
Halo modelling of galaxy clustering

Henrik Brink
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen

Master’s thesis

Academic advisor: Berian James
Co-advisor: Steen H. Hansen

June 1, 2011



Contents

1 The evolution of structure 1
1.1 Smooth background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Linear evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Dark Matter power spectrum . . . . . . . . . . . . . . . . 2
1.2.2 Scale-dependent evolution of modes . . . . . . . . . . . . 3
1.2.3 Growth factor . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Two-point correlation function . . . . . . . . . . . . . . . 7

1.3 Non-linear evolution . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Dark Matter haloes . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Galaxy formation and evolution . . . . . . . . . . . . . . . 10
1.3.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . 13

2 Correlation measurements 15
2.1 COSMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 The COSMOS field . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Cluster – galaxy cross-correlation . . . . . . . . . . . . . . . . . . 21
2.2.1 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Redshift effects . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Computational challenges . . . . . . . . . . . . . . . . . . 24

2.3 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Jacknife resampling . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Moving block bootstrap . . . . . . . . . . . . . . . . . . . 25
2.3.3 Covariance and error bars . . . . . . . . . . . . . . . . . . 26

2.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Full galaxy sample . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Varying galaxy properties . . . . . . . . . . . . . . . . . . 30

3 Halo modelling 36
3.1 The Halo Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Cluster – galaxy cross-correlation . . . . . . . . . . . . . . 37
3.1.3 Halo Occupation Distribution . . . . . . . . . . . . . . . . 38

1



3.1.4 The Dark Matter profile . . . . . . . . . . . . . . . . . . . 40
3.2 Modelling the measurements . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Cluster ensemble . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Likelihood estimation . . . . . . . . . . . . . . . . . . . . 42

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Full galaxy sample . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Varying galaxy properties . . . . . . . . . . . . . . . . . . 46
3.3.3 Alternative dark matter profile . . . . . . . . . . . . . . . 49

4 Discussion 52
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Halo occupation distribution . . . . . . . . . . . . . . . . 52
4.1.2 Dark matter profile . . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Galaxy profile . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A The Standard Model of Cosmology 58
A.1 Observational basis . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1.1 Hubble’s law . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.1.2 Cosmic Microwave Background . . . . . . . . . . . . . . . 58

A.2 Friedmann-Robertson-Walker spacetime . . . . . . . . . . . . . . 60
A.3 Cosmic inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B N-body simulations 65
B.1 N-body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C PyHalo software library 68
C.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C.2 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.3 Halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
C.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
C.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.5.1 Fortranization . . . . . . . . . . . . . . . . . . . . . . . . 71
C.5.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 73

2



Abstract

In this master’s thesis we present the introduction, measurement and mod-
elling of the two-point cross-correlation between X-ray clusters and galaxies in
the COSMOS field.

We start by outlining the relevant theory of structure formation from the
smooth cosmological background to the collapse of dark matter and gaseous
haloes from fluctuations in the density field.

Using the cluster and galaxy catalogues from COSMOS, we measure the pro-
jected correlation function while carefully taking into account the astronomical
selection effects of the survey. To measure the evolution of galaxy properties
with environment, we divide the galaxy catalogue into subsamples of stellar
mass, color and morphology, and find good agreement with previous observa-
tions of galaxy evolution in the dense environment of clusters.

We present the halo model as a statistical framework for modelling these
measurements, and introduce a new parameter, the halo tilt, that challenges the
usual assumption that cluster galaxies follow the density profile of their dark
matter haloes. We show that there is evidence for such a parameter across galaxy
populations at a nearly constant value. We discuss these results and propose
the alternative picture that the dark matter haloes are not well described by the
Navarro, Frenk and White profile that is traditionally employed. We create a
model for the Einasto profile and show that it outperforms the previous models,
suggesting that future analysis should consider this alternative.



Chapter 1

The evolution of structure

We will use the first chapter of this project to introduce the theory of structure
formation from the smooth cosmological background, through the evolution of
pertubations in the early Universe to the formation of galaxies as we observe
them today. This is intented to form the basis for the subsequent chapters,
where we will analyse the measurements of the galaxy distribution with respect
to galaxy clusters.

1.1 Smooth background

The standard model of cosmology introduces four primary sources of energy in
the Universe: radiation, baryonic matter, dark matter and dark energy. These
components can be treated as cosmological fluids in a smooth, expanding Uni-
verse. In the next chapter we will introduce perturbations and account for
interactions between components, but it is useful to consider this idealized case
first. This section is a summary of the important points from the more detailed
treatment in appendix A.

In an expanding Universe, the metric of spacetime takes the form:

g = (−1, a(t)2), (1.1)

where a(t) is the scale factor that determines the scaling of the spatial compo-
nent of the metric in time, i.e. the expansion of the Universe. The evolution
of the density ρi of component i is assumed to follow a power law in this scale
factor with the slope ni:

ρi = ρi,0a(t)−ni , (1.2)

where ρi,0 is then the density at a(t) = 1, conventionally taken to be the present
day. It is useful to define the dimensionless density parameter Ωi that describes
the density of a component today with respect to the critical density ρc:
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Ωi =
ρi,0
ρc

=
3H2

0

8πG
ρi,0, (1.3)

where G is the gravitational constant and H0 is the Hubble constant, the value
of the Hubble parameter at a(t) = 1. Table 1.1 shows values of ni and Ωi for
the standard model components1.

Type Ωi ni
Baryons 0.046 2

Dark Matter 0.23 3
Radiation 8.24× 10−5 4

Dark Energy 0.73 0

We can now write up the evolution of the scale factor, which completely
determines how the Universe evolves, using the Friedmann equation. In the
notation introduced, this equation can be expressed as a sum of contributions
from each of the components of the Universe:

ȧ

a
= H2

0 [Ωma
−3 + Ωra

−4 + ΩΛ], (1.4)

where Ωm includes both dark and baryonic matter and we have assumed a
spatially flat Universe2. This equation, with the values given in table 1.1, is
used throughout the project simply as the Cosmology.

1.2 Linear evolution

The Universe as described above is quite boring, as everything is perfectly
smooth. This description is, however, a useful basis for describing reality be-
cause the fluctuations in the density field in the early phases of a nearly homo-
geneous Universe will be small by definition, and can thus be introduced into
the system using perturbation theory.

1.2.1 Dark Matter power spectrum

The large-scale structure of the Universe is described by the evolution of the
dark matter density field seeded in the early epochs of the Universe. It is useful
to describe this field in the form of the power spectrum of dark matter, which
records information of the strength of fluctuations on different scales. The power
spectrum at any redshift can be written as:

P (k, z) = Pp(k)× T 2(k)× g2(z) (1.5)

1The ni values are here given by the theory, but they can also be found and verified by
measurements of e.g. the CMB (see appendix A)

2Note that unless otherwise stated, we are working in units of the speed of light c = 1
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where Pp is the primordial power spectrum, T (k) is the transfer function that
describes the evolution of modes according to the interactions between the dif-
ferent components of the Universe and g(z) is the linear growth factor describing
the change in the power spectrum independent of scale.

We first consider the primordial power spectrum. Harrison, Zel’dovich and
Peebles (HZP) argued that the power spectrum of overdensities should simply
be a power law in the mode (inverse scale) variable k:

Pp(k) ∝ kn. (1.6)

where n is close to 1 in order to explain the large-scale structure observed today.
A theory for the physics of the very early times of our Universe is needed

to explain this relation in detail, and the currently favoured one is inflation.
Inflation introduces a period of rapid expansion of the Universe in the first
moments of time where quantum fluctuations were blown up to the proportions
needed to seed the overdensities that developed into the galaxy distribution we
observe today. Inflation predicts a primordial power spectrum of the HZP form:

Pp(k) = 2π2δ2
H

kn

Hn+3
0

, (1.7)

where δh is the primordial amplitude of fluctuations. We update eqn. 1.5 with
this expression:

P (k, z) = 2π2δ2
H

kn

Hn+3
0

× T 2(k)× g2(z). (1.8)

T (k) and g(z) are the subjects of the coming sections.

1.2.2 Scale-dependent evolution of modes

The fluctuations introduced by inflation (or any other process with similar out-
put) are carried to the present day by the interactions between the FRW metric
(eqn. A.4) and all of the energy components of the Universe (table 1.1). Figure
1.1 illustrates these dependencies.
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Figure 1.1: A diagram of interactions between components of the Universe. This
shows that in order to follow the evolution of one species, we must follow the
evolution of all other species. Copied from fig. 4.1 Dodelson [13].

The evolution of matter in the Universe is described by the codependent
evolution of particles in phase space. This is formalized by the time-derivative
of the phase space distribution function f(x,p, t):

df(x,p, t)

dt
= C(f), (1.9)

where the right hand side C(f) includes all collision terms. This is called the
Boltzmann equation after its inventor Ludwig Boltzmann.

This project deals with the distribution of matter in the Universe. As the
standard model of cosmology (section A) puts most of the matter in the form of
collisionless cold dark matter, we will primarily consider the Boltzmann equation
in this case. This means that we can neglect any collision terms and write down
the Boltzmann equation using partial derivatives in variables of time t, position
xi, unit momentum p̂i and energy E:

dfdm

dt
=
∂fdm

∂t
+
∂fdm

∂xi
dxi

dt
+
∂fdm

∂E

dE

dt
+
∂fdm

∂p̂i
dp̂i

dt
= 0, (1.10)

where E =
√
p2 +m2. The route to a full description for the evolution of the

dark matter distribution is now a matter of introducing perturbations around
the smooth Universe that we have worked with so far. The perturbations to
the metric (Ψ) and the spacetime curvature (Φ) is defined such that the smooth
metric gµν = (−1, a2) (eqn. A.4) becomes:
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g00(x, t) = −1− 2Ψ(x, t)

gij(x, t) = a2δij [1 + 2Φ(x, t)]. (1.11)

This results in an expression for the dark matter Boltzmann equation:

∂fdm

∂t
+
p̂ipi

aE

∂fdm

∂xi
− p∂fdm

∂E

[
H
p2

E
+
p2

E

∂Φ

∂t
+
p̂ip

a

∂Ψ

∂xi

]
= 0. (1.12)

We can simplify this equation by defining the density and velocity distribu-
tions:

ndm =

∫
d3p

(2π3)
fdm (1.13)

vi =
1

ndm

∫
d3p

(2π3)
fdm

pp̂i

E
, (1.14)

in units of h̄ = 1. Taking moments of 1.12 and moving to Fourier space, we
obtain two coupled differential equations for the density and velocity evolution
of the dark matter:

δ̇ + ikv + 3Φ̇ = 0 (1.15)

v̇ +Hv + ikΨ = 0, (1.16)

with the fractional overdensity δ defined through ndm = n̄dm[1 + δ(x, t)] and
the mean density n̄dm.3

Even though dark matter particles does not interact with other particles,
they are still bound by gravitation, and we cannot treat them alone (fig. 1.1).
We will need equations for the evolution of photons and baryons as well, that
in turn couple to each other through collisions and the metric. We also need
equations governing the evolution of the gravitational fields Φ and Ψ from the
Friedmann equation in the perturbed metric. Analogous to the dark matter
equations above, we write down the equations for the evolution of radiation
(photons and neutrinos) and gravitational potentials in Fourier space:

Θ̇r,0 + kΘr,1 = −Φ̇ (1.17)

Θ̇r,1 −
k

3
Θr,0 = −k

3
Φ (1.18)

k2Φ + 3H(Φ̇ +HΦ) = 4πGa2[ρdmδ + 4ρrΘr,0], (1.19)

where Θr,i is the monopole, dipole (and so on) moment of the perturbations to
the radiation distribution and we have assumed Φ = −Ψ. We have left out the

3Also note that we have left out the Fourier notation of δ, v, Φ and Ψ for simplicity.
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higher order moments of the radiation perturbations because they are irrelevant
in the epochs where radiation contributes to the potential and affects the dark
matter distribution. Baryons are neglected here because it is assumed that the
baryon to dark matter density is small. This set of coupled differential equations
defines the evolution from the initial conditions from inflation to the Universe
at late times, where matter dominates the energy budget.

The calculation of the transfer function T (k) can only be done analytically
in a few special cases, and we generally have to turn to numerical computations.
Alternatively, one can create empirical fitting functions based on the few ana-
lytical solutions and compared with the exact numerical results. This was first
done by Bardeen et al. [3], but in this project we have used the approximation
by Eisenstein and Hu [17].

1.2.3 Growth factor

The transfer function of the previous section takes the dark matter field from
the initial state of the Universe through the times where matter and radiation
interact through the gravitational potential. It is clear, however, that when we
are deep into the matter era, and radiation has no effect on the gravitational
potential, we only need to follow the equations governing the dark matter and
gravitational potential. This simplifies the calculation, and we can transform
the problem (eqs. 1.15) into a single second-order differential equation in the
dark matter fractional overdensity δ:

d2δ

da2
+

(
d ln(H)

da
+

3

a

)
dδ

da
− 3ΩmH

2
0

2a5H2
δ = 0. (1.20)

The growing solution to this equation is:

D1(a) =
5ΩmH(a)

2H0

∫ a

0

[
H0

a′H(a′)

]3

da′, (1.21)

where the conventional form of the growth factor g(a) = D1/a is written:

g(z) = D1(z)[1 + z]. (1.22)

In a universe with dark energy, this has to be solved numerically or using
an approximated formula. In this project we have used the approximation by
Carroll et al. [10]:

g(z) ≈ 5

2
Ωm

[
Ω4/7
m − ΩΛ + (1 + Ωm/2)(1 + ΩΛ/70)

]−1

. (1.23)

We are now able to complete equation 1.5, and we have an expression for
the linear power spectrum at any time. In most parts of this project we work
with the dimensionless power spectrum ∆2(k) = k3P (k)/(2π2), and figure 1.2
shows the evolution of this quantity from transfer and growth functions:
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Figure 1.2: Evolution of the dimensionless dark matter power spectrum as a
function of scale. The initial powerlaw shape of the power spectrum is shown in
the solid black line, while the transferred power spectra is shown in gray. The
solid to dotted gray lines indicate a redshift of 0, 1, 10 and 50.

