in the transformation step, since
the sum includes all the terms and is left as is. In conclusion, the symmetry, T , shows a correspondence
T : n→ (p− 1)− n, which demonstrates that the system is symmetric in n around (p− 1)/2.

Nearest Neighbour Hopping from Vector Potts

A nearest-neighbour Fock parafermion hopping term appears in the vector Potts model (eq. 1.49). In-
serting (eq. 1.39) into the Hamiltonian we find:

Hvp = −1

2

(
L∑
i=1

hiUi +

L−1∑
i=1

JiV
†
i+1Vi

)
+ H.c.

= −1

2

(
L∑
i=1

hiUi +

L−1∑
i=1

Ji

(
B†i+1Bi + (B†i )

p−1(Bi+1)p−1 + (Bi+1)p−1Bi +B†i+1(B†i )
p−1
))

+ H.c.

(3.8)
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Numerous terms appear in this Hamiltonian. The first term, hiUi, is the coupling of the clock operator
to an external magnetic field. We ignore this term but note that it may be used to favour a type of filling
(single, double, triple, etc.) of Fock parafermions at a site, due to the relationship ωNi = Ui. I.e. if some
Ui is favoured it will correspond to favouring Ni Fock parafermions at site i.

The fourth and fifth terms, Ji
(

(Bi+1)p−1Bi +B†i+1(B†i )
p−1
)

, do not conserve the number of particles.

This stems from the fact that the number operator, Ni =
∑p−1
m=1(F †i )m(Fi)

m =
∑p−1
m=1(B†i )

m(Bi)
m, does

not commute with the terms in question. The action of the operators are however constrained by the
configuration of the system, since they only work on a site that either contains no particles or is full with
p − 1 particles. What the operators do is to completely fill/empty a site that is completely empty/full
and create/remove a particle at an adjacent site. This is indeed quite an interesting and counter-intuitive
pair of operators.

The second and third terms of the Hamiltonian, Ji
(
B†i+1Bi + (B†i )

p−1(Bi+1)p−1
)

and Ji(B
†
i )
p−1(Bi+1)p−1,

are where the nearest-neighbour hopping arises. This model only allows for the hopping of a single
particle, or (p-1) particles from a full site, as opposed to all possible numbers of particles that our gen-
eral nearest-neighbour model does. If we conduct a Fradkin-Kadanoff transformation of the hard-core
bosonic operators we recognise the nearest-neighbour hopping Hamiltonian arises from the single hop-
ping site (if we let t1,i = Jiω

Ni ):

Hvp,NN = −1

2

L−1∑
i=1

Jiω
NiF †i+1Fi + H.c. (3.9)

Some of the physics of the vector Potts model is contained in the Fock parafermion nearest-neighbour
hopping model, but as we have seen a big part of it is unaccounted for, and there exists no one-to-one
correspondence between the two models.

3.2 Nearest Neighbour Model of Z3 Fock Parafermions

This nearest-neighbour hopping Hamiltonian of the Z3 Fock parafermions has been the subject of anal-
ysis in recent years [4, 5]. In this section we sum up the key takeaways of these two articles.

3.2.1 Review of Rossini et al. 2019 [4]

In [4] the nearest neighbour hopping model of a single Fock parafermion was treated by Davide Rossini
et al. The Hamiltonian in question is:

H = −t
L∑
i=1

F †i+1Fi + H.c. (3.10)

Compared to previously studied anyonic models, the Hamiltonian is non-integrable through Bethe
ansatz or similar. In fact that the model is non-integrable may be proved by considering the level spac-
ing statistics of the model1. The reason for this non-integrability behaviour of the system, is that the
Fock parafermions are strongly interacting, whereby the many-body system cannot simply be reduced
to a problem of single particle systems. This strong interaction stems from the fact that the commuta-
tion of two Fock parafermions depends on their lexicological order, and is as such either ω or ω−1 for
ω = e2πi/p. If p = 2, which is the case for fermions, ω = ω−1 and whereby the commutation of the
particles do not depend on their lexicological order. This system can be solved, as is known from the
Hubbard model [28].

Even though the system does not allow for a directly integrable solution, the low-energy description
of Fock parafermions of order p = 3 is a conformal field theory with central charge c = 1 for n < 1.
Rossini et al. derived this result by calculating the bipartite entanglement entropy of the system. In a
one-dimensional conformal field theory Calabrese and Cardy showed that the bipartite entagnlement
entropy is of the form [29]:

S(ρ`) = a+
c

6
log

(
2L

π
sin

(
π`

L

))
(3.11)

1See appendix D.3.
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Where ` is the length of one of the bipartite sections and a is some constant. Rossini et al. observed that
the entanglement entropy agrees with the Calabrese-Cardy formula for c = 1. In conformal field theory
the central charge has a central position, as it indicates the types and numbers of free field theories
contained in the system [30]. Another way of stating this, is that it measures the effective number of
degrees of freedom of the system. The central charge for a free boson is c = 1, while for a free fermion
it is c = 1/2. Hence the central charge c = 1 indicates that the system can be describe by a boson. One
possible way of having this happen is if the system is a Luttinger liquid, which many systems can be
described as through the process of bosonisation (see appendix A).

Anyonic correlation functions

Define the Fock parafermion correlation:

G1(x, x+ r) =
〈
F †xFx+r

〉
G2(x, x+ r) =

〈
(F †x)2(Fx+r)

2
〉

. . . (3.12)

In the gapless phase (n < 1 for p = 3) these exhibit a clear power law r−α1 behaviour [4] (see figs. 5.1
and 5.2), which is what one would expect of a gapless bosonic system. It is provable that a low-energy
Luttinger liquid description of our system based on [31] results in the correlation function:

|G1(x, x+ r)| ∼ r−(κ2K+1/K)/2 (3.13)

WhereK is the Luttinger parameter, which isK = 1/κ for a free anyonic gas [31], where κ = 2/p. Hence
the model dictates the power law |G1| ∼ r−2/p, which suits very well what has been observed (see fig.
5.1). This description overestimates the exponent in the power law behaviour of G2(x, x + r) for p = 3,
however, at |G2| ∼ r−8/p (see fig. 5.2).

In contrast to the bosonic case, the correlation functions G1(x, x+ r) in the general anyonic systems are
complex. A rough estimate can elucidate the expected behaviour: assume the one-dimensional anyonic
gas is uniformly distributed. To compute G1(x, x + r) we need to move a Fock parafermionic operator
N r
L = ρr times from x to x + r, where ρ is the density of the system. As such a factor of ωρr, would be

expected to appear in the correlation function G1. In the calculation of G2 two operators are moved for
each step, hence it would be expected that G2 ∝ ω2ρr.

The correlation functions in the gapped phase decay as e−r/ξ, where ξ is of the order of a few lattice
spacings. The correlation function is very short ranged, and thus effectively zero in the low-energy
description.

An important concluding remark is that there is an effective strong interaction between the Fock parafer-
mions, such that they describe more than just fractions of fermions. To see why this is the case let p = 6.
Fermionic operators, cj , may be constructed from the Fock parafermionic ones as cj = F 3

j . Numerics
show that the correlation function G3 ∼ r−3 [4, p. 8]. This is clearly different from the decay of the
free fermionic correlation function of r−1. It is concluded that some strong interaction coming from the
special commutation of the Fock parafermions, makes the model more than just fractionalised fermions.

3.2.2 Review of Mahyaeh et al. 2020 [5]

In [5], the system considered is the one-dimensional Hamiltonian of the Z3 Fock parafermions on a chain
of length L with open boundary conditions:

H(g) = −t
L−1∑
j=1

(
(1− g)F †j Fj+1 + g(F †j )2(Fj+1)2

)
+ H.c. (3.14)

This model describes the interpolation of single particle hopping (at g = 0) and coherent pair hopping
(at g = 1) of the Fock parafermions. The system displays four phases (see fig. 3.1). The phase diagram
contains three gapless phases and a gapped phase. Two of the gapless phases (L and R) has a central
charge c = 1, which should allow for a single bosonic mode to describe the system. The difference
between these two phases is that the two-point correlation functions G1 and G2 display different power
law behaviours. The last gapless phase (M) has a central charge c = 2, which is very interesting to note.
This suggests that a system that describes this phase should consist of two bosonic modes. The gapped
phase (G) shows that the gapped phase observed in [4] is extended to g ≤ 0.45 at n = 1.
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Figure 3.1: Phase diagram of of the Z3 Fock parafermions. Four phases (R, L, G and M) arises as the
filling factor n and the relative strength of the hopping of single Fock parafermions and pairs of Fock
parafermions, g, are varied. Notably has the M phase a central charge of c = 2, while the phases R and
L has c = 1 and the G phase has c = 0. Three of the phases meet in . Phase diagram is from the article
[5].

Numerical calculations of the correlation functions G1 and G2 show that the number of single occupied
sites dominate the L phase, while almost no sites exhibit double occupancy [5]. The converse is true for
the R phase. Mahyaeh et al. use this observation to simplify the terms in the Hamiltonian. For example
in the L phase they ignore the doubly-occupied sites and project the system onto the Hilbert space with
at most one particle per site. In this space the matrices B and U become:

B →
(

0 1
0 0

)
U →

(
1 0
0 ω

)
(3.15)

Recognise the Bj = σ+
j . I.e. we are left with two (spin) states per site and may use a Jordan-Wigner

transformation to map the system to spinless fermions, ψj . The fermions are linearised around the
Fermi points k = ±kF , and cf. bosonisation:

ψj =
√
a
(
eikF xψ+(x) + e−ikF xψ−(x)

)
ψ± =

1√
2πα

ei
√
π(±φ(x)−θ(x)) (3.16)

Where a is the lattice spacing constant, x = ja, and α is a momentum cut-off. Cf. the theory of bosoni-
sation ψ± = φ± θ, where φ(x) and θ are dual fields, such that [φ(x), θ(x′)] = iπΘ(x′ − x). Rescale these
fields by the Luttinger parameter K, such that φ 7→

√
Kφ and θ 7→ θ/

√
K, to account for the interactions

of the fields.

Carrying out the calculation of the correlation function in the L phase, yields [5]:

|G1(x, x+ r)| ∝ r−( 1
2K+ 2

9K)
(

1 + cos 2kF r
(α
r

) 2
3K
)

(3.17)

This is very similar to the result in [4], however this result also allows for the subtle oscillating behaviour
that is seen in (fig. 5.1). Recall that the Luttinger parameter is K = 3/2. A downside to this approach is
that the behaviour of G2(r) cannot be derived in the L phase by this bosonisation approach.

In the R phase, the system is projected to the Hilbert space that does not contain the single occupied
states. This makes the calculation of G2 virtually equivalent to the calculation of G1 in the L phase,
whereby G2 is equivalent to the right hand side of (eq. 3.17) in the R phase.

The Luttinger parameter is set to be K = 1 in this case, since it is argued that the theory is free be-
cause only the doubly-occupied and free sites are allowed [5]. However, I will argue that this is up to
debate since it contradicts the point that Rossini made about the effective strong interaction of the Fock
parafermions [4]. It turns out K = 1 and K = 3/2, yield very similar two-point correlation function,
G2, in the R phase. Hence making a distinction between these two cases is difficult. We will discuss this
topic further down the line in section 5.2.
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Chapter 4

Bosonisation of Fock Parafermions

In this chapter, we will try to define a field theoretical continuous version (ψ†(x), ψ(x)) of the discrete
Fock parafermion creation and annihilation operators, F †i , Fi. The operators should obey the generalised
Clifford algebra defined by the following relationships:

F †i
p

= Fi
p = 0

FiFj = ωsgn(i−j)FjFi F †i Fj = ω−sgn(i−j)FjF
†
i

(4.1)

And:
(F †i )m(Fi)

m + (Fi)
p−m(F †i )p−m = 1 m ∈ [1, p− 1] (4.2)

Two types of bosonisation exist: fields theoretical bosonisation, and constructive bosonisation [32]. We
will first employ a phenomelogical, field theoretical approach of bosonising the Fock parafermions. This
approach is effectively done through the generalisation of the standard bosonisation of the bosons and
fermions. We will see that this approach describes the system well in some cases, but not in general.
With that in mind, we derive another description for the bosonisation of the Fock parafermions that
utilises a constructivist approach. It is seen that this latter description better describes the system, as it
theoretically allows for phases with central charge c > 1 to arise. The constructivist approach to bosonise
the Fock parafermions will in fact result in a theory of p− 1 pairs of dual bosonic fields.

It was conjectured that Fock parafermions are abelian. The following section will thus treat the bosoni-
sation of the Fock parafermions as abelian. For a non-abelian approach to bosonisation see [33].

4.0.1 Continuum (Field Theoretical) Limit

Before we proceed to describe the Fock parafermions in terms of bosonised fields, we note that the
description arises in the continuum limit, where the physical fields of the system can be described as
liquids. In the continuum limit we assume a model defined on some hyper-lattice with lattice spacing,
a, lets the lattice spacing approach zero, a→ 0. In this limit we might consider our lattice a continuum.

In one spatial dimension we define the the lattice of length L, where each lattice site is spaced at a
distance a apart. The total number of sites is then L/a. In the continuum limit, it is possible to define the
derivative of some field f in terms of the difference of two adjacent points. We will use the following
definition:

∂xf(xi) ≡
1

a
(f(xi + a)− f(xi)) =

1

a
(f(xi+1)− f(xi)) (4.3)

Furthermore, note that in continuum limit, the sum over the sites turns into an integral:

L/a∑
i=1

−→
∫ L

0

dx

a
for a→ 0 (4.4)
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4.1 Field Theoretical Bosonisation of the Fock Parafermions

In the derivation of the bosonisation operators of the bosons and fermions1, we saw how the description
of the fermions could be constructed from the bosons by changing the sum over q such that 2q → 2q+ 1.
The addition of this +1-term in the exponent will cause the bosonised fields to anti-commute, which is
expected of the fermionic operators. It is hypothesised that this approach can be used on the Zp Fock
parafermions by letting 2q → 2q + 2/p:

ψp(x) = eiφ(x)
∑
q

ei2(q+
1
p )(πρ0x−θ(x))

√
ρ0 −

∂xθ(x)

π

ψ†p(x) =

√
ρ0 −

∂xθ(x)

π

∑
q

e−i2(q+
1
p )(πρ0x−θ(x))e−iφ(x)

(4.5)

Where we have defined the dual bosonic fields:

[φ(x), φ(x′)] = 0 [θ(x), θ(x′)] = 0[
∂xθ(x)

π
, φ(x′)

]
= −iδ(x′ − x) [θ(x), φ(x′)] = −iπΘ(x− x′)

(4.6)

It is true that this definition of the fields obey the commutation relation, which is at heart of the physics
of the Fock parafermion operators for x 6= x′:

ψPF (x)ψPF (x′) = ωsgn(x−x′)ψPF (x′)ψPF (x)

ψ†PF (x)ψPF (x′) = ω−sgn(x−x′)ψPF (x′)ψ†PF (x)
(4.7)

The all important exchange statistics of the Fock parafermions is hereby obeyed by the proposed can-
didate. The same site relations are more difficult to calculate and are as such just assumed to also be
obeyed.

Ties to Bosons and Fermions

We recognise that the Zp Fock parafermions condense to the fermions and bosons, when p = 2 and
p → ∞, respectively. This is indeed reflected in the bosonised parafermionic fields ψp(x) and ψ†p(x),
since the fermion fields arise as p = 2: ψ2(x) = ψF (x) and ψ†2(x) = ψ†F (x). While the letting p → ∞
results in the bosonic fields: ψ∞(x) = ψB(x) and ψ†∞(x) = ψ†B(x).

We may ask ourselves what the case p = 1 corresponds to. The resulting commutation relations of this
system tell us that it is bosonic. This system is however quite uninteresting, since in terms of the clock
model it corresponds to a case where only one state is allowed per site. This system is obviously not
displaying any forms of dynamics, because only one state is allowed.

Lowest Order Bosonisation Mode

Following the literature [34, 27], it is arguable that the bosonisation operator mode that has the biggest
influence on the ground state of the system is the one for which q = 0. Recall that this approxima-
tion corresponds to letting the dispersion of the parafermions be linear. Furthermore at low densities
the variation in the change in the density fluctuation will be minimal thus ∂xθ/π � ρ0. Under these
assumptions the bosonised field can be assumed to be:

ψp(x) ' √ρ0e
iφ(x)e

2i
p (πρ0x−θ(x))

ψ†p(x) ' √ρ0e
− 2i
p (πρ0x−θ(x))e−iφ(x)

(4.8)

Note that the ρ0 is simply a constant that doesn’t do much for our operators and can consequently be
omitted in our analysis.

1See appendix A.
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4.1.1 Nearest Neighbour Hopping of a Single Fock Parafermion

The nearest neighbour hopping of these Fock parafermions between two sites a apart in a 1-dimensional
lattice is described through the operator (in the lowest order bosonisation mode):

ψ†p(x)ψp(x+ a) = e−
2i
p (πρ0x−θ(x))e−iφ(x)eiφ(x+a)e

2i
p (πρ0(x+a)−θ(x+a))

= exp

(
i (φ(x+ a)− φ(x))− 2i

p
(θ(x+ a)− θ(x)) +

πi

p
(2ρ0a− 1)

) (4.9)

The BCH-formula is used in collecting the exponents together, and all the terms except for the ones
containing φ(x) and θ(x+ a) commute as per our definitions.

In the continuum limit (as per section 4.0.1) with the lattice spacing a→ 0, the single hopping Hamilto-
nian is calculated to be:

H1 = −t1
∫ L

0

dx

a
ψ†p(x)ψp(x+ a) + H.c. = −2t1

∫ L

0

dx

a
cos

(
a

(
∂xφ−

2

p
∂xθ

)
+
π

p
(2n− 1)

)
(4.10)

By a Taylor expansion of the cosine in a
(
∂xφ− 2

p∂xθ
)

which we will assume small around zero, we find
that the Hamiltonian gives rise to a second order term:

H
(2)
1 = t1a cos

(
π

p
(2n− 1)

)∫ L

0

dx

(
∂xφ−

2

p
∂xθ

)2

(4.11)

This Hamiltonian we recognise as that of the chiral Luttinger liquid with fractional charge κ = 2/p.
In previous section we showed that the equal-time two point correlation functions of this system (for
x 6= x′) are:

〈φ(x)φ(x′)〉 = −1

p
log |x− x′| 〈θ(x)θ(x′)〉 = −p

4
log |x− x′| (4.12)

Correlation Functions

The correlation functions of the hopping operator in the system H1 are by the cumulant expansion:〈
ψ†p(x)ψp(x+ r)

〉
H1

= e
π
p (2ρ0r−1) · |r|−

2
p (4.13)

In [4] it was observed how this system does indeed seem to display a power law behaviour equivalent
to the one we just found

∣∣∣〈ψ†p(x)ψp(x+ r)
〉
H1

∣∣∣ = |r|−
2
p , for the cases p = 3 and p = 6. The correla-

tion functions of the square of the hopping operators (corresponding to the hopping of a pair of Fock
parafermions) yield an erroneous prediction, however, as:∣∣∣〈(ψ†p(x))2(ψp(x+ r))2

〉
H1

∣∣∣ = |r|−
8
p (4.14)

For p = 3 this prediction is arguably not correct as it overshoots the the size of the power-law exponent
(see fig. 5.2).

