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Abstract

The endeavour for low-decoherence quantum computing has over the past decades
lead to an intense search for Majorana zero-energy modes as they provide a platform
for topologically protected quantum information processing. Hybrid semiconductor-
superconductor nanowires have been proposed as a possible realisation of these modes
and have shown signatures consistent with the theory of Majorana modes. Tunnelling
spectroscopy of the recently designed full-shell wires has revealed a zero-energy state
in certain intervals of an applied axial magnetic field.

In this thesis we expand a simple model for full-shell wires by introducing different
perturbations. These include impurities treated within the first-order Born approxi-
mation, as well as deformations that break the angular symmetry. Different concepts
that are relevant for the understanding of full-shell wires will be introduced, and
through appropriate approximations we will make predictions to be held up against
the experimental observations. A central prediction is our calculation of the differen-
tial conductance by use of the scattering matrix formalism. We will also question the
stability of a possible non-trivial topological phase and search for trivial zero-energy
states that present an alternative interpretation of the experimental results.
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1 Introduction

Hybrid semiconductor-superconductor devices have received a vast amount of attention
following the theoretical proposals by Oreg et al. [1] and Lutchyn et al. [2] of a configu-
ration that could realise Majorana zero-energy modes as quasiparticle excitations in the
semiconductor [3–7]. The suggested setup includes a semiconducting wire with strong
spin-orbit interaction, coupled to an s-wave superconductor and placed in an external
magnetic field. The search for these modes is partly motivated by their non-Abelian
braiding statistics which makes them a basis for topologically protected quantum compu-
tation [8, 9].

One of the compositions used so far is a semiconductor nanowire placed on top of
an s-wave superconductor [4], or a hexagonal wire with one or two facets covered by
an epitaxial superconducting shell [5, 6]. This study in nanowires is focusing on the re-
cently introduced full-shell nanowire in which the semiconducting core is covered by an
s-wave superconductor on all six facets. We were inspired to consider this new config-
uration following the experiments performed by Vaitiekėnas et al. and presented in the
article Flux-induced Majorana modes in full-shell nanowires [10]. As seen from Fig. 1.1,
differential conductance measurements on this type of wire have shown signatures of a
zero-energy state when a magnetic field parallel to the wire results in a flux around one
superconducting flux quantum Φ0 = h/2e. The question is now how stable the observed
zero-energy state is, and whether it really is a Majorana zero-energy mode, or if there is
some other explanation to the peak at zero bias voltage. To describe the system, Lutchyn
et al. [11] presented a model Hamiltonian in their article Topological superconductivity in
full-shell proximitized nanowires that will also be the basis Hamiltonian in this thesis.
The model predicts that for an odd winding number of the phase of the superconducting
order parameter, topologically non-trivial phases of the nanowire are possible, allowing
Majorana zero-energy modes, in agreement with the measurements in [10].

At this point, full-shell wires are not completely understood. The contribution of this
thesis is a thorough analysis and expansion of the hollow-cylinder model from [11] to better
describe the new type of nanowires. We will start with an explanation of the parabolic
variations that have been observed in the superconducting transition temperature and
spectral gap when varying the magnetic flux through the wire [10]. We then present
the model Hamiltonian for a full-shell nanowire and develop a method for distinguishing
trivial and non-trivial topological phases of the system. In [11], they find that a breaking
of the angular symmetry of the wire can enlarge the parameter space for the non-trivial
phase. This has inspired us to investigate deformations of the wire that are periodic in
the angular coordinate. We examine if the effect of those is also an extension of the non-
trivial phase to a larger parameter range. Furthermore, the stability of the non-trivial
phase to variations in the system parameters will be questioned. Since a zero-bias peak
in the differential conductance is not necessarily an indication of a Majorana zero-energy
mode we will also test if the model predicts a trivial zero-energy state that may present
an alternative explanation. After this we will try to learn about the perturbing effects of
impurities in the semiconductor. In [11] disorder in the superconducting shell was seen
to influence the topological phase. Finally, we will consider finite-size effects and through
the scattering matrix formalism calculate the differential conductance in a setup similar
to the one used in [10] and compare with the experimental results.
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Figure 1.1: Part of Fig. 1 in Vaitiekėnas et al. [10] showing A the device for measuring
the tunnelling spectrum of the full-shell Al-InAs nanowire and B the resulting differential
conductance as function of axial magnetic field, B, and source-drain bias voltage, V . The
zero-bias signal suggesting existence of a MZM is seen in the lobe around ±0.1 T.

For this construction of a full-shell nanowire model, some of our statements are ac-
companied by several figures. The full documentation of our findings is placed in the
appendices and only the salient plots are included in the main text.

Before starting our study of full-shell nanowires, we will briefly present the main
features of Majorana zero-energy modes in nanowires and the reason for the large interest
in detecting them.

1.1 Majorana zero-energy modes

Majorana zero-energy modes (MZMs) are quasiparticle excitations which are expected to
exist at zero energy in topological superconductors. They are wanted for their intrinsically
non-local nature and their non-Abelian exchange statistics, which makes them appropriate
for low-decoherence topological quantum computation [7,9]. A MZM is described by the

annihilation operator γ = uc†σ + u∗cσ where cσ annihilates an electron with spin σ and
u is a coefficient. We observe that the operator is Hermitian, meaning that a MZM is in
a sense its own antiparticle. Two MZMs represent together one fermionic (quasiparticle)
excitation. This can be seen by dividing the electron creation and annihilation operators
into their real and imaginary parts: cσ = (γσ,a + iγσ,b)/2. Each part is then proportional
to a MZM operator and the electron is thereby expressed as a superposition of two MZMs
[9]. From Kitaev’s tight-binding model for a one-dimensional p-wave superconductor we
expect to find MZMs at each end of the nanowire [8].1 If the wire is long enough that
the wave functions of the two modes do not overlap, they together constitute a highly
delocalised fermionic state and are therefore immune to local sources of decoherence [1].
The state of MZMs can be manipulated by exchanging the different quasiparticles, and
with four modes or more the effects of braiding operations become non-trivial and can
be used to encode information. Exchanging the MZMs is a global operation which can
be done over macroscopic distances, ensuring protection from local perturbations. This
is known as low-decoherence topological quantum computing [2, 9].

1In general the MZMs exist on transition points between trivial and non-trivial topological regions, a
concept which we will consider in more detail later [12].

2



2 Little-Parks effect

In their 1962 article, Observation of quantum periodicity in the transition temperature
of a superconducting cylinder [13], Little and Parks demonstrated phase winding of the
superconducting order parameter in a hollow tin cylinder. This section will review the
theory of what is now called the Little-Parks effect, based on chapter 17 in Abrikosov [14],
together with the results of the original experiment as well as more recent research. We
will then use this to interpret the parabolic variations in transition temperature and spec-
tral gap with magnetic flux, observed in the experiments on full-shell nanowires [10].

z

R

ϕ
t

B

Figure 2.1: Thin, doubly connected superconducting cylinder and its orientation with
respect to the magnetic field in the Little-Parks experiment.

The system considered is a thin superconducting cylinder of thickness t much smaller
than the London penetration depth t � λL and a radius R � λL (see Fig. 2.1). A
magnetic field B is applied along the cylinder axis and provokes a screening current in
the superconductor. However, due to the system dimensions (t� λL) the current cannot
exclude the magnetic field from the superconductor and the field is assumed constant
across the cylinder wall. This means that there will be no requirement on quantisation
of the magnetic flux2 through the cavity, Φ = πR2B. We use cylindrical coordinates
r = (z, r, ϕ) and choose the vector potential to be A = Aϕ̂ and the order parameter
of the superconductor to have a constant norm ∆(r) = |∆|e−iχ(r). It is required that
χ(r + 2πϕ̂) = χ(r) + 2πn, where n ∈ Z, to ensure that the Cooper pair wave function
(and hence the order parameter [16]) is single valued. In a magnetic field the difference
in free energy between the superconducting phase and the normal phase is then∫

dV (Ωs − Ωn) =

∫
dV

(
aτ |∆|2 +

b

2
|∆|4 +

1

4m
(∇χ− 2eA)2 |∆|2

)
. (2.1)

Here we have used the Ginzburg-Landau theory for the free energy density of the super-
conductor, Ωs, valid near the transition between the metallic and superconducting phases
for smooth variation of ∆(r) in space. Ωn is the free energy density of the normal phase,

a, b > 0 are constants, m is the electron mass, e is the electron charge. Finally, τ = T−T 0
c

T 0
c

is the deviation in temperature T from the critical value T 0
c where the transition takes

place in absence of a field, i.e. the temperature at which the free energy of the supercon-
ducting state and the normal state are the same. The last term on the right hand side
of Eq. (2.1) is the kinetic energy cost of the induced supercurrent3 and the integration is

2as opposed to the fluxoid which is always an integer times h/2e [15].
3The supercurrent density is [16, 17] js = −e

4mi
(∆∗(r)∇∆(r)−∆(r)∇∆∗(r)) − 2e2

2m
A|∆(r)|2 =

e
2m
|∆|2 (∇χ(r)− 2eA).
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over the entire volume of the superconductor. In equilibrium, ∇χ is constant along the
wire circumference so we use instead the average value of the last term from Eq. (2.1):

∇χ− 2eA =
1

2πR

∮
dl (∇χ− 2eA) =

1

2πR
(2πn− 2eΦ) =

1

R

(
n− Φ̃

)
, (2.2)

where the contour of integration is the cylinder cross-section perpendicular to z. Φ̃ =
Φ/Φ0 is the flux in units of the superconducting magnetic flux quantum Φ0 = h/2e
(where ~ = 1). As mentioned, the total change in the phase χ(r) must be an integer
times 2π when taking one turn around the cylinder. The integer n appearing in the
second equality is therefore called the winding number. The integrand of the free energy
difference can then instead be written as

Ωs − Ωn = aτ |∆|2 +
1

4mR2

(
n− Φ̃

)2
|∆|2 +

b

2
|∆|4.

To minimize the free energy of the superconductor, the winding number is n′ when the
flux through the cavity is in the interval n′ − 1

2 < Φ̃ < n′ + 1
2 . The superconductor free

energy is thus periodic in flux by Φ0 and so must the transition temperature be. By
collecting terms of order |∆|2 and introducing a new parameter τ ′ which changes sign at
the phase transition, one finds an expression for the flux-dependent critical temperature
Tc,

τ ′ = τ +
1

4mR2a

(
n− Φ̃

)2
, τ ′(T = Tc) = 0 =⇒

δTc

T 0
c

=
Tc − T 0

c

T 0
c

= − 1

4mR2a

(
n− Φ̃

)2
.

This shows that the transition temperature indeed varies periodically with the enclosed
flux in recurring parabolas centred on integer flux units nΦ0 in intervals each correspond-
ing to a certain n. Tc ≤ T 0

c and the transition temperature oscillation reaches the min-
imum value at half integer flux and the maximum value at integer flux where Tc = T 0

c .
These are the Little-Parks lobes that demonstrate the winding of the superconducting
order parameter and they are illustrated in Fig. 2.2a.

In the original experiment by Little and Parks, they investigated a thin cylinder of
tin with wall thickness 37.5 nm and a radius around 1.4 µm, for which the resistance
was measured while varying an axial magnetic field at temperatures near T 0

c . The re-
sult is displayed in Fig. 2.2b showing small periodic variations in the resistance in form
of a series of parabolas regularly spaced by one flux quantum, all superimposed on a
quadratic background. Subtracting the background, seven of such parabolas with strictly
periodic spacing were observed. This was interpreted as representing a similar series of
parabolic oscillations in the transition temperature with magnetic field since lowering Tc

with a magnetic field will raise the resistance at a given temperature around the transi-
tion point. The transition temperature was determined from the slope of resistance versus
temperature curves and the maximum deviation was found to be δTc = 5 · 10−4 K. The
energy cost of the supercurrent is also compensated by a decrease in the binding energy
|∆| of a Cooper pair. Since |∆|2 is equal to the number density of Cooper pairs [16], ns,
the supercurrent is reduced by lowering smaller |∆|. Therefore |∆|(Φ) follows the same
parabolic variation as Tc with a period Φ0 = h/2e. The quadratic background behaviour
of the variations in resistance (shown in Fig. 2.2b) is due to a non-periodic weakening of
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(a) Phase diagram illustrating Little-Parks lobes.
Each parabola is centred around integer units of Φ0

and the largest reduction in critical temperature is at
odd half-integer values of the flux in units of Φ0.

(b) Photograph from figure 2 in
[13]. The upper trace is a mag-
netic field sweep and the lower
trace shows variations of resis-
tance at Tc as a function of mag-
netic field.

Figure 2.2: Figures from the original 1962 paper by Little and Parks [13].

the electron pairing parameter in a magnetic field [15]. We will present an expression for
the pair-breaking further down.

Since the original experiment, the Little-Parks effect has been experimentally repro-
duced [10,15,18,19] and the theory expanded [20–23] especially in regard to dividing the
effect into two different regimes which we will review next in order to give a thorough
characterisation of full-shell nanowires and explain the measurements in [10].

2.1 Destructive and non-destructive regimes

In an article from 1981 by de Gennes [20], the linearised Ginzburg-Landau equation
for the superconducting order parameter was analysed. The system considered was an
infinitely thin, uniform, and superconducting ring of radius R with a single branch of
length L, all in a magnetic field perpendicular to the system plane. The solution to the
Ginzburg-Landau equation predicted two different regimes; a non-destructive one where
Tc remained finite for all strengths of the magnetic field B below the critical value Bc as
observed in the Little-Parks experiment. The other was a destructive regime where, in
certain intervals of B around what corresponds to odd multiples of half a flux quantum
through the ring, the maximal reduction in the critical temperature would exceed T 0

c and
the system become normal even at T = 0 K. In these intervals, the kinetic energy of the
supercurrent exceeds the condensation energy (the first term in Eq. (2.1)) resulting in
destruction of superconductivity. In the case L = 0, the two regimes were found to be
characterised by the ratio between R and the superconducting coherence length at zero
temperature ξ(0); For 2R < ξ(0) a normal phase would persist around odd half-integer
flux quanta even at T = 0 K and for 2R > ξ(0) the Little-Parks oscillations would be
non-destructive. Indeed we see in Eq. (2.2) that a smaller radius increases the kinetic
energy and hence the maximal reduction in Tc is size dependent. The critical flux at
T = 0 in the destructive regime (not to be confused with Bc) where the phase first shifts
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to normal was calculated to be Φc = R/ξ(0) and the ring would remain normal in the
interval [Φc,Φ0 −Φc], centred around Φ̃ = 1/2, before re-entering into the superconduct-
ing phase. This behaviour would be repeated in higher Little-Parks lobes as well. The
phase diagram in the non-destructive regime is like the one in Fig. 2.2a with a single
superconducting region with a slightly modulated phase boundary up to the critical field
Bc. The destructive regime phase diagram should instead consist of disconnected lobes of
superconductivity separated by a normal resistive phase around odd multiples of Φ0/2.

Figure 2.3: Figure 1A from [18] displaying resistance, R, measured for varying temper-
ature, T , and magnetic flux, Φ/Φ0.

Twenty years later Liu et al. [18] published results of an experiment on cylinders in the
destructive regime, according to the de Gennes calculations for a ring [20].4 One of the
samples was an Al cylinder of diameter d = 150nm and thickness t = 30 nm. From the
parallel critical field Bc they estimated the coherence length to be ξ(20 mK) = 161nm,
meaning 2R = d < ξ(0 K). The measured resistance as function of temperature and
flux is duplicated in Fig. 2.3 which shows finite-resistance peaks around Φ̃ = ±1/2 and
Φ̃ = ±3/2. The peaks at Φ̃±1/2 are only about a third of the normal state resistance RN

at temperatures much lower than the zero-field critical temperature T 0
c . Furthermore,

the resistance in the second lobes remains finite even at Φ̃ = ±2. The same type of
behaviour was observed for a cylinder of Au0.7In0.3 with d = 154 nm, t = 30 nm, and
ξ(20 mK) = 160 nm and so d < ξ(0 K) for that sample as well. Even though the two
cylinders were predicted to be in the destructive regime, the phase diagrams for the two
materials were not distinctive lobes of superconducting phases separated by the normal
phase. Instead, some intermediate phase with resistance 0 < R(Φ) < RN was observed be-
tween the zeroth and first lobes and a finite resistance phase was seen in the second lobes
where a superconducting phase was expected. For a larger Al cylinder with d = 257 nm,
t = 30 nm, and an estimated ξ(0 K) < 60 nm < d, non-destructive Little-Parks oscil-
lations of period Φ0, similar to the original experiment [13], were observed. Hence, the
results from Liu et al. [18] did agree to some extent with the prediction by de Gennes [20],
but there was still need for an explanation of the irregularities in the destructive regime
phase diagrams.

In 2009 Dao et al. [21] suggested that inhomogeneities modulated at a long-range scale

4The theory should also hold for a cylinder that is equivalently orientated with respect to the magnetic
field (as in the Little-Parks experiment).
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Figure 2.4: Figure 1 from [21] showing how a varying coherence length, ξ(0), along a
cylinder with constant radius (a) affects the flux-temperature phase diagram at different
positions z along a cylinder of length L (b). In (c) it is shown how a finite cylinder
thickness results in a quadratic deviation of the phase transition line superimposed on
the periodic behaviour of Tc(Φ) for a fixed z. This effect vanishes in the limit t� R.

compared to ξ(0) could result in the reported behaviour of the resistance in [18]. That
would separate the cylinder into normal and superconducting regions around the transi-
tion point and thereby yield a finite resistance lower than RN. Such inhomogeneities could
e.g. be variations in the thickness, radius or the electron diffusivity along the cylinder,
causing phase transitions to occur only locally with different Tc(Φ, z).

They solved the linearised self-consistent equation of the superconducting order pa-
rameter for t � ξ in the dirty limit where ξ(0) =

√
π~vFlel/24kBT 0

c [16]. Here ~ is the
reduced Planck constant, vF is the Fermi velocity, lel is the mean free path, and kB is the
Boltzmann constant. They found that the finite field transition temperature should be
the largest of the solutions Tc(n,Φ) to the equation

ln

(
Tc(n,Φ)

T 0
c

)
= ψ

(
1

2

)
− ψ

(
1

2
+

α(n,Φ)

2πTc(n,Φ)

)
. (2.3)

Here ψ(x) = Γ′(x)
Γ(x) is the digamma function, n is the winding number introduced in

Eq. (2.2), and α(n, φ) is the pair-breaking parameter:

α(n,Φ) =
ξ2(0)

πR2
T 0

c

{
4(n− Φ̃)2 + t̃2Φ̃2 + 4n2

[
1

t̃
ln

(
2 + t̃

2− t̃

)
− 1

]}
,

with t̃ = t/R.5 For a hollow superconducting cylinder t̃ < 1, and the pair-breaking
parameter at zero winding (i.e. in the first Little-Parks lobe) α(0,Φ) depends weekly on t̃
but rather on the ratio ξ(0)/R. For n > 0, however, α(n,Φ) strongly depends on t̃ and the
pair-breaking can be large even at integer Φ̃ [19]. The larger the pair-breaking parameter
the lower the temperature is required to fulfil Eq. (2.3). Apart from the periodic term

5Similar considerations on finite thickness effects were actually considered by Groff and Parks already
in 1968 [15].
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(n− Φ̃)2 in α(n,Φ) there is also the thickness-dependent term

t̃2Φ̃2 + 4n2

[
1

t̃
ln

(
2 + t̃

2− t̃

)
− 1

]
≈ t̃2

(
Φ̃2 +

n2

3

)
. (2.4)

This term is not periodic in flux and instead leads to an overall decrease of supercon-
ductivity which will eventually be destroyed above a certain field Bc. This is shown in
Fig. 2.4 which is taken from [21]. We see that with increasing thickness the maximum in
Tc(Φ) at finite flux is reduced compared to T 0

c and the parabolic lobes are shifted towards
Φ = 0. Hence a cylinder that from the ratio R/ξ(0) is thought to be in the non-destructive
regime might actually belong to the destructive regime due to its wall thickness.

The non-periodic pair-breaking can also explain the temperature broadening of the
phase transition at finite magnetic field observed in [18]. With disorder, variations in
α(n,Φ) and therefore also Tc(Φ, z) become larger with increasing field. In Fig. 2.4 we
show the phase transition line as function of flux and temperature from [21]. We see
how the difference in local Tc(Φ, z), and thereby the temperature width of the transition,
becomes larger with increasing field, in particular near odd half-integer Φ̃. With their
model Dao et al. were able to reproduce the essential features from [18].

The theory was further expanded by Schwiete and Oreg [22, 23] who suggested that
Cooper pair fluctuations in the normal phase close to the transition would give a large
contribution to a persistent current. This effect should be largest for superconductors with
low effective dimensionality and in the presence of disorder. Together with the theory
for inhomogeneity effects in [21], this should provide an explanation for the intermediate
resistive phase 0 < R < RN.

Furthermore, from the condition in Eq. (2.3) they obtained another expression for the
critical flux where the transition temperature becomes zero, Φc = Φ̃cΦ0, than what was
found in [20]:

Φ̃c ≈
πR

ξ(0)
√

8γE

(
1− t̃2

4

)
, γE ≈ 1.78. (2.5)

This equation includes the finite cylinder wall thickness which reduces the critical flux.
For superconductivity to be destroyed between the zeroth and first Little-Parks lobes
it is required that Φ̃c < 0.5. For a vanishing wall thickness this yields the condition
R/ξ(0) <

√
2γE/π ≈ 0.6 whereas the de Gennes result R/ξ(0) < 0.5 is only valid for

r � 1. However, this correction and that of finite thickness do not change the predicted
regimes of the different cylinders used in [18].

In the experiment on full-shell wires by Vaitiėkenas et al. [10] they have also per-
formed measurements on the superconducting shell of the differential resistance versus
axial magnetic field and temperature. Although the nanowires are really hexagonal the
superconducting shell is approximated by a cylinder of mean diameter 2R = 160 nm
and thickness t = 30 nm. The dirty-limit effective penetration depth is calculated to
be λeff = 150 nm � t and the Little-Parks effect is indeed relevant. The result of the
resistance measurements is reproduced in Fig. 2.5. It shows a periodic destruction of su-
perconductivity and a decreasing maximum Tc(Φ) of each Little-Parks lobe with magnetic
field. A third superconducting lobe is not observed. This, we know now, is characteristic
of the destructive Little-Parks regime for a wire with R/ξ(0) < 0.6 and a finite t/R. Be-
tween the zeroth and first lobes and the first and second lobes the resistance attains the
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Figure 2.5: Figure S1 from the supplementary material to [10] showing measurements
of the destructive Little-Parks effect around zero current bias. A shows the differential
resistance, RS, as function of magnetic field, B, and temperature, T . Around ±1/2 and
±3/2 flux quanta the resistance remains normal down to the lowest measured temperature
20 K. Line-cuts from this plot at flux 0,Φ0/2,Φ0, and 2Φ0 are shown in B. In C is shown
a line-cut at constant temperature T = 20 mK.

normal value and is temperature-independent. A normal resistance around one half flux
quantum has also been reported by Sternfeld et al. [19] for a thin cylinder fulfilling the
destructive regime criterion. In [19], however, no lobes other than the zeroth Little-Parks
lobe showed zero resistance. It is difficult to obtain several superconducting lobes because
the magnetic field needs to produce a large flux through a small area without destroying
superconductivity [23]. By reducing R/ξ(0) such that all cross-sections meet the destruc-
tive regime criterion despite inhomogeneities, the normal resistance can be obtained at
sufficiently low temperatures.

The dirty-limit coherence length in [10] is estimated to be ξ(0) =
√
π~vFlel/24kBT 0

c =
180 nm. According to Eq. (2.5) this yields a critical flux Φ̃c ≈ 0.36 which fulfils the de-
structive regime criterion. However, the corresponding critical field Bc = 0.36Φ0/πR

2 ≈
37 mT is below the reported 45 mT. The discrepancy may be due to higher order correc-
tions in t̃ ≈ 0.375 to the expansion in Eq. (2.4) or to an underestimation of the coherence
length.

