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Abstract

In neutrino oscillation studies in IceCube, the neutrinos making up the signal
are of atmospheric origin. An accurate and precise estimate of the atmospheric
neutrino flux is therefore crucial in analyses. In recent IceCube analyses, the
uncertainty on the atmospheric neutrino flux is the third-largest source of sys-
tematic uncertainty, and the contribution from the atmospheric neutrino flux
on the overall systematic uncertainty in IceCube is expected to increase with
the IceCube Upgrade. This thesis presents work on developing a more accurate
and precise atmospheric neutrino estimate, based on an analytic solution of the
cascade equation with MCEq. In this respect, one of the key considerations is
the re-interactions of hadrons in the air shower. As part of this work, the event
generator PYTHIA has been extended to be used as a hadronic interaction model
for air showers. The final result of this work is the development of a new treat-
ment of the atmospheric neutrino flux within low energy analyses in IceCube. A
tau neutrino appearance analysis with three years of IceCube data is repeated
with the developed method of estimating the atmospheric neutrino flux and its
uncertainty. When no other sources of uncertainty are taken into account, the
systematic uncertainty on the physics value is improved by around 35%.
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Units and Constants

c Speed of light, c = 2.998 ·108 m s−1

b A barn is used to express cross sections, b = 10−28 m2

~ Planck constant, ~ = 1.055 ·10−34 J s = 6.582 · 10−16 GeV

eV Electron-volt, 1 eV = 1.602 ·10−19 J

GF Fermi constant, GF = 1.663787(6) ·10−5 GeV−2

e Elementary charge, e = 1.602 176 634 ·10−19 C≈ 0.302 822 121
√
~c

Natural units provide a well-motivated basis for expressing quantities in particle
physics. The use of natural units entails omitting constants from mathematical
expressions of physical laws, i.g., by choosing ~ = c = 1. In this way, all quantities
are expressed in GeV, as shown in Table 0.1. Natural units are used throughout
this thesis.

Table 0.1. – Relationship between S.I. and natural units
Quantity [kg, m, s] [~, c, GeV] ~ = c = 1
Energy kg m2 s−2 GeV GeV
Momentum kg m s−1 GeV/c GeV
Mass kg GeV/c2 GeV
Time s (GeV/~)−1 GeV−1

Length m (GeV/~c)−1 GeV−1

Area m2 (GeV/~c)−2 GeV−2
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1Introduction

«I have done a terrible thing, I have postulated a particle that cannot be
detected.» [2]

Wolfgang Pauli first postulated the neutrino in 1930. He called his idea «a
desperate remedy»[3], and the problem it was supposed to remedy was a puzzling
observation in the measurements of β-decay. At the time it was believed that
the atom consisted of equal numbers of electrons and protons, and thus β-decay
would be a two-body decay. If energy, spin, and momentum are conserved, one
can expect discrete emission lines in a two-body decay. This was indeed observed
in α- and γ-decay, and it came as a surprise when J. Chadwick discovered a
continuous energy spectrum of electrons emitted in β-decay [4].

In an attempt to save the laws of conservation, Pauli suggested that «... there
could exist in the nuclei electrically neutral particles... which have spin 1/2 and
obey the exclusion principle, and additionally different from light quanta in that
they do not travel with the velocity of light»[3]. When emitted, the theorized
particle, later named the neutrino, would carry away some of the energy, causing
a continuous energy spectrum of the emitted electron. Today we know β-decay
to be the process of n→ p+ e− + ν̄e.

Contrary to Pauli’s beliefs, the neutrino could be detected. This was done by C.
Cowan and F. Reines in 1956 [5]. Using neutrinos from the Hanford reactor (and
later at the Savannah River Plant), they studied inverse β-decay: ν̄e + p→ e+ + n.
The cross section for this reaction is tiny, but it has a unique signature: the
positron quickly annihilates with an electron producing two coincident γ-rays,
and after a delay, a neutron capture reaction produces a third γ-ray.

The anti-electron neutrino discovered by Cowan and Reines is only one of
several neutrino flavors. In 1962 it was demonstrated by Lederman, Schwartz,
and Steinberger that the electron neutrino, νe, differs from the muon neutrino,
νµ [6]. The tau neutrino, ντ , was later observed by the DONUT experiment in
2000 [7].