Our key takeaway from this analysis is that bosonising the Fock parafermions as per (eq. 4.5) is a good
description in the single hopping Hamiltonian (eq. 4.10) at low amounts of filling of fock parafermions,
where it can be assumed that powers of the Fock parafermionc operators are zero,

〈
(ψ†p)

m(ψp)
m
〉
H1

= 0

for m > 1. When this is not the case, the description breaks down, since it does not give us an accurate
prediction of the theory for the powers where m > 1.

4.2 Constructive Bosonisation of the Fock Parafermions

The idea behind the constructive bosonisation procedure is to rewrite a particle operator in terms of
bosonic vertex operators multiplied by some factors that first of all, act as ladder operators changing the
number of particles in the system; secondly, they ensure that the commutation relations of the original
particles are obeyed [32, p. 14-15].
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The Fradkin-Kadanoff transformation maps the Fock parafermion creation and annihilation operators,
F †j /Fj , onto creation and annihilation operators of hard-core bosons, B†j/Bj . In doing so, the Fradkin-
Kadanoff transformation automatically maps the system from a basis of Zp Fock parafermions to a basis
of hard-core bosons that allow up to p−1 bosons to exist at each site. Recall the defintion of the Fradkin-
Kadanoff transformation over some lexiocologial order of the Fock parafermions:

Fj = Bj

j−1∏
l=1

Ul F †j = B†j

j−1∏
l=1

U†l (4.15)

On the one-dimensional lattice of length L and lattice spacing a, the natural lexiocological order is nu-
merating the sites, {xi}, from one end to the other. The hard-core bosons operators have the following
matrix representation in the basis consisting of the number of hard-core bosons occupying each site, j,
{ | Nj = n〉 | n ∈ [0, p− 1] }:

Bj = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗

p︷ ︸︸ ︷
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⊗1⊗ · · · ⊗ 1

Uj = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗


1

ω
. . .

ωp−1

⊗ 1⊗ · · · ⊗ 1 ω = exp

(
i
2π

p

)
(4.16)

Notice that the operatorBj works as a ladder operator between the state whereNj andNj−1 hard-core
bosons occupy each site. Furthermore, the string,

∏
l<j Ul, will ensure that the commutation relations

of the Fock parafermions are obeyed. The Klein factors are precisely this combination of ladder and
’commutation keeping’ operators, hereby we identify the product, Bj

∏
l<j Ul, as the latter operators

that simultaneously preserve the commutation relations of the Fock parafermions.

Now, a crucial ansatz for our bosonisation is stated. We assume that each eigenstate of the hard-core
bosons are described by its own species of dual bosonic fields φk and θk, for k ∈ [1, p − 1]. In the
eigenbasis we defined earlier, k represents the number of particles, ie. |Nj = k〉. That φk and θk are dual
is meant that:

[∂xθk(x), φk′(x
′)] = −iπδ(x− x′)δk,k′ (4.17)

Notice that by integrating this commutation relationship over the variable x, the variable x′ does not in-
fluence this integral at all, since it is defined over a different field than x is. Hence, the partial derivative
of x can be removed from the commutation relation:

[θk(x), φk′(x
′)] = −iπδk,k′Θ(x− x′) , Θ(x− x′) =

{
1 for x > x′

0 for x ≤ x′
(4.18)

There is some leeway for determining the definition of the Θ-function in the point x = 0. The way we
have defined it is the right way due to our definition of the continuum limit for the partial derivatives
(eq. 4.3). The fields are moreover bosonic, which means that:

[φk(x), φk′(x
′)] = 0 , [θk(x), θk′(x

′)] = 0 (4.19)

Furthermore, we assume that the eigenvector |Nj = k〉 is described by the vertex operator of the field
φk:

|Nj = k〉 ≡ e−iφk(xj) |0〉 (4.20)

Where xj denotes the spatial coordinate of the j’th site. Notice that the bosons we describe have a hard
core which means only one vertex operator can be on each site. Algebraically this means:

|Nj = k〉 = e−iφk(xj) |0〉 6=
(
e−iφm(xj)

)(
e−iφn(xj)

)
|0〉 = 0 (4.21)

Where k = m + n. A corollary to this result is that the square of any two bosonic vertex operators
is zero. And it is also shown that we cannot go between dfferent states by application of these vertex
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operators only. The only two types of bosonic operators that can be put together to render something
different from zero are the vertex operator and its hermitian conjugate, in this case the result is the
identity, eiφm(xj)e−iφm(xj) |0〉 = |0〉. With this in mind, we define the hard-core bosonic operators:

Bj ≡ exp (iφ1(xj)) +

p−1∑
k=2

exp (i(φk(xj)− φk−1(xj)))

B†j ≡ exp (−iφ1(xj)) +

p−1∑
k=2

exp (−i(φk(xj)− φk−1(xj)))

(4.22)

The latter operator creates a hard-core boson, as B†j |Nj = k〉 = |Nj = k + 1〉. The former operator on
the other hand annihilates a hard-core boson, since Bj |Nj = k〉 = |Nj = k − 1〉. These relationships are
easily derived with (eq. 4.21) in mind. The m’th power of these operators are:

(Bj)
m = exp (iφm(xj)) +

p−1∑
k=m+1

exp (i(φk(xj)− φk−m(xj)))

(B†j )
m = exp (−iφm(xj)) +

p−1∑
k=m+1

exp (−i(φk(xj)− φk−m(xj)))

(4.23)

It was earlier shown that the unitary operators Uj = ωNj . We have so far distinguished between the
number of hard-core bosons and Fock parafermions at a site i. This distinction is redundant, however,
since the number of hard-core bosons is exactly equal to the number of Fock parafermions. This is
proven by the fact that the form of the number operator is left invariant under the Fradkin-Kadanoff
transformation:

Nj =

p−1∑
m=1

(F †j )m(Fj)
m =

p−1∑
m=1

(B†j )
m(Bj)

m (4.24)

The density operator of the bosonised field was defined through the θk-field which is dual to the φk-
field used in the vertex operator that describes the eigenstates of the system, (eq. 4.20). To reiterate2 the
density operator of the k’th type bosonised field is:

ρ̂k = ρk −
∂xθk
π

(xj) (4.25)

Where ρk is the average of the number of sites that contain k Fock parafermions/hard-core bosons (di-
vided by the length of the system L). From this equation it is understood that ∂xθk defines the deviation
of the density from the average ρk. We also introduce a rescaled version of the density operator, ρ̂j ,
which we will call the number density operator, n̂j :

n̂k ≡ aρ̂k = nk − a
∂xθk
π

(xj) (4.26)

Where we have defined the average of the number density operator nk = aρk. The idea behind this
definition is to get an operator that is able to count the number of parafermions at a site xj . There is 1
Fock parafermions at the site xj in the state |Nj = 1〉, 2 in the state |Nj = 2〉, etc. A natural definition for
the total number density operator, n, which counts the number of Fock parafermions at any gives site,
arises naturally:

L/a∑
j=1

p−1∑
k=1

kn̂k =

L/a∑
j=1

Nj = N (4.27)

The total number of Fock parafermions, N , remains invariant in the nearest-neighbour hopping Hamil-
tonian, cf. (eq. 3.3), which makes the average number density n =

∑
knk a well-defined constant of the

system. We have in the above made it explicitly clear that ρ̂ and n̂ are operators by including the hat.
This degree of explicitness is rather redundant and will be left out unless otherwise stated.

2See appendix A.
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The last piece of the puzzle, in order to write the operator Uj in terms of our bosonic fields θk and φk, is
to rewrite the derivative a∂xθk(xj) = θk(xj+1)− θk(xj). The unitary operator Uj is thus:

Uj ≡ exp

(
2πi

p
n− 2i

p

p−1∑
k=1

k (θk(xj+1)− θk(xj))

)

U†j ≡ exp

(
−2πi

p
n+

2i

p

p−1∑
k=1

k (θk(xj+1)− θk(xj))

) (4.28)

Note that ω is Zp-symmetric, meaning that the powers ωp+k = ωk. This makes the powers (Uj)
m difficult

to calculate explicitly:

(Uj)
m = ωmNj = ω

∑p−1
k=1 mknk−

1
π

∑p−1
k=1 mk(θk(xj+1)−θk(xj)) (4.29)

Due to the periodicity of ω the above cannot simply take out m from the sums over k. If we define
kj ≡ kj (mod p), the powers of Uj are:

(Uj)
m = exp

(
2πi

p

p−1∑
k=1

mknk −
2i

p

p−1∑
k=1

mk · (θk(xj+1)− θj(xj))

)

(U†j )m = exp

(
−2πi

p

p−1∑
k=1

mknk +
2i

p

p−1∑
k=1

mk · (θk(xj+1)− θj(xj))

) (4.30)

Lastly, it is important to note that the right commutation relation is obeyed when Uj and Bi commute,
(eq. 1.46). Namely:

(Bi)
m(Uj)

n = ωmnδi,j (Uj)
n(Bi)

m , (B†i )
m(Uj)

n = ω−mnδi,j (Uj)
n(B†i )

m (4.31)

This is quickly checked by having in mind that for a specific value of k′ ∈ [0, p− 1]:[
±i(φk′(xj)− φk′−m(xj)),−

2i

p

p−1∑
k=1

kn · (θk(xj+1)− θk(xj))

]

= ±2

p

(
k′n [φk′(xj), θk′(xj+1)]− n(k′ −m) [φk′−m(xj), θk′−m(xj+1)]

)
=

2πi

p
mn

(4.32)

4.2.1 Bosonised Fock Parafermions

The Fock parafermion operators, Fi, in the bosonised description are described through a Fradkin
Kadanoff transformation of the operators Bi and Ui that was just studied. Notice that the string of
Ui operators in the bosonised description simplifies, since the product changes into a telescopic sum in
the exponent:

j−1∏
l=1

Ul ≡ exp

(
2πi

p
n(j − 1)− 2i

p

j−1∑
l=1

p−1∑
k=1

k (θk(xl+1)− θk(xl))

)

= exp

(
2πi

p
n(j − 1)− 2i

p

p−1∑
k=1

k (θk(xj)− θk(x1))

) (4.33)

The bosonised description of the Fock parafermions is then:

Fj ≡

[
eiφ1(xj) +

p−1∑
k=2

ei(φk(xj)−φk−1(xj))

]
exp

(
2πi

p
n(j − 1)− 2i

p

p−1∑
k=1

k (θk(xj)− θk(x1))

)

F †j ≡

[
e−iφ1(xj) +

p−1∑
k=2

e−i(φk(xj)−φk−1(xj))

]
exp

(
−2πi

p
n(j − 1) +

2i

p

p−1∑
k=1

k (θk(xj)− θk(x1))

) (4.34)

This result is one of the main results of this thesis. Recall that the bosonised fields commute by the
following relationship:

[θk(x), φk′(x
′)] = −iπδk,k′Θ(x− x′) Θ(x− x′) =

{
1 for x > x′

0 for x ≤ x′
(4.35)
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Powers of these Fock parafermion operators are:

(Fj)
m ≡

[
eiφm(xj) +

p−1∑
k=m+1

ei(φk(xj)−φk−m(xj))

]

× exp

(
2πi

p
(j − 1)

p−1∑
k=1

mknk −
2i

p

p−1∑
k=1

mk (θk(xj)− θk(x1))

) (4.36)

Where the power (F †j )m is found by the complex conjugate of this expression.

4.3 Bosonisation of One-dimensional Z3 Fock Parafermions

A framework for bosonising the Fock parafermions has been made in previous section. To see whether
this framework is good or not we study its application to the one-dimensional Z3 Fock parafermions,
and study what kinds of prediction this model yields.

The matrix representation of the Fradkin-Kadanoff transformed operators, Bi and Ui, of the Z3 Fock
parafermions are defined as:

Bi = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗

0 1 0
0 0 1
0 0 0

⊗ 1⊗ · · · ⊗ 1

Ui = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗

1 0 0
0 ω 0
0 0 ω2

⊗ 1⊗ · · · ⊗ 1 ω = exp

(
i
2π

3

) (4.37)

In the analysis to come the tensor product notation is dismissed for simplicity, but note it will still be
implied. The basis of each of these 3× 3-matrices are the states containing n ∈ { 0, 1, 2 } number of Fock
parafermions occupying the site i, { | Ni = n〉 | n ∈ { 0, 1, 2 } }.

4.3.1 Hard-core Bosonic Operator Bi and its Powers

We derived the general form of the bosonisation of theBj-operator of the Zp Fock parafermions. For the
specific case of the Z3 Fock parafermions the non-zero powers of this operator is:

Bj = eiφ1(xj) + ei(φ2(xj)−φ1(xj))

(Bj)
2 = eiφ2(xj)

(4.38)

Where xi = ia is the placement of the i’th site in the lattice with spacing a. Notice that the cube of the
operator Bj should simply yield zero:

(Bj)
3 = 0 (4.39)

Identities of Bi

If we directly take powers of the Bi it would be reasonable to expect that the resulting equations give us
a pair of relations that will act as constraints on the φj-fields. We note that:

(Bi)
n =

(
eiφ1 + ei(φ2−φ1)

)n
=
(
ei(φ1− 1

2φ2) + ei(
1
2φ2−φ1)

)3 (
ei

1
2φ2

)3

= 2n cosn
(
φ1 −

1

2
φ2

)
ei
n
2 φ2

(4.40)

The square of the hard-core bosonic operator should obey the relation, ψ2 = eiφ2 = (Bi)
2. This equation

will yield a constraint on the φj-fields such that, cos
(
φ1 − 1

2φ2

)
= ± 1

2 , hence:

φ2 − 2φ1 ≡
n

3
π (mod 2π) , n = 1, 2, 4, 5 (4.41)

Another defining feature of the hard-core bosons are that they obey the relation (Bi)
3 = 0. From the

equation above it is then implied:
φ2 − 2φ1 ≡ π (mod 2π) (4.42)
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We cannot simultaneously obey both constraints on the φj-fields (Eqs. 4.42 and 4.41). Therefore, the
above constraints of the vertex operators cannot be imposed from the get go. Note that the fact that
the operators Bi are that of a hard-core boson, should hint to us that these same site relations cannot
be imposed, due to the fact that hard-core bosons are strongly interacting at the same site. Hence this
discussion is rather redundant.

4.3.2 Unitary Operator Ui and its Powers

The powers of the unitary operator Ui of the Z3 Fock parafermions on the one-dimensional lattice are:

Ui = ωn−
1
π

[
(θ1(xi+1)−θ1(xi))+2(θ2(xi+1)−θ2(xi))

]
(Ui)

2 = ω2n1+n2− 1
π

[
2(θ1(xi+1)−θ1(xi))+(θ2(xi+1)−θ2(xi))

] (4.43)

Where we have defined the average number density, n ≡ n1 + 2n2. Before we proceed further in our
analysis, we note that a seemingly equivalent way of defining the operator Ui exist: it seems that one
would be able to define the operator through the difference, Ui = ωn̂1−n̂2 , rather than by Ui = ωn̂1+2n̂2 .
This alternative definition is sound by the earlier definition of the operator, (eq. 4.37), since ω2 = ω−1.
However, by this definition of the operator Ui we will need to keep charge of each of the number of
species of Fock parafermions, since the exponent will be (n1 − n2) − a

π (∂xθ1 − ∂xθ2). Compared to n,
n1 − n2 is not a conserved quantity, hence this approach is not preferred.

For the square of Ui there are two seemingly equivalent definitions of the operator (Ui)
2 as well. The

first way of finding the square is as in (eq. 4.43). The other way is by straight-forward squaring Ui:

(Ui)
2 = ω2n− 2

π

[
(θ1(xi+1)−θ1(xi))+2(θ2(xi+1)−θ2(xi))

]
(4.44)

The difference between these two operators stems from the fact that the number, ω, is Z3 symmetric,
such that ω4 = ω. Even though the operators are mathematically equivalent, the physical interpretation
is quite different between the two of them: Compare simply doubling both of the fields θ1 and θ2, versus
changing the two fields into each other, θ1 ↔ θ2. As we will see the definition as given in (eq. 4.43), is
the better choice.

Identities of Ui

Lastly, the unitary operator, Ui, should by definition obey the fact that its cube is the identity operator.
Hence:

1 = (Ui)
3 = ω3n− 3

π

[
(θ1(xi+1)−θ1(xi))+2(θ2(xi+1)−θ2(xi))

]
= e2πin−i2

[
(θ1(xi+1)−θ1(xi))+2(θ2(xi+1)−θ2(xi))

]
(4.45)

Which is obeyed when:

2πn− 2
[

(θ1(xi+1)− θ1(xi)) + 2 (θ2(xi+1)− θ2(xi))
]
≡ 0 (mod 2π) (4.46)

From this constraint, we can define a stronger version, by summing over the sites xi up to xj−1 and
letting [θ1(x0) + 2θ2(x0)] = 0, which we may define, since it is only the dynamics of the system that
matters to us. In total we find:

2πnj − 2
[
θ1(xj) + 2θ2(xj)

]
≡ 0 (mod 2π) (4.47)

4.3.3 Fock Parafermion Operators

We are now able to describe the Z3 Fock parafermion operators in our bosonisation description. Re-
member that the product of Uk operators from k = 1 to k = j − 1 is described as a telescoping sum over
the θ-fields. Hence, the single occupation Fock parafermion becomes:

Fj = exp

(
2πi

3
n(j − 1)− 2i

3

[
(θ1(xj)− θ1(x1)) + 2 (θ2(xj)− θ2(x1))

])
·
(
eiφ1(xj) + ei(φ2(xj)−φ1(xj))

)
(4.48)

By the same calculation we find that the double occupation Fock parafermion is:

(Fj)
2 = exp

(
2πi

3
(2n1 + n2)(j − 1)− 2i

3

[
2 (θ1(xj)− θ1(x1)) + (θ2(xj)− θ2(x1))

])
· eiφ2(xj) (4.49)

31



Fock Parafermion Hopping Terms

The operator describing the hopping of a single Fock parafermions from site j to site k is described by
the normal ordered operator F †kFj . Inserting the bosonised form of our Fock parafermion operator we
get:

F †kFj = e
2πi
3 n(j−k)

(
e−iφ1(xk) + e−i(φ2(xk)−φ1(xk))

)
e−

2i
3

[
(θ1(xj)−θ1(xk))+2(θ2(xj)−θ2(xk))

]
×
(
eiφ1(xj) + ei(φ2(xj)−φ1(xj))

) (4.50)

Note, if j = k the above expression will simply become 1 if the site xj is occupied by one or two Fock
parafermions, and zero if there is no occupancy, due to the vertex operator eiφk(xj) on the right hand
side. This is exactly what we would expect. The nearest neighbour hopping, j = k ± 1, is of special
interest to us, as we will study it in the sections to come. Note, how the prefactor in (eq. 4.50) becomes
e

2πi
3 n in the case of the nearest-neighbour hopping term.