The resistance as function of temperature shows that the phase transition is broad-
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ened with an increasing field (see Fig. 2.5). This suggests that some inhomogeneities are
present in the shell but not enough to yield an intermediate resistive phase around odd
half-integer flux quanta. The use of expressions in the dirty-limit may then be the reason
for a potentially underestimated coherence length. Finally, the absence of a large per-
sistent current near the transition challenges the asserted Cooper pair fluctuations [22,23].

In the next section we shall see that the semiconducting core in the full-shell wires can
inherit an electron pairing from the superconducting shell. This is why the differential
conductance of the core shows a destructive Little-Parks-like behaviour of the spectral
gap (cf. Fig. 1.1).
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3 Proximity effect

In the description of semiconductor-superconductor hybrid devices, an essential element
is the proximity effect where the superconductor induces electron pairing in the semicon-
ductor when the two are brought into contact. Here we will explain this effect by the
tunnelling Hamiltonian approach, based on the methods presented in Refs. [3,6,24]. The
result will be a self-energy term in the Green’s function of the semiconductor which intro-
duces pairing of electrons (and of holes), after we have integrated out the superconductor
electron degrees of freedom. Since the proximity effect will be used later to describe
full-shell nanowires we will use such a system for illustration. The total Hamiltonian
thus consists of a semiconducting core term, an s-wave superconducting shell term and a
tunnelling Hamiltonian

H = Hsemi +Hs +Ht.

We reserve annihilation operators cpzσ for electrons in the core and fpσ for electrons in
the shell:

cpz =

(
cpz↑
c†−pz↓

)
, fp =

(
fp↑
f †−p↓

)
.

These Nambu spinors consist of two components although 4-Nambu spinors will be used
in subsequent sections in order to describe spin terms in the Hamiltonian. Since the
spin dependence of the electron pairing is build into the Nambu structure and can be
straightforwardly translated from 2-Nambu to 4-Nambu, we work here with spin-less
Hamiltonians for simplicity.6 Furthermore, it is assumed for now that the semiconductor
has only one longitudinal channel, i.e. is 1-dimensional. In terms of 2-Nambu spinors,
the Hamiltonians read

Hsemi =
∑
pz

c†pz

(
εpz − µ 0

0 −εpz + µ

)
cpz , εpz =

p2
z

2m∗
,

Hs =
∑
p

f †p

(
ξp −∆
−∆∗ −ξp

)
fp, ξp =

p2

2m
− µs,

Ht =
∑
p

[
c†pzV fp + f †pV

†cpz

]
, V =

(
V 0
0 −V ∗

)
.

Herem∗ and µ are the effective electron mass and chemical potential in the semiconducting
core while m and µs are those of the superconducting shell. The pairing potential ∆ is
assumed to be momentum independent. V = |V |eiθ is the coupling strength between
the two materials. The tunnelling Hamiltonian is constructed such that momentum is
conserved along the wire (pz) but not along the transverse directions (pr, pϕ = p⊥). In
order to examine the effect of the coupling we define here the imaginary time Nambu

6Extending to 4-Nambu, (cpz↑, cpz↓, c
†
−pz↓,−c

†
−pz↑), the induced gap becomes ∆ → ∆σ0 where σ0 is

the identity in spin space.
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Green’s function of the semiconducting core

Gsemi(pz, τ) = −
〈
Tτ

(
cpz(τ)⊗ c†pz(0)

)〉
=

 −〈Tτ (cpz↑(τ)c†pz↑(0)
)〉

−
〈
Tτ (cpz↑(τ)c−pz↓(0))

〉
−
〈
Tτ

(
c†−pz↓(τ)c†pz↑(0)

)〉
−
〈
Tτ

(
c†−pz↓(τ)c−pz↓(0)

)〉
=

(
Gee

semi(pz, τ) Geh
semi(pz, τ)

Ghe
semi(pz, τ) Ghh

semi(pz, τ)

)
. (3.1)

The anomalous off-diagonal terms Geh(he)
semi (pz, τ) are non-zero as a result of the coupling

with the superconducting shell. They correspond to a process called Andreev reflection or
branch conversion scattering, where an electron (hole) from the semiconductor, incoming
on the boundary of the superconductor, is retro-reflected as a hole (electron) [25, 26].
Charge is conserved through creation (annihilation) of a Cooper pair of charge −2e at
the superconductor Fermi level. Since the Cooper pair in the superconductor is composed
of electrons of opposite spin, the reflected hole (electron) must have opposite spin of the
incoming electron (hole) as is the case for the off-diagonal elements of Eq. (3.1).7 Writing
the semiconductor and superconductor Nambu Green’s functions in absence of coupling
as G0

semi and G0
s , respectively, the Dyson equation for the full Gsemi becomes

Gsemi(pz, τ) = G0
semi(pz, τ)+

∫ β

0

∫ β

0
dτ1dτ2 G0

semi(pz, τ−τ1)
∑
p⊥

V G0
s (p, τ1−τ2)V †Gsemi(pz, τ2).

To solve the equation we Fourier transform to Matsubara frequencies

Gsemi(pz, ikn) = G0
semi(pz, ikn) + G0

semi(pz, ikn)
∑
p⊥

V G0
s (p, ikn)V †Gsemi(pz, ikn),

which implies

Gsemi(pz, ikn) =
[(
G0

semi(pz, ikn)
)−1 − Σss(pz, ikn)

]−1
. (3.2)

Here we have introduced the self-energy of the semiconductor due to coupling to the
superconductor,

Σss(pz, ikn) =
∑
p⊥

V G0
s (p, ikn)V †.

The self-energy contains the Green’s function of the isolated superconductor which can
be found from its equation of motion [27, p. 336],

∂τG0
s (p, τ) = −δ(τ)

(
1 0
0 1

)
−
(
ξp −∆
−∆∗ −ξp

)
G0

s (p, τ).

By Fourier transformation we obtain(
ikn − ξp ∆

∆∗ ikn + ξp

)
G0

s (p, ikn) =

(
1 0
0 1

)
,

7An electron from the semiconductor with energy smaller than ∆ is forbidden to propagate into the
superconducting region and hence only Andreev reflection is possible [25].
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whereby

G0
s (p, ikn) =

1

(ikn)2 − E2
p

(
ikn + ξp −∆∗

−∆ ikn − ξp

)
,

where Ep =
√
ξ2
p + |∆|2 is the excitation energy. With this it is possible to calculate the

self-energy of the semiconductor due to tunnelling in and out of the superconductor.

Σss(pz, ikn) =
∑
p⊥

1

(ikn)2 − E2
p

(
V 0
0 −V ∗

)(
ikn + ξp −∆∗

−∆ ikn − ξp

)(
V ∗ 0
0 −V

)

=
∑
p⊥

|V |2

(ikn)2 − E2
p

(
ikn + ξp ∆∗e2iθ

∆e−2iθ ikn − ξp

)

= −|V |2
∫ ∞
−∞
dξp⊥

1

k2
n + ξ2

p + |∆|2
d(ξp⊥)

(
ikn + ξp ∆̃∗

∆̃ ikn − ξp

)
, ∆̃ = ∆e−2iθ.

Here d(ξp⊥) = d2(0) is the density of states of free electrons in two dimensions which is
constant. We have let the sum over ξp⊥ run unrestricted instead of using the true upper
and lower cut-offs. This introduces a constant correction, δµ, to the chemical potential
of the semiconductor that depends on the superconductor material properties and that
we will disregard. Assuming the Fermi energy in the superconductor to be much larger
than the relevant energy scale in the semiconductor, we change the integration variable
ξp⊥ → ξp⊥ + p2

z/2m = ξp

Σss(pz, ikn) = −|V |2d2(0)

∫ ∞
−∞

dξp
1

k2
n + ξ2

p + |∆|2

(
ikn ∆̃∗

∆̃ ikn

)
,

where we have employed that the function of ξp on the diagonal is odd. The integral is
solved by expanding the line integral on the real axis to a curve in the upper half of the
complex plane where ξ−2

p → 0−∫ ∞
−∞
dξp

1

ξ2
p + k2

n + |∆|2
=

∮
C
dξp

1

ξp + i
√
k2
n + |∆|2

1

ξp − i
√
k2
n + |∆|2

=
2πi

2i
√
k2
n + |∆|2

.

Thus the self-energy is

Σss(pz, ikn) =
−Γ√

k2
n + |∆|2

(
ikn ∆̃∗

∆̃ ikn

)
, Γ = |V |2d2(0)π,

where we have introduced the tunnelling strength Γ. We see on the off-diagonal the in-
duced pairing in the semiconductor which we set to be real since any phase could be
removed by a gauge transformation. Inserting the self-energy into Eq. (3.2) and perform-
ing analytic continuation ikn → ω + iη, we obtain the retarded Green’s function of the
core

GR
semi(pz, ω) =

[
ω

(
1 +

Γ√
|∆|2 − ω2

)
−Hsemi +

Γ|∆|√
|∆|2 − ω2

τx

]−1

, (3.3)

where τx is the first Pauli matrix in 2-Nambu space, Hsemi is the matrix in Hsemi, and
we have omitted writing the positive infinitesimal η = 0+ explicitly. Considering energies
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in the semiconductor much smaller than the shell gap, ω � |∆|, in the weak tunnelling
limit, Γ� |∆|, we obtain the effective low-energy Green’s function

G̃R
semi(pz, ω) =

[
ω −Heff

semi

]−1
, Heff

semi =

(
εpz − µ −Γ
−Γ −εpz + µ

)
,

which describes a superconductor with a frequency independent electron pairing Γ, thus
the semiconductor has effectively become a superconductor. In the strong tunnelling
case, Γ� |∆|, one needs to identify the poles of the Green’s function in Eq. (3.3) by the
determinant equation∣∣∣∣∣ω − Z

(
Hsemi −

Γ|∆|√
|∆|2 − ω2

τx

)∣∣∣∣∣ = 0, Z−1 = 1 +
Γ√

|∆|2 − ω2
. (3.4)

Both the Hamiltonian Hsemi and the self-energy are thus renormalised by Z and both
frequency dependent. The lowest excitation energy in the proximitized semiconductor is
found when εpz = µ and we can regard this as the induced gap:

∆ind −

1 +
Γ√

|∆|2 −∆2
ind

−1

Γ|∆|√
|∆|2 −∆2

ind

= 0

and for Γ�
(
|∆|,

√
|∆|2 −∆2

ind

)
the effective gap of the semiconductor approaches that

of the superconductor [24]:

∆ind −
Γ|∆|√

|∆|2 −∆2
ind + Γ

≈ ∆ind − |∆| = 0.

This concludes our introduction to the proximity effect and we will next present a model
which incorporates the results of this section in order to describe full-shell nanowires.
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4 Model Hamiltonian for full-shell nanowires

In this section we introduce a model Hamiltonian for a nanowire consisting of a semicon-
ducting core covered by a full superconducting shell. It is the model presented by Lutchyn
et al. [11] with minor modifications and is aimed at describing full-shell wires like the ones
used in experiments by Vaitiėnas et al. [10] where an InAs core is covered by a thin Al
shell. For a start, the wire is approximated to be perfectly cylindrical with a radius R2 of
the semiconductor and an outer radius R3 of the superconductor (see Fig. 4.1). A mag-
netic field B = Bẑ is applied along the wire and a gauge is chosen such that the vector
potential is A = 1

2(B × r) = 1
2Brϕ̂ = Aϕ̂, using cylindrical coordinates (z, r, ϕ). The

flux through a cross-section of radius r is Φ(r) = πr2B, thus the vector potential can be

written as A = Φ(r)
2πr ϕ̂. The thickness of the superconducting shell is assumed to be much

smaller than the London penetration depth of the superconductor, R3−R2 = t� λL and
R2 � λL. As explained in Sec. 2 this leads to a winding of the superconducting order
parameter that depends on the flux (which is not quantised), and we therefore take it
to be on the form ∆̃(r) = |∆̃|e−inϕ. Here the integer n is the winding number and we
have assumed the norm to be constant along the wire and ignored radial variations on the
length scale t. A field-dependent |∆̃|(B) will not be included explicitly in this model but
will instead be considered as a type of boundary condition which can be superimposed
on our findings which are for temperatures below the critical value. A Rashba spin-orbit
interaction in the semiconductor is included in the model with a coupling strength α,
due to an intrinsic, outpointing radial electric field at the semiconductor-superconductor
interface [28]. In cylindrical coordinates the Hamiltonian for the semiconducting core in
the magnetic field B = ∇×A reads

H0 =
(p+ eAϕ̂)2

2m∗
− µr + αrr̂ · (σ × (p+ eAϕ̂)) +BZσz, (4.1)

where ~ = h/2π = 1, m∗ is the effective electron mass in the semiconductor, −e < 0 the
electron charge, µ the chemical potential of the semiconductor, p the electron momentum
operator, and σ is a vector of the Pauli spin matrices. Both the chemical potential and
the spin-orbit coupling strength are assumed to only depend on r corresponding to using
z and ϕ-averaged values of µ(r) and α(r) [11]. BZ = gµBB/2 is the Zeeman energy, g
being the effective g-factor in the wire and µB the Bohr magneton [29].

As described in Sec. 3, a proximity-induced s-wave pairing of electrons in the semicon-
ductor, ∆(r), is inherited from the superconductor, |∆̃(r)| > |∆(r)|. In the calculations
of Sec. 3, the semiconducting core was assumed to be effectively 1-dimensional whereas
here it is 3-dimensional. We adopt the proximity effect result in the strong coupling limit
Γ � |∆̃| for energies in the semiconductor smaller than or at the order of8 |∆̃| with the
assumption that the induced pairing possesses the same ϕ dependence as in the super-
conductor while decaying in magnitude towards the centre of the core, corresponding to
a decaying coupling Γ(r). This way, the pairing potential in the semiconductor inher-
its the phase winding and an amplitude which, at r = R2 is approximately that of the
superconductor; ∆(r) = ∆(r)e−inϕ. The reason we assume strong coupling is that the
full-shell wires are made with an oxide-free interface between the Al and InAs and that
the tunnelling spectrum of the core shows a zero-field gap that is almost that of Al [10].
With the proximity effect the Hamiltonian H0 in Eq. (4.1) is renormalised to give an

8i.e. energies ω such that Γ�
√
|∆̃|2 − ω2.
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Figure 4.1: Illustration, similar to Fig. 1 in [11], of the full-shell nanowire and its
orientation with respect to the magnetic field. The superconducting shell is coloured blue
and the semiconducting core is green. Dark green, which is bounded by R1, indicate a
region of the semiconductor that might be effectively insulating for reasons presented in
Sec. 4.1.

effective Hamiltonian. In the regime we have chosen to consider, this renormalisation
can be approximated to be constant (see Eq. (3.4)) and from here on we will take all
the parameters in H0 to represent instead the renormalised values. In the Nambu basis,
Ψ(r) = (ψ↑(r), ψ↓(r), ψ†↓(r),−ψ†↑(r)) where ψ↑(r) annihilates a spin-up electron at posi-
tion r etc., the Bogoliubov-de Gennes (BdG) Hamiltonian [9] for the semiconductor thus
reads

HBdG =

(
H0(A) ∆(r)
∆∗(r) −σyH∗0 (A)σy

)
. (4.2)

This is a four dimensional block matrix with spin as the inner structure and electron-
hole space as the outer one, i.e. each of the elements in Eq. (4.2) is a matrix in spin
space. In the hole-hole element, the time-reversed Hamiltonian is used since the hole
part of Nambu space, (ψ†↓(r),−ψ†↑(r)), is the time-reversed vector of the electron part,

(ψ↑(r), ψ↓(r)).9 We note that time-reversal symmetry is broken by the external magnetic
field ∇ × A which together with the phase winding creates a helical system along z.
The BdG Hamiltonian can be diagonalised by the Bogoliubov transformation UB relating
the electron and hole operators in the Nambu basis to eigenstate quasiparticle operators
which also obey fermionic anti-commutation relations [27].

We write the BdG Hamiltonian from Eq. (4.2) in terms of Pauli matrices for spin σi
and electron-hole space τi

HBdG =

(
p2
z

2m∗
+

p2
r

2m∗
+

(pϕ + eAτz)
2

2m∗
− µr − αr(pϕ + eAτz)σz + αrpzσϕ +BZσzτz

)
τz

+ ∆(r)(cos(nϕ)τx + sin(nϕ)τy). (4.3)

Here pz = −i∂
∂z , p2

r = −1
r

∂
∂r

(
r ∂∂r
)
, and pϕ = −i

r
∂
∂ϕ . The notation σϕ = σ · ϕ̂ = σy cos(ϕ)−

σx sin(ϕ) has been introduced as well. As mentioned, the applied magnetic field breaks
time reversal symmetry which is why both A and BZ terms appear with an extra τz. We
now introduce the following operator which commutes with the Hamiltonian:

Jz = Lz +
1

2
σz +

1

2
nτz, (4.4)

9In second quantization the Hamiltonian is H = 1
2

∫ ∫
drdr′Ψ†(r)HBdGδ(r − r′)Ψ(r′)− const.
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where Lz = −i∂ϕ is the angular momentum operator and n is still the winding of the
order parameter. The commutator [HBdG, Jz] = 0 is calculated explicitly in App. A.1.
The eigenvalues of Jz are thus conserved (angular) quantum numbers and we label the
eigenstates of Jz and HBdG with these:

JzΨmJ (r) = mJΨmJ (r),

ΨmJ (r) = exp

[
i

(
mJ −

1

2
σz −

1

2
nτz

)
ϕ

]
ΨmJ (r, z). (4.5)

The states ΨmJ (r) are the vector solutions in Nambu space to the Bogoliubov-de Gennes
equation [25] with the Hamiltonian in Eq. (4.2). They describe quasiparticle excitations
with energy EmJ ; HBdGΨmJ (r) = EmJ ΨmJ (r). From the requirement that the wave
function must be single-valued, we see that mJ must be an integer if n is odd and a
half-integer if n is even. We want to investigate the possibility for existence of MZMs in
the nanowire system which are solutions to the equation HBdGΨmJ (r) = 0. These are
known to be invariant under particle-hole transformation PΨM = ΨM [9], where P is the
particle-hole symmetry operator P = σyτyK with K representing complex conjugation.
We therefore consider how the eigenstate in Eq. (4.5) transforms with P:

PΨmJ (r) = σyτyK exp

[
i

(
mJ −

1

2
σz −

1

2
nτz

)
ϕ

]
ΨmJ (r, z)

= exp

[
i

(
−mJ −

1

2
σz −

1

2
nτz

)
ϕ

]
PΨmJ (r, z). (4.6)

Furthermore, PHBdGP−1 = −HBdG. This means that P relates eigenstates with opposite
energy and angular quantum number10: PΨEmJ

,mJ
= Ψ−EmJ

,−mJ
. From Eq. (4.6) we

see that only states with mJ = 0 can be invariant under particle-hole transformation, and
thus only the mJ = 0 sector, which requires an odd winding number, supports MZMs.

To eliminate the ϕ dependence of HBdG (Eq. (4.3)) we can make the following unitary
transformation11:

H̃BdG = UHBdGU
†, U = exp

[
−i
(
mJ −

1

2
σz −

1

2
nτz

)
ϕ

]
. (4.7)

H̃BdG =

[
p2
z

2m∗
+

p2
r

2m∗
+

(
mJ − 1

2σz −
1
2nτz + eArτz

)2
2m∗r2

− µr +BZσzτz

]
τz

− αr
r

(
mJ −

1

2
σz −

1

2
nτz

)
σzτz − αreAσz + αrpzσyτz + ∆(r)τx. (4.8)

In writing Eq. (4.8) we have used that UσϕU
† = σy and U(cos(nϕ)τx+sin(nϕ)τy)U

† = τx,
see App. A.2 for a detailed calculation. The transformation, which can be regarded as a
rotation around the z axis in a combined electron-hole and real space, has brought angular
symmetry to the system. Eigenstates of the αpzσϕ term in the non-rotated HBdG have
spins that depend on the ϕ coordinate and thus rotate around the wire. By the spin part

10More explicitly: PHBdGP−1PΨmJ = −HBdGPΨmJ = EmJPΨmJ . The eigenstate PΨmJ = Ψ−mJ

of HBdG thus has the corresponding eigenenergy E−mJ = −EmJ .
11Schematically: HBdG(z, r, ϕ)ΨmJ (z, r, ϕ) = EmJ ΨmJ (z, r, ϕ),

UHBdG(z, r, ϕ)U†UΨmJ (z, r, ϕ) = EmJUΨmJ (z, r, ϕ) =⇒ H̃BdG(z, r)ΨmJ (z, r) = EmJ ΨmJ (z, r)

17



of the transformation, e−iϕσz/2, the eigenstate spins of the αpz term have been rotated
around the z axis with an angle equal to their ϕ coordinate and eigenstates to that part
of the Hamiltonian now have all spins pointing in the same direction, parallel to the y
axis. Similarly, the phase of the pairing potential is unwounded by the part e−iϕnτz/2 such
that ∆(r) = ∆(r) ∈ R.

4.1 Hollow-cylinder model

The rotated Hamiltonian in Eq. (4.8) can be further simplified with a restriction of the
radial part of the wave functions. This is done by describing the semiconducting core
as an effective thin-wall hollow cylinder, corresponding to the conduction electrons in
the semiconductor accumulating within the order of 10nm from the super-semi interface,
i.e. R1 → R2 [11, 28]. The motivation for this assumption is the intrinsic outpointing
electric field which also led to the spin-orbit term in Eq. (4.1). The field corresponds
to a quantum well potential term V (r)τz in the Hamiltonian12 H̃BdG in Eq. (4.8) where
V (r) has a triangular shape with a minimum at r = R2 as found in [28]. We assume
this bending of the conduction band to be strong enough that the different radial modes
are so well separated in energy compared to the relevant energy scale set by ∆ that only
the lowest-energy radial mode with energy ε0 is occupied. In H̃BdG of Eq. (4.8) this is

implemented by letting p2r
2m∗ + V (r) → ε0 and r → R2 in the other terms containing r.

That way we obtain the one-dimensional Hamiltonian

H̃mJ =

(
p2
z

2m∗
− µmJ

)
τz + VZσz +AmJ + CmJσzτz + αpzσyτz + ∆(R2)τx. (4.9)

Here we have introduced an effective chemical potential µmJ , an effective Zeeman field
VZ , AmJ , and CmJ defined as:

µmJ = µ− 1

8m∗R2
2

(4m2
J + 1 + φ2)− α

2R2
,

VZ = φ

(
1

4m∗R2
2

+
α

2R2

)
+BZ,

AmJ = −φ mJ

2m∗R2
2

,

CmJ = −mJ

(
1

2m∗R2
2

+
α

R2

)
,

where we have introduced the reduced flux φ = n − Φ(R2)/Φ0 = n − Φ̃ and µ = µ(r =
R2), α = α(r = R2). Furthermore, the unknown constant ε0 is absorbed in the (renor-
malised) chemical potential: µ−ε0 → µ. The parameters µmJ , VZ, and AmJ can be tuned
by varying the flux through the wire. We observe that VZ contains a term proportional to
n, meaning that a winding of the superconducting order parameter produces a Zeeman-
like term that is non-zero even with a g = 0. The eigenstates of H̃mJ are still labelled
by the angular quantum number, ΨmJ (z). For now we will assume the nanowire to be of
infinite length such that the spatial part of ΨmJ (z) is the wave function for a free particle
with momentum pz. Thus the Hamiltonian is more conveniently written in momentum

12Actually in HBdG Eq. (4.3), but the term is unaffected by the transformation with U in Eq. (4.7).
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basis where pz = −i∂
∂z operators in Eq. (4.9) are replaced by the corresponding eigenvalues

pz, and H̃mJ ,pz is a matrix of scalars with four eigenvectors on the form

Ψ̃mJ ,pz =


u↑,mJ ,pz

u↓,mJ ,pz

v↓,mJ ,pz

v↑,mJ ,pz

 ,

where u and v are the electron and hole amplitudes respectively, defining the quasiparticle
excitations, and the momentum basis is

cmJ ,pz =


c↑,mJ ,pz

c↓,mJ ,pz

c†↓,−mJ ,−pz
−c†↑,−mJ ,−pz

 . (4.10)

We notice the following symmetry of the spectrum: PH̃mJ ,pzP−1 = −H̃−mJ ,−pz .13 In
Sec. 8 we will consider the finite full-shell nanowire. We remark the important aspect
of the system geometry that the electron density and the chemical potential of the core
are fixed by the materials and cannot be changed by applying a gate voltage since the
semiconductor is completely screened by the superconductor.
As was found in Eq. (4.6), the mJ = 0 sector is special as it is the only one that supports
MZMs. We therefore consider this special sector and choose n = 1, corresponding to
Φ̃ ∈ [0.5, 1] i.e. the first Little-Parks lobe. With mJ = 0, A0 = C0 = 0 and Eq. (4.9)
reduces to the usual Majorana nanowire model created by Oreg et al. [1] and by Lutchyn
et al. [2] (the Oreg-Lutchyn model). A system described by that model undergoes a
transition between a trivial and a non-trivial topological quantum phase when the gap
between zero energy and the nearest excitation energy level vanishes and reopens at zero
momentum pz = 0 [1, 2, 9]. The MZMs are quasiparticle excitations associated with the
non-trivial phase [8, 9] and thus we are interested in an expression for the gap at pz = 0,
which can be found by squaring the Hamiltonian twice:

H̃2
mJ=0,pz −

(
ξ2
pz + V 2

Z + α2p2
z + ∆2

)
= 2ξpzVZσzτz + 2ξpzαpzσy + 2VZ∆σzτx,(

H̃2
mJ=0,pz −

(
ξ2
pz + V 2

Z + α2p2
z + ∆2

))2
= 4ξ2

pzV
2

Z + 4ξ2
pzα

2p2
z + 4V 2

Z ∆2,

E2
pz = ξ2

pz + V 2
Z + α2p2

z + ∆2 ± 2
√
ξ2
pzV

2
Z + ξ2

pzα
2p2
z + V 2

Z ∆2,

E2
pz=0 = µ2

mJ=0 + V 2
Z + ∆2 ± 2VZ

√
µ2
mJ=0 + ∆2 =

(
VZ ±

√
µ2
mJ=0 + ∆2

)2

.