1.2.4 Two-point correlation function

In equation 1.5 we introduced the linear power spectrum as the primary measure
of large-scale structure. Fourier transforming the power spectrum back to real-
space yields the two-point correlation function:

ξ(r) = 〈δ(x)δ(x− x′)〉 =

∫
∆2(k)

k

sin(kr)

kr
dk, (1.24)

where we have once again used the dimensionless power spectrum ∆2. Note
that the correlation function, just as the power spectrum, averages over the
contributions from the different directions in x, which is also the reason for the
simplified Fourier transform.

The measurements and analysis done in this project will focus primarily on
the correlation functions and variations hereof, as will be apparent in chapter 2.
In many cases, the power spectrum and correlation functions are interchange-
able, but with one subtle difference: the correlation function is defined from
the real-space overdensity δ(x) = ρ(x)/ρ̄ − 1, and thus it measures the mean
pairwise correlation with respect to the background density. It can therefore
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be interpreted as the probability of finding two objects at a separation of r
compared to the uniform (Poisson) probability in a volume element dV :

dP = n[1 + ξ(r)]dV, (1.25)

where n is the number density of objects. In this project we will use the cross-
correlation between two separate distributions, defined as:

dP = n1n2[1 + ξ12(r)]dV1dV2. (1.26)

In chapter 2 we introduce estimators of the correlation function for the spe-
cific measurements that we make in this project.

1.3 Non-linear evolution

At some point in the evolution of cosmic structure, the overdensities in the dark
matter field will be substantially larger than the background density, and it can
no longer be described by a linear treatment of a pressureless fluid. Instead,
Newtonian interactions become relevant and gravitationally bound structures
start to form and decouple from the Hubble flow. In the gravitational potentials
of these structures, the baryonic gas that makes up about 10% of the total
matter density can start to fall in and introduce even more complex physics in
the form of hydrodynamics and electromagnetism and form stars and galaxies.
Additionally, these structures are not static as they can accrete nearby material
and merge with other structures.

In this section we start by outlining the formation and evolution of these
dark matter structures, often referred to as dark matter haloes, and move on to
the formation of gaseous haloes and galaxies inside them.

We introduce the important subject of numerical simulations that are in-
dispensable tools in the investigation of these matters. One would evolve the
power spectrum in the linear regime using the theory of the previous section and
input the result from a time where evolutions are still linear into the simulation
which can then evolve the power spectrum further into the non-linear regime.
It is possible, however, to go a long way describing the non-linear evolution
analytically in a statistical sense, the basis of which we will need in chapter 3
for the modelling of our measurements.

1.3.1 Dark Matter haloes

The goal is to input the dark matter density field from linear theory δ0 and find
the number of virialized haloes that would form with a certain mass, a quantity
usually referred to as the mass function. This problem was taken on by Press
and Schechter [44] (PS) and their solution has been widely used since. Although
the details of their results have been improved upon, it is illustrative to sketch
their line of thought.
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Firstly, we want to identify the regions of the linear field that are overdense
enough for a halo to collapse gravitationally. For this, we define a field δs
that smoothes the initial field with a spherical window function of radius R
corresponding to a mass M = (4π/3)ρ̄R3:

δs(x) =

∫
δ0W (x + x′)d3x′, (1.27)

with W (x) defined to be 0 outside a volume V = (4π/3)R3. The smoothed field
has a variance σ2 = 〈δ2

s(k)〉, which is the power spectrum P (k) smoothed with
the same window function:

σ(M) =

∫
∆2(k)

k
|W (kR)|2dk, (1.28)

where we have again used the dimensionless power spectrum ∆2(k) = k3P (k)/(2π2)
and the window function given in Fourier space as:

W (x) = [3/x3](sinx− x cosx). (1.29)

When the initial density field δ0 is a gaussian random field, the smoothed
density field δs will also be a gaussian random field with variance σ2 [35]. The
probability of having an overdensity higher than some critical overdensity δc
required for a halo to collapse is then given by:

p(> δc) =
1√

2πσ2

∫ ∞
δc

exp

[
− δ2

s

2σ2

]
dδs. (1.30)

Press and Schechter [44] now argued that the fraction F (> M) of haloes
with masses greater than M is equal to this probability. That is, the fraction of
haloes above mass M is the same as the fraction of overdensities above a certain
threshold δc in a field smoothed with a radius defined by M . The problem
with this is that the mass located in underdensities never will be part of a
structure, so Press and Schechter [44] inserted a fudge-factor of 2 to account for
underdensities being part of the overdense regions, such that F (> M) = 2p(>
δc). The density of haloes in the mass range M → M + dM is now given by
n(M)dM = (ρ̄/M)(∂F (> M)/∂M)dM and reveals the Press & Schechter mass
function:

n(M)dM =

√
2

π

ρ̄δc
M2σ

exp

(
− δ2

c

2σ2

) ∣∣∣∣ d lnσ

d lnM

∣∣∣∣ dM. (1.31)

If we define the variable ν = δc/σ, the mass function can be written:

n(M)dM =
ρ̄

M2
f(ν)

∣∣∣∣ d ln ν

d lnM

∣∣∣∣ dM, where (1.32)

f(ν) =

√
2

π
ν exp

(
−ν

2

2

)
(1.33)
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is the fraction of mass in a ln ν halo, also known as the multiplicity function.
The critical overdensity required for a halo to collapse δc is generally dependent
on redshift and the choice of cosmology. For the standard ΛCDM cosmology
introduced in the previous sections this value is found in simulations to be close
to constant across redshifts at a value of δc = 1.696 [45].

Given how the PS formalism include a certain degree of fudging, it has
worked remarkably well to describe measurements and simulations in the decades
since its arrival. With increasing resolution in both of these, however, the aging
PS mass function is showing weaknesses. In the calculation of the mass function
above, Press & Schechter used a spherical collapse model, while in the general
case structures should be allowed to take any ellipsoidal form. Solving the prob-
lem in the more general case of ellipsoidal collapse, Sheth and Tormen [50] (ST)
improved the mass function and introduced another expression for f(ν):

f(ν) = A

(
1 +

1

apν2p

)(
aν2

2

)1/2
e−aν

2/2

√
π

, (1.34)

where A = 0.322, a = 0.707 and p = 0.3.
We can now use the mass function formalism to find a linear scaling to the

overdensity field δ due to the gravitationally collapsed haloes with overdensity
field δh [36]:

δh = bh(M)δ, (1.35)

where bh is called the linear halo bias. It expresses that gravitationally collapsed
structures are biased representations of the linearly evolved dark matter density
field. Using the PS mass function, the bias takes the form:

bPS
h (ν) = 1 +

ν2 − 1

δc
, (1.36)

while for the ST case:

bST = 1 +
aν2 − 1

δc
+

2p/δc
1 + (aν2)

p . (1.37)

It is this form of the bias factor that we will employ later in chapter 3 when
we model the measurements of chapter 2.

1.3.2 Galaxy formation and evolution

So far we have only been talking about dark matter, and with good reason: it
makes up 90% of the mass budget of the Universe. However, we do not observe
dark matter directly, but rather the luminous matter in the form of gas clouds
and galaxies of stars made from the baryonic content of the Universe. We will
not deal with the details of the baryonic components of haloes in the modelling
of measurements in this projects, but it is nevertheless important to consider
some of the processes in order to understand the galaxy populations we observe
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today. We will use the heuristic arguments of this section extensively in order
to discuss the measurement and analysis results later in this work.

Gas collapse

While the problem of galaxy formation is extremely complex, and still not com-
pletely understood, we can at least try to motivate the physics that drives these
processes. Baryons have been tightly coupled to dark matter during the linear
evolution of the Universe, but in the non-linear regime, where structures collapse
under gravity, the fundamental difference between dark matter and baryons start
to show. Under these circumstances, the baryonic gas can undergo shocks and
heating because of its non-zero pressure, a party that dark matter is not invited
to. These processes has the effect of ionizing the gas, radiating away energy
and falling even deeper into the potential wells of the dark matter halo. As
continued collapse increases the pressure and temperature, equilibrium between
gravity and pressure is established and stars are formed. These first stars serves
to ionize the gas even further with their energetic photons, and at some point
most of the gas in the Universe is once again ionized. This process is therefore
called reionization.

At this point, a lot of other processes become important [35]. Feedback
from the formation of stars from interstellar clouds of gas quenches further
star formation, supernovae drive an energetic galactic wind and central black
holes heats the central gas serving again to quench star formation and thus the
formation of galactic disks.

Mergers

An important process in the life of a young halo is mergers. If the haloes are of
comparable mass, mergers can completely disrupt the disks of the galaxies and
the end product is typically a galaxy with a larger bulge, because of the mixing
of angular momenta. If the mass of the other galaxy is much lower, it is most
likely accreted onto the more massive galaxy without affecting it dramatically.

We can use the formalism from section 1.3.1 to derive an analytical expres-
sion for the merger-rate of a halo of mass M . In particular, we can write the
average number of haloes with a mass between M and M1 + dM1 at time t1
that have merged to form a halo of mass M2 at t2 [35]:

n(M1, t1|M2, t2) =
M2

M1
f(ν12)

∣∣∣∣ d ln ν12

d lnM1

∣∣∣∣ dM1, (1.38)

where f(ν) is the multiplicity function (eqn. 1.33) and ν12 = (δ1−δ2)/
√
σ2

1 − σ2
2

the overdensity between t1 and t2, where νi = δc/D1(ti).

Evolution of galaxies in clusters

In this project we are concerned with the evolution of galaxies in dense environ-
ment such as the rich clusters of galaxies that makes up the largest gravitation-
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ally bound structures in the Universe. Numerical simulations and observations
show that the galaxy populations inside dense dark matter haloes are differ-
ent to those in the field. Specifically, they are on average more elliptical, an
observation known as the morphology-density relation [14, 24, 2, 58].

There are three processes that play a role for a galaxy in the dense envi-
ronment of a cluster: (I) interactions with the gravitational potential of other
members of the cluster or the cluster potential itself; (II) a gravitational process
known as dynamical friction where the galaxy loose its angular momentum and
falls towards the centre of the potential; and (III) the interaction of the bary-
onic matter in the galaxies with the hot X-ray emitting gas that is known to
permeate clusters.

Galaxy harassment The velocity of galaxies in clusters are of the order
∼ 1000 km s−1, much higher that the rotational velocity of the galaxies them-
selves. It is expected that the disruption of galaxies is related to the galaxy
velocity by ∝ v−2, so cluster galaxies will typically not undergo mergers inside
clusters but suffer less violent encounters [7]. A series of such events, however,
can still have and effect on the galaxy.

A late-type Sc-Sd spiral galaxy, that is typically less tightly bound, will loose
substantial parts of its structure in multiple fast encounters and be transformed
to a smaller galaxies with higher velocity dispersion, the so-called dwarf ellip-
ticals that are seen plentiful in cluster environments. On the other hand, more
regular Sa-Sb spirals that are more tightly bound, and where the orbital velocity
is high enough, are able to absorb the violent interactions better and remain
intact.

Dynamical friction Satellite galaxies of mass Ms undergo dynamical friction
with the halo material and in the age of the Universe, they will have time to
fall into the center of the halo if they are inside a radius rcrit [35, Chapter 12]:

rcrit ∼ 0.1rh

(
ln Λ

10

)1/2(
Ms

10−4Mh

)1/2

, (1.39)

where rh is the halo radius and ln Λ ∼ lnMh/Ms. This means that more massive
satellite galaxies will be subject to orbital decay at larger radii and will therefore
be more likely to be cannibalized by the growing central galaxy.

Ram-pressure stripping The third process deals with the interactions be-
tween the intracluster medium (ICM) and the baryonic content of the galaxy in
the interstellar medium (ISM). The consequence of these interactions is that the
interacting part of the galaxy feels a wind from the cluster gas that effectively
works to strip the galaxy of the gas in its outer parts. This may explain why
there are a higher occurrence of S0 galaxies in cluster environments because
event regular Sa-Sb spirals can be stripped of their star-forming material and
take on a more elliptical morphology.
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Together, this complex set of processes might transform a cluster galaxy,
almost always towards more elliptical systems, explaining why we see more
elliptical galaxies in dense environments, and therefore a stronger clustering
of elliptical galaxies in general [14]. This heuristic argument also works for
the color of the galaxy. When galaxies are disrupted in this way, they loose
their star-forming gas and become older and redder systems. More massive
galaxies are subject to stronger dynamical friction (eqn. 1.39) so they tend to
fall towards the center of the cluster, and will also become more clustered. In
practice, however, the interplay between these processes and other dynamical
effects are extremely complicated and one often uses simulations to complement
observations and theory.

If we want to learn something about galaxy evolution as a whole, in contrast
to studying the individual systems, it is clear that we need to work with the
statistics of the cluster and galaxy populations.