Other than the hopping of a single Fock parafermion from site j to k, a pair of Fock parafermions can
do the hopping together, signified by the operator (F †k )2(Fj)

2. We can simply write the pair hopping
operator in its bosonised form as:

(F †k )2(Fj)
2 = e

2πi
x (2n1+n2)(j−k)e−iφ2(xi)e−

2i
3

[
2(θ1(xi+1)−θ1(xi))+(θ2(xi+1)−θ2(xi))

]
eiφ2(xi+1) (4.51)
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Chapter 5

Field Theoretical Limit of Z3 Fock
Parafermion Nearest Neighbour
Hopping Hamiltonian

The system that is to be analysed in this chapter is the system of nearest neighbour hopping of Z3

Fock parafermions on a one-dimensional lattice with l = L/a equally spaced sites of distance a. The
Hamiltonian is:

H = −
l−1∑
i=1

t1F
†
i Fi+1 + t2(F †i )2(Fi+1)2 + H.c. (5.1)

The Fradkin-Kadanoff transformation of this Hamiltonian is:

H = −
l−1∑
i=1

t1B
†
iUiBi+1 + t2

(
B†i

)2

(Ui)
2

(Bi+1)
2

+ H.c. (5.2)

Symmetries of the Hamiltonian

By writing the Hamiltonian in terms of the vertex operators we have lost the symmetries of the system.
We will reintroduce these symmetries by finding he right constraints to put on our fields. Consider the
operator:

U =

l∏
i=1

Ui , Ui =

1 0 0
0 ω 0
0 0 ω2

 (5.3)

This operator will in fact define a global Z3 symmetry of the Hamiltonian. It is Z3, since:

(Ui)
2

=

1 0 0
0 ω2 0
0 0 ω

 (Ui)
3

=

1 0 0
0 1 0
0 0 1

 = 1 (5.4)

While it’s a symmetry of the Hamiltonian, since the operator commutes with each of the terms in the
Hamiltonian. The commutation relations of each of the individual terms of the Hamiltonian with U
are easily calculated keeping in mind UiBi = ω−1BiUi and UiB

†
i = ωB†iUi. The globally Z3 symmetric

operator, U , tells us something important about the boundary terms of the θj-fields. Note, we can
evaluate the product over the Ui operators as a telescoping sum over the θj-fields :

U =

l∏
j=1

Uj = ω
nl− 1

π

[
θ1(x)+2θ2(x)

]x=L
x=0 = ω

N− 1
π

[
θ1(x)+2θ2(x)

]x=L
x=0 (5.5)

This operator is a symmetry of the system, which must make the sum in the exponent of ω a constant
number. We earlier showed thatN was a constant of our system. Therefore, the edge term of the θj-fields
will also be a constant of the system: [

θ1(x) + 2θ2(x)
]x=L

x=0
= const (5.6)
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5.1 Single Hopping Hamiltonian

Before proceeding to treat the entire Hamiltonian (eq. 5.1), we first study two extreme cases, where t2 =
0 and t1 = 0, by themselves. In this section we will analyse the t1-term of (eq. 5.1). This Hamiltonian
corresponds to the hopping of single Fock parafermions between nearest neighbouring sites in the one-
dimensional lattice:

H1 = −t1
l−1∑
i=1

F †i Fi+1 + H.c. = −t1
l−1∑
i=1

B†iUiBi+1 + H.c. (5.7)

5.1.1 Field Theoretical Limit

We will evaluate the field theoretical limit of the F †i Fi+1-operator as given in (eq. 4.50), see appendix C
for this calculation. In conclusion we get four complex exponentials, to which adding their hermitian
conjugate, will render cosine terms, assuming t1 is real.

The lattice spacing a is then set to approach zero, letting the two points xi and xi+1 approach one
another. By defining the differential quotients as in (eq. 4.3) we may rewrite the Hamiltonian (eq. 5.7) in
terms of the partial derivatives in x of the fields, φj and θj . In the continuum limit the sum becomes an
integral, and for simplicity we may denote the xi-variable x. Hence the expression for the Hamiltonian,
which is derived in appendix C becomes:

H1 = −2t1

∫ L

0

dx

a

[
cos
[
a∂xφ1 −

2

3
a (∂xθ1 + 2∂xθ2) +

π

3
(2n− 1)

]
+ cos

[
φ2 − 2φ1 + a∂xφ2 − a∂xφ1 −

2

3
a (∂xθ1 + 2∂xθ2) +

π

3
(2n− 1)

]
+ cos

[
− φ2 + 2φ1 + a∂xφ1 −

2

3
a (∂xθ1 + 2∂xθ2) +

π

3
(2n− 1)

]
+ cos

[
a∂xφ2 − a∂xφ1 −

2

3
a (∂xθ1 + 2∂xθ2) +

π

3
(2n− 1)

]]
(5.8)

Now, we let a → 0, and only keep the most relevant terms in a. The two middle terms of (eq. 5.8) are
very easily considered, since here we can simply let a = 0 to get the following:

cos
[
φ2 − 2φ1 +

π

3
(2n− 1)

]
+ cos

[
− (φ2 − 2φ1) +

π

3
(2n− 1)

]
= 2 cos

[
φ2 − 2φ1

]
cos
[π

3
(2n− 1)

]
(5.9)

I.e. we see that these two terms give rise to a sine-Gordon term. The two other terms, however, do not
behave in this way as the arguments inside the cosine are proportional to the lattice spacing, a (bar the
constant −π/3). To find the most relevant part of these terms, we Taylor-expand the cosine functions.
For the function cos(kx+ b) the Taylor expansion in x around a point x0 is:

cos(kx+ b) = cos(kx0 + b)− sin(kx0 + b)k(x− x0)− cos(kx0 + b)

2
k2(x− x0)2 +O(x3) (5.10)

This Taylor expansion of the first and fourth term of (eq. 5.8) is carried out in a around zero1. The result-
ing Hamiltonian densities are proportional to the zeroth, first, second, etc. order in a. The Hamiltonian
is approximated at the three lowest of such orders, such that H1 ≈ H

(0)
1 + H

(1)
1 + H

(2)
1 . All the zeroth

order terms of the Hamiltonian densities are gathered to yield a sine-Gordon term Hamiltonian:

H
(0)
1 = −4t1 cos

[π
3

(2n− 1)
] ∫ L

0

dx

a

(
1 + cos

[
φ2 − 2φ1

])
(5.11)

When studying the dynamics of the system, we can ignore the constant term in this Hamiltonian as it
will simply account for a constant energy. The physical interpretation of the cosine term in the integrand,

1See appendix C.
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is that it will seek to gap out the combination of fields, such that φ2 − 2φ1 = 2πn, for some n ∈ Z. The
first order terms to the Hamiltonian are:

H
(1)
1 = 2t1a sin

[π
3

(2n− 1)
] ∫ L

0

dx

a

(
∂xφ2 −

4

3
(∂xθ1 + 2∂xθ2)

)
= −2t1 sin

[π
3

(2n− 1)
]([

φ2(x)
]x=L

x=0
− 4

3

[
θ1(x) + 2θ2(x)

]x=L

x=0

)
= t1 sin

[π
3

(2n− 1)
][
φ2(x)

]x=L

x=0

(5.12)

Which is dependent on the boundary terms of the bosonised fields. The θj-boundary terms in the Hamil-
tonian, (eq 5.12), sum to a constant cf. (eq.5.6) and can in consequence be omitted from the calculations.
In the bulk we can by definition disregard the boundary terms of the φj-fields as well. This also works
under the assumption of periodic boundary conditions, since here φj(0) = φj(L), or if we consider the
system in the thermodynamic limit where L → ∞. Thus we may simply ignore the boundary terms of
the Hamiltonian in the following analysis, where we limit ourselves to studying the bulk behaviour of
the system. However, if we were to calculate the Hamiltonian for a finite system, we would indeed need
to account for these edge contributions.

The second order part of the Hamiltonian is:

H
(2)
1 = 2

t1a
2

2
cos
[π

3
(2n− 1)

] ∫ x

0

dx

a

((
∂xφ1 −

2

3
a (∂xθ1 + 2∂xθ2)

)2

+

(
∂xφ2 − ∂xφ1 −

2

3
a (∂xθ1 + 2∂xθ2)

)2
)

= 2t1a cos
[π

3
(2n− 1)

] ∫ L

0

dx

((
1

2
∂xφ2 −

2

3
(∂xθ1 + 2∂xθ2)

)2

+

(
∂xφ1 −

1

2
∂xφ2

)2
) (5.13)

This second-order Hamiltonian gives rise to some dynamics, which will be the attention of our analysis.

5.1.2 Canonical Transformation of the Single Hopping Hamiltonian

Our first impulse to treat the second-order Hamiltonian that we have just derived, is to find a unitary
canonical transformation that will diagonalise the Hamiltonian. This is not possible for this particular
system, since it is not Lorentz invariant, which will make this particular approach impossible.

This doesn’t hinder us from defining some canonical transformation such that the Hamiltonian becomes
easier to deal with. Start by noting that the θj-operators always feature as the sum θ1 + 2θ2 in our
Hamiltonian. This observation leads us to define the transformation:

θ̃1 = θ1 φ̃1 = φ1 −
1

2
φ2 θ̃2 = θ1 + 2θ2 φ̃2 =

1

2
φ2 (5.14)

The transformed field, φ̃1, is defined such that it will commute with the θ̃2-field, which is what we want
from a canonical transformation:[

θ̃2, φ̃1

]
= [θ1, φ1] +

��
����[

θ1,−
1

2
φ2

]
+����[2θ2, φ1] +

[
2θ2,−

1

2
φ2

]
= [θ1, φ1]− [θ2, φ2] = 0 (5.15)

We have a bit of leeway in defining the two other operators, while still keeping the transformation
canonical, such that the commutation relations are preserved. It turns out the definition we have just
used is the simplest way of defining these two remaining fields, φ̃2 and θ̃1.

Hereby the quadratic part of the Hamiltonian (eq. 5.13) becomes:

H
(2)
1 = t̃1

∫ L

0

dx

(
(∂xφ̃1)2 +

(
∂xφ̃2 −

2

3
∂xθ̃2

)2
)

(5.16)

Where we have defined:
t̃1 = 2at1 cos

[π
3

(2n− 1)
]

(5.17)
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We recognise the Hamiltonian (eq. 5.16) as that of a chiral Luttinger liquid in φ̃2 and a massless free
scalar in φ̃1. Note that the chiral Luttinger liquid as we previously discussed requires that t̃1 > 0 for
the system to be physical. We proved earlier that the system displays a mirror symmetry around n = 1,
hence only on of these mirrored regions (say 0 ≤ n ≤ 1) needs be considered. We note that t̃1 ≥ t1a/2 > 0
in this region, if t1 > 0.

Some interaction term should be added to the Hamiltonian to account for the constraint on the θ̃1 that
arose from the cube of the unitary matrix Ui (eq. 4.47). We keep in mind that xj = ja. We pin the θ-fields
with the addition of a cosine-term:

Hint(θ̃1) ∝ cos

(
2πnx

a
− 2θ̃2

)
(5.18)

We also include the cosine-term in φ̃1 that arose from the first order Taylor expansion, hence the the bulk
Hamiltonian of the system is:

H1 =

∫ L

0

dx t̃1

(
∂xφ̃2 −

2

3
∂xθ̃2

)2

−Mθ̃ cos

(
2πnx

a
− 2θ̃2

)
+ t̃1

(
(∂xφ̃1)2 − 2

a2
cos(2φ̃1)

)
(5.19)

We see that this bulk Hamiltonian consists of some second order terms and a couple of cosine terms. In
the subsequent section we will analyse the second order part of the Hamiltonian. One of the points of
interest in our analysis going forward will be to determine when the different terms in this Hamiltonian
will be relevant. We will do this in one of the following sections by conducting a renormalisation group
analysis on the system, where we will consider the cosine terms as a perturbation to the second order
Hamiltonian.

5.1.3 Correlation Functions

Note that the second order Hamiltonian of our system (eq. 5.16) is the sum of two different systems,
which we will denote as:

H(2)
1 = Hφ̃1

+Hφ̃2
Hφ̃1

= t̃1

(
∂xφ̃1

)2

Hφ̃2
= t̃1

(
∂xφ̃2 −

2

3
∂xθ̃2

)2

(5.20)

By finding the Lagrangian of the system from a Legendre transformation of its Hamiltonian, we notice
we may define a diagonal Lagrangian matrix:

L =

(
Lφ̃1

0

0 Lφ̃2

)
(5.21)

If we define the vector ~̃φ =
(
φ̃1 φ̃2

)T
and some small generating fields ~η =

(
η1 η2

)T , we may calculate
the generating functional/partition function of the system by the Feynman path integral:

Z(~η) ≡
∫
D
~̃
φ exp

[ ∫
dxdt

(
i

~
· ~̃φTL~̃φ+ ~ηT

~̃
φ

)]
(5.22)

Note that the non-mixing of the fields of species φ̃1 and φ̃2 in the Hamiltonian (eq. 5.16), and by ex-
tension the diagonality of the Lagrangian matrix L, will make the total Hamiltonian separable into two
systems that can be solved independently. This will mean the mixed correlation function between fields
of different species are zero, i.e.:

〈φ̃1(x, t)φ̃2(x′, t′)〉 = 〈φ̃2(x, t)φ̃1(x′, t′)〉 = 0 (5.23)

The two-point correlation functions of the chiral Luttinger liquid were calculated in section 2.3. In the
low energy limit with |x− x′| � a and for equal time t = t′, these two-point correlation functions are:

〈φ̃1(x, t)φ̃1(x′, t′)〉 = const

〈φ̃2(x, t)φ̃2(x′, t′)〉 = −1

3
log |x− x′|+ const

(5.24)

And:

〈θ̃1(x, t)θ̃1(x′, t′)〉 = 0

〈θ̃2(x, t)θ̃2(x′, t′)〉 = −3

4
log |x− x′|+ const

(5.25)
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Figure 5.1: Numerical results of the two-point correlation function |G1(x, x+ r)| =
〈
F †xFx+r

〉
of the

single hopping Hamiltonian (with t2 = 0) versus the theoretical predictions made in the text with
G1(x, x+ r) ∝ eπi3 (2ρr−1) · r− 2

3 . Numerical results and graph courtesy of Rossini et.al. [4].

Two-point Correlation Functions of the Fock Parafermion Operators

The two-point correlation functions of the bosonic fields φk and θk′ , do not readily yield any particular
physical significance to us. Of bigger importance are the two-point correlation functions of the Fock
parafermions, which are defined as:

G1(x, x+ r) ≡
〈
F †xFx+r

〉
G2(x, x+ r) ≡

〈
(F †x)2(Fx+r)

2
〉

(5.26)

Where Fx is the Fock parafermion operator in the spatial coordinate x. The bosonised Fock parafermion
operators to be inserted are defined in (eqs. 4.50 and 4.51). Notice that these operators are defined
on the lattice. In the continuum we change n → ρ = N/L, since the density should be used because
nj = nxj/a = ρxj , when going from the site number j to its position in spatial coordinates. In the tilde
transformed fields (eq. 5.14), G1 is:

G1(x, x+ r) = e
2πi
3 ρr

〈(
e−i(φ̃2(x)+φ̃1(x)) + e−i(φ̃2(x)−φ̃1(x))

)
e

2i
3 (θ̃2(x)−θ̃2(x+r))

×
(
ei(φ̃2(x+r)+φ̃1(x+r)) + ei(φ̃2(x+r)−φ̃1(x+r))

)〉

Invoking the BCH formula, the correlation function becomes:

G1(x.x+ r) = e
πi
3 (2ρr−1)

[〈
exp

(
i

(
φ̃2(x+ r)− φ̃2(x) + φ̃1(x+ r)− φ̃1(x) +

2

3

(
θ̃2(x)− θ̃2(x+ r)

)))〉
+

〈
exp

(
i

(
φ̃2(x+ r)− φ̃2(x) + φ̃1(x+ r) + φ̃1(x) +

2

3

(
θ̃2(x)− θ̃2(x+ r)

)))〉
+

〈
exp

(
i

(
φ̃2(x+ r)− φ̃2(x)− φ̃1(x+ r)− φ̃1(x) +

2

3

(
θ̃2(x)− θ̃2(x+ r)

)))〉
+

〈
exp

(
i

(
φ̃2(x+ r)− φ̃2(x)− φ̃1(x+ r) + φ̃1(x) +

2

3

(
θ̃2(x)− θ̃2(x+ r)

)))〉]
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Each of these four terms can be calculated by the cumulant expansion2. For example we see:〈
exp

(
i

(
φ̃2(x+ r)− φ̃2(x) + φ̃1(x+ r)− φ̃1(x) +

2

3

(
θ̃2(x)− θ̃2(x+ r)

)))〉
∝ exp

(
−1

2

〈(
φ̃2(x+ r)− φ̃2(x)

)2
〉
− 1

2

〈(
φ̃1(x+ r)− φ̃1(x)

)2
〉
− 1

2

(
2

3

)2〈(
θ̃2(x+ r)− θ̃2(x)

)2
〉)

Note that the same site two-point correlation functions are ignored. Furthermore,Ni is aU(1)-symmetry
of the system, as discussed earlier. That such a symmetry exists guarantees that the one point correlation
functions are all zero. By these same assumptions the two-point correlation functions of the square are
easily calculated:〈(

φ̃1(x+ r)− φ̃1(x)
)2
〉

= −2
〈
φ̃1(x+ r)φ̃1(x)

〉
= const〈(

φ̃2(x+ r)− φ̃2(x)
)2
〉

= −2
〈
φ̃2(x+ r)φ̃2(x)

〉
= −2 ·

(
−1

3
log r

)
+ const〈(

θ̃2(x+ r)− θ̃2(x)
)2
〉

= −2
〈
θ̃2(x+ r)θ̃2(x)

〉
= −2

(
−3

4
log r

)
+ const

This result is inserted into the correlation function, we get that the first term of G1 is proportional to
r−

2
3 . The same is the case for the four other terms. In total we find that the one body density matrix G1

is:

G1(x, x+ r) ∝ eπi3 (2ρr−1) · r− 2
3 (5.27)

This result is substantiated by the literature [4, 5]. For comparison to numerical results made in [4] see
(fig. 5.1). Notice also that the complex factor in front of the right hand side agrees with the non rigorous
prediction made in [4]. This complex oscillating factor could not be described by the former treatments,
but was however predicted to be there [4, 5]. The result does not predict the weak oscillating behaviour
that G1 exhibit, which was one of the strengths of [5]. It is possible that some higher order terms could
account for this oscillation.