Here ξpz =
(

p2z
2m∗ − µmJ=0

)
, ∆ = ∆(R2) ≈ |∆̃|, and Epz is an eigenvalue of H̃mJ=0,pz .

The solutions Epz=0 = VZ −
√
µ2
mJ=0 + ∆2 and Epz=0 = −VZ +

√
µ2
mJ=0 + ∆2 are the

excitation levels closest to zero14 and define the energy gap at pz = 0; |VZ−
√
µ2
mJ=0 + ∆2|.

13i.e. P relates eigenstates with opposite energy, momentum and angular quantum number:
PH̃mJ ,pzP−1PΨmJ ,pz = −H̃−mJ ,−pzPΨmJ ,pz = EmJ ,pzPΨmJ ,pz . The eigenstates of H̃−mJ ,−pz are
thus Ψ−mJ ,−pz = PΨmJ ,pz with eigenenergies E−mJ ,−pz = −EmJ ,pz .

14Here we are taking VZ > 0 for the sake of argument. For VZ < 0 the lowest excitation states would
be the other two solutions to Epz=0.
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Hence the transition between the trivial and non-trivial topological phase takes place
when V 2

Z = µ2
mJ=0 + ∆2 and by tuning the magnetic flux through the cylinder such that

|VZ| >
√
µ2
mJ=0 + ∆2, the system is in the non-trivial phase. That an Oreg-Lutchyn model

with |VZ| >
√
µ2
mJ=0 + ∆2 does indeed describe a system in the non-trivial topological

phase can be seen by calculating the topological invariant (or Majorana number). For a
1-dimensional system described by the Hamiltonian H(pz) this is [8]

Q = sgn (Pf(B(pz = 0)) Pf(B(pz =∞))) . (4.11)

Here B(pz) is H(pz) transformed into Majorana basis; H(pz)→ iB(pz), fulfilling B†(pz) =
−B(pz) = BT (−pz) where T denotes transpose. Pf is the Pfaffian operator:

Pf(B) =
1

2NN !

∑
σ∈S2N

sgn(σ)Bσ(1)σ(2) . . . Bσ(2N−1)σ(2N), (4.12)

where 2N is the dimensionality of B and S2N is the set of all permutations of 2N elements
[8]. The invariant Q = ±1 distinguishes between the trivial and the non-trivial phase.
Which sign is associated with e.g. the trivial phase is determined by taking Q in a limit
which is known to be trivial. Writing the fermion operator as c↑ = (γ↑,a + iγ↑,b)/2, the
transformation of H̃mJ=0,pz from the fermion basis in Eq. (4.10) to the Majorana basis
(γ↑,pz ,a, γ↑,pz ,b, γ↓,pz ,a, γ↓,pz ,b) is

iBpz = D−1H̃mJ=0,pzD =
1

2


1 0 0 −1
−i 0 0 −i
0 1 1 0
0 −i i 0

 H̃mJ=0,pz


1 i 0
0 0 1 i
0 0 1 −i
−1 i 0 0

 .

It is most convenient to transform the different terms separately:

D−1τzD = −σyτ0,

D−1σzD = −σyτz,
D−1σyτzD = −σyτy,
D−1τxD = σxτy,

whereby the Majorana basis Hamiltonian is

Bpz =


0 ξpz + VZ 0 −iαpz −∆

−ξpz − VZ 0 iαpz −∆ 0
0 iαpz + ∆ 0 ξpz − VZ

−iαpz + ∆ 0 −ξpz + VZ 0

 .

We see that this indeed fulfils the antihermitian conditions B†pz = −Bpz = BT
−pz . From

the prescription in Eq. (4.12) we can calculate

Pf (Bpz) =
1

8

∑
σ∈S4

sgn(σ)Bpz ;σ(1),σ(2)Bpz ;σ(3),σ(4) = ξ2
pz − V

2
Z + ∆2.

As pz → ∞, sgn (Pf (Bpz)) = +1. This means that the topological index is alone deter-
mined by

Q = sgn
(
µ2
mJ=0 − V 2

Z + ∆2
)
,
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(a) All four excitation energy bands in the
mJ = 0 sector for parameter values that en-
sure |VZ| >

√
µ2
0 + ∆2. Colours indicate differ-

ent quasiparticle excitations in H̃mJ=0.
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(b) Excitation energy bands close to zero for
mJ = 1 (blue), mJ = −1 (red), mJ = 2
(green), and mJ = −2 (orange). The gap is
open at pz = 0 but closes at finite momentum
in the mJ = ±2 sectors.

Figure 4.1: Excitation energy bands for quasiparticles in different mJ sectors, given in
units of the induced gap ∆. The plots are made with parameter values (µ = 3∆, α = 2α0),
Φ̃ = 1/2, n = 1, and R2 = 0.5R0. Even though this is in the non-trivial topological phase
for the mJ = 0 sector, the total system is gapless and therefore trivial due to the mJ = ±2
sectors. From these plots we also see that EmJ ,pz = −E−mJ ,−pz = EmJ ,−pz .

and indeed we see that the index changes when V 2
Z = µ2

mJ=0 + ∆2. We can find the
index of the trivial phase by letting ∆→∞ corresponding to an s-wave superconductor.
Hence when Q = +1 the system is in the trivial phase with no MZMs and when |VZ| >√
µ2
mJ=0 + ∆2 the index changes to Q = −1 and the system is in the non-trivial phase.

Examples of the excitation energy bands for an Oreg-Lutchyn system are given in
Fig. 4.1a which indeed shows a gapped spectrum. For notational convenience and in
order to be able to compare results with the 2018 article by Lutchyn et al. [11], we use
in this thesis the same values for the effective electron mass m∗ = 0.026me and for the
induced gap ∆ = 0.2meV (which is close to that of the Al-shell) as in the article and
introduce as well the radial unit R0 = 1/

√
2m∗∆ ≈ 85nm and the spin-orbit coupling

unit α0 =
√

∆/2m∗ ≈ 17meV · nm. Throughout the thesis, calculations will be made for
a wire of radius R2 ∼ 0.5R0 ≈ 40nm.

Including also the other sectors, mJ 6= 0, the problem becomes more complicated,
partly because the eigenenergies of H̃mJ 6=0,pz are not possible to find analytically and
therefore numerical methods have to be employed. Another complication is that, for
parameters where the mJ = 0 sector is otherwise in the non-trivial topological phase, the
excitation bands of the other sectors may be crossing zero energy and thereby close the
gap of the total system. This is the case at (µ, α) = (3∆, 2α0) where a band from the
mJ = 2 sector and one from mJ = −2 both cross zero energy as shown in Fig. 4.1b. A
requirement for the non-trivial phase is that the total excitation spectrum is gapped at all
momenta and hence the higher sectors bring the system into the trivial phase if they cross

zero energy. Therefore |VZ| >
√
µ2
mJ=0 + ∆2 is no longer a condition that ensures non-

trivial topology. Because the different mJ sectors are not mixed in H̃mJ ,pz , each sector
can be assigned a topological index QmJ like the one in Eq. (4.11) with a BmJ ,pz that is
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the Majorana basis transform of H̃mJ ,pz . The total topological index is then ΠmJQmJ .
However, since the spectrum possesses the symmetry EmJ ,pz = −E−mJ ,−pz = −E−mJ ,pz ,
i.e. the spectrum has an an equal number of positive and negative energies for any pz, we
choose to instead combine the sectors mJ and −mJ in one B|mJ |,pz which can be rotated
into the block matrix

B|mJ |,pz =

(
04 Epz
−Epz 04

)
.

Here 04 is a 4-dimensional matrix of zeroes and Epz is a 4-dimensional matrix with
the positive eigenenergies of sectors mJ ,−mJ on the diagonal and zeroes everywhere
else. With B|mJ |,pz written on this form, we have found that the Pfaffian is equal to
the determinant of Epz . At pz = 0, a change in parameters can cause one band from
EmJ ,pz=0 > 0 to cross zero energy while a mirror band from E−mJ ,pz=0 < 0 will do the
same (see e.g. Fig. 4.1b). As a consequence one of the elements in the matrix Epz changes
sign and so will the Pfaffian of B|mJ |,pz=0. At pz =∞ the bands never cross zero energy
since the energies in B|mJ |,pz are dominated by the term p2

z and therefore do not change
signs for any relevant variation in parameters and hence sgn

(
Pf(B|mJ |,pz=∞)

)
remains

the same. We therefore expect that the topological phase changes when the gap closes
and reopens at pz = 0 and that this can be used to define the phase transition instead of
Q. However, the spectrum should also be gapped at finite pz for a well-defined non-trivial
phase, so we should compare the gap closing at pz = 0 to calculations of the overall
gap Egap. The eigenenergies of H̃mJ ,pz=0 can be found analytically since spin is then a
conserved quantum number:

EmJ ,pz=0,σz = VZσz +AmJ ±
√

(µmJ − CmJσz)
2 + ∆2.

The mJ , σz band crosses zero energy at pz = 0 when

ΛmJ ,σz = ∆2 + (µmJ − CmJσz)
2 − (AmJ + VZσz)

2 = 0.

Hence the sign of ΛmJ ,σz should be the topological invariantQmJ ,σz . As before, we find out
which sign belongs to which phase by taking a limit we know to be trivial e.g. φ = 0 and
find that sgn (ΛmJ ,σz) = 1. We are to include gap closings of all the different mJ sectors
while still avoid double counting crossings of mirrored bands. Since ΛmJ ,σz = Λ−mJ ,−σz
the zero-energy crossing of mJ ,−σz is already captured by −mJ , σz. Therefore, we cover
all gap closings by only including one spin direction and the topological invariant for this
system can therefore be expressed as

Q = sgn
∏
mJ∈Z

[
∆2 + (CmJ − µmJ )2 − (AmJ + VZ)2

]
= sgn

∏
mJ∈Z

QmJ , (4.13)

which is also what was found in Ref. [11]. In Fig. 4.2 the topological invariant is plotted
as function of µ and α together with numerically calculated lines of Egap(pz = 0) = 0.
The purpose of that figure is both to show which areas of (µ, α) space, we predict to be
non-trivial, but also that the numerically calculated phase transition lines agree well with
the Q plot. This we will use later in cases where mJ is no longer a well defined quantum
number and we cannot find an analytic expression for Q. Note that according to Fig. 4.2

non-trivial domains can also exist outside the parabola defined by |VZ| =
√
µ2
mJ=0 + ∆2

where the isolated mJ = 0 sector is otherwise trivial.
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Figure 4.2: Red domains are where Q = −1 and in blue domains Q = 1. Black lines
denote where the gap is closed at pz = 0 according to numerical calculations. The plot is
for parameter values Φ̃ = 1/2, n = 1, R2 = 0.5R0, and BZ = 0.

In Fig. 4.3 is shown a contour plot of the overall spectral gap Egap in (µ, α) space.
The blue to yellow colour scale shows the size of Egap while the black lines are the same
as in Fig. 4.2 indicating where Egap(pz = 0) = 0. Taking these to be the transition lines,
Fig. 4.3 can then be regarded as a topological phase diagram of the full-shell nanowire
system described by H̃mJ ,pz . Comparing with Fig. 4.2 we find that the gapped region
including the point (µ = 2∆, α = 1α0) is non-trivial and from there we can count our way
to other non-trivial domains in a chessboard-like manner. However, as seen from Fig. 4.3,
none of the other zones, which could be non-trivial, are gapped due to mJ 6= 0 states.
As long as all mJ 6= 0 states are gapped, the topology of the system is controlled by the
mJ = 0 sector like in the lower left corner of Fig. 4.3 with small µ and α. But when the
higher mJ bands have crossed zero energy the spectrum remains gapless and therefore
trivial for higher values of µ, α.

To see if it is possible to open a gap in some of the regions that according to the black
phase transition lines should be non-trivial, we will try next to mix the bands that cross
at zero energy and thereby open a gap.
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Figure 4.3: Contour plot of the gap in the spectrum of
∑

mJ
H̃mJ ,pz in units of the

induced pairing strength ∆ as a function of the chemical potential µ and spin-orbit in-
teraction strength α. The black lines indicate where the gap is closed at pz = 0. For
example, the parabola-shaped line starting in (2.5∆, 4α0) and ending in (8∆, 4α0) is
where |VZ| =

√
µ2

0 + ∆2 and separates the trivial phase from the non-trivial phase in the
mJ = 0 sector. Inside the parabola QmJ=0 = −1. The line from (0∆, 2.6α0) to (6.2∆, 0α0)
is where bands from mJ = ±2 cross zero energy at pz = 0. The line from (0∆, 3.4α0) to
(12∆, 0α0) is where two other bands from mJ = ±2 cause Egap(pz = 0) = 0. At the line
from (2.5∆, 4α0) to (15∆, 1.2α0) bands from mJ = ±3 cross zero energy at pz = 0 and the
line from (8∆, 4α0) to (15∆, 2.8α0) marks the gap closing due to two other bands from
mJ = ±3. The numerical calculations include the bands mJ = 0,±1, . . . ,±4 since these
are the ones that lie within a distance ∼ ∆ from zero energy for the selected range of µ and
α. This we denote by mmax

J = 4. The maximum value of α is α = 4α0 ≈ 68.5 meV nm.
This order of magnitude is in accordance with measurements [7] although α is really the
renormalised spin-orbit coupling strength. In this plot, the flux is Φ̃ = 1

2 , the winding
is n = 1, and the radius of the semiconductor is R2 = 0.5R0. The Zeeman effect is not
included here (g = 0) but for g ∼ −2 the effect on the phase diagram is negligible (see
App. B, Fig. B.10). This, together with larger values of g, will be discussed in Sec. 5.1.
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5 Breaking rotational symmetry

Motivated by the results in [11] on breaking the angular symmetry with an anisotropic
Rashba spin-orbit coupling, we now introduce deformations of the hollow-cylinder ap-
proximated nanowire core described by H̃mJ ,pz (Eq. (4.9)). When breaking the angular
symmetry, different mJ sectors are coupled. This mixing might open a gap in the spec-
trum around zero energy at momenta where two bands of different mJ would otherwise
cross. For example, by coupling the bands from mJ = ±2 shown in Fig. 4.1b, the non-
trivially gapped domain in (µ, α) space (see Fig. 4.3) might be expanded. In general, new
non-trivial domains may emerge in areas which are trivial in the cylindrical approxima-
tion due to a closed gap at finite pz but with a Q = −1 (Eq. (4.13)). Hence we set out to
examine if deformations can be an advantage for reaching a stable non-trivial topological
phase.

With deformations, the eigenstates no longer have a well-defined angular quantum
number mJ and we cannot use the topological index in Eq. (4.13). Instead we distinguish
the different phases by the numerically calculated lines of Egap(pz = 0) = 0 as argued in
Sec. 4.1.

5.1 Altering the topological phase space with shape deformations

A deformation of the wire from a perfect cylinder will change the electric potential in-
side the semiconducting core. We include here periodic angular deformations causing an
electric potential V (ϕ) = V0 cos(lϕ)τz with a strength V0 and where l is an integer.15

Note that as intended, HBdG and V (ϕ) do not share eigenstates since [Jz, V (ϕ)] 6= 0. In
the momentum basis cmJ ,pz defined in Eq. (4.10) the potential reads πV0τzδ(mJ−m′J±l)
and we see that a deformation of the form cos(lϕ) couples states with a difference
in angular quantum number |mJ − m′J | = l. In a combined basis of all mJ sectors
(. . . , cmJ=−1,pz , cmJ=0,pz , cmJ=1,pz , . . .) the case of l = 1 would correspond to the matrix

. . .

H̃−1,pz πV0τz 0

πV0τz H̃0,pz πV0τz
0 πV0τz H̃1,pz

. . .

 . (5.1)

Hence, if we want to use deformations to couple for example the bands from the
mJ = ±2 sectors that cross each other at zero energy, we are to induce a cos(4ϕ) potential.
Alternatively, a cos(2ϕ) deformation could also do the job by coupling the two states
indirectly through the mJ = 0 sector.

Fig. 5.1 shows six contour plots of the spectral gap in the deformed nanowire in the
parameter space (µ, α) for a ”d-like” cos(2ϕ) potential, each plot corresponding to a
different strength V0. As in Fig. 4.3 the black lines indicate where the gap at pz = 0
is closed and therefore separates trivial from non-trivial domains. From this series of
gap plots, we see that the area in (µ, α) space of the initial non-trivial domain in the
lobe containing the point (µ = 2.3∆, α = 1.3α0) shrinks with increasing strength of the
potential. Counting the number of transition lines crossed when moving from this lobe

15Here we do not include the effects of deformations on the spin-orbit coupling similar to what was done
in Ref. [11].
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Figure 5.1: Contour plots of the spectral gap in units of ∆ like the one in Fig. 4.3 but
now including a d-like symmetry breaking potential V0 cos(2ϕ)τz with strengths from 0.1∆
to 0.6∆ through Figs. (a) to (f). All other system parameters, used for this calculation,
are the same as in Fig. 4.3.
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Figure 5.2: Gap contour plot in units of ∆ with same system parameters and potential
as in Fig. 5.1 with a strength V0 = 0.5∆, but for negative values of the spin-orbit coupling
parameter.

to another, we find that the gap opened in the area around (µ = 7∆, α = 1.2α0) when
V0 = 0.2∆ is also non-trivial and reaches a maximum width and (µ, α) space area when
V0 ≈ 0.35∆. However the gap is closed again when the strength is further increased.
Finally, there is an interesting domain containing the point (µ = 5∆, α = 3α0) where a
non-trivial gap opens at V0 ≈ 0.2∆ and becomes increasingly wide, even though the area
in (µ, α) space shrinks with larger V0 (see Fig. B.2 in App. B for plots with V0 > 0.6∆). We
are thus lead to conclude that deforming the wire in a π-periodic shape does not lead to an
enlarged range of values for the chemical potential and the spin-orbit coupling strength,
for which the system is in the non-trivial topological phase. Furthermore, these domains
are not very stable in the strength of the deformation. However, with deformations it is
possible to move the domains in parameter space which could be useful since µ and α are
fixed for a given wire.16 Topological phase diagrams with a d-like potential have also been
made for negative values of the spin-orbit coupling strength, α < 0, and can be found in
App. B, Fig. B.3. In these plots the black transition lines mirror the behaviour for α > 0
although the gap contours do not. For instance, there is no non-trivial domain without
perturbations whereas some are emerging as the geometry is changed, which also appears
to be the case in [11]. At V0 = 0.5∆ the induced non-trivial gap is as large as 0.5∆ (see
Fig. 5.2). Therefore, if the interface properties cause an α < 0, a cos(2ϕ) deformation can
be beneficial if a full-shell nanowire with values of (µ, α) within the non-trivial domains
exists.

From this point forward, a domain which e.g. includes the point (µ = 7∆, α = 1.2α0)
will be referred to as the (7, 1.2) domain.

Introducing instead a ”g-like” π/2-periodic deformation V0 cos(4ϕ), the crossing mJ =
2 and mJ = −2 bands are coupled directly, the result of which is shown in Fig. 5.3.
Comparing with Fig. 5.1 we observe that this is more efficient than the cos(2ϕ) potential

16Remember that the core cannot be gated due to superconducting shell.
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for enlarging the non-trivial phase space. For example, even though the non-trivial gap in
the (7, 1.2) domain does not appear until V0 = 0.4∆ and is more narrow than with the d-
like potential, it is stable in the sense that it does not close with larger V0 (see Fig. B.4 for
phase diagrams with V0 > 0.6∆). Regarding the non-trivial gap emerging at V0 = 0.2∆
in the (5, 3) domain, it covers a larger area in the non-trivial part of (µ, α) space than
with the d-like deformation since it is stable to an increase in V0 and does not shrink.
Another advantage of the g-like potential is that the initial non-trivial (2.3, 1.3) domain
remains the same as the wire geometry changes. Hence, with a cos(4ϕ) deformation, one
can expand the range of chemical potentials and spin-orbit coupling strengths that enable
a non-trivial topological phase of the system. Unlike the d-like deformation, it has not
been possible to open gaps for α < 0 with this potential (see App. B, Fig. B.5).

Other cos(lϕ) deformations have also been tested to determine if they would open
non-trivial domains elsewhere in the (µ, α) space where other sectors than mJ = ±2 close
the gap. With a ”p-like” cos(ϕ) potential one essentially couples all the mJ sectors. As
demonstrated in Fig. B.6, the only effect of such a ”dent” in the wire is that the initial
(2, 1) domain is closed and it is no longer possible to be in the non-trivial phase. An ”f-
like” cos(3ϕ) potential has also been examined to see if it would open crossings between
mJ = ±3 bands which happens at larger µ and α than for mJ = ±2 bands. According
to the phase diagrams in Fig. B.7 this has no effect on the non-trivial domains in (µ, α)
space. Nor has a combined ”d+f-like” deformation V0(cos(2ϕ) + cos(3ϕ)) shown be more
favourable than a plain d-like potential in terms of enlarging the non-trivial phase space
(see Fig. B.8).

In the experiments on full-shell nanowires by Vaitiekėnas et al. [10] the wires are in
fact not cylindrical but hexagonal. To model this geometry we have also examined how a
π/3-periodic deformation V0 cos(6ϕ) affects the phase diagram. This couples mJ and m′J
sectors that differ by 6 and from Fig. B.9 we see that the energy correction is small since
deformations as large as 1.5∆ cos(6ϕ) only minimally affects the phase diagram. We can
therefore conclude that within this range of V0, µ, and α, the hexagonal wires are well
modelled by a cylindrical geometry.

We note that when including deformations in the model, higher mJ sectors become
more relevant for the phase diagram with increasing strength V0. For example is the phase
diagram in Fig. 4.3 for the unperturbed system the same for mmax

J = 3 and mmax
J = 4

whereas the mJ = ±4 sectors have a significant effect for large (µ, α) when deformations
are included.