1.3.3 Numerical simulations

Because of the complex physics involved in nonlinear structure formation, sim-
ulations have become a very important tool in cosmology and astrophysics in
general, both as a test for the theories developed and as an experiment in its
own right. It complements real observations in the sense that we can get a view
of the Universe at any time without the selection and redshift effects we have
to struggle with in reality. But simulations also have shortcomings, and the
most obvious one is resolution versus computing power. When simulating the
Universe on large scale, it is hard to have an adequate resolution on galactic
scales and vice versa. When simulating a large portion of the Universe, individ-
ual particles are typical ∼ 109M� per dark matter particle [52], which is a long
way from the ∼ 1 TeV ∼ 10−54M� for the neutralino, a WIMP dark matter
candidate. Whatever drives the Universe, it must be a hell of a supercomputer!

Even so, simulations are very powerful when used with care. The Millenium
Run (Springel et al. [52]) is the biggest simulation of large-scale structure to
date, and constitutes ∼ 1010 particles in a cube ∼ 600 Mpc in length. Figure
1.3 shows a view of the dark matter density field from the Millenium simulation4,
and we explore some of the details of creating these simulations in appendix B.

4http://www.mpa-garching.mpg.de/galform/virgo/millennium/
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Figure 1.3: Pretty visualization of the dark matter density field in the famous
Millenium simulation. We show the characteristic filament structure that has
been created from the collapse of dark matter structures under gravity from the
perturbations of the early Universe. Appendix B outlines the techniques used
in these simulations in more detail.
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Chapter 2

Correlation measurements

Having introduced the Universe in which we live, it is time to get our hands
dirty and describe the data and measurements used in this project. We already
introduced the concept of the two-point correlation function in section 1.2.4,
and in this chapter we will describe what we want to measure and how this can
be done in practice while carefully handling the challenges of working with real
data.

Because of their power and simplicity, correlation statistics have been used
throughout the literature to analyse measurements of the large-scale structure,
usually in the form of large galaxy surveys like the 2-degree Field Galaxy Redshift
Survey (2dFGRS) [11] and Sloan Digital Sky Survey (SDSS) [60]. What is
usually employed is the galaxy two-point auto-correlation that describes the
distribution of galaxies with respect to all other galaxies (see eg. [57]). In this
project we take a different approach and use the cluster–galaxy cross-correlation
that measures the distribution of galaxies with respect to the rich galaxy clusters
in which many of the galaxies reside. As these clusters represent the most
massive dark matter haloes, this enables us to investigate how galaxies are
distributed with respect to their large-scale environment. By then dividing the
galaxy sample into subsamples with varying physical properties – like stellar
mass, color and morphology – we can get a view of how galaxies with different
properties have evolved in and outside clusters.

The Cosmic Evolution Survey (COSMOS) [49] makes these measurements
possible by not only providing a large catalogue of galaxies to unprecedented
depth, but also providing X-ray and lensing measurements of rich galaxy clusters
in the same region of the sky. In this chapter we will start by introducing the
COSMOS catalogues and the measurement methodology used in this project,
and before presenting the final measurements, we will take a detour into the
important topic of error estimation.
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2.1 COSMOS

2.1.1 The COSMOS field

The COSMOS field is a 2-square degree near-equatorial patch of the sky that
has been verified to have a low galactic extinction and be devoid of unwanted
contamination, such as bright X-ray, UV and radio sources [49]. Observations
has been carried out by many space- and ground-based telescopes, primarily
the Hubble Space Telescope (HST) in the largest HST project to date, utilizing
around 10% of the time in a 2 year period [48]. By choosing an equatorial field,
ground-based telescopes from both the northern and southern hemispheres have
access to it, thus enabling observations in many bands in order to improve the
photometric redshift estimations. Some of these telescopes include the Japanese
Subaru optical telescope [54] and the VLA radio telescope [47].

X-ray measurements are performed with the XMM-Newton space telescope,
providing observations of the hot X-ray gas in rich galaxy clusters to unprece-
dented depth [21, 19]. Additionally, the Spitzer Space Telescope provides in-
frared observations and GALEX provides ultraviolet data [48]. Spectroscopic
follow-up has been done with the VLT/VIMOS instrument for around 25,000
galaxies between redshift 0.3 and 1, providing tests and calibration of the pho-
tometric redshifts [28].

Figure 2.1 shows the masked out areas of the COSMOS field where stars
from our own galaxy contaminate the observations.

2.1.2 Galaxies

The primary data product of COSMOS is the galaxy catalogue [9] built primarily
from HST [48] and Subaru [54] observations. The total catalogue contains ∼
2 · 106 objects to an I-band magnitude of IAB < 27. The resulting catalogue
contains, in addition to positions and redshifts, estimations of the morphology,
the stellar mass, the absolute magnitudes and dust-corrected color.

These quantities are mostly estimated using a template fitting procedure
where the templates of known galaxies are fitted to the data. In the catalogue
used for this project, observations in more than 30 bands have gone into the
template fitting leaving extremely accurate photometric redshift estimations
[23].

In this project we cut the galaxies at IAB < 26 and at the morphological
index iM < 20 which disregards highly irregular and starburst galaxies, leaving
59683 galaxies in total. Figure 2.2 shows the distribution of galaxies in the
COSMOS field.
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Figure 2.1: The mask of the COSMOS galaxy catalogue in 4 bands removing
foreground objects from the field. Darker areas are masked in more bands.
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Figure 2.2: Galaxies in the COSMOS field with I-band magnitude IAB < 26.
The right panel only shows galaxies above a certain density threshold to high-
light the large-scale structure, keeping in mind that some of the big voids are
due to the masked-out areas.
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Galaxy properties

In order to determine physical properties of the galaxies from photometry in
the COSMOS passbands, Mobasher et al. [37] created a code based on spectral
energy distribution (SED) fitting. The basic idea is that you start out with
spectra of galaxies with known properties, which are then converted to template
flux estimates in the passbands of the survey. By minimizing the χ2 between
these template fluxes and the observed fluxes, estimates for the galaxy properties
are obtained. The properties fitted in this way are the redshift, the spectral type
(morphology) and the extinction (EB−V ).

From these properties, Mobasher et al. [37] also estimates the stellar mass
Ms of the COSMOS galaxies. From the measured luminosity and color, the
stellar mass is found by:

log

(
Ms

M�

)
=
M

LV
− 0.4(MV − 4.82), (2.1)

where MV is the rest-frame absolute V-band magnitude and the mass to light
ratio is given by the (B-V) color:

M

LV
= −0.628 + 1.305(B − V ). (2.2)

Note that the stellar mass estimate depends on the luminosity and thus
redshift of the galaxy. In figure 2.3 we plot the distribution of each of the
galaxy properties that is specifically used in this project.
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Figure 2.3: Distributions of COSMOS galaxy properties. Top left. Redshift
distribution. Top right. Stellar mass in log solar masses. Bottom left. NUV-R
dust-corrected color. Bottom right. Morphological index from ellipticals (1-8),
Sa-Sc spirals (9-15) and Sd-Sdm spirals (16-19).

2.1.3 Clusters

The COSMOS cluster catalogue is based on the X-ray observations [21] and
subsequent analysis in Finoguenov et al. [19]. In short, clusters are detected from
the X-ray field under the assumption that extended regions of X-ray emission is
due to the hot cluster gas. The clusters are then verified by the concentration
of galaxies in the X-ray selected regions.

The clusters are plotted according to position in the field, redshift and esti-
mated size in figure 2.4.
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Figure 2.4: COSMOS X-ray identified rich galaxy clusters. The color reflects
the redshift (lighter is deeper) and the radius of the circles is the estimated r200.

Cluster properties

Cluster redshifts are determined by dividing the galaxy sample in redshift bins
of ∼ 0.1 and aligning the galaxy density peak with the extended X-ray emitting
regions. Mass M500 and radius r500 estimates are found by the temperature-
mass scaling relation:

M500 = 2.36× 1013M�T
1.89E−1

z , (2.3)

where the temperature T is defined from the K-corrected X-ray luminosity and
choice of ΛCDM cosmology (see [19] for details). Because of the scaling re-
lation scatter and uncertainty in the evolution of this relation with redshift,
Finoguenov et al. [19] expect a mass estimate uncertainty of a factor of 1.4.
Leauthaud et al. [26] constrain the mass-luminosity scaling relation further us-
ing weak lensing techniques.

The distribution of clusters with redshift and estimated mass is plotted in
figure 2.5.
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Figure 2.5: The redshift and mass distributions of COSMOS clusters.

2.2 Cluster – galaxy cross-correlation

In this project we take advantage of the fact that COSMOS provides us with
both a galaxy and a cluster catalogue and we calculate the cross-correlation
statistics between these two distributions. As the X-ray selected clusters repre-
sent dark matter haloes, this cross-correlation gives a better (than the galaxy
auto-correlation) view of how the galaxy population depends on the underlying
dark matter density field.

What makes two-point correlation functions so simple is that they in princi-
ple can be calculated simply by counting the number of pairs at certain separa-
tions. In our case of the cross-correlation, these are the pairs between any cluster
and any galaxy, and we simply need to calculate the histogram of distances be-
tween these pairs and compare it to a uniform field of galaxies and clusters (see
section 1.2.4). Of course this is not so simple in practice, and in addition to
introducing the calculations, we will highlight three challenges that we have to
overcome, namely the astronomical selection effects of the catalogues, the phys-
ical effects of working in redshift space as well as the computational difficulties
in performing these calculations.

2.2.1 Estimator

To estimate the statistical quantity of the correlation function and avoid the
astronomical selection effects, we need to compare the pair counts to a Poisson
distributed field of galaxies. The simplest estimator is:
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ξ̂ =
DD

DR
− 1, (2.4)

where DD is the pair count histogram between data clusters and data galaxies
and DR between data clusters and random galaxies, respectively. The random
catalogue of galaxies need to define a uniformly distributed background of galax-
ies according to the selection effects of the survey, and thus needs to contain
many more objects than the data catalogue.

In order to create the random catalogue of galaxies, we need to model the
selection effects of the redshift distribution and a physical motivation for the
expected redshift distribution can help us find a suiting model. In the small
volume of local space, we see relatively few galaxies, but looking deeper the
volume increases and we expect to see a polynomial increase in objects. Even-
tually, however, as the objects become fainter, the number will again decrease,
this time with an exponential fall-off. This behaviour can be modelled using the
Weibull distribution:

f(x;λ, k) =
k

λ

(x
λ

)k−1

e−(x/λ)k , (2.5)

which has a well-defined cumulative distribution from which to draw random
redshifts:

F (x; k, λ) = 1− e−(x/λ)k . (2.6)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
z

Figure 2.6: Fitting the redshift distribution of galaxies to the Weibull function.
This is used to sample redshifts for the random galaxy catalogues.

In figure 2.6 we fit this distribution to the galaxies in the COSMOS catalogue.
In addition to a redshift, we also need to generate an RA-dec pair for the mock
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catalogue. This is a simple matter of drawing pairs from a uniform distribution
inside the COSMOS field. Because we want the random catalogues to include
all the non-clustering effects of the survey, we disregard RA-dec points inside
the mask (fig. 2.1).

A more accurate estimator was introduced by Landy and Szalay [25] that
requires mock catalogues for both the galaxy and cluster distributions, making
the computations much more demanding:

ξ̂ =
DD −DR−RD +RR

RR
. (2.7)

In practice, each of the pair count histograms needs to be normalized by the
number of objects in the corresponding catalogues. The full calculation then
reads:

ξ̂cg(r) =
DcDg(r)

RcRg(r)

nRc n
R
g

nDc n
D
g

− DcRg(r)

RcRg(r)

nRc
nDc
− RcDg(r)

RcRg(r)

nRg
nDg

+ 1, (2.8)

where nXi is the number of objects in the data/random cluster/galaxy catalogues
and XiYj denotes the count of data D or random R objects of type clusters c
or galaxies g separated by a distance of r.

2.2.2 Redshift effects

The estimated galaxy redshift is the sum of redshifts from the cosmological
expansion and the peculiar velocity of the actual physical motion of the galaxies
themselves1. This means that a spherical object in real space will be distorted in
various ways in redshift space because of the motion of the large-scale structures
that the galaxy is part of as well as the motion of the galaxy inside non-linear
collapsed haloes. These effects are of great importance when investigating the
dynamics of the large-scale structure, but in this project they affect the distance
(and hence correlation) estimates in unwanted ways, so we will in this project
use a correlation measurement that alleviates this problem.

We start by transforming the measured distances into components along the
line of sight π and perpendicular to the line of sight rp. This transformation is
defined by:

π =
l · s
|s|

r2
p = l · l− π2 (2.9)

where l = rc − rg, s = rc + rg and ri the position of the object in question.
The correlation function is now a function of π and rp instead of just r, and

the pair-counts form a 2-dimensional histogram in these variables. In order to
get rid of the redshift effects we integrate along the line of sight, that is, we
project the 2D histogram onto the rp axis:

1Disregarding the negligible gravitational redshifts
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wp(rp) =

∫ πmax

0

ξ(π, rp)dπ. (2.10)

This is called the projected correlation function and this is the measurement
that we will use throughout the rest of this project. We cut the integration at
πmax in order to avoid counting pairs at large line-of-sight separations.

2.2.3 Computational challenges

At last is the challenge of computing power and memory. As there is around
105 · 102 = 107 pair separations (of 4 bytes each), the memory requirements for
calculating the histogram the usual way quickly becomes unmanageable. When
working with the random catalogues with around 50 times the number of object
in each, this becomes plain old impossible, requiring ∼ 200 GB of RAM. To
avoid this problem, we created a histogram algorithm that inserts values on the
fly (requiring the boundaries to be specified).