The calculation of G2 is very similar to that of G1, but before we can carry it out, one should note that
the square of the Fock parafermion operator changes n = n1 + 2n2 → 2n2 + n1, in the exponent (eq.
4.51). In general one cannot say what the relationship between n1 and n2 is, since Fi can change this.
However, two extreme cases arise: n2 = 0 and n1 = 0. In the first case n1 = n, while the latter case
yields n2 = n/2. In the following the first case is assumed, where n1 = n and n2 = 0.

In the tilde transformed variables (eq. 5.14) we find 2θ1 + θ2 = 3
2 θ̃1 + 1

2 θ̃2, hereby we may find the
two-point correlation function, G2:

G2(x, x+r) = e
πi
3 (4ρr−1)

〈
exp

(
2i
(
φ̃2(x+ r)− φ̃2(x)

)
− i

3

(
θ̃2(x+ r)− θ̃2(x)

)
− i
(
θ̃1(x+ r)− θ̃1(x)

))〉
The cumulant expansion yields:

G2(x, x+ r) ∝ eπi3 (4ρr−1)r−
17
12 (5.28)

At different filling factors the fraction of doubly-occupied states might increase, resulting in a change
in the value of 4ρ in the above. In the extreme case, where all sites are doubly-occupied, the correlation
function is G2(x, x+ r) ∝ eπi3 (ρr−1)r−

17
12 .

This correlation function does resemble the numerical results closely (see Figure 5.2). Compare this to
the result, if the Z3-symmetry of ω is ignored3 and (Ui)

2 is given by (eq. 4.44). Under these assumptions
we find that |G2| ∝ r−8/3. This corresponds to the prediction made in [4], which was based on the
argument that the system is a single anyonic fluid. We also saw that the phenomenological bosonisation
we defined earlier, where only one pair of dual bosonic fields was used, yielded this result.

The numerical results as seen in (fig. 5.2) do indeed favour our new prediction of |G2(x, x+ r)| ∼
r−

17
12 . Fundamentally, the change came from the Z3-symmetry of our model and by introducing multiple
2See appendix D.1.
3See appendix C.
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Figure 5.2: Numerical results of the two-point correlation function |G2(x, x+ r)| =
〈
(F †x)2(Fx+r)

2
〉

ver-
sus the theoretical predictions. The system in question is the single hopping Hamiltonian with t2 = 0.
Theoretical predictions are |G2(x, x+ r)| ∝ r−8/3 and |G2(x, x+ r)| ∝ r−17/12 depending on the model
and type of bosonisation used. Judging from the plot the latter prediction is better. Numerical results
and graph courtesy of Rossini et.al. [4].

species of dual bosonic fields for the bosonisation. The latter part is important since squaring the Ui-
operator takes the two θ-fields into each other, θ1 ↔ θ2, rather than just multiplying both of the by two
in the exponent. I.e. the difference in the two descriptions is:

(Ui)
2 ∼ ω2θ1+θ2 versus (Ui)

2 ∼ ω2θ1+4θ2 (5.29)

These two descriptions are mathematically equivalent as they are portrayed, but their Taylor expansions
are very different. This result underlines the importance of describing the system as multiple pairs of
dual bosonic fields, rather than just as one pair of dual bosonic fields that most of the literature have
done until know.

5.1.4 Phases of the Single Hopping Hamiltonian

We now return to consider the full bulk Hamiltonian with t2 = 0 that includes the second order terms
and the cosine terms (eq. 5.19). We do this by considering the cosine terms a perturbation to the chiral
Luttinger liquid that we just treated. Note that we may only consider the system for fillings 0 ≤ n ≤ 1,
since a form of particle hole symmetry arises that will render the fillings 1 ≤ n ≤ 2 mirroring the system
at 0 ≤ n ≤ 1.

Whether the Mθ̃-term becomes relevant depends on the value of n. If n 6= 1, cos
(

2πnx
a − 2θ̃2

)
will be

fast oscillating as it will strongly fluctuate as x goes along the lattice. By the idea of the theory of the
renormalisation group this term is thus non-relevant. If n ≈ 1 the term begins to oscillate more slowly
and will hence be able to become relevant. We will therefore calculate the scaling dimension of the
Mθ̃-term for n ≈ 1. We Taylor-expand around n = 1 to find:

cos

(
2πnx

a
− 2θ̃2

)
= cos 2θ̃2 +

(1− n)x

a
sin 2θ̃2 +O

((
1− n
a

)2
)

(5.30)

We note that this will blow up if (1−n) > a. Hence we need (1−n) < a, which means in the continuum
limit only n = 1 will yield a term that is not non-relevant in the RG sense. Euler’s formula tells us
that cos(x) = 1

2 (exp(ix) + exp(−ix)), and the scaling dimension of the vertex operator ei2θ̃2(x) is easily
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Figure 5.3: Phase diagram of the single hopping Hamiltonian. For n 6= 1 a gapless bosonic mode
arises and the system is described by a chiral Luttinger liquid. This phase is denoted by GL in the
above diagram. This bosonic mode is however gapped out when n = 1 by the Mθ̃-term in the bulk
Hamiltonian (eq. 5.19). This phase is denoted by G in the above.

calculated:〈
ei2θ̃2(x)e−2iθ̃2(x′))

〉
= exp

(
−22

2
· (−2 〈θ̃2(x)θ̃2(x′)〉)

)
= exp

(
4

(
−3

4
log |x− x′|

))
= |x− x′|−3

(5.31)

The scaling dimension of the cosine-term will be half of the negative value of this exponent. Thus the
scaling dimension of the Mθ̃-term for n = 1 is ∆Mθ̃

= 3/2. Notice that the dimension of the system
is D = 2, corresponding to one spatial and one temporal dimension. We thus see ∆Mθ̃

< D and the
Mθ̃-term is relevant for n = 1.

The cosine terms will try and pin the field, such that 2θ̃2 ≈ 2πm, for some m ∈ Z. How strong this
pinning is compared to the chiral Luttinger liquid part must be considered for us to be able to determine
if the pinning will actually happen. Consider some small fluctuation about the pinned fields, we may
write this as a linear term away from the pinning value, for some small δx: θ̃2 ≈ πm(1 + δx) and
φ̃2 ≈ 2πm′(1 + δx)/3. The Hamiltonian in these fields finds its minimum in these pinnings if m = m′:

H ≈ t̃2
(
∂xφ̃2 −

2

3
∂xπm(1 + δx)

)2

−Mθ̃ cos (2πmδx) = t̃2

(
∂xφ̃2 −

2

3
πmδx

)2

−Mθ̃ (5.32)

Minimising the energy will pin the other field φ̃2 = 2
3πmδx. This corresponds to gapping out the free

bosonic mode that corresponds to the dual fields φ̃2 and θ̃2 [12]. In general this ”gapping out” will not
happen if n 6= 1, since here the Mθ̃-term is irrelevant.

Lastly note that the term −(2t̃1/a
2) cos 2φ̃1 will always be relevant. The term has scaling dimension

∆φ̃1
= 0, since the two-point correlation function of the φ̃1-field is zero (eq. 5.24). It is evident that

the energy will be minimised if the pinning happens, since φ̃1 = 0 yields a minimum of the energy. In
other words, a gapping out of the free bosonic mode that corresponds to the fields φ̃1 and θ̃1 will always
happen in the single hopping Hamiltonian (eq. 5.19).

Both of the cosine-terms,−(2t̃1/a
2) cos 2φ̃1 and−Mθ cos

(
2πnx
a − 2θ̃2

)
, can gap out bosonic mode simul-

taneously as the two terms commute [12], ie. [φ̃1, θ̃2] = 0. To sum up, consider (fig. 5.3) for a phase
diagram. We saw that the term−(2t̃1/a

2) cos 2φ̃1 is relevant and will gap out the field φ̃1 for all n, which
makes only one bosonic mode is present. At n = 1 the term cos

(
2πnx
a − 2θ̃2

)
gaps out the remaining

bosonic mode, whereby the system becomes fully gapped.

5.2 Pair Hopping Hamiltonian

In this section we will analyse the t2-term of the nearest-neighbour hopping Hamiltonian (eq. 5.1) for
Z3 parafermions. This Hamiltonian corresponds to the hopping of a pair of Fock parafermions between
nearest-neighbouring sites in the one-dimensional lattice:

H2 = −t2
l−1∑
i=1

(F †i )2(Fi+1)2 + H.c. = −t2
l−1∑
i=1

(B†i )
2(Ui)

2(Bi+1)2 + H.c. (5.33)
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The bosonised version of the pair hopping operator is found in (eq. 4.51). The BCH formula grants us
the ability to gather everything in the same exponent:

(F †i )2(Fi+1)2 = exp

[
i (φ2(xi+1)− φ2(xi))−

2i

3

[
2 (θ1(xi+1)− θ1(xi)) + (θ2(xi+1)− θ2(xi))

]
−πi

3
+

2πi

3
(2n1 + n2)

]
Compared to the single hopping terms, the square of the Fock parafermion operators looks to be taking
the θ-fields ”into each other”, such that θ1 → 2θ1 and 2θ2 → θ2.

It must be mentioned that by n1 and n2 are meant the averages of these densities, rather than the exact
densities at the sites. n1 and n2 can be understood as the fraction of sites that are occupied by a single
Fock parafermion and a pair of Fock parafermions, respectively. It is reasonable to assume that these are
somehow determined by the parameters of the system in particular t2 and the filling factor n. This makes
the latter part, 2πi

3 (2n1 + n2), a number and as such a conserved quantity. Another observation that
underlines this fact is that we can write the operator that counts the number of sites that are occupied
by 2 Fock parafermions as N2 =

∑
i(F
†
i )2(F †i )2. This operator is a symmetry of the Hamiltonian, and as

such n2 = N2/L is constant of the system. We can determine n1 from n2, since n1 = n− 2n2, and hence
n1 must likewise be a constant of the system.

The system with the Hamiltonian, H2, cannot contain only one Fock parafermion per site. Only free
sites or doubly-occupied sites are allowed. To see why this is the case, notice that for any site j:

H2 |nj = 1〉 = t2

l−1∑
i=1

[
(F †i )2(Fi+1)2 + (F †i+1)2(Fi)

2
]
F †j |0〉 = 0 (5.34)

In other words, the single occupied orbitals are eigenstates with eigenvalue zero of the Hamiltonian,
H2. Notice furthermore, that the Hamiltonian does not allow for the single occupied sites to move
around, whereby they will effectively act as partitions of the system. The choices for how we fill the
sites with Fock parafermions are thus constrained to be either zero or two per site. This makes n1 = 0
and n2 = n/2, for any given filling n ∈ [0, 2].

Continuum Limit and Taylor Expansion

We insert the bosonised description of (F †i )2(Fi+1)2 in the Hamiltonian, H2, and let the lattice sites
approach each other such that lattice constant a → 0. In this limit, natural definitions of the spatial
derivatives and integrals arise, as per section 4.0.1. The Hamiltonian of the t2-hopping term is:

H2 = −2t2

∫
dx

a
cos

[
a

(
∂xφ2 −

2

3
(2∂xθ1 + ∂xθ2)

)
+
π

3
(n− 1)

]
(5.35)

As before, we Taylor-expand the integrand, and terms of equal order in a are collected:

H
(0)
2 = −2t2L

a
cos
(π

3
(n− 1)

)
H

(1)
2 = 2t2 sin

(π
3

(n− 1)
)(

[φ2(x)]x=L
x=0 −

2

3
[2θ1(x) + θ2(x)]x=L

x=0

)
H

(2)
2 = at2 cos

(π
3

(n− 1)
)∫ L

0

dx

(
∂xφ2 −

2

3
(2∂xθ1 + ∂xθ2)

)2

(5.36)

The resulting system is very similar to the single hopping Hamiltonian H1. As was the case for single
hopping Hamiltonian, we ignore the boundary terms that arise in H(1)

2 , which corresponds to the peri-
odic boundary conditions or the thermodynamic limit L → ∞. For a given set of parameters n and so
on, the zeroth order Hamiltonian, H(0)

2 , is simply a constant and can be ignored in the dynamics of the
system. The first non-trivial terms of the hamiltonian are the second order terms, H(2)

2 .

Notice, both the operator and the average of the single site filling will yield zero, i.e. n̂1 = n1 = 0. This
will in fact put a constraint our bosonic fields such that:

∂xθ1 ∼ n1 = 0 =⇒ θ1 = const (5.37)
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This constrain was lost on us, when we went to the bosonised description. However it may be rein-
troduced as a cosine-interaction term to our Hamiltonian. Without loss of generality we let const = 0.
Hereby the full bulk Hamiltonian becomes:

H2 = t̂2

∫ L

0

dx

(
∂xφ2 −

2

3
(2∂xθ1 + ∂xθ2)

)2

−M2

∫ L

0

dx cos(θ1) (5.38)

Where we have defined:
t̂2 = at2 cos

(π
3

(n− 1)
)

(5.39)

It is reasonable to assume the energy associated with the constraint on θ1, M2, is of the same order as the
zero point energy. We saw that this was the case for the constraining of the fields φ1 − 1

2φ2 in the single
hopping case. Therefore it may be assumed that:

M2 ≈
2t̂2
a2

(5.40)

The hopping energy, t̂2 is bigger than zero for all n ∈ [0, 2]. We define the following canonical transfor-
mation:

φ̂ = φ2 θ̂ = 2θ1 + θ2 (5.41)

The second order Hamiltonian is thus a chiral Luttinger liquid in these newly transformed fields with
fractional charge κ = −2/3:

H
(2)
2 = t̂2

∫ L

0

dx

(
∂xφ̂−

2

3
∂xθ̂(x)

)2

(5.42)

In fact defining this transformation is a little redundant since the cos-interaction term in (eq. 5.38), will
pin the field θ1, such that its spatial derivative disappears from the Hamiltonian entirely, and the result-
ing system is a chiral Luttinger liquid in the fields φ2 and θ2 exclusively. We construct these definitions
to make our approach more general, which will come in hand later.

5.2.1 Correlation Functions

The equal-time two-point correlation functions of the bosonic fields φ̂ and θ̂ are:

〈φ̂(x, t)φ̂(x′, t′)〉 = −1

3
log |x− x′|+ const

〈θ̂(x, t)θ̂(x′, t′)〉 = −3

4
log |x− x′|+ const

(5.43)

Since the Hamiltonian (eq. 5.42) is that of a chiral Luttinger liquid with fractional charge κ = −2/3.

Two-point Correlation Functions of the Fock Parafermions

Earlier it was argued that the lattice sites only contain zero or two Fock parafermions per site. The
case where a single parafermion occupies a lattice site is simply not an eigenstate of the system. An
important consequence of this fact is that a single Fock parafermion operator acting on the ground state
of the system is zero, Fi |GS〉 = 0. This in turn guarantees that:

G1(x, x+ r) =
〈
F †xFx+r

〉
= 0 (5.44)

This result is what is expected from the single Fock parafermion filling not being allowed. The result is
furthermore substantiated by the phase diagram (fig. 3.1) [5]. The correlation function of the square of
the Fock parafermion operators, is non-zero on the other hand:

G2(x, x+ r) =
〈
(F †x)2(Fx+r)

2
〉

= e
πi
3 (ρr−1)

〈
exp

(
i
(
φ̂(x+ r)− φ̂(x)

)
+

2i

3

(
θ̂(x+ r)− θ̂(x)

))〉
(5.45)

By the cumulant expansion we find:

G2(x, x+ r) ∝ eπi3 (ρr−1)r−
2
3 (5.46)
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Noticeably, this result displays the same power law behaviour as the correlation function G1 in the
system H1. The marked difference between the two correlation functions is the different complex factor
in front, e

πi
3 (ρr−1) versus e

πi
3 (2ρr−1).

Compared to previous treatments this correlation function is predicted to be |G2| ∝ r−
13
18 , which nu-

merical results substantiated [5]. This prediction is nevertheless very close to our prediction, since
2/3 = 12/18 ≈ 13/18. The prediction, |G2| ∝ r−

13
18 , arises from our system too if we change the specific

fractional charge −2/3 to be the general symbol κ. We find that the correlation function is:

G2(x, x+ r) =
〈
e−iφ̂(x)e

4πi
3 ρr+iκ(θ̂(x)−θ̂(x+r))eiφ̂(x+r)

〉
∝ eπi3 (4ρr+1)r−( 1

2κ+ 2κ
9 ) (5.47)

In [5] it is assumed κ = 1, by arguing that the system we just considered can be mapped onto a non-
interacting fermionic system. This assumption yields G2(x, x+ r) ∝ r−

13
18 . The validity of this assump-

tion is however dubious, since the fractional charge κ = −2/3 in the second order Hamiltonian terms
(Eqs. 5.13 and 5.36) has its roots in the definition of ω = e−iπκ, which described the commutation re-
lation of the Fock parafermions. So it is not evident how κ = 1 can be allowed to explain our system,
without ignoring the underlying statistics of the Fock parafermions.