5.1.1 Effects of Zeeman splitting on the phase diagram

Including the Zeeman energy in the numerical calculations of the topological phase di-
agram causes no substantial changes when the g-factor is of the order 1, neither in the
unperturbed case nor with a d- or g-like deformation. This is demonstrated in Figs. B.10
and B.13 where g = −2. When g is of the order 10 the Zeeman effect has a more pro-
nounced influence on the spectrum. In Fig. 5.4 are shown two phase diagrams which
include the Zeeman energy with a g-factor of −12. In Fig. 5.4a the wire is cylindrical
and in Fig. 5.4b the deformation is 0.4∆ cos(4ϕ). Comparing with Fig. 5.3 we see that
the initial non-trivial domain is considerably smaller than without the Zeeman effect. In
addition, the generation of the non-trivial (5, 3) domain is impeded by the larger g-factor.
For results with a d-like deformation and other values of the potential strength up to
V0 = 0.5∆ see Figs. B.11 and B.14. From this it appears that a g-factor larger than of
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Figure 5.3: Gap contour plots in units of ∆ for the full-shell nanowire system described
by H̃mJ ,pz with an applied ”g-like” symmetry breaking potential V (ϕ) = V0 cos(4ϕ).
System parameters used for the calculations are: Φ̃ = 1

2 , n = 1, R2 = 0.5R0, BZ = 0, and
mmax
J = 4.
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(b) V0 = 0.4∆

Figure 5.4: Gap contour plots in units of ∆ with same system parameters and g-like
potential as in Fig. 5.3, but with a non-zero Zeeman field BZ = gµBB/2 ∝ g = −12.

the order 1 damages the chances of being in the non-trivial phase. This is unlike the
traditional Oreg-Lutchyn scheme [1] where a large Zeeman energy caused by a large g
drives the transition to the non-trivial topological phase |VZ| >

√
µ2

0 + ∆2 as described
in Sec. 4.1. Here we see that an increased Zeeman energy ”pulls up” the black parabola
which was the transition line of the mJ = 0 sector in the unperturbed system with BZ = 0.
Since the other transition lines do not move correspondingly, the non-trivial phase inside
the parabola is diminished. With an even larger Zeeman energy the phase diagram is
completely changed as seen in Fig. B.12 where g = −60. For InAs, which is the material
used for the full-shell wires in [10], a bulk g-factor around −8 to −15 has been measured [7]
and two-facet nanowires have shown g factors ranging from −2 up to −50 [5]. Therefore
we conclude that the Zeeman energy should be included in the description of full-shell
wires in a finite field unless the g factor is of the order 1. However, since we do not know
the specific value of the wires on [10], we will carry out the analysis without the Zeeman
energy.

5.2 Stability of the non-trivial topological phase

App. B contains a series of phase diagrams where the wire radius R2, the flux Φ̃, and
the wire geometry are varied to test the stability of the non-trivial phase. For simplicity
all these plots are made with a Zeeman energy BZ = 0. Here we present the salient
characteristics which demonstrate a phase diagram that is very sensitive to changes in R2

and Φ̃ and appears not to be stabilised by deformations.

Keeping the winding number n = 1 and the flux Φ̃ = 1
2 as in the previous plots

while increasing the radius by 4%, R2 = 0.5R0 → 0.52R0 changes both the position
of the black phase transition lines and the gap contours. In Figs. B.15 and B.16 two
such phase diagrams are made with potentials V0 cos(2ϕ) and V0 cos(4ϕ) respectively.
Comparing with Figs. 4.3, 5.1, and 5.3 it is seen that the transition lines from ”north-
west” to ”south-east” are pulled slightly down towards the origin for both deformations

30



while the |VZ| =
√
µ2
mJ=0 + ∆2 parabola is pulled upwards. This results in a non-trivial

(2.3, 1.3) domain that is smaller in both energy and area in (µ, α) space. For a d-like
deformation the gap is closed at lower values of V0 than with R2 = 0.5R0 while it is
stable to g-like deformations. Regarding the other generated non-trivial domains, the
only significant change is that with increasing V0 cos(2ϕ), the (5, 3) domain gap evolves
faster with R2 = 0.52R0.

With a 4% decrease in radius R2 = 0.5R0 → 0.48R0 the change in phase diagrams is
not surprisingly the exact opposite of what has just been described (see Figs. B.17 and
B.18 for reference).

To test the stability of the non-trivial phase to changes in the magnetic field, the wire
radius is now fixed at R2 = 0.5R0 while Φ̃ is varied. We start by considering Φ̃ = 0, which
implies n = 0 and the Hamiltonian is

H̃mJ (Φ̃ = 0) = (ξpz ,mJ + CmJσz + αpzσy) τz + ∆τx,

where ξpz ,mJ =
(
p2
z/2m

∗ − µmJ

)
and mJ ∈ Z + 1

2 . The eigenenergies are

EmJ = ±
√(

ξpz ,mJ ±
√
C2
mJ

+ α2p2
z

)2

+ ∆2,

and the energies closest to zero are ±∆. Indeed numerical calculations confirm that the
gap is trivial and ∆ throughout the considered part of (µ, α) space (see Fig. B.1). This
is in agreement with the full-shell experiments [10]. Phase diagrams for the cylindrical
wire with different Φ̃ ∈ [0, 2.1] are presented in Figs. B.19 and B.20. Several important
points can be inferred from these results: 1) The plots confirm that phase diagrams are
the same for Φ(R2) and Φ(R2) + 2Φ0. For example, the spectrum evolves identically
when ”scanning” through the first Little-Parks lobe as through the third lobe. This was
expected as H̃mJ ,pz (Eq. (4.9)) only depends on flux through φ = n − Φ̃ (which runs
from 1

2 to −1
2 in every lobe) and through the parity of the lobe which determines if mJ

is half-integer (even parity) or integer (odd parity). 2) We observe that the phase di-
agrams are symmetric around the middle of each lobe i.e. around integer Φ̃. This can
also be inferred from the Hamiltonian since odd powers of φ only appear together with
a factor mJ and we include both ±mJ in the calculations. 3) According to the theory
presented in Sec. 4, Eq. (4.6), there should be no non-trivial gaps in even Little-Parks
lobes, where mJ = Z+1/2, for the unperturbed system. Fig. B.19 confirm this. 4) At the
boundary between Little-Parks lobes where Φ̃ = Z

2 the topology phase diagram changes
dramatically when switching n→ n+ 1 due to the different allowed values of mJ . 5) The
hollow-cylinder model predicts that within the examined parameters, a potential MZM
cannot exist throughout the entire first Little-Parks lobe since only a trivial phase was
observed from Φ̃ = 0.8 to Φ̃ = 1.2. This is not surprising as VZ → 0 at integer flux which
in the Oreg-Lutchyn model [1, 2] corresponds to a trivial topological phase. If the model
should have been able to explain the findings of [10], there should have been a point in
the investigated parameter space that was trivially gapped in zeroth Little-Parks lobe,
non-trivially gapped throughout the entire first lobe17, and again trivially gapped in the
second lobe. This was not found and hence the hollow-cylinder model does not describe

17The closing of the gap near odd half-integer flux quanta is not reproduced since we have not included
pair-breaking effects in our calculations.
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the zero-bias peak measured in [10] as a MZM.

However, it might be that deformations of the wire geometry could stabilise the di-
agrams such that a non-trivial gap would exist throughout the entire first Little-Parks
lobe and possibly also in even lobes. We start examining this in the zeroth Little-Parks
lobe at Φ̃ = 0.4 where mJ = Z + 1/2. With deformations, mJ is no longer a conserved
quantum number and the argument from the symmetrical case imposing no non-trivial
states in even lobes no longer apply. Figs. B.21, B.22, and B.23 present phase diagrams
for a wire deformed by V0 cos(ϕ), V0 cos(2ϕ), and V0 (cos(ϕ) + cos(2ϕ)) respectively. The
pure p-like deformation generates non-trivial gaps in a range of µ and α where, at V0 = 0,
mJ = ±1/2 and mJ = ±3/2 bands cross each other at zero energy. A potential V0 cos(ϕ)
couples mJ ± 1/2 directly and mJ = ±3/2 indirectly through higher order ”scatterings”.
A pure d-like potential on the other hand, couples for example mJ = 1/2 to mJ = 5/2
and mJ = −3/5 which do not cross each other at zero energy and therefore does not open
any non-trivial gaps. A combination of the two types of potentials only reduces the effect
of the p-like deformation. We conclude that a non-trivial phase can be reached in the
zeroth Little-Parks lobe with a p-like deformation.

Changing the flux to be well within the first lobe, Φ̃ = 0.6, and deforming the wire
by cos(2ϕ) or cos(4ϕ), we obtain the phase diagrams in Figs. B.24 and B.25, respectively.
Compared to the half-flux diagrams in Figs. 5.1 and 5.3, the initial non-trivial domain is
smaller and for the d-like deformation it closes at a lower V0. The generated non-trivial
(5, 3) gap, however, is larger at a given V0 with Φ̃ = 0.6 although changing shape and
size in (µ, α) space for both types of deformations. We recall that these effects are similar
to those of increasing the radius at half flux. Hence with V0 > 0.3∆ we can generate a
non-trivial gap that is strong for both Φ̃ = 0.5 and Φ̃ = 0.6 as opposed to the initial gap
which shrinks in the unperturbed case. For the unperturbed system we found that the
phase diagram is symmetric around integer flux. Results for Φ̃ = 1.4 confirms that this
is also true with deformations.

Nevertheless, between Φ̃ = 0.8 and Φ̃ = 1.2 neither a d- nor g-like deformation can
keep the non-trivial domains from collapsing and hence the model predicts that no MZMs
should exist around Φ̃ = 1.

Finally we try to combine all three types of variations and consider a cos(2ϕ)-deformed
wire of radius R2 = 0.52R0 penetrated by a flux Φ̃ = 0.6 (for the phase diagrams see
Fig. B.28). Compared to the case R2 = 0.5R0, Φ̃ = 1

2 in Fig. 5.1, the initial non-trivial
domain and the generated (7, 1.2) domain are smaller in energy and area for all V0, whereas
the gap generated in the (5, 3) domain is larger although with a decreased (µ, α) area.
This is not surprising since the shift in radius and flux separately caused these changes
which are now enhanced. Put differently the effect of increasing the radius at half flux
is the same as at Φ̃ = 0.6 just as a system with radius R2 = 0.52R0 evolves in the same
way from Φ̃ = 1

2 to Φ̃ = 0.6 as a system with R2 = 0.5R0. The same is true with a
deformation cos(4ϕ) as displayed in a similar series of phase diagrams in Fig. B.29 which
also combine the influences of increasing the radius or flux separately.
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5.3 Conclusions on the effects of angular-symmetry-breaking deforma-
tions and on the stability of phase diagrams

In this section we have found that deformations of a full-shell nanowire of the form cos(4ϕ)
can expand the range of µ and α, for which the wire is non-trivial, given that the reduced
flux through the wire is φ ∈ [0.5, 0.2] or φ ∈ [−0.2,−0.5] and the radius R2 ∼ 0.5R0.
Such a deformation could therefore be an advantage since the chemical potential cannot
be controlled by gating and the spin-orbit coupling strength is fixed by the materials.
With a cos(2ϕ)-deformation, it was also possible to generate new non-trivial domains
although these were sensitive to the strength V0 and the original (2.3, 1.3) domain was
closed. Deformation could also open non-trivial gaps in even Little-Parks lobes.

We have also found that the topological phase diagram in (µ, α) space is not symmetric
around α = 0 and that for a negative spin-orbit coupling strength there will be no non-
trivial gap at Φ̃ = 2Z + 1/2. A π-periodic deformation of the wire could however induce
such a gap, in agreement with Lutchyn et al. [11]. Furthermore, the hexagonal geometry
of the wire was found to be well modelled by a cylinder within the examined parameters,
according to our calculations.

The Zeeman splitting energy was seen to have a significant effect on the phase diagram
when the g-factor is larger than of the order 1 and should in that case be included in the
model.

The topological phase diagrams have been found to be very sensitive to changes in
the radius, the flux, and to some types of deformations. Hence according to the hollow-
cylinder model, a MZM in a full-shell nanowire would be very fine-tuned in R2 and (µ, α),
which was not reported in [10]. Furthermore, the model predicts that a non-trivial phase
should not exist throughout the first Little-Parks lobe since VZ → 0 for φ→ 0 and hence
it does not explain the zero-bias peak measured in [10] as a MZM. This is true regardless
of any difference in parameters between the simulations and the real experiment. In [11]
they examined also a full-cylinder model where R1 → 0 (see Fig. 4.1). With that they
were able to find parameters for which the density of states at the end of the wire was
predicted to resemble the differential conductance in [10]. We conclude that the hollow-
cylinder model, even including deformations, does not describe the experimental findings
on full-shell wires as MZMs. But could it be that the model is still valid and provides
another explanation of the measured zero-bias peak in the differential conductance? In the
next section we will investigate this possibility and check if a trivial peak in the spectral
function at zero energy exists in areas of the phase space where the gap is closed. This
will be done for both the unperturbed system and in the case where a symmetry-breaking
potential V0 cos(nϕ) is present.
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6 A search for trivial zero-energy states

As we found in the previous section, the hollow-cylinder model in Eq. (4.9) predicts that
a non-trivial phase should not exist throughout the first Little-Parks lobe. Hence, even
with deformations the model does not interpret the measured zero-bias peak in differential
conductance in [10] as signature of a MZM. Rather than just discarding the hollow-cylinder
model, we try if it could instead explain the experimental findings as trivial effects, for
example due to the symmetry of the spectrum around zero energy. Perhaps this gives a
spectral function that is peaked at zero energy either in the unperturbed case or perhaps
even with a deformation cos(nϕ). That should lead to a zero-bias tunnelling signal since
differential conductance measurements probe the spectral function of the system [27]. A
trivial zero-energy peak in the spectral function could be ”hiding” in the blue areas of the
topology phase diagrams of the previous sections and we will check this possibility here.

6.1 Spectral functions

As mentioned, the eigenstates of the Hamiltonian H̃mJ ,pz , labelled by the quantum num-
bers pz and mJ , are not electrons but fermionic quasiparticle excitations. Examples of
the energy bands were shown in Fig. 4.1. From the spectral functions of the different
quasiparticles one can find the electron spectral function, which we will show in the fol-
lowing.

In Nambu space the spectral function is defined as A(ω) = −2Im
[
GR(ω)

]
where

GR(ω) is the retarded Green’s function matrix with the (i, j) component in the time
domain being

GR
ij(mJpzt,m

′
Jp
′
zt
′) = −iΘ(t− t′)

〈{
cmJ ,pz ;i(t), c

†
m′J ,p

′
z ;j

(t′)
}〉

. (6.1)

Here Θ(t) is the Heaviside step function, {A,B} denotes the anticommutator of the op-
erators A and B, 〈·〉 denotes thermal average, and cmJ ,pz ;i is the ith component of the
Nambu spinor in Eq. (4.10). In order to calculate the retarded Green’s function matrix
we need to relate the Nambu spinor to the eigenspinors of H̃mJ ,pz ,

χmJ ,pz(t) =


γ↑,mJ ,pze

−iEmJ,pz ;1t

γ↓,mJ ,pze
−iEmJ,pz ;2t

γ†↓,−mJ ,−pze
iEmJ,pz ;3t

−γ†↑,−mJ ,−pze
iEmJ,pz ;4t

 .

Here γ should not be confused with a MZM operator. The time dependence is simple as
the Hamiltonian is diagonal in this basis. The eigenspinor χmJ ,pz is related to the electron
operators in momentum space by the Bogoliubov transformation UB(mJ , pz)

c↑,mJ ,pz

c↓,mJ ,pz

c†↓,−mJ ,−pz
−c†↑,−mJ ,−pz

 = UB(mJ , pz)χmJ ,pz .
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Hence Eq. (6.1) can be written as

GR
ij(mJpzt,m

′
Jp
′
zt
′) = −iΘ(t− t′)

∑
l,l′

〈
UB;i,l(mJ , pz)U

∗
B;j,l′(m

′
J , p
′
z){χmJ ,pz ;l(t), χ

†
m′J ,p

′
z ;l′(t

′)}
〉

= −iΘ(t− t′)
∑
l

UB;i,l(mJ , pz)U
∗
B;j,l(mJ , pz)e

−s(l)iEmJ,pz ;l(t−t′).

Here i, j, l, l′ are indices in Nambu basis. In the time exponential, we have introduced the
sign function

s(l) =

{
+1, for l = 1, 2

−1, for l = 3, 4.
(6.2)

Fourier transforming to frequency space we obtain

GRij(mJ , pz, ω) = −i
∫ ∞
−∞
dt Θ(t)ei(ω+iη)t

∑
l

UB;i,l(mJ , pz)U
∗
B;j,l(mJ , pz)e

−s(l)iEmJ,pz ;l(t−t′)

=
∑
l

UB;i,l(mJ , pz)U
∗
B;j,l(mJ , pz)

ω − s(l)EmJ ,pz ;l + iη
,

where we have introduced the positive infinitesimal η = 0+. The (i, j) component of the

spectral function for the state |mJ , pz〉 is Aij(mJ , pz, ω) = −2Im
[
GRij(mJ , pz, ω)

]
and the

sum of all these is the total spectral function:

Aij(ω) = −2
∑
mJ ,pz

Im
[
GRij(mJ , pz, ω)

]
= 2π

∑
pz ,mJ ,l

UB;i,l(mJ , pz)U
∗
B;j,l(mJ , pz)δ(ω − s(l)EmJ ,pz ;l). (6.3)

Here we see that the spectral function is a weighted sum of delta functions in the eigenen-
ergies, which are the spectral functions of the quasiparticles. For later use we mention
that the trace of A(ω) is

Tr[A(ω)] = 2π
∑

pz ,mJ ,l

∑
i

U †B;l,i(mJ , pz)UB;i,l(mJ , pz)δ(ω − s(l)EmJ ,pz ;l)

= 2π
∑

pz ,mJ ,l

Il,lδ(ω − s(l)EmJ ,pz ;l), (6.4)

which is the total spectral function of all the quasiparticle states and only states the basis
invariance of the trace.

The density of states at a given energy ω, D(ω), which is associated with the spectral
function [27], is related to the flatness of the band at that particular energy; the flatter
the band, the more momentum states can ”fit in”. This can be expressed as D(ω) =

dN(ω)/dω ∝
(
∂ω
∂pz

)−1
where N(ω) is the number of states with energy ω. Hence if the

dispersion is flat around some energy ω0 for a range of pz and bounded by steep bands
on both sides, there will be a peak in the density of states at ω0. Indeed we see from
Eq. (6.3) that the spectral function depends on the slope of the bands via

δ(ω − EmJ ,pz :l) =
∑
i

δ(pz − pz,i)

Abs

[(
∂EmJ,pz ;l

∂pz

) ∣∣∣
pz=pz,i

] , (6.5)
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Figure 6.1: Diagonal elements of the spectral function for the system in Eq. (6.6) with
µ1 = −0.3, µ2 = 0.4, and µ3 = 0.8, demonstrating the applicability of the approximation
of a delta function by a Lorentzian with Γ = 0.05.

where pz,i are the roots of ω = EmJ ,pz ;l.

In order to calculate the spectral function in Eq. (6.3) numerically, the delta function
is replaced by a Lorentzian of full width at half maximum Γ:

δ(ω − s(l)EmJ ,pz ;l)→
Γ/2π

(ω − s(l)EmJ ,pz ;l)2 + (Γ/2)2
.

To illustrate the accuracy of the numerical method we compare the exact solution to
the spectral function for a simple set of energy bands with one calculated as a sum of
Lorentzians over a discretised set of the same energies. The Hamiltonian of the example
system has the diagonal form

Hn(k) = ξn(k)σ0τz =

(
k2

2m
− µn

)
σ0τz, n ∈ N, (6.6)

in the basis Ψn,k = (c↑,n,k, c↓,n,k, c
†
↓,n,−k,−c

†
↑,n,−k). The retarded Green’s function is that

of a free particle

G0
ij(n, k, ω) =

δij
ω − ξn;i(k) + iη

,

where ξn;i(k) = s(i)ξn(k) with s(i) defined in Eq. (6.2). For clarity, we just work in units
where m = 1/2 and [ω] = [µn] = [k2] = 1 in this example. With L = 1 being the length
of the system and ω = ξn;i(kl), the total spectral function is

Aij(ω) = −2Im

∑
n,k

G0
ij(n, k, ω)

 = −2
L

2π
Im

[∑
n

∫ ∞
−∞

dk
δij

ω − ξn;i(k) + iη

]

= δij
∑
n

∫ ∞
−∞

dk δ(ω − ξn;i(k)) = δij
∑
n

∫ ∞
−∞

dk
∑
l

δ(k − kl)∣∣∣∂ξn;i(k)
∂k

∣∣∣
kl

= δij
∑
n

∑
l

m

|kl|
= δijm

∑
n

2√
2m (s(i)ω + µn)

= δij
∑
n

Θ(s(i)ω + µn)√
s(i)ω + µn

.
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(a) All four bands in the mJ = 0 sector.
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(b) All four bands for mJ = 1 (blue) and mJ =
−1 (red).

Figure 6.2: Energy bands for quasiparticles in the mJ = 0,±1 sectors. For mJ = 0 two
bands are flattened at E = 0 around pz = 0, and for mJ = ±1 it is only one of the bands.
The plots are for Φ̃ = 0.5, n = 1, R2 = 0.5R0, and (µ = 1.3∆, α = 0). For larger values
of µ the bands remain at zero energy although at non-zero values of pz. Notice that the
mJ = 0 bands coincide with the two bands closest to zero energy from both mJ = ±1,
which is in fact the case for all µ.

The electron components, A11 = A22, and the hole components, A33 = A44, are plotted in
Fig. 6.1 together with the approximated solution which is a normalised sum of Lorentzians
with eigenenergies ξn;i(k) as roots over a discrete set of k’s. The limits on the k-sum are
determined by the considered range of ω. We see from Fig. 6.1 that the spectral function
is well represented by the approximation.

6.2 Spectral functions for α = 0

Considering the energy bands of H̃mJ ,pz , the sectors mJ = 0,±1 seem to ”stick” to zero
energy when Φ̃ = 1/2, R2 = 0.5R0, and α = 0 for all values of µ beyond some critical value
µc (see Fig. 6.2). As explained in Sec. 6.1, flattening of the bands at zero energy leads to
electron and hole spectral functions Aii that are peaked at zero energy with a hight that
depends on the weight UB;i,l(mJ , pz)U

∗
B;i,l(mJ , pz). We examine now the stability of this

trivial peak to see if it could present an alternative explanation of a zero-bias peak in the
differential conductance.

We have chosen to show the symmetric Tr[A(ω)] instead of just the separate compo-
nents. Information about these is lost in the more simple plots of Tr[A(ω)]. However,
since tunnelling into a superconductor,18 which is used to probe the spectral function, is
symmetric in electrons and holes, it still makes sense to consider the trace.

In Fig. 6.3 Tr[A(ω)] is plotted for a nanowire system without spin-orbit coupling,
H̃mJ ,pz(α = 0), for varying radii and flux at two values of µ. When Φ̃ = 0.5 and R2 =
0.5R0, the spectral function has a sharp peak at zero energy for all µ > µc, shown here
in the examples µ = 2.1∆ and µ = 4.1∆ (for other values of µ, see App. B, Figs. C.1 and
C.2). Since the peak is there for all µ > µc one could think that this is a stable peak that
can be used to interpret the measured zero-bias signal as a trivial effect of the spectrum,
given that the spin-orbit coupling is insignificant in the wire. However, when inspecting

18The core at r = R2 is essentially a superconductor due to the proximity effect.
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(c) µ = 2.1∆, R2 = 0.5R0
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(d) µ = 4.1∆, R2 = 0.5R0

Figure 6.3: Tr[A(ω)] for varying radii (Figs. (a) and (b)) and varying flux (Figs. (c)
and (d)). Shared parameters are: α = 0, Γ = 0.05, and mmax

J = 4. No Zeeman energy
or deformation is included. The orange curves in Figs. (a) and (b) and the green curves
in Figs. (c) and (d) do in fact all represent a gapped system even though they do not
come all the way down to Tr [A(ω = 0)] = 0. This discrepancy is due to the finite width
Γ which has been chosen as to ensure smoothness of the spectral functions. Lower values
of Γ show that the functions do represent a gapped system.

the curves in Figs. 6.3a and 6.3b for R2 = 0.52R0 and R2 = 0.48R0 we find that this peak
is at least not stable to minor changes in the radius of just 0.02R0 ∼ 2nm ∼ 4%. With
a slight increase of the radius, the peak turns into a dip whereas a small decrease in the
radius splits the peak into two. Likewise, changing the flux to Φ̃ = 0.51 or Φ̃ = 0.6 while
keeping the radius at R2 = 0.5R0 also turns the peak into a dip as seen from Figs. 6.3c
and 6.3d. Hence the trivial peak at zero energy is unstable when moving into the first
Little-Parks lobe, and so does not provide an explanation for the measurements in [10].