In our proximity, the largest producer of neutrinos is the Sun. In nuclear fusion
chains, like the the proton-proton cycle, 2 · 1038 νe are produced each second [8].
The Homestake experiment, placed in a mine in South Dakota, was originally
designed to confirm the fusion reactions in the Sun, by measuring the electron
neutrino flux [9]. The detector was a 615-ton tank of dry cleaning fluid, C2Cl4.
When the electron neutrino interacted with the chlorine atoms a radioactive
isotope of argon was produced via inverse β-decay: νe + Cl37

17 → Ar37
18 + e−. The

radioactive argon isotopes were extracted from the tank and counted, providing
a number for νe interactions. However, they observed only ∼ 30% of the expected
number of events. This deficit of electron neutrinos became known as the solar
neutrino problem.

Experimental proof of the theory solving the problem was found at Sudbury
Neutrino Observatory (SNO)[10] and at Super-Kamiokande (SK)[11] around
2000. Taking advantage of different ways of detecting neutrinos, SNO was
sensitive to both the electron neutrino flux and the total neutrino flux. The total
neutrino flux matched the prediction, but they found the same 60% deficit of the

1



Chapter 1 Introduction

electron neutrino flux as earlier experiments, implying a large component of muon
and/or tau neutrinos in the total solar flux. Since νµ/ντ cannot be produced in
the fusion chains of the Sun, SNO provided clear evidence of neutrino oscillations:
Electron neutrinos are produced in the Sun but change flavor as they propagate
toward the Earth.

The neutrino is a mysterious particle. We do not know its mass, or whether
it is its own antiparticle. It is quite a paradox that although so little is known
about the neutrino, it the second most abundant particle in our Universe. Every
second 100 trillion neutrinos pass through your body, without ever interacting1.
The topic of this thesis is how that number – or the flux, being the number of
neutrinos per area over a certain time interval – is calculated. I am studying a
subset of the neutrinos that flow through your body: those that are created in the
atmosphere.

Many experiments study neutrino oscillations by observing how the flavor
ratio of atmospheric neutrinos changes over distance. However, it is useless to
study the change of a system without knowing its initial state. In this thesis,
methods of estimating that initial state are presented. Though most of the work
presented is generally applicable, it has been done with the intention of being
used in the IceCube experiment.

IceCube is the world’s largest neutrino detector and is located at the South
Pole. When its data is being used for oscillation studies, the signal is atmospheric
neutrinos that have propagated through the Earth. My task in that regard has
been to estimate the flux of neutrinos at the surface of the Earth, prior to potential
oscillation. In recent analyses, the uncertainty on the atmospheric neutrino flux
has been one of the largest sources of systematic uncertainty. I have intended to
limit this uncertainty, and thus provide an accurate and precise estimate of the
atmospheric neutrino flux.

Though sometimes used for oscillation studies, IceCube was designed to
search for astrophysical sources of neutrinos. Atmospheric neutrinos are a source
of background in these searches, and limiting the uncertainty on the background
will result in more sensitive measurements.

1The number varies quite a bit (which is another reason why we need good flux esti-
mates – so master students know which number to quote!). This estimate is taken from
https://icecube.wisc.edu/news/view/546
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2Neutrinos in the Standard
Model and Beyond

The objective of this chapter is to answer the question: What is a neutrino? In
Section 2.1, the neutrino will be described within a Standard Model of extremely
reduced complexity, focusing on the weak force. The concepts developed are then
used to list some of the properties of the neutrino in Section 2.2. We will see
that the neutrino exhibits some properties that are not predicted by the Standard
Model – they oscillate (Section 2.3) – forcing us to modify, or even move beyond,
the Standard Model (Section 2.4). Sometimes being dubbed «the ghost particle»,
the neutrino has eluded scientists ever since its discovery. In Section 2.5, we will
see why giving an overview of how neutrinos interact with matter.

2.1 The Standard Model of Particle Physics
The Standard Model is a relativistic quantum field theory that describes

the interactions between elementary particles. The four types of interactions
observed are the electromagnetic, weak, strong, and gravitational forces. The
Standard Model does not describe the latter, but the three former can be described
mathematically as relativistic quantum fields.

Particles are often called the building blocks of nature, but in the framework of
quantum field theory nature consists of fields, and particles are just excited states
(or quanta) of those underlying fields. If fields are to interact, the fundamental
physics of the quantum field must be unchanged by transformation. The group
of transformations, called gauge transformations, that leaves the field invariant
is called a symmetry group. For each generator of the group, there arises a
corresponding field. The quanta of these fields are the integer spin bosons. The
bosons can be understood as «force-carriers», mediating the interactions between
matter particles, described as fermion fields. As seen in Figure 2.1, fermions
include all quarks and leptons.