5.2.2 Consideration for General Zp Fock Parafermions

The study of the Z3 Fock parafermions is put on a temporary hiatus, in favour of a small interim where
we consider the Fock parafermion of some general order p. Note that the hopping of a pair of Z3 Fock
parafermions is a special case of the hopping of (p − 1) Zp Fock parafermions. Recall that the general
Hamiltonian of nearest-neighbour hopping of Fock parafermions of general p on a one-dimensional
lattice of length L with lattice spacing a is:

H = −
L/a∑
i=1

p−1∑
k=1

tk(F †i )k(Fi+1)k + H.c. = −
L/a∑
i=1

p−1∑
k=1

tk(B†i )
k(Ui)

k(Bi+1)k + H.c. (5.48)

Let ρ denote the average density of Fock parafermions, and n = aρ, be the average number of Fock
parafermions per site. If all the hopping parameters except for the last one, tp−1, are zero we end up
with a system that is easier to consider. Note that the (p− 1)-power of the bosonic operator gives rise to
a two-state system consisting of the state |0〉 and |p− 1〉:

(Bi)
p−1 = exp (iφp−1(xi)) (Ui)

p−1 = exp

2πi(p− 1)

p
n− 2i

p

p−1∑
j=1

(p− j) (θj(xi+1)− θj(xi))

 (5.49)

The transformation φ → φ̂ = φp−1(xi) and θ → θ̂ =
∑p−1
j=1(p − j) (θj(xi+1)− θj(xi)) is canonical, with

[∂xθ̂(x), φ̂(x′)] = −iπδ(x− x′). In the continuum limit the Hamiltonian becomes:

Hp−1 = −2tp−1

∫ L

0

dx

a
cos

(
∂xφ̂−

2

p
∂xθ̂ +

π

p
(2(p− 1)n− 1)

)
(5.50)

As we have calculated many times before, the second order Taylor expansion of this system gives rise to
a chiral Luttinger liquid with fractional charge κ = 2

p and energy term ε = tp−1a cos
(
π
p (2(p− 1)n− 1)

)
:

H
(2)
p−1 = tp−1a cos

(
π

p
(2(p− 1)n− 1)

)∫ L

0

dx

(
∂xφ̂−

2

p
∂xθ̂

)2

(5.51)

As we just calculated this system gives rise to the two-point correlation function:〈
(F †x)p−1(Fx+r)

p−1
〉
∝ e

πi
p (2(p−1)ρr−1) · r−

2
p (5.52)

The two-point correlation function of the Fock parafermionic operators, 〈(F †x)k(Fx+r)
k〉, will be effec-

tively zero (specifically exponentially decreasing with some small correlation length) for k 6= p−1, since
Hp−1 |ni〉 = 0 for all i ∈ [0, L/a].
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5.3 Combined Single and Pair Hopping Hamiltonian

Now that we have studied each of the systems for single and pairs of Fock parafermions hopping indi-
vidually, we want to consider the system where both can happen simultaneously. The two Hamiltonians
(eqs. 5.19 and 5.42) added together becomes up to the second order:

H =

∫ L

0

dx

[
t̃1

(
1

2
∂xφ2 −

2

3
(∂xθ1 + 2∂xθ2)

)2

+ t̃1

(
∂xφ1 −

1

2
∂xφ2

)2

+ t̃2

(
∂xφ2 −

2

3
(2∂xθ1 + ∂xθ2)

)2

−Mθ cos

(
2πnx

a
− 2 (θ1 + 2θ2)

)
− 2

a2

(
t̃1 cos (2φ1 − φ2) + t̃2 cos(θ1)

) ]
(5.53)

Where we have defined:

t̃1 = 2at(1− g) cos
(π

3
(2n− 1)

)
t̃2 = atg cos

(π
3

(4n1 + 2n2 − 1)
)

(5.54)

Note that g = t2/(t2 + t1), which measures the relative strength of the hopping of a pair of Fock
parafermions (compared to single and pair hopping). In most physical systems, hopping of a single
particle is more likely than the hopping of multiple particles, hence it would be reasonable to assume g
is rather small in physical systems.

We encounter a problem in our calculations, since we don’t know the number of sites that are occupied
by a single Fock parafermion, n1, and/or how many are occupied by a pair of Fock parafermions, n2.
At least one of these is needed to be known to calculate t̃2. When only the pair hopping terms of the
Hamiltonian were considered, it was shown that n1 = 0, which simplified things greatly. We cannot do
this in the general case however, when including the single hopping terms, which guarantees the single
hopping sites are still eigenvectors of the Hamiltonian.

Even though we cannot definitively determine n1 and n2 based on analytical reasoning, we can nonethe-
less make a few remarks on it’s behaviour. Remember that nk tells us the fraction of sites that are oc-
cupied by k Fock parafermions. The total fraction cannot exceed one, hence n1 + n2 ≤ 1, and the total
number of Fock parafermions n = n1 + n2, as always. If g is big and close to 1, we have determined
that n1 ≈ 0, and for small n and g ≈ 0 the converse must be true with n2 ≈ 0. The difficult part is in
determining the behaviour of the region in between the two extreme cases. The numerical calculations
by Mahyaeh et.al. [5], showed that the intermediate region experienced a discontinuity and was split
up in two phases, where one phase, L, was characterised by n2 ≈ 0, while in the other phase, R, n1 ≈ 0.

Assuming that the two phases L and R are extensions of the systems, for which g = 0 and g = 1,
respectively, the former phase will be dominated by single hopping, while the latter is dominated by
pair hopping of the Fock parafermions. The strength of the pair hopping in the R phase is then:

t̃2 ≈ atg cos
(π

3
(n− 1)

)
(in R phase) (5.55)

Recall that the zeroth order energy of the single4 and pair hopping terms are H(0)
1 = −2Lt̃1/a

2 and
H

(0)
2 = −2Lt̃2/a

2, respectively. If it is assumed only one type of hopping is allowed, the type of hopping
that will happen is determined by which of these energies is the smallest - which means finding which
is maximal between t̃1 and t̃2. For a given n the critical g∗, where the t̃1 in the L phase is equal to t̃2 in
the R phase, is:

g∗ =
2 cos

(
π
3 (2n− 1)

)
2 cos

(
π
3 (2n− 1)

)
+ cos

(
π
3 (n− 1)

) (5.56)

Systems with g < g∗ are dominated by the single hopping, while systems with g > g∗ are dominated by
pair hopping, as per our assumptions. The resulting phase diagram derived by this phenomenological
approach is seen in (fig. 5.4) . It shows a decent approximation of the phase diagram (fig. 3.1) calculated
by Mahyaeh et.al. [5]. The differences that arise might come from the fact that n1 6= 0 and n2 6= 0 as is
assumed. This will make changes to the curve of g∗, since the second term in the denominator in (eq.
5.56) will be cos

(
π
3 (4n1 + 2n2 − 1)

)
. A few points of criticism arise in this phenomenological approach.

4Excluding some term proportional
∫
dx cos(2φ1 − φ2)
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Figure 5.4: Phase diagram of the model distinguishing between the single and pair hopping of the Fock
parafermions. The phase diagram is derived from phenomenological observations, and is as such not
theoretically rigid. In the left region, phase L, the single Fock parafermion hopping (denoted by the
hopping strength t̃1) is dominant. In the right region, phase R, it is assumed n1 = 0, and the region is
defined such that the pair hopping (denoted by the hopping strength t̃2) is dominant. The critical line
g∗ is defined in (eq. 5.56). At the ends g∗ = 2/3 for n = 0 and g∗ = 1/2 for n = 1.

First of all, this analysis doesn’t show why it is that n1 = 0 in the R phase and n2 = 0 in the L phase.
Second of all, we cannot account for the M phase in (fig. 3.1) that had central charge c = 2. Compared to
(fig. 3.1), in (fig 5.4) the R and the M phases are fused together to one phase. The phase transition from
the M to the R phases in (fig. 3.1) happens at a constant g = 0.58, so a possible explanation of this phase
could be that single hopping will always be allowed whenever g < 0.58.

5.3.1 Analytical Description of Chiral Luttinger Liquid Fields

We analyse the second order terms of the Hamiltonian (eq. 5.53) and consider the cosine-terms as a
perturbation to the resulting system at a later point, as was done in earlier chapters. We define three
fields ηj , j = 1, 2, 3, such that: η1

η2

η3

 =


√
t̃1
(

1
2φ2 − 2

3 (θ1 + 2θ2)
)√

t̃1
(
φ1 − 1

2φ2

)√
t̃2
(
φ2 − 2

3 (2θ1 + θ2)
)
 (5.57)

It is true that t̃1 > 0, for all n ≤ 1, but we need to assume t̃2 > 0 for all considered values of n ≤ 1,
whereby it will makes sense to take the square root of these values. In practice we do this by letting t̃2
be defined as in (eq. 5.55). This is not strictly true, but we assume it is good enough to display to us the
physics of the system.

The second order Hamiltonian of (eq. 5.53) is diagonal in
(
∂xη1 ∂xη2 ∂xη3

)T . We define a fourth
component η4, to make the system invertible, since we can thus go back and forth between our two
descriptions. We define η4 such that it commutes canonically with the other components: [∂xη4, ηi] = 0
for i = 1, 2, 3. The following definition of η4 obeys these relationships:

η4 =

√
4

3

(
3

4
φ1 +

1

2
θ1 + θ2

)
(5.58)

In summation we can express ~η as a linear transformation of the original fields:

~η =


η1

η2

η3

η4

 =


0 1

2

√
t̃1 − 2

3

√
t̃1 − 4

3

√
t̃1√

t̃1 − 1
2

√
t̃1 0 0

0
√
t̃2 − 4

3

√
t̃2 − 2

3

√
t̃2√

3
4 0

√
1
3

√
4
3


︸ ︷︷ ︸

S


φ1

φ2

θ1

θ2

 (5.59)
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Whereby the Hamiltonian becomes:

H(2) = ∂x~η
T


1

1
1

0


︸ ︷︷ ︸

T

∂x~η =

3∑
i=1

∂xη
T
i ∂xηi (5.60)

We define some transformation of the system, ~η → ~Ψ, such that the commutation relations of the re-
sulting species of fields are [∂xΨi(x),Ψj(y)] = ±i2πδ(x − y)δi,j , which makes it possible to split up the
system in simultaneously diagonalisable parts. Note that the sign in front of the commutation relation
will determine the chirality of the field Ψi. We define the matrix W , which keeps track of the current
commutation relations:

[∂xηi(x), ηj(y)] = i2πδ(x− y)Wij , W =
1

2


4
3 t̃1 0 5

3

√
t̃1t̃2 0

0 0
√
t̃1t̃2 0

5
3

√
t̃1t̃2

√
t̃1t̃2

4
3 t̃2 0

0 0 0 −1

 (5.61)

This matrix is a block diagonal matrix, consisting of a 3 × 3 block, W ′, and a 1 × 1 identity block. This
block diagonal construction is the motivation for the way we defined the fourth component η4, since it
does not influence our system, which simplifies things a lot. If we are able to diagonalise the matrix W ′

with an orthogonal matrix O, this matrix will define the transformation ~η → ~Ψ. We note that W ′ is a
symmetric 3 × 3-matrix, which guarantees it has 3 not necessarily distinct eigenvectors, λi, each with
an eigenvector, ~vi, that make up an orthogonal basis [25]. The eigenvectors can be determined from the
characteristic polynomial of the matrix:

− λ
(

2

3
t̃1 − λ

)(
2

3
t̃2 − λ

)
− t̃1t̃2

(
1

3
t̃1 −

17

18
λ

)
= 0 (5.62)

This equation is not easily solvable analytically. However we note a few things about the solutions.
First of all the determinant detW ′ = − 4

3 (t̃1)2t̃2 < 0 which tells us that either exactly one or all of the
eigenvalues are less than zero, since detW ′ = λ1λ2λ3, while the trace Tr W ′ = 4

3 (t̃1 + t̃2) > 0 tells
us at least one eigenvalue is greater than zero, since Tr W ′ = λ1 + λ2 + λ3. Hence we find that two
eigenvalues (say λ1 and λ2) will be positive and one (say λ3) will be negative. Numerical calculations of
the eigenvalues supports these claims (fig. 5.5).

Denote the eigenvectors corresponding to the eigenvalue λi by vi. These eigenvectors will be orthonor-
mal and will make up the first block of the orthogonal matrix O:

O =

~v1 ~v2 ~v3

0
0
0

0 0 0 1

 , OTO = 1 (5.63)

Therefore we may define a diagonal matrix, Λ, consisting of the eigenvalues λi in its diagonal, such that:

Λ = OTWO =


λ1

λ2

λ3

−1/2

 (5.64)

The commutation relations are then described as:

i2πδ(x− y)Λ = i2πδ(x− y)OTWO = OT [∂x~η(x), ~η(y)]O = [OT∂x~η(x),OT ~η(y)] (5.65)

I.e we find that the following vector will have the canonical commutation relations between its compo-
nents, which are diagonalised and normalised:

~Ψ ≡ |Λ|−1/2OT ~η ,
[
∂x~Ψ(x), ~Ψ(y)

]
= i2πδ(x− y)


+1

+1
−1

−1

 (5.66)
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(a) First eigenvalue, λ1 (b) Second eigenvalue, λ2

(c) Third eigenvalue, λ3

Figure 5.5: Numerical calculations for the first three eigenvalues of the matrix W . The last eigenvalue is
simply −1. W is defined as keeping track of the commutation relations [∂xηi(x), ηj(y)] = iπδ(x− y)Wij .
In the calculation of the eigenvalues it is assumed that t̃2 = atg cos

(
π
3 (n− 1)

)
. By assuming the value

of t̃2, the calculations are not exact, however it looks as if λ2 ≈ −λ3. This is especially true for small g.

Note that we need to take the absolute value of the eigenvalues in our definition of ~Ψ, since two of the
eigenvalues of the matrix W are negative, which complicates things from just taking the square root
directly. The Hamiltonian of the system is found to be:

H(2) = (∂x~η)TT ∂x~η = (∂x~Ψ)T (|Λ|1/2)TOT OT |Λ|1/2 ∂x~Ψ = (∂x~Ψ)T


|λ1|

|λ2|
|λ3|

0

 ∂x~Ψ

=

3∑
i=1

|λi| (∂xΨi)
2

(5.67)

The Hamiltonian is that of three chiral Luttinger liquids in the fields Ψi. The signs of the commutation
relations, [∂xΨi(x),Ψj(x

′)] = ∓i2πδ(x − x′)δi,j , will correspond to a (fractional) charge κ = ±1, for the
negative and positive values of the commutations respectively. The sign of the fractional charge will
determine the chirality of the field Ψi, since the velocity of the mode is proportional to the chirality (eq.
2.9 and 2.15). In other words, will the sign of the eigenvalues λi in fact determine the chirality of Ψi.

The eigenvalues λ2 and λ3 are zero in the extreme cases, where g = 0 and g = 1. The system is in this
case a sole chiral Luttinger liquid in Ψ1. This agrees with our previous calculations, where we saw that a
single chiral Luttinger liquid arises. In particular, if g = 0, the system corresponds to a Chiral Luttinger
liquid in the field η1 = 1

2φ2 − 2
3 (θ1 + 2θ2). If g = 1, the system simplifies to a chiral Luttinger liquid in

η3 = φ2 − 2
3 (2θ1 + θ2).

In the general case the eigenvalues λ2 and λ3 are non-zero. And as such three chiral Luttinger liquids
should arise in our model. This is more than expected, especially since our model started out as only
described through two species of dual bosonic fields. However the first order calculations we just did,
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Two-point correlation function g = 0 or t2 = 0 g = 1 or t1 = 1

〈(φ1 − φ2/2)(x)(φ1 − φ2/2)(x′)〉 γ1 − γ12 + 1
4γ2 = 0

〈φ2(x)φ2(x′)〉 γ2 = 4/3 γ2 = 1/3

〈(θ1 + 2θ2)(x)(θ1 + 2θ2)(x′)〉 ε1 + 4ε12 + 4ε2 = 3/4

〈(2θ1 + θ2)(x)(2θ1 + θ2)(x′)〉 4ε1 + 4ε12 + ε2 = 3/16 4ε1 + 4ε12 + ε2 = 3/4

Figure 5.6: Two-point correlation functions in the extreme cases of single and pair hopping, and what
their result translates to in terms of coefficients γij and εij . A successful theory should yield these results
for g = 0 and g = 0, in our interpolated Hamiltonian (eq. 5.53).

showed interestingly that λ2 ≈ −λ3. To realise why this is interesting one needs to remember that a
normal Luttinger liquid can be constructed from two counter-propagating chiral Luttinger liquids. Let
Ψ2 = Φ − Θ and Ψ3 = Φ + Θ, where [∂xΘ(x),Φ(x′)] = −iπδ(x − x′). Crucially these two fields still
commute by the canonical commutation relations, [∂xΨ2,Ψ3] = 0. Their total Hamiltonian is:

H(2)
Ψ2,Ψ3

= (|λ2|+ |λ3|)((∂xΦ)2 + (∂xΘ)2)− (|λ2| − |λ3|)(∂xΦ∂xΘ + ∂xΘ∂xΦ)

≈ (|λ2|+ |λ3|)((∂xΦ)2 + (∂xΘ)2)
(5.68)

The system is thus the sum of a chiral Luttinger liquid in Ψ = Ψ1 and regular Luttinger liquid in Φ and
Θ with Luttinger parameter K = 1:

H(2) = |λ1| (∂xΨ)2 + (|λ2|+ |λ3|)((∂xΦ)2 + (∂xΘ)2) (5.69)

In conclusion, it is seen that the system is the sum of three chiral Luttinger liquids, which themselves
show a notable resemblance to the sum of a chiral Luttinger liquid and a regular Luttinger liquid. It is
thus argued that the free field part of the Hamiltonian, (eq. 5.53), is made up of two bosonic modes - the
chiral Luttinger liquid and the regular Luttinger liquid.