To see if deformations could make the trivial peak stable we use the relation from
Eq. (6.4) which shows that Tr[A(ω)] is equal to the total spectral function for all the
quasiparticle states. If we assume that this also holds with mixing of mJ sectors we will
not have to calculate complicated correlation functions where mJ is not a conserved quan-
tum number. Instead we can obtain Tr [A] by summing delta functions with eigenenergies
of the (4(2mmax

J +1))×(4(2mmax
J +1))-dimensional type of matrices shown in Eq. (5.1) as

poles. By that method we find that the trivial blue peak is not stable to d-like deforma-
tions, cos(2ϕ), as can be seen from Figs. 6.4a and 6.4c. A g-like deformation, cos(4ϕ), do
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(a) Φ̃ = 1/2, V = 0.3∆ cos(2ϕ)τz
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(b) Φ̃ = 1/2, V = 0.3∆ cos(4ϕ)τz

Φ
˜
 0.5

Φ
˜
 0.51

Φ
˜
 0.6

-1.0 -0.5 0.0 0.5 1.0

0.00

0.05

0.10

0.15

0.20

ω (Δ)

T
r[

A
]
(a

.u
.)

(c) R2 = 0.5R0, V (ϕ) = 0.3∆ cos(2ϕ)τz
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(d) R2 = 0.5R0, V (ϕ) = 0.3∆ cos(4ϕ)τz

Figure 6.4: Tr[A(ω)] for varying radii (Figs. (a) and (b)) and varying flux (Figs. (c)
and (d)). Shared parameters are: (µ = 2.1∆, α = 0), Γ = 0.05, BZ = 0, and mmax

J = 4.
As in Fig. 6.3 the orange curves in Figs. (a) and (b) and the green curves in Figs. (c) and
(d) all represent a gapped system. Two different types of deformations are applied. For
other µ and V0 see Figs. C.3, C.4, and C.5 in App. B.

not lead to any significant changes in the spectral function for small potential strengths
V0 � ∆. For V0 ∼ ∆, the blue zero-energy peak for Φ̃ = 1/2 and R2 = 0.5R0 splits up.

In conclusion, the trivial peak is fairly stable under g-like deformations but this cannot
prevent the instability to changes in the radius and flux. The chance that the performed
experiment has exactly hit one such delicate point in parameter space is very small. In ad-
dition, this would also require the spin-orbit coupling parameter in InAs to be negligible.
For these reasons we discard the idea that this trivial peak could explain the measured
zero-bias conductance peak.

The reason for this unstable trivial peak is commensurable values of the reduced flux
φ = 1/2 and the cylinder radius R2 = 0.5R0. We see this by considering H̃mJ=0,pz since
mJ = 0 was one of the three sectors ”sticking” to zero energy. Without any Zeeman effect
or spin-orbit coupling the Hamiltonian reads

H̃mJ=0,pz(α = BZ = 0) =

(
p2
z

2m∗
− µ+

1 + φ2

8m∗R2
2

)
︸ ︷︷ ︸

ξpz

τz +
φ

4m∗R2
2︸ ︷︷ ︸

V

σz + ∆τx,
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Figure 6.5: The effect of the flux-winding energy, V , on the density of states at p∗z.
Orange (blue) curves correspond to spin up (down). The two energy levels with ∆ − V
and −∆ + V approach zero as V is increased and when ∆ = V , there is a peak in the
density of states at zero energy.

and the four eigenenergies are Eσz(pz) = σzV ±
√
ξ2
pz + ∆2. When µ ≥ µc = 1+φ2

8m∗R2
2

there will always be a p∗z for which ξp∗z = 0 and the energy is Eσz(p∗z) = σzV ± ∆.
The winding energy, V , diminishes the gap, and when |V | ≥ ∆ the gap is closed. For
φ = 1/2 and R2 = 0.5R0 = 0.5

√
2m∗∆, V = 1

2m∗R2
0

= ∆ and the gap is just closed

at pz = p∗z which means that there is a signal in the density of states at zero energy

(see Fig. 6.5). For R2 = xR0 < 0.5R0, |V | = |φ|
4m∗x2R2

0
> ∆ at the edges of the Little-

Parks lobes where |φ| = 1
2 , and the gap is closed from the edges until a flux where

|n− Φ̃| = |φ| < 4m∗x2R2
0∆ = 2x2. The zero-energy peak in the density of states is then

at φ = ±2x2 and in-between the spectrum is trivially gapped. When R2 > 0.5R0 there is
a trivial gap in the mJ = 0 sector throughout the entire first lobe.

We have now seen why the trivial zero-energy peak in Tr[A] for mJ = 0 is not stable
to changes in flux or radius, which in this case are equivalent. From Fig. 6.2 it is seen
that the energy bands sticking to zero are the same for mJ = ±1 and mJ = 0. Hence
the explanation for the ”adhesive” behaviour in mJ = ±1 should be related to the one
for mJ = 0. For different parameter values, the feature might also appear in other mJ

sectors, although this has not been observed.

Instead of examining this part of (µ, α) space, where only an unstable trivial peak was
found, we will now search for trivial peaks with a finite spin-orbit coupling.

6.3 Spectral functions for finite spin-orbit coupling

We now investigate whether there are domains in (µ, α) space with a closed gap that
contain a stable and trivial zero-energy peak in the spectral function. The search for this
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has here been restricted to Φ̃ = 0.5, Φ̃ = 0.6 and R2 = 0.5R0, R2 = 0.52R0. The gap
contour plots from Secs. 4.1 and 5.1 have been used to choose points in (µ, α) space where
such peaks could be concealed. The points are listed and plotted in App. C, Fig. C.6.
To examine if there is a zero-energy peak in the density of states, the spectral function
has been calculated for each of the points by summing weighted Lorentzian functions as
explained in Sec. 6.1. As can be seen from Figs. C.7 to C.13, no zero-energy peak in the
spectral function of the unperturbed system has been found for finite spin-orbit coupling
in any combination of R2 = 0.5R0, R2 = 0.52R0 and Φ̃ = 0.5, Φ̃ = 0.6.

To see if they induce zero-energy peaks, we have included d- and g-like deformations,
V0 cos(2ϕ) and V0 cos(4ϕ), to both commensurable values of radius and flux (Φ̃ = 0.5, R2 =
0.5R0) and non-commensurable values (Φ̃ = 0.5, R2 = 0.52R0), (Φ̃ = 0.6, R2 = 0.5R0).
As we saw in Sec. 5, such deformations can close the gap in domains of the phase diagram
that were initially gapped. We also examine if a zero energy peak in the density of states
follows with this closure. That is why points in Fig. C.6 that are in a gapped domain in
the unperturbed case have also been included in the list. The two values of the radius
are to check if the peak is stable to changes in this, as was seen not to be the case with
α = 0. Like before, these spectral functions with deformations are made by summing
delta functions as sketched in Eq. (6.4).

In Figs. C.14 to C.18 in App. C, where a d- or g-like deformation is applied, we
observe trivial zero-energy peaks in the spectral functions for several of the points in
Fig. C.6. These are, however, not stable to a small change in the cylinder radius R2 and
are also very sensitive to changes in the potential strength and the flux. Fig. 6.6 shows
some examples of spectral functions with a peak at ω = 0 that vanishes when changing
R2, Φ̃, or V0. For instance, with a deformation 0.31∆ cos(2ϕ) the spectral function in
point (µ = 0.317∆, α = 2.81α0) has a zero-energy peak for non-commensurable values of
Φ̃ = 1/2, R2 = 0.52R0, but two peaks at finite energy for the commensurable values Φ̃ =
1/2, R2 = 0.5R0 (see Fig. 6.6a). A small change of the potential strength to V0 = 0.394∆
merges the two finite-energy peaks in the spectral function for Φ̃ = 1/2, R2 = 0.5R0 into
one zero-energy peak, but not one that lasts when moving into the first Little-Parks lobe
(see Fig. 6.6c).

All of the trivial zero-energy peaks in Figs. C.14 to C.18 are just results of phase
transition lines moving across the selected point in (µ, α) space as the deformation is
increased, which we saw in Sec. 5. Since the energy bands are symmetric and smooth
around pz = 0, a gap closing at pz = 0 always involves a flat band, meaning a zero-energy
signal in the density of states as argued in Eq. (6.5). This is why none of the observed
peaks are stable to changes in deformation potential, radius, or flux. As with α = 0, this
excludes such a trivial peak as a plausible explanation for the experimental results [10],
also for finite spin-orbit coupling.

We make a final remark on this examination: In Figs. 5.3 and B.4, where a g-like
deformation is included, the gapped (2.3, 1.3) domain is stable under variation of V0,
which is an advantage for expanding the total non-trivial area in (µ, α) space. However,
the spectral function in (µ = 2.3∆, α = 1.3α0) with V (ϕ) = V0 cos(4ϕ) shows that this
only applies for R2 = 0.5R0 and not for R2 = 0.52R0 (see Figs. C.14e to C.14h). The
initial gap, which is conserved under a g-like deformation for commensurable values of R2

and Φ̃, is in fact shrinking when the cylinder radius is increased by only 4%.
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(c) (µ = 0.317∆, α = 2.81α0), R2 = 0.5R0
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(d) (µ = 5.16∆, α = 3.38α0), R2 = 0.5R0

Figure 6.6: Tr[A(ω)] in different points of (µ, α) space for a deformed wire. In (a) the
resulting potential is V (ϕ) = 0.31∆ cos(2ϕ)τz. (b) shows the spectral function with a
potential V (ϕ) = 0.84∆ cos(2ϕ)τz. For commensurable parameter values the spectrum is
gapped with ≈ 0.3∆, whereas the spectral function for R2 = 0.52R0 has a sharp peak at
ω = 0. (c) shows the spectral function at the same point as in (a) but with a potential
V (ϕ) = 0.394∆ cos(2ϕ)τz and fixed radius. In (d) the potential is V (ϕ) = 0.3∆ cos(4ϕ)τz.

6.4 Conclusions on the search for trivial peaks

To conclude, no stable trivial peaks that could explain the measured zero-bias signal in
the differential conductance have been found. For some values of (µ, α), the spectral
function has shown a peak at zero energy, but in all the cases this has been unstable to
variations in the radius, flux, and deformation strength. Without spin-orbit coupling, the
trivial zero-energy peak was an effect of commensurable values of the wire radius and the
reduced flux. With finite spin-orbit coupling, zero-energy peaks were only observed on
phase transition lines where the gap closes at pz = 0 with flat bands. Hence this type of
trivial zero-energy state is an unlikely explanation of the observed zero-bias conductance
peak. We continue the investigation of the full-shell nanowire by considering next what
effect impurities have on the spectrum.
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7 Impurities in full-shell nanowires

In the nanowire fabrication process, defects could occur for example during the growth
of the semiconducting core or in the corners of the hexagonal where the crystal structure
of the superconductor layers on the different facets is broken. The disorder introduced
by impurities becomes relevant at temperatures below a few Kelvin where most of the
phonon degrees of freedom are frozen out [27]. In [11] they found that disorder in the
superconducting shell could expand the non-trivial phase by coupling different mJ sectors
like we tried in Sec. 5. Furthermore, impurities would lower the coherence length in the
superconductor and could thereby bring the system out of the destructive regime. How-
ever, in [11] they used the full-cylinder model for their numerical calculations whereas
here, we will continue to work with the hollow-cylinder model. In this section we will cal-
culate the impact of impurities in the core on the spectral function by the use of Green’s
functions and the first-order Born approximation. We begin with a brief introduction
to the theory of impurity scattering, based on Chapter 12 in Bruus and Flensberg [27],
which will then be applied to the full-shell nanowire model.

We work with a model in which a number, Nimp, of identical impurities are randomly
distributed in the material. We require that the density of impurities, nimp = Nimp/V, is
small compared to the density of conduction electrons, nel = Nel/V, i.e. nimp/nel � 1,
where V is the volume of the system. The electron-impurity scattering is elastic and the
potential from an impurity at position Pj is on the form u(r−Pj). It is assumed that this
potential is zero outside some screening length from the impurity and has a characteristic
finite strength, ũ, within the screening region. We require that ũ is small compared to a
characteristic energy E0 of the system, ũ/E0 � 1 [27]. A process with n scattering events
of an electron on impurities can be expressed in the diagram

G(n)
k′k =

n

F Pjn

. . .
2

F Pj2

1

F Pj1

kn−1k′

k′ − kn−1

kk1k2

k2 − k1 k1 − k (7.1)

Here a full line
ki

is the propagator G0
ki

= (ikn − ξki
)−1 of a free electron

with momentum ki and energy ξki
, and the dashed line with a star i F Pji

ki − ki−1

denotes the ith scattering event on an impurity positioned at Pji , in which momentum
qi = ki−ki−1 is transferred. Notice that momentum is conserved at every vertex. ji is an
impurity index ∈ {1, 2, . . . , Nimp}. The Matsubara Green’s function in momentum space

Gk′k is the full electron propagator and is the sum of all order contributions G(n)
k′k, n =

{0, 1, . . .}. For simplicity, the frequency argument is not written explicitly, but analytic
continuation ikn → ω + iη will be performed at the end to obtain the retarded Green’s
function GR(ω). Furthermore, we do not include spin in this introduction. We can also
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write Eq. (7.1) as

G(n)
k′k =

Nimp∑
j1...jn

1

Vn−1

∑
k1...kn−1

e−i[(k−kn−1)·Pjn+...+(k1−k)·Pj1 ]

× G0
k′uk′−kn−1G0

kn−1
. . .G0

k2
uk2−k1G0

k1
uk1−kG0

k, (7.2)

where uq is the Fourier transform of the real-space impurity potential:

uq =

∫
V
dr u(r − Pj)e−iq·r.

In order to calculate the full electron propagator we need to simplify the problem which we
do by averaging over all the random, uncorrelated positions of the impurities - a process
known as self-averaging.

〈Gk′k〉imp ≡ δkk′Gk = δkk′
1

V

∫
dP1

1

V

∫
dP2 . . .

1

V

∫
dPNimp Gk, (7.3)

Here overline is shorthand for impurity-averaged. Upon averaging over impurity positions,
the system becomes homogeneous and translational invariance is restored. Therefore the
impurity-averaged Green’s function Gk is diagonal in k. The nth order contribution to the

full propagator, G(n)
k′k, may involve any number of impurities p from 1 to n. A process with

p impurities is suppressed by a factor (nimp/nel)
p and thus the importance of the different

processes depends on how few impurities they involve, the one with all n scatterings on
just a single impurity being the most important. Before performing the self-average of

G(n)
k′k we therefore rearrange the sum over impurity positions in Eq. (7.2) according to the

number of impurities involved:

Nimp∑
j1...jn

e−i
∑n

l=1 ql·Pjl =

Nimp∑
p1

e
−i(

∑
ql1
∈Q ql1 )·Pp1

+
∑

Q1∪Q2=Q

Nimp∑
p1,p2

e
−i(

∑
ql1
∈Q1

ql1 )·Pp1e
−i(

∑
ql2
∈Q2

ql2 )·Pp2

+
∑

Q1∪Q2∪Q3=Q

Nimp∑
p1,p2,p3

e
−i(

∑
ql1
∈Q1

ql1 )·Pp1e
−i(

∑
ql2
∈Q2

ql2 )·Pp2e
−i(

∑
ql3
∈Q3

ql3 )·Pp3

+ . . . (7.4)

The first term on the right hand side is the most important process where an electron
scatters n times on the same impurity (which may be any of the Nimp existing ones) with
scattering momenta Q = {q1, q2, . . . , qn}. In the second term, two impurities are involved.
All the scattering momenta in the subset Q1 are associated with scattering on the impurity
in Pp1 while the momenta in Q2 are related to the impurity in Pp2 . Q1 ∪Q2 = Q denotes
all possible unions of the two non-empty disjoint subsets that together span Q. The same
argumentation applies for the higher order terms up to p = n. We have ignored here
an error of the order p/Nimp originating from not restricting the position sums to ensure
Pp1 6= Pp2 6= Pp3 etc. Instead we just establish them to be different since p/Nimp � 1 for
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the important terms. This enables us to perform the position average for the exponentials
separately:

1

V

∫
dPpi e

−i(
∑

qli
∈Qi

qli )·Ppi = δ0,
∑

qli
∈Qi

qli
.

This expresses that the sum of all scattering momenta on the same impurity must add to
zero. Thus the self-average of Eq. (7.4) is〈Nimp∑

j1...jn

e−i
∑n

l=1 ql·Pjl

〉
imp

=
n∑
p=1

 ∑
Q1∪...∪Qp=Q

p∏
i=1

(
Nimpδ0,

∑
qli
∈Qi

qli

) .
The factor Nimp is from the pi sum. Combining this with Eq. (7.2), we can write the nth

order contribution to the impurity-averaged Green’s function as

G(n)
k =

1

Vn−1

∑
k1...kn−1

n∑
p=1

∑
Q1∪...∪Qp=Q

p∏
i=1

(
Nimpδ0,

∑
qli
∈Qi

qli

)
× G0

kuk−kn−1G0
kn−1

. . .G0
k2
uk2−k1G0

k1
uk1−kG0

k. (7.5)

The p constraints from the delta functions reduce the number of independent momentum
vectors in the k sum to (n− 1)− p. The p left-over factors of V are combined with the p
factors of Nimp in Nimp/V = nimp.

The diagrammatic expansion of the impurity-averaged Green’s function, with dia-
grams up to third order in number of scattering events written explicitly, is

Gk =

k

+

9

kk

q +

9

kk1k

q−q
+

9 9

kk1k

q1 q2

+

9

+

99

+

99

+

9

9
+

999

+ . . . (7.6)

Here we have introduced the symbol 9 for a position-averaged impurity that conserves
the total momentum transfer, corresponding to a factor nimpδ0,

∑
q in Eq. (7.5). q

denotes a scattering event with momentum transfer q and amplitude uq. For clarity,
we have not written momentum vectors on the third order terms. Within each order,
the diagrams are arranged after the number of impurities involved. Since ũ/E0 � 1,
the importance of different diagrams is also controlled by how few scattering processes
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they involve, e.g. the third diagram in Eq. (7.6) is larger than the fifth diagram. The
impurity-averaged Green’s function can also be expressed in terms of the self-energy19 by
the Dyson equation:

Gk = G0
k + G0

kΣkGk =
1

(G0
k)−1 − Σk

. (7.7)

The lowest-order approximation to the self-energy is in the second term in Eq. (7.6) which
contains only one position-averaged impurity and one scattering event:

ΣLOA
k ≡

9

q = nimpuq=0.

Inserting this into Eq. (7.7) only gives a constant shift of all the energies which can just
be absorbed in the definition of the chemical potential:

GR,LOA
k =

1

ω + iη − ξk + nimpu0
.

The simplest non-trivial diagram in the self-energy is the first-order Born approximation
to Σk which is valid in the low-density and small-potential strength limit:

Σ1BA
k =

9

k′

k′ − kk − k′
=
nimp

V
∑
k′

uk−k′G0
k′uk′−k =

nimp

V
∑
k′

|uk−k′ |2G0
k′ ,

where it has been employed that u−k = u∗k since the scattering potential in position space
is real. If Σ1BA

k has an imaginary part, the poles of the corresponding G1BA
k are in the

complex plane and the propagator acquires a finite lifetime. In diagrammatic form it
reads

G1BA
k =

1

(G0
k)−1 − Σ1BA

k

= +

9

+

99

+

999

+ . . .

The corresponding spectral function is A1BA
k = −2Im

[
GR,1BA
k (ω)

]
.

19i.e. the sum of all irreducible diagrams in the full Green’s function without the two external legs.
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The presented theory of impurity scattering will now be applied to the full-shell
nanowire system described by the Hamiltonian H̃mJ ,pz (Eq. (4.9)). In the clean sys-
tem, the conserved momentum quantum numbers are pz and mJ and thus we translate
the Dyson equation (7.7) to be in these variables instead:

Gm,p = G0
m,p + G0

m,pΣm,pGm,p =
1

(G0
m,p)

−1 − Σm,p
. (7.8)

Here mJ = m and pz = p for notational simplicity. Equations for the electron propagator
previously written in k are also translated directly to be in m and p with the same
conservation rules. Note for example that the impurity-averaged propagator in Eq. (7.8)
is diagonal in m and p. However, as the nanowire problem is formulated in Nambu basis,
we want G0

m,p not only to represent the normal spin-less free electron propagator but in
fact to be the 4× 4 matrix

G0
m,p(ω) =

1

ω + iη − H̃m,p

.

Similarly, we will also interpret Gm,p and Σm,p as 4-dimensional matrices. Again we
assume that nimp/nel � 1 and ũ/E0 � 1, where E0 is the induced pairing potential
in the semiconducting core ∆. The considered type of scattering is spin- and particle-
conserving such that the amplitude is uqτz with time reversal for holes. Also here, the
lowest-order approximation to the self-energy is absorbed in the definition of the chemical
potential:

GR,LOA
m,p =

1

ω + iη − H̃m,p + nimpu0τz
.

The first-order Born approximation to the self-energy is

Σ1BA
m,p =

nimp

A
∑
m′,p′

um−m′,p−p′τzG0
m′,p′um′−m,p′−pτz,

where A is the surface area of the core cylinder. As an example, we write the (11) and
(22) components of Σ1BA

m,p :

9

m′,p′

m′ −m,p′ − pm−m′,p− p′

We make the simplification that the scattering amplitude is constant, um−m′,p−p′ = v0,
and thus independent of the incoming and outgoing m, p. That way, the first-order Born
approximation to the self-energy becomes

ΣR,1BA(ω) =
v2

0nimp

A
∑
m′,p′

τz
1

ω + iη − H̃m′,p′
τz.

The inverse of F = ω + iη − H̃m′,p′ is calculated by the prescription [30]

F−1 =
CT

|F |
, Cij = (−1)i+jMij , M23 =

∣∣∣∣∣∣
F11 F12 F14

F31 F32 F34

F41 F42 F44

∣∣∣∣∣∣ . (7.9)
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Figure 7.1: Tr
[
A1BA

]
(ω) for different effective strengths of the impurity scattering

potential ṽ0 = v2
0nimp/A.

Here T denotes transpose and C is the matrix containing the cofactors of the elements of
F , given by the minors Mij . The minor Mij is the determinant of F with the ith row and
jth column removed. When calculating the determinant |F | one finds that this is even in
p. The same is true for the diagonal elements of C as well as C24 = C42 and C13 = C31.
The rest of the C elements are odd functions of p and thus so are the corresponding
elements of F−1. Integrating over all p’s these therefore evaluate to zero. See App. D for
written-out expressions of the elements. This means that ΣR,1BA(ω) is on the form

ΣR,1BA(ω) =
v2

0nimp

A


G0

11(ω) 0 −G0
13(ω) 0

0 G0
22(ω) 0 −G0

24(ω)
−G0

13(ω) 0 G0
33(ω) 0

0 −G0
24(ω) 0 G0

44(ω)

 ,

where

G0
ij(ω) =

∑
m′,p′

(
1

ω + iη − H̃m′,p′

)
ij

.

In order to find A1BA(ω) = −2Im
[
GR,1BA(ω)

]
we need to calculate the matrix20

GR,1BA
m,p (ω) =

1

ω − H̃m,p − ΣR,1BA(ω)
. (7.10)

As previously mentioned, a finite imaginary part of the self-energy will lead to a broad-
ening of the peaks in the spectral function, reflecting a finite lifetime of the propagator.
The determinant of F̃ = ω − H̃m,p − ΣR,1BA(ω) is even in p as the expression for it in

Eq. (D.1) shows. Eight of the elements in GR,1BA
m,p (ω) are odd functions of p and therefore

integrate to zero. Hence, GR,1BA(ω) is on the same form as ΣR,1BA(ω) with only the diag-
onal elements, GR,1BA

13 (ω) = GR,1BA
31 (ω), and GR,1BA

24 (ω) = GR,1BA
42 (ω) different from zero.

The elements of ΣR,1BA(ω) and GR,1BA(ω) are all found by numerical integration over p
and summation over m until convergence of the spectral function. For the calculation of
G0
ij(ω) we used the broadening η = 0.05∆.