The electromagnetic force (QED) is a U(1) symmetry and has one generator
giving rise to one field, which quantum is the photon. According to Noether’s
theorem, there is a conserved quantity for each symmetry. For the U(1) group,
the conserved quantum number is electric charge. The photon couples to the
charged leptons (e−, µ−, τ−) and the quarks, also having electric charge.

The strong force The conserved charge of the strong force is color. QCD is
a SU(3) symmetry group, meaning that it has eight generators, corresponding
to eight gluons. Unlike the photon, gluons are self-interacting, and therefore,
colored objects are confined: no objects of non-zero color charge can propagate
as free particles. Quarks, having color charge, must combine to form hadrons.
The quarks that contribute to the quantum numbers of the hadrons are called
valence quarks, and they are some of the partons of the hadrons. A hadron with
baryon number 0 is a combination of a valence quark and anti-quark and is called
a meson. A hadron with baryon number 1 consists of three quarks and is called a
baryon. Leptons do not have color charge and are hence not confined.

3



Chapter 2 Neutrinos in the Standard Model and Beyond

Figure 2.1. – Graphical depiction if the Standard Model. Figure from [12]

The weak force SU(2) conserves weak isospin and has three generators, W±,0.
The weak force is observed to be parity-violating. Conservation of parity means
that the laws of physics are invariant if the spatial coordinates of a system are
inverted through the origin. This entails that it is impossible to distinguish right
from left and clockwise from counter-clockwise. The weak force does, however,
see «left» and «right». By «left» and «right» I mean a fundamental property of
the particle, called chirality, which is related to how the wave function of a
particle behaves when it is rotated. For massless particles, the chirality coincides
with the helicity, which is the projection of the particle spin onto the direction
of momentum. The nature of the W±-boson is such that it will only couple to
left-handed particle chiral states and right-handed antiparticle chiral states.

Despite its name, the weak force is intrinsically stronger than the electromag-
netic force, with a coupling constant of αw ∼1/30, compared to α ∼1/137. To
explain why the weak force appears weaker than the QED force at low-energy
scales, we must introduce heavy mediators. To illustrate this, consider the β-decay
process of n → p + e− + ν̄e. Increasing the level of detail, this is the process of
a neutron emitting a W− boson, which decays into e− and ν̄e. If the W− boson
is massive, the process is more likely to happen once the momentum transfer,
q, is around, or higher, than the mass of the boson. Thus, at small momentum
transfer, the probability of this interaction happening is very small, and the force
appears weak. When the momentum transfer is much larger than the mass of the
mediating boson, the weak force and QED will be of similar strength.

The electroweak force The similarity of the coupling strength at high energy
points to the underlying physics: at high energy QED and weak force are unified,
in a U(1)

⊗
SU(2)-symmetry group, with four generators. The physical bosons

are linear combinations of the four fields that arise, in such a way that the W±

boson is a combination of fields from the weak interaction gauge group, whereas
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Chapter 2 Neutrinos in the Standard Model and Beyond

the Z boson and γ boson are mixtures of the third field associated with the weak
interaction gauge group and the field associated with QED. Thus the Z boson
couples to both left- and right-handed chiral states, but not equally.

The Higgs mechanism Introducing massive mediators of the weak force, breaks
the electroweak symmetry1. To avoid this, the Higgs mechanism spontaneously
breaks the symmetry by introducing a Higgs field, that «slows down» the particles
of weak charge, giving them mass.

All of the fermions fall into three «generations»: particles of the same quantum
numbers, but differentiated by mass. The quark and lepton fields also couple to
the Higgs field, and acquire mass through spontaneous symmetry breaking. The
strength of the coupling determines the mass. The physics of this is not yet fully
understood. We will see that the picture is even more complicated for neutrinos.

With the introduction of the Higgs mechanism, the Standard Model assumed
the form we know today, as a SU(3)

⊗
SU(2)

⊗
U(1) symmetry group.

2.2 Neutrino Properties
We now turn to the neutrino and its properties, using some of the notions

explained above.