5.3.2 Correlation Functions

The system is described by three chiral Luttinger liquids, Ψi, i = 1, 2, 3. The two-point correlation
functions in Ψi were previously calculated and is, no matter the value of |λi| > 0:

〈Ψi(x, t)Ψj(x
′, t′)〉 = −2 · log

∣∣∣∣ (x− x′)− v(t− t′)
a

∣∣∣∣ δi,j (5.70)

While |λi| = 0 renders the correlation function equal to zero. The original fields φj and θk can be
expressed in terms of the fields Ψi through an inverse transformation of (eqs. 5.66 and 5.59):

φ1

φ2

θ1

θ2

 = S−1O |Λ|1/2︸ ︷︷ ︸
M

~Ψ (5.71)

The two-point correlation functions of the original fields are found by squaring each element in the
matrixM and multiplying the sum of the first three elements in each row. This statement makes more
sense when it is written out. For example for φ1 we have:

〈φ1(x)φ1(x′)〉 =

〈(∑
i

M1iΨi(x)

)∑
j

M1jΨj(x
′)

〉 =
∑
i,j

M1iM1j 〈Ψi(x)Ψj(x
′)〉

∝ −
∑

i={1,2,3}

2(M1i)
2 log |x− x′|

(5.72)

We define the equal time two-point correlation functions of the fields φi and θi:

〈φi(x)φj(x
′)〉 ≡ −γij log |x− x′| 〈θi(x)θj(x

′)〉 ≡ −εij log |x− x′| (5.73)
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(a) γ1 (b) γ2

(c) ε1 (d) ε2

(e) γ12 (f) ε12

Figure 5.7: Numerical results of the coefficients of the two points correlation functions of the fields φi
and θi. For i = 1, 2 we have defined 〈φi(x)φi(x

′)〉 = −γi log |x− x′| and 〈θi(x)θi(x
′)〉 = −εi log |x− x′|.

A mixing of the fields makes it such that the cross terms, 〈φ1(x)φ2(x′)〉 = −γ12 log |x− x′| and
〈θ1(x)θ2(x′)〉 = −ε12 log |x− x′|, are non-zero. The plots show the values of the different coefficients for
varying filling, n, and the relative strength of the hopping of a pair of Fock parafermions, g = t2/(t1+t2).

Note that the two-point correlation functions of our original fields are not orthogonal, so the mixed cor-
relation functions are generally non-zero. I.e. in general γ12 = γ21 6= 0 and ε12 = ε21 6= 0. Furthermore,
for ease we denote γii = γi and εii = εi. We study the predictions of these coefficients, γij and εij , for
varying g and n. The calculations are made numerically using Python and the Numpy package. The
resulting plots are shown in (fig. 5.7) .

At the extremes g = 0 and g = 1, we have already calculated a few values that the coefficients, γij and
εij , should obey. In (fig. 5.6) we sum up these values, and show how they translate to γij ’s and εij ’s.
One of the predictions is that γ2 = 4/3 at g = 0, while γ2 = 1/3 at g = 1. This behaviour is however
not what we see in the plot of γ2, (fig. 5.7b), where it is seen that γ2 = 4/3 at both g = 0 and g = 1.
The other two-point correlation functions follow the same tendency - the values obtained for small g
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Term Relevancy Criteria/Scaling Dimension

Mθ cos
(

2πnx
a − 2(θ1 + 2θ2)

)
n = 1 and ∆1 = 2(ε1 + 4ε2 + 4ε12) < 2

2t̃2
a2 cos (θ1) ∆2 = ε1/2 < 2

2t̃1
a2 cos(2φ1 − φ2) ∆3 = (4γ1 + γ2 − 4γ12)/2 < 2

Figure 5.8: Criteria for the relevancy of the cosine-terms in the Hamiltonian (eq. 5.53). For the terms the
be relevant in the RG sense their scaling dimensions need be lower than the dimension of the system,
D = 2.

resemble the expected results, but the same is not true for the values at g ≈ 1. This discrepancy might
partly be explained by our approximation that 2n1 + n2 ≈ n2 = n/2 in the coefficient t̃2. However this
approximation was shown to be the case at large g ≈ 1, hence the disagreement to the study of the pair
hopping Hamiltonian would actually be expected to be less for large values of g.

The eigenvalues λ2 and λ3 both go to zero when g → 0 and g → 1. Notice how the fields Ψi are defined
as the multiple of the inverse of the eigenvalues, cf. (eq. 5.66). This means that the fields Ψ2 and Ψ3

will inexpediently blow up at the ends, where g → 0 and g → 1. The blowing up of the fields makes
numerical calculations less certain. This likely explains why we do not get the expected values of the
power-laws for g = 0 and g = 1.

5.3.3 Interaction Terms

So far the analysis has not considered the cosine interaction terms in the Hamiltonian, (eq. 5.53). We
saw in the study of the single hopping Hamiltonian that these terms, when relevant, can pin down a
field, which will gap out a bosonic mode of the description.

Two cosine terms can gap out two different bosonic modes, only if the terms commute. If the two terms
do not commute the one that is the most relevant will ”win” resulting in that mode being gapped out
while the other runs freely [12]. The cosine term, Mθ cos

(
2πnx
a − 2 (θ1 + 2θ2)

)
, commutes with the rest

of the interaction terms, 2
a2 t̃1 cos (2φ1 − φ2) and 2

a2 t̃2 cos(θ1), and can as such simultaneously gap out the
fields, θ1 +2θ2, with either θ1 or 2φ1−φ2 being gapped, depending on the relevancy of the cosine-terms.
The two cosine-terms in θ1 and 2φ1 − φ2 cannot be simultaneously gapped however, since they do not
commute. It is necessary to determine which term is most relevant to see which field will be gapped
out. Notice that the cosine terms are proportional to t̃1 and t̃2 respectively, which hints as us why the
explanation that was used comparing the strength of these hopping energies, (fig. 5.4), showed a good
approximation of the phase diagram (fig. 3.1).

Whether a term in the Hamiltonian will be relevant or not, is determined by its scaling dimension (up to
first order RG). A cosine-term, cos(αθ1±βθ2), will have the scaling dimension ∆ =

(
ε1α

2 + ε2β
2 ± 2ε12αβ

)
/2,

since:

〈ei(αθ1(x)±βθ2(x))e−i(αθ1(x′)±βθ2(x′))〉 = exp

(
−1

2

〈
(α(θ1(x)− θ1(x′))± β(θ2(x)− θ2(x′)))

2
〉)

∝ exp

(
− 1

2

(
− 2α2 〈θ1(x)θ1(x′)〉 − 2β2 〈θ2(x)θ2(x′)〉 ± (−2αβ (〈θ1(x)θ2(x′)〉+ 〈θ2(x)θ1(x′)〉))

))
= |x− x′|−(ε1α2+ε2β

2±2ε12αβ)

The exponent is double the scaling dimension of the cosine-term. A similar calculation can be done for
a cosine-term in the φ-fields, cos(αφ1 ± βφ2), where ∆ =

(
γ1α

2 + γ2β
2 ± 2γ12αβ

)
/2. The cosine-terms

are relevant (to the first order RG) if their scaling dimensions are less than that of the system, which in
our case is D = 2. (Fig. 5.8) sums up when the different interaction terms of the Hamiltonian (eq. 5.53)
are relevant by comparing their scaling dimension to the scaling dimension of the system, ∆ < D = 2.
In (fig. 5.9) the actual numerical values of the scaling dimensions of the interaction terms are plotted.

The scaling dimensions of the interaction-terms, ∆i for i = 1, 2, 3 (see fig. 5.8 for definitions), as they are
in (fig. 5.9) show a couple of tendencies. First of all the scaling dimension ∆1 < 2 for g < 0.1, whereby
θ1 + 2θ2 is gapped out at n = 1 for small value of g. This result agrees with the analysis of the single
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(a) Scaling dimension, ∆2, of the term 2t̃2
a2

cos (θ1). (b) Scaling dimension, ∆3, of the term 2t̃1
a2

cos(2φ1−
φ2).

(c) Scaling dimension, ∆1, of the term
Mθ cos

(
2πnx
a

− 2(θ1 + 2θ2)
)
, for filling factor

n = 1.

Figure 5.9: Scaling dimension of the cosine-interaction terms of the Hamiltonian (eq. 5.53). The black
striped line signifies the limit for which the interaction is relevant in our model, and scaling dimensions
above the line will render the term irrelevant.

hopping system that said such a gapping out of this field would take place. The scaling dimensions of
the other cosine-terms, ∆2 and ∆3, are both below D = 2 for values of g ∈ [0.2, 0.8]. However, over all
the possible values of g, at least one of the terms is relevant. It is thus guaranteed that one bosonic mode
will always be gapped out, according to this analysis. We assume that the bosonic mode that is gapped
out is the mode that has the lowest scaling dimension. This creates a phase transition in the system
where the sites may be occupied by a single Fock parafermion, n1 6= 0, when 2φ1 − φ2 is gapped out, to
one where single occupancy is not allowed, n1 = 0, due to the gapping out of the θ1-field. This phase
transition happens in this direction for increasing g for all filling factors, n. The point where ∆2 = ∆3

denotes the boundary of the phase transition. In (fig. 5.10) this phase transition is found numerically.

If the phase diagram (fig. 5.10) is compared to the phase diagram (fig. 3.1) made by Mahyaeh et al. [5],
a few changes are immediately visible. First of all, we do not observe a phase where two bosonic modes
are gapless, which was observed for n around 1 and suitable g in (fig. 3.1). Second, the fully gapped
phase that arises if both of the interaction-terms, 2t̃2

a2 cos (θ1) and 2t̃1
a2 cos(2φ1 − φ2), are relevant, is much

smaller and only observed for n = 1 in values g < 0.1. In Mahyaeh et al. this phase was observed
for g < 0.45. Third of all, the phase transition from the (n1 6= 0)-phase to the (n1 ≈ 0)-phase takes
place at too low g’s as compared to Mahyaeh et al. Note that to this last point we can move the phase
transition boundary left and right by multiplying the argument of the cosine term 2t̃2

a2 cos (θ1), by some
appropriate factor. It is not set in stone that this factor is 1, since we based the argumentation of this
term on requiring the field θ1 is pinned to 0 in the pair hopping Hamiltonian.

It should be kept in mind that our calculations are made up to the first order of renormalisation group
theory, and furthermore utilises perturbation theory. Difference between our result and the numerical
result by Mahyaeh et al. would be expected. With the exception of the exclusion of a phase where two
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Figure 5.10: Phase diagram of the interpolated single and pair Z3 Fock parafermions hopping Hamil-
tonian (eq. 5.53), based on first order RG and scaling dimensions of the interaction fields. In the left
region sites may be occupied by a single Fock paraefermion. The phase transition changes this such
that single occupancy is not allowed in the right region, ie. n1 = 0. The purple region at the top of the
plot, is the fully gapped region, where the remaining un-gapped bosonic field is gapped out by the term
Mθ cos

(
2πnx
a − 2 (θ1 + 2θ2)

)
.

bosonic modes exist, the phase diagram (fig. 5.10) portrays an overall structure similar to the earlier
numerical calculations. It offers us a good qualitative explanation of the processes happening in the
nearest-neighbour Fock parafermion hopping Hamiltonian: We see that one phase for which n1 = 0
exists, which entails only hopping of pairs of Fock parafermions is happening in this region. For smaller
g’s a phase exists that allows for both single and pair hopping, but gaps out the bosonic field 2φ1 − φ2.
Furthermore, a fully gapped phase appears for n = 1 at small g’s.

Our analysis encourages further work to be done on the system. Of interest in particular would be to
study the phase transitions at higher orders of the renormalisation group, where other factors than the
scaling dimensions plays a factor. It could also be fruitful to include the interaction term, 2

a2 t̃2 cos(θ1),
in the calculation of the fields. Notice that the term comes from the realisation that ∂xθ1 = 0 in the
pair hopping system. If we assume it is small, the cosine term can be Taylor-expanded yielding the
Hamiltonian:

H ′ =

∫ L

0

dx

[
t̃1

(
1

2
∂xφ2 −

2

3
(∂xθ1 + 2∂xθ2)

)2

+ t̃1

(
∂xφ1 −

1

2
∂xφ2

)2

+ t̃2

(
∂xφ2 −

2

3
(2∂xθ1 + ∂xθ2)

)2

+
t̃2
a2

(∂xθ1)2

−Mθ cos

(
2πnx

a
− 2 (θ1 + 2θ2)

)
− 2t̃1
a2

cos (2φ1 − φ2)

] (5.74)

However, this Hamiltonian is valid in the right phase only, since this is the only region where we can
assume ∂xθ1 = 0.

Notice that we have assumed that t̃2 ignored the single site occupation, since it would otherwise become
negative for n1 > 5/8. That a constant like t̃2 that should not be negative, is negative, is often an
indicator that the description has some problems. A possible explanation could be that in the Taylor
expansion of (eq. 5.35) the assumption that the bosonic fields φk and θk are slow oscillating, so their
partial derivatives may be expanded around zero, is not true. The interaction terms and the symmetries
of the system will effectively pin down the fields as discussed multiple times already. The pinning
might happens such that zero is not a good point to Taylor expand about. We try to see if this type of
pinning can be the explanation for the shortcomings of our model. We assume that the combination of
fields a

(
∂xφ2 − 2

3 (2∂xθ1 + ∂xθ2)
)

are pinned around some value δ. The second order Hamiltonian of
the system is thus:

H
′(2)
2 =

t2
a

cos
(π

3
(4n1 + 2n2 − 1)− δ

)∫ L

0

dx

(
a

(
∂xφ2 −

2

3
(2∂xθ1 + ∂xθ2)

)
− δ
)2

(5.75)
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We can square out the integrand with respect to the value δ, but notice doing so will only yield some
boundary terms that we will ignore and a constant, which can be ignored. Thus the only influence the
introduction of δ has was changing the factor in front of the integral, such that:

t̃2 −→ at2 cos
(π

3
(4n1 + 2n2 − 1)− δ

)
(5.76)

We have done the numerical calculations and found the phase diagram for different values of δ ∈
{π, π/3, 2π/3, ... }. None of these calculation yielded something that would be considered more cor-
rect with respect to the phase diagram (fig. 3.1), however.
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Chapter 6

Conclusion and Outlook

In this thesis we effectively studied the anyonic particles called Fock parafermions, which are a type of
emergent particles defined by Cobanera and Ortiz in 2014 [3], and derived field-theoretical description
of these particles. This description was derived from a constructive bosonisation of the Weyl hard-core
bosons, which are defined from the Fock parafermions through a Fradkin-Kadanoff transformation.
The resulting bosonised description of the Z2-symmetric Fock parafermion annihilation and creation
operators at site j, Fj and F †j , was shown to be:

Fj ≡

[
eiφ1(xj) +

p−1∑
k=2

ei(φk(xj)−φk−1(xj))

]
exp

(
2πi

p
n(j − 1)− 2i

p

p−1∑
k=1

k (θk(xj)− θk(x1))

)

F †j ≡

[
e−iφ1(xj) +

p−1∑
k=2

e−i(φk(xj)−φk−1(xj))

]
exp

(
−2πi

p
n(j − 1) +

2i

p

p−1∑
k=1

k (θk(xj)− θk(x1))

) (6.1)

Where the dual bosonic fields, φk and θk, commute by the following relationship:

[θk(x), φk′(x
′)] = −iπδk,k′Θ(x− x′) Θ(x− x′) =

{
1 for x > x′

0 for x ≤ x′
(6.2)

Of special note is that the description requires p − 1 pairs of dual bosonic fields φk and θk. A descrip-
tion like this has not been previously considered. Even though, that more than just one bosonic field
is required to describe the Fock parafermions is backed up by the numerical studies of the Z3 Fock
parafermions [5], that found the system under the right conditions has a central charge c = 2.

The newly-defined bosonised Fock parafermions were used to develop a low-energy field theoretical
description of the nearest-neighbour hopping Hamiltonian of the Z3 Fock parafermions (eq. 5.1). The
study of the Hamiltonian was split up in three cases: the study of the single hopping Hamiltonian,
where g = 0; the pair hopping Hamiltonian with g = 1; and a general case where both types of hopping
was allowed and the relative strength between them was varied by an interpolation variable 0 < g < 1.

The field theoretical description of the the Z3 Fock parafermion nearest-neighbour hopping model pre-
dicted that the system could be described by a single chiral Luttinger liquid in the extreme cases, where
either only single hopping or pair hopping is allowed. This system has not been studied in the literature
as much as its older brother, the regular Luttinger liquid, but a connection of it to the edge modes of the
fractional quantum Hall effect has been made [21]. Earlier suggestions for bosonisation pointed to the
Luttinger liquid rather than this chiral version as a as a low energy field-theoretical describtion of the
Fock parafermions [4]. That the system should be described by a chiral Luttinger liquid rather than a
Luttinger liquid is likely owing to the fact that a chirality is inherent in the commutation relation of the
Fock parafermions (eq. 1.28).

Furthermore, the two-point correlation functions of the chiral Luttinger liquids were calculated, and this
result was used to calculate the two-point correlation functions of the Fock parafermions in the nearest-
neighbour hopping Hamiltonian. The obtained values are summed up in (fig. 6.1) and the power law
behaviours agree with earlier numerical calculations [4, 5]. For more see (figs. 5.1 and 5.2). It was
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Single Hopping g = 0 Pair Hopping, g = 1

G1(x, x+ r) ∝ eπi3 (2ρr−1) · r− 2
3 G1(x, x+ r) = 0

|G2(x, x+ r)| ∝ r−17/12 G2(x, x+ r) ∝ eπi3 (ρr−1) · r− 2
3

Figure 6.1: Two-point correlation functions of the Z3 Fock parafermions tight-binding model. G1(x, x+
r) =

〈
F †xFx+r

〉
and G2(x, x + r) ≡

〈
(F †x)2(Fx+r)

2
〉
. The obtained values agree with earlier numerical

calculations [4, 5].

seen that the Z3-symmetry of the Z3 Fock parafermions, coupled with the fact that the bosonisation was
defined in terms of (p− 1) pairs of dual bosonic fields, were at the base of our successful predictions.

For general g the field-theoretical limit of the Z3 Fock Parafermion nearest-neighbour hopping Hamil-
tonian was calculated to be:

H =

∫ L

0

dx

[
t̃1

(
1

2
∂xφ2 −

2

3
(∂xθ1 + 2∂xθ2)

)2

+ t̃1

(
∂xφ1 −

1

2
∂xφ2

)2

+ t̃2

(
∂xφ2 −

2

3
(2∂xθ1 + ∂xθ2)

)2

−Mθ cos

(
2πnx

a
− 2 (θ1 + 2θ2)

)
− 2

a2

(
t̃1 cos (2φ1 − φ2) + t̃2 cos(θ1)

) ]
(6.3)

Where we have defined:

t̃1 = 2at(1− g) cos
(π

3
(2n− 1)

)
t̃2 = atg cos

(π
3

(4n1 + 2n2 − 1)
)

(6.4)

It was shown that this system gives rise to three chiral Luttinger liquids. Numerical calculations showed
that two of the counter-propagating chiral Luttinger liquids could indeed be approximated by a regular
Luttinger liquid. This constringes the number of bosonic modes of the system from three to two, which
is what we expected the theory to describe.