In App. E, Tr
[
A1BA

]
(ω) is plotted for various points in (µ, α) space for different

strengths of the scattering potential ṽ0 = v2
0nimp/A and in Fig. 7.1 we show two of such

20It is not necessary to have an η here when the self-energy has a finite imaginary part.
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spectral function plots. For the first-order Born approximation to be valid we required
that nimp/nel � 1 and ũ/∆� 1. To understand what restrictions this imposes on ṽ0 we
consider the related condition for a moderately clean superconductor ∆τr � 1 where the
relaxation time τr is the inverse of the self-energy. A crude approximation of G0(ω) ∼ ∆−1

yields τr ≈ ∆/ṽ0 meaning that we must have ṽ0 � ∆2 for the higher order diagrams to
be negligible. From Figs. 7.1, E.1, and E.2 we see that only when breaking this condition
is there a change in the spectral function. This tells us that if the semiconductor is
moderately clean, impurities will not be important within the hollow-cylinder model.

7.1 Conclusions on impurities

Within the first-order Born approximation we have found that impurities in the semicon-
ductor do not have a significant effect on the spectrum in the hollow-cylinder model. Only
when misusing the approximation did we see a change in the spectral function and for
this reason neither a disordered core can provide a plausible explanation for a zero-bias
peak in the differential conductance.

From the findings on impurities in [11], it appears that one should not perform the
self-average as in Eq. (7.3) but rather numerically simulate a discrete nanowire system
with randomly positioned impurities in the core. Alternatively, one could also break
the angular symmetry with an impurity scattering potential um−m′,p−p′ that couples the
different mJ sectors.
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8 Finite full-shell nanowire

Up until now we have assumed the nanowire to be of infinite length such that the spatial
solutions along the wire would simply be free electron waves. With this, we were able
to examine the bulk properties of the full-shell nanowire. However, the MZMs, which we
hope exist in the system, are located on the boundaries of topological superconductors
and are therefore properties of finite systems. For this reason we will now modify the
description by assigning a length L to the wire. This will allow us to calculate the local
quasiparticle density of states as well as the differential conductance of the wire core and
we will compare our findings with the experimental results from Ref. [10].

With a finite length L of the wire, we have to discretise the BdG Hamiltonian from
Eq. (4.3) along z. This we do by dividing it into N slices along the z direction, each of
them labelled by an index j = {1, 2, . . . , N}. For a discrete version of the operator pz we
use the Leibniz notation symmetrised:

∂ψ(z)

∂z

∣∣∣
z=zj

= lim
δz→0

(
1

2

ψ(zj+1)− ψ(zj)

δz
+

1

2

ψ(zj)− ψ(zj−1)

δz

)
= lim

δz→0

ψ(zj+1)− ψ(zj−1)

2δz
,

where δz = zj+1− zj = zj − zj−1 = L/N . To find the discrete form of the p2
z operator we

start by a Taylor expansion of ψ(z) around zj .

ψ(z) ≈ ψ(zj) +
∂ψ(z)

∂z

∣∣∣
z=zj

(z − zj) +
1

2

∂2ψ(z)

∂z2

∣∣∣
z=zj

(z − zj)2 =⇒

∂2ψ(z)

∂z2

∣∣∣
zj

=
2(ψ(z)− ψ(zj))

(z − zj)2
− 2

(z − zj)
∂ψ(z)

∂z

∣∣∣
zj

=
1

2

(
2(ψ(zj+1)− ψ(zj))

(zj+1 − zj)2
− 1

(zj+1 − zj)
ψ(zj+1)− ψ(zj−1)

δz

)
+

1

2

(
2(ψ(zj−1)− ψ(zj))

(zj−1 − zj)2
− 1

(zj−1 − zj)
ψ(zj+1)− ψ(zj−1)

δz

)
=
ψ(zj+1) + ψ(zj−1)− 2ψ(zj)

(δz)2
.

The discretised Hamiltonian is now a 4N × 4N dimensional matrix in both Nambu space
and zj space where we take the slice index to be the outer structure, i.e. the basis is(
ψ↑(z1), ψ↓(z1), ψ†↓(z1),−ψ†↑(z1), ψ↑(z2), ψ↓(z2), . . .

)
. The kinetic term ∼ p2

z will thus have

both diagonal and next to-diagonal terms in the zj structure as in the usual tight-binding
model, whereas the spin-orbit term will only be off-diagonal and couple neighbouring
sites. A hopping constant is introduced, t = 1/2m∗(δz)2, and with i, j labelling z site the
Hamiltonian is

HBdG
ij = δij

[(
p2
r + (pϕ + eAτz)

2

2m∗
− µ− α(pϕ + eAτz)σz + 2t

)
τz + ∆ (cos(nϕ)τx + sin(nϕ)τy)

]
+ δi,j±1

[(
−t∓ i

2δz
ασϕ

)
τz

]
.

Since [cos(nϕ)τx + sin(nϕ)τy,−i∂ϕ + nτz/2] = [σϕ,−i∂ϕ + σz/2] = 0, the discretised
Hamiltonian still commutes with the Jz operator from Eq. (4.4):

[
HBdG, Jz ⊗ IN

]
, where
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(a) (µ = 2.3∆, α = 1.3α0). Only the mJ =
0 sector (orange) has a significant density of
states this close to zero energy.

(b) (µ = 2.9∆, α = 1.8α0). Apart from the
mJ = 0 sector (orange), mJ = 2 (green) is also
visible.

Figure 8.1: Local quasiparticle density of states for different values of (µ, α) with Φ̃ = 1
2 ,

n = 1, R2 = 0.5R0, and BZ = 0. Only mJ ≥ 0 sectors are included for clarity since the
negative sectors mirror the behaviour. However, this close to zero energy only mJ = 0
and mJ = ±2 have non-zero local density of states.

IN is the N -dimensional identity matrix. A natural next step is therefore to transform
with the unitary matrix U that was given in Eq. (4.7). The result is[

(U ⊗ IN )HBdG(U † ⊗ IN )
]
ij

=

δij

[(
p2
r

2m∗
+

(
mJ − 1

2σz −
n
2 τz + erAτz

)2
2m∗r2

− µ− α

r

(
mJ −

1

2
σz −

n

2
τz + erAτz

)
σz + 2t

)
τz + ∆τx

]

+ δi,j±1

[
−t∓ iα

2δz
σy

]
τz.

Assuming, as in Sec. 4.1, that the semiconducting core is effectively a hollow cylinder we
obtain the discretised version of H̃mJ from Eq. (4.9):

H̃mJ
ij = δij

[
(2t−µmJ )τz+VZσz+AmJ +CmJσzτz+∆τx

]
−δi,j±1

[(
t± iα

2δz
σy

)
τz

]
. (8.1)

From this it is seen that the different mJ sectors are still not coupled. The eigenenergies
in a tight binding model, like the one made for the p2

z term, take values between −2t and
+2t when including both electron-like and hole-like excitations. From [10] we take the
length of the nanowire to be L = 1µm and divide it into N = 200 slices along the z direc-
tion, such that the hopping energy becomes t = ~2N2/2m∗L2 ≈ 300∆. This means the
kinetic term in the discretised H̃mJ strongly dominates the energy since the other terms
are only of order ∼ ∆, and the spectrum depends weakly on the mJ quantum number
except at small energies. The approximation of a tight-binding model for the p2

z term is
therefore valid.

Finding the eigenstates and eigenenergies of the Hamiltonian in Eq. (8.1) numerically,
we can calculate the local quasiparticle density of states ρmJ (ω, z) =

∑4N
i=1 |Ψi

mJ
(z)|2δ(ω−

EimJ
), where the sum runs over the 4N eigenstates. Fig. 8.1 shows two examples of the
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energy peak, the gap is around 0.5∆− 0.6∆ and de-
fined by the mJ = ±1 sector as in the bulk calcula-
tions where no zero-energy state was registered.

Figure 8.2: Local quasiparticle density of states at z = 0 at two different points in (µ, α)
space for Φ̃ = 1/2, n = 1, R2 = 0.5R0, and BZ = 0. We do not pay attention to the units
of ρ but only the relative hight and position of the peaks.

local density of states with a Lorentzian of width 0.01∆ replacing the delta function as
explained in Sec. 6.1. In both plots we observe peaks in the density of states at the two
ends of the wire at energies±δω, |δω| � ∆. We know that in a finite 1-dimensional system,
MZMs located at each end will have a weak interaction it̃ between them which decays
exponentially with the length of the system [8, 9]. This overlap of the wave functions
means that the two MZMs are hybridised and both acquire a small finite energy in the
sense that they become superpositions of ±t̃ energy states. We see this splitting in energy
in both of the end-states and hence the two plots of the local quasiparticle density of
states in the full-shell nanowire are consistent with the Majorana picture. Furthermore,
the end-states are in the mJ = 0 sector which was also the one we predicted would allow
MZMs, back in Sec. 4. The plot in Fig. 8.1a is for parameter values where the bulk was
found to be in the non-trivial phase (see e.g. the phase diagrams in Figs. 4.2 and 4.3)
and the finding of a zero-energy state in the calculations for a finite nanowire supports
the theory of MZMs in the system. The parameters for which Fig. 8.1b is made was
found to describe a bulk system forced into the trivial phase by the gap closing of the

mJ = ±2 bands across the |VZ| =
√
µ2
mJ=0 + ∆2 parabola. We observe also here that the

mJ = 2 sector has states below 0.1∆ while the isolated mJ = 0 sector still shows a local
density of states resemblant of a MZM. The two small tops inside the wire demonstrate
an oscillatory behaviour of the MZM wave function which is in general controlled by the
chemical potential and the Zeeman splitting [31].

An interesting line-cut of the local quasiparticle density of states is that at one of
the ends, for example ρmJ (ω, z = 0), which, if the system possesses MZMs, should have
peaks at ±δω inside a well-defined gap. In Fig. 8.2 the end-density of states in sector
mJ = {−4, . . . , 4} is plotted for two different points in (µ, α) space which were both
gapped in the infinite-wire calculations (Fig. 4.3), one of them trivially (Fig. 8.2a) and
the other one with a non-trivial gap (Fig. 8.2b). The plot in Fig. 8.2a shows that the
bulk and finite-wire calculations agree on the gap size Egap ∈ [0.9∆, 1.0∆] in this point
(compare with Fig. 4.3), and as expected there is no state at zero energy. Similarly, the
gap size in the non-trivial point (µ = 2.3∆, α = 1.3α0) is between 0.5∆ and 0.6∆ in both
cases except for a zero-energy state in the mJ = 0 sector for the finite wire (compare

52



R

L

Figure 8.3: Setup for measuring the differential conductance in the nanowire core. The
semiconductor is coloured green, the superconducting shell is blue, and gold is used for
the metallic leads.

Figs. 8.2b and 4.3). That the zero-energy state is only observed in the finite wire and not
in the bulk calculations suggests that it might be a MZM.

Now we turn to calculate instead what one can actually measure, namely the dif-
ferential conductance of the nanowire. This can be found through electron tunnelling
spectroscopy at the end of the wire [24] in a setup like the one sketched in Fig. 8.3, which
is was also used in the experiment [10]. Since we are interested in states in the semicon-
ductor it is assumed that one of the normal leads is coupled only to the core. This requires
etching off the Al shell in one off the ends. What are then the possible scattering processes
for an incoming electron from the left lead? Effectively the lead and the rim of the core
constitute a normal-superconductor interface which was described by Blonder, Tinkham,
and Klapwijk in 1982 [25]. In their article they used a generalised semiconductor scheme
to describe the superconductor and found that the types of scattering processes in this
model for an electron incident on the interface from the normal side with energy E were
the following: A(E): Andreev reflection as a hole on the other side of the Fermi surface
with transfer of a Cooper pair carrying charge −2e across the interface. B(E): Ordinary
reflection. C(E): Transmission with a wave vector on the same side of the Fermi surface.
D(E): Transmission with crossing through the Fermi surface. Using the Bogoliubov equa-
tions to match wave functions at the normal-superconductor boundary they could express
the reflection and transmission amplitudes by the energy E, the superconducting order
parameter ∆, and the strength of a repulsive potential modelling the interface. Here we
will take a slightly different approach by using the scattering matrix formalism instead.
In Refs. [24, 27, 32] this formalism is presented using the Landauer-Büttiker approach in
order to find the current across a normal-superconductor interface. We will here give a
brief summary of the method ending with an expression for the differential conductance
of the wire in terms of the reflection coefficients, relating amplitudes of incoming and
outgoing electron waves on the boundary.

The nanowire is considered to be a mesoscopic sample connected to two macroscopic
electron reservoirs (metal contacts) through leads which we denote left (L) and right (R),
see Fig. 8.3. In the mesoscopic regime the electron coherence length is larger than the
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length of the wire. The leads are assumed to have a constant, straight cross-section Ω and
an impenetrable boundary δΩ. The contact between reservoir and lead is assumed to be
reflectionless such that all electrons incident on the reservoir will be fully absorbed and
thermalised before being re-emitted into the lead. This way, the occupation of electrons
in the lead is given by the Fermi-Dirac distribution function of the connected reservoir.
Using the coordinate system (x, y, z) = (r⊥, z), where z is the coordinate along the wire
and leads, the Hamiltonians and eigenstates of the leads β = L,R are [24]:

Hβ = −
(
∂2
⊥

2m
+
∂2
z

2m

)
τz, for r⊥ ∈ Ω, else 0,

φ±βζnE(r⊥, z) =
1√
kn(E)

vζχn(r⊥)e±ikn(E)z, ζ = {e,h},

−∂2
⊥

2m
χn(r⊥) = εnχn(r⊥), n = {1, 2, . . . , Ñ},

χn(r⊥) = 0, for r⊥ ∈ δΩ,

E = s(ζ)

(
k2
n

2m
+ εn

)
. (8.2)

The Hamiltonian of lead β is expressed in terms of the third Pauli matrix in electron-hole
space. The eigenstate in lead β with energy E and transverse mode quantum number
n is φ±βζnE , where +/− refers to right/left moving waves with wavenumber kn(E). ζ =
{e,h} denotes whether the particle is an electron or a hole. χn(r⊥) are the transverse
eigenfunctions with eigenenergies εn in a basis where 〈χn|χn′〉 = δnn′ . The quantum
number n = {1, 2, . . . , Ñ} can therefore be regarded as an independent channel which
could for example be spin. Finally, the spinors ve = (1, 0), vh = (0, 1) are eigenvectors of
τz with the corresponding eigenvalues s(ζ = e) = 1, s(ζ = h) = −1.
An eigenstate ψζE(r⊥, z) with energy E of the lead-wire-lead system is

ψζE(r⊥, z) =


∑

n a
+
ζnφ

+
LζnE(r⊥, z) +

∑
n a
−
ζnφ
−
LζnE(r⊥, z), (r⊥, z) ∈ L,

ψM,ζE(r⊥, z), (r⊥, z) ∈M,∑
n b

+
ζnφ

+
RζnE(r⊥, z) +

∑
n b
−
ζnφ
−
RζnE(r⊥, z), (r⊥, z) ∈ R.

Here M refers to the nanowire in the middle region between the leads where the wave
function ψM,ζE is unspecified. The amplitudes a+

ζ = (a+
ζ1, a

+
ζ2, . . . , a

+
ζÑ

),a−ζ , b
+
ζ , b

−
ζ are

the coefficients of the linear combination of incoming and outgoing waves on the middle
region. These are linearly dependent from the boundary conditions of the problem and
can be related by the scattering matrix:

a−e
a−h
b+

e

b+
h

 =

(
R(E) T ′(E)
T (E) R′(E)

)
a+

e

a+
h

b−e
b−h

 = S(E)


a+

e

a+
h

b−e
b−h

 .

Hence the (unitary) scattering matrix S(E) relates the amplitudes of the incoming waves
φ+
L , φ−R to those of the outgoing waves φ−L , φ+

R. The submatrices are 2Ñ -dimensional
with particle type as the outer structure and channel as the inner one. For example,
Ren′,en(E) is the amplitude for normal reflection of an incoming electron in the left lead
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in channel n to an outgoing electron in the same lead in channel n′. Similarly, Ten′,en(E)
is the normal transmission amplitude from the left to right lead. The primed matrices are
amplitudes for incoming particles from the right lead. Matrix elements such as Rhn′,en

are non-zero due to the finite electron paring in the wire and denote the amplitude of
an incoming electron in channel n being reflected as a hole in channel n′, the process of
Andreev reflection described previously.21 In order to calculate the current through the
wire we define the scattering states ψβζnE which are (originating from) incoming waves
from lead β of a ζ type particle in channel n with energy E. In equilibrium the current
is the same in both leads and we therefore only consider the left one and assume the
right lead to be far away from the left interface. Scattering states from the left lead
are ψLζnE = φ+

LζnE(r⊥, z) +
∑

ζ′n′ Rζ′n′,ζnφ
−
Lζ′n′E(r⊥, z) where (r⊥, z) ∈ L. The current

contribution of scattering state ψβζnE is

IβζnE =

∫
Ω
dr⊥ (ψβζnE(r⊥, z))

† 1

2mi

(−→
∂z −

←−
∂z

)
τz (ψβζnE(r⊥, z))

In App. F the current of a scattering state of type ζ from the left reservoir, ILζnE is
calculated. From this we find that

ILenE =
1

m

[
1−

[
R†eeRee

]
nn

+
[
R†heRhe

]
nn

]
,

where we have introduced the new submatrices

R(E) =

(
Ree(E) Reh(E)
Rhe(E) Rhh(E)

)
,

each of which is Ñ dimensional. The first two terms in ILenE is the contribution from the
transmitted electrons while the last term is that from Andreev reflection. As previously
explained the occupation of electrons from the left reservoir is nF (E − µL) where µL is
the chemical potential of that reservoir. We set the chemical potential of the wire and
that of the right reservoir to zero, µ = µR = 0, and apply a bias voltage such that the
chemical potential of the left reservoir is µL = −eV . That way the total electron current
is

I = −e
∑
nE

ILenE(nF (E + eV )− nF (E))

=
−e
2π

∫ ∞
0
dE Tr

[
1−R†eeRee +R†heRhe

]
(nF (E + eV )− nF (E))

=
−1

e

∫ ∞
0
dE Gs(E, V )(nF (E + eV )− nF (E)).

Here we have introduced the spectral conductance

Gs(E, V ) =
e2

h
Tr
[
1−R†eeRee +R†heRhe

]
, (8.3)

and used that
∑

E = m
2π

∫
dE from the normalisation of the wave functions in Eq. 8.2 and

2π = h. The differential conductance of the nanowire core is then

dI

dV

∣∣∣∣
V

= −
∫ ∞

0
dE

[
n′F (E + eV )Gs(E, V ) +

nF (E + eV )− nF (E)

e

dGs(E, V )

dV

]
.

21If n and n′ denote spin, they are opposite in the Andreev reflection.
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We make the simplification that the spectral conductance is approximately independent
of the bias voltage, dGs(E,V )

dV ≈ 0, corresponding to low coupling between the leads and
the wire [24]. That way, the differential conductance at low temperatures compared to
eV is

dI

dV

∣∣∣∣
V

= −
∫ ∞

0
dE n′F (E + eV )Gs(E) ≈ Gs(−eV ).

We see now that it is possible to calculate the differential conductance of the nanowire
without ever finding the wave function inside. Instead we need the reflection matrix which
can be expressed as [33]

R(E) = 1− 2πiW †
1

E −H + iπWW †
W. (8.4)

Here H is the Hamiltonian of the sample and W is a matrix describing the coupling
between the left lead and the sample. The coupling matrix W is of size M × Ñ where M
is the number of modes in the sample. For example, if we work with the channels spin up
and spin down, R(E) is 4-dimensional and conveniently represented in the Nambu basis

(ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑). If the sample Hamiltonian is also written in Nambu and discretised into

N coordinates along z, like the Hamiltonian in Eq. (8.1), the coupling matrix is 4N × 4-
dimensional. Assuming that the left lead only couples to the first site in the sample, W
has the form

W =
√
γW (I4 ⊗ (1, 0, . . . , 0)︸ ︷︷ ︸

N

)T . (8.5)

The site vector (1, 0, . . . , 0) is of length N and it has been assumed that all channels
couple with the same strength.

We now apply this theory to the case where the mesoscopic sample is a full-shell
nanowire described by the Hamiltonian H̃mJ in Eq. (8.1). For a start we make the
rather unrealistic assumption that the lead possesses the same symmetry as the wire.
This will allow us to perform the calculation of the differential conductance in a very
straightforward way. Later we will discuss the modifications from a more realistic model
in which the wire possesses no particular symmetry.

For a lead with the same symmetry as the wire, the eigenstates will also be labelled by
the angular quantum number mJ which is then conserved in the scattering process and
we can therefore treat these as independent channels. Hence, there is a reflection matrix
like the one in Eq. (8.4) for each sector:

RmJ (E) = 1− 2πiW †mJ

1

E − H̃mJ + iπWmJW
†
mJ

WmJ ,

where RmJ (E) is 4-dimensional (Nambu space), H̃mJ is the 4N -dimensional matrix from
Eq. (8.1), and WmJ as given in Eq. (8.5) with a coupling strength

√
γmJ
W that we take to

be the same for all sectors for simplicity. The symmetry of the reflection matrix under
particle-hole inversion is PRmJ (E)P−1 = R−mJ (−E). The total differential conductance
is

dI

dV

∣∣∣∣∣
V

≈ Gs(E) =
e2

h

∑
mJ

Tr
[
1−R†mJ ,eeRmJ ,ee +R†mJ ,heRmJ ,he

]
. (8.6)
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Figure 8.4: Differential conductance approximated by Gs(E) in Eq. (8.6) for two differ-
ent point in (µ, α) space and Φ̃ = 0.5, R2 = 0.5R0. The two peaks at zero bias voltage
are 2e2/h consistent with a MZM.

The differential conductance for two points in (µ, α) space is plotted in Fig. 8.4 where
the contributions from the different mJ sectors are made distinct. The parameters used
in Fig. 8.4a were found by the calculations in Sec. 4.1 to describe an infinite wire in a
non-trivially gapped topological phase, corresponding to the bulk properties of the finite-
sized wire. Indeed we see in Fig. 8.4a a zero-bias peak in the mJ = 0 sector which we
predicted to be the only one that allowed Majorana zero-modes. The height of the peak is
2e2/h which is consistent with a MZM since a tunnelling contact to such a mode induces
a resonant Andreev reflection that gives a peak of 2e2/h in the zero-bias conductance [12].
Apart from the zero-bias peak in mJ = 0, the spectrum gap is 5∆ − 6∆ and defined by
the mJ = ±1 sectors in agreement with the bulk calculations (Fig. 4.3) and the local
quasiparticle density of states at z = 0 (Fig. 8.2b). The differential conductance plot in
Fig. 8.4b is for parameters where the (bulk) mJ = 0 sector is in the non-trivial phase
but the gap is closed by mJ = ±2 bands as discussed in Sec. 4.1. The conductance plot
confirms that a zero-energy state, causing a peak of 2e2/h, exists in the mJ = 0 sector,
and also shows a gap that is closed by mJ = ±2 bands. In Figs. G.1 and G.2 in App. G
differential conductance plots like the ones in Fig. 8.4 are given for many of the points
in Fig. C.6, which were also used in Secs. 6 and 7. The summary of those plots is that
they agree well with the bulk calculations on the size of the gap22 and on the values of
(µ, α) for which there should be a zero-energy state in the mJ = 0 sector, i.e. inside the

|VZ | =
√
µ2
mJ=0 + ∆2-parabola, at that the hight of the zero-bias peak is 2e2/h. We do,

however, observe splitting of the zero-bias conductance peak for some (µ, α) inside the
parabola. The splitting could be ascribed to the finite length of the wire leading to a
hybridisation of the two theoretical Majorana zero-modes as previously mentioned.

Our calculations show the height of the zero-bias conductance peak to be 2e2/h,
consistent with the Majorana picture, whereas the peak measured in [10] was < 0.2e2/h.
This discrepancy is well-known and different explanations for it have been suggested [24].
These include: interfacial tunnel barriers resulting in low coupling between lead electrons
and the MZM, the absence of a hard gap due to other subgap states, finite temperature,
and dissipation such as coupling between the MZM and the drain (right) lead causing a
finite life time of the MZM that affects the conductance.