Quantum numbers A neutrino is an electrically neutral spin 1/2 fermion. It
carries an empirically defined lepton number, resulting in three different flavor
states: electron neutrino (νe), muon neutrino (νµ), and tau neutrino (ντ). From
measurements of the Z boson width at LEP, we know that there are no additional
neutrino flavors that interact weakly [14].

The neutrino is unaffected by QED as it has no charge, and QCD as it has no
color. As it only interacts weakly, the neutrino is never directly detected, unlike
charged leptons, which can be detected from the ionization track they leave
in matter. The neutrino flavor is therefore defined by the charged lepton that
contributes to the interaction. As an example νe is defined as the neutrino state
produced along with an electron. It follows that no flavor can be assigned for a
neutrino in propagation or interacting with a Z boson.

Chirality and mass As neutrinos interact through the weak force, which is parity-
violating, only left-handed neutrinos and right-handed antineutrinos have been
observed. The Standard Model only postulates the existence of left-handed
neutrinos (right-handed antineutrinos). The Standard Model also determines the
neutrinos to be massless.

All fermions have an associated antiparticle with the same mass but opposite
physical charges. However, the right-handed neutrino (left-handed antineutrino)
has no gauge charge, and can potentially be its own antiparticle. In this case the
neutrino is a Majorana fermion, as opposed to a Dirac fermion.

1As shown by ‘t Hooft, only theories with local gauge invariance are renormalizable, meaning
that if the invariance is broken unitarity violation, e.g. in the W+W− →W+W− cross section,
will arise[13].
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Chapter 2 Neutrinos in the Standard Model and Beyond

2.3 Neutrino Oscillations
For years it was believed that νe, νµ, and ντ were massless fundamental

particles. However, the solar neutrino problem can only be solved if neutrinos
oscillate. Neutrino oscillations does here refer to the periodic change of the
probability of a neutrino being created with flavor α to be later detected as flavor
β. For such a phenomenon to occur, the neutrino must propagate in a basis
different to that in which it interacts, and interference among the states should
occur during propagation.

The neutrino interacts as a flavor eigenstate να, which is defined by the
charged lepton involved in the interaction vertex: α = e, µ, τ . The flavor eigen-
state is, however, a superposition of the mass eigenstates, νk.

|να〉 =
∑
k

U∗αk |νk〉 , (2.1)

where Uαk are elements of the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix [15]. The PMNS matrix can be parameterized by three rotations
θ12, θ13, and θ23 and three complex phases δ, α1, and α2.

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 · diag(eiα1/2, eiα2/2, 1),

(2.2)
where sij = sin θij and cij = cos θij. The last matrix, depending on α1 and α2, is
only included if neutrinos are Majorana particles.

Neutrino oscillations in vacuum A physical description of neutrino oscillations
require that the particles are described as wave packets. This is mathematically
complicated, and in the following we will treat the particle as a plane wave, to
develop the idea. The Schrödinger equation implies that the neutrino mass states
evolve in time, t, as plane waves2

|νk(t)〉 = e−iEkt |νk〉 , (2.3)

where Ek is the energy of mass state νk. The flavor state |να(t)〉 is a neutrino
of flavor α created at t =0. From equation (2.1) and (2.3) the flavor state will
evolve in time like:

|να(t)〉 =
∑
k

U∗αke
−iEkt |νk〉 . (2.4)

Since U is unitary, U †U = 1 ≡ ∑
α U

∗
αkUαj = δjk, where δ is the Kronecker delta

function. Thus we can invert equation (2.1)

|νk〉 =
∑
α

Uαk |να〉 . (2.5)

2This derivation follows closely that of C. Giunti and C.W. Kim [16]

6



Chapter 2 Neutrinos in the Standard Model and Beyond

Substituting equation (2.5) into equation (2.4), we obtain

|να(t)〉 =
∑

β=e,µ,τ

(∑
k

U∗αke
−iEktUβk

)
|νβ〉 . (2.6)

Hence, though the initial flavor state was |να(t)〉 at t =0, it has become a super-
position of different flavor states at t >0, given that the matrix U is not diagonal.
The transition probability is

Pνα→νβ(t) = | 〈νβ| |να(t)〉 |2 =
∑
k,j

U∗αkUβkUαjU
∗
βje
−i(Ek−Ej)t. (2.7)