Moreover, it was shown how the cosine terms in (eq. 6.3) gave rise to an interaction that effectively
pins the fields in the argument of the cosines, when the cosine-terms themselves were relevant. A
phase transition between two phases consisting of a single bosonic mode, were one phase allowed the
tight-binding sites to be occupied by a single Fock parafermions to one that did not, was observed for
increasing g. Furthermore, a fully gapped phase at n = 1 and g < 0.1 was observed. The phase diagram
derived by the model can be observed in (fig. 5.10). The description failed to capture a phase, where
the two bosonic modes of the system would be simultaneously gapless, which earlier work prescribed
would exist [5]. In consequence, further work is encouraged to study this system. A couple of points for
further research which might remedy the shortcoming of our model are:

• Renormalisation group analysis for the combined single and pair hopping Hamiltonian (eq. 6.3).
Including higher orders in the calculations could be the way to expand the derived phase diagram,
such that it includes a phase whose central charge c = 2, where two bosonic modes are allowed;

• Finding another way of transforming the interpolated Hamiltonian (eq. 6.3), such that it does not
depend on some fields that blow up at the ends where g → 0 and g → 1;

• Finding a way of determining the ratio n1/n2 for specific values of g and n. The hopping param-
eter t̃2 was shown to depend explicitly on these values. In the analysis we assumed n1 = 0 for
when calculating t̃2. This is however a gross simplification, which made the calculations of the
interpolated Hamiltonian (eq. 6.3) less accurate.

Furthermore, we have not explicitly made the calculations that shows the Fock parafermions are abelian
versions of the non-abelian parafermions. This would need to be done to render credence to the validity
of our bosonisation, since we assumed abelian bosonisation could be used.

In conclusions, in this thesis we have discovered the consequences of the bosonisation of the Z3 Fock
parafermions as a proof of concept. The bosonisation (eq. 6.1) is applicable also to general Zp Fock
parafermions. Further work is encouraged for the study of the general case. One point of interest could
be to study the case p = 2k, since it bridges the gap to fractional fermions.
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Appendix A

Bosonisation of Fermions and Bosons
and the Luttinger Liquid

In this appendix we will review the theory behind the bosonisation of bosons and fermions. This tech-
niques consists of a clever way of rewriting the creation and annihilation operators of some interacting
particles mapping them to free scalar fields theories. This technique works most often only in the low
energy limit, where fluctuations are not too pronounced, and is as such a field theoretical low energy
approximation of the system.

There are two approaches to bosonisation: fields theoretical and constructive bosonisation [32, pp. 4-
5]. In this appendix we will recount the field theoretical approach to bosonisation of the fermions and
bosons. The derivation is based on chapter 3 of [34] the lecture notes [27].

Density Operator and Phenomelogical Bosonisation

Consider a 1-dimensional chain of particles located at sites x = xj for j ∈ [1 . . . l]. The density operator
of such chain can be explained by the operator:

ρ(x) =

N∑
j=1

δ(x− xj) (A.1)

To count the number of particles before the point xj we introduce the field θ such that:

θ(xj) = 2πj (A.2)

This field has its definition expanded such that it is continuous in x. It is assumed to behave nicely such
that it is monotonically increasing. We define the function:

f(x) = −i
(
eiθ(x) − 1

)
(A.3)

Notice that this function has zeroes when x = xj . The following identity:

δ(f(x)) =
∑

j∈ zeroes of f

1

|∂xf(xj)|
δ(x− xj) =

∑
j∈ zeroes of f

1

|∂xθ(xj)|
δ(x− xj) (A.4)

Notice that the function f(x) is zero when θ(x) = 2πj. We have also assumed θ(x) is monotonically
increasing, and can thus omit taking the absolute value of it spatial derivative. In other word we may
recast δ(x− xj) in terms of the function θ(x). Hereby we find that:

ρ(x) =

N∑
j=1

∂xθ(x)δ(θ(x)− 2πj) (A.5)
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We solve this equation by Fourier transformation the summand. Poisson’s integration formula guaran-
tees that the sum stays the same:

ρ(x) =
∂xθ(x)

2π

∞∑
q=−∞

eiqθ(x) (A.6)

So far the function θ has kept track of all the particle in the field. But if the number of particles are N
and the one-dimensional chain has length L, we may define ρ0 = N/L, which is the average density.
Now we can recast the definition of θ such that it only accounts for the derivation from this mean. In
particular we let:

θ(x) −→ 2πρ0x− 2θ(x) (A.7)

Whereby the density becomes:

ρ(x) =

(
ρ0 −

∂xθ(x)

π

) ∞∑
q=−∞

ei2q(πρ0x−θ(x)) (A.8)

Notice that the density operators of both bosons and fermions are bosonic. Hence we will find that
[θ(x), θ(x′)] = 0, in different x 6= x′. Summing over large distances compared to the average distance
between the particles all other powers of q 6= 0 sum to zero. Thus, the part of the density outside the
sum over q turns out to dominate in many applications.

We note that the density operator can be constructed from the single particle operators ψ(x). Namely,
ψ†(x)ψ(x) = ρ(x). This construction is well known from quantum mechanics.

Bosons

We make an ansatz that we may write the bosonic operator as:

ψ†B(x) =
√
ρ(x)e−iφ(x) (A.9)

Notice that this operator obeys that ψ†B(x)ψB(x) = ρ(x). For the operator to be bosonic we must require
that it obeys the relationship:

[ψB(x), ψ†B(x′)] = δ(x− x′) (A.10)

If x = x′ we find that this equation gives us:

eiφ(x)ρ(x)e−iφ(x) − ρ(x) = δ(x− x′) (A.11)

Multiplying this equation by e−iφ(x) from the left on both sides yields:[
ρ(x), e−iφ(x)

]
= e−iφ(x)δ(x− x′) (A.12)

We insert the definition of the density operator (eq. A.8) with only the slow oscillating parts, q = 0.
Furthermore, using that [A, e−iB ] = −i[A,B]e−iB , we find:[

∂xθ(x)

π
, φ(x′)

]
= −iδ(x− x′) (A.13)

Hence the two fields θ and φ obey this relationship. This relationship is very fundamental so rather than
just being a coincidence we let it be one of the defining features of the bosonisation theory. Integrating
over x (notice that x′ will be a constant under this integration), will yield a commutation relationship:

[θ(x′), φ(x′)] = −iπΘ(x− x′) (A.14)

Where Θ(x) is the Heaviside step function.

With this commutation relation in mind it can be shown that the fast oscillating terms of (eq. A.8) do not
contribute anything to the commutation relation. The bosonised version of the bosonic field is expressed
as:

ψ†B(x) =

√
ρ0 −

∂xθ(x)

π

∑
q

e−i(2q)(πρ0x−θ(x))e−iφ(x) (A.15)
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Fermions

The fermionic operators, ψ†F (x), can be defined from the bosonic operators ψ†B(x) by changing the sum
over q such that 2q → 2q + 1, hence:

ψ†F (x) =

√
ρ0 −

∂xθ(x)

π

∑
q

e−i(2q+1)(πρ0x−θ(x))e−iφ(x) (A.16)

The addition of this term in the exponent makes it such that the operators, ψ†F (x) and ψF (x′), anti-
commute. This is quite easily derived from application of the commutation relations (eqs. A.13 and
A.14) to the anti-commutator {ψ†F (x), ψF (x′)}. The calculations will be omitted here.

Notice that it is often expedient if we linearlise this mode around the Fermi surface. Around the Fermi
surface we have ρ0 = kF /π, where kF is the fermi wavevector. Linearlising effectively means that only
the lowest orders (of oscillation) are allowed. Notice two such exist, one for q = 0 and one for q = 1. As
such we may write:

ψ†F (x) ≈ N
(
eikF xe−i(φ(x)+θ(x)) + e−ikF xe−i(φ(x)−θ(x))

)
(A.17)

Where N is some normalisation constant. On the lattice with lattice constant a this is N =
√

1/2πa

Luttinger Liquids

The Luttinger liquid arises as a low energy-field theoretical description of the one-dimensional tight-
binding model Hamiltonian with quartic density-density interactions:

H = −t
∑
r

(
c†r+acr + H.c.

)
+ U

∑
r

c†r+acr+ac
†
rcr (A.18)

Where c†r and cr are the creation and annihilation operators in the site r on the lattice of length L and lat-
tice constant a. In the field theoretical description we assume the model becomes a continuum where we
can describe the creation and annihilation operators in terms of the bosonised description that was just
derived. In this section we will derive the Luttinger liquid description of the fermions, but it can like-
wise be done for one-dimensional chain of bosons or a p-wave superconductor. We define the density
operator:

ρ(x) = lim
a→0

ψ†F (x)ψF (x+ a) (A.19)

Through a first order Taylor expansion of the fields:

φ(r + a) ≈ φ(r) + a∂xφ(r) θ(r + a) ≈ θ(r) + a∂xθ(r) (A.20)

It can be shown that the density operator approximates as:

ρ(x) = −∂xθ
π

+
i

2πa

(
e−2ikF xe2iθ(x) − e2ikF xe−2iθ(x)

)
(A.21)

The same Taylor expansion yields that the product of two density operators becomes:

ρ(x+ a)ρ(x) −→ 1

π2

[
(1− cos(2kFa)) (∂xθ(x))

2
+

1

a
sin(2kFa)∂xθ(x) +

1

2a2
cos(2kFa)

]
for a→ 0

(A.22)

We insert this result in the Hamiltonian Hint = U
∫
dx(ρ(x))2. The last term can be ignored as it is a

simple constant. The second term with integrate to give us a boundary term in θ, which we will dismiss.
The interaction Hamiltonian is then:

Hint = U

∫
dx

1

π2

[
(1− cos(2kFa)) (∂xθ(x))

2
]

(A.23)

We now direct our attention towards the the free part of the Hamiltonian. We rewrite the creation and
annihilation operators in their bosonised description. The Taylor expansion that was used earlier yields:

ψ†F (x+ a)†FψF (x) =
1

2πa

[
2 sin kFa− ai sin kFa∂xφ− a cos kFa∂xθ − a2 sin kFa(∂xφ)2

− a2 sin kFa(∂xθ)
2 + 2i cos kFa∂xφ∂xθ

] (A.24)
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Plus some fast-oscillating terms that will be ignored. We add the Hermitian conjugate to this expression,
whereby the imaginary terms disappear. The free part of the Hamiltonian (eq. A.18) is thus:

H0 = −t
∫
dx 2 · −a sin kFa

2π

(
(∂xφ)2 + (∂xθ)

2
)

=

∫
dx

u

2π

(
(∂xφ)2 + (∂xθ)

2
)

(A.25)

Where we have defined u = 2ta sin kFa. We have integrated out the 2 sin kFa and a cos kFa∂xθ-terms,
which would yield a constant and a boundary term that can be ignored. The total Hamiltonian of the
system is:

H =
vF
2π

∫
dx K (∂xφ)

2
+

1

K
(∂xθ)

2 (A.26)

Where we have defined the Luttinger parameters s.t.:{
vFK = u
vF
K = u+ 2U

π (1− cos 2kFa)
=⇒

vF =
√
u
(
u+ 2U

π (1− cos 2kFa)
)

K =
√

u
u+ 2U

π (1−cos 2kF a)

(A.27)

The Hamiltonian (eq. A.26) is the famous Luttinger liquid. It is very useful to describe a system as a Lut-
tinger liquid since so many types of systems becomes Luttinger liquids in their lowest order description.
Furthermore are correlation functions easy to calculate since the Luttinger liquid yields the correlation
functions of the two fields:

〈φ(x)φ(0)〉 = − 1

2K
ln |x| , 〈θ(x)θ(0)〉 = −K

2
ln |x| (A.28)
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Appendix B

Chiral Luttinger Liquid Two Point
Correlation Functions Calculations

In this appendix we show the explicit calculations used in the derivation of the two point correlations
function of the chiral Luttinger liquid. The correlation function (Eq. 2.29) is evaluated by noting that the
iω may be taken out of the denominator of the integrand/Green’s function:

G(k, ω) =

(
ω2

vϕ
− ikω

)−1

= − 1

iω
· 1
iω
vϕ

+ k
(B.1)

Hereby the calculation of the correlation function splits up into two integrals, such that:

〈ϕ(x, τ)ϕ(x′, τ ′)〉 = − 1

α(2π)2

∫
dω

1

iω
e−iω(τ−τ ′)

∫
dk eik(x−x′) 1

iω
vϕ

+ k
(B.2)

Note that ω and vϕ both are real numbers. The integration over k can thus be carried out using Cauchy’s
Residue Theorem [25]. To use this theorems we must require that the function eik(x−x′) is analytical in
k ∈ C, which may be denoted as k = k1 + ik2, for k1, k2 ∈ R. Thus:

eik(x−x′) = eik1(x−x′)e−k2(x−x′) (B.3)

This function will blow up and be non analytical for k2 → ±∞ if k2(x− x′) < 0. Hence for (x− x′) > 0
we must require that k2 > 0 as well, and we can choose a path in the upper half of the complex plane to
integrate over. On the other hand will (x− x′) < 0 require the imaginary part of k to be negative, hence
a path in the lower part of the complex plane is to be chosen to be integrated over. Thus by choosing
a closed contour path C+/− in the upper or lower half of the imaginary plane in the cases (x − x′) > 0
or (x − x′) < 0, respectively, and if the point −iω/vϕ is contained in the closed contour, it will act as a
simple pole of the function, rendering the integration:∮

C+/−

dk eik(x−x′) 1

k + iω
vϕ

= 2πie
ω
vϕ

(x−x′)
(B.4)

Where we have assumed vϕ 6= 0. If the point −iω/vϕ is not inside the closed contour on the other hand,
the integral will evaluate to zero. Note that ω, vϕ ∈ R, so−iω/vϕ will be in the upper half of the complex
plane for ω/vϕ < 0, while it will be in the lower half if ω/vϕ > 0.

Assume we consider the case (x − x′) > 0, so that we may construct the curve C+ going from −R to R
in the real numbers and in a half circle from R back to −R, denoted by Γ+, for some R > |ω/vϕ|. In this
case the integral can be deconstructed as:∮

C+

dk eik(x−x′) 1

k + iω
vϕ

=

∫ R

−R
dk eik(x−x′) 1

k + iω
vϕ

+

∫
Γ+

dk eik(x−x′) 1

k + iω
vϕ

(B.5)
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The integral over the curve CΓ+ can be rewritten as taking the integral over the curve with k = Reiθ for
θ ∈ [0, π]. Substituting this value into the integral and by the triangle inequality we find:∣∣∣∣∣

∫
Γ+

dk eik(x−x′) 1

k + iω
vϕ

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

0

dθiReiθ
eiRe

iθ(x−x′)

Reiθ + i ωvϕ

∣∣∣∣∣ ≤
∫ π

0

dθ
Re−R(x−x′)=(eiθ)∣∣∣Reiθ + iω

vϕ

∣∣∣ (B.6)

Note that =(eiθ) > 0, since we are in the upper part of the complex plane. If we let R → ∞, the term
Reiθ will dominate the denominator, hence:∣∣∣∣∣

∫
Γ+

dk eik(x−x′) 1
iω
vϕ
− k

∣∣∣∣∣ ≤
∫ π

0

dθ e−R(x−x′)=(eiθ) −→ 0 for R→∞ (B.7)

Thus this integral will evaluate to zero in this R→∞ limit. Hence for (x− x′) > 0:∫ ∞
−∞

dk eik(x−x′) 1

k + iω
vϕ

=

∮
C+

dk eik(x−x′) 1

k + iω
vϕ

= 2πie
ω
vϕ

(x−x′)
Θ

(
− ω

vϕ

)
(B.8)

We have introduced the heavyside step function to make sure the pole of the function, −iω/vϕ, is con-
tained inside of the closed curve C+. If (x− x′) < 0, on the other hand, we may only integrate over the
lower half of the complex plane, getting by the same steps as before:∫ ∞

−∞
dk eik(x−x′) 1

k + iω
vϕ

= −
∮
C−

dk eik(x−x′) 1

k + iω
vϕ

= −2πie
ω
vϕ

(x−x′)
Θ

(
ω

vϕ

)
(B.9)

We can ignore the integration with value ω = 0, since we can exclude a single point from an integral and
not change the value, since the measure of a single point is zero [25].

Evidently the sign of the velocity has a great impact on the two point correlation functions, as its value
determines the domain for the integration over ω. Note the fractional charge κ of the chiral Luttinger
liquid determines the sign of the velocity, v, so it will be most telling to consider each of these cases by
themselves.