22There is one point, (µ = 6.62∆, α = 1.12α0), where the conductance does not appear to agree with
the bulk calculations on the gap, see Fig. G.2d.
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We can also compare the differential conductance in the different points of (µ, α) space
with the bulk spectral functions in App. B, Figs. C.7 to C.13. For example is Tr[A] in
point (µ = 2.9∆, α = 1.8α0) a smeared out version of the conductance except for the
zero-energy peak (compare Figs. 8.4b and C.7e). However, this consistency is not true
for all of the points and therefore the bulk spectral function cannot just be taken as a
direct representation of the differential conductance. Furthermore, the conductance plots
are similar to the local quasiparticle density of states at the end ρ(z = 0) in the sense
that the peaks of the distinct sectors are at the same energies for the two functions but
with different relative height. Hence neither can the density of states at the end of the
wire be directly translated to differential conductance.

In conclusion, the hollow-cylinder model at half a flux quantum agrees with the exper-
iment [10] on a zero-energy state inside a gap which according to the model is non-trivial.
However, we keep in mind that this only holds true for some specific parameter values.

Now we examine how the calculated differential conductance develops through the
first and zeroth Little-Parks lobes. If the zero-energy state is really a MZM, we expect
the zero-energy peak in the differential conductance to vanish at integer flux quanta since
the bulk calculations predicted the topological phase to be trivial here. Surely, when
”scanning” the conductance in point (µ = 2.3∆, α = 1.3α0) through the first Little-Parks
lobe, we observe that the zero-bias peak splits as the flux increases towards one flux
quantum where the spectral gap becomes 1∆ (see Fig. 8.5a). From Φ̃ = 1 to Φ̃ = 1.5
the conductance peaks mirror the behaviour between Φ̃ = 0.5 and Φ̃ = 1 which is exactly
what we also found for the bulk phase diagrams in Sec. 5. Line cuts of Fig. 8.5a at dif-
ferent values of the reduced flux φ confirm that mJ and −mJ bands are switched when
φ→ −φ due to terms ∝ φmJ in H̃mJ . The line cuts are taken for Φ̃ = {0.5, 0.6, . . . , 1.5}
and shown in Figs. G.5 and G.6. A similar behaviour is found for the conductance in
(µ = 2.9∆, α = 1.8α0) although the gap is closed at Φ̃ = 0.5 (see Figs. 8.5b and G.7).
More plots of the differential conductance as function of the bias voltage and reduced flux
in both the zeroth and first Little-Parks lobes are shown for five different points inside

the |VZ | =
√
µ2
mJ=0 + ∆2-parabola in Figs. G.3 and G.4. The results strongly disagree

with the experiment [10] where a peak in the differential conductance at zero voltage bias
was measured through the entire gapped part of the first Little-Parks lobe (Fig. 1.1).
As for the bulk calculations we therefore conclude that the hollow-cylinder model is not
sufficient for describing the experiment at all flux values.

We remark that a more realistic model for the conductance measurement would not
assign any particular symmetry to the lead. Instead the lead could be gated to only
include two spin channels that couple equally well to all mJ sectors in the nanowire and
the coupling matrix would be

W =
√
γW

I4 ⊗ (1, 1, . . . , 1)︸ ︷︷ ︸
2mmax

J +1

⊗ (1, 0, . . . , 0)︸ ︷︷ ︸
N


T

.

With such a coupling, the different mJ sectors would be mixed in the scattering process.
Nevertheless, as the conductance peaks in e.g. Fig. 8.4 are narrow and fairly separated
we do not expect the mixing to have a large effect on the results.
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(a) (µ = 2.3∆, α = 1.3α0) (b) (µ = 2.9∆, α = 1.8α0)

Figure 8.5: Differential conductance approximated by Gs(E) in Eq. (8.6) as function of
the reduced flux and bias voltage through the first Little-Parks lobe for a cylinder radius
R2 = 0.5R0.

8.1 Conclusions on the analysis of a finite full-shell nanowire

In our analysis of the hollow-cylinder model for a finite wire we have used the scattering
matrix formalism to calculate the differential conductance in the core. This has shown
2e2/h peaks at zero bias voltage in sector mJ = 0 only for parameters that describe a non-
trivial bulk gap. We have also observed a splitting of some of the zero-bias peaks which
we assigned to the overlap of MZM wave functions. The local quasiparticle density of
states has shown a similar behaviour with states in the mJ = 0 sector located at each end
of the wire and split around zero energy. However, we have also seen that the differential
conductance is not equal to thee bulk spectral function or density of states at the end
as they differed in relative signal height. Calculations of the differential conductance as
function of flux and bias voltage have confirmed that the hollow-cylinder model is not
sufficient for describing the experiment in [10]. Although the measurements agrees with
our predictions at Φ̃ = 1/2, the zero-bias peak splits and vanishes as Φ̃→ 1.
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9 Conclusions and outlook

In this thesis we have thoroughly examined to what extent the hollow-cylinder model
from [11] can be modified by perturbations to describe the Al-InAs full-shell wires in [10].

With the destructive Little-Parks effect [20, 21, 23], we explained the oscillations in
transition temperature that lead to a temperature-flux phase diagram of re-emergent
lobes of superconductivity separated by the normal phase. Since the transition between
zero and normal resistance was sharp at zero field and slightly broadened with increasing
flux (Fig. 2.5), we concluded that the Al shell of the wires used in [10] was only weakly
disordered and had a reasonably homogeneous geometry. With the proximity effect in
the strong coupling regime we were able to explain the observed gap in the zero-field
spectrum of the semiconductor and the destructive Little-Parks-like behaviour of the gap
at finite flux (see Fig. 1.1).

The simplified hollow-cylinder model for the full-shell wires assumed the conduction
electrons in the semiconductor to be accumulated in the outermost layer. The eigenstates
of the Hamiltonian were characterised by angular quantum numbers mJ , whereof the
mJ = 0 was special as it was the only sector that allowed eigenstates invariant under
particle-hole inversion and thereby MZMs. With mJ = 0 the Hamiltonian took the form
of an Oreg-Lutchyn model [1, 2] and we were able to calculate the topological invariant.
When including other mJ sectors the distinction between the trivial and the non-trivial
phase became more complicated. We argued that a gap closing at zero momentum along
the wire led to a sign change of the topological invariant. By comparing this to numerical
calculations of the total spectrum it was possible to tell, when the nanowire system would
undergo a phase transition.

In an attempt to expand the parameter range of the non-trivial phase, we introduced
periodic deformations of the wire to break the angular symmetry. That way, different mJ

states that otherwise caused a closed gap were coupled, and in some cases this led to an
avoided crossing at zero energy. Our findings were in agreement with some of the results
from [11]. The non-trivial phase was, however, unstable to variations in for example the
radius of the semiconductor and the flux through the wire cross-section. This sensitivity
could not be stabilised by deformations. Therefore, we concluded that the hollow-cylinder
model could not be used to describe the observed zero-bias peak in [10] as a signature of a
MZM, even with the introduced perturbations. Nevertheless, we did find, by introducing
a π/3-periodic deformation, that the hexagonal wires used in [10] are well approximated
by a cylinder within the model. Furthermore, we also found that the Zeeman energy
should be included in the calculations when the g-factor is larger than of the order 1,
which can be the case in InAs [5, 7].

We then examined if the hollow-cylinder model predicted a trivial zero-energy peak
in the spectral function that could provide an alternative explanation of the observations
in [10]. For a system without spin-orbit coupling, we only found a trivial zero-energy peak
that was unstable to even small changes in wire radius, flux and deformations, and was
only a consequence of commensurable values in the Hamiltonian. No trivial zero-energy
peaks were found for finite spin-orbit coupling except at the topological phase transition
points. Considering the narrow conditions, we discarded this type of trivial zero-energy
state as a possible explanation in the hollow-cylinder model of the observations in [10].

Within the first-order Born approximation, we also investigated what effect a small
concentration of impurities inside the semiconductor would have on the spectrum. We
calculated the spectral function for different scattering strengths and found that only when

60



breaking the approximation was there a considerable change to the spectrum. Therefore,
we concluded that impurities in the semiconductor are not relevant within the hollow-
cylinder model when the inverse of the relaxation time is on the order of or larger than
the induced gap.

Lastly, we considered a finite full-shell nanowire and found end states in the local
quasiparticle density of states with energies close to zero, compatible with the theory of
MZMs. We also used the scattering matrix formalism to calculate the differential con-
ductivity. At one half flux quantum this showed zero-bias peaks in the mJ = 0 sector for
parameters that were previously found to describe a topologically non-trivial bulk system.
However, also the finite-wire results were inconsistent with the experimental findings of
a peak at zero voltage bias throughout the entire gapped part of the first Little-Parks lobe.

In summary, we have found that even with deformations or impurities, the hollow-
cylinder model is inadequate for describing the experimental findings in [10] since the
model is unable to explain the zero-bias peak in conductance near one flux quantum.
However, we did see an agreement between the model and the experiment at one half
flux quantum and maybe the discrepancies could be corrected by including more radial
modes in the semiconductor. That way, the flux would be different in the distinct radial
modes and flux-dependent terms in the Hamiltonian that are required to be finite for
a non-trivial phase would not become zero for all modes simultaneously. Such a model
could then be further extended by also coupling the different radial modes.

In future work, we should also gain a better understanding of the multiple subgap
states at finite energy that were also measured in the first Little-Parks lobe [10].
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A Detailed calculations for section 4

A.1 The commutator [Jz, HBdG]

[Jz, HBdG] =

[
−i∂ϕ +

1

2
σz +

1

2
nτz , αrpzσϕτz + ∆(r) (cos(nϕ)τx + sin(nϕ)τy)

]
= αrpzτz

[
−i∂ϕ +

1

2
σz , σϕ

]
︸ ︷︷ ︸

1

+∆(r)

[
−i∂ϕ +

1

2
nτz , cos(nϕ)τx + sin(nϕ)τy

]
︸ ︷︷ ︸

2

.

1 = [−i∂ϕ , σy cos(ϕ)− σx sin(ϕ)]︸ ︷︷ ︸
1a

+
1

2
[σz , σy cos(ϕ)− σx sin(ϕ)]︸ ︷︷ ︸

1b

.

We calculate 1a by use of a test function f(ϕ).

1a f(ϕ) = −i∂ϕ {(σy cos(ϕ)− σx sin(ϕ))f(ϕ)}+ i(σy cos(ϕ)− σx sin(ϕ))∂ϕf(ϕ)

= −i
{

(−σy sin(ϕ)− σx cos(ϕ))f(ϕ) + (σy cos(ϕ)− σx sin(ϕ))f ′(ϕ)
}

+ i(σy cos(ϕ)− σx sin(ϕ))f ′(ϕ)

= i(σy sin(ϕ) + σx cos(ϕ))f(ϕ).

Using that the Pauli matrices anticommute we write 1b as

1b = 2σz (σy cos(ϕ)− σx sin(ϕ)) = −2iσx cos(ϕ)− 2iσy sin(ϕ).

1 = 1a +
1

2
1b = 0.

For 2 the procedure is the same

2 = [−i∂ϕ , τx cos(nϕ) + τy sin(nϕ)]︸ ︷︷ ︸
2a

+
1

2
n [τz , τx cos(nϕ) + τy sin(nϕ)]︸ ︷︷ ︸

2b

.

2a f(ϕ) = −i
{

(−nτx sin(nϕ) + nτy cos(nϕ))f(φ) + (τx cos(nϕ) + τy sin(nϕ))f ′(ϕ)
}

+ i(τx cos(nϕ) + τy sin(nϕ))f ′(ϕ)

= in(τx sin(nϕ)− τy cos(nϕ))f(φ).

2b = 2τz(τx cos(nϕ) + τy sin(nϕ)) = 2iτy cos(nϕ)− 2iτx sin(nϕ).

2 = 2a +
1

2
n 2b = 0.
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A.2 Transformation from HBdG to H̃BdG

In the transformation of the Hamiltonian HBdG in Eq. (4.3) by

U = exp

[
−i
(
mJ −

1

2
σz −

n

2
τz

)
ϕ

]
,

we have made the following calculations.

UσϕU
† = eiϕσz/2(σy cos(ϕ)− σx sin(ϕ))e−iϕσz/2.

eiϕσz/2σye
−iϕσz/2 =

(
1 +

iϕ

2
σz +

1

2

(
iϕ

2

)2

1 +
1

3!

(
iϕ

2

)3

σz + . . .

)
σye
−iϕσz/2

= σy

(
1− iϕ

2
σz +

1

2

(
iϕ

2

)2

1− 1

3!

(
iϕ

2

)3

σz + . . .

)
e−iϕσz/2

= σye
−iϕσz ,

A similar calculation is made for the σx term where we write σx = −iσyσz. In total we
thus obtain

UσϕU
† = σy (1 cos(ϕ) + iσz sin(ϕ)) e−iϕσz

= σy

(
1 + ϕiσz −

1

2
ϕ21− 1

3!
ϕ3iσz + . . .

)
e−iϕσz = σy.

For the pairing term in HBdG we make the same kind of calculations and find

U(cos(nϕ)τx + sin(nϕ)τy)U
† = τx (cos(nϕ) + iτz sin(nϕ)) e−inϕτz = τx.
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B Topology phase diagrams

Figure B.1: Contour plot of the energy gap in the spectrum of
∑

mJ
H̃mJ ,pz(φ = 0)

with no magnetic flux through the nanowire. Notice that the scale is different from the
other phase diagrams and that the gap is 1∆ throughout the shown part of (µ, α) space.
Hence there are no phase transition lines and since the gap is known to be trivial for
(µ = 0, α = 0) [1, 2], the entire domain is trivial. Zero flux implies no phase winding of
the order parameter n = 0, meaning mJ is an odd half-integer. The sum

∑
mJ

runs over
−2.5,−1.5, . . . , 2.5 i.e. mmax

J = 2.5. The plot is made for a wire radius R2 = 0.5R0 and
without a Zeeman energy BZ = 0. Adding a V0 cos(2ϕ)τz deformation does not change
this picture.
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(a) V0 = 0.7∆ (b) V0 = 0.8∆

(c) V0 = 0.9∆ (d) V0 = 1.0∆

Figure B.2: Topology phase diagrams for the same parameter values as in Fig. 5.1 in
the main text but with stronger symmetry-breaking potential V0 cos(2ϕ). The induced
non-trivial gap in the (7, 1.2) domain, which was seen to appear for lower values of V0, is
now closed again. Although the induced gap in the non-trivial (5, 3) domain has become
larger with growing V0, its area in (µ, α) space is diminished.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.3: Topology phase diagrams similar to the ones in Fig. 5.1 but for negative
values of the spin-orbit coupling strength α. Notice that these do not mirror the behaviour
for α > 0 except for the phase transition lines. For instance, there is no non-trivial gap
without deformation but one is opened in the lobe including point (5∆,−3α0) and another
one in (7∆,−1α0) as V0 is increased. At V0 = 0.5∆ the induced gap is as large as 0.5∆.
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(a) V0 = 0.7∆ (b) V0 = 0.8∆

(c) V0 = 0.9∆ (d) V0 = 1.0∆

Figure B.4: Topology phase diagrams for same parameter values as in Fig. 5.3 in the
main text but with stronger symmetry-breaking potential V0 cos(4ϕ). The (2.3, 1.3) non-
trivial domain is still unaffected by the deformation and the non-trivial gaps in the (7, 1.2)
and (5, 3) domains continues to increase with stronger V0.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.5: Topology phase diagrams similar to the ones in Fig. 5.3 but for negative
values of the spin-orbit coupling strength α. Notice that only the black phase transition
lines mirror the behaviour for α > 0. There are no non-trivial gaps even with a cos(4ϕ)
deformation.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.6: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a ”p-like” symmetry-breaking deformation V (ϕ) = V0 cos(ϕ)τz effec-
tively coupling all states. As opposed to the d and g-like potentials this does not have
any advantages in terms of expanding the non-trivial parameter space. On the contrary,
the p-like deformation closes the original non-trivial (2.3, 1.3) domain. Parameters used
in the calculation are: Φ̃ = 1

2 , n = 1, R2 = 0.5R0, BZ = 0, and mmax
J = 3.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.7: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with an ”f-like” symmetry-breaking deformation V (ϕ) = V0 cos(3ϕ)τz in-
troduced to prevent the crossing of mJ = 3 and mJ = −3 bands at zero energy. We
observe that the area in (µ, α) space containing a non-trivial gap neither changes in size
nor position with increasing V0. Parameters used in the calculation are: Φ̃ = 1

2 , n = 1,
R2 = 0.5R0, BZ = 0, and mmax

J = 3.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.8: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a symmetry-breaking deformation V (ϕ) = V0(cos(2ϕ) + cos(3ϕ))τz.
Comparing with Fig. 5.1, we observe that an f-like potential only reduces the beneficial
effects of a d-like one. System parameters used for the calculation are: Φ̃ = 1

2 , n = 1,
R2 = 0.5R0, BZ = 0, and mmax

J = 3.
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(a) V0 = 0∆ (b) V0 = 0.3∆

(c) V0 = 0.6∆ (d) V0 = 0.9∆

(e) V0 = 1.2∆ (f) V0 = 1.5∆

Figure B.9: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a symmetry-breaking deformation V (ϕ) = V0 cos(6ϕ)τz modelling the
hexagonal shape of the wires used in experiments by Vaitiekėnas et al. [10]. We see that
even for V0 = 1.5∆ the phase diagram is only minimally affected by such a deformation.
Parameters used in the calculation are: Φ̃ = 1

2 , n = 1, R2 = 0.5R0, BZ = 0, and mmax
J = 6.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.10: Topology phase diagrams like the ones in Figs. 4.3 and 5.1 of the main text
which are deformed by V0 cos(2ϕ), but with a non-zero Zeeman field, BZ = gµBB/2 ∝
g = −2. Comparing with the case BZ = 0 one sees that the Zeeman effect has little
influence on the phase diagram when the g-factor is of the order 1.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.11: Topology phase diagrams like the ones in Figs. 4.3 and 5.1 of the main text
which are deformed by V0 cos(2ϕ), but with a non-zero Zeeman field, BZ = gµBB/2 ∝ g =
−12. All other parameters are the same. The initial non-trivial domain dies out already
at V0 = 0.2∆ instead of V0 = 0.5∆ which is the case with g = 0. The induced non-trivial
gap in the (7, 1.2) domain could seem to favour slightly from the stronger g-factor, but
as in the cases g = 0 and g = −2 this gap dies out at higher V0 ∼ 5∆.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.12: Topology phase diagrams like the ones in Figs. 4.3 and 5.1 of the main text
which are deformed by V0 cos(2ϕ), but with a large Zeeman energy, BZ = gµBB/2 ∝ g =
−60. All other parameters are the same. Counting from the trivial origin (µ = 0, α = 0)
we see that the emergent gap in the lobe containing the point (2∆, 3.5α0) is non-trivial.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.13: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a g-like deformation and a non-zero Zeeman field, BZ = gµBB/2 ∝
g = −2. Comparing with Fig. 5.3 in the main text, we see that a g factor of order one
brings no significant changes to the phase diagram. Parameters used in the calculation
are: Φ̃ = 1

2 , n = 1, R2 = 0.5R0, mmax
J = 4.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.14: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a g-like deformation and a non-zero Zeeman field, BZ = gµBB/2 ∝ g =
−12. Comparing with Fig. 5.3 in the main text, we see that a g factor of order 10 has a
significant effect on the phase diagram. Parameters used in the calculation are: Φ̃ = 1

2 ,
n = 1, R2 = 0.5R0, and mmax

J = 4.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.15: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with BZ = 0 and a deformation V0 cos(2ϕ). The flux through the cylinder

is Φ̃ = 1
2 , the winding is n = 1, and the radius is R2 = 0.52R0. Bands are included up to

and with mmax
J = 4. The only changed parameter from Fig. 5.1 is thus a 4% increase in

radius.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.16: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with BZ = 0 and a deformation V0 cos(4ϕ). The flux through the cylinder

is Φ̃ = 1
2 , the winding is n = 1, and the radius is R2 = 0.52R0. Bands are included up to

and with mmax
J = 4. The only changed parameter from Fig. 5.3 is thus a 4% increase in

radius.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.17: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with BZ = 0 and a deformation V0 cos(2ϕ). The flux through the cylinder

is Φ̃ = 1
2 , the winding is n = 1, and the radius is R2 = 0.48R0. Bands are included up to

and with mmax
J = 4. The only changed parameter from Fig. 5.1 is thus a 4% decrease in

radius.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.18: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with BZ = 0 and a deformation V0 cos(4ϕ). The flux through the cylinder

is Φ̃ = 1
2 , the winding is n = 1, and the radius is R2 = 0.48R0. Bands are included up to

and with mmax
J = 4. The only changed parameter from Fig. 5.3 is thus a 4% decrease in

radius.
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(a) (Φ̃ = 0, n = 0), (Φ̃ = 2, n = 2). Notice the
different scale.

(b) (Φ̃ = 0.1, n = 0), (Φ̃ = 1.9, n = 2),
(Φ/Φ0 = 2.1, n = 2)

(c) (Φ̃ = 0.2, n = 0), (Φ̃ = 1.8, n = 2) (d) (Φ̃ = 0.3, n = 0), (Φ̃ = 1.7, n = 2)

(e) (Φ̃ = 0.4, n = 0), (Φ̃ = 1.6, n = 2) (f) (Φ̃ = 0.5, n = 0), (Φ̃ = 1.5, n = 2)

Figure B.19: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with BZ = 0, R2 = 0.5R0, and cylindrical geometry.
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(a) (Φ̃ = 0.5, n = 1), (Φ̃ = 1.5, n = 1) (b) (Φ̃ = 0.6, n = 1), (Φ̃ = 1.4, n = 1)

(c) (Φ̃ = 0.7, n = 1), (Φ̃ = 1.3, n = 1) (d) (Φ̃ = 0.8, n = 1), (Φ̃ = 1.2, n = 1)

(e) (Φ̃ = 0.9, n = 1), (Φ̃ = 1.1, n = 1) (f) (Φ̃ = 1.0, n = 1). Notice the different scale.

Figure B.20: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with BZ = 0, R2 = 0.5R0, and cylindrical geometry.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.21: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a p-like deformation V0 cos(ϕ), BZ = 0, R2 = 0.5R0, and Φ̃ = 2
5 . Since

this is in the n = 0 lobe there are no non-trivial domains when V0 = 0. For finite V0 a
very small non-trivial domain around (0.5∆, 3.5α0) appears and vanishes again whereas
a narrow gap opens in the (7, 1.2) domain for large V0 > 0.4∆. In the calculations
mmax
J = 2.5.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.22: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a d-like deformation V0 cos(2ϕ), BZ = 0, R2 = 0.5R0, and Φ̃ = 2
5 . Since

this is in the n = 0 lobe there are no domains of non-trivial phases at V0 = 0. Nor do any
non-trivial gaps emerge with finite V0. In the calculations mmax

J = 3.5.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.23: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a p+d-like deformation V0 (cos(ϕ) + cos(2ϕ)), BZ = 0, R2 = 0.5R0,

and Φ̃ = 2
5 . Since this is in the n = 0 lobe there are no non-trivial domains at V0 = 0.

For finite V0 a small non-trivial gap emerges. In the calculations mmax
J = 3.5.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.24: Topology phase diagrams for the full-shell nanowire system described
by
∑

mJ
H̃mJ ,pz with a symmetry-breaking deformation V0 cos(2ϕ). These plots are cal-

culated for a flux well within the first lobe Φ̃ = 0.6 (and Φ̃ = 1.4) for a wire radius
R2 = 0.5R0 without a Zeeman energy. Comparing with the half-flux counterparts in
Figs. 4.3 and 5.1 one can see that the initial non-trivial domain is smaller, whereas the
non-trivial gap in the (5, 3) domain is larger. The relevant bands for calculating the gap
include mmax

J = 4. 91



(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.25: Topology phase diagrams for the full-shell nanowire system described
by
∑

mJ
H̃mJ ,pz with a symmetry-breaking deformation V0 cos(4ϕ). These plots are cal-

culated for a flux well within the first lobe Φ̃ = 0.6 (and Φ̃ = 1.4) for a wire radius
R2 = 0.5R0 without a Zeeman energy. The relevant bands for calculating the gap include
mmax
J = 4.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.26: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a symmetry-breaking deformation V0 cos(2ϕ) and a flux Φ̃ = 0.8 (and

Φ̃ = 1.2) for a wire radius R2 = 0.5R0 without a Zeeman energy. The relevant bands for
calculating the gap include mmax

J = 4.