As neutrinos are ultra-relativistic we can make two assumptions: (1) they travel
at the speed of light so we can approximate t = L, (2) Ek can be approximated
as Ek ≈ E +m2

k/2E, where E = |~p|. In this case

Ek − Ej ≈
∆m2

kj

2E , (2.8)

where ∆m2
kj ≡ m2

k − m2
j . In this approximation the transition probability of

equation (2.7) is

Pνα→νβ(L,E) =
∑
k,j

U∗αkUβkUαjU
∗
βj exp

(
− i

∆m2
kjL

2E

)
. (2.9)

In Appendix A it is shown that equation (2.9) can be written as

Pνα→νβ(L,E) = δαβ − 4
∑
k>j

Re(U∗αkUβkUαjU∗βj) sin2
(

∆m2
kjL

4E

)

± 2
∑
k>j

Im(U∗αkUβkUαjU∗βj) sin
(

∆m2
kjL

2E

)
,

(2.10)

where δ is the Kronecker delta function. The sign of the imaginary part depends
on whether neutrinos (+) or antineutrinos (-) are being considered.

The frequency of the oscillation probability is determined by L,E, and the
mass squared difference ∆m2

kj, the latter being a physical constant. The amplitude
of the oscillation probability is determined by the elements of the mixing matrix
U , which are fundamental constants.

There are two take-away messages from this derivation: (1) The free parame-
ters of the oscillation probability are the neutrino energy E and the propagation
length L, and (2) if a transition is to occur there must be a mass difference
∆m2

kj 6= 0. The latter notion implies that neutrinos must have mass to oscillate.
Note that equation (2.10) is derived for a neutrino propagating in vacuum.

When neutrinos propagate through matter, they can scatter coherently with
electrons in the matter, giving an additional potential that will affect the oscillation
probabilities. One type of matter effect is Mikheyev-Smirnov-Wolfenstein[17].
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Chapter 2 Neutrinos in the Standard Model and Beyond

2.4 Neutrinos Beyond the Standard Model
Within the Standard Model, neutrinos do not have mass. Yet, as seen in

the previous section, neutrinos must have mass to oscillate. Thus neutrino
oscillations are one of the only experimental deviations from the otherwise
successful Standard Model.

The neutrino mass can be introduced in the Standard Model in the same
way as for other fermions, i.e., with the Higgs mechanism. This can be done
by introducing a new fermion field for a right-handed chiral neutrino that is
completely neutral under U(1)

⊗
SU(2). When coupling to the Higgs field, this

would yield a neutrino mass, presumably comparable to that of the electron.
However, neutrino masses are extremely small. The most stringent upper bounds
on the ν̄e mass is mν̄e <2.05 eV (at 95% CL), and cosmological data indicate∑
jmj . (0.3–1.3) eV (at 95% CL) [17]. This would imply an unnaturally small

coupling to the Higgs field. While this is possible, the seesaw mechanism provides
an attractive explanation for the smallness of the neutrino masses.

The seesaw mecahnism Because the right-handed chiral neutrinos (left-handed
chiral antineutrinos) transform as singlets under Standard Model gauge transfor-
mations, we can introduce mass to these fields alone without breaking the gauge
invariance, via a Majorana mass term. The right-handed chiral neutrinos (left-
handed chiral antineutrinos) can couple to left-handed neutrinos (right-handed
antineutrinos) with a Dirac mass term, that is generated through the Higgs mech-
anism and have a similar size as the other fermions, O(1) eV. The Majorana mass
is not arising from the Higgs mechanism, and is therefore expected to be tied to
some energy scale of new physics beyond the Standard Model, O(1015) eV. Thus,
any process involving right-handed neutrinos will be suppressed at low energies.
The corrections due to the suppression effectively give the left-handed neutrino
a mass that is inversely proportional to the right-handed Majorana mass. This
mechanism would explain both the smallness of the left-handed neutrino and the
absence of right-handed neutrinos in observation.

Neutrino mass ordering It is not only the mechanism behind the neutrino mass
which is an open question. The absolute values of the neutrino masses are also
unknown. Vacuum oscillations depend on the (squared) mass difference in a
sine or cosine function, equation (2.10). Thus, the oscillation probabilities are
insensitive to the sign of the (squared) mass difference. In other words, neither
the absolute mass nor the ordering of the neutrino mass states can be derived
from vacuum neutrino oscillation studies. We can either have normal (∆m2

32 is
larger than ∆m2

21) or inverted ordering (the other way around).