A related problem is that of computing time. With ∼ 5 · 1010 pairs in the
random catalogues, this calculation can take a long time to finish. While the
measurement code is mostly written in Python, we implement the pair count-
ing routine in Fortran using the f2py system. Additionally, we span this easily
parallelizable calculation among the CPU cores in the computer, reducing the
computation time with a factor of the number of cores, neglecting any commu-
nication overhead that this introduces.

Along with other tricks, this allows us to do the random – random pair
counts in a few minutes instead of many hours. For a more in-depth description
of the software that we have developed as a part of this project, we refer to
appendix C.

2.3 Error estimation

An important subject in this project is that of error estimation. In problems
where there is no trivial way to propagate errors because the system involves too
many unknown sources of error, it is common to use resampling techniques to
estimate the errors from the data. There are two general classes of resampling
techniques: the jackknife procedure, where subsets of the data are used to
resample and recalculate by removing (jackknifing) parts of the data [33] and
the bootstrap method where the samples are drawn randomly from the data with
replacement [15]. For the sake of comparison, we implement both of these from
the descriptions below.

2.3.1 Jacknife resampling

In the correlation measurements performed in this project, the jackknife pro-
cedure divides the RA-dec space into regions on a grid. For each recalculation
of the correlation function, one cell of the grid is left out at a time. Figure 2.7
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shows an example of dividing the COSMOS cluster catalogue into such a grid.
For the correlation measurement the clusters in each of the cells would then be
left out in turn.
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Figure 2.7: Splitting the cluster catalogue into 16 regions for the jackknife
resampling procedure. The projected correlation calculation is redone with each
of these regions left out in turn.

2.3.2 Moving block bootstrap

The same idea can be used for the bootstrap error estimation. In this case,
we follow the so-called moving block bootstrap procedure [29] where the blocks
used in the bootstrap are positioned randomly in the RA-dec plane. Figure
2.8 shows an iteration of placing these blocks. For each correlation function
recalculation, a new cluster sample is constructed by the points inside the boxes.
Note that one cluster might occur more than once in the constructed cluster
sample and that the number of clusters vary slightly from iteration to iteration.
Both of these features are known to improve the statistical accuracy of the error
estimation[30].
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Figure 2.8: An example of a moving block run, where the correlation measure-
ment is redone a number of times with a cluster catalogue built from blocks like
these. This ensures that some clusters will be represented more than once and
that the number of clusters vary slightly between runs.

2.3.3 Covariance and error bars

From the resampled measurements we create a matrix Xki where k denotes the
point on the correlation function (discrete rp) and i denotes the i-th measure-
ment of that point. Each point k will have a mean and a standard deviation
given by:

µk =
1

N

N∑
i

Xkj σk =

√√√√ 1

N

N∑
i

[Xkj − µk]2 (2.11)

where N is the number of samples.
This approach to error estimation does not take into account possible cor-

relations between the points. For this reason it is common practice to calculate
the full covariance matrix:

Σij =
1

N2

N∑
k

[Xki − µi][Xkj − µj ] (2.12)

The error bars (standard deviation) for the points are then given by the
diagonal of this matrix:

σk =
√

Σkk. (2.13)
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Note that these can only serve as an indication of the errors of a point, and
one must in general refer to the covariance matrix for a meaningful representa-
tion of the errors. For the jackknife method, the error estimation must be scaled
by a factor N − 1, where N is the number of resamples, in order to account for
the removal of blocks.

2.4 Measurements

In this section we present the execution of the measurement techniques described
up until this point. To recap, the steps needed for each of the correlation
measurements are:

1. Calculate the pair counts and obtain ξ(π, rp) [eqn. 2.9] via ξ(r) [eqn. 2.8].

2. Calculate the projected correlation function wp(rp) [eqn. 2.10].

3. Redo these calculation for the resampled data as described in section 2.3.3,
and estimate the covariance matrix [eqn. 2.12] and the standard deviation
(for error bars) [eqn. 2.13].

In the following sections we present these measurement on the full galaxy
sample, on 3 stellar mass and redshift -divided subsamples, on 3 color-divided
subsamples and on 3 morphologically divided subsamples, serving to quantify
the evolution of clustering with these physical galaxy properties.

2.4.1 Full galaxy sample

To begin with, and to serve as an example, we present the correlation measure-
ment for the full sample of COSMOS galaxies with I-band magnitude IAB < 26
and morphological index below 20, that is, we only consider elliptical and
early/late-type spiral galaxies.

As enumerated above, we start by calculating the ξ(π, rp) 2D histogram
and plot the results in figure 2.9. This figure shows how the measurements
are distorted in redshift space; (i) on smaller scales showing elongation in the
π direction due to peculiar motion in local non-linear overdensities and (ii) on
larger scales showing the squashing due to motion in the large-scale gravitational
potential2.

2Note that the figure is stretched in the rp axis because we work in log-space. Working in
linear space would show these effects even better
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Figure 2.9: The ξ(π, rp) measurement of the full galaxy sample. The image has
been mirrored in both axis to better demonstrate the redshift effects.

In figure 2.10 we plot the projected correlation function calculated from
ξ(π, rp) using equation 2.10. We see clearly how the curve splits into two sepa-
rate functions that represent correlations between a cluster and its galaxies and
between a cluster and galaxies outside it (> 1 Mpc), respectively. In chapter
3, when we model these measurements, we will see how this separation follows
naturally from the theory of dark matter haloes.

The covariance matrix is plotted in figure 2.11 and shows how the points
are correlated. This particular covariance estimate has been made using the
moving block bootstrap procedure of section 2.3.2, but it has been checked that
the jackknife procedure of section 2.3.1 yields similar results.
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Figure 2.10: The projected correlation function for the full galaxy sample. The
transition between the 1- and 2-halo terms is clearly visible around 1 Mpc h−1.
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Figure 2.11: The covariance matrix for the correlation measurement of the full
galaxy sample from the moving block resampling of clusters. The diagonal has
been normalized to 1.

29



2.4.2 Varying galaxy properties

We are not only interested in the clustering of the full galaxy population, but
also in the evolution of the clustering with different galaxy properties. For
this task we divide the galaxies into subsamples of varying properties. Doing
this, the number of pairs is reduced, so we expect the measurements to become
noisier and consequently more uncertain. In addition we expect from section
1.3.2 that different galaxy populations have had different evolution histories, and
that some types of galaxies are less represented in denser environments (such as
clusters), which would create variations in the correlation function amplitudes
across subsamples.

Evolution with stellar mass and redshift

We start by looking at the evolution with stellar mass and redshift. From section
1.3.2 we know that cluster galaxies are on average more massive than their field
counterparts because of the accretion of mass onto the dark matter halo. This
leads us to believe that the correlation measurements should show a higher
amplitude for higher stellar mass galaxies. This simple argument is challenged
if the ratio of dark matter to luminous matter is not constant with halo mass,
as it would be possible for very massive galaxies to be fainter than expected. In
fact, observations show that there is an increase in the mass-to-light ratio for the
most massive galaxies because they will undergo ram-pressure stripping inside
the cluster that quenches the star-formation [7]. For lower mass haloes, the
mass-to-light ratio is also higher because their relatively week potential could
not capture the hot gas in the epoch of reionization.

In figure 2.12 we show how the galaxies are selected in the stellar mass
– redshift plane. The boxes are placed so that we ensure completeness of the
galaxies, i.e. no galaxies are left out because of the selection effects of the survey.
In figure 2.13 we then present the results of the correlation measurement on these
subsamples, with error bars from the covariance matrix diagonal as shown in
section 2.3.3.
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Figure 2.12: The three stellar mass – redshift subsamples of COSMOS galaxies.
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Figure 2.13: The projected correlation measurements of the three stellar mass
– redshift subsamples of galaxies.

Firstly, we see a strong dependence on redshift, which is explained by the
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fact that clusters will have had less time to fall in. It is also clear that the
clustering is stronger for higher stellar mass galaxies, which supports the simple
assumption that the evolution inside clusters is towards higher mass and more
luminous galaxies. Additionally, in the central part of the correlation function,
we see evidence for a stronger concentration of massive galaxies compared to the
less massive. This is explained in section 1.3.2 as galactic cannibalism where
satellite galaxies are slowly moving towards the center of the potential and
eventually accreted onto the central galaxy.

Color

As outlined in section 1.3.2, the quenching of star-formation of galaxies in denser
environments leads to an older, and hence redder, stellar population. In the
same way as massive galaxies show stronger correlations in clusters, we therefore
expect the correlation function of redder galaxies to have a higher amplitude.

The color selections for this measurement are shown in figure 2.14, and figure
2.15 shows the results of the correlation measurements.
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Figure 2.14: The three color-divided subsamples of COSMOS galaxies.
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Figure 2.15: The projected correlation measurements of the three color-divided
subsamples of galaxies.

Not as pronounced as in the stellar mass case, but there is evidence for
evolution with color. On smaller scales we see how blue galaxies are on average
less likely to reside in cluster centers, supporting the theory of accretion of old
stars onto the central galaxy. Together with the results in the previous section,
we can say that central galaxies are more likely to be more massive and redder.
Of course, we see from section 2.1.2 that any massive galaxy is more likely to
be redder, so the question is which of these properties is the primary causal
connection to the evolution inside clusters. The basic idea from the previously
discussed processes would in this case be that galaxies are redder because of
ram-pressure stripping and subsequent quenching of star formation while they
are more massive because of the accretion of mass from encounters. Because
these effects are both present in denser environment supporting hot gas and a
greater number density of galaxies, they often go together.

Note that for the bottom measurement, the error bars in the central part are
clearly not to be trusted. They result from the calculation of errors in log-space
from resamples with negative values.

Morphology

Lastly we have divided the galaxy population into bins in the morphological
index going from 1-19 with elliptical to S0 having indices of 1–8, Sa to Sc
spirals in 9–15 and Sd to Sdm spirals in 16–19. This is shown in figure 2.16 and
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the results of the measurements are shown in figure 2.17.
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Figure 2.16: The three morphology-divided subsamples of COSMOS galaxies.
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Figure 2.17: The projected correlation measurements of the three morphology-
divided subsamples of galaxies.

If we follow the reasoning of the previous sections, it is obvious that more
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elliptical galaxies, created from encounters between galaxies, will be more repre-
sented in cluster environments and therefore show stronger clustering. And for
the same reasons that central galaxies are more massive and redder, we expect
them to be ellipticals. The measurements in figure 2.17 show very clearly a
trend towards higher central clustering for more elliptical galaxies.

Again, as discussed in the previous section, section 2.1.2 shows that any
massive and any red galaxy is on average more elliptical. Knowing that galaxy
encounters produce larger bulges because of the mixing of rotational velocities
into a more random velocity dispersion, and that encounters are more likely
in clusters, this correlation between stellar mass, color and morphology makes
sense.
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Chapter 3

Halo modelling

In the previous chapter we introduced the measurement technique and presented
the measurements of the COSMOS cluster-galaxy cross-correlation function for
various subsamples of the galaxy catalogue. In this chapter we review the halo
model framework in section 3.1, introduce the paramters of the model and out-
line important aspects of applying this modelling in section 3.2 and finally we
present the modelling results in section 3.3.

3.1 The Halo Model

To model the measurements in this project, we use the halo model, a theoretical
framework for describing the distribution of matter in the Universe [12]. It builds
on the ansatz that all matter is distributed in independent haloes and sub-haloes
of dark matter that interact gravitationally. We will introduce this framework
and how it applies to the specific case of cluster-galaxy cross-correlations. This
review is based mostly on [12, 35] and builds on the description of dark matter
haloes in section 1.3.1.

3.1.1 Introduction

If we assume that the halo mass M completely determines the profile of a halo,
the dark matter density of a single halo can be described by:

ρhalo(x) = Mu(x|M), (3.1)

where x is the position from the halo center and u(x|M) is the normalized halo
profile given by M . Remembering that all mass is part of a halo, the total dark
matter density field is then determined by summing up all the regions of space
small enough to contain only one halo:

ρDM(x) =
∑
i

NiMiu(x− xi|M), (3.2)
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where Ni ∈ {0, 1} determines if there is a halo in the i-th region or not and
x− xi is the distance from the center of the i-th region to x.