However, before we proceed to calculating the exact correlation functions we observe that the correlation
function will generally be on the form:

|〈ϕ(x, τ)ϕ(x′, τ ′)〉| = 1

2πα

∫
dω

e
ω
(
x−x′
v −i(τ−τ

′)
)

ω
=

1

2πα

∫
dω

eωξ

ω
(B.10)

Where we have defined:

ξ ≡ x− x′

v
− i(τ − τ ′) =

x− x′

v
+ (t− t′) (B.11)

No matter the value of ξ, the integral in (Eq. B.10) will diverge when integrating over the both the
domains (0,∞) and (−∞, 0). To get around this issue we introduce some cut-off frequencies, Λmin and
Λmax, such that we may carry out the integration by parts:∫ ∞

0

dω
eωξ

ω
−→

∫ Λmax

Λmin

dw
eωξ

ω
=
[
eωξ logω

]ω=Λmax

ω=Λmin
− ξ

∫ Λmax

Λmin

dω eωξ logω (B.12)

Two extreme cases arises for evaluating the integral on the right hand side. The first case is to let Λmin �
Λmax. The second case lets Λmin ≈ Λmax, which is to be considered for the renormalisation group in a later
section. If Λmin � ξ � Λmax, the latter integral on the right hand side of (Eq. B.12) can be approximated
as an integral from 0 to∞. If ξ > 0 the integral will diverge and go to∞. Hence we will only evaluate
the integral for ξ = − |ξ| < 0:∫ ∞

0

dw e−w|ξ| logw =

∫ ∞
0

du

|ξ|
e−u log

u

|ξ|
=

1

|ξ|

(∫ ∞
0

du e−u log u−
(∫ ∞

0

du e−u
)

log |ξ|
)

=
1

|ξ|
(−γ − log |ξ|)

(B.13)
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Where we have substituted u = w |ξ| in the integral, and where γ is the Euler-Mascheroni constant. The
first term of the right hand side of (Eq. B.12) is in this limit:[

eωξ logω
]ω=Λmax

ω=Λmin
= eΛmaxξ log Λmax − eΛminξ log Λmin ≈ − log Λmin (B.14)

Since letting Λmax →∞ for ξ < 0, the first term disappears due to l’Hôpital’s rule:

eΛmaxξ log Λmax =
log Λmax

eΛmax|ξ|
−→ Λmax

−1

|ξ| eΛmax|ξ|
=

1

Λmax |ξ| eΛmax|ξ|
−→ 0 (B.15)

And Λmin → 0 will make eΛminξ → 1. Thus, for Λmin � ξ � Λmax:∫ ∞
0

dω
eωξ

ω
≈

{
− log(|ξ|Λmin)− γ for ξ < 0

∞ for ξ > 0
(B.16)

On the other hand the integral over the domain (−∞, 0) will become:∫ 0

−∞
dω

eωξ

ω
−→

∫ −Λmin

−Λmax

dω
eωξ

ω
= −

∫ −Λmax

−Λmin

dω
eωξ

ω
= −

∫ Λmax

Λmin

du
e−uξ

u
(B.17)

Where we have done the substitution u = −ω. Carrying out the integration over u, by previous calcula-
tion we see, for Λmin � ξ � Λmax:∫ 0

−∞
dω

eωξ

ω
≈

{
−∞ for ξ < 0

log(|ξ|Λmin) + γ for ξ > 0
(B.18)

Case v = 0

So far we have not considered the extreme case for which the system is v = 0. This instance can be
achieved either by letting κ = 0 or ε = 0. The case ε = 0 is not very complicated, since this corresponds
simply to letting everything, including the two point correlations functions, be zero. For κ = 0, the
Hamiltonian becomes:

HCLL,κ=0 = ε

∫
dx (∂xϕ)2 (B.19)

As mentioned earlier, the absence of a dependence on the θ-field, will render the time derivative ∂tϕ = 0.
The Lagrangian density is easily found through a Legendre transformation, since the time derivative
∂tϕ = 0:

LCLL,κ=0 = −ε(∂xϕ)2 (B.20)

This Lagrangian yields the partition function:

ZCLL,κ=0 =

∫
Dϕ exp

[
ε

~

∫
dkdω ϕ̂(−k,−ω)k2ϕ̂(k, ω)

]
(B.21)

From this partition function we easily find the Green’s function:

Gκ=0(k, ω) = −~
ε

1

k2
(B.22)

Taking the Fourier transformation over k and ω gives us the correlation functions in position space:

〈ϕ(x, τ)ϕ(x′, τ ′)〉κ=0 = −~
ε

1

(2π)2

∫ ∞
−∞

dω e−iω(τ−τ ′)
∫ ∞
−∞

dk
eik(x−x′)

k2
= −~

ε

1

2π
δ(τ − τ ′)

∫ ∞
−∞

dk
eik(x−x′)

k2

(B.23)

The integral can be rewritten as∫ ∞
−∞

dk
eik(x−x′)

k2
=

∫ ∞
0

dk
eik(x−x′) + e−ik(x−x′)

k2
= 2

∫ ∞
0

dk
cos(k(x− x′))

k2
(B.24)
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This integral will blow up and diverge if we integrate from x = 0. Hence we introduce some cut-off
frequencies, Mmin and Mmax to do the integration over. Integrating by parts yields:∫ Mmax

Mmin

dk
cos(k(x− x′))

k2
= −

[
cos(k(x− x′))

k

]k=Mmax

k=Mmin

− (x− x′)
∫ Mmax

Mmin

dk
sin(k(x− x′))

k
(B.25)

The latter integral converges in the limit (Mmin,Mmax) → (0,∞) to π
2 sgn(x − x′) [35, p. 110]. In this

limit the first term will disappear for k →∞, but diverge for k → 0. However for k → 0 the cosine will
approach 1. In total we get that the real space partition function for κ = 0:

〈ϕ(x, t)ϕ(x′, t′)〉κ=0 =
~

2πε

(
2

Mmin
+ π |x− x′|

)
δ(t− t′) (B.26)

This result works for x = x′ too, hence we need not consider this case separately, as we did when
considering the system for κ 6= 0. Note that the units of the above expression is in length, as ~ has units
energy times time, and δ(t− t′) will have units one over time.

Defining the chiral Luttinger liquid on a lattice of size L and lattice spacing a, the natural definition of
Mmin = 1/L and Mmax = 1/a, whereby the equal time correlation functions are:

〈ϕ(x, t)ϕ(x′, t)〉κ=0 =
~

2πε
(2L+ π |x− x′|) (B.27)

In the thermodynamic limit, the latter term becomes irrelevant, hence the correlation is simply a con-
stant:

〈ϕ(x, t)ϕ(x′, t)〉κ=0 =
~L
πε

= const (B.28)

B.1 High Energy Limit

We have so far assumed Λmin � |ξ| � Λmax, which corresponds to a low energy approximation of the
system. In the high energy limit we assume ξ is of the same order as Λmax. Furthermore are smaller
values assumed to be negligible, which mwhich gives us the ability to let the cut-offs approach each
other, such that Λmin ≈ Λmax. We can define an infinitesimal dl such that:

Λmax

Λmin
≈ 1 + dl (B.29)

Remember that through integration by parts:∫ Λmax

Λmin

dω
e−ω|ξ|

ω
=
[
e−ω|ξ| logω

]ω=Λmax

ω=Λmin

+ |ξ|
∫ Λmax

Λmin

dω e−ω|ξ| logω (B.30)

The latter integral will approach zero in the limit Λmin ≈ Λmax, since we can approximate the integral as:∫ Λmax

Λmin

dω e−ω|ξ| logω ≈ Λmax − Λmin

2

(
e−Λmax|ξ| log Λmax − e−Λmin|ξ| log Λmin

)
≈ dl

2
e−Λmax|ξ| log

Λmax

Λmin
≈ (dl)2

2
e−Λmax|ξ|

(B.31)

This integral is infinitesimally small on the order of (dl)2 and can thus be ignored. Since Λmin ≈ Λmax,
we may let e−|ξ|Λmin ≈ e−|ξ|Λmax , whereby:∫ Λmax

Λmin

dω
e−ω|ξ|

ω
≈ e−|ξ|Λmax (log Λmax − log Λmin) ≈ e−|ξ|Λmax log

Λmax

Λmin
(B.32)

Thus the correlation functions are:

〈ϕ(x, t)ϕ(x′, t′)〉 ≈ −|κ|
2
· e−|ξ|Λmax log

Λmax

Λmin
(B.33)

And:

〈θ(x, t)θ(x′, t′)〉 ≈ − 1

2 |κ|
· e−|ξ|Λmax log

Λmax

Λmin
(B.34)

What is important to note is that the correlation functions are exponentially decreasing, and very rapidly
so, since Λmax in the exponent is a big number. Effectively the correlation functions are zero at the long-
range orders that we will consider.
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Appendix C

Z3 Fock Parafermion
Nearest-Neighbour Hopping
Hamiltonian Calculations

In this appendix we sum up a few of the calculations made in the derivation of the field theoretical
description of the Z3 Fock parafermions nearest neighbout-hopping Hamiltonian.

Single Hopping Hamiltonian Continuum Limit Calculation

The Hamiltonian to evaluate:

H1 = −t1
l−1∑
i=1

F †i Fi+1 + H.c. = −t1
l−1∑
i=1

B†iUiBi+1 + H.c. (C.1)

By our definitions we may calculate the single Fock parafermionic hopping of the Hamiltonian:

B†iUiBi+1 =
(
e−iφ1(xi) + e−i(φ2(xi)−φ1(xi))

)
ω
− aπ

(
∂xθ
′
1(xi)+2∂xθ

′
2(xi)

) (
eiφ1(xi+1) + ei(φ2(xi+1)−φ1(xi+1))

)
(C.2)

Where we have used the fact that the total number of parafermions is a conserved quantity, and will
simply be a number. Hence n is a conserved quantity that can be absorbed in a pair of canonical, unitary
transformed fields, θ′j , by defining:

− a

(
∂xθ

′

1

π
+ 2

∂xθ
′

2

π

)
≡ n− a

(
∂xθ1

π
+ 2

∂xθ2

π

)
(C.3)

By the BCH formula, we calculate the first terms of the expression above:

exp [−iφ1(xi)] exp

[
−ia2

3

[
∂xθ

′

1(xi) + 2∂xθ
′

2(xi)
]]

exp [iφ1(xi+1)]

= exp

(
−iφ1(xi)− i

2a

3

[
∂xθ

′

1(xi) + 2∂xθ
′

2(xi)
]

+ iφ1(xi+1) +
1

2

[
−iφ1(xi),−i

2

3
a∂xθ

′

1(xi)

])
= exp

[
i

(
φ1(xi+1)− φ1(xi)−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

)] (C.4)

Likewise, we calculate the other terms of the expression:

exp [−iφ1(xi)] exp

[
−i2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]]

exp [i(φ2(xi+1)− φ1(xi+1))]

= exp

[
i

(
φ2(xi+1)− φ1(xi+1)− φ1(xi)−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

)]
(C.5)
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And:

exp [−i(φ2(xi)− φ1(xi))] exp

[
−i2

3

[
(θ
′

1(xi+1)− θ
′

1(xi))− (θ
′

2(xi+1)− θ
′

2(xi))
]]

exp [iφ1(xi+1)]

= exp

(
− i(φ2(xi)− φ1(xi))− i

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]

+ iφ1(xi+1)

+
1

2

[
−iφ2(xi),−i

4

3
θ
′

2(xi+1)

]
+

1

2

[
iφ1(xi),−i

2

3
θ
′

1(xi+1)

])

= exp

[
i

(
−φ2(xi+1) + φ1(xi+1) + φ1(xi)−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

)]
(C.6)

And:

exp [−i(φ2(xi)− φ1(xi))] exp

[
−i2

3

[
(θ
′

1(xi+1)− θ
′

1(xi))− (θ
′

2(xi+1)− θ
′

2(xi))
]]

exp [i(φ2(xi+1)− φ1(xi+1))]

= exp

[
i

(
(φ2(xi+1)− φ2(xi))− (φ1(xi+1)− φ1(xi))−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

)]
(C.7)

Adding the hermitian conjugate to these expressions renders the term, B†iUiBi+1 + H.c., equal to, as-
suming t1 is real:

2 cos

[
φ1(xi+1)− φ1(xi)−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

]

+2 cos

[
φ2(xi+1)− φ1(xi+1)− φ1(xi)−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

]

+2 cos

[
− φ2(xi) + φ1(xi+1) + φ1(xi)−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

]

+2 cos

[
(φ2(xi+1)− φ2(xi))− (φ1(xi+1)− φ1(xi))−

2

3

[
(θ
′

1(xi+1)− θ
′

1(xi)) + 2(θ
′

2(xi+1)− θ
′

2(xi))
]
− 1

3
π

]
(C.8)

The single hopping Hamiltonian is thus:

H1 = −2t1

∫ L

0

dx

a

[
cos
[
a∂xφ1 −

2

3
a
(
∂xθ

′

1 + 2∂xθ
′

2

)
− 1

3
π
]

+ cos
[
φ2 − 2φ1 + a∂xφ2 − a∂xφ1 −

2

3
a
(
∂xθ

′

1 + 2∂xθ
′

2

)
− 1

3
π
]

+ cos
[
− φ2 + 2φ1 + a∂xφ1 −

2

3
a
(
∂xθ

′

1 + 2∂xθ
′

2

)
− 1

3
π
]

+ cos
[
a∂xφ2 − a∂xφ1 −

2

3
a
(
∂xθ

′

1 + 2∂xθ
′

2

)
− 1

3
π
]]

(C.9)

In the second and third line we have used the approximation:

φj(xi+1) + φj(xi) = φj(xi+1)− (φj(xi)− φj(xi)) + φj(xi) ≈ a∂xφ(xi) + 2φ(xi) for j = 1, 2 (C.10)

In the end, we need to substitute the θ
′

j-fields that were considered by the θj-fields. Remember the
θ
′

j-fields came from having absorbed the constant number density, n, into the θj-fields, i.e. by the trans-
formation:

− 2

3
a
(
∂xθ

′

1 + 2∂xθ
′

2

)
−→ −2

3
a (∂xθ1 + 2∂xθ2) +

2π

3
n (C.11)
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Taylor Expansion of the Single Hopping Terms

The taylor expansion of a general cosine-function in x around zero is:

cos(kx+ b) = cos(b)− sin(b)kx− cos(b)

2
k2x2 +O(x3) (C.12)

Taylor expanding the first term in (Eq. 5.8) in a, we find:

cos
[
a∂xφ1 −

2

3
a (∂xθ1 + 2∂xθ2) +

π

3
(2n− 1)

]
≈ cos

[π
3

(2n− 1)
]
− a sin

[π
3

(2n− 1)
](

∂xφ1 −
2

3
(∂xθ1 + 2∂xθ2)

)
− a2

2
cos
[π

3
(2n− 1)

](
∂xφ1 −

2

3
(∂xθ1 + 2∂xθ2)

)2

(C.13)

While Taylor expanding the fourth term in (Eq. 5.8) in a, yields:

cos
[
a∂xφ1 − a∂2φ2 −

2

3
a (∂xθ1 + 2∂xθ2) +

π

3
(2n− 1)

]
≈ cos

[π
3

(2n− 1)
]
− a sin

[π
3

(2n− 1)
](

∂xφ2 − ∂xφ1 −
2

3
(∂xθ1 + 2∂xθ2)

)
− a2

2
cos
[π

3
(2n− 1)

](
∂xφ2 − ∂xφ1 −

2

3
(∂xθ1 + 2∂xθ2)

)2

(C.14)

Calculation of G2(x, x+ r) Ignoring Z3-Symmetry

We now consider the parafermionic correlation:

G2(x, x+ r) ≡
〈
(F †x)2(Fx+r)

2
〉

=

〈
(B†x)2

(
x+r−a∏
k=x

(Uk)2

)
(Bx+r)

2

〉
(C.15)

We ignore the Z3-symmetry that makes ω4n2 = ωn2 . This is equivalent to naively squaring the operator
Uk, such that:

x+r−a∏
k=x

(Uk)2 = e
4πi
3 ρre−

4i
3 (θ̃2(x+r)−θ̃2(x)) (C.16)

Whereby the product:〈
(B†x)2

(
x+r−1∏
k=x

(Uk)2

)
(Bx+r)

2

〉
= e

πi
3 (4ρr−4)

〈
ei2(φ̃2(x+r)−φ̃2(x))− 4i

3 (θ̃2(x+r)−θ̃2(x))
〉

(C.17)

The cummulant expansion yields:〈
ei(φ2(x+r)−φ2(x))

〉
∝ e−

1
2 ·(−2)·22·(− 1

3 log|x+r−x|) = r−
4
3 (C.18)

And: 〈
ei(θ2(x+r)−θ2(x))

〉
∝ e−

1
2 ·(

4
3 )

2·(−2)(− 3
4 log|x+r−x|) = r−

4
3 (C.19)

Multiply these together, we notice get:

G2(x, x+ r) ∝ e 4πi
3 (ρr−1)r−

8
3 (C.20)

This corresponds to the prediction made in [4], which was based on the argumentation of the system
being an anyonic fluid which had it’s correlation function calculated in [31]. However the numerical
results in [4] do not back up this prediction, where the result is closer to |G2(x, x+ r)| ∼ r− 5

3 .
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Appendix D

Various Results

D.1 Cumulant Expansion

This rather short section simply states the cumulant expansion:〈
eikx

〉
≈ eik〈x〉−

k2

2 (〈x2〉−〈x〉2) (D.1)

D.2 Derivation of the (d+1)-dimensional QFT Euler-Lagrange Equa-
tion

Consider a Lagrangian density in (d+ 1)-dimensional space, such that L[ϕ, ∂iϕ], for i ∈ [0, d], where 0 is
the time dimension and [1, d] are the spacial dimensions. The variation in the action, S is:

δS =

∫
dd+1x

(
∂L
∂ϕ

δϕ+

d∑
i=0

∂L
∂(∂iϕ)

δ(∂iϕ)

)
(D.2)

It is evident that:

∂i

(
∂L

∂(∂iϕ)
δϕ

)
= ∂i

(
∂L

∂(∂iϕ)

)
δϕ+

∂L
∂(∂iϕ)

δ(∂iϕ) (D.3)

Setting δϕ = 0 at the spatial and temporal start and end points of the integration, integrating the above
expression yield a left hand side of zero. Hence we see:

δS =

∫
dd+1x

(
∂L
∂ϕ
−

d∑
i=0

∂i

(
∂L

∂(∂iϕ)

))
δϕ (D.4)

Minimising the variation of the action for arbitrary δϕ, we arrive at the Euler-Lagrange equation:

∂L
∂ϕ
−

d∑
i=0

∂i

(
∂L

∂(∂iϕ)

)
= 0 (D.5)

D.3 Level Spacing Statistics

Level spacing statistics is a technique to study the integrability of quantum systems by studying the
statistics of the energy eigenstates of the Hamiltonian. The probability that the energy difference be-
tween to adjacent levels sn = En+1 −En lies in a given interval [s, s+ ds] is considered. If the system is
integrable the probability distribution will be Poissonian, ie. PP (s) ∝ e−s. For non-integrable solutions
the spectrum is conjectured to follow the rules of random matrix theory which leads to the probability
distribution being a Wigner-Dyson surmise: PWD(s) ∼ Asβe−Bs2 .

The value of β is most often determined by the symmetries of the system, where β = 1 is true for
anti-unitary symmetries (time reversal invariance) and the probability distribution is called Gaussian
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orthogonal ensemble, whereas for more general complex systems have β = 2 called Gaussian unitary
ensemble. The term with sβ spreads out the probability distribution and is exactly what measures the
level repulsion.

The article uses exact diagonalisation to simulate the energy levels of the system with open boundary
conditions. And then show that they observe convergence to the Gaussian unitary ensemble fairly
quickly for p = 3 and even quicker for p = 6, for a given number of particles N with varying the length
of the system L. Furthermore they observe a crossover from a Gaussian unitary ensemble to a Gaussian
orthogonal ensemble by increasing the tunneling strength of the hopping between neighbouring sites,
quite possibly signifying a change is symmetry of the system, which they call for further work into.
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