2.5 Neutrino-Nucleus Interactions
The neutrino interacts only via the weak force (and gravitationally). The

weak interaction is either mediated by the W± boson, in a so-called charged
current (CC) interaction, or by the Z boson in a neutral current (NC) interaction.
In a charged current interaction, the neutrino is converted to the corresponding
charged lepton (left diagram of Figure 2.2a). In a neutral current interaction, the

8
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(a) (b)

Figure 2.2. – (a) Neutrinos can interact weakly either via charged current (left) or neutral
current (right) interactions. (b) The diagram of a neutrino-quark scattering
interaction. From [18].

neutrino can change energy and momentum but is not converted (right diagram
of Figure 2.2a). It will be useful for later discussions of the experimental setup
of IceCube to review how neutrinos interact with matter in the relevant energy
regime. Matter consists of both leptons and hadrons, but as the electron-neutrino
cross section is tiny, it will be ignored henceforth.

CC neutrino-quark scattering In the energy range relevant for this work, Eν &
10 GeV, neutrinos dominantly interact with hadrons through deep inelastic scat-
tering (DIS). This means that the neutrino is scattering on the constituents of
the hadrons within the atomic nucleus. The nucleon is then broken apart and
the quarks hardronize. Figure 2.3 shows that deep inelastic scattering is the
only significant interaction above 100 GeV. The measurements show that at high
energies the cross section is almost independent of the energy, confirming that
the neutrinos are indeed scattering of partons.

An example of a deep inelastic scattering process is νµ + d→ µ−+u, depicted
in Figure 2.2b. A muon neutrino with four-momentum p1 scatters of a quark
within the nucleon with four-momentum p2, and a muon and a different quark,
with momentum p3 and p4 respectively, are produced in the interaction. Looking
at the diagram of Figure 2.2b, we can define some variables that will be useful in
later chapters

s ≡ (p1 + p2)2 (center-of-mass energy), (2.11)
−Q2 ≡ q2 ≡ (p1 − p3)2 (momentum transfer), (2.12)

x ≡ Q

2p2 · q
(elasticity of interaction). (2.13)

As the W± boson only couples to left-handed chiral states, the only possible
combination in the neutrino-quark scattering of Figure 2.3 is LL→ LL. In the
low energy range where |q|2 � m2

W , the strength of the weak interaction is given
by the Fermi constant, GF . Assuming that the energy of the neutrino is much
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Figure 2.3. – Total neutrino (left) and antineutrino (right) per nucleon charged current
cross sections divided by neutrino energy and plotted as a function of
energy. From [19].

larger than the mass of the contributing lepton, Eν � ml, the total cross section
for neutrino-quark scattering is given by

σ = G2
F s

π
. (2.14)

Note that the cross section grows linearly with center-of-mass energy, s. It can
be shown that due to the chiral nature of the weak force the cross section of
antineutrino-quark scattering, ν̄µ + u→ µ+ + d, is three times smaller than the
neutrino-quark cross section. As seen in Figure 2.3, this translates to a consider-
ably smaller cross section for antineutrino-nucleus charged current interactions
(right), when compared to neutrino-nucleus CC interactions (left).

The strength of the weak force in the low energy range is given by

GF =
√

2g2
W

8m2
W

= 1.1663787(6)× 10−5GeV−2, (2.15)

which means that the neutrino-quark cross section is tiny. As the neutrino only
interacts weakly with matter, the neutrino cross section with matter is extremely
small compared to that of other elementary particles. In the next chapter, we will
see how this property puts specific requirements on the experimental setup of
neutrino experiments.
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3The IceCube Detector

The detection of neutrinos is always challenging due to their small cross section.
A huge detector volume is required to observe a significant number of neutrinos.
The IceCube Neutrino Observatory is the largest neutrino detector in the world
and uses about a cubic kilometer of the glacial ice sheet at the South Pole as a
detection medium. It has been fully operational since 2011. Its primary scientific
objective has been the search for neutrinos originating from outside our solar
system, which was achieved in 2013 [20]. The physics program also includes
studies of neutrino oscillations, supernova detection, dark matter detection, and
searches for exotic particles.

3.1 Cherenkov Radiation
When neutrinos hit the ice molecules, charged particles are produced, either

in CC interactions or in the hadronic cascade from DIS NC interactions. As a
charged particle transverses the ice, it will polarize the molecules along its track,
since ice is a dielectric medium. After its passage, the molecules will return to
the unpolarized state through the emission of photons. The photons will travel at
a phase speed of light in the medium, vγ = c/n, n being the index of refraction
of the medium. If the velocity of the particle is greater than the speed of light in
that medium vp > c/n, constructive interference occurs. The coherent wavefront
emitted is called Cherenkov radiation[21]. The IceCube detector is based on the
observation of this Cherenkov emission.