93



(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.27: Topology phase diagrams for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz with a symmetry-breaking deformation V0 cos(4ϕ) and a flux Φ̃ = 0.8 (and

Φ̃ = 1.2) for a wire radius R2 = 0.5R0 without a Zeeman energy. The relevant bands for
calculating the gap include mmax

J = 4.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.28: Topology phase diagrams for the full-shell nanowire system described
by
∑

mJ
H̃mJ ,pz with BZ = 0, R2 = 0.52R0, Φ̃ = 0.6, and a deformation V0 cos(2ϕ).

Compared with Fig. B.15 the black phase transition lines going north-west to south-east

are squeezed together pairwise and the VZ =
√
µ2
mJ=0 + ∆2 parabola is pulled upwards to

the left compared to the half-flux case. Combined, this causes a smaller initial non-trivial
domain which already dies out at V0 = 0.2∆. Here mmax

J = 4.
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(a) V0 = 0∆ (b) V0 = 0.1∆

(c) V0 = 0.2∆ (d) V0 = 0.3∆

(e) V0 = 0.4∆ (f) V0 = 0.5∆

Figure B.29: Topology phase diagrams for the full-shell nanowire system described
by
∑

mJ
H̃mJ ,pz with BZ = 0, R2 = 0.52R0, Φ̃ = 0.6, and a deformation V0 cos(4ϕ).

Compared with Fig. B.16 the initial non-trivial domain is smaller and the generated gap
in the (5, 3) domain is larger although the area is smaller. Here mmax

J = 4.
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C Spectral function plots

All results in this appendix are made without a Zeeman energy, BZ = 0. The width used
for the Lorentzian is Γ = 0.05∆ and mmax

J = 4.
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(d) µ = 9.1∆
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(e) µ = 14.1∆.

Figure C.1: Tr[A](ω) for different values of the flux, Φ̃. A persistent peak is observed
in the spectral function for Φ̃ = 0.5 through Figs. (b) to (e). Shared parameter values
are: α = 0, R2 = 0.5R0, V (ϕ) = 0, Γ = 0.05∆, and mmax

J = 4. Tr[A](ω) for Φ̃ = 0.6
in Figs. (b) and (c) is really gapped which is seen only when lowering the width of the
Lorentzian.
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(e) µ = 14.1∆. For higher µ more bands are
down near zero energy.

Figure C.2: Tr[A](ω) for different radii. A persistent peak is observed in the spectral
function for R2 = 0.5R0 through Figs. (b) to (e). Shared parameter values are: α = 0,
Φ̃ = 1

2 , V (ϕ) = 0, Γ = 0.05∆, and mmax
J = 4. Tr[A](ω) for R2 = 0.52R0 in Figs. (b) and

(c) is really gapped which is seen only when lowering the width of the Lorentzian.
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Figure C.3: Tr[A](ω) at (µ = 2.1∆, α = 0) for different radii. A d-like deformation
V0 cos(2ϕ), applied in (a)-(c), turns the peaks in the blue and green functions into dips.
With increasing strength, the three spectral functions become more alike. A g-like defor-
mation V0 cos(4ϕ) in (d)-(f) has little effect unless V0 ∼ ∆ where the blue peak splits up.
Shared parameters are Φ̃ = 1

2 and n = 1. As in Figs. C.1 and C.2 gaps in the spectral
functions are closed by the finite width of the Lorentzian.
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Figure C.4: Tr[A](ω) at (µ = 4.1∆, α = 0) for different radii. A d-like deformation
V0 cos(2ϕ), applied in (a)-(c), turns the peaks in the blue and green functions into dips.
With increasing strength, the three spectral functions become more alike. A g-like defor-
mation V0 cos(4ϕ) in (d)-(f) has little effect unless V0 ∼ ∆ where the blue peak splits up.
Shared parameters are Φ̃ = 1

2 and n = 1. As in Figs. C.1 and C.2 gaps in the spectral
functions are closed by the finite width of the Lorentzian.
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Figure C.5: Tr[A](ω) at (µ = 9.1∆, α = 0) for different radii. A d-like deformation
V0 cos(2ϕ), applied in (a)-(c), turns the peaks in the blue and green functions into dips.
With increasing strength, the three spectral functions become more alike. A g-like defor-
mation V0 cos(4ϕ) in (d)-(f) has little effect unless V0 ∼ ∆ where the blue peak splits up.
Shared parameters are Φ̃ = 1

2 and n = 1. As in Figs. C.1 and C.2 gaps in the spectral
functions are closed by the finite width of the Lorentzian.
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(a) R2 = 0.5R0 (b) R2 = 0.52R0
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Figure C.6: Points in (µ, α) space chosen for calculations of the spectral functions
discussed in Secs. 6.3, 7, and 8. The points are plotted on top of the topological phase
diagrams for two different radii with Φ̃ = 1

2 and n = 1. Electron and hole components of
the spectral functions in Figs. C.7 to C.13 are calculated by summing weighted Lorentzian
functions (as explained in Sec. 6) including sectors mJ = −4, . . . ,mJ = 4. In Figs. C.14
to C.18 only the trace of the spectral function is calculated.
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Figure C.7: Spectral functions for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz (Eq. (4.9)) without deformations. Left column is for R2 = 0.5R0 and right
column for R2 = 0.52R0.
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Figure C.8: Spectral functions for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz (Eq. (4.9)) without deformations. Left column is for R2 = 0.5R0 and right
column for R2 = 0.52R0.
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Figure C.9: Spectral functions for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz (Eq. (4.9)) without deformations. Left column is for R2 = 0.5R0 and right
column for R2 = 0.52R0.
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Figure C.10: Spectral functions for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz (Eq. (4.9)) without deformations. Left column is for R2 = 0.5R0 and right
column for R2 = 0.52R0.
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Figure C.11: Spectral functions for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz (Eq. (4.9)) without deformations. Left column is for R2 = 0.5R0 and right
column for R2 = 0.52R0.
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Figure C.12: Spectral functions for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz (Eq. (4.9)) without deformations. Left column is for R2 = 0.5R0 and right
column for R2 = 0.52R0.
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Figure C.13: Spectral functions for the full-shell nanowire system described by∑
mJ

H̃mJ ,pz (Eq. (4.9)) without deformations. Left column is for R2 = 0.5R0 and right
column for R2 = 0.52R0.
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Figure C.14: Figs. (a)-(d) show Tr[A(ω)] at point (µ = 0.317∆, α = 2.81α0) with a
potential V0 cos(2ϕ). The zero-energy peaks in (b) and (c) are not stable to changes in
V0, R2 or Φ̃. Figs. (e)-(h) show Tr[A(ω)] at (µ = 2.3∆, α = 1.3α0) with a potential
V0 cos(4ϕ). The gap is not stable for R2 = 0.52R0 but it is for R2 = 0.5R0. Here Φ̃ = 0.5.
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Figure C.15: Figs. (a)-(d) show Tr[A(ω)] at the point (µ = 4.1∆, α = 3.48α0) with a
potential V0 cos(2ϕ). The peak in (c) at ω = 0 is not stable to small changes in V0, R2 or
Φ̃. Figs. (e)-(h) show Tr[A(ω)] at (µ = 5.16∆, α = 3.38α0) with a potential V0 cos(4ϕ).
The zero energy peak in (f) exists over quite a wide range of V0 ∈ [0.226, 0.392]∆ but is
not stable to radius and flux changes. Here Φ̃ = 0.5.
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Figure C.16: Figs. (a)-(h) show Tr[A(ω)] at the point (µ = 6.62∆, α = 0.357α0) with
a potential V0 cos(2ϕ) in (a)-(d) and V0 cos(4ϕ) in (e)-(h). All the zero-energy peaks are
unstable to changes is V0, R2, and Φ̃. Here Φ̃ = 0.5.
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Figure C.17: Figs. (a)-(d) show Tr[A(ω)] at point (µ = 6.62∆, α = 1.12α0) with a
potential V0 cos(2ϕ) and Figs. (e)-(h) show Tr[A(ω)] at (µ = 10.35∆, α = 2.98α0) with
a potential V0 cos(4ϕ). None of the zero-energy peaks are stable to small changes in V0,
R2, or Φ̃. Here Φ̃ = 0.5.
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Figure C.18: Figs. (a)-(d) show Tr[A(ω)] at point (µ = 11.2∆, α = 0.97α0) with a
potential V0 cos(4ϕ) and Figs. (e)-(h) show Tr[A(ω)] at (µ = 14.08∆, α = 1.34α0) with
a potential V0 cos(4ϕ). The zero-energy peaks are not stable to changes in V0, R2, or Φ̃.
Here Φ̃ = 0.5.

114



D Inversion of matrices

For calculating F−1 from Sec. 7 we define the matrix elements:

H̃11 =
p2

2m∗
− µm + Vz +Am + Cm,

H̃22 =
p2

2m∗
− µm − Vz +Am − Cm,

H̃33 = − p2

2m∗
+ µm + Vz +Am − Cm,

H̃22 = − p2

2m∗
+ µm − Vz +Am + Cm,

H̃12 = H̃43 = −H̃21 = −H̃34 = −iαp.

F =


ω + iη − H̃11 H̃21 −∆ 0

−H̃21 ω + iη − H̃22 0 −∆

−∆ 0 ω + iη − H̃33 −H̃21

0 −∆ H̃21 ω + iη − H̃44

 .

The determinant is found to be an even function of p:

|F | = (ω + iη − H̃11)
(

(ω + iη − H̃22)(ω + iη − H̃33)(ω + iη − H̃44)−∆2(ω + iη − H̃33)

+ (ω + iη − H̃22)H̃2
21

)
− H̃21

(
−H̃21(ω + iη − H̃33)(ω + iη − H̃44) + ∆2H̃21 − H̃3

21

)
+ ∆

(
−∆3 + ∆H̃2

21 + ∆(ω + iη − H̃22)(ω + iη − H̃44)
)
.

The elements of the matrix C that contains the cofactors of the elements in F (see
Eq. (7.9)) are

C11 = (ω + iη − H̃22)(ω + iη − H̃33)(ω + iη − H̃44)−∆2(ω + iη − H̃33) + (ω + iη − H̃22)H̃2
21,

C12 = H̃21(ω + iη − H̃33)(ω + iη − H̃44)−∆2H̃21 + H̃3
21,

C13 = −∆3 + ∆H̃2
21 + ∆(ω + iη − H̃22)(ω + iη − H̃44),

C14 = ∆(ω + iη − H̃33)H̃21 −∆(ω + iη − H̃22)H̃21,

C21 = −C21,

C22 = (ω + iη − H̃11)(ω + iη − H̃33)(ω + iη − H̃44) + (ω + iη − H̃11)H̃2
21 −∆2(ω + iη − H̃44),

C23 = ∆(ω + iη − H̃11)H̃21 −∆(ω + iη − H̃44)H̃21,

C24 = −∆3 + ∆(ω + iη − H̃11)(ω + iη − H̃33) + ∆H̃2
21,

C31 = C13,

C32 = −C23,

C33 = (ω + iη − H̃11)(ω + iη − H̃22)(ω + iη − H̃44) + (ω + iη − H̃44)H̃2
21 −∆2(ω + iη − H̃11),

C34 = −(ω + iη − H̃11)(ω + iη − H̃22)H̃21 + ∆2H̃21 − H̃3
21,

C41 = −C14,

C42 = C24,

C43 = −C34,

C44 = (ω + iη − H̃11)(ω + iη − H̃22)(ω + iη − H̃33)−∆2(ω + iη − H̃22) + (ω + iη − H̃33)H̃2
21.
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The elements C12 = −C21, C14 = −C41, C23 = −C32, and C34 = −C43 are all odd func-
tions of p and thus integrate to zero.

To calculate the matrix GR,1BA
m,p (ω) in Eq. (7.10) we need to find the inverse of

F̃ =


ω − H̃11 − Σ1BA

11 (ω) H̃21 −∆− Σ1BA
13 (ω) 0

−H̃21 ω − H̃22 − Σ1BA
22 (ω) 0 −∆− Σ1BA

24 (ω)

−∆− Σ1BA
13 (ω) 0 ω − H̃33 − Σ1BA

33 (ω) −H̃21

0 −∆− Σ1BA
24 (ω) H̃21 ω − H̃44 − Σ1BA

44 (ω)

 .

Again, the determinant is an even function of p

|F̃ | = (ω − H̃11 − Σ1BA
11 (ω))

(
(ω − H̃22 − Σ1BA

22 (ω))(ω − H̃33 − Σ1BA
33 (ω))(ω − H̃44 − Σ1BA

44 (ω))

− (ω − H̃33 − Σ1BA
33 (ω))(∆ + Σ1BA

24 (ω))2 + (ω − H̃22 − Σ1BA
22 (ω))H̃2

21

)
+ H̃2

21

(
(ω − H̃33 − Σ1BA

33 (ω))(ω − H̃44 − Σ1BA
44 (ω))− (∆ + Σ1BA

13 (ω))(∆ + Σ1BA
24 (ω)) + H̃2

21

)
− (∆ + Σ1BA

13 (ω))
(

(∆ + Σ1BA
13 (ω)(ω − H̃22 − Σ1BA

22 (ω))(ω − H̃44 − Σ1BA
44 (ω))

− (∆ + Σ1BA
13 (ω))(∆ + Σ1BA

24 (ω))2 + H̃2
21(∆ + Σ1BA

24 (ω))
)
.

(D.1)

We calculate the corresponding new cofactors C̃ij which are odd functions of p for ij =
12, 14, 21, 23, 32, 34, 41, 43. Factors that do not integrate to zero are:

C̃11 = (ω − H̃22 − Σ1BA
22 (ω))(ω − H̃33 − Σ1BA

33 (ω))(ω − H̃44 − Σ1BA
44 (ω))

− (ω − H̃33 − Σ1BA
33 (ω))(∆ + Σ1BA

24 (ω))2 + (ω − H̃22 − Σ1BA
22 (ω))H̃2

21,

C̃13 = C̃31 = (ω − H̃22 − Σ1BA
22 (ω))(ω − H̃44 − Σ1BA

44 (ω))(∆ + Σ1BA
13 (ω))

− (∆ + Σ1BA
13 (ω))(∆ + Σ1BA

24 (ω))2 + H̃2
21(∆ + Σ1BA

24 (ω)),

C̃22 = (ω − H̃11 − Σ1BA
11 (ω))(ω − H̃33 − Σ1BA

33 (ω))(ω − H̃44 − Σ1BA
44 (ω))

− (ω − H̃44 − Σ1BA
44 (ω))(∆ + Σ1BA

13 (ω))2 + (ω − H̃11 − Σ1BA
11 (ω))H̃2

21,

C̃24 = C̃42 = (ω − H̃11 − Σ1BA
11 (ω))(ω − H̃33 − Σ1BA

33 (ω))(∆ + Σ1BA
24 (ω))

− (∆ + Σ1BA
13 (ω))2(∆ + Σ1BA

24 (ω)) + H̃2
21(∆ + Σ1BA

13 (ω)),

C̃33 = (ω − H̃11 − Σ1BA
11 (ω))(ω − H̃22 − Σ1BA

22 (ω))(ω − H̃44 − Σ1BA
44 (ω))

− (ω − H̃11 − Σ1BA
11 (ω))(∆ + Σ1BA

24 (ω))2 + (ω − H̃44 − Σ1BA
44 (ω))H̃2

21,

C̃44 = (ω − H̃11 − Σ1BA
11 (ω))(ω − H̃22 − Σ1BA

22 (ω))(ω − H̃33 − Σ1BA
33 (ω))

− (ω − H̃22 − Σ1BA
22 (ω))(∆ + Σ1BA

13 (ω))2 + (ω − H̃33 − Σ1BA
33 (ω))H̃2

21.
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E Impurities in the semiconducting core
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Figure E.1: Trace of the spectral function for the full-shell nanowire system described
by
∑

mJ
H̃mJ ,pz (Eq. (4.9)) with impurities of effective scattering strength ṽ0 in the semi-

conducting core. As previously, mmax
J denotes the absolute value of the limits on the mJ

sums, which have been chosen from when the spectral functions would converge.
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Figure E.2: Trace of the spectral function for the full-shell nanowire system described
by
∑

mJ
H̃mJ ,pz (Eq. (4.9)) with impurities of effective scattering strength ṽ0 in the semi-

conducting core. As previously, mmax
J denotes the absolute value of the limits on the mJ

sums, which have been chosen from when the spectral functions would converge.
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F Expression for the current of scattering states

Here we calculate the current of scattering states of type ζ from the left reservoir. The
energy dependence of the wavenumbers kn(E) and the reflection coefficients Rζ′n′,ζn(E)
is suppressed.

ILζnE =

∫
Ω
dr⊥ (ψLζnE(r⊥, z))

† 1

2mi

(−→
∂z −

←−
∂z

)
τz (ψLζnE(r⊥, z)) (r⊥, z) ∈ L

=
1

2mi

∫
Ω
dr⊥

(φ+
LζnE

)†
+

∑
ζ′n′

Rζ′n′,ζnφ
−
Lζ′n′E

†
(−→∂z −←−∂z) τz

φ+
LζnE +

∑
ζ′n′

Rζ′n′,ζnφ
−
Lζ′n′E


=

1

2mi

∫
Ω
dr⊥

ikn (φ+
LζnE

)†
τzφ

+
LζnE +

∑
ζ′n′

Rζ′n′,ζn(−ikn′)
(
φ+
LζnE

)†
τzφ
−
Lζ′n′E

+ikn

∑
ζ′n′

Rζ′n′,ζnφ
−
Lζ′n′E

† τzφ+
LζnE +

∑
ζ′n′

Rζ′n′,ζnφ
−
Lζ′n′E

† τz ∑
ζ′′n′′

Rζ′′n′′,ζn(−ikn′′)φ−Lζ′′n′′E


−1

2mi

∫
Ω
dr⊥

−ikn (φ+
LζnE

)†
τzφ

+
LζnE − ikn

(
φ+
LζnE

)†
τz
∑
ζ′n′

Rζ′n′,ζnφ
−
Lζ′n′E

+

∑
ζ′n′

Rζ′n′,ζn(−ikn′)φ−Lζ′n′E

† τzφ+
LζnE

+

∑
ζ′n′

Rζ′n′,ζn(−ikn′)φ−Lζ′n′E

† τz ∑
ζ′′n′′

Rζ′′n′′,ζnφ
−
Lζ′′n′′E


=

1

2mi

∫
Ω
dr⊥

 ikn
kn
vTζ τzvζχ

∗
n(r⊥)χn(r⊥)−

∑
ζ′n′

Rζ′n′,ζn
ikn′√
knkn′

vTζ τzvζ′χ
∗
n(r⊥)χn′(r⊥)e−i(kn+kn′ )z

+
∑
ζ′n′

R∗ζ′n′,ζn
ikn√
kn′kn

vTζ′τzvζχ
∗
n′(r⊥)χn(r⊥)ei(kn′+kn)z

−
∑
ζ′n′

ζ′′n′′

R∗ζ′n′,ζnRζ′′n′′,ζn
ikn′′√
kn′kn′′

vTζ′τzvζ′′χ
∗
n′(r⊥)χn′′(r⊥)ei(kn′−kn′′ )z

]

−1

2mi

∫
Ω
dr⊥

[
−ikn
kn

vTζ τzvζχ
∗
n(r⊥)χn(r⊥)−

∑
ζ′n′

Rζ′n′,ζn
ikn√
knkn′

vTζ τzvζ′χ
∗
n(r⊥)χn′(r⊥)e−i(kn+kn′ )z

+
∑
ζ′n′

R∗ζ′n′,ζn
ikn′√
kn′kn

vTζ′τzvζχ
∗
n′(r⊥)χn(r⊥)ei(kn′+kn)z

+
∑
ζ′n′

ζ′′n′′

R∗ζ′n′,ζnRζ′′n′′,ζn
ikn′√
kn′kn′′

vTζ′τzvζ′′χ
∗
n′(r⊥)χn′′(r⊥)ei(kn′−kn′′ )z

]
.
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ILζnE =
s(ζ)

2m
− s(ζ)

2m
Rζn,ζne

−i2knz +
s(ζ)

2m
R∗ζn,ζne

i2knz −
∑
ζ′n′

R∗ζ′n′,ζnRζ′n′,ζn
s(ζ ′)

2m

+
s(ζ)

2m
+
s(ζ)

2m
Rζn,ζne

−i2knz − s(ζ)

2m
R∗ζn,ζne

i2knz −
∑
ζ′n′

R∗ζ′n′,ζnRζ′n′,ζn
s(ζ ′)

2m

=
1

m

s(ζ)−
∑
ζ′n′

s(ζ ′)R∗ζ′n′,ζnRζ′n′,ζn

 .
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G Results for a finite full-shell nanowire
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Figure G.1: Spectral conductance at different points in (µ, α) space for the discretised
full-shell nanowire described by H̃mJ in Eq. (8.1). Also here we see that mJ bands mirror
−mJ bands. The calculations are made for a radius R2 = 0.5R0 and flux Φ̃ = 0.5.
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(b) (µ = 5.16∆, α = 3.38α0)
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Figure G.2: Spectral conductance at different points in (µ, α) space as in Fig. G.1. The
result in Fig. (d) does not appear to agree with the bulk calculations which found the
gap to be closed at (µ = 6.62∆, α = 1.12α0) without deformations. Also here R2 = 0.5R0

and Φ̃ = 0.5.
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(a) 0th lobe, (µ = 2.3∆, α = 1.3α0) (b) 1st lobe, (µ = 2.3∆, α = 1.3α0)

(c) 0th lobe, (µ = 2.9∆, α = 1.8α0) (d) 1st lobe, (µ = 2.9∆, α = 1.8α0)

(e) 0th lobe, (µ = 4.1∆, α = 3.48α0) (f) 1st lobe, (µ = 4.1∆, α = 3.48α0)

Figure G.3: Conductance as function of the reduced flux n − Φ̃ = φ and bias voltage
V in the zeroth and first Little-Parks lobes. These are made for points inside the V 2

Z =
µ2
mJ=0 + ∆2 parabola with radius R2 = 0.5R0 and BZ = 0.

123



(a) 0th lobe, (µ = 4.82∆, α = 2.29α0) (b) 1st lobe, (µ = 4.82∆, α = 2.29α0)

(c) 0th lobe, (µ = 5.16∆, α = 3.38α0) (d) 1st lobe, (µ = 5.16∆, α = 3.38α0)

Figure G.4: Conductance as function of the reduced flux n − Φ̃ = φ and bias voltage
V in the zeroth and first Little-Parks lobes. These are made for points inside the V 2

Z =
µ2
mJ=0 + ∆2 parabola with radius R2 = 0.5R0 and BZ = 0.
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Figure G.5: Differential conductance in point (µ = 2.3∆, α = 1.3α0) through the first
half of the 1st Little-Parks lobe with R2 = 0.5R0. The zero-bias beak is seen to split up
and the gap becomes 1∆ at one flux quantum.
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(d) Φ̃ = 1.4
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Figure G.6: Differential conductance in point (µ = 2.3∆, α = 1.3α0) through the second
half of the 1st Little-Parks lobe with R2 = 0.5R0. Compared to Φ̃ ≤ 1 the mJ and −mJ

bands are switched. Apart from that, the conductance is symmetric around one flux
quantum.
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(b) Φ/Φ0 = 0.6
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(c) Φ̃ = 0.7

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

V (Δ)

G
s
(e

2
/h
)

mJ=-4

mJ=-3

mJ=-2

mJ=-1

mJ=0

mJ=1

mJ=2

mJ=3

mJ=4

(d) Φ̃ = 0.8
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(f) Φ̃ = 1.0

Figure G.7: Conductance in point (µ = 2.9∆, α = 1.8α0) through the first half of the 1st

Little-Parks lobe. As in Fig. G.5 the peak at zero bias voltage is not stable and the gap
becomes 1∆ at one flux quantum. The conductance is symmetric around Φ̃ = 1 except
for the interchange of ±mJ sectors.
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