
N i e l s  B o h r  I n s t i t u t e

F A C U L T Y  O F  S C I E N C E
U N I V E R S I T Y  O F  C O P E N H A G E N  

Continuous Wave
Single Photon Transistor

with Rydberg Atoms

Main Supervisor: Anders Søndberg  Sørensen
Co-Supervisor: Oleksandr Kyriienko

Iason Tsiamis

Master’s Thesis



Abstract

In this thesis we develop a model of a single photon transistor, which consists of an ensemble
of Rydberg atoms located inside a single-sided cavity, coupled to two driving fields. A ’signal’
field incident on the ensemble can be reflected or lost, conditioned by the absence or presence
of a ’control’ field that is mapped to a collective Rydberg excitation, which leads to Rydberg
blockade. The advantage of the current proposal compared to previous models, is that driving
fields are continuously turned on throughout the entire protocol, leading to the continuous wave
version of the single photon transistor, under impedance matching condition for a signal photon.
Another advantage of our proposal, is that through Rydberg induced dephasing of the long lived
Rydberg excitation, the protocol can lead to blockade of strong coherent multiphoton field.
This long lived Rydberg excitation is possible, since the blocked signal field induces an e↵ective
dephasing on the excitation, through its loss. The proposed device, could be alternatively used
as an e�cient optical single-photon detector.
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Chapter 1

Introduction

Since the original proposal of a photon as a quantum of light in 1905 by Einstein, and its
discovery by Compton in 1923, the field of quantum optics has always been in the frontline of
the modern quantum science and technology.

One of the most recently discovered properties of quantum optical systems, is that they
can serve as suitable platforms for the implementation of quantum information processing
(QIP). The initial idea of quantum information processing was suggested by Feynman in 1982,
motivated by the inability of classical computers to give quantitative predictions about the
complicated quantum systems. Ever since, the field of QIP attracted massive scientific atten-
tion, being actively developing in the 1990s both from theoretical and experimental point of
view. This triggered the growth of quantum technologies, for instance leading to proposals and
implementation of secure communications protocols, e.g. quantum key distribution. Finally,
the ultimate goal of inventing a universal quantum computer can be foreseen in the nearest
future.

The rapid evolution of the quantum technologies demanded, the development of e�cient
tools - quantum gates - to control and modify quantum signals. These devices commonly rely
on the optical and microwave signals, serving similar role to controls in conventional electronics,
and are largely insipired by the preceding classical electrical circuits. One of the devices from
this family is an optical quantum transistor, being an analog of a classical field e↵ect transistor.
Similart to its electronic counterpart, it is a device where a small optical ’control’ field is used
to switch on and o↵ the propagation of another optical ’signal’ field via a nonlinear optical
interaction. The fundamental limiting case of an optical quantum transistor is a single-photon
transistor, where the presence or absence of a single photon in the gate field, controls the
propagation of the ’signal’ field. The single photon transistor was proposed by Chang et.
al. [1] for an atom coupled to a nanowire in 2007 and several alternative schemes have been
proposed and realised experimentally the past decade.

In this thesis we study a single photon transistor model, which consists of an ensemble of
Rydberg atoms located inside a single-sided cavity, coupled to two driving fields. A ’signal’
field incident on the ensemble can be reflected or lost, conditioned by the absence or presence
of a ’control’ field that is mapped to a collective Rydberg excitation, which leads to Rydberg
blockade. An advantage the current proposal compared to previous models, is that driving
fields are continuously turned on throughout the entire protocol, leading to the continuous
wave version of the single photon transistor. This largely simplifies the protocol and possi-
ble experimental realization of the transistor. The scheme relies on the impedance matching
condition for a signal photon, working in the presence of a probe, on the contrary of previous
proposals. Namely, once we send the single-photon ’control’ signal, it can be mapped to a
very long lived Rydberg excitation exploiting the dephasing processes imposed by the pobing.
This leads to the blockade and reflection of a coherent multiphoton field, where the number
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of scattered probe photon defines the gain transistor. Noteworthly, the proposed device could
be used also as an e�cient optical single-photon detector. In this case the protocol allows for
the detection of a presence or absence of the single control field by measuring the reflected
signal field . The e�cient multiphoton blockade is enabled by the long lifetime of the Rydberg
excitation, potentially leadung to the detection with large signal-to-noise ratio.

The thesis outline is:

Chapter 1 (current chapter) presents the motivation and objectives of this thesis.

Chapter 2 introduces open quantum systems, a formalism to describe them, and an e↵ec-
tive method to significantly simplify the treatment of these systems.

Chapter 3 describes the interaction of a ⌅-scheme atomic ensemble coupled to two fields
and its scattering dynamics for di↵erent systems. The studied systems are the atomic ensemble
being confined inside a single-sided cavity, 2) being confined inside a two-sided cavity; and 3)
being in the free space, where corresponding analogy between the free space and cavity model
is derived. Finally the single-sided cavity case is described for the case an atomic ensemble of
Rydberg atoms.

Chapter 4 derives the necessary conditions for the ’control’ field to be impedance matched to
the Rydberg excitation, responsible for the blockade of the ’signal’ field and stay there until it
dephases.

Chapter 5 describes the e↵ective dephasing introduced to the Rydberg excitation, respon-
sible for Rydberg blockade induced by the decay of the blockaded ’signal’ field.

Chapter 6 outlines the protocol of the proposed continuous single photon quantum tran-
sistor by making use of the results derived in the previous chapters.

Chapter 7 concludes on this work and provides an outlook for further research on this topic.
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Chapter 2

Open Quantum Systems

The axioms of quantum mechanics describe the behaviour of closed quantum systems that do
not interact with their surrounding environment. Unfortunately, ideal closed quantum systems
do not exist in nature and the measurements (observations) we make, are limited to a small
fraction of a much larger quantum system. The inconsistency of the basic formalism of quantum
mechanics with the description of open quantum systems, lies in the fact that through their
interaction with their environment, they become correlated with it. As a consequence of these
quantum correlations, system and environment can no longer be considered 2 di↵erent systems
but a whole entity, described by an entangled pure state, that is no longer seperable. The open
system is described by a mixed state, and its evolution is not unitary.

2.1 Density Operator

A system in a mixed state, that is a probabilistic ensemble of pure states, cannot be described
by a state ket as one in a pure state. In order to describe it, we need to introduce the notion
of the density operator

⇢̂ =
X

i

pi | ii h i| . (2.1)

The sum is over a statistical ensemble, where pi is the probability of the system being in the
i-th state of the enemble | ii, given that ket states are normalized, meaning h i| ii = 1. Since
pi is a probability, it is clear that the following relations are satisfied

0  pi  1,
X

i

pi = 1,
X

p2i , 1 (2.2)

tr⇢̂ =
X

n

h n| ⇢̂ | ni =
X

n

X

i

pi h n| ii h i| ni =
X

i

pi h i| ii =
X

i

pi = 1. (2.3)

The last equality shows that the trace of the density operator is always 1, since pi is a probability.
A special case of the density operator is when all pi vanish, except for the j-th one, pi = �ij,
where we obtain

⇢̂ = | ji h j| , (2.4)

this is the density operator for the pure state | ji. From which we get the following property

⇢̂2 = | i h | i h | = | i h | = ⇢̂, (2.5)

for a pure state, and
⇢̂2 =

X

i

X

j

pipj | ii h i| ji h j| 6= ⇢̂, (2.6)
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for a mixed state. The above inequality is violated only for pi = �ij which corresponds to the
density operator for a pure state.

The last important relation is about the expectation value of some operator Â in a mixed
state.

hÂi =
X

i

pi h i| Â | ii =
X

i

pi h i| (
X

s

as |↵si h↵s|)(
X

j

| ji h j|) | ii = tr(⇢̂Â), (2.7)

where |↵si and as the eigenstates and eigenvalues of Â respectively and we used the completeness
relation for | ji. By rearranging the terms we obtain the following expression

hÂi =
X

j

h j| (
X

i

pi | ii h i|)(
X

s

as |↵si h↵s|) | ji = tr(⇢̂Â), (2.8)

It is also important to show the time evolution of the density operator in the Schrödinger
picture, which is equivalent the Schrödinger equation.

⇢̂(t) =
X

i

pi | i(t)i h i(t)| , (2.9)

˙̂⇢(t) =
X

i

pi((
d

dt
| i(t)i) h i(t)|+ | i(t)i ( d

dt
h i| (t)))

= � i

~
X

i

pi((Ĥ | i(t)i) h i(t)|+ | i(t)i (h i| (t)Ĥ))

= � i

~(Ĥ⇢̂(t)� ⇢̂(t)Ĥ) = � i

~ [Ĥ, ⇢̂(t)].

(2.10)

2.2 Master equation

Now that we have introduced the necessary formalism we can study an open quantum system.
We consider the case of a simple harmonic oscillator, coupled with its surounding environment,
which is modeled as a reservoir of a large number of harmonic oscillators. The entire system is
described by the Hamiltonian

Ĥ = Ĥs + Ĥr + Ĥsr, (2.11)

where
Ĥs = ~⌦â†â, (2.12)

is the Hamiltonian of the small system, which we will call system for the rest of the chapter. ⌦
is the frequency of the system and â, â† the creation and annihilation operators of the system
with commutation relation [â, â†] = 1.

Ĥr = ~
X

i

!ib̂
†
i b̂i, (2.13)

is the Hamiltonian of the reservoir, where !i is the frequency of the i-th mode of the reservoir and
b̂i, b̂

†
i the creation and annihilation operators of the i-th mode of the reservoir with commutation

relation [b̂i, b̂
†
j] = �ij.

Ĥsr = ~
X

i

(giâ
†b̂i + g⇤i b̂

†
i â), (2.14)

is the interaction Hamiltonian between the reservoir and the system and gi is the coupling
constant between the i-th harmonic oscillator of the reservoir and the system.
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The reservoir, which consists of a large number of degrees of freedom, is described by a time-
independent density operator ⇢̂r, in thermal equilibrium at the temperature T. A valid descrip-
tion for the systems modeled throughout this thesis,

⇢̂r(Ĥr) =
e��Ĥr

trr(e��Ĥr)
. (2.15)

We assume that the system and the reservoir start interacting at t = t0 and that they did
not exhibit any correlations at that moment. Then the initial state of the entire system is
described by the tensor product of the density operators of the two subsystems, because the
two subsystems are totally independent at t = t0,

⇢̂sr(t0) = ⇢̂s(t0)⌦ ⇢̂r(Ĥr). (2.16)

Since we are interested in the system’s evolution and the obsevations we make are strictly on
observables of the system, we will calculate the expectation value of a system operator Ĉ, i.e.
it acts only on the states of the system,

hĈ(t)i = trsr(Ĉ⇢̂sr(t)) = trs(Ĉtrr⇢̂sr(t)) ⌘ trs(Ĉ⇢̂s(t)), (2.17)

where trsr is the trace over both the system and the reservoir and Ĉ is a system operator
alone, for this reason it is not a↵ected when we trace over the reservoir in the second equal-
ity. In the last equality of the above equation, we have defined the reduced density operator
for the system ⇢̂s(t)), as the trace over the reservoir of the density operator of the entire system.

It is easy to see that if we know ⇢̂s(t), we can determine the expectation value of any
system operator at all times. This property makes it an extremely useful tool for studying
open quantum systems and this is why, the rest of this section will be focused on the derivation
of the master equation for the reduced denstity operator. In order to tackle this problem,
we move to the interaction picture using the following unitary transformations of the reduced
density operator ⇢̂sr and the interaction Hamiltonian (2.14)

⇢̂sr,I = ei(Ĥs+Ĥr)(t�t0)/~⇢̂sre
�i(Ĥs+Ĥr)(t�t0)/~, (2.18)

Ĥsr,I = ei(Ĥs+Ĥr)(t�t0)/~Ĥsre
�i(Ĥs+Ĥr)(t�t0)/~ = ~

X

i

giâ
†ei⌦(t�t0)b̂ie

�i!i(t�t0) + h.c., (2.19)

where in the last equality we used the Baker-Hausdorf lemma,

eÂB̂e�Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + ..., (2.20)

which can be seen by the Taylor expansion of the exponentials. For a more rigorous mathe-
matical proof of the more general Baker-Campbell-Hausdor↵ theorem, result of which is the
lemma above, the reader is referred to [9].

Using the Schrödinger equation in the density operator formalism (2.10), and the trans-
formation we get the equation of motion for the reduced density operator in the interaction
picture

d⇢̂sr
dt

= � i

~ [Ĥ, ⇢̂sr], (2.21)

using the above 2 equalities we have

d⇢̂sr,I
dt

= � i

~ [Ĥsr,I , ⇢̂sr,I ], (2.22)
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Generally, this equation of motion cannot be exactly solved, for system-resorvoir coupling.
In order to solve it, we use the approximate iterative method of petrubation theory up to
second order. We integrate over time equation (2.22) from t0 to t, using the approximation
⇢̂sr,I(t) ⇡ ⇢̂sr,I(t0) in the commutator to obtain a first-order solution for ⇢̂sr,I(t)

⇢̂sr,I(t) = ⇢̂sr,I(t0)� i

~

Z t

t0

dt0[Ĥsr,I(t
0 � t0), ⇢̂sr,I(t0)]. (2.23)

Subsequently, we use the improved value of first order accuracy ⇢̂sr,I(t) in the commutator and
integrate over time again to obtain the ⇢̂sr,I(t) accurate to second order.

⇢̂sr,I(t) = ⇢̂sr,I(t0)� i

~

Z t

t0

dt0[Ĥsr,I(t
0 � t0), ⇢̂sr,I(t0)]

� 1

~2

Z t

t0

dt0
Z t0

t0

dt00[Ĥsr,I(t
0 � t0), [Ĥsr,I(t

00 � t0), ⇢̂sr,I(t0)]].

(2.24)

This is an expression for the density operator of the entire system in the interaction picture up
to second order. In order to find the reduced density operator for the system in the interaction
picture ⇢̂s,I(t), we perform the trace over the reservoir on ⇢̂sr,I(t)

⇢̂s,I(t) ⌘ trr(⇢̂sr,I(t)). (2.25)

We now define a coarsed grained equation of motion for ⇢̂s,I(t)

˙̂⇢s,I(t) ' ⇢̂s,I(t)� ⇢̂s,I(t� ⌧)

⌧
, (2.26)

which is justified by the fact, that the time interval ⌧ = t� t0 is considered short compared to
times yielding significant changes in the system variables.

Then by setting t ! t+ ⌧ and taking into account that the ˙̂⇢s(t) does not vary significantly
in the time ⌧ , we can rewrite (2.26) as

˙̂⇢s,I(t+ ⌧) ' ⇢̂s,I(t+ ⌧)� ⇢̂s,I(t� ⌧)

⌧
' ˙̂⇢s,I(t). (2.27)

This is an equation of motion for the reduced density operator in the interaction picture.
Substituing the second order expression for the reduced density operator in the interaction
picture ⇢̂s,I(t) from (2.25) and (2.27) we get

˙̂⇢s,I(t) '� i

~⌧

Z ⌧

0

d⌧ 0trr(Ĥsr,I(⌧
0), ⇢̂sr,I(t))

� 1

~2⌧

Z ⌧

0

d⌧ 0
Z ⌧ 0

0

d⌧ 00trr(Ĥsr,I(⌧
0)Ĥsr,I(⌧

00)⇢̂sr,I(t)� Ĥsr,I(⌧
0)⇢̂sr,I(t)Ĥsr,I(⌧

00)) + h.c.,

(2.28)

where we have used the fact that the double commutator of (2.24) can be written as

[Ĥsr,I(⌧
0), [Ĥsr,I(⌧

00), ⇢̂sr,I(t)]] = Ĥsr,I(⌧
0)Ĥsr,I(⌧

00)⇢̂sr,I(t)� Ĥsr,I(⌧
0)⇢̂sr,I(t)Ĥsr,I(⌧

00) + h.c.,
(2.29)

using commutation relations and the hermiticity of all the operators involved. Equation (2.28)
is esentially the master equation for ⇢̂s,I(t), during the rest of the section we will analyze it. We
can see that it has two time dependencies t and ⌧ , but as we will show ⌧ is associated only with
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reservoir operators and this dependence disappears, if the reservoir is considered stationary,
with infinitely short memory. From (2.19) we have

Ĥsr,I(⌧) = ~â†F̂ (⌧) + ~âF̂ †(⌧), (2.30)

where
F̂ (⌧) = �i

X

i

gib̂ie
i(⌦�!i)⌧ , (2.31)

F (⌧) is an operator that acts only in the Hilbert space of the reservoir and in the Heisenberg
picture it’s identied as a noise operator.

In the first part of the equation of motion (2.28) has terms of the following form

trr(â
†F̂ (⌧)⇢sr,I(t)) = â†⇢̂s,I(t)trr(F̂ (⌧)⇢̂r(Ĥr)). (2.32)

The trace in the right hand side is the expectation value Fr of the reservoir operator F̂ (⌧).
This value vanishes if the density operator for the reservoir ⇢̂r is diagonal, as in of the thermal
reservoir, defined in (2.15). Now we rewrite the second part of (2.28), using (2.29) and the
cyclic properties of the trace

˙̂⇢s,I(t) = � 1

~2⌧

Z ⌧

0

d⌧ 0
Z ⌧ 0

0

d⌧ 00[â†â⇢̂s,I(t) hF̂ (⌧ 0)F̂ †(⌧ 00)ir � â⇢̂s,I(t)â
† hF̂ (⌧ 00)F̂ †(⌧ 0)ir

+ ââ†⇢̂s,I(t) hF̂ †(⌧ 0)F̂ (⌧ 00)ir � â†⇢̂s,I(t)â hF̂ †(⌧ 00)F̂ (⌧ 0)ir
+ ââ⇢̂s,I(t) hF̂ (⌧ 0)F̂ †(⌧ 00)ir � â⇢̂s,I(t)â hF̂ †(⌧ 00)F̂ †(⌧ 0)ir
+ â†â†⇢̂s,I(t) hF̂ (⌧ 0)F̂ (⌧ 00)ir � â†⇢̂s,I(t)â† hF̂ (⌧ 00)F̂ (⌧ 0)ir] + h.c..

(2.33)

By the use of (2.31), we can identify the reservoir average terms

hF̂ (⌧ 0)F̂ †(⌧ 00)ir =
X

i,j

gig
⇤
j hbib†jir ei⌦(⌧

0�⌧ 00)ei(!j⌧
00�!i⌧

0)

=
X

i

|gi|2 hb̂ib̂†iir ei(⌦�!i)(⌧ 0�⌧ 00),
(2.34)

where for the second equality to stand, we considered the fact that the reservoir density matrix
is diagonal.