On average, the probability of finding a halo of mass M in a volume element
∆V is given by n(M)∆V , where n(M) is the number density of haloes of mass
M – the mass function (section 1.3.1). The average density of the Universe is
thus given by:

〈ρDM(x)〉 =

∫
dMMn(M)

∑
i

∆Viu(x− x′|M). (3.3)

In the limit of small ∆V , we can convert the sum to an integral over space:

〈ρDM(x)〉 =

∫
dMMn(M)

∫
d3x′u(x− x′|M), (3.4)

Since
∫

d3x′u(x− x′|M) = 1 per definition, the average density of the Uni-
verse ρ̄ is given in the halo model as:

ρ̄ =

∫
dMMn(M). (3.5)

3.1.2 Cluster – galaxy cross-correlation

As we’ve seen in section 1.2.4, the two-point correlation function ξ(r) of dark
matter haloes is defined from the overdensity δ(x) ≡ ρ(x)/ρ̄− 1:

ξDM(r) ≡ 〈δ(x1)δ(x2)〉, (3.6)

where r ≡ |x1 − x2|. Using the notation of the previous section, this can be
expressed as:

ξDM(r) =
1

ρ̄2

∑
i,j

〈NiMiNjMju(x1 − xi|Mi)u(x2 − xj |Mj)〉. (3.7)

This divides naturally into correlations from the same halo (i = j) and from
different haloes (i 6= j), so that ξDM(r) = ξ1h(r) + ξ2h(r). For the 1-halo term
we can then write:

ξ1h(r) =
1

ρ̄2

∫
dMM2n(M)

∫
d3yu(y − x1|M)u(y − x2|M), (3.8)

while the 2-halo term includes contributions from each of the distributions as
well as a halo-halo factor ξhh:

ξ2h(r) =
1

ρ̄2

∫
dM1M1n(M1)

∫
dM2M2n(M2)

∫
d3x

∫
d3x′

× u(x1 − x|M1)u(x2 − x′|M2)ξhh(x− x′|M1,M2). (3.9)
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On large scales, where the 2-halo term is important, individual haloes can
be treated as points and the shape of the haloes themselves u(x|M) can be
disregarded. As seen in section 1.3.1, haloes are biased representations of the
linear dark matter field such that the halo-halo factor can be written as ξhh =
bh(M1)bh(M2)ξlin. The 2-halo term (eqn. 3.9) then becomes:

ξ2h(r) =
1

ρ̄2

∫
dM1M1n(M1)

∫
dM2M2n(M2)bh(M1)bh(M2)ξlin. (3.10)

This expression describes the correlation between dark matter fields and we
need to convert it to an expression for the correlation between galaxy clus-
ters and galaxies. The cluster population is determined by the cluster centers
only, setting ucl(x|M) = 1. The galaxy profile ug(x|M) describes the run of
galaxies around cluster centers and is usually assumed to follow the dark mat-
ter profile. In addition, the weights M and ρ̄ of the dark matter profile is
exchanged for the average number of galaxies in haloes of mass M – the halo
occupation distribution (HOD) 〈Ng〉(M) – and the average density of galaxies
n̄g =

∫
dMn(M)〈Ng〉(M). The 1-halo term thus takes the form:

ξ1h(r) =
1

ρ̄

∫
dMMn(M)

〈Ng〉(M)

n̄g
ug(r|M). (3.11)

Similarly, the 2-halo term becomes:

ξ2h(r) = ξlin

[∫
dM

Mn(M)

ρ̄
bc(M)

] [∫
dMn(M)bc(M)

〈Ng〉(M)

n̄g

]
, (3.12)

where we refer to the square bracket factors as the cluster bias and galaxy bias,
respectively.

The physical motivations of these expressions are as follows. The 1-halo
term is built from the ensemble of clusters (

∫
. . . dM), all contributing to the

correlation function with a galaxy profile weighted by the average number of
galaxies for haloes of that mass (〈N〉M). The 2-halo term is the result of taking
the linearly evolved dark matter correlation of a chosen cosmology (section
1.2.4) and scaling it with the linear dark matter bias (section 1.3.1) and the
halo occupation number.

Our model is then determined from the mass of the haloes and our choice of
halo profile and occupation distribution. These choices are the subjects of the
following sections.

3.1.3 Halo Occupation Distribution

The halo occupation distribution (HOD) is a central part of modelling the mea-
surements of this project, and it is defined as the average number of galaxies
that are present in haloes of a certain mass. N-body simulations has shown
that dark matter haloes tend to build up an extensive envelope of substructure
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from the accretion and disruption of haloes falling into the larger halo [38, 53].
These subhaloes represent galaxies in a galaxy cluster, so if we can describe the
occupation of subhaloes, we can infer the occupation of galaxies and vice versa.

From the merger rate of the Press-Schechter formalism (section 1.3.1), it
follows that more massive clusters will accrete more substructure and hence
have a higher halo occupation. We parametrize this by the occupation slope α
so the halo occupation number reads:

〈Ng〉(M) =

(
M

Ms

)α
, (3.13)

where the scale mass Ms scales the relation. At lower mass, a nascent dark
matter halo may not have the potential to capture the hot gas of the reionization
epoch, so we expect there to be a threshold mass M0 above which a dark matter
halo will host a single galaxy. The HOD can now be expressed as [5]:

〈Ng〉(M) =

{
0 if M < M0(
M
Ms

)α
if M ≥M0

. (3.14)

Because of the complex physics of galaxy evolution inside haloes, it is hard for
Press-Schechter and similar theories to predict anything other than the general
form of the HOD as written above. The parameter values (still) have to be
found from simulations or fitted to observations, and we present some recent
values from Tinker et al. [57] in table 3.1.3.

Parameter Value
log(M0/M�) 12.21± 0.11
log(Ms/M�) 13.46± 0.05

α 1.03± 0.05

Table 3.1: HOD parameter values for intermediate luminosity haloes from Tin-
ker et al. [57].

As we will discuss further in section 4.1.1, the COSMOS clusters are dis-
tributed in a relatively narrow mass range, making it impossible for us to con-
strain M0 and making Ms and α highly degenerate. In the actual modelling
in the next sections, we therefore fix Ms to recent values and concentrate on
α as the free HOD parameter. Also because of this, we should be reluctant to
rely on the absolute values of α fitted to the data, but it will serve as a useful
comparison of the HOD from different galaxy populations.

We also have to note that it is common to use more complicated expressions
for HOD, where the transition between 0, 1 and N-galaxy haloes are modelled
in much more detail (see eg. [57]). In this work we have no haloes in the mass
regions relevant for these effects, so we ignore them.
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3.1.4 The Dark Matter profile

The other important part of the modelling is of course the density profile of
the dark matter haloes, or rather, in this project, the density profile of galaxies
around cluster centers. It is usually assumed that this profile follows that of the
dark matter profile, which is a good first assumption because of their gravita-
tional connection. But since galaxies are completely different objects than dark
matter particles, they don’t need to follow the dark matter profile exactly, and
indeed one of the goals of this project is to test parts of this assumption.

For the dark matter profile we choose the Navarro, Frenk and White profile
(NFW) [39]. We have chosen this profile because of the extensive use in the
literature, although recent research suggests that this profile may not be the
most precise [31] (see sections 3.3.3 and 4.1.2). The NFW density profile can
be written as:

ρ(r) =
∆c(

r
rs

)(
1 + r

rs

)2 , (3.15)

where the amplitude ∆c and the scale radius rs are parameters of the model. As
we’ve seen in section 3.1.1, we assume that this profile is determined completely
by the mass of the cluster, so the task at hand is to find the connections from
the halo mass to these two parameters. This procedure is based on Navarro
et al. [39] and Peacock and Smith [42].

From the peak parameter ν = δc/σ(M), defined in section 1.3.1, we can find
the formation redshift zf that is empirically related to the profile amplitude ∆c:

∆c = 3000(1 + zf )3 (3.16)

zf = D−1
1 (1 + ν−1), (3.17)

where D1 is the linear growth factor g/(1 + z) defined in section 1.2.3.
The scale radius is found through the relation between ∆c and the more

familiar concentration parameter c that is in turn related to rs via the virial
radius rvir:

c−1 =
400

3∆c
+

(
110

∆c

)0.387

(3.18)

c = rvir/rs, (3.19)

where rvir ≡ r200 = [3(200ρ̄)/(4πM)]1/3 and ρ̄ = Ω0h
2ρc the physical back-

ground density of matter in the Universe.

3.2 Modelling the measurements

From the formalism of the halo model, we now turn to the actual modelling
of data. Before we present the results of the modelling in the next section,
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we will in this section determine the free parameters of the model and how we
implement the equation numerically. In contrast to the review in the previous
section, this section and the next describes our work.

3.2.1 Model parameters

With the halo profile in place as a function of the halo mass alone, we are in a
position to choose the parameters we want to investigate.

Occupation distribution

The first unknown parameter is the halo occupation slope α. As already men-
tioned in section 3.1.3, this parameter is highly degenerate with the other rel-
evant HOD parameter, the satellite scale mass, Ms. We therefore keep this
parameter fixed at a value inferred from recent studies of the HOD [56, 57]. We
have no power to constrain the minimum mass M0 because our cluster popula-
tion does not sample the low-mass range where this effect is important.

In section 4.1.1 we discuss these subjects further.

Halo tilt

Motivated by the discussion of how galaxies evolve inside clusters in section
1.3.2, we want to introduce a parameter that quantifies possible discrepancies
between the dark matter profile of the halo and the number density of galaxies
(subhaloes) in the halo. Recent studies include a parameter that accounts for a
possible difference in amplitude [57], but the general shape of the 1-halo term
might also be different. To parametrize this difference, we introduce a new
parameter that we name the halo tilt γh. This parameter describes a tilt of the
1-halo term of the correlation function:

ξ1h
g (r) = [ξ1h

DM(r)]γh , (3.20)

Physical motivations for such a discrepancy would be that due to the nature
of the baryonic content of galaxies and the dense cluster environment, galaxies
might be clustered stronger or weaker towards the halo center (see section 1.3.2).

We could have tilted the dark matter profile alone, that would in turn affect
the 1-halo term. In the present choice, the amplitude of the HOD, determined
from the other free parameter α, is also affected slightly by changes in γh. In
our case, where we are not in a position to determine the absolute value of α,
however, this effect is ignored (see sections 3.1.3 and 4.1.1).

3.2.2 Cluster ensemble

In section 3.1.2 we introduced analytical expressions for the cluster – galaxy
cross-correlation 1- and 2-halo terms (eqs. 3.11, 3.12). These equations include
integrals over the halo mass range, but since we have a finite number of clusters
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in our sample, we can convert these integrals to a sum over COSMOS clusters.
The 1-halo term becomes:

ξ1h(r) =

nc∑
i

〈Ng〉(Mi)

n̄g
ug(r|Mi), (3.21)

with nc the total number of clusters. The 2-halo term takes the form:

ξ2h(r) = ξlin

[
nc∑
i

bc(Mi)

][
nc∑
i

bc(Mi)〈Ng〉(Mi)

n̄g

]
. (3.22)

In principle we need to specify the full mass function integrated over all
masses, but the mass range of COSMOS clusters are such that we can neglect
the effect of the large-scale environment on the occupation distribution [56].

3.2.3 Projection

In the measurements described in section chapter 2, we do not end up with ξ(r),
but rather the projected correlation function wp(rp). In order for the model to
describe the same thing, we need to transform the analytical ξ(r) into the 2D
ξ(π, rp) and project it onto the rp axis, ie. integrating along the line-of-sight
variable π:

wp(rp) =

∫ πmax

0

ξ(r)dπ. (3.23)

From equations 2.9 we see that:

r2 ≡ l · l = r2
p + π2, (3.24)

which allows us to make the substitution r =
√
r2
p + π2:

wp(rp) = 2

∫ rmax

rp

ξ(r)rdr√
r2 − r2

p

, (3.25)

where rmax =
√
π2

max + r2
p.

3.2.4 Likelihood estimation

The χ2 is a common choice for expressing the goodness of fit :

χ2(θ) =
∑
i

[
xi − f(xi|θ)

σi

]2

, (3.26)

where θ is the parameter vector, the function f(xi) denotes the model prediction
of point xi and σi is the standard deviation. As explained in section 2.3.3, it is
better to use the full covariance matrix in stead of just the standard deviation,
and the χ2 is generalized into the matrix equation:
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χ2
g(θ) = [x− f(x|θ)]T Σ−1 [x− f(x|θ)] . (3.27)

The fitting procedure consists of minimizing this quantity. Many minimiza-
tion methods exist, but in this project we use a simple algorithm for multi-
dimensional minimization called the downhill simplex or Nelder-Mead method
[41]. This is a method implemented in most scientific toolboxes, and specifically
we use the fmin function of the scipy.optimize package for Python (see appendix
C).

Minimization of the χ2 allows us to optimize the parameters of the model,
but does not provide any information regarding the uncertainty of the parame-
ters. In order to obtain this, we calculate the full (joint) likelihood distribution,
a function of the model parameters (introduced in the previous section):

p(α, γh) = exp

[
−χ

2(α, γh)

2

]
. (3.28)

This procedure yields the joint probability distribution of α and γh, and
we can find and plot the 68%, 95% and 99% confidence limits as shown in the
results section below (fig. 3.3). Furthermore, we can marginalize each of the
parameters in turn to get the estimated standard error for a single parameter in
order to show the error bars on a plot. This is done by summing up the values
onto a single axis and again finding the value where some percentage of the data
falls within.

Of course there are many methods for optimizing and finding the likelihood
of variables. Because our case was rather simple, we chose a simple solution. If
we wanted to optimize in a parameter space of higher dimension, we could use
the more powerful Markov Chain Monte Carlo methods such as the Metropolis-
Hastings algorithm [32].

The Nelder-Mead method can quite easily get stuck in local minima, so one
has to be careful about this. In our case of only two free parameters, we have
checked that this is not a problem. As we will see in the next section, the
likelihood distribution is not bimodal in any way, so we are confident that the
method finds the correct minimum.

3.3 Results

In this section we present the results of the modelling as outlined in the previous
sections of this chapter. To refresh, we summarize the modelling steps here:

1. Obtain the rp, wp and error data from the measurements presented in
section 2.4.

2. Calculate the 1- and 2-halo terms of the model from the cluster sample
from equations 3.21 and 3.22.

3. Integrate over π to get the projected correlation function (eqn. 3.25).
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4. Fit the model to the data and calculate χ2 and likehood estimates of the
free parameters.

The code that enables this analysis is described further in appendix C.

3.3.1 Full galaxy sample

As with the measurements, we start out by looking at the full sample of COSO-
MOS galaxies with IAB < 26 and morphology < 20. Even though we introduced
the halo tilt parameter, is it illustrative to see how the halo model fits the data
with only the HOD slope α as a free parameter. The result is plotted in figure
3.1.
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Figure 3.1: The halo model fit (solid line) to the measured projected correlation
function of the full COSMOS galaxy catalogue. Dashed lines show the individual
1- and 2-halo terms. The model shows nice agreement with the data for α =
0.91± 0.053 and χ2 = 2.5.
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We see here how the model is able to fit very well to the data given only a
single free parameter. For reference we find α = 0.91±0.053, in good agreement
with recent studies (eg. [57], see table 3.1.3).