Cherenkov radiation has two characteristics: (1) photons are emitted a
unique angle, and (2) it has a particular frequency spectrum.

Figure 3.1. – Geometry of Cherenkov
radiation [18].

In figure 3.1, a charged particle travels
in a medium with speed vp = βc, β = vp/c.
In time t, the particle travels a distance
xp = βct. In this time the wavefront emit-
ted at t =0 has traveled a distance of
xγ = (ct)/n. The emission angle θc is there-
fore

cos θc = xγ
xp

= 1
nβ

. (3.1)

In ice the emission angle – or Cherenkov
angle – is around 40°.

Cherenkov radiation has a continuous frequency spectra: the intensity in-
creases with increasing frequency up to a certain cut-off. The cut-off occurs when
equation (3.1) is no longer satisfied. As the refractive index is dependent on the
frequency, n will approach zero at high frequencies – around x-ray frequencies.
Therefore, most Cherenkov radiation is in the ultraviolet region of the electromag-
netic spectrum. It can also extend down to the visible region and is then observed
as blue light.
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3.2 The Detector Medium
The IceCube detector is located at the South Pole, and detect Cherenkov

emission initiated by neutrinos interacting with the Antarctic ice. The Antarctic
glacier is formed from snow compressed under its own weight for millions of
years. In ice Cherenkov photons mostly scatter of air molecules. However, under
pressure air bubbles in the ice get embedded in the ice molecules, and effectively
disappear. Thus, the ice is very clear below a depth of 1400 m[22]. Photons can
then propagate hundreds of meters, and less dense instrumentation is required to
measure them[23]. Hence it is feasible to instrument a large, uniform volume,
which is required to measure the rarely interacting neutrino.

The slow formation of the glacier results in extremely low levels of radioactiv-
ity – which is a source of background signal[24]. Another source of background
is muons produced in cosmic ray interactions in the atmosphere. In order to
take advantage of both of the clear ice and the shielding from the glacier above,
IceCube is buried kilometers below the surface.

The trajectories of the Cherenkov photons are affected by scattering and
absorption. Measurements of the optical properties of the ice within IceCube,
indicate an anisotropy, caused by the alignment of ice molecules[23]. This empir-
ical observation is taken into account when modeling the scattering properties
of the ice. When the contribution from air molecules can be neglected, the rate
of absorption is determined by the length transversed in ice and the presence of
impurities in the ice – dust. Most notably there exists a dust layer, between 2000
and 2100 m below the surface. In this region, the absorption and scattering of
photons are much higher. Beneath the dust layer, the ice is at its clearest.

When deploying instrumentation into the ice, the ice in the hole will re-freeze.
The process results in a bubble column along the string. The hole ice with the
bubble column is a significant systematic uncertainty in IceCube.

3.3 Digital Optical Module (DOM)
In IceCube the Cherenkov photons are detected using digital optical modules

(DOM). The DOM is the fundamental detector unit in IceCube and converts
light in the ice into an electronic signal. The main components of a DOM are a
25.4 cm downward-facing photomultiplier tube (PMT), a mainboard containing
the necessary electronics to supply power and digitize the signal, an array of
light-emitting diodes (LED), and a 33 cm glass sphere, which encloses all of the
above (Figure 3.2). The LEDs are used for calibration purposes, like verifying
the timing response of the DOMs, measuring the relative position of the DOMs,
measuring the optical properties of the ice, and verifying the performance of
reconstruction methods. The glass sphere hangs in a cable by a harness and is
designed to withhold a pressure of 250 bar.

Photomultiplier Tube The detection of a photon starts when it crosses the glass
sphere of the DOM, and enters a gel that is used to optically couple the sphere
and the PMT. Once in the PMT, the photon can be absorbed by a photocathode,
emitting an electron by the photoelectric effect. The efficiency of this process –
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the quantum efficiency – is around 25%[24]. The electron is multiplied in a series
of dynodes, yielding a total amplification of the signal of 107. The signal is read
out as a change in voltage of the PMT anode. The PMTs are sensitive to photons
with a wavelength between 300 nm and 650 nm, coinciding with the wavelength
range of Cherenkov radiation in ice.