These terms are the first order correlation functions of the reservoir and they only depend
on the time di↵erence T = ⌧ 0 � ⌧ 00, meaning that the reservoir is stationary, as expected by
the time independent, thermal equilibrium density operator ⇢̂r(Ĥr). This first order corre-
lation function shows how fast the reservoir correlations decay away. We now perform the
Marko↵ approximation, which assumes that the correlation time of the reservoir ⌧c, which is
the time for which the correlation function is not zero, is infinitely short compared to all times
of interest for the system. This allows us to shift the limit of integration of the second integral
in the following terms to infinity

Z ⌧

0

d⌧ 0
Z ⌧ 0

0

d⌧ 00 hF (⌧ 0)F †(⌧ 00)ir =
Z ⌧

0

d⌧ 0
X

i

|gi|2 hb̂ib̂†iir
Z ⌧ 0

0

dTei(⌦�!i)T , (2.35)

Z ⌧

0

d⌧ 0
Z 1

0

d⌧ 00 hF (⌧ 0)F †(⌧ 00)ir =
Z ⌧

0

d⌧ 0
X

i

|gi|2 hb̂ib̂†iir
Z 1

0

dTei(⌦�!i)T . (2.36)
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In order to treat these integrals we need to evaluate the sum over the modes and the can be
found by finding the formulation of the density of electromagnetic states of the reservoir.
We will calculate it for the case of free space, this can be done by considering a three di-
mensional cubic cavity with edge L, the boundary conditions lead to modes with wavenumber
ki = 2n/L, i = x, y, z;ni = 1, 2, .., so the number of modes in the volume element dkxdkydkz is
dn = d3kL3/2⇡. For large L the sumation over K can be written in integral form

1

V

X

K

! 1

8⇡3

Z
dk3 =

1

8⇡3

Z 1

0

dkk2

Z ⇡

0

d✓sin✓

Z 2⇡

0

d�f(K). (2.37)

Substituting ! = ck, we substitute the sum over the modes in (2.35) with an integral over
frequencies

X

i

! V

8⇡3c3

Z 1

0

d!3!2

Z ⇡

0

d✓sin✓

Z 2⇡

0

d�. (2.38)

Now considering the two polarization of the electric field carry out the three integrals taking
into account the two possible field polarizations. However, if f(K) is independent ofthe field
polarization we multiply by 2 and if f(K) doesnt depend on � and ✓ we obtain 4⇡ for the angular
integrations. These simplifications give the correspondence
Z ⌧

0

d⌧ 0
2V

8⇡3c3

Z 1

0

d!!2

Z ⇡

0

d✓sin✓

Z 2⇡

0

d�|g(!)|2 hb̂(!)b̂†(!)ir
Z 1

0

dTei(⌦�!)T =

=
⌧V

⇡2c3

Z 1

0

d!!2|g(!)|2 hb̂(!)b̂†(!)ir
Z 1

0

dTei(⌦�!)T =
⌧V ⌦2

⇡2c3
|g(⌦)|2 hb̂(⌦)b̂†(⌦)ir ,

(2.39)

where in the last equality we have the following relation for the last integral

lim
t!1

Z t

t0

dt0e�i(⌦�!)(t�t0) = ⇡�(⌦� !)� P


i

⌦� !

�
, (2.40)

which allows us to evaluate the product. The principal part P ⇥ i
⌦�!

⇤
term leads to a frequency

shift related to the Lamb shift, but we can neglect it.

We introduce now the decay rate

� ⌘ 2⇡D(⌦)|g(⌦)|2, (2.41)

where D(⌦) is the density of states between ⌦ and ⌦ + d⌦. For this specific case of free
space and the coupling constant g(!) being independent of the filed polarization and angular
direction (✓,�), its value is D(⌦) = V ⌦2

⇡2c3
. The value of D(⌦) is di↵erent for electric-dipole

interactions, since in that case the coupling constant depends on the angle between the elec-
tric field polarization and the atomic quantization axis. The expectation value of the num-
ber operator n = hb̂(!)b̂†(!)ir, of the reservoir, is given by the thermal distribution (2.15)
and is a geometric series that leads to n = 1

1+e~�⌦ , that depends only on the temperature.

Furthermore hb̂†(!)b̂(!)ir = n + 1. By using (3.39) and (3.41) and the fact that terms like
hF̂ (⌧ 0)F̂ (⌧ 00)i,hF̂ †(⌧ 0)F̂ †(⌧ 00)i are neglected, since the density operator of the reservoir is diago-
nal, we get the final expression of the reduced density operator in the interaction picture.

˙̂⇢s,I(t) = ��

2
(n+ 1)(â†â⇢̂s,I(t)� â⇢̂s,I(t)â

†)� �

2
n(⇢̂s,I(t)ââ

† � â†⇢̂s,I(t)â) + h.c. (2.42)

If we consider zero temperature for the reservoir the expectation value of the number operator
is zero and the expression reduces to

˙̂⇢s,I(t) = ��

2
({â†â, ⇢̂s,I(t)}� 2â⇢̂s,I(t)â

†) (2.43)
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It is also possible to move back to the Schrödinger picture, by using the inverse unitary trans-
formation of the one used in (2.18). Using it on equation 2.42, we get the equation of motion
for the reduced density operator.

˙̂⇢s(t) =
d

dt

⇣
e�i(Ĥs+Ĥr)⇢̂s,Ie

i(Ĥs+Ĥr)
⌘

= � i

~ [Ĥs, ⇢̂s(t)]� �

2
(n+ 1)(â†â⇢̂s,I(t)� â⇢̂s,I(t)â

†)� �

2
n(⇢̂s,I(t)ââ

† � â†⇢̂s,I(t)â) + h.c.

= � i

~ [Ĥs, ⇢̂s(t)] + L[⇢s]
(2.44)

where in the equality we have introduced the Linbland superoperator L[⇢s] acting on the reduced
density matrix, which describes the non unitary evolution of the system to its coupling to the
reservoir, that leads to irreversible dissipation. L[⇢s] can be written as

L[⇢s] = �1

2

X

i

(L̂†
i L̂i⇢̂s + ⇢̂sL̂

†
i L̂i) +

X

i

Li⇢sL
†
i (2.45)

where the Linbland operators L̂i of the system, are operators that express the decay processes.
In the case of the damped hamonic oscillator, described above we have

L̂1 =
p

�e(n+ 1)â (2.46)

L̂2 =
p
�enâ (2.47)

We will describe the Linbland form and the physical meaning behind it in the following section,
where we discuss Monte Carlo wavefunctions.
The above result is completely analogous to the case in which our system is not a harmonic
oscillator, but a two level atom coupled to the same reservoir.
In this case the system Hamiltonian is

Ĥ0
s = ~⌦�̂+�̂� (2.48)

where �̂+ = |ei hg| the transition operator and �̂� = |gi he| the lowering operator. The interac-
tion Hamiltonian in the interaction picture corresponding to (2.30) is

Ĥ0
sr,I = ~

⇣
�̂+F̂ (⌧) + �̂+F̂ (⌧)

⌘
(2.49)

By replacing â with �̂� and â† with �̂+, all the above results stand, apart from the density of
states D(⌦) and as a consequence the decay rate �. This happens due to the dependence of
the atom-reservoir’s coupling constant on the angle between the direction of the atom’s electric
dipole moment and the polarization of the electric fields of the reservoir.

and using the explicit form of the coupling constant we get the equation correspending to
(2.39) as

Z ⌧

0

d⌧ 0
V

8⇡3c3

Z 1

0

d!!2

Z ⇡

0

d✓sin✓

Z 2⇡

0

d�
!

2~✏0V
| hg|d̂|ei |2sin2✓ hb̂ib̂†iir

Z 1

0

dTei(⌦�!)T =

=
⌧

3⇡2c3

Z 1

0

d!!2 !

2~✏0
| hg|d̂|ei |2

Z 1

0

dTei(⌦�!)T =
⌧⌦3

6⇡2✏0~c3
| hg|d̂|ei |2 hb̂(⌦)b̂†(⌦)ir

(2.50)
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From the equation above we can see that unlike the harmonic oscillator, the decay rate of a
two level atom, coupled to the free space, modeled as a thermal reservoir under the Markov
approximation is

�0 =
⌦3

⇡c3
| hg|d̂|ei |2 (2.51)

and the equation of motion

˙̂⇢0s,I(t) = ��0

2
(n+1)(�̂+�̂�⇢̂0s,I(t)� �̂�⇢̂0s,I(t)�̂+)� �0

2
n(⇢̂s,I(t)�̂��̂+� �̂+⇢̂s,I(t)�̂�)+h.c. (2.52)

2.3 Monte Carlo Wave Function

In this section we will discuss the non unitary dynamics of dissipative open systems and how
to describe them in the so called quantum jump formalism.
In the previous section we showed that the Schrödinger evolution of a small system coupled to
a reservoir can be described in terms of a master equation of the general form 2.44, where the
Liouvillian superoperator L[⇢̂s] describes the non-Hermitian evolution of the system due to its
coupling to the reservoir, and is responsible for irreversible dissipation. We can rewrite 2.44 in
the following form

˙̂⇢s = � i

~(ĤNH ⇢̂s � ⇢̂sĤNH) + Ljump[⇢̂s] (2.53)

where we have introduced the non-Hermitian e↵ective Hamiltonian

HNH = Ĥs � i~
2

X

i

L̂†
i L̂i (2.54)

and the ”jump” term, which is the last term of the Lindblad superoperator (2.66)

Ljump[⇢̂s] =
X

i

L̂i⇢̂L̂
†
i (2.55)

For the case of the damped harmonic oscillator, discussed in this chapter the e↵ective Hamil-
tonian becomes

ĤNH = ~⌦â†â� i~�(n+
1

2
)â†â (2.56)

and the jump superoperator

Ljump[⇢̂s] = �(2n+ 1)â⇢̂sâ
† (2.57)

The evolution of the system density operator can, therefore, be thought of as resulting from
two contributions: a Schrödinger-like part governed by the e↵ective non-Hermitian Hamiltonian
ĤNH , and a quantum jump part resulting from Ljump[⇢̂s].
The Monte Carlo wave functions method of solution of the master equation initially considers
the evolution of pure states of the system, and carries out a statistical average over such systems
in the end. But in contrast to the situation for closed systems, where this is straightforwardly
achieved, this approach is not so simple for the open dissipative systems that we are interested
in. The evolution of a pure state in this case, cannot be described by a Schrödinger evolution.
Rather, it is intrinsically stochastic, and results from the combination of a nonhermitian, but
Schrödinger-like evolution and random quantum jumps.
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2.4 Heisenberg-Langevin equations

To gain some more insight into the system-reservoir interaction, we need to treat the previous
problem in the Heisenberg picture, as well.
Using the Hamiltonian (2.11) we can find the Heisenberg equations of motion for the annihila-
tion operators â(t) and b̂j(t), as following

˙̂a(t) =
i

~ [Ĥ, â(t)] = �i⌦â(t)� i
X

i

gib̂i(t) (2.58)

˙̂bj(t) =
i

~ [Ĥ, b̂j(t)] = �i!j b̂j(t)� ig⇤j â(t) (2.59)

If we now formally integrate the above Heisenberg equation of b̂j, we get

˙̂bj(t) = b̂j(t0)� ig⇤j

Z t

t0

dt0â(t0)e�i!j(t�t0) ⌘ b̂free(t) + b̂radiated(t) (2.60)

The term b̂free(t) is the homogeneous solution of (2.41), describes the free evolution of b̂j in
the absence of any interaction with the system, where the second term b̂radiated(t) gives the
modification of this free evolution due to the coupling with the system and â(t) is the source
for b̂j(t).
Now using (2.60) in (2.58) we find

˙̂a(t) = �i⌦â� i
X

i

gib̂i(t0)e
�i!i(t�t0) �

X

i

|gi|2
Z t

t0

dt0â(t0)e�i!i(t�t0) (2.61)

Here, the first term is the free evolution of the system in the absence of the reservoir, the first
summation gives fluctuations of the reservoir and the second gives the radiation reaction.
We now move to an interaction picture, introducing the slowly varying operator

Â(t) = â(t)ei⌦t (2.62)

where [Â(t), Â†(t)] = 1 stands.
This will seperate separate the rapid free evolution of â(t) at the frequency ⌦ from the fast
evolution due to the large bandwidth of the bath and (2.61) will become

˙̂A(t) = �
X

j

|gj|2
Z t

t0

dt0Â(t0)e�i(!j�⌦)(t�t0) + F̂A(t) (2.63)

where operator F̂A(t) is the noise operator, which varies rapidly in time due to the presence of
all the reservoir frequencies.

F̂A(t) = �i
X

j

gjbj(t0)e
i(⌦�!j)(t�t0) (2.64)

As we mentioned before if the reservoir is described by a density operator diagonal in energy
representation, which is in our case, then hF̂A(t)ir = 0. If we replace the sum of (2.63) by an
integral and perform the Marko↵ approximation i.e. taking the limit of integration to infinity,
by claiming that Â(t) varies little over the inverse reservoir bandwidth, we find

˙̂A(t) = ��

2
Â(t) + F̂A(t) (2.65)
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Eventhough noise operator F̂A(t) fluctuates rapidly and averages to zero, we need to keep it
in the above equation in order to preserve the commutation relation of Â(t), since otherwise
[Â(t), Â†(t)] ! 0 as time grows large compared to �.

We will now show that it is possible to transform the Lindblad master equation of the density
operator, to equations of motion for operators of the systems in the Heisenberg picture. We
can rewrite (2.44) as

˙̂⇢s(t) = L0[⇢̂s] (2.66)

where we he have defined the Lindblad superoperator L0 as

L0[⇢̂s] = � i

~ [Ĥs, ⇢s]� 1

2

X

i

(L̂†
i L̂i⇢̂s + ⇢̂sL̂

†
i L̂i) +

X

i

Li⇢sL
†
i (2.67)

We can also define the adjoint Liouvillian superoperator L0† by

trs(M̂L0[N̂ ]) = trs(L0†[M̂ ]N̂) (2.68)

where M̂ , N̂ are arbitraty system operators. Using the cyclic property of the trace we get the
explicit form of L0†

L0†[M̂ ] =
i

~ [Ĥ, M̂ ]� 1

2

X

i

(L̂†
i L̂iM̂ + M̂L̂†

i L̂i) +
X

i

L̂†
iM̂L̂i (2.69)

Now formally integrating (2.66) we obtain

⇢̂s(t) = eL
0
[⇢̂s(0)] (2.70)

In the Schrödinger picture the expectation value of a system operator is given by (2.7) and
using (2.68) we have

hâi = trs(⇢̂s(t)â(0)) = trs(e
L0
[⇢̂s(0)]â(0)) = trs(⇢̂s(0)e

L0†
[â(0)]) (2.71)

and since in the Heisenberg picture the expectation value of â is hâi = trs(⇢̂s(0)â(t)) we have

â(t) = eL
0†
[â(0)] (2.72)

We conclude to the Lindland equation for an arbitrary system operator â(t)

˙̂a(t) =
i

~ [Ĥ, â]� 1

2

X

i

(L̂†
i L̂iâ+ âL̂†

i L̂i) +
X

i

L̂†
i âL̂i + F̂a (2.73)

where we have introduced the noise operator F̂a, that is necessary in order to preserve the
commutation relation, as we’ve shown earlier in this section.

2.5 E↵ective Operator Formalism

So far in this chapter we have introduced open quantum systems and the formalism to describe
them. We have seen that they involve both unitary and dissipative dynamics, which can
lead to very complex evolution. In the present section we will introduce the e↵ective operator
formalism, an e↵ective theory that reduces the complexity of the open system, through adiabatic
elimination of it’s rapidly evolving part, introduced by Reiter et al.[3]
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Figure 2.1: Ground and excited subspaces and couplings.

2.5.1 Ground and Excited Subspaces

We assume the open system to consist of two distinct subspaces, one for the ground states and
one for the decaying excited states. The couplings of these two subspaces are assumed to be
perturbative. Furthermore, we consider the dynamics of the system are Markovian, as we did
in the previous sections, such that the time evolution of the density operator of the system ⇢,
can be described by the master equation (2.44). We note that we have dropped the subscript s
from the densisty operator of the system, since it will be the only density operator we will be
dealing with from now on.

Using the projection-operator method of [10] to divide the Hilbert space into two subspaces, one
for the ground states and one for the excited states, represented by the projection operators P̂g

and P̂e , with P̂g + P̂e = Î and P̂gP̂e = 0. The Hilbert space is now divided into two parts, one
for the rapidly decaying (excited) states, and one for the comparably stable (ground) states.
By the use of the projection operators defined above, we divide the Hamiltonian into four parts:

Ĥ = Ĥg + Ĥe + V̂+ + V̂� (2.74)

where Ĥg = P̂gĤP̂g and Ĥe = P̂eĤP̂e are the Hamiltonians describing the ground and excited
subspace respectively.
The perturbative excitations V̂+ = P̂gĤP̂e and de-excitations V̂� = P̂gĤP̂e couple the two
subspaces.
We have assumed the ground states to be stable and the excited states to be decaying to the
ground states, as seen in the example of figure 2.1. The Lindblad operators can then be written
as L̂k = P̂eL̂kP̂g. We can rewrite now the master equation (2.44)

˙̂⇢ = �((ĤNH + Ĥg + V̂ )⇢̂� ⇢̂(Ĥ†
NH + Ĥg + V̂ )) +

X

k

L̂k⇢̂L̂
†
k (2.75)

where the ĤNH is the non-Hermitian Hamiltonian of the quantum jump formalism, as in (2.54),
but involving only the excited Hamiltonian

ĤNH = Ĥe � i~
2
L̂†
i L̂i (2.76)

Since we have assumed the couplings of the ground and excited subspaces V̂± to be su�ciently
weak to be described as perturbations of the evolution governed by an unperturbed Hamiltonian
Ĥ0 = Ĥg + ĤNH , we perform perturbation theory of the density operator. Moving to the
interaction picture, using the unitary transformation

Û(t) = e�i(ĤNH+Ĥg)t (2.77)
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The operators in the interaction picture transfromed as

⇢̂I(t) = Û�1(t)⇢̂
⇣
Û�1(t)

⌘†
(2.78)

V̂I = Û�1(t)(Ĥ0 + V̂ )Û(t) + i
dÛ�1

dt
Û(t) = Û�1(t)V̂ Û(t) (2.79)

L̂k,I(t) = Û�1L̂kÛ(t) (2.80)

and the reduced master equation transforms to

˙̂⇢I(t) = �i
⇣
V̂I(t)⇢̂I(t)� ⇢̂I(t)V̂

†
I (t)

⌘
+
X

k

L̂k,I(t)⇢̂I(t)L̂
†
k,I(t) (2.81)

Now we perform a perturbative expansion of the density operator in a small parameter ✏

⇢̂I(t) =
1

N
(⇢̂(0)I (t) + ✏⇢̂(1)I (t) + ✏2⇢̂(2)I (t) + ...) (2.82)

and obtain a recursive formulation of the reduced master equation in powers of ✏ ,

˙̂⇢(n)I (t) = �i
⇣
V̂I(t)⇢̂

(n�1)
I (t)� ⇢̂(n�1)

I (t)V̂ †
I (t)

⌘
+
X

k

L̂k,I(t)⇢̂
(n)
I (t)L̂†

k,I(t) (2.83)

We evaluate the first three orders

˙̂⇢(0)I (t) =
X

k

L̂k,I(t)⇢̂
(0)
I (t)L̂†

k,I(t) (2.84)

˙̂⇢(1)I (t) = �i
⇣
V̂I(t)⇢̂

(0)
I (t)� ⇢̂(0)I (t)V̂ †

I (t)
⌘
+
X

k

L̂k,I(t)⇢̂
(1)
I (t)L̂†

k,I(t) (2.85)

˙̂⇢(2)I (t) = �i
⇣
V̂I(t)⇢̂

(1)
I (t)� ⇢̂(1)I (t)V̂ †

I (t)
⌘
+
X

k

L̂k,I(t)⇢̂
(2)
I (t)L̂†

k,I(t) (2.86)

If we now consider all particles initially in the ground stay, decay processes can be neglected
for orders n  1 so we obtain the following expressions,

˙̂⇢(0)I (t) = 0 (2.87)

˙̂⇢(1)I (t) = �i
⇣
V̂I(t)⇢̂

(0)
I (t)� ⇢̂(0)I (t)V̂ †

I (t)
⌘

(2.88)

˙̂⇢(2)I (t) = �i
⇣
V̂I(t)⇢̂

(1)
I (t)� ⇢̂(1)I (t)V̂ †

I (t)
⌘
+
X

k

L̂k,I(t)⇢̂
(2)
I (t)L̂†

k,I(t) (2.89)

We can now seperate the evolution of ground and excited states, by using the projection oper-
ators on density operator. Then the evolution of the ground states is

P̂g
˙̂⇢(0)I (t)P̂g = P̂g

˙̂⇢(1)I (t)P̂g = 0 (2.90)

P̂g
˙̂⇢(2)I (t)P̂g = �iP̂g

⇣
V̂I(t)⇢̂

(1)
I (t)� ⇢̂(1)I (t)V̂ †

I (t)
⌘
P̂g +

X
L̂k,I(t)P̂e⇢̂

(2)(t)P̂eL̂
†
k,I(t) (2.91)

The ground states are connected by unitary and dissipative processes of second order to the
excited states, since there is only decay from the excited to the ground. Now for the dynamics
of the excited states we find

P̂e
˙̂⇢(0)I (t)P̂e = P̂e

˙̂⇢(1)I (t)P̂e = 0 (2.92)

P̂e
˙̂⇢(2)I (t)P̂e = �iP̂e

⇣
V̂I(t)⇢̂

(1)
I (t)� ⇢̂(1)I (t)V̂ †

I (t)
⌘
P̂e (2.93)

The evolution of the excited unitary dynamics is only due to the interaction Hamiltonian V̂I(t).
The second order terms connect the states either in the ground or in the excited subspace
and the interaction between the subspaces is given but the first order terms P̂g⇢̂

(1)
I (t)P̂e and

P̂e⇢̂
(1)
I (t)P̂g.
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2.5.2 Adiabatic Elimination of the Excited States

We will now proceed by performing adiabatic elimination of the excited states, in order to
reduce the copmlexity of the dynamics, by restricting it to the ground subspace. We do so by
considering

P̂e
˙̂⇢(2)I (t)P̂e ⇡ 0 (2.94)

We now formally integrate (2.93) to obtain an expression for P̂e⇢̂
(2)
I (t)P̂e and also integrate

(2.88) to get an expression for ⇢̂(1)I (t). Now substituting these expressions to (2.91) we find
the following equation of motion, that describes the evolution of the open system, after the
exclusion of the excited states under adiabatic elimination.