If we look at the figure in more detail, however, a slight discrepancy can be
seen in the 1-halo regime, where the dark matter profile seems to overestimate
the inner part and underestimate the outer part. This is good support for the
halo tilt parameter that we have introduced in section 3.2.1, and in figure 3.2
we plot the modelling with both α and the halo tilt as free parameters.
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Figure 3.2: The projected correlation function (points) with the full model (solid
line) and the 1- and 2-halo terms (dashed and dotted lines). The bottom panel
shows the tilted (solid) to the untilted model (dashed), indicating that the data
is better fitted by the tilted model in the inner part. A maximum likelihood
ratio test between the two models favors the tilted model with 5.2% confidence.
This test is a simple (maximum likelihood) case of the full bayesian evidence
calculation.
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The tilted model is a better fit to the 1-halo term of the measurements,
while the more uncertain outer region is fitted more poorly due to the tilting.
Other explanations for this discrepancy on intermediate scales might be that
this analysis requires a scale-dependent bias factor that we ignore. We will
discuss this further in chapter 4.

In figure 3.3 we plot the likelihood distribution with joint confident limits
of the α and γh fit. We see that the parameters are anti-correlated, so that
increasing one will decrease the other. This is expected because both parameters
will scale the correlation function as discussed in section 3.2.1. Marginalizing
this distribution in γh, we find that there is ∼ 5% chance of no tilt (γh = 1) for
this measurement.
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Figure 3.3: The 2D likelihood plot of the fitted α and γh parameters. The
contours show the 68%, 95.4% and 99.73% confidence intervals.

3.3.2 Varying galaxy properties

We now turn to the various subsamples of galaxies, selected in section 2.4.2, to
see how the HOD and halo tilt vary with galaxy properties. From the argu-
ments in section 1.3.2, we believe that the correlation function should be scaled
with galaxy properties, specifically we expect more massive, redder and more
elliptical galaxies to be more clustered, which should scale the HOD slope ac-
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cordingly. Regarding the tilt, which seemed to be favoured for the full galaxy
sample above, it will be interesting to see if there is any evolution with galaxy
properties.

We repeat the modelling steps with the tilted halo model and calculate the
joint likelihood distribution from which we marginalise onto the parameter axis
in order to show points with error bars in an α− γh plot.

In figure 3.4 we plot the results of the modelling on the correlation measure-
ments of each of the galaxy subsamples introduced in section 2.4.2.
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Figure 3.4: The results of the tilted modelling of the subsamples of galaxies,
showing the values of the model parameters α and γh with marginalised uncer-
tainties with respect to no tilt (dashed line). Left. Stellar mass and redshift:
(A) 9 < Ms < 10 and 0 < z < 0.5 (B) 8 < Ms < 9 and 0 < z < 0.5 (C)
9 < Ms < 10 and 0.5 < z < 1. Center. Morphology: (A) Ellipticals - S0 (B)
Sa - Sc spirals (C) Sd - Sdm spirals. Right. Color: (A) 2 < NUV − R < 3 (B)
1 < NUV −R < 2 (C) 0 < NUV −R < 1.

We see in this figure the evolution in the halo occupation and tilt with galaxy
properties. As expected, the more massive, redder and more elliptical galaxies
have higher HOD slope α. The tilt, on the other hand, seems to stay more
or less at a fixed value around 0.9. A tilt of 0.9 means that the galaxies are
clustered less steeply than the dark matter in the halo. Having fewer galaxies
in the next-to-central part of the halo (r < 0.1 Mpc/h) could be motivated
physically by having a central galaxy eating up massive satellites in close orbits
because of dynamical friction (eqn. 1.39). Likewise, a higher number of galaxies
in the outer region (0.1 < r < 1 Mpc/h) could be explained by the accretion of
subhaloes onto the main halo.

Table 3.3.2 lists the values for alpha and tilt for all of the measurements in
this project, and figure 3.5 collects all measurements in a single plot. From this
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plot we see that there might be a slight indication that the tilt evolves with α,
which would mean that more clustered populations are more tilted. As we find
that more massive galaxies are more clustered, this supports our thoughts on
dynamical friction of massive galaxies in close orbits.

Measurement α γh p(γh = 1)% #σ

Full sample 0.883± 0.061 0.897± 0.061 4.57 1.7
9 < Ms < 10, 0 < z < 0.5 1.483± 0.067 0.890± 0.041 0.34 2.7
8 < Ms < 9, 0 < z < 0.5 1.328± 0.060 0.852± 0.043 0.03 3.4

9 < Ms < 10, 0.5 < z < 1 1.031± 0.053 0.903± 0.035 0.32 2.7
Elliptical - S0 1.303± 0.057 0.890± 0.053 1.90 2.1

Sa - Sc 1.069± 0.050 0.914± 0.039 1.38 2.2
Sd - Sdm 0.834± 0.035 0.914± 0.031 0.31 2.7

2 < NUV-R < 3 0.952± 0.041 0.828± 0.052 0.05 3.3
1 < NUV-R < 2 0.707± 0.040 0.931± 0.049 8.11 1.4
0 < NUV-R < 1 0.631± 0.053 0.910± 0.062 7.33 1.5

Table 3.2: Table of modelling results with values of HOD slope α and halo tilt
γh. Rightmost columns show, assuming gaussian errors, the probability of no
tilt in percent and the multiple of σ this corresponds to.
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Figure 3.5: Collection of all points from fig. 3.4, including the result from the
full galaxy sample (black point). The dot-dashed line shows the best fit line
through the data, and we find the evolution to be just barely favored at the 5%
confidence level compared to no evolution (dotted line).

3.3.3 Alternative dark matter profile

Another interpretation of the halo tilt is that the dark matter profile was wrong
to begin with, ie. the NFW profile does not describe the dark matter profile
correctly, so we see a discrepancy in the galaxy correlation function. Further-
more, if we look at figure 3.2, we see that tilting the 1-halo term overestimates
the correlation function on intermediate scales (r ∼ 1 Mpc/h).

This could lead us to consider a profile that is more curved than the NFW
profile, but will still fall off rapidly at larger radii. Luckily, these are indeed
features of the Einasto profile. This profile does seem to show better agreement
with simulated dark matter haloes (see [40, 31]), so in this section we invent a
preliminary model of the 1-halo term using this density profile.

In its general form, the profile reads:

ln

(
ρ

ρ−2

)
= −

(
2

αe

)[(
r

r−2

)αe

− 1

]
, (3.29)

where r−2 is the radius at which the slope is −2 (isothermal), ρ−2 is the den-
sity at r−2 and αe controls the curvature of the profile1. Gao et al. [20] has

1Note that we have added the e subscript to distinguish it from the α of the HOD
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shown that this shape parameter can be connected to the halo mass through
the overdensity parameter ν:

αe = 0.155 + 0.0095ν2. (3.30)

The amplitude parameter ρ−2 is taken (arbitrarily) to be the same as the
amplitude of the NFW model, as we are not interested in exact figures, only to
see how the shape of the profile performs. This leaves us with one free parameter
(r−2) that we fit to the data along with the HOD slope α. The result is seen in
figure 3.6.
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Figure 3.6: Same as fig. 3.2, but using the preliminary Einasto model with 2 free
parameters. The bottom panel suggests that this model might be better than
the tilted NFW model at intermediate scales. The likelihood ratio test indeed
favors the Einasto model with a confidence of ∼ 16% over the tilted model and
∼ 21% over the untilted model.

We see clearly how this (rough) model using the Einasto profile in the 1-halo
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term can improve the fit to the data compared to the normal and tilted NFW
profiles. As the Einasto falls off more rapidly at larger scale, the correlation
function at intermediate scales is not overestimated. In section 4.1.2 we discuss
this result further.

At a reduced χ2 of 0.12, the model might seem to be overfitting. But as
we are only allowed to vary the amplitude and a single shape parameter, this
seems unlikely, and leads us to believe that the error bars are overestimated.
For reference, the reduced χ2 for the untilted model, where we can only vary
the amplitude, is 0.23.
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Chapter 4

Discussion

We will in this last chapter go into some discussion about where the results of
this project fit into the emerging view of galaxy evolution and the profiles of
dark matter halos, as well as some speculations about which topics might be
interesting to follow up on and develop further.

4.1 Results

4.1.1 Halo occupation distribution

The HOD is a very active research subject in the field of structure and galaxy
evolution[55, 57, 27]. We have seen in section 3.1.2 how this, together with the
mass function and halo profile, determines the correlation function that we can
measure from galaxy surveys or simulations. We have shown in section 3.3.2
that the HOD parameters vary with the galaxy population, so that eg. the
number of massive galaxies grows with halo mass (fig. 3.4) as expected from
the theory of galaxy evolution in section 1.3.2.

However, the COSMOS cluster catalogue is not well suited to constrain the
full profile of the occupation number because of the relatively narrow range of
masses. This can be seen by comparing the mass histogram of COSMOS clusters
(fig. 2.5) with a simulated HOD plot from Yan et al. [59] (fig. 4.1). Lower
mass haloes with only one or a few galaxies are excluded from the detection
method (section 2.1.3), as are the most massive super-structures. Halo finding
algorithms can yield a large number of haloes across a greater mass range when
used on large galaxy surveys, such as the Sloan Digital Sky Survey [60]. This is
done recently in eg. Tinker et al. [55], Tinker et al. [57], Leauthaud et al. [27],
and the large halo distribution puts better constraints on the HOD model.
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Figure 4.1: The HOD from simulations plotted for 3 different luminosity selec-
tions of galaxy clusters. Figure is taken from Yan et al. [59]. The vertical lines
indicate the mass range of COSMOS clusters.

The goal of the research in the HOD is a better understanding of galaxy
evolution, ultimately to the point where we can create a fully analytical model
of the HOD that fit the observations from the large galaxy surveys. We have
shown in this project that the HOD depend intimately on the properties of the
galaxies in question, so any such analytical model must be able to account for
this.

4.1.2 Dark matter profile

Another active research area of dark matter haloes is of course the density
profile. For some years the NFW profile has been the de-facto profile when
modelling dark matter haloes of all sizes, and much work is being done on the
apparent near-universality that such systems seem to show [eg. 22]. We have
briefly touched upon this topic when realizing that the discrepancy between
galaxy and dark matter profiles might be explained by the assumption of NFW
form in the 1-halo term, and subsequently introducing the Einasto profile that
has been favoured in recent years by numerical simulations [40, 31].

In order to fully use the Einasto profile in the halo modelling, we must relate
the mass of the halo to the profile properties, just as we in section 3.1.4 did for
the NFW profile. In section 3.3.3 we created a preliminary model, but a more
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formal treatment is required in order to promote the Einasto profile amongst
halo modellers. Even with this rough model, however, we show that it might be
worth considering this profile, especially if high precision modelling is required.
In that spirit, a direct comparison between a number of dark matter profiles in
the context of halo modelling would be very helpful.

4.1.3 Galaxy profile

In our question about relationship between the dark matter and galaxy pro-
files, there is a clear ambiguity between improving the dark matter profile (as
discussed above) and introducing discrepancies between the dark matter and
galaxy profile. Our initial choice was towards the later, which is why we intro-
duced the halo tilt γh as a tilt for the entire 1-halo term in stead of just the dark
matter profile ρdm. The net result for the profile shape is exactly as if we had
tilted the dark matter profile itself, which is why the discussion in the previous
section is still valid.

But going back to the original question, we could also say that the NFW
profile might describe the dark matter, while the tilted or Einasto profiles de-
scribe the galaxies. Ie. the difference from dark matter to galaxy profile is the
difference between the NFW and the best-fit Einasto profile. The reason that
the former explanation might be preferable is of course that according to sim-
ulations, the Einasto profile might be a better fit to the dark matter profile as
well, in which case the Einasto fit in figure 3.6 seems to suggest that the dark
matter and galaxy profiles are actually very close.

If we look at it from the other angle, eg. using the galaxy transformations
discussed in section 1.3.2, there seems to be many ways that the galaxy profile
could differ from the dark matter density. If cluster galaxies undergo mergers,
stripping and harassment, any displacements from the correct position (in the
sense that they follow the dark matter profile) would have to be reverted quickly
enough that it would not give us a signal when averaged over clusters. This
doesn’t seem like a tough constraint, but there is another process that could
cause the galaxy profile to be altered, namely dynamical friction. As explained
in section 1.3.2, dynamical friction causes massive galaxies to loose angular
momentum to the environment, and effectively spirals the galaxy into the center
of the cluster potential. The time it takes for a galaxy of mass M to move to the
center the cluster because of dynamical friction can be approximated by [35]:

tdf ≈
1.17

ln(Mh/M)

Mh

M

1

10H(z)
, (4.1)

where Mh is the mass of the halo and 1/H(z) is the age of the Universe (Hubble
time). This shows us that the galaxy must be very massive (Mh/M > 15) to
spiral in from the edge of the halo in the age of the Universe. This tells us that
it will happen very rarely, but also that it might be possible to detect in the
galaxy profile for a sample of massive galaxies, perhaps at larger redshift where
structures were less equilibrated. In the left panel of figure 3.4 however, where
we vary exactly the galaxy mass and redshift, we see no clear evidence for this.
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Figure 3.5, does actually indicates a slight evolution of the tilt with increasingly
concentrated populations, but future studies in these regions might tell us more.

These novel investigations is also the subject of a forthcoming paper by Brink
et al. (MNRAS), which is currently in its final stages.