Figure 3.2. – Schematic of a DOM.

Digitization If the voltage at the PMT
anode exceeds a threshold of 25% of
the voltage peak of a single electron,
a «launch» is triggered. A time series
of measured charge – the waveform –
is digitized by three circuits running in
parallel; two analogue transient wave-
form digitisers (ATWD) and one fast
analogue-to-digital converter (fADC).
There are two ATWDs in case the DOM
is hit again while the first ATWD is
still digitizing. The ATWDs have a
high sampling resolution, 3.3 ns, and a
recording duration of 427 ns. The high
resolution is required for the event re-
construction algorithms to determine
the position of the photons at low pre-
cision. The fADC has a lower rate, but
a maximum recording duration of 6400 ns.

Local Coincidence If a DOM launches it communicates with the nearest and
next-to-nearest neighbor to determine if any of these DOMs have also launched
within ±1µs. If two or more DOMs fulfill the criteria, they are in hard local
coincidence, and a full waveform from both the ATWD and the fADC is compressed
and included in the readout. If the DOM launches but does not fulfill the criteria
of local coincidence the readout is done in a low-resolution mode only.

The detector observables are the charge Q deposited in the DOM during a
time interval t+ ∆t. Reconstructing the energy and direction of an event entails
piecing together the observables from several DOMs.

3.4 Detector Layout
The DOMs are arranged in strings, deployed on a triangular grid with 125 m

horizontal spacing, making up a hexagonal footprint when seen from above
(Figure 3.3).

The in-ice array The in-ice array is deployed between 1450 m and 2450 m below
the surface of the ice[24]. It consists of 86 strings. Each string consists of 60
DOMs, with a vertical separation of 17 m. The in-ice array is designed for the
detection of astrophysical neutrinos with energy between O(1) TeV and O(1) PeV
and has an lower energy threshold of around Eν = 50–100 GeV[24].
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Figure 3.3. – Layout of the IceCube detector. From [25].

DeepCore A subset of the in-ice DOMs makes up the DeepCore sub-array. This
subset is deployed below the dust-layer where the ice is at its clearest, approxi-
mately in the center of the in-ice array. DeepCore consists of 8 specialized strings
of sensors and 7 of the central standard IceCube strings [26]. The strings are
more densely spaced, separated by 41 m to 105 m. The DOMs of the 8 specialized
strings have a 7 m vertical separation and a 35% higher quantum efficiency than
the standard IceCube DOMs. DeepCore utilizes the rest of the IceCube detector
to veto background muons from the atmosphere. The denser geometry and
increased efficiency result in a lower energy threshold of Eν ∼10 GeV. With
this lower energy threshold, DeepCore can be used for atmospheric neutrino
oscillation studies.

IceTop IceTop is located on the surface of the ice and consists of 162 ice-filled
tanks, arranged in 81 stations, using approximately the same grid on which the
in-ice array is deployed. Each tank consists of two DOMs. IceTop serves as a veto
for the detection of downward-going neutrinos in IceCube but is also used for
cosmic ray studies.

3.5 Event Signatures in DeepCore
By using the information recorded by each DOM – the charge Q and time

t – one can reconstruct the energy and direction of the neutrino that initiated
the Cherenkov emission. However, in neutrino oscillation studies, one also needs
to know the neutrino flavor. Unique identification of flavor in water Cherenkov
detectors can be difficult, and sometimes impossible, but an indication can be
found in the event signature. Figure 3.4 depicts the signatures that can be
expected for different deep inelastic scattering neutrino interactions in DeepCore.

Particle energy loss in matter The particles produced in the deep inelastic scat-
tering interactions of neutrinos and ice molecules, will lose energy as they propa-
gate through the ice. Energy loss in matter is of relevance to later chapters, which
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Figure 3.4. – Possible experimental signatures of neutrino interaction in DeepCore.
Dashed lines represent neutrinos, orange lines are muons, red lines are
particles originated in a hadronic cascade and blue lines are electrons and
photons. From [27].

justifies the following brief overview. If the produced particle – the secondary
– is charged and sufficiently energetic, it can interact electromagnetically with
the atoms in the ice, causing the atom to lose an electron and thus ionize. The
energy loss through ionization per unit length traversed, dE/dx, is modeled by
the Bethe-Block formula, which shows that dE/dx ∝ 1/v2. Thus the energy loss
through ionization is larger for low-velocity particles.

Above a critical energy, the