P̂g
˙̂⇢(2)I (t)P̂g = �P̂gV̂I(t)

✓Z t

0

dt0V̂I(t
0)⇢̂(0)I (t0)

◆
P̂g � P̂g

✓Z t

0

dt0⇢̂(0)I (t0)V̂ †
I (t

0)
◆
V̂ †
I (t)P̂g

+ P̂g

X

k

L̂k,I(t)P̂e

Z t

0

dt0
Z t0

0

dt00
⇣
V̂I(t

0)⇢̂(0)I (t00)V̂ †
I (t

00) + V̂I(t
00)⇢̂(0)I (t00)V̂ †

I (t
0)
⌘
P̂eL̂

†
k,I(t)P̂g

(2.95)

Where we have neglected terms sandwiched between perturbations P̂gV̂I and V̂IP̂g , since ⇢̂(0)I

lives in the ground subspace, these terms do not contribute to the ground-state evolution.
As we can see the equation of motion of the ground state contains two Hamiltonian and two
Lindblad terms, for which we need to evaluate the integrals

I1 ⌘ P̂gV̂I(t)

Z t

0

dt0V̂I(t
0)⇢̂(0)I (t0)P̂g (2.96)

I2 ⌘ P̂e

Z t

0

dt0
Z t0

0

dt00V̂I(t
0)⇢̂(0)I (t00)V̂ †

I (t
00)P̂e (2.97)

Now we assume the direct interactions within the ground subspace to be perturbative. Hence,
the ground- state evolution is negligibly small compared to the one for the excited states so
that we have Û(t)P̂g ⇡ P̂g. Then the I1 can be written as

I1 ⇡ V̂�Ô(t)

✓Z t

0

dt0Ô�1(t0)
◆
V̂+⇢̂

(0)
I (2.98)

By carrying out the integral we obtain

I1 ⇡ V̂�e�iĤNH t
h
(iĤNH)

�1eiĤNH t0
it
0
V̂+⇢̂

(0)
I ⇡ V̂�(iĤNH)

�1V̂+⇢̂
(0)
I (2.99)

where in the last step we used an approximation similar to the rotating wave approximation
to 1 � e�iĤNH t ⇡ 1, which is by justified by the assumption that the dynamics of the ground
states are slow compared to the time scale set by ĤNH .
To evaluate the last two Lindblad terms in master equation (2.95) we carry out the double

integral I2. To do so, we use ⇢̂(0)I (t00) ⇡ ⇢̂(0)I (t), since the ground states evolve slowly and to
second order in V̂I . We neglect the higher order terms. Thus, we can separate the integral and
write

I2 ⇡ 1

2

✓Z t

0

dt0Ô�1(t0)
◆
V̂+⇢̂

(0)
I (t)V̂�

Z t

0

dt0(Ô�1)†(t0) ⇡ 1

2
(iĤNH)

�1V̂+⇢̂
(0)
I V̂�(�iĤ†

NH)
�1

(2.100)
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in the ground-state subspace, these terms do not contribute to the ground-state evolution and
can therefore be neglected. We can then obtain the e↵ective unitary and dissipative dynamics
of the ground states,

P̂g
˙̂⇢P̂g = �i

 
Ĥeff � i

2

X

k

(L̂k
eff )

†L̂k
eff

!
⇢̂(0) + h.c.+

X

k

L̂k
eff ⇢̂

(0)(L̂k
eff )

† (2.101)

with an e↵ective Hamiltonian and e↵ective Lindblad operators as defined above. To reach this
form we have used the equality

X

k

(L̂k
eff )

†L̂k
eff = V̂�(Ĥ�1

NH)
†
 
X

k

L̂†
kL̂k

!
Ĥ�1

NH V̂+ = �iV̂�
⇣
Ĥ�1

NH � (Ĥ�1
NH)

†
⌘
V̂+ (2.102)

where in the last term we have defined

Ĥeff = �1

2
(Ĥ�1

NH + (Ĥ�1
NH)

†)V̂+ + Ĥg (2.103)

and
L̂k
eff = L̂kĤ�1

NH V̂+. (2.104)
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Chapter 3

Interface Between Light and 3-Level
Atomic Ensembles

In the current chapter we analyse the interaction of light with an ensemble of atoms. The
interaction of light with multiatom ensembles has been a basic building block for quantum
information processing and it will be the basic platform for the modeling of the continuous
single photon transistor. After introducing the necessary formalism, we will thoroughly describe
the scattering dynamics for the cases of 3-level atomic ensembles in a single-sided cavity, a two-
sided cavity and in free space. Furthermore, we will derive a mapping relation between free
space and single cavity that will allow us to relate the results between the two systems. In the
last section of the chapter we will describe the scattering processes of a ensemble of Rydberg
atoms in a single-sided cavity.

3.1 Collective Operators

Many body quantum systems are systems consisting of a large number of particles, which lead
to a large number of degrees of freedom and thus to high complexity. In order to describe
them, one needs to introduce symmetric collective states, a description which becomes valid by
considering the particles of the system identical and indistiguishable, in the sense of the second
quantization formalism. For the case of our interest, which consists of an atomic ensemble
interacting with light beams, these symmetric collective states will have the form of collective
excitations of the atomic ensemble and will be described by collective atomic operators[11].
An integral part of the systems, which we will be describing throughout this thesis, is a three
level atomic ensemble. That is an ensemble constituted by a large number of atoms, where the
atomic energy structure, consists of three energy levels, one ground |gi and two excited |ei , |ri
states, in a ⌅-scheme, as seen in Fig.3.1b.
We will begin by describing a single atom of the atomic ensemble and for now we will consider
the state |ri as inaccessible. Then the description of the i-th atom of the ensemble reduces
to that of a two level atom with states |gi and |ei, which can be described by the angular
momentum operators, as for the case of states |ei and |gi,

ĵgez,i =
~
2
(|gii hgi|� |eii hem|) = ~

2
(�̂i

gg � �̂i
ee), (3.1)

ĵgex,i =
~
2
(|eii hgi|+ |gii hei|) = ~

2
(�̂i

eg � �̂i
ge), (3.2)

ĵgey,i =
i~
2
(|eii hgi|� |gii hei|) = i~

2
(�̂i

eg � �̂i
ge), (3.3)

ĵge+,i = ĵgex,i + iĵgey,i = ~ |gii hei| = ~�̂i
ge, (3.4)
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ĵge�,i = ĵgex,i � iĵgey,i = ~ |eii hgi| = ~�̂i
ge, (3.5)

where the quantization axis is chosen to be z, and ĵge+(�),i is the operator which raises (lowers)

ĵgez,i by ~. We have also introduced operator �̂i
µµ = |µii hµi| which is the projection operator on

the state |µi for the i-th atom and internal state operator �̂i
µ⌫ = |µii h⌫i| between states |µi and

|⌫i for the i-th atom.The standard angular momentum commutation relation is fullfilled

[ĵgex,i, j
ge
y,i] = i~ĵgez,i. (3.6)

Since we are interested in collective variables, we look at the total angular momentum operators
Jge
l =

P
i ĵ

ge
l,i , where l = x, y, z, which also fulfills the angular momentum commutation relation

[Ĵge
x , Ĵge

y ] = i~Ĵge
z as is obvious from (3.6). The collective state with all atoms in the ground

state is denoted |gNi = |J = N~/2,M = N~/2i , and has total angular momentum number
Jge = N~/2 and eigenvalue of Jge

z equal to N~/2, where n is the number of atoms. For a
su�ciently large number of atoms and a weakly perturbed system, i.e. only a few atoms out
of the ground state, we can approximate the Ĵge

z operator by its expectation value Ĵge
z ⇡ hJge

z i
. Since it is mathematically inapropriate to replace an operator with a number, a rigorous
formulation can be done by using the Holstein-Primako↵ transformation. Since we assumed
that the hJge

z i ⇡ N~/2 � 0 we can introduce the collective canonical position and momentum
operators associated with the transition between the ground state |gi and the excited |ei

X̂ge =
Ĵge
xq
hĴge

z i
, (3.7)

P̂ ge =
Ĵge
yq
hĴge

z i
, (3.8)

which satisfy the canonical commutation relation

[X̂ge, P̂ ge] =
1

hĴge
z i [Ĵ

ge
x , Ĵge

y ] = i~ (3.9)

Now we can define the symmetric collective annihilation operator for the state |ei.

P̂ =
X̂ge + iP̂ ge

p
2~

=

P
m ĵge+,mq
2~ hĴge

z i
=

~
P

m |gmi hem|q
2 hĴge

z i
=

1p
N

NX

i=1

|gii hei| (3.10)

which satisfy the commutation relation [P̂ , P̂ †] = 1. P̂ stands for polarization and is a symmet-
ric collective operator, not to be confused with P̂ ge, which is the canonical momentum operator
defined in (3.17).
If we apply the symmetric collective creation operator to the collective ground state |gNi, where
all atoms are in state |gi , we create a symmetric superposition of one atom being in the excited
state |ei.

P̂ † |gNi = P̂ † |g, g, g, ..., gi = 1p
N

X

i=1

|g, g, ..., g, ei, g, ..., g, gi (3.11)

If we now take into consideration the second excited state |ri. We can follow the same process
as above, while this time considering the two states |gi and |ri. We can define the angular
momentum operators for the two states |ri and |gi

ĵgrz,i =
~
2
(|gii hgi|� |rii hrm|) = ~

2
(�̂i

gg � �̂i
rr), (3.12)
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ĵgex,r =
~
2
(|eii hgi|+ |gii hei|) = ~

2
(�̂i

eg � �̂i
ge), (3.13)

ĵgey,i =
i~
2
(|eii hgi|� |gii hei|) = i~

2
(�̂i

eg � �̂i
ge), (3.14)

ĵre+,i = ĵrex,i + iĵrey,i = ~ |gii hri| = ~�̂i
re, (3.15)

X̂gr =
Ĵgr
xq
hĴgr

z i
, (3.16)

P̂ gr =
Ĵgr
yq
hĴgr

z i
. (3.17)

Now having defined the above canonical position and momentum associated with the transition
between states |gi and |gi, we can define the symmetric collective operator for state |ri

Ŝ =
Xgr + iP gr

p
2~

=

P
i j

gr
+,ip

2~ hJgr
z i =

~
P

i |gii hri|p
2 hJge

z i =
1p
N

NX

i=1

|gii hri| , (3.18)

where we have used the fact that

hĴrg
z i ⇡ hĴeg

z i ⇡ ~N/2. (3.19)

The symmetric collective operator Ŝ stands for spin wave, since |ri, will be later considered a
metastable state. Acting with the symmetric collective creation operator Ŝ on the collective
ground state |gNi, we end up in a symmetric superposition of one atom being in state |ri

Ŝ† |gNi = P̂ † |g, g, g, ..., gi = 1p
N

X

i=1

|g, g, ..., g, ri, g, ..., g, gi (3.20)

. The symmetric collective operators Ŝ,P̂ will play an important role for the description of the
scattering process, of the interface between atomic ensembles and light beams.

3.2 Atomic Ensemble in a Cavity

In the current section we will describe a ⌅-scheme 3-level atomic ensemble, confinded in a cavity,
which is interacting with 2 monochromatic fields, one quantum sinlge photon cavity field and
one strong classical driving field propagating in the same direction as the cavity field.[4] The
cavity field is coupled to the lower transition between states |ei and |gi and the classical one
drives the higher transition, between |ri and |ei, as seen in figure 3.1b. In figure 3.1a we can
see a schematic representation of the atomic cloud inside the cavity, interacting with the cavity
field denoted by the field operator Ê and the classical field denoted by the Rabi frequency ⌦.

The electric field vector operator for the cavity field is given by

Ê(z) = ✏1

✓
~!1

✏0V

◆1/2

(â+ â†)sin(!1z/c) (3.21)

where !1 is the frequency of the cavity field and â†, â the creation and annihilation operators
for the cavity field and where ✏1 are the unit vector in the direction of the polarization of the
cavity field, ✏0 the perimittivity of free space, V the quantization volume of the field and c the
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Figure 3.1: a)Schematic representation of a cloud of atoms in a cavity, interacting with the single mode field

of the cavity

ˆE coupled to transition |gi $ |ei and a strong classical driving field ⌦, which drives the transition

|ei $ |ri. The fields are assumed to co-propage, but they have been drawn to cross for clarity. b)Energy level

diagram of the system. All the atoms are initially in the ground state, �e is the decay of the excited state |ei,
�r is the dephasing of the metastable state |ri. Matching colour code has been used between the figures.

speed of light.
The co-propagating single mode classical plane-wave field with frequency !2 is described by the
electric field vector

E2(z, t) = ✏2E2(t)cos(!2(t� z/c)) = ✏2
E2(t)
2

(ei!2(t�z/c) + e�i!2(t�z/c)) (3.22)

where ✏2 are the unit vector in the direction of the polarization of the classical field and E(t)
its amplitude.
The Hamiltonian of the system is

Ĥ = Ĥ0 + V̂ (3.23)

where Ĥ0 is the unperturbed Hamiltonian and V̂ is the interaction Hamiltonia between the
atomic ensemble and the fields.

Ĥ0 = ~!1â
†â+

NX

i

(~!g�̂
i
gg + ~!e�̂

i
ee + ~!r�̂

i
rr) (3.24)

where as defined in the previous section �̂i
µµ = |µii hµi| is the projection operator on the state

|µi for the i-th atom and ~!g, ~!e, ~!r the energies of the states |gi , |ei , |ri respectively.
Now using the fact that the Hilbert space of the atomic cloud consists of all combinations of
the atoms being in either of the three states, we can define the identity operator for the system
Î =

PN
i (�̂

i
gg + �̂i

ee + �̂i
rr), so that we can rewrite the unperturbed Hamiltonian as

Ĥ0 = ~!1â
†â+

NX

i

(~!g�̂
i
gg + ~!e�̂

i
ee + ~!r�̂

i
rr)�

NX

i

!g(�̂
i
gg + �̂i

ee + �̂i
rr) + !g Î (3.25)

where !g Î is just a constant phase and it can be neglected. The unperturbed Hamiltonian can
now be written as

Ĥ0 = ~!1â
†â+

NX

i

(~!eg�̂
i
ee + ~!rg�̂

i
rr) (3.26)
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which is equivalent to setting !g as the zero energy. Above we used !eg = !e � !g and
!rg = !r � !g.

We now turn to the interaction Hamiltonian V̂ and using the dipole approximation we have

V̂ = �~
NX

i

d̂i(Ê1(zi) + E2(zi, t)) = V̂1 + V̂2 (3.27)

where V̂1 the Hamiltonian representing the interaction between the cavity field and the ensem-
ble and V̂2 the one representing the interaction of the classical field with the ensemble. We have
also denoted d̂i the transition dipole vector operator of the i-th atom, which is a 3⇥ 3 matrix,
where the transition between |gi $ |ri is dipole forbidden i.e. i hg|d̂i|rii =i hr|d̂i|gii = 0.

We now consider the following assumptions, each field is coupled to one transition and in
particular the cavity filed Ê1(zi) is only coupled to the |gi $ |ei transition and the classical
E2(zi, t) to the |ei $ |ri i.e. i he|d̂i✏1|rii =i he|d̂i✏2|gii = 0.
Under these assumptions, the interactions Hamiltonians can be written as

V̂1 = �~
NX

i=1

(âgi�̂
i
egsin(!1zi/c) + âg⇤i �̂

i
gesin(!1zi/c)) + h.c. (3.28)

where gi = hei| (di✏2) |gii
q

!1
~✏0V is the coupling constant between the i-th atom and the cavity

field, which for the sake of simplicity, will be considered real and equal for all atoms i.e.
gi = g⇤i = g.
The interaction Hamiltonian of the classical field with the ensemble is

V̂2 = �~
NX

j=1

(⌦(t)�̂j
ere

�i!2(t�zj/c) + ⌦⇤(t)�̂j
ree

�i!2(t�zj/c)) + h.c. (3.29)

where ⌦(t) = hei| (di✏2) |rii E2(t)
2~ is the Rabi frequency of the classical field, defined as half of

the traditional Rabi frequency, in order to avoid carrying factor of 2 around and a sign, so that
e.g. a ⇡ pulse takes time ⇡/(2⌦). We will consider the amplitude of the classical field E2 to be
constant in time, which leads to time independent Rabi frequency ⌦.
Now in order to remarkably simplify the interacting Hamiltonians V̂1 and V̂2, by the standard
technique of standard rotating wave approximation technique, we move to a rotating frame of
reference, through the following unitary transformation

Û = e�i
PN

j=1(!1â†â+!1�̂
j
ee+(!1+!2)�̂

j
rr)t (3.30)

This will transform our Hamiltonian Ĥ to

ˆ̃H = Û�1ĤÛ � i~Û�1dÛ

dt
(3.31)

We will look at each part of the Hamiltonian independently, first the transformed unperturbed

Hamiltonian ˆ̃H0 will be

ˆ̃H0 = Ĥ0 � i~Û�1dÛ

dt
= ~

NX

i=1

((!eg � !1)�̂
i
ee + ~(!rg � !1 � !2))�̂

i
rr (3.32)

21



where we have used the Baker-Hausdorf lemma (2.20). Now by defining the collective projection
operators

�µµ =
NX

i

�̂i
µµ (3.33)

and the detunings �1 = !eg �!1, �2 = !2 �!re, � = �1 ��2 we can rewrite the unperturbed
Hamiltonian in the rotating frame as

ˆ̃H0 = ~�1�̂ee + ~(�1 ��2)�̂rr = ~�1�̂ee + ~��̂rr (3.34)

Now we will transform the interaction Hamiltonian V̂1

ˆ̃V1 = Û�1V̂1Û � i~Û�1dÛ

dt

= �~
NX

j=1

(gâ�̂j
egsin(!1zj/c) + â†g�j

egsin(!1zj/c)e
i2!1t + gâ†�̂j

gesin(!1zj/c) + âg�j
gesin(!1zj/c)e

�i2!1t)

(3.35)

where we have used again the lemma (2.20). The second term and forth term oscillate rapidly
compared to the first and the third, so they can be dropped under the rotating wave approxi-
mation. We also define the collective operator

�̂eg(t) =
NX

j=1

�̂j
ege

�i!1tsin(!1zj/c) (3.36)

and the slowly varying cavity field annihilation operator

Ê(t) = âei!1t (3.37)

Then we can write the transformed interaction Hamiltonian as

ˆ̃V1 = �~(gÊ �̂eg + gÊ†�̂ge) (3.38)

Finally we transform the interaction Hamiltonian V̂2

ˆ̃V2 = Û�1V̂2Û � i~Û�1dÛ

dt

= �~
NX

j=1

(⌦�̂j
ere

�i!2zj/c) + ⌦�̂j
ere

i!2zj/ce�i2!2t + ⌦⇤�j
ree

i!2zj/c) + ⌦⇤�̂j
ree

i!2zj/ce�i2!2t

(3.39)

where again we made use of (2.20). The second term and the forth term oscillate rapidly
compared to the first and the third, so they can again be dropped under the rotating wave
approximation. Now we define the collective operator

�̂er =
X

i

�̂i
ere

i!2zi/c (3.40)

The transformed interaction Hamiltonian ˆ̃V2 can be written as

ˆ̃V2 = �~(⌦�̂re + ⌦
⇤�̂er) (3.41)
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So now we can write the e↵ective Hamiltonian of the system in the rotating frame (3.31) after
the rotating wave approximation as

ˆ̃H = ˆ̃H0 +
ˆ̃V1 +

ˆ̃V2 = ~�1�̂ee + ~��̂rr + ~(gÊ �̂eg + gÊ†�̂ge + ⌦�̂se + ⌦
⇤�̂es) (3.42)

We will consider two sources of dissipation, the decay from the state |ei to the ground state |gi
of the i-th atom

L̂i
eg =

p
2�e�

i
ge (3.43)

and the dephasing of the state |ri of the i-th atom

L̂i
rr =

p
2�r�

i
rr (3.44)

We can now derive the equations of motion for the collective atomic operators defined in
(3.33), (3.36), (3.40) and their hermitian conjugates, by using the Lindblad equation for system
operators (2.73), derived in the previous chapter

˙̂�µ⌫(t) =
i

~ [Ĥ, �̂µ⌫ ] +
X

k

(L†
k�̂µ⌫Lk � 1

2
(L†

kLk�̂µ⌫ + �̂µ⌫L
†
kLk)) + F̂µ⌫ (3.45)

where
P

k L̂k =
PN

i L̂i
eg+

PN
i L̂i

rr since we have defined two Lindblad decay operators for our
system. So we have the following 9 equations of motion of the collective atomic operators of
our system.

˙̂�gg = �e�̂ee � igÊ �̂eg + igÊ†�̂ge + F̂gg (3.46)

˙̂�rr = �i⌦⇤�̂er + i⌦�̂re + F̂ss (3.47)

˙̂�ee = ��e�̂ee + i⌦⇤�̂er � i⌦�̂re + igÊ �̂eg � igÊ†�̂ge + F̂ee (3.48)

˙̂�ge = �(�e + i�1)�̂ge + i⌦⇤�̂gr + igÊ (̂�gg � �̂ee) + F̂ge (3.49)

˙̂�er = �(�e + �r � i�2)�̂er + i⌦(�̂ee � �̂rr)� igÊ†�̂gr + F̂er (3.50)

˙̂�gr = �(�r + i�)�̂gr + i⌦�̂ge � igÊ �̂er + F̂gr (3.51)

˙̂�eg = �(�e � i�1)�̂eg � i⌦�̂rg � igÊ†(̂�gg � �̂ee) + F̂eg (3.52)

˙̂�re = �(�e + �r + i�2)�̂re � i⌦⇤(�̂ee � �̂rr) + igÊ �̂rg + F̂re (3.53)

˙̂�rg = �(�r � i�)�̂rg � i⌦⇤�̂eg + igÊ†�̂re + F̂rg (3.54)

In the equations (3.46)� (3.54) we introduced the Langevin noise operators F̂µ⌫ for the atomic
operators, which are neccesary in order to preserve the commutation relations, since we intro-
duced decays.
For simplicity, for the rest of the thesis we will consider the Langevin noise operators negligible.
In order to describe the scattering processes of the system we only need 2 of these 9 equations,
plus the equation of motion of the cavity field and an equation known as the input output rela-
tion. We will acquire these two equations for two slightly di↵erent cases, first for a single-sided
cavity and afterwards for a two-sided cavity.

Now we use the collective operators introduced in the previous section we have equations
of motion for Ŝ, P̂

P̂ = �(�e + i�1)�̂ge + i⌦⇤�̂gr + igÊ (3.55)

˙̂S = �(�r + i�)Ŝ + i⌦P̂ . (3.56)

As mentioned above we will use these equations of motion, but in order describe the scattering
dynamics of the system we need the equations of motion for the cavity field, which are diferrent
depending on the type of the cavity.
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3.2.1 Single-Sided Cavity

We have described the equations of motion for the atomic operators of our system, but in order
to be able to fully describe the scattering dynamics of the system we need the equations of
motion for the cavity field. In this section we do so for the case of a one sided cavity.
To find the equation of motion for the cavity field, we need to define an extra Hamiltonian,
similar to (2.18), which will describe the coupling of the single-sided cavity to the environment,
which following the process used in the previous chapter, will be modeled by a reservoir of a
large number of harmonic oscillators.
The entire system will be described by

Ĥtot = Ĥ + Ĥr + Ĥcr (3.57)

where Ĥ is defined in (3.23) as the Hamiltonian of the system.
Ĥr is the Hamiltonian of the reservoir, descrbing the field external to the cavity, defined as in

Ĥr = ~
X

i

!ib̂
†
i b̂i (3.58)

Ĥcr is the interaction Hamiltonian between reservoir and the cavity

Ĥcr = ~
X

i

(giÊ†(t)b̂i(t) + g⇤i b̂
†
i (t)Ê(t)) (3.59)

where b̂ is the annihilation operator of. The Heisenberg equation of motion of the reservoir’s
mode b̂(!) with frequency ! is

˙̂b(!, t) =
i

~ [Ĥtot, Ê ] = i

~ [
ˆ̃H + Ĥr + Ĥcr, Ê(t)] = �i!b̂(!, t) + ig(!)Ê(t) (3.60)

Now we can integrate formaly the above equation and using as initial condition the time t0 < t,
where t0 the input time and get the expression for the operator b̂(!)

b̂(!, t) = e�i!(t�t0)b̂(!, t0) + ig(!)

Z t1

t

dt0e�i!(t�t0)â(t0) (3.61)

or with the final condition at time t1 > t, where t1 the output time and get

b̂(!, t) = e�i!(t�t1)b̂(!, t1)� ig(!)

Z t

t0

dt0e�i!(t�t0)Ê(t0) (3.62)

˙̂E(t) = i

~ [
ˆ̃H + Ĥr + Ĥcr, Ê(t)] = i

~ [
ˆ̃H, Ê(t)]�

Z 1

�1
d!g(!)b̂(!, t) (3.63)

Substituing (3.17)

˙̂E(t) = i

~ [
ˆ̃H, Ê(t)]�

Z 1

�1
d!g(!)e�i!(t�t0)b̂(!, t0)�

Z 1

�i1
d!g2(!)

Z t

t0

dt0e�i!(t�t0)Ê(t0) (3.64)

We define input field

Êin(t) = �i
1p
2⇡

Z 1

1
d!e�!(t�t0)b̂(!, t0) (3.65)

with [Êin(t), Ê†
in(t

0)] = �(t� t0)
Now as in Langevin, we do Markov Approximation

Z 1

�1
d!g2(!)

Z t

t0

dt0e�i!(t�t0)Ê(t0) ⇡ g2(!)

Z 1

�1
d!

Z t

t0

dt0e�i!(t�t0)Ê(t0) = �

2
Ê(t) (3.66)
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Substitiuing in (3.17)
˙̂E(t) = i

~ [
ˆ̃H, Ê ]� Ê(t) +

p
2Êin (3.67)

where  = �/2
Now following the same process using (3.18)

˙̂E(t) = i

~ [
ˆ̃H, Ê ] + Ê(t) +

p
2Êout (3.68)

where

Êout(t) = i
1p
2⇡

Z 1

1
d!e�i!(t�t1)b̂(!, t1) (3.69)

We note that Êout has been defined with a minus sign, in respect to Êin. This has been done,
due to the fact that we consider Êout to be the reflected part of Êin, and so it should acquire a
⇡ phase shift upon reflection and ei⇡ = �1.
From equation (3.67),(3.68) we get the input output relation

Êout(t) + Êin(t) =
p
2Ê(t) (3.70)

From (3.67), we have the equation of motion for the cavity field

˙̂E(t) = �Ê(t) + ig
p
NP̂ (t) +

p
2Êin(t) (3.71)

We rewrite the equation of motion for the polarization and the spin operators

˙̂P (t) = �(�e + i�)P̂ (t) + ig
p
N Ê(t) + i⌦Ŝ(t) (3.72)

˙̂S(t) = �(�r + i�)Ŝ(t) + i⌦⇤P̂ (t) (3.73)

This system of four equations will be enough to describe the scattering dynamics of the system.
To bring this equation to an easier form, we perform the Fourier transform, which is the
decomposition of any function into a sum of sinusoidal basis functions. Each of these basis
functions is a complex exponential of a di↵erent frequency. The Fourier Transform therefore
gives us a unique way of viewing any function - as the sum of simple sinusoids.

f(t) =
1

2⇡

Z 1

�1
d!f(!)e�i!t (3.74)

where

f(!) =

Z 1

�1
dtf(t)ei!t (3.75)

It is important to stress that since negative frequency !, doesn’t have physical sense, we consider
! with respect to the cavity frequency !1. We show how this transforms the above equations
from the time domain to the frequency domain, starting with

1

2⇡

Z 1

�1
d!Êout(!)e�i!t +

1

2⇡

Z 1

�1
d!Êin(!)e�i!t =

2

2⇡

Z 1

�1
d!Ê(!)e�i!t (3.76)

We gather the terms to one side

1

2⇡

Z 1

�1
d!
⇣
Êout(!) + Êin(!)� 2Ê(!)

⌘
e�i!t = 0 (3.77)
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and it is easy to see, for this to be true we need

Êout(!) + Êin(!) = 2Ê(!) (3.78)

This equation is equivalent to equation (3.70), but all functions are in the frequency domain.
Following the same process we bring the other three equations to the frequency domain

� i!Ê(!) = �Ê(!) + ig
p
NP̂ (!) +

p
2Êin(!) (3.79)

� i!P̂ (!) = �(�e + i�)P̂ (!) + ig
p
N Ê(!) + i⌦Ŝ(!) (3.80)

� i!Ŝ(!) = �(�r + i�)Ŝ(!) + i⌦⇤P̂ (!) (3.81)

We can now solve this system of three equations. We solve (4.41) for P̂ (!) and then substitute
in (4.40) to get

(�e + i(�� !))(�r + i(� � !))

i⌦⇤ Ŝ(!) = ig
p
N Ê(!) + i⌦Ŝ(!) (3.82)

Ŝ(!) = �
p
2Êin(!)g

p
N⌦⇤

g2N(�r + i(� � !)) + (� i!)((�i�e +�� !)(i�r � (� � !) + ⌦2)
(3.83)

P̂ (!) =

p
2Êin(!)g

p
N(i�r � (� � !))

g2N(�r + i(� � !)) + (� i!)((�i�e +�� !)(i�r � (� � !)) + ⌦2)
(3.84)

Ê(!) =
p
2Êin(!)((�r + i(� � !))(�e + i(�� !)) + |⌦|2)

g2N(�r + i(� � !)) + (� i!)((�i�e +�� !)(i�r � (� � !)) + ⌦2)
(3.85)

Since we use single-sided cavity the reflection coe�ceint will be given by the

R(!) =
Êout(!)
Êin(!)

= �1 +
p
2

Ê(!)
Êin(!)

(3.86)

In this point we will have to comment on the informal notation used in the last equation, which
we will be using throughout this thesis. Mathematically of course it doesn’t make sense to di-
vide an operator by an operator, but in our case all the operators of our system are proportional
to the operator of the input field Êin(!) , e.g. Êout(!) = R(!)Êin(!). This mathematically ”in-
appropriate” division allows us to define and work with these proposortionality factors, which
are very useful for our calculations. Overall, this informal division, represents the proportion-
ality factor between the operator in the numerator and the input field operator Êin(!) which
will always be in the denominator.
Using (3.85) and (4.41) we find

R(!) = �1 +
2((�r + i(� � !))(�e + i(�� !)) + |⌦|2)

g2N(�r + i(� � !)) + (� i!)((�i�e +�� !)(i�r � (� � !)) + ⌦2)
(3.87)

which can be brought in the following form

R(!) = �1 + 2

 
� i! +

g2N

�e + i(�� !) + |⌦|2
�r+i(��!)

!�1

(3.88)

A very important relation, that we will be using in order to describe the scattering processes
of the system, is the conservation of probability stated as following
Z 1

0

dtÊin(t)
Z 1

0

dt0Ê†
in(t

0) =
Z 1

0

dtÊout(t)
Z 1

0

dt0Ê†
out(t

0) + (
p

2�e

Z 1

0

dtP̂ (t))(
p
2�e

Z 1

0

dt0P̂ †(t0))

+ (
p

2�r

Z 1

0

dtŜ(t))(
p

2�r

Z 1

0

dt0Ŝ†(t0))

(3.89)
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This equation basically states that the total probability of entering the system, over the entire
time domain, is equal to the total probability of exiting the system plus the total probability
that of being lost to the environment through any of the two dissipative processes defined for
our system.
It is easy to move to the frequenct domain, by Fourier transforming the above equation, This
way we view the equation in terms of intensity, i.e. rates at which energy enters and exits our
system plus the dissipative loss.

|Êin(!)|2 = |Êout(!)|2 + 2�e|P̂ (!)|2 + 2�r|Ŝ(!)|2 (3.90)

Now we turn to the proportionality factors, using the trick defined above.

1 = |R(!)|2 + 2�e
|P̂ (!)|2
|Êin(!)|2

+ 2�r
|Ŝ(!)|2
|Êin(!)|2

(3.91)

For convinience we define the proportionality factors

P̃ (!) =
P̂ (!)

Êin(!)
(3.92)

and

S̃(!) =
Ŝ(!)

Êin(!)
(3.93)

Now in order to gain better understanding of how this system behaves, we first turn o↵ the
laser field that couples to the higher transition i.e. ⌦ = 0.
From (3.83) it is clear that in this case, the last term of S̃(!) is zero. Our system that is
initially in the ground state cannot couple to the |ri state, so the other two rates are given by
the following equations.

2�e|P̃ (!)|2 = 2�e
|P̂ (!)|2
|Êin(!)|2

=
4g2N�e

g4N2 + 2g2N(�� (� + )!) + (�2 + (�� !)2)(2 + !2)
(3.94)

|R(!)|2 =g4N2 � 2g2N(�+ (��+ !)!) + (�2 + (�� !)2)(2 + !2)

g4N2 + 2g2N(�+ (�� !)!) + (�2 + (�� !)2)(2 + !2)

= 1� 4g2N�e

g4N2 + 2g2N(�+ (�� !)!) + (�2 + (�� !)2)(2 + !2)

(3.95)

We now plot these rates as functions of the dimensionless frequency !/ with respect to the
lower transition frequency, for zero detuning. We see that on resonance the photon interacts
strongly with the lower atomic transition and as a result, the energy decays from the excited
state. Moving away from resonance the photon nteracts less with the atoms, while far from
then it doesn’t see the atoms and is just reflected by the cavity.

If we now turn the laser coupled to the higher transition on, i.e. ⌦ 6= 0. The equations
are

|R(!)|2 = 1� 4g2N(�e�2
r + !(��+ !)(� � !)2 + 2�r⌦2)

A1
(3.96)

2�e|P̃ (!)|2 = 4g2N(�e�2
r + !(��+ !)(� � !)2)

A1
(3.97)
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Figure 3.2: Schematic representation of atoms in the cavity. The cavity field is resonant to the |gi $ |ei
transition. Very low reflection is observed as it is evident from the following graph, most of the input energy is

lost through decay of the excited state.
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Figure 3.3: Diagram of the reflection rate |R(!)|2, the loss rate through decay of the excited state |ei,
2�e| ˜P (!)|2 and the loss rate through dephasing of the state |ri as a function of the dimensionless frequency of

the sugnal, for the case of the driving field being turned o↵ ⌦ = 0. The values used g=0.1, n=40,�e=0.3,=1,� =

� = 0.
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Figure 3.4: Schematic representation of atoms in the cavity. The cavity field is resonant to the |gi $ |ei
transition, as is the driving field ⌦ to the |ei $ |ri transition. Strong reflection is observed, through the

destructive of the 2 transitions a phenomenon called Electromagnetically Induced Transparency.

2�r|S̃(!)|2 = 8g2N�r⌦2

A1
(3.98)

where

A1 =g4N2(�2
r + (� � !)2) + 2g2N((�2

r + (� � !)2)(�e+ (�� !)!) + (�r+ !(�� + !))⌦2)+

(2 + !2)((�2
r + (� � !)2)(�2

e + (�� !)2) + 2(�e�r + (� � !)(��+ !))⌦2 + ⌦4)
(3.99)

It is obvious equation (4.50) stands.

We now plot the graph as before with zero detunings and zero dephasing of the |ri state.
We observe that now there is perfect reflection on resonance and the field doesn’t interact with
the atoms. This is e↵ect is called Electromagnetically Induced Transparency and is due to the
destructive interference berween lower and higher transition, that that leads to the inaccesibility
of the excited state |ei,

3.2.2 2-sided Cavity

If we now consider a a 2-sided cavity, we have coupling with the environment through the left
and the right imperfect mirror. The field external to the cavity, is divided into two reservoirs
one next to the right mirror and one next to left mirror of the cavity.

Ĥr2 = ~
X

i

!L,ib̂
†
L,ib̂L,i + ~

X

i

!R,ib̂
†
R,ib̂R,i (3.100)

The interactions of the cavity field, with the external fields in each side is given by the interaction
Hamiltonian

Ĥcr2 = ~
X

i

(gi,LÊ†(t)b̂i,L(t) + gi,RÊ†(t)b̂i,R(t) + g⇤i,Lb̂
†
i,L(t)Ê(t) + g⇤i,Rb̂

†
i,R(t)Ê(t)) (3.101)

˙̂bL(!, t) =
i

~ [
ˆ̃H + Ĥr + Ĥcr, Ê(t)] = �i!b̂L(!, t) + igL(!)Ê(t) (3.102)

˙̂bR(!, t) =
i

~ [
ˆ̃H + Ĥr + Ĥcr, Ê(t)] = �i!b̂R(!, t) + igR(!)Ê(t) (3.103)
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Figure 3.5: Diagram of the reflection rate |R(!)|2, the loss rate through decay of the excited state |ei,
2�e| ˜P (!)|2 and the loss rate through dephasing of the state |ri as a function of the dimensionless frequency

of the cavity, The driving field is on, with strength ⌦ = 0.5. The rest of the values used are g=0.1,

n=40,�e=0.3,=1,� = � = 0.

Integrating formally with the initial condition at time t0 < t, the input,

b̂L(!, t) = e�i!(t�t0)b̂L(!, t0) + igL(!)

Z t1

t

dt0e�i!(t�t0)Ê(t0) (3.104)

or with the initial condition at time t1 > t, the output,

b̂L(!, t) = e�i!(t�t1)b̂L(!, t1)� igL(!)

Z t1

t

dt0e�i!(t�t0)Ê(t0) (3.105)

b̂R(!, t) = e�i!(t�t1)b̂R(!, t1)� igR!)

Z t1

t

dt0e�i!(t�t0)Ê(t0) (3.106)

Substituing (3.17)

˙̂E(t) = i

~ [
ˆ̃H, Ê(t)]�

Z 1

�1
d!g(!)e�i!(t�t0)b̂R(!, t0)� i

Z 1

�1
d!g2R(!)

Z t

t0

dt0e�i!(t�t0)Ê(t0)

�
Z 1

�1
d!g(!)e�i!(t�t0)b̂L(!, t0)� i

Z 1

�1
d!g2L(!)

Z t

t0

dt0e�i!(t�t0)Ê(t0)
(3.107)

We define input field

Êin,R(t) = �i
1p
2⇡

Z 1

1
d!e�!(t�t0)b̂R(!, t0) = 0 (3.108)

Êin,L(t) = �i
1p
2⇡

Z 1

1
d!e�!(t�t0)b̂L(!, t0) (3.109)
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with [Ê(t), Ê†(t0)] = �(t� t0)
Now as in Langevin, we do Markov Approximation

Z
1
�1d!g2L(!)

Z t

t0

dt0e�i!(t�t0)Ê(t0) +
Z 1

�1
d!g2R(!)

Z t

t0

dt0e�i!(t�t0)Ê(t0) ⇡

g2L(!)

Z 1

�1
d!

Z t

t0

dt0e�i!(t�t0)Ê(t0) + g2R(!)

Z 1

�1
d!

Z t

t0

dt0e�i!(t�t0)Ê(t0) = �L + �R
2

Ê(t)
(3.110)

Substitiuing in (3.17)

˙̂E(t) = i

~ [
ˆ̃H, Ê ]� (R + L)Ê(t) +

p
2LÊin (3.111)

where L = �L/2 and R = �R/2
Now following the same process using (3.18)

˙̂E(t) = i

~ [
ˆ̃H, Ê ] + (R + L)Ê(t)�

p
2LÊout,L +

p
2RÊout,R (3.112)

where

Êout,R(t) = �i
1p
2⇡

Z 1

1
d!e�!(t�t1)b̂R(!, t1) (3.113)

Êout,L(t) = i
1p
2⇡

Z 1

1
d!e�!(t�t1)b̂L(!, t1) (3.114)

From equation (3.111), (3.112) we get the input output relations for each side, similar to the
(3.70)

Êout,L(t) + Êin,L(t) =
p
2LÊ(t) (3.115)

Êout,R(t) =
p
2RÊ(t) (3.116)

From equation (3.111) we get the equation of motion for the two sided cavity field.

˙̂E(t) = �(R + L)Ê(t) + ig
p
NP̂ (t) +

p
2LÊin(t) (3.117)

These three equations together with (3.72), (3.73) is a system of 5 equations that describe the
scattering dynamics of the 3-level atomic ensemle in a 2 sided cavity. As for the single sided
case we can move to the frequency domain by Fourier transforming the 5 equations and have
the following 5 equations.

Êout,L(!) + Êin,L(!) =
p
2LÊ(!) (3.118)

Êout,R(!) =
p
2RÊ(!) (3.119)

˙̂E(!) = �(R + L)Ê(!) + ig
p
NP̂ (!) +

p
2LÊin(!) (3.120)

� i!P̂ (!) = �(�e + i�)P̂ (!) + ig
p
N Ê(!) + i⌦Ŝ(!) (3.121)

� i!Ŝ(!) = �(�r + i�)Ŝ(!) + i⌦⇤P̂ (!) (3.122)

Solving this system we get the last 3 equations

Ŝ(!) = �
p
2LÊin(!)g

p
N⌦⇤

(g2N(�r + i(� � !)) + (R + L � i!)((�i�e +�� !)(i�r + !) + ⌦2)
(3.123)

P̂ (!) =

p
2LÊin(!)g

p
N(i�r � (� � !))

(g2N(�r + i(� � !)) + (R + L � i!)((�i�e +�� !)(i�r + !) + ⌦2)
(3.124)
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Figure 3.6: Schematic representation of atoms in the two sided cavity. The cavity field is resonant to the

|gi $ |ei transition, as the driving field ⌦ turned o↵. Strong reflection is observed, due to resonant interaction

with the two level system.

Ê(!) =
p
2LÊin(!)((�r + i(� � !))(�e + i(�� !)) + |⌦|2)

(�r + i(� � !))((� i!)(�e + i(�� !)) + |⌦|2(R + L � i!) + g2N)
(3.125)

Probability conservation equation (3.90) for the case of two sided cavity is

|Êin,L(!)|2 = |Êout,L(!)|2 + |Êout,R(!)|2 + 2�e|P̂ (!)|2 + 2�r|Ŝ(!)|2 (3.126)

and as in the one sided case, we work with the proportionality factors

1 = |R(!)|2 + |T (!)|2 + 2�e|P̃ (!)|2 + 2�rS̃(!)|2 (3.127)

where we have defined the proportionality factors,

R(!) =
Êout,L
Êin,L

= �1 +
2L((�r + i(� � !))(�e + i(�� !)) + |⌦|2)

(�r + i(� � !))((R + L � i!)(�e + i(�� !)) + |⌦|2(� i!) + g2N)
(3.128)

and

T (!) =
Êout,R
Êin,L

= � 2
p
LR((�r + i(� � !))(�e + i(�� !)) + |⌦|2)

(�r + i(� � !))((R + L � i!)(�e + i(�� !)) + |⌦|2(� i!) + g2N)
(3.129)

The equations are

|R(!)|2 = 1�4g2NL(�r⌦2) + �e(�2
r + (� � !)2) + 2

p
LR((�r + i(� � !))(�e + i(�� !)) + |⌦|2)
A2

(3.130)

|T (!)|2 = 4RL�2
e ((�

2
r � (� � !)2) + �2

r (�� !)2 + 2�e�r⌦2 + ((� � !)(��+ !) + ⌦2)2)

A2
(3.131)

2�e|P̃ (!)|2 = 4g2N�eL(�2
r + (� � !)2)

A2
(3.132)

2�r|S̃(!)|2 = 4g2N�rL⌦2

A2
(3.133)

where
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Figure 3.7: Diagram of the transmission and reflection rates |T (!)|2, |R(!)|2, the loss rate through decay

of the excited state |ei, 2�e| ˜P (!)|2 and the loss rate through dephasing of the state |ri as a function of the

dimensionless frequency of the two sided cavity. The driving field is o↵, ⌦ = 0. The rest of the values used are

g=0.1, n=40,�e=0.05,L=0.6,R=0.4,� = � = 0.

A2 =g4N2(�2
r + (� � !)2) + 2g2N((�2

r + (� � !)2)(�e(L + R) + (�� !)!) + (�r(L + R)+

!(�� + !))⌦2) + ((L + R)
2 + !2)((�2

r + (� � !)2)(�2
e + (�� !)2)+

2(�e�r + (� � !)(��+ !))⌦2 + ⌦4)
(3.134)
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Figure 3.8: Schematic representation of atoms in the 2 sided cavity. The cavity field is resonant to the |gi $ |ei
transition, as is the driving field ⌦ to the |ei $ |ri transition. Strong transmission is observed, through the

destructive of the 2 transitions a phenomenon called Electromagnetically Induced Transparency.
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Figure 3.9: Diagram of the transmission and reflection rates |T (!)|2, |R(!)|2, the loss rate through decay

of the excited state |ei, 2�e| ˜P (!)|2 and the loss rate through dephasing of the state |ri as a function of the

dimensionless frequency of the two sided cavity. The driving field is o↵, ⌦ = 0. The rest of the values used are

g=0.1, n=40,�e=0.05,L=0.6,R=0.4,� = � = 0.
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3.3 Atomic Ensemble in Free Space

After having described the cases of the atomic ensemble in a one-sided and a two-sided cavity,
we turn to the description of an atomic cloud in the free space. We will consider the linear
dispertion in first order, the L/N is a normalization constant so that

R L

0 n(z) = N
The electric field vector operator for the cavity field is given by

Ê1(z) = ✏1

✓
~!1

4⇡c✏0A

◆1/2

(

Z
d!â!e

i!z/c +

Z
d!â†!e

�i!z/c) (3.135)

where !1 is the frequency of the cavity field and â†!, â! the creation and annihilation operators
for the cavity field and where ✏1 are the unit vector in the direction of the polarization of the
cavity field, ✏0 the perimittivity of free space, V the quantization volume of the field and c the
speed of light.

[â!, â
†
!0 ] = �(! � !0) (3.136)

The co-propagating single mode classical plane-wave field with frequency !2 is the same as in
the cavity case and is described by the electric field vector

E2(z, t) = ✏2E2(t)cos(!2(t� z/c)) = ✏2
E2(t)
2

(ei!2(t�z/c) + e�i!2(t�z/c)) (3.137)

where ✏2 are the unit vector in the direction of the polarization of the classical field and E(t)
its amplitude.
The Hamiltonian of the system is

Ĥ = Ĥ0 + V̂ (3.138)

where Ĥ0 is the unperturbed Hamiltonian and V̂ is the interaction Hamiltonia between the
atomic ensemble and the fields.

Ĥ0 = ~
Z

d!!â†!â! +
NX

i

(~!g�̂
i
gg + ~!e�̂

i
ee + ~!r�̂

i
rr) (3.139)

and the interaction Hamiltonian in defined the same way as in the cavity case. In a similar
manner as before we get to the three equations of motion for our system.

(@t + c@z)Ê(z, t) = ig
p
NP̂ (z, t)

n(z)L

N
(3.140)

˙̂P (t) = �(�e + i�)P̂ (t) + ig
p
N Ê(t) + i⌦Ŝ(t) (3.141)

˙̂S(t) = �(�r + i�)Ŝ(t) + i⌦⇤P̂ (t) (3.142)

Now we are going into a co-moving frame with new coordinates t0 = t � z/c, z0 = z, then we
transform the partial derivatives to the coordinates

@

@t
=

@

@t0
@t0

@t
+

@

@z0
@z0

@z
=

@

@t0
(3.143)

@

@z
=

@

@t0
@t0

@z
+

@

@z0
@z0

@z
= �1

c

@

@t0
+

@

@z0
(3.144)

and we choose the density to be constant in space n(z) = N
L
.

@z0 Ê(z, t) = i
g
p
N

c
P̂ (z, t) (3.145)
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@t0P̂ (t) = �(�e + i�)P̂ (t) + ig
p
N Ê(t) + i⌦Ŝ(t) (3.146)

@t0Ŝ(t) = �(�r + i�)Ŝ(t) + i⌦⇤P̂ (t) (3.147)

We will now use the Fourier transform as before

@z0 Ê(z,!) = i
g
p
N

c
P̂ (z,!) (3.148)

� i!P̂ (!) = �(�e + i�)P̂ (!) + ig
p
N Ê(t) + i⌦Ŝ(!) (3.149)

� i!Ŝ(!) = �(�r + i�)Ŝ(!) + i⌦⇤P̂ (!) (3.150)

We can now solve the system of the three equations as following

Ŝ(!, z0) =
i⌦⇤

�r + i(� � !)
P̂ (3.151)

ig
p
N Ê =

(�r + i(� � !))(�e + i(�� !)) + |⌦|2
�r + i(� � !)

P̂ (3.152)

@z0 Ê(z,!) = �
g2N
c
(�r + i(� � !))

(�r + i(� � !))(�e + i(�� !)) + |⌦|2 Ê(z,!) (3.153)

If we now integrate from 0 to L, where is the length of the ensemble we have

Ê(L,!)
Ê(0,!) = exp(

�d(�r + i(� � !))

(�r + i(� � !))(�e + i(�� !)) + |⌦|2 ) (3.154)

where we have defined the optical depth d = g2NL
�c

. From (3.145) we have

P̂ (z0,!) = �i
c

g
p
N
@z0 Ê(z0,!) (3.155)

and then we can find a similar relation for Ŝ(!, z0)

Ŝ(!, z0) = �i
c

g
p
N

i⌦⇤

�r + i(� � !)
@z0 Ê(z0,!). (3.156)

The probability conservation relation, similar to (3.90) in the free space case is

|Ê(0,!)|2 = |Ê(L,!)|2 + 2�e

Z L

0

dz0|P̂ (!, z0)|2 + 2�r

Z L

0

dz0|Ŝ(!, z0)|2, (3.157)

which basically states that the rate at which energy enters the atomic cloud, is equal to the
rate of energy exiting it, plus the lost energy through the two sources of dissipation defined
above.

1 =
|Ê(L,!)|2
|Ê(0,!)|2 + 2�e

R L

0 dz0|P̂ (!, z0)|2
|Ê(0,!)|2 + 2�r

R L

0 dz0|Ŝ(!, z0)|2
|Ê(0,!)|2 , (3.158)
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3.4 Mapping between Cavity and Free Space Models

In the previous section we studied the interaction of a 3-level atomic ensemble with 2 fields in
free space. We found that the behaviour of the system is very similar to the one of an atomic
ensemble in a cavity. In this section we will derive a relation between the two di↵erent systems.
We start from the single sided cavity Hamiltonian (3.42) in the dipole and rotating wave
approximation. We consider being in the bad cavity limit, i.e.  � g

p
N , so we can treat

the coupling of the cavity field with the atoms perturbatively. This way we can, following
the e↵ective operator formalism developed in chapter 2, adiabatically eliminate the cavity filed
operator Ê . We consider the excited subspace to contain only the cavity field so the non
Hermitian Hamiltonian describing it, will be

ĤNH = �i~2Ê†Ê (3.159)

since we work in the rotating frame of the field, the ĤNH contains only the decay of the cavity
field. No following the formalism (2.103) we define a new e↵ective Hamiltonian as

Ĥeff = iÊg
p
N �̂eg(

Ê†Ê


)Ê†g
p
N �̂ge = i

g2N


�̂ee. (3.160)

Then we can find the new equations of motion in this e↵ective formalism,

P̂ (!) = �(�e + i�)P̂ (!)� g2N


P̂ (!) + i⌦⇤Ŝ(!) + i

r
2g2N


Êin(!), (3.161)

Ŝ(!) = �(�r + i�)Ŝ(!) + i⌦P̂ (!), (3.162)

where the equation of Ŝ remained unchanged since it was not coupled to the cavity field, which
we adiabatically eliminated.
Subsequently using (2.104) to find the e↵ective decay of the cavity, we can write the new input
output cavity relation as

Êout(!) = Êin(!) + L̂cav
eff = Êin(!) + i

r
2
g2N


P̂ (!) (3.163)

By solving this system of the three equations we find the relation for the reflection coe�cient

R(!) = 1� i2g2N
2 (�r + i(� � !))

(�e + i(�+ g2N
2 � !)(�r + i(� � !)) + |⌦|2) . (3.164)

If we now compare this result with the equation for the transmition coe�cient in free space
(3.154), we see that by expanding (3.154) for small optical depth d, to first order, we get a
similar result to (3.164). Up to a factor in the denominator of (3.164), called Purcell factor,
we can have perfect correspondance between free space model and single-sided cavity model,
under the correspondance relation

C = d
c

L
(3.165)

between the ensemble’s cooperativity C = g2N
2� in the cavity model and the ensemble’s optical

depth d = g2N
2� in the free space model. For very small cooperativity C = g2N

2� ⌧ 1 , the

Purcell factor can be neglected �e ⇡ �e(1 � C) ⇡ �e C = g2N
2� ⌧ 1 and we can have perfect

correspondance between the two models.
This relation is very useful, since it allows us to directly relate our results for the single cavity
model to the free space model.
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Figure 3.10: a)Schematic representation of atoms in the single sided cavity. The cavity field is coupled to the

|gi $ |ei transition, as is the driving field ⌦ to the |ei $ |ri transition. Low reflection is observed, through the

Rydberg interaction the energy of r state is shifted by Vkl and no longer accesible from e through ⌦.

3.5 Rydberg Atoms

If we now consider the atoms consisting the ensemble, to be Rydberg atoms, i.e. atoms with
large dipole moments when in Rydberg state. This leads to an extra term in the Hamiltonian,
describing strong dipole-dipole interactions between atoms in states |ri,|r0i,

ĤRyd = ~
X

l

X

k 6=l

Vkl |rli hrl|⌦ |r0ki hr0k| (3.166)

For now we will consider the k-th atom to be excited in state |r0ki then, we are left with

ĤRyd,k = ~
X

l

Vkl |rli hrl| (3.167)

which contributes only to the equation of motion of the spin operator ˙̂S(t) as

˙̂SRyd,k(t) =
i

~ [ĤRyd,k, Ŝ(t)] = �i
1

N

X

i

|gii hri|
X

l

Vkl |rli hrl| =

� i
X

l

1

N

X

i

Vkl |gii �li hrl| = �i
1

N

X

l

Vkl |gli hrl|
(3.168)

From equations (3.23),(3.24) we get the input output relation

Êin + Êout =
p
2Ê (3.169)

˙̂E(t) = �Ê(t) + ig
p
NP̂ (t) +

p
2Êin(t) (3.170)

˙̂P (t) = �(�e + i�)P̂ (t) + ig
p
N Ê(t) + i⌦Ŝ(t) (3.171)

˙̂S 0(t) = ˙̂S(t) + ˙̂SRyd,k(t) = �(�r + i�)Ŝ(t)� i
X

l

Vkl |rli hgl|+ i⌦⇤P̂ (t) (3.172)

We see that the equations of motion of the system operators do not change apart from the spin
operator, that gets this new energy shift from the Rydberg interaction term. In order to deal
with the last equation we have to write the spin operator in the decomposed form.

˙̂S 0(t) =
X

l

˙̂�l
gr(t) = �(�r + i�)

X

l

�̂l
gr(t)� i

X

l

Vkl |rli hgl|+ i⌦⇤X

l

�̂l
ge(t) (3.173)

38



where we can neglect the sum and have

˙̂�l
gr(t) = �(�r + i�)�̂l

gr(t)� iVkl�̂
l
gr(t) + i⌦⇤�̂l

ge(t) (3.174)

Then writting the other two equations in the same form, we end up with a system of 3 equations

˙̂�l
ge(t) = �(�e + i�)�̂l

ge(t) + igÊ(t) + i⌦�̂l
gr(t) (3.175)

˙̂E(t) = �Ê(t) + ig
X

l

�̂l
ge(t) +

p
2Êin(t) (3.176)

We treat the system as we did in the previous sections of the chapter. We move to the frequency
domain through Fourier transform and solve it. We get the equations

Ê(!) =
p
2Êin

(� i!) +
P

l

⇣
g2(�r+i(�+Vkl�!))

(�e+i(��!))(�r+i(�+Vkl�!))+|⌦|2
⌘ (3.177)

�̂l
ge =

i
p
2gn(�r + i(� + Vkl � !))Êin

((�r + i(� + Vkl � !))(�e + i(�� !)) + |⌦|2)
⇣
(� i!) +

P
l

⇣
g2(�r+i(�+Vkl�!))

(�e+i(��!))(�r+i(�+Vkl�!))+|⌦|2
⌘⌘

(3.178)

�̂l
gr =

�p
2gn⌦⇤Êin

((�r + i(� + Vkl � !))(�e + i(�� !)) + |⌦|2)
⇣
(� i!) +

P
l

⇣
g2(�r+i(�+Vkl�!))

(�e+i(��!))(�r+i(�+Vkl�!))+|⌦|2
⌘⌘

(3.179)
and the equations for Ŝ(!) can be find P̂ (!) by their definition. It becomes evident that we
need to evaluate the sum in the denominator, in order to understand the scatering dynamics
of the system.

X

l

✓
g2(�r + i(� + Vkl � !))

(�e + i(�� !))(�r + i(� + Vkl � !)) + |⌦|2
◆

=
X

l

 
g2

(�e + i(�� !)) + |⌦|2
(�r+i(�+Vkl�!))

!

(3.180)
We can convert the sum over all atoms to an integral over the volume of the ensemble,

P
l !R

⇢a(r)dV and write the explicit value of Vkl = �C6
r6
. Since the cloud is assumed homogeneous

we have ⇢a(r) =
n
Va

and

1

Va

Z Ra

0

drr2
Z ⇡

0

d✓sin✓

Z 2⇡

0

d�

0

@ g2N

(�e + i(�� !)) + |⌦|2
(�r+i(��C6

r6
�!))

1

A =

1

Va

4⇡

Z Ra

0

drr2

0

@ g2N

(�e + i(�� !)) + |⌦|2
(�r+i(��C6

r6
�!))

1

A

(3.181)

where Ra is the radious of the atomic sphere and V its volume Va = 4
3⇡R

3
a. We can set Ra to

be infinite, if we consider it larger than the radious of the Rydberg blockade RRyd. Since the
Rydberg interaction term Vkl / r�6 reduces very fast, in sixth order with distance between the
two excited atoms and will be negligible for values higher than RRyd.
Now this integral can be di�cult to evaluate, even after the asumption Ra ! 1 valid for
Ra > RRyd, so we choose to treat it for the resonant case of � = � = ! = 0, where also assume
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the dephasing of the |ri state is to be zero i.e. �r = 0.

4⇡

Va

Z 1

0

drr2

0

@ g2N

�e +
|⌦|2
�i

C6
r6

1

A =4⇡
g2N

Va�e

Z 1

0

drr2
 

1

1 + i |⌦|2
C6�e

r6

!
=

4⇡
g2N

Va�e

Z 1

0

drr2
 

1� i |⌦|2
C6�e

r6

1 + |⌦|4
(C6�e)2

r12

!
=

4⇡
g2N

Va�e

 Z 1

0

drr2
1

1 + |⌦|4
(C6�e)2

r12
� i

Z 1

0

drr2
|⌦|2
C6�e

r6

1 + |⌦|4
(C6�e)2

r12

!
=

 p
2g2n⇡2

p
C6�e

3Va�e|⌦| � i

p
2g2n⇡2

p
C6�e

3Va�e|⌦|

!

(3.182)

So we have the value of Ê(! = 0)

Ê(! = 0) =

p
2Êin

+
p
2g2n⇡2

p
C6�e

3Va�e|⌦| (1� i)
(3.183)

since �r is zero, there is no loss from the |ri, so �̂l
gr doesn’t contribute to the scattering dynamics

of the system. But �e is not zero, so we evaluate the equation �̂l
ge, since it plays a role in the

scattering of the incoming photons.

�̂l
ge(! = 0) = �

p
2gnVklÊin

(i�eVkl + |⌦|2)
⇣
+

p
2g2n⇡2

p
C6�e

3Va|⌦| (1� i)
⌘ (3.184)

we now write in the polarization form and transforming the sum over atoms to a volume integral
as before and we set Ra ! 1 valid for Ra > RRyd, since Vkl(r > Rryd) ⇡ 0.

P̂ (!) =
1p
n

X

l

�̂l
ge(!) !

4⇡p
n

Z Ra

0

dr⇢a(r)r
2�̂l

ge(!) (3.185)

Considering as before the radius of the atomic cloud Ra to be larger than the Rydberg blockade
radius RRyd and the density of atoms to be constant ⇢a(r) =

n
Va
, we have

P̂ (!) ⇡ 4⇡
p
n

Va

Z 1

0

drr2�̂l
ge(!) (3.186)

which leads to an expression containing the integral (3.182)

P̂ (! = 0) = i4⇡
p
2Êin g

p
N

Va�e

 
+

p
2g2n⇡2

p
C6�e

3Va�e|⌦| (1� i)

!�1 Z 1

0

drr2
1

1 + i |⌦|2
�eVkl

(3.187)

Using the explicit form of Rydberg interaction Vkl = �C6
r6

we evaluate the integral as above
and have

P̂ (! = 0) = i
p
2Êing

p
N

 
+

p
2g2n⇡2

p
C6�e

3�e|⌦| (1� i)

!�1 p
2⇡2

p
C6�e

3�e|⌦| (1� i) (3.188)
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and bringing it in a nicer form,

P̂ (! = 0) =
i
p
2g

p
N Êin

g2N + 3�e|⌦|p
2g2n⇡2

p
C6�e(1�i)

(3.189)

The e↵ect of the Rydberg interaction is an energy shift, that depends on the distance between
the excited atoms, in order to gain some better intuition of this interaction we can will look
at it in terms of the single atom cooperaticity C1 =

g2

�
and the Rydberg radius. Dividing over

Êin, we have the proportionality factors:

R(!) = 2

 
� i! +

X

l

g2N

�e + i(�+ !) + |⌦|2
�r+i(�+Vkl+!)

!�1

� 1 (3.190)

while for the resonant case, we dealt with above, it becomes

R(!) = 2

 
1 +

X

l

g2

�e

1� i |⌦|2
Vkl�e

!�1

� 1 = 2

 
1 +

X

l

C1

1� i |⌦|2
Vkl�e

!�1

� 1 (3.191)

where C1 the cooperaticity of a single atom. If the Rydebrg interaction was considered constant
in space, then our result, would have been just a phase shift, resulting to an AC Stark shift,
similar to having a detuning �

R(!) = 2

 
1 +

C

1� i |⌦|
2

V�e

!�1

� 1 (3.192)

While now, considering the Rydberg term having the r�6 behaviour, from the previous results.

R(!) =
2

1 + nC
⇣p

2⇡2
p
C6�e

3Va|⌦| (1� i)
⌘ � 1 =

2

1 + Cb(1� i)
� 1 (3.193)

where Cb = nC
p
2⇡2pC6�e
3Va|⌦| , is the e↵ective blockade cooperativit and it is basically the cooper-

ativy of the atoms contributing to the interaction i.e. the atoms inside the Rydberg sphere,
with volume Vryd =

4
3⇡R

3
ryd. The Rydberg radius is defined as

RRyd =
6

r
⌦eff

C6
= 6

s
⌦2

�eC6
(3.194)

It is easy to see now that

Cb = nC

p
2⇡2

p
C6�e

3Va|⌦| = nC
p
2⇡

VRyd

Va

(3.195)

We can see that for no Rydberg interaction C6 = 0 we have full reflection with no sign flip
R(!) = 1, while for very large Rydberg interaction strength C6 ! 1, we have full reflection
with a ⇡ phase flip, R(!) = 1. This property has been used for the proposal of C-phase gate
by Das et al. [5]. In our case we do not care about the phase, only about the reflection rate
|R(!)|2, which goes to unity in both cases, regardless of the field strength ⌦.
The rate P̃ (!) in terms of the e↵ective blocade cooperativity is

P̃ (!) = i

q
2
�e

p
Cb

1 + Cb

(3.196)
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Figure 3.11: Diagram of the reflection rate |R(!)|2, the loss rate through decay of the excited state |ei,
2�e| ˜P (!)|2 and the loss rate through dephasing of the state |ri as a function of the blockade cooperativity. We

can see that we can at the maximum we can achieve is almost 83% losses of the incoming field, due to decay.

The values used are �e=0,� = � = 0.

Which is 0 on resonance as expected, for Cb = 0, due to EIT, as in the case viewed in the first
section of this chapter. For Cb ! 1, the rate goes to 0, again due to very strong blockade.
The two rates as function of the blockade cooperativity are Cb.

|R(Cb)|2 = 1� 4Cb

1 + 2Cb(1 + Cb)
(3.197)

and

2�e|P (Cb)|2 =
p
4Cb

1 + 2Cb(1 + Cb)
(3.198)

We find the first derivative of the reflactance

d|R(Cb)|2
dCb

=
4(1� C2

b )

1 + 2Cb(1 + Cb)
(3.199)

and by setting it to 0, we can see that there is a minimum point

Cb,min =

r
1

2
(3.200)

that leads us to the minimum value of reflectance

|R(Cb)|2min = 1� 4

2(1 +
p
2)

= 3� 2
p
2 (3.201)

We plot the two rates as functions of the blockade cooperativity Cb in figuree 3.11.
We can see that there is no value of Cb for which the reflectance |R(!)| goes to zero, so that

we have perfect Rydberg blockade. In order to investigate if there are conditions under which
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we can achieve perfect blockade, so that all energy will be lost through spontaneous emission
and there will be no reflectance, we will look a case out of resonance. We choose to solve the
integral (3.182) for � = ��e and ! = � = 0. This will lead to the following integral

4⇡

Va

Z 1

0

drr2(
g2N

(�e + i�) + i |⌦|
2

C6
r6

) = 4⇡
g2N

Va�e

Z 1

0

drr2(
1

1� i+ i |⌦|2
�eC6r

6
)

= 4⇡
g2N

Va�e

Z 1

0

drr2(
1� i(�1 + |⌦|2

�eC6
r6)

1 + (�1 + |⌦|2
�eC6

r6)2
)

= 4⇡
g2N

Va�e

Z 1

0

drr2(
1

1 + (�1 + |⌦|2
�eC6

r6)2
)� i

Z 1

0

drr2(
(�1 + |⌦|2

�eC6
r6)

1 + (�1 + |⌦|2
�eC6

r6)2
)

= 4⇡
g2N

Va�e

p
�eC6

|⌦| (⇡

p
1 +

p
2

12
+ i⇡

p
�1 +

p
2

12
)

(3.202)

We can see that we can define the e↵ective cooperativity in this case as

Ceff = nC

p
�eC6

Va|⌦| (4⇡
2

p
1 +

p
2

12
+ i4⇡2

p
�1 +

p
2

12
) (3.203)

The reflection coe�cient for this case becomes

R(C 0
b) =

2

1 + Ceff

� 1 =
2

1 + C 0
b(4⇡

2

p
1+

p
2

12 + i4⇡2

p
�1+

p
2

12 )
� 1 (3.204)

where C 0
b = NC

p
�eC6

Va|⌦| . We can now plot the reflectance and we see that in this case we can get
much closer to perfect blockade for a certain value of C 0

b. As we can see in figure 3.12, there
is a minimum of the reflectance for the value C 0

b =
3

⇡223/4
, we where |R|2 = 4

2
p

2+
p
2
� ⇡ 0.04.

This result means that for this value of Cb, if there is a Rydberg excitation somewhere in the
ensemble, the probability of reflectance on resonance is a bit less than 0.4%, where the loss
probability is over 99.6%.
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Figure 3.12: Diagram of the reflection rate |R(!)|2, as a function of the blockade cooperativity, where for

the value C 0
b =

3
⇡223/4

, we achive almost zero reflectance |R|2 =

4

2
p

2+
p
2
� ⇡ 0.04. The condition used is

� = ��e, � = 0.
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Chapter 4

Impedance Matching

In the previous chapter we showed that it is possible to condition the signal field, based on
the absence or presence of a Rydberg excitation. In the current chapter we will investigate
the conditions for our control field to excite an atom to the Rydberg state. In particular, we
will look for the required conditions, so that a photon we send into the system, coupled to the
second branch transition |gi $ |e0i $ |r0i, will end up as an excitation in |r0i and stay there
untill it dephases. For this purpose we use the following equation

|Êin(!)|2 = |Êout(!)|2 + 2�e|P̂ (!)|2 + 2�r|Ŝ(!)|2 (4.1)

This equation simply describes the conservation of energy in the system plus the coupling with
its envirnment, taking into account all the e↵ects of dissipation introduced. In particular, it
shows that the rate of enegy of a certain frequency, entering the system will be equal to the
rate exiting the system plus the energy lost by decay of the excited state and dephasing of the
Rydberg state.
The fact that this equation describe rates is evidable by the units of 2�e|P̂ |2, which can better
understood in the more familiar time domaim, by Fourier transforming this equation.
If we divide equation (4.1) by |Êin(!)|2 we get

1 =
|Êout(!)|2
|Êin(!)|2

+ 2�e
|P̂ (!)|2
|Êin(!)|2

+ 2�r
|Ŝ(!)|2
|Êin(!)|2

(4.2)

We recognize the first ratio of the right hand side as the reflectance |R̂(!)|2.
Our goal is to optimize the conditions, so that all the incoming energy will exit the system
through the dephasing of |ri, described by the last term in the above equation.

2�r
|Ŝ(!)|2
|Êin(!)|2

= 1 (4.3)

4.0.1 Single Sided Cavity

For the single cavity case

2�r
|Ŝ(!)|2
|Êin(!)|2

= 2�r

 
g
p
N⌦

(�r + i� � i!)(�e + i�� i!) + ⌦2

!2 |E(!)|2
|Êin(!)|2

= 1 (4.4)

and using the input output relation, we get

2�r
|Ŝ(!)|2
|Êin(!)|2

= 2�r

 
g
p
N⌦

(�r + i� � i!)(�e + i�� i!) + ⌦2

!2
1

2
(�1 + |R̂(!)|)2 = 1 (4.5)
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2�r

 
g
p
N⌦

(�r + i� � i!)(�e + i�� i!) + ⌦2

!2
1

2
(�1 + 2

 
� i! +

g2N

�e + i(�+ !) + |⌦|2
�r+i(�+!)

!�1

� 1)2 = 1
(4.6)

Solving this equation, we get the result for �r

�r =
(g2n⌦2 � �e(2 + !2)⌦2 ± 1

2

p
A)

(g4n2 + 2g2n(�e� !(�+ !)) + (2 + !2)(�2
e + (�+ !)2))

(4.7)

A = 4(g2n� �e(
2 + !2))2⌦4 � 4(g4n2 + 2g2n(�e� !(�+ !))+

(2 + !2)(�2
e + (�+ !)2))(g4n2(� + !)2 + 2g2n(� + !)(�e(� + !)+

!(�(� + !)(�+ !) + ⌦2)) + (2 + !2) (�2(� + !)2 + (�(� + !)( �+ !) + ⌦2)2))

(4.8)

This expression minimizes for ! = ��

�r = � ((�2 + 2)⌦4

(�g2n + �(�2 + 2))⌦2 ±p
B)

(4.9)

where,

B = �(g4n2�2 � 2g2n(�2 � ��� 2�)(�2 + 2) + (� ��)2(�2 + 2)2)⌦4 (4.10)

B cannot be possitive, since �r has to be a real value. So we find the condtions for B=0, that is

� = � � g2N�

�2 + 2
± 2

p�g2N�(�2 + 2)3

(�2 + 2)2
(4.11)

For � to be real, it is obvious that we have to set � = 0

� = � � g2N�

�2 + 2
(4.12)

And from this equation, another condition becomes evitable, that for non zero detunings we
need the conditions � < � < 0 or � > � > 0, since the square of the coupling constant g2N
has to be real and positive.
So we have the condition for impedance matching

�r =
(�2 + 2)⌦2

g2n 
(4.13)

in addition with requirement (4.12), �e = 0 and � < � < 0 or � > � > 0.
An easy way to test the validity of this result, is by considering the case of zero detunings
� = � = 0. For this case the condition (4.12) disappears and the only condition is � = 0.
Then, the dephasing becomes

�r =
⌦2

g2n
(4.14)

We can easily check this result by using it to calculate the reflection amplitude R(!) = 1, that

leads to |Êout(!)|2
|Êin(!)|2 = 0 and since �e = 0, from (4.2) we can see that the impedance matching

condition is fulfilled.
Although (4.12) is the condition for perfect impedance mathing, we would like to have the
dephasing being proportional to the number of atoms, since this condition will lead to long
lived Rydberg excitations. So we try to find an approxiamte solution of impedance matching,
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Figure 4.1: Diagram of the reflection rate |R(!)|2, the loss rate through decay of the excited state |ei,
2�e| ˜P (!)|2 and the loss rate through dephasing of the state |ri as a function of the dimensionless frequency of

the cavity. We can see that on resonance are impedance matched, with strength ⌦ = 0.5. The rest of the values
used are g=0.1, n=40,�e=0,=1,� = � = 0.

where dephasing will be proportional to the number of atoms n, the reason for the advantage
of this choice will become clear in the last chapter. But we can argue that the motivation
behind it, comes from the fact that if we adiabatically eliminate the excited state |ei, we find

an e↵ective decay of the state |ri equal to g2N⌦2

�2 , this motivates us to look for an impedance
matching at this value of �r.
We choose

�r =
g2N⌦2

�2
(4.15)

and we try to find optimal conditions for 2�r
|Ŝ(!)|2
|Êin(!)|2 to approach unity. We eliminate decay

from � = 0

2�r
|Ŝ(!)|2
|Êin(!)|2

=
4g4n2⌦4

D
(4.16)

D =�2(g4n2((� + !)2 +
g4n2⌦4

�42
) + 2g2n

✓
!(� + !)⌦2 +

g2n⌦4

�2
� !(�+ !)((� + !)2 +

g4n2⌦4

�42
)

◆
+

(2 + !2)(�2(� + !)(�+ !)⌦2 + ⌦4 + (�+ !)2((� + !)2 +
g4n2⌦4

�42
)))

(4.17)
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Figure 4.2: Diagram of 2�r| ˜S(!)|2, the loss rate through dephasing of the Rydberg state |ri, as a function of

the number of atoms on the and the dephasing rate. We can see that �r is inversely proportional to the number

of atoms on the collective excitation. The values used above are the driving field being ⌦ = 4, g=1, �e=0, =1,
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We look at the inverse of 2�r
|Ŝ(!)|2
|Êin(!)|2 .

Êin(!)|2
2�r|Ŝ(!)|2

=
D

4g4N2⌦4
=

1

4
(
�2(� + !)2

⌦4
+

g4N2

�22
+

2!(� + !)�2

g2N⌦2
+ 2� 2!�2(�+ !)(� + !)2

g2N⌦4

� 2g2N!(�+ !)

�22
� 2(2 + !2)�2(� + !)(�+ !)

g4N2⌦2
+

(2 + !2)�2

g4N2

+
�2(2 + !2)(�+ !)2(� + !)2

g4N2⌦4
+

(2 + !2)(�+ !)2

�22

(4.18)

We make the following approximation, we consider large detuning � � ! compared to the
frequency, so we can write

(�+ !)2 ⇡ �2 (4.19)

Êin(!)|2
2�r|Ŝ(!)|2

⇡ 1

4
(
�2(� + !)2

⌦4
+

g4N2

�22
+ 2 +

2!(� + !)�2(⌦2 ��(� + !))

g2N⌦4

� 2g2N!

�2
� (2 + !2)�2(2�(� + !)� ⌦2)

g4N2⌦2
+

(2 + !2)�2(�+ !)2(� + !)2

g4N2⌦4
+

(2 + !2)�2

2�2

(4.20)

Now by choosing the following relation

! + � =
⌦2

�
(4.21)

we end up with
Êin(!)|2

2�r|Ŝ(!)|2
⇡ 1

4
(1 +

g4N2

�22
+ 2� 2g2N!

�2
+ 1 +

!2

2
) (4.22)

In the spirit of the approximations used above, considering � � 0 we can neglect the second
and the forth term and by considering ! ⌧  the last term can be set to zero and equa-

tion (4.21) approaces unity. So the inverse of Êin(!)|2
2�r|Ŝ(!)|2 also approaches unity, under the same

approximations

2�r
|Ŝ(!)|2
|Êin(!)|2

⇡ 1 (4.23)

This result can be again verified by looking at the reflected ammplitude, which under these
approximaitons give

R(!) ⇡ 

� i!
� 1 (4.24)

|R(!)|2 ⇡ 1� 82

42 + !2
+

42

42 + !2
⇡ 0 (4.25)

We have basically shown that, if we have zero decay of the excited state � = 0, large decay of
the cavity , large detuning �, strong driving field’s strength ⌦, and choose the frequency of the
probe as ! = ⌦2

� � � we can approximate perfect impedance matching with the desired value

of dephasing �r =
g2N⌦2

�2 .
We will now relax the condition �e = 0 and under the same approximations we will look for
approximate impedance matching condtions for non zero decay rate �e.
We choose again

�r =
g2N⌦2

�2
(4.26)
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and we try to find optimal conditions for 2�r
|Ŝ(!)|2
|Êin(!)|2 to approach unity.

2�r
|Ŝ(!)|2
|Êin(!)|2

=
4g4n2⌦4

D
(4.27)

D1 =�2(g4n2((� + !)2 +
g4n2⌦4

�42
) + 2g2n

✓
!(� + !)⌦2 +

g2n⌦4

�2
+ (�� !(�+ !))((� + !)2 +

g4n2⌦4

�42
)

◆
+

+ (2 + !2)

✓
�2(� + !)(�+ !)⌦2 + ⌦4 +

2g2N�⌦4

�2
+ (�2 + (�+ !)2)((� + !)2 +

g4n2⌦4

�42
)

◆
)

(4.28)

Now as before we look at the inverse of 2�r|S̃(!)|2
1

2�r|S̃(!)|2
=

D1

4g4N2⌦4
=

1

4
(
�2(� + !)2

⌦4
+

g4N2

�22
+

2!(� + !)�2

g2N⌦2
+ 2 +

2�e�2(� + !)2

g2N⌦4
+

2g2N�

�2
� 2!�2(�+ !)(� + !)2

g2N⌦4
� 2g2N!(�+ !)

�22
� 2(2 + !2)�2(� + !)(�+ !)

g4N2⌦2
+

(2 + !2)�2

g4N2
+

(2 + !2)�e
g2N

+
�2(2 + !2)(�e)2(� + !)2

g4N2⌦4
+

(2 + !2)�2
e

�22
+

�2(2 + !2)(�+ !)2(� + !)2

g4N2⌦4
+

(2 + !2)(�+ !)2

�22

(4.29)

By using as before �� ! and ! + � = ⌦2

� the equation reduces to

Êin(!)|2
2�r|Ŝ(!)|2

⇡ 1

4
(1 +

g4N2

�22
+ 2� 2g2N!

�2
+ 1 +

!2

2
+

2g2N�

�2
+

(2 + !2)�2
e

�22
+

2g2N�e
�2

+
(2 + !2)�2

e

g4N2
+

(2 + !2)�e
g2N

+
2�e

g2N

(4.30)

Now by considering � � g
p
N,� � �e we can neglect the five terms, which have � and �2

in the denominator. Furthermore by considering ! ⌧  we can neglect the fifth term and also
use the followin relation 2 + !2 ⇡ 2. We have

Êin(!)|2
2�r|Ŝ(!)|2

⇡ 1

4
(4 +

32�2
e

g4N2
+

2�e
g2N

) (4.31)

and now, by writting the above equation in terms of the collective cooperativity C = g2N
�e

Êin(!)|2
2�r|Ŝ(!)|2

⇡ 1 +
3

4C
+ (

1

2C
)2 (4.32)

So turning now to the
2�r|Ŝ(!)|2
Êin(!)|2

⇡ 1

1 + 3
4C + ( 1

2C )
2

(4.33)

for large cooperativity we can approach unity. We first neglect the second order term by
considering C � 0 which leads to 1

C2 ! 0

2�r|Ŝ(!)|2
Êin(!)|2

⇡ 1

1 + 3
4C

! 1 (4.34)

We found the conditions, under which we can be achieve impedance matching for the value
�r =

g2N⌦2

�2 , which will be responsible for long lived Rydeberg excitations, as we will see in the
last chapter.
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Figure 4.3: Diagram of the reflection rate |R(!)|2, the loss rate through decay of the excited state |ei,
2�e| ˜P (!)|2 and the loss rate through dephasing of the state |ri as a function of the dimensionless frequency

of the sugnal, for the case of the driving field being ⌦ = 5. The values used g=1, n=40,�e=0.2,=10, �r =

0.16,� = 25, � = 1.
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Figure 4.4: Diagram of the dephasing rate 2�r| ˜S(!)|2, the loss rate through dephasing of the Rydberg state

|ri, as a function of the number of atoms on the and the dephasing rate. We can see that the system for

linear of beviour of �r and n for small values. As we grow larger this behaviour fades, as a result of the n

being very large and the approximation of � � g2N breaks down. The values used above are the ⌦ = 5,

g=1,�e=0.2,=10,� = 25, � = 1.
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Chapter 5

Rydberg Induced Dephasing

Our goal in this section is to describe how the incoming signal field induces a dephasing on
an atom being in the |r0i state. To do this we will use the e↵ective operator formalism derived
in chapter 2, dividing the system into an excited and a ground subspace and treating the
coupling between them pertubatevily. This will allow us to adiabatically eliminate the exctited
subspace, which will contain the incoming signal field and leads the an e↵ective dephasing.
The Hamiltonian of the entire system is

Ĥ =~(��̂ee + ��̂rr +�
0�e0e0 + �0�̂r0r0 � ⌦1�̂eg � ⌦⇤

1�̂ge � ⌦2�̂re � ⌦⇤
2�̂er � ⌦�̂r0e0 � ⌦⇤�̂e0r0)

� ~(gÊ �̂e0g + g⇤Ê†�̂ge0) + ~
NX

l=1

NX

k=1
l 6=k

Vkl |rli hrl|⌦ |r0ki hr0k|

(5.1)

In order to describe our system we first need to define its Hilbert space, that is the vector

Ιr’ >
Ιr>

Ιe’ >Ιe>

Ιg>

{

{

Δ1

Δ2

g√n

Ω

γe

γr
Ιr’ > }

Ω2

Vkl

HRydˆ

V+(-)

PgPe ˆˆ

Figure 5.1: Energy diagram of two subspaces excited and groud. Rydberg interaction is part of the excited

subspace. �r is the induced dephasing, by the elimination of the excited subspace
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space of all the possible states of our system. We introduce the general state of our system | i,

| i =cg |gNi+
NX

l=1

cel |gN�1, eli+
NX

l=1

crl |gN�1, rli+
NX

k=1

ce0k |gN�1, e0ki

+
NX

k=1

cr0k |gN�1, r0ki+
NX

l=1

NX

k=1
l 6=k

cee0kl |g(N�2), el, e
0
ki+

NX

l=1

NX

k=1
l 6=k

cer0kl |gN�2, el, r
0
ki

+
NX

l=1

NX

k=1
l 6=k

ce0rkl |gN�2, rl, e
0
ki+

NX

l=1

NX

k=1
l 6=k

crr0kl |gN�2, rl, r
0
ki ,

(5.2)

where cµ⌫mn is the coe�cient of m-th atom being in state |µi and n-th atom being in state |⌫i
and cµ⌫mn and cµm the probability of the m-th atom being in state |µi. Any state of our system
can be written as | i as long the coe�cients are normalized i.e. the sum of their amplitudes
should be equal to one.
From this generalized state | i of the system, we can indentify the nine terms that consist the
basis of the dimensional Hilbert space of our system with dimensions 4N2+4N +1. So we can
define the identity operator of the Hilbert space of our system Î as following

Î = |gNi hgN |+
NX

l=1

|gN�1, eli hgN�1, el|+
NX

l=1

|gN�1, rli hgN�1, rl|+
NX

k=1

|gN�1, e0ki hgN�1, e0k|

+
NX

k=1

|gN�1, r0ki hgN�1, r0k|+
NX

l=1

NX

k=1
l 6=k

|g(N�2), el, e
0
ki hg(N�2), el, e

0
k|+

NX

l=1

NX

k=1
l 6=k

|gN�2, el, r
0
ki hgN�2, el, r

0
k|

+
NX

l=1

NX

k=1
l 6=k

|gN�2, rl, e
0
ki hgN�2, rl, e

0
k|+

NX

l=1

NX

k=1
l 6=k

|gN�2, rl, r
0
ki hgN�2, rl, r

0
k| .

(5.3)

Now following the e↵ective operator formalsim introduced in chapter 2, we use the projection-
operator method of Feshbach [17] to divide the Hilbert space into two subspaces, one for the
ground states and one for the excited states, represented by the projection operators P̂g and
P̂e, with P̂g + P̂e = Î and P̂gP̂e = 0.

P̂g = |gNi hgN |+
NX

k=1

|gN�1, e0ki hgN�1, e0k|+
NX

k=1

|gN�1, r0ki hgN�1, r0k| (5.4)

and

P̂e =
NX

l=1

|gN�1, eli hgN�1, el|+
NX

l=1

|gN�1, rli hgN�1, rl|

+
NX

l=1

NX

k=1
l 6=k

|gN�2, el, e
0
ki hgN�2, el, e

0
k|+

NX

l=1

NX

k=1
l 6=k

|gN�2, el, r
0
ki hgN�2, el, r

0
k|

+
NX

l=1

NX

k=1
l 6=k

|gN�2, rl, e
0
ki hgN�2, rl, e

0
k|+

NX

l=1

NX

k=1
l 6=k

|gN�2, rl, r
0
ki hgN�2, rl, r

0
k|

(5.5)
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The third and forth terms, do not contribute to our perturbative dynamics, since they belong
to the excited subspace and they do not couple to the ground subspace, subsequently they can
be neglect from our current analysis. Accordingly, the redefined excited space consists of

P̂e =
NX

l=1

|gN�1, eli hgN�1, el|+
NX

l=1

|gN�1, rli hgN�1, rl|

+
NX

l=1

NX

k=1
l 6=k

|gN�2, el, r
0
ki hgN�2, el, r

0
k|+

NX

l=1

NX

k=1
l 6=k

|gN�2, rl, r
0
ki hgN�2, rl, r

0
k|

(5.6)

The excited Hamiltonian is found as following

Ĥe = P̂eĤP̂e

= ~(�P̂e�̂eeP̂e + �P̂e�̂rrP̂e + �0P̂e�̂r0r0P̂e + ⌦2P̂e�̂reP̂e + ⌦
⇤
2P̂e�̂erP̂e)

+ ~P̂e

NX

k

NX

l 6=k

Vkl |ril lhr|⌦ |r0ik khr0|P̂e

(5.7)

In order to simplify further the system, we divide the excited space, into to subspaces, one for
the absence of an excitation |r0i and one in the presence, denoted by the projection operators
P̂e1, P̂e2, respectively.

P̂e1 =
NX

l=1

|gN�1, eli hgN�1, el|+
NX

l=1

|gN�1, rli hgN�1, rl| (5.8)

P̂e2 =
NX

l=1

NX

k=1
l 6=k

|gN�2, el, r
0
ki hgN�2, el, r

0
k|+

NX

l=1

NX

k=1
l 6=k

|gN�2, rl, r
0
ki hgN�2, rl, r

0
k| (5.9)

Ĥe1 = P̂e1ĤP̂e1 = ~�
NX

l=1

|gN�1, eli hgN�1, el|+ ~�
NX

l=1

|gN�1, rli hgN�1, rl|

� ~⌦2

NX

l=1

|gN�1, rli hgN�1, el|� ~⌦⇤
2

NX

l=1

|gN�1, eli hgN�1, rl|
(5.10)

and if we use the collective operators notation, we have

Ĥe1 =~��̂ee + ~��̂rr � ~⌦2�re � ~⌦⇤
2�er (5.11)

Now the Hamiltonian in the second subspace, where the excitation |r0i is present, is

Ĥe2 = P̂e2ĤP̂e2 =

= ~(�+ �0)
NX

l=1

NX

k=1
l 6=k

|gN�2, el, r
0
ki hgN�2, el, r

0
k|+ ~

NX

l=1

NX

k=1
l 6=k

(� + �0 + Vkl) |gN�2, rl, r
0
ki hgN�2, rl, r

0
k|

� ~⌦2

NX

l=1

NX

k=1
l 6=k

|gN�2, rl, r
0
ki hgN�2, el, r

0
k|� ~⌦⇤

2

NX

l=1

NX

k=1
l 6=k

|gN�2, el, r
0
ki hgN�2, rl, r

0
k| ,

(5.12)
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where in the detuning �0 can be neglected, since it doesn’t play any role in the perturbative
dynamics between the ground and the excited subspace. It will be also chosen to be zero �0 = 0
for the rest of the thesis.

In order to show how these excited Hamiltonians were calculated we will show the explicit
calculation for the last term, which contains the Rydberg interaction, the rest of the terms can
be found in the same spirit.
We will begin by first acting on the Rydberg Hamiltonian with the projection operator for the
second excited subspace, from the right side as following

Ĥryd,1 = ĤrydP̂e2 =

0

B@~
NX

l=1

NX

k=1
l 6=k

Vkl |ril lhr|⌦ |r0ik khr0|

1

CA

0

BB@
NX

l0=1

NX

k0=1
l0 6=k0

|gN�2, rl0 , r
0
k0i hgN�2, rl0 , r

0
k0 |

1

CCA

(5.13)
Only the last term of the second excited subspace projection operator survives, since it is the
only term with excited atoms both in state |ri and |r0i. The other term contains projection
operators to states orthogonal to the states that the Rydberg Hamiltonian project to. Using
the orthogonality condtions hrk|rk0i = �k,k0 and hr0k|r0k0i = �k,k0 we get

ĤRyd,1 = ~
NX

l=1

|rli hrl|

0

BB@
NX

l0=1

NX

k=1
l 6=k

NX

k0=1
l0 6=k0

Vkl |r0ki hr0k|gn�2, rl0 , r
0
k0i hgn�2, rl0 , r

0
k0 |

1

CCA

= ~
NX

l=1

|rli hrl|

0

BB@
NX

l0=1

NX

k=1
l 6=k

NX

k0=1
l0 6=k0

Vkl |r0ki �k0k |gn�2, rl0 , r
0
ki hgn�2, rl0 , r

0
k0 |

1

CCA

= ~
NX

l=1

0

BBBB@

NX

l0=1

NX

k=1
k 6=l
k 6=l0

Vkl |rli hrl|gn�2, rl0 , r
0
ki hgn�2, rl0 , r

0
k|

1

CCCCA

(5.14)

ĤRyd,1 = ~
NX

l=1

NX

k=1
l 6=k

Vkl |gN�2, rl, r
0
ki hgN�2, rl, r

0
k| (5.15)

In a very similar way, using the orthogonality relations, it is easy to show that

P̂e2ĤRydP̂e2 = P̂e2ĤRyd,1 = ~
NX

l=1

0

BBBB@

NX

l0=1

NX

k=1
k 6=l
k 6=l0

Vkl |rli hrl|gn�2, rl0 , r
0
ki hgn�2, rl0 , r

0
k|

1

CCCCA
. (5.16)

By a similar way we find all the terms of the excited Hamiltonians defined above.

It is evident that
Ĥe = Ĥe1 + Ĥe2, (5.17)

since we have not considered |e0i part of our system, and state |gi doesn’t couple to |r0i, we
have that the two excited subspaces are independent.
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Taking into account that the only source of dissipation in both the excited subsystems is the
decay �eg of the sate |ei, we can define the non Hemitian Hamiltonian.

ĤNH = Ĥe � i
�e
2
(|gN�2, el, r

0
ki hgN�2, el, r

0
k|+ |gN�1, eli hgN�1, el|) (5.18)

Accordingly, we can find the inverse non Hermitian Hamiltonians for the two excited subspaces

Ĥ�1
NH1 =

1

~((�� i�e)� � |⌦2|2)((�� i�e)�̂rr + ��̂ee + ⌦2�̂re + ⌦
⇤
2�̂er), (5.19)

Ĥ�1
NH2 =

NX

l=1

NX

k=1
l 6=k

1

~((� + Vkl)(�� i�e)� |⌦2|2)((� + Vkl) |gN�2, el, r
0
ki hgN�2, el, r

0
k|

+ (�� i�e) |gN�2, rl, r
0
ki hgN�2, rl, r

0
k|+ ⌦2 |gN�2, rl, r

0
ki hgN�2, el, r

0
k|

+ ⌦⇤
2 |gN�2, el, r

0
ki hgN�2, rl, r

0
k|)

(5.20)

We can now derive the e↵ective decay in the first excited subspace, introduced by the decay of
the l-th from the excited state |ei.

L̂ge,l
eff,1 =

p
2�e�̂

l
geĤ�1

NH1V̂+ =

p
2�e |gli hel|

~((�� i�e)� � |⌦2|2)((�� i�e)�̂rr + ��̂ee + ⌦2�̂re + ⌦2�̂er)(~⌦1�̂eg)

=

p
2�e�⌦1

(�� i�e)� � |⌦2|2 |gli hgl|
(5.21)

Furthermore we can find the e↵ective decay in the second excited subspace, introduced by the
decay of the l-th from the excited state |ei, given that the k-th atom is in the |r0i state.

L̂ge,lk
eff,2 =

p
2�e�̂

l
geĤ�1

NH2V̂+

=
NX

l00=1

p
2�e |gli hel|

~((� + Vkl00)(�� i�e)� |⌦2|2)((� + Vkl00) |gN�2, el00 , r
0
ki hgN�2, el00 , r

0
k|

+ (�� i�e) |gN�2, rl00 , r
0
ki hgN�2, rl00 , r

0
k|+ ⌦2 |gN�2, rl00 , r

0
ki hgN�2, el00 , r

0
k|

+ ⌦⇤
2 |gN�2, e00l , r

0
ki hgN�2, rl00 , r

0
k|)(~⌦1

NX

l0=1

|el0i hgl0 |)

(5.22)

After using commutation relations, using the property of Kronecker delta, as before we find

L̂ge,lk
eff,2 =

NX

l00=1

p
2�e |gli hel|

((� + Vkl00)(�� i�e)� ⌦2
2)
((� + Vkl00)⌦1 |gN�2, el00 , r

0
ki hgN�1, r0k|

� ⌦2⌦1 |gN�2, rl00 , r
0
ki hgN�1, r0k|),

(5.23)

and using again the commutation relations, we get to the final form

L̂ge,lk
eff,2 =

p
2�e(� + Vkl)⌦1

((� + Vkl)(�� i�e)� ⌦2
2)

|gN�1, r0ki hgN�1, r0k| . (5.24)

Now we can find the e↵ective dephasing rate of the ground state 1
N

PN
k=1 |gN�1, r0ki, induced
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by the decay of the l-th atom, given that the k-th atom in the |r0i state.

�lk
1 =

�����(
1p
N

NX

k00=1

hgN�1, r0k00 |)L̂ge,lk
eff (

1p
N

NX

k0=1

|gN�1, r0k0i)
�����

2

=

�����(
1p
N

NX

k00=1

hgN�1, r0k00 |)(L̂ge,lk
eff,1 + L̂ge,lk

eff,2)(
1p
N

NX

k0=1

|gN�1, r0k0i)
�����

2

=

�����(
1

N

NX

k00=1

NX

k0=1

hgN�1, r0k00 |)(
p
2�e(� + �0 + Vkl)⌦1 |gN�1, r0ki hgN�1, r0k|
~((� + �0 + Vkl)(�0 +�� i�e)� ⌦2

2)
)(|gN�1, r0k0i)

�����

2

=

�����
1

N

NX

k00=1

NX

k0=1

�k,k0�k,k00

p
2�e(� + �0 + Vkl)⌦1

~((� + �0 + Vkl)(�0 +�� i�e)� ⌦2
2)

�����

2

(5.25)

where in the last line we used the commutation relations of the braket notation, that lead to

�lk
1 =

����
1

N

p
2�e(� + �0 + Vkl)⌦1

((� + �0 + Vkl)(�0 +�� i�e)� ⌦2
2)

����
2

(5.26)

If we now consider being in the ground state |gNi, then the e↵ective dephasing rate is

�l
2 = | hgN | L̂ge

eff,1 |gNi |2 =
����

p
2�e�⌦1

(�� i�e)� � ⌦2
2

����
2

(5.27)

The e↵ective Hamiltonian is

Ĥeff = �1

2
V̂�(Ĥ�1

NH + Ĥ�1†
NH)V̂+ + Ĥg

=
~⌦2

1�

(�� i�e)� � |⌦|2 |g
Ni hgN |+ ~⌦2

1(� + �0 + Vkl)

(� + �0 + Vkl)(�0 +�� i�e)� |⌦2|2 |g
N�1, r0ki hgN�1, r0k|+ Ĥg

(5.28)

Now let us consider the superposition of the the two ground states | i = c1
1
N

PN
k=1 |gN�1, r0ki+

c2 |gNi = c1 |Ri + c2 |gNi, for simplicity. It’s equation of motion in the e↵ective operator
formalism, is given by equation 2.101,

˙̂�  =
i

~ [Ĥeff , �̂  ]� 1

2
(L̂†eg

eff L̂
eg
eff �̂  + �̂  L̂

†eg
eff L̂

eg
eff,i) +

X
L̂†eg
eff �̂  L̂

eg
eff

=
i

~ [Ĥeff , �̂  ]

� 1

2
(�1 |gNi hgN |+ �2 |Ri hR|)(|c1|2 |gNi hgN |+ |c2|2 |Ri hR|+ c1c

⇤
2 |gNi hR|+ c⇤1c2 |Ri hgN |)

� 1

2
(|c1|2 |gNi hgN |+ |c2|2 |Ri hR|+ c1c

⇤
2 |gNi hR|+ c⇤1c2 |Ri hgN |)(�1 |gNi hgN |+ �2 |Ri hR|)

+ (
p
�1 |gNi hgN |+p

�2 |Ri hR|)(|c1|2 |gNi hgN |+ |c2|2 |Ri hR|+ c1c
⇤
2 |gNi hR|+ c⇤1c2 |Ri hgN |)⇥

⇥ (
p
�1 |gNi hgN |+p

�2 |Ri hR|)
(5.29)

which leads to

˙̂�  =
i

~ [Ĥeff , �̂  ]� 1

2
(�1 + �2 � 2

p
�1
p
�2)c1c

⇤
2 |gNi hR|� 1

2
(�1 + �2 � 2

p
�1
p
�2)c2c

⇤
1 |Ri hgN |

=
i

~ [Ĥeff , �̂  ]� (
p
�2 �p

�1)
2(c1c

⇤
2 |gNi hR|+ c2c

⇤
1 |Ri hgN |)

(5.30)
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we see that the diagonal terms of the superposition are decaying and that To get a better
understanding of the dynamics we look at the operator

�̂g = |gNi hR| (5.31)

˙̂�g =
i

~ [Ĥeff , �̂g ]� 1

2

NX

k=1
l 6=k

((L̂†eg,lk
eff L̂eg,lk

eff �̂g + �̂g L̂
†eg,lk
eff L̂eg,lk

eff,i) + L̂†eg,lk
eff �̂  L̂

eg,lk
eff )

=
i

~ [Ĥeff , �̂  ] +
NX

k=1
l 6=k

(��l
2 � �lk

1 +
q
�l
2

q
�lk
1 )(c

⇤
1 |gNi hR|)

=
i

~ [Ĥeff , �̂  ]�
NX

l

NX

k=1
l 6=k

����
q
�lk
1 �

q
�l
2

����
2

(5.32)

from the above equation of motion, we can see that the e↵ective dephasing introduced to the
collective excitation |r0i by the decay if l-th atom is

�lk
eff =

����
q
�lk
1 �p

�2
l

����
2

=

�����
1

N

p
2�e(� + Vkl)⌦1

(� + Vkl)(�� i�e)� |⌦2|2 �
p
2�e�⌦1

(�� i�e)� � |⌦2|2
�����

2

(5.33)

We have arrived at the result for the dephasing induced by the decay of |ei state, under the
adiabatic elmination of the excited of the excited subspace.
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Chapter 6

Continuous Wave Single Photon
Transistor

In this chapter, we will use our results from the previous three chapters in order to achieve the
complete description of our model for a continuous wave single photon transistor.

Our model consists of a 3-level atomic ensemble, inside a single-sided cavity. All atoms are
initially in the ground state |gi and a coherent signal field with Rabi frequency ⌦1 couples the
gound state to the excited state |ei. Two driving fields, characterized by Rabi frequencies ⌦2

and ⌦, are shined on the ensemble. Field ⌦2 drives the |ei $ |ri transition and ⌦ drives the
|e0i $ |r0i, both fields are assumed to be on resonance with the transition frequency they are
associated with. Since there is no field to couple the ground state |gi to the excited state |e0i no
atom occupy state |e0i and the transition |e0i $ |r0i, is inactive during this step of the protocol.
The diagram of the energy level and the transitions can be seen in figure 6.1b.
The Hamiltonian of the system under the rotating wave approximation and dipole approxima-
tion is

Ĥ = ~��̂ee � ~(⌦1�̂eg + ⌦2�̂re + ⌦�̂e0r0) + h.c.+ ~
NX

l

NX

k=1
l 6=k

Vkl |rli hrl|⌦ |r0ki hr0k| , (6.1)

where the Rydberg interaction term is Vkl =
C6
r6
, r is the distance between the k-th and the l-th

atom and C6 is the Rydberg strength, which is a charasteristic property of the atoms. Following
the notation previously used, �̂µ⌫ =

PN
i=1 �

i
µ⌫ is the collective operator associated with the

transition between states |µi and |⌫i. Furthermore we consider two sources of dissipation in
our system, these are spontaneous emission from the excited states |e0i,|ei described by the
following Lindblad operators

L̂eg =
p
2�e |gi he| , (6.2)

L̂e0g =
p
2�0

e |gi he0| , (6.3)

where 2�e,2�0
e the spontaneous decay rate from state |ei and state |e0i respectively.

We have chosen the value of the detuning to be equal to minus the decay rate i.e. � = ��e.
Furthermore the probe ⌦1 field is taken on resonance with the cavity i.e. ! = 0. Another
condition is

⌦2 =
⇡223/4

p
�eC6

3nC
(6.4)

Under this condition our signal field ⌦1 is fully reflected due to scattering on the ensemble,
a schematic representation of the scattering process can be seen in figure 6.1b. The reason
for the perfect reflection, can be seen by looking at equation (3.96), where we have solved the
scattering dynamics for basically the same system. Eventhough equation (3.96) was derived
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Figure 6.1: a) Schematic representation of our system in the initial case. The signal field ⌦1 couples to the

transition |ei $ |gi and being on resonance is totally reflected under EIT condition. ⌦2 couples the transition

|ei $ |gi, driving field ⌦ is inactive in the absence of atoms in state |e0i. b) Energy diagram of the system.

The right branch transition doesn’t couple to the atoms at this step.
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Figure 6.2: a) Schematic representation of the first part of the protocol a single photon

ˆEin is sent to the

ensemble and couples to the transition |gi $ |ei and subsequently to the transition |e0i $ |r0i through driving

field ⌦. b) Energy diagram of the system.

for the case of single photon incoming field, the result can be used for coherent input. On
resonance we are in Electromagnetically Induced Transparency and since we consider |ri a long
lived metastable Rydberg state, with practically zero decay, for the protocols timescales we
have perfect reflection, i.e. �r = 0 in (3.96).

Now we move to the second part of the protocol, where we block the signal field, using
a weak control field, which is the basic function of any transistor. To achieve that, we send
a single photon to the ensemble that couples to the transition |gi $ |e0i, this can be seen
schematically in figure 6.2. This single photon should be far detuned �0 � g0

p
N,�0 � �0

e, it’s
frequency with respect to the cavity frequency should be equal to the AC Stark shift induced
by ⌦ i.e. !0 = ⌦2

�0 . We proved in chapter 4 that if we are in the strong coupling regime i.e.
g02N � �0

e we will approximate perfect impedance matching, meaning that our photon will
be mapped to a symmetric collective state Ŝ 0† |gi = PN

i |g, g, ..., g, r0, g, .., g, gi and stay there
untill it dephases, as seen in figure 6.3.
Subsequently we reach the last part of the protocol that is now having a collective excitation
in |r0i, the signal field is now with 99.6% probabilty lost through decay of the excited state
|ei, as we show in chapter 4, which is the reason for choosing (6.4) for ⌦2 in the begining of
the chapter. So far, we have achieved a continuous wave single photon transistor, where the
presence of the control field blocks the signal, with the driving field ⌦ turned on during the
entire protocol.

Now we move to the last part of the descrption, where we will study the e↵ect of the induced
dephasing. As we’ve shown in chapter 5, the decay of the state |ei as a result of the absoption
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Figure 6.3: a) Schematic representation of the subsequent evolution of the second part of the protocol the

single photon

ˆEin has been mapped to the excitation |r0i and stays there, since empedance matching conditions

are fullfiled. The Rydberg intection between |ri,|r0i shifts energy level |ri by Vkl and ⌦2 no longer couples with

the transition |ei $ |ri, resulting in loss of the input field ⌦1. b) Energy diagram of the system.
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Figure 6.4: a) Schematic representation of the subsequent evolution of the second part of the protocol the

single photon

ˆEin has been mapped to the excitation |r0i and stays there, since empedance matching conditions

are fullfiled. With blue colour we represent the Rydberg excited |ri, but it is a loose illustration since the

excitation is a symmetric one. The Rydberg interaction between |ri and |r0i, shifts energy level by Vkl and

⌦2 doesn’t couple to the transition |ei $ |r0i. b) Energy diagram of the system, where we see that we have

adiabatically eliminated the left branch and the signal field, by acquiring an induced dephasing
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Figure 6.5: The l-th atom driven by the incoming singal field ⌦1 decays from the excited state |ei, a process

will lead to localization of the symmetric excitation |r0ki to a sphere around the de-excited atom l-th. This

enhaces the lifetime of the excitation |r0ki.

of the signal field, induces a dephasing on the collective excitation in the state |r0i. Using the
e↵ective operator formalism in the previous chapter we introduced an e↵ective Hamiltonian to
describe our system, by adiabatically eliminating the probe field and the states |ei, |ri, through
the introducuction of an e↵ective dephasing. In order to be consistent with our previous analysis
we need to use the values for the Rydberg blockade to be 99.6% e�cient, so we choose the two
photons detunings to be zero � = �0 = 0 and the detuning � to have the same value as the
negative value of the decay for the excited state |ei i.e. � = ��e. Under these conditions the
e↵ective decay is

�eff =
X

k

X

l

����
1

N

p
2�eVkl⌦1

Vkl(��e � i�e)� |⌦2|2
����
2

(6.5)

Now we will consider all states in the superposition of the Ryderg state to have equal contri-
bution i.e.

P
k

1
N
Vkl = Vl and now moving from sum over atoms to a space integral as we did

in (3.185), we find

�eff =
4⇡

�2
eVaN2

X

k

Z Ra

0

drr2

�����

p
2�e⌦1

�1� i� |⌦2|2
�eVkl

�����

2

(6.6)

and by considering the radius of the atomic ensemble larger than the one of the Rydberg
blockade and set Ra ! 1 we can evaluate this integral, which is similar to (3.202), which we
solved in chapter 3. The result is proportional to R3

Ryd and we have chosen the optimal value
of ⌦2 in (6.4).

We now have that the value of the induced e↵ective dephasing is equal to �eff = g2N⌦2

�02 , that
is the condition for impedance matching, we derived in chapter 4. Furthermore, since above
we chose �0 = 0, the detuning in the in order to have impedance matching, we need to set the
control field at frequency !0 = ⌦2/�0 and �0 should be large, i.e.�0 � g0

p
N,�0 � �0

e.

At this step of the protocol we are at the collective state Ŝ† |gNi where the excitation |r0i is
shared between all the atoms of the ensemble. The incoming control signal with 96% probability
will end up in the excited state |ei and will decay. Once this first decay happens our collective
excitation will collapse to an excitation consisting of the atoms inside the sphere, with center

the l-th atom that decayed and radius equal to the Rydberg radius RRyd = 6

q
⌦2

�eC6
. This is

illustrated in figure 6.5, the decay of l-th atom from the excited state |ei induces a dephasing

that acts on the collective superposition Ŝ† |gNi and transfoms it to the state L̂eg
eff Ŝ

† |gNi, that
is localized around the decayed l-th atom. Because we have chosen the conditions, so that the
excitation |r0i would be impedance matched, its dephasing rate would be equal the e↵ective rate

of decay of |r0i under adiabatic elimination of the state |e0i, which is g2N⌦
�02 , so proportional to
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Figure 6.6: A second decay of a l0-th atom will result in a new localization of the excitation of |r0i on the

intersection of the two spheres with radius RRyd and centers the l-th and l0-th atoms.

κ
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Figure 6.7: Schematic representation of the decay of the l00-th atom, which will lead to even more localized

on the intersection between the three spheres, this continuation process can lead to very long lifetimes of the

excitation |r0ki.

number of atoms participating in the excitation. This means that the lifetime of the excitation
of |r0i , will be multiplied by a factor of Ra/RRyd, the ratio of the radius of the atomic cloud
over the Rydberg radius, which can be chosen to be large.

Subsequently the continues to scatter on the ensemble, which with 96% will lead to decay
from the excited state of the l0-th atom. The second decay of the l0-th atom will result in a new
localization of the excitation of |r0i, by transformation to the state L̂eg

eff 0L̂
eg
eff Ŝ

† |gNi which will
be localized on the intersection of the two spheres with radius RRyd and centers the l-th and
l’-th atoms, leading to a longer lifetime. This process can continue for a long time, under the
same protocol. A representation of the next step of the protocol, can be seen for a third decay
of the l” atom in figure 6.7.

This process of very long lifetime of the excitation can be very useful for another possible
use of our model, that of a photon detector, where our signal field serves as the probe, for
revealing the presence of a single photon, the process of long live can result in posible detection
of strong coherent fields.
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Chapter 7

Conclusion and Outlook

We have demonstrated a way to realize a continuous wave single photon transistor consisting
of an ensemble of Rydberg atoms, located inside a single-sided cavity, coupled to two driving
fields.

The proposed protocol consists of the use of a control field that is mapped to a collective
Rydberg excitation, which leads to Rydberg blockade. Conditioned by the absence or pres-
ence of the ’control’ field that is mapped to a collective Rydberg excitation, a signal field is
reflected or lost respectively. In the absence of the control photon the signal field would be
perfectly reflected on resonance through electromagnetically induced transparency(EIT). Under
the impedance matching condition, we have proven the continuity of the scheme. This result
leads to simplification of the protocol, since driving fields will be turned on during the entire
protocol and could possible lead to experimetal simplification.

At this point it is constructive to mention that we have derived a mapping between the
single-sided cavity model and free space, in the bad cavity limit. This strongly indicates that
the protocol could be realized also for an ensemble of Rydberg atoms in the free space, a model
which might be simpler to realize experimentally, but it needs deeper study.

Furthermore we have shown that the signal field once Rydberg blockaded by a collective
excitation, would decay with almost unity probabiblity for certain condtions, through decay of
the excited state. This decay would induce a dephasing on the Rydberg excitation that would
lead to it’s partially localization. This process will rise the lifetime of the Rydberg excitation
and it is important to mention, that it could be nicely modeled by a Monte Carlo simulation.

Apart from the apparent observation that this process simplifies significantly our model,
since a single excitation can block a large number of photons until it decays, this result might
be useful for the realization of a high e�ciency single photon detector for strong coherent fields.
This alternative use of our model as a single photon detector, can be realized by detecting the
reflectance of the singal field, which leads to determination of the presence or absence of the
single photon control field.
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(2014). Single-Photon Transistor Using a Förster Resonance. Phys. Rev. Lett., 113, 053602.

[22] J. I. Cirac, L. M. Duan, P. Zoller Quantum optical implementation of quantum information
processing

[23] Marlan O. Scully, M. Suhail Zubairy Quantum OpticsCambridge University Press (1997)

[24] Neumeier, Lukas, Leib, Martin, Hartmann, Michael J. (2013). Single-Photon Transistor in
Circuit Quantum Electrodynamics. Phys. Rev. Lett., 111, 063601.

67


	Introduction
	Open Quantum Systems
	Density Operator
	Master equation
	Monte Carlo Wave Function
	Heisenberg-Langevin equations
	Effective Operator Formalism
	Ground and Excited Subspaces
	Adiabatic Elimination of the Excited States


	Interface Between Light and 3-Level Atomic Ensembles
	Collective Operators
	Atomic Ensemble in a Cavity
	Single-Sided Cavity
	2-sided Cavity

	Atomic Ensemble in Free Space
	Mapping between Cavity and Free Space Models
	Rydberg Atoms

	Impedance Matching
	Single Sided Cavity

	Rydberg Induced Dephasing
	Continuous Wave Single Photon Transistor
	Conclusion and Outlook