4.2 Future developments

4.2.1 Improvements

The approach of this project has been to use only data in the constraining pro-
cess, while the approach of others working with halo modelling often includes
results from N-body simulations mimicking the survey from which the obser-
vations are obtained (eg. Tinker et al. [57]). When using simulations, they
are able to improve the estimation of a simplified quantity in the model of the
2-halo term, namely the clustering bias bc. In the derivation of the bias in sec-
tion 1.3.1 we completely ignore higher order and scale-dependant effects, but
there is evidence that this must be considered when trying to model correlation
measurements to higher precision [8]. An improved model might use a bias ex-
pression from simulations but measuring this effect on real data is of course a
goal in itself.

Another room for improvement might be in the semi-analytical relation be-
tween the halo mass and the parameters of the dark matter profile. In section
3.1.4 we derived the concentration and scaling parameters of the NFW profile
from the cluster mass, but these relations are just approximations, motivated
again by simulations, that might be improved. In a forthcoming paper by J. B.
James et al., we investigate the relation between mass and concentration using
the same data and measurements as in this project.

4.2.2 Opportunities

Because of the importance of the HOD in the halo modelling, it might be in-
teresting to make direct measurements of the occupation number in COSMOS
clusters for various cluster and galaxy populations. We still have to take care
of survey selection effects that eg. cause us to find a higher fraction of mas-
sive galaxies at higher redshift simply because we do not see the less luminous
galaxies. If properly handled, though, direct HOD measurements in COSMOS
and other catalogues could improve the HOD models which in turn improves
our understanding of galaxy evolution. One could also take a non-parametric
approach and investigate how HOD distributions are scattered with galaxy prop-
erties without assuming any model. This would serve to give an unbiased view
of how different galaxy populations have evolved in the dark matter haloes.

Continuing on the track of non-parametric modelling, another very impor-
tant problem in cosmology is the estimation of the large-scale dark matter den-
sity field from galaxy surveys. This project shows clearly how different galaxies
are distributed different according to the environment, so we might expect meth-
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ods of estimating the large-scale structure to improve if more galaxy properties
were considered. Improving such estimates could improve the estimation of
cosmological parameter such as the matter density parameter Ωm.

And when talking about cosmological parameter estimation, it is clear from
recent papers by Tinker et al. [57], Leauthaud et al. [27] that halo modelling
has the potential to improve the constraining power from galaxy surveys, one
of only a handful of cosmological probes. Improving this precision, by eg. using
the Einasto profile as argued in the previous sections, might have a positive
effect on the parameter estimates.

4.3 Conclusions

In this project we have gone from the theoretical basis of structure formation
to the measurement of the two-point cross-correlation function between clusters
and galaxies in the COSMOS field. These measurements are analysed using
the halo model approach, a statistical description of structure in the Universe,
and the results of this modelling is discussed along with future prospects in this
field.

The measurements are obtained by carefully handling the selection effects
of the COSMOS survey, and we introduce the measurement for various galaxy
populations based on the stellar mass, color and morphology of the galaxies. To
the best of our knowledge, this has not been done with the COSMOS data using
the cross-correlation with X-ray selected galaxy clusters, and therefore provides
a unique opportunity to investigate the evolution of galaxies with respect to
their large-scale environment.

We introduce the concept of the halo model and the how the correlation
measurements can be modelled given expressions for the linear dark matter bias
factor, the halo occupation distribution and the dark matter halo profile. A
prime focus is on the potential discrepancy between the density profile of dark
matter haloes and the galaxies residing herein. To that end, we introduce a
novel parameter, the halo tilt, and investigate the evolution of this parameter
with different galaxy populations. We find that there is strong evidence for the
introduction of a tilt to the NFW profile, but that we cannot distinguish between
the discrepancy between dark matter and galaxies and the potentially wrong
choice of dark matter profile. Creating a preliminary model with the Einasto
profile, also novel work, we show that the model is improved considerably. We
acknowledge that a more rigorous future investigation could be important for
the continued development of the halo model framework.

Lastly, the measurements and analysis of this project has been prepared
in a paper, soon to be released. An outline of the code behind the project is
included and we will work towards releasing this to the general public in the
coming months.
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Appendix A

The Standard Model of
Cosmology

A.1 Observational basis

A.1.1 Hubble’s law

A pivotal event in the history of cosmology, and physics in general, occurred
when Hubble, among others, first presented findings of galaxies receding from
Earth with velocities proportional to their distances:

v = H0d (A.1)

, where H0 is the Hubble constant of proportionality, measuring the rate at
which the Universe is currently expanding. With measurements of distances to
what had recently been discovered to be extra-galactic objects, Hubble showed
a plot of this proportionality with large error bars due to large systematic errors
in the distance measurements. His first estimate of the Hubble constant was also
terribly wrong, but he nevertheless started a revolution in the scientific world
view from a static Universe to an expanding one, and laid the foundations for
the Big Bang theory that follows intuitively as the initial state of an expanding
Universe. As we will see shortly, the Hubble constant is a very important
concept in modern cosmology that influences the dynamics of the Universe and
its contents.

A.1.2 Cosmic Microwave Background

As a great support for and at least as important as the discovery of an expand-
ing Universe, is the discovery of the Cosmic Microwave Background radiation
(CMB). The CMB was first seen more or less by accident by Penzias and Wilson
in 1964 after being predicted by various independent researchers from around
1948 up to its discovery. Since then, many observations have been made from
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telescopes and high-altitude balloons to measure the CMB signal across the sky,
and today the CMB is the most important tool for constraining models of our
Universe.

The most revolutionizing measurements came with the COBE satellite re-
sults published in 1992 [] that showed remarkable agreement with predictions of
anisotropies of the order∼ 10−5 and a black-body spectrum with a characteristic
temperature of ∼ 2.7. Recently, the WMAP satellite has greatly improved the
resolution of these measurements and the next generation, the Planck mission,
is already releasing their first data. Figures A.1 and A.2 shows the WMAP map
of the CMB across the sky and the extremely well fitted black-body spectrum,
respectively.

Figure A.1: The WMAP CMB temperature map relative to the mean tempera-
ture map corrected for the dipole anisotropy due to the Sun’s motion relative to
the CMB and with foreground contamination from the Galaxy removed. The
anisotropies shown here are of the order ∼ 10−5.
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Figure A.2: The fit of the black-body spectrum (solid line) with a temperature
of T = 2.725 to the WMAP data (crosses). The error bars are hidden behind
the solid line.

A.2 Friedmann-Robertson-Walker spacetime

The framework in which we describe the Universe on large scales is General rela-
tivity. This theory, relating the energy contents and the 4-dimensional spacetime
geometry of the Universe to what we know as gravity, was first theorized by Ein-
stein [16] and has been confirmed to high accuracies in the course of the last
century, lately by the final results of the Gravity Probe B satellite [18]. This
relation is set out in the Einstein field equation (EFE)1:

Rµν = 8πG(Tµν −
1

2
Tgµν), (A.2)

where Rµν is the Ricci curvature tensor describing the curvature of spacetime,
G is Newton’s gravitational constant, Tµν is the Stress-Energy tensor describing
the energy inventory (such as mass and radiation) and finally gµν is the met-
ric describing the geometry of spacetime. Although this equation looks quite
simple, it is most definitely not. The Ricci tensor is related to the metric in a
non-linear way. But the basic idea, that I can give you a description of the con-
tents and you can then calculate the geometry and curvature of the Universe,
remains very simple and powerful, and we can usually simplify the calculation
of the EFE using physical knowledge of the system we wish to describe.

1Note that we work in units of c = 1
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Even though its hard to believe when we look at the sky at night, the Uni-
verse is assumed to be very much the same everywhere. This idea of course leads
to simplifications of the description of the geometry, encoded in the metric, and
the spacetime of such a Universe is said to be isotropic and homogeneous: the
Universe looks the same in all directions and is the same everywhere. Observa-
tions of the real world, however, suggest that this simplification might be a bit
of a stretch; the Universe is expanding, and thus cannot be static in time. The
solution to this is that the Universe is isotropic and homogeneous in space but
evolving in time. The metric in such cosmologies, the description the geometry
of spacetime, can be written:

ds2 = −dt2 +R2(t)dσ2, (A.3)

where R(t) is the time-dependant scale-factor scaling the symmetric space met-
ric dσ2 in time. By assuming spherical symmetry we can rewrite dσ2 in terms
of the curvature parameter κ and the angular metric dΩ2:

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
, (A.4)

where a(t) is the dimensionless scale factor. This is called the Robertson-Walker
metric, an important result for working with cosmology in the context of General
Relativity. With ds2 = gµνdx

µdxν , we only need a description of the energy-
momentum in Tµν and its trace T to solve the Einstein equation. For this
we make another simplification, namely that everything in the Universe can
be described as a perfect fluid with density ρ and pressure p. The energy-
momentum tensor and its trace can be written in terms of these properties, the
momentum Uµ and the metric:

Tµν = (ρ+ p)UµUν + pgµν T = −ρ+ 3p. (A.5)

This calls for a relationship between density and pressure, often called the
equation of state:

p = ωρ, (A.6)

which we will define for the various components of the Universe in the next
section. If we consider conservation of energy, we obtain a relation between the
density of the universe and the scale factor that will be useful later:

ρ ∝ a−3(1+ω). (A.7)

The EFE with FRW metric and perfect fluid stress-energy tensor yields the
Friedmann equations:

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
(A.8)

ä

a
= −4πG

3
(ρ+ 3p). (A.9)
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The first of these is often simply referred to as the Friedmann equation,
which we can simplify by identifying the Hubble parameter as H = ȧ/a and
define the density to be a sum of the density contributions from the different
types of energy content. The Friedmann equation (A.8) now reads:

H2 =
8πG

3

∑
i

ρi. (A.10)

Notice that we have transformed the curvature term into an energy density
analog:

ρcu = −3κ/(8πGa2). (A.11)

This merely makes the equations simpler and does not mean that curvature
is a kind of energy in the Universe. We don’t believe that the universe is
completely homogeneous and isotropic except on the largest scales. Indeed,
locally the Universe is highly inhomogeneous, and this project is concerned with
understanding these variations in detail. In the later sections of this chapter
we will work our way down the scale-latter, but when describing the global
dynamics of the Universe, these approximations are well justified by e.g. CMB
measurements.

A.3 Cosmic inventory

Having set up the Friedmann equations that govern the evolution of the Uni-
verse, it’s time to put in some content. Motivated by equation A.7, we assume
that the evolution of the energy density of any component can be written as a
powerlaw in the scale factor a:

ρi = ρi,0a
−ni , (A.12)

where ρi,0 is the energy density of component i at present time and ni is the
power law slope related to ω by wi = 1

3ni − 1. The problem has then been
reduced to finding values for n or w for a Universe where the components behave
as perfect (smooth) fluids.

Matter, in the cosmological context, is the non-relativistic pressureless com-
ponent of the energy distribution. With this realization we can guess how the
energy density of matter will evolve with the scale factor, namely ρm ∝ a−3.
This is because as the universe expands with a, the volume will grow as a3, and
the density ρ = energy/volume will decrease the same amount assuming the
amount of energy is conserved. Note that ”matter” here stands for both the
baryonic matter that make up the visible part of the Universe and a cold dark
matter component that does not interact electromagnetically.

The argument is the same for radiation, except in that case the expansion
of the Universe also increases the wavelength of the photons in addition to
spreading it across a larger volume. Therefore, the evolution of the energy
density of radiation is ρr ∝ a−4. The assumption that no photons are created
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is of course not true, as we see a lot of stars in a lot of galaxies emit a lot of
photons. However, if we compare the estimated total energy density of starlight
to that of the early Universe, we find that it is only around ∼ 10% [46, chapter
5.1].

In addition to the more obvious components of energy, general relativity
permits the existence of an energy density embedded in the vacuum of the Uni-
verse itself, in the form of a vacuum energy ρΛ, in cosmology often referred
to a Dark Energy. This was first introduced by Einstein in order to obtain a
solution to his equations that would allow the Universe to be static, as was
rightfully believed at that time. Einstein later called this his greatest blunder,
but in modern cosmology this term has found renewed interest as the cosmolog-
ical constant because it can explain the accelerated expansion of the Universe
that we are observing. The energy density of the cosmological constant is by
definition constant, so there is no evolution in a and the value at all times is
just the present value ρΛ = ρΛ,0.

Lastly, the evolution of the fictional curvature energy density, along with its
amplitude, is given by its definition in equation A.11. Below we present a table
of the values of ω and n from the motivations above:

Type ωi ni
Matter 0 3
Radiation 1/3 4
Curvature -1/3 2
Constant -1 0

Before we present the final version of the Friedmann equation, we will intro-
duce the dimensionless density parameter at present time Ωi = ρi,0/ρc, where
the current critical density is ρc = 3H2

0/(8πG). From equations A.10 and 1.2
we have:

H2 = H2
0 [Ωma

−3 + Ωra
−4 + ΩΛ + Ωca

−2]. (A.13)

This equation is the standard equation of cosmology in the sense that specify-
ing H0 and the Ωis determines the evolution of the scale factor of the Universe.
By probing the Universe on the largest scales, this is exactly what cosmolo-
gists are trying to do today. Several experiments, from the measurement of the
CMB anisotropies and the distribution of matter to the accelerated recession
of supernova galaxies, have given us the values of these parameters to increas-
ing accuracy and in figure A.3 we plot the evolution of the scale factor a with
cosmic time for the best-fit values. Cosmic time, the time t of the Robertson-
Walker metric (A.4), can be calculated from a by recalling that Ha = da/dt,
multiplying both sides of A.13 with a2 and integrating over dt:

H0t =

∫ a

0

[Ωma
−3 + Ωra

−4 + ΩΛ + Ωca
−2]−1/2da (A.14)
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Figure A.3: The evolution of the scale factor a with cosmic time t (solid line).
Values of a for present (dashed line), the matter-Λ equality (dotted) and matter-
radiation equality (dash-dotted) are also plotted. Values for the parameters are
Ωr = 5 · 10−5, Ωm = 0.3, ΩΛ = 1.0− Ωr − Ωm ≈ 0.7 for a flat Universe.

We see in figure A.3 that the Universe with the paramter values that we
have currently measured will continue to expand in the future, driven by the
cosmological constant.
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Appendix B

N-body simulations

We are not using specific results from simulations in the analysis parts of this
project, but many of the insights of structure formation are given or motivated
by simulations. So an account of structure formation would not be complete
without an outline of the most important techniques used in numerical N-body
simulations, the subject of this section.

B.1 N-body dynamics

Modern simulations contain a lot of different physics to explain systems in more
and more detail, but one thing sits at the center of any simulation: gravity. The
basic problem that simulations try to solve is that of calculating the force on
a particle due to the N-1 other particles, hence the name N-body simulations.
We can also think of it as calculating the gravity between pairs of particles and
summing up the net force due to Newton’s law in a Universe expanding with
the scale factor a [43]:

dx

dt
=

v

a
(B.1)

dv

dt
+Hv = g (B.2)

∇ · g = −4πGa[ρ(x, t)− ρ̄(t)], (B.3)

where x is the position and v is the velocity of the particle and a and H = ȧ/a
are given by the cosmological model. If we define the time variable s =

∫
a−2dt,

the first two equations simplify to a single second order differential equation:

d2x

ds2
= ag. (B.4)

Calculating the force between every particle pair is still highly ineffective,
but a slew of optimizations have been developed. The first and perhaps most
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obvious is that of the hierarchal tree algorithm [4] where the field is split into
a recursive hierarchy of cells so that cells of size l that are a distance d from x,
the point where we want to calculate g(x), is treated as a single particle if the
angle is less than a small value θ:

l

d
< θ, (B.5)

where we can then vary θ to determine the precision of the calculation versus
computing time.

Another popular method is the so-called particle-mesh (PM) method [34]
where the gravitational potential is confined to a grid of a chosen resolution.
The density field ρ is estimated at each grid by counting up the mass from
nearby particles using an appropriate interpolation method. The density field is
then transformed to Fourier space where it is faster to solve Poisson’s equation
for the gravitational potential:

φ̃(k, t) = −4πGa2 ρ̃(k, t)

k2
(B.6)

and back again to real space where the gravitational acceleration is calculated
from eq. B.3 and in turn interpolated back on the particles using the same
interpolation method as for the mass assignment.

Variations of these methods exists, like an adaptive mesh algorithm that
splits the space into smaller grids when needed or even falls back to pair calcu-
lation in dense environments.

B.2 Gadget

One of the most popular codes for cosmological simulations is Gadget and more
recently Gadget-2 by Springel [51]. This code is a highly parallelized code that
uses the PM method for calculation of long range interactions and the tree
algorithm on short range where the PM method is most inaccurate due to the
interpolation on a grid. It is the Gadget-2 code that has been used in the
Millennium simulation, and as such is highly proven.

To simulate gas dynamics, Gadget-2 uses the smooth particle hydrodynamics
(SPH) technique that solves the fluid equation for baryons in an expanding
universe by smoothing the mass of baryons out with a variable smoothing length.
This method fits well in with the tree and PM algorithms, as the same techniques
can be applied to find particle neighbors included in the smoothing window.

Gadget-2 is a highly portable code that uses the GSL and FFTW libraries.
It is parallelized using the MPI message parsing library, making it possible to
run simulations on your laptop or the biggest supercomputers. The details of
the parallelization methods are complicated, but the basic idea is to divide the
3D space of particles into a 1D vector and splitting this into an appropriate
amount of samples that are then distributed onto the processors.
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Of course, many other codes exist that uses other or similar techniques, but
the basic arguments are mostly the same. See Aarseth [1] for a recent review of
N-body/SPH techniques.

B.3 Analysis

The output of a simulation is of course the full field of particle positions and
velocities, but it is of course impossible to compare this directly to theory or ob-
servations, since the theory of structure formation cannot predict the detailed
structure of individual haloes and because observations are subject to selec-
tion effects of the survey and other uncertainties. We must turn to statistical
comparisons of the particles, velocities or the interpolated density field.

In previous sections in this chapter we have talked about the power spec-
trum a great deal, and measuring the power spectrum of from the particles
in the simulation output is of course an obvious choice for comparison. A re-
lated statistics is that of the two-point correlation function that is the Fourier
transform of the power spectrum. Many other informative statistics exists as
reviewed in Bertschinger [6].

Another analysis that is often employed on simulation output is halo finding.
In section 1.3.1 we introduced the dark matter halo as the primary dark matter
structures in nonlinear theory, and we would of course like to test both theory
and simulations by comparing, say, the mass function from theory and from
simulations. But the definition of a halo is not very well settled upon and so the
result of the comparison might vary with the choice of halo-finding algorithm.
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Appendix C

PyHalo software library

For this project we have developed a Python code that supports statistical mea-
surements on large catalogues of galaxies and clusters, such as the measurement
we present in chapter 2, as well as modelling of these measurements using the
theory of the halo model presented in chapter 3.

We will first give a brief motivational speech about why Python is cool and
then move on to describe the code we have developed. In the coming months,
we hope to untangle the code from the specific problems of this project and
make it publicly available. It can serve as a platform for research in cosmology
or learning about numerical cosmology in general.

Many of the functions in this library has been tested using the Cosmology
Routine Library in Fortran by Eiichiro Komatsu 1.

C.1 Motivation

There are many reasons for using Python in scientific research, but here we will
highlight two important points. A lot of research is about investigating things
quickly, to get a handle on the validity of an idea, and not spending a large
amount of time developing robust code. Python is a very easy language for
doing this, as you can get good results with a small amount of code. Because it
is very simple, you don’t have to worry about uninteresting infrastructure, such
as reading files or dealing with strings, something that can be a pain in more
low-level languages such as C or Fortran. Of course this comes with a trade-off:
speed. Low level, compiled languages are much faster to run code, but the time
for writing the code is usually much higher. Luckily, if Python simply is not
fast enough for you, there are several ways of improving this, as we will show in
section C.5. The general idea is that you should write your code in python to
get results fast. If anything is too slow, isolate it in separate function that you
can then optimize.

1http://gyudon.as.utexas.edu/~komatsu/CRL/
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The other merit that we will highlight about Python is that it is publicly
available and runs on any (and every) computer you might have. This sounds
like a soft value, but it is a very important aspect. Coupled with the Py-
lab environment2, Python provides an environment that can be compared to
those of Matlab and IDL, but these environments are proprietary and expensive.
Granted, the Python environment might not feel as much as a single product,
and it can be hard to navigate the different technologies as a newcomer, but
this is also a strength. Because Python and its libraries are open, anyone can
contribute and chances are that someone solved your problem. With increasing
popularity, the Pylab environment is improving accordingly.

C.2 Cosmology

The first class of the library deals with the cosmology that you will work in. It
defined the most important cosmological parameters and provides functions to
work with the cosmology.

When you initialize it without arguments, you simply get the default cos-
mology based on the WMAP7 data. You can change any of the parameters
afterwards and recalculate derived parameters. Below is an example of initializ-
ing the Cosmology class. Note that we assume that the pylab module is loaded
in the variable p and that the everything from the PyHalo module is imported.

lcdm = Cosmology()

print lcdm.om_0 #> 0.272

lcdm.om_c = 0.25

lcdm.update()

print lcdm.om_0 #> 0.3

Here we initialize the cosmology, change the cold dark matter density pa-
rameter Ωc, update the derived parameters and see the new value for the total
matter density Ω0.

Given a scale as an initialization argument, the cosmology class will calculate
other functions of interest, such as the power spectrum and two-point correlation
function of matter on these scales. It automatically calculates the primordial
power spectrum and evolves it to the present time using the transfer function
of section 1.2. To plot the base power spectrum, you simply issue:

scales = p.logspace(-2,2,1000)

lcdm = Cosmology(scales)

p.loglog(lcdm.k, lcdm.ps)

To get the power spectrum at different redshifts, you can scale this base
spectrum with the growth(z) function.

2A conglomerate of various Python libraries: NumPy, Scipy, Matplotlib, iPython and
others.

69



C.3 Halo

The next class we will introduce is the Halo class that represents dark matter
haloes. These objects require at least three arguments on initialization: the
cosmology, the mass and the redshift of the halo. Given these, a halo object
will be returned that includes values for important parameters of the halo, such
as the radius, the overdensity parameter ν, the bias factor for objects at that
redshift and mass and the dark matter density profile of the halo. So, for
instance, to get the density profile of a dark matter halo:

scales = p.logspace(-2,2,1000)

lcdm = Cosmology(scales)

h = Halo(lcdm, 1.0e13, 1.0)

p.loglog(scales, h.profile)

This plots the density profile of the halo from the halo mass and redshift
by scaling the power spectrum with the growth factor and going through the
calculations of section 3.1.4 to get the NFW parameters that determine the
profile.

The Halo class also has functions ie. to return the correlation function of
subhaloes and galaxies based on the halo occupation distribution of section 3.1.3
and the correlation function of the linear dark matter field at that redshift and
scale.

C.4 Modelling

When dealing with data you often want to test different models in order to de-
scribe the data best, constrain different parameters and generally just compare
models. Th PyHalo framework makes this easy by providing a base Model class
that can be subclassed to define a testable model. For the moment it only works
for the measurements that we are modelling in this projects, but plans are in
order for generalizing this to other measurements.

Lets make a simple example for illustration. Suppose you have some mea-
surements of the two-point correlation function of galaxies in a large survey,
and you wish, ignorant as you are, to fit these models to a simple power law.
We create a subclass of the Model class and define a single model method that
takes a set of parameters, in this case the scale and slope of the power law, and
returns a power law that can be fit to the data:

class MyPowerLaw(Model):

def model(self, params)

scale, slope = params

return scale*self.r**slope
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where we have used the scales r.
The data can now be fit to the model by calling the fit method with data,

errors and initial guess in your model object initialized with r:

scales = p.logspace(-2,2,1000)

model = MyPowerLaw({’r’: scales})

data, errors = make_measurements()

params = model.fit(data, errors, [1.0e4, -1.5])

print params # prints best fit parameters

In general you’d want to implement better models (eg. based on the Halo

class), but it’s as easy as that. For the moment, only a simple optimization
algorithm is used, but more sophisticated ones are being implemented. We also
support likelihood calculations that can be used to get uncertainties of the fitted
parameters.

C.5 Optimizations

The last section of this appendix is devoted to the optimization of Python code
in the context of scientific computing. Python has the advantage of being easy to
write, but in demanding scientific applications it is not always efficient enough.
In this project we have combined two different methods for speeding up the
critical calculations.

C.5.1 Fortranization

The first thing one should do is to write the Python code as efficient as possible
and use the NumPy methods if working with arrays or matrices. But if that
is not enough, there are ways to run more low level code from Python. In this
case we use Fortran, as a matter of preference, but we could just as well have
used C or C++.

For running Fortran code from Python we use the F2Py library that is a part
of the SciPy package. This command takes any Fortran file with subroutines
and creates an importable Python module that contains these functions. In that
way, you can focus on rewriting your critical calculations in Fortran in stead of
the very time-consuming task of rewriting the entire code.

In our case, the critical function was the calculation of pair separations
needed to calculate the correlation function. For the smallest combination of
∼ 1e5× 3e2 pairs, this would take ∼ 20 minutes in Python, and for the largest
datasets, this could not be done. In the analogues Fortran code, the time it
takes to do the pair counts of the small dataset is barely noticeable, while the
big calculation takes ∼ 5 minutes.

Nothing has to change in the Python code other than you have to import the
Fortran module as you would any other Python module and call the function
from it.
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C.5.2 Parallelization

While we could reduce the time of the pair count calculation to around 5 min-
utes, this was still along time when we have to make a bunch of measurements
in a row.

Most modern computers come with multi-core CPUs, so they can perform
multiple calculations at once. Python programs does not do this by themselves,
however, and the developer has to write code that supports the fairly compli-
cated paradigm of parallel computing. This is true of my laptop, a 2.5 year
old MacBook Pro, so speeding the calculation up another factor of 2 should in
principle be possible.

Python comes with support for making Threads, small lines of execution that
seem to run simultaneously. They don’t however, because they are restricted by
something called the Global Interpreter Lock that locks the Python interpreter
to a single processor core. A way to go around this problem is by spawning
several Python interpreters and communicate between them, and there is of
course a Python library in newer version of Python that makes this easy: the
multiprocessing module.

Using this module, it is a matter of a few lines of extra code to spawn any
number of processes that executes any python function on any data. The return
value of this function is a map of the results from each of the processes, and
it is easy to reduce this to the usual result by eg. summing over these. The
following code snippet shows an example of calculating a simple function across
5 processors:

calculation = lambda x: x**2

x = p.linspace(0,10,1000)

# Serial version

print sum(calculation(x))

# Parallel version

from multiprocessing import Pool

procs = Pool(5)

result = procs.map(calculation, p.array_split(x,5))

print sum(result)

So in this project we use Python to distribute data to a bunch of Python
processes that run Fortran code and improve the time of calculation from forever
to a couple of minutes. In the old way, a Fortran program could be parallelized
by using MPI (or similar), writing much more code and thinking very differently
about your program. Using the method presented here, you can very quickly
get to a fully competitive code without growing old as you type.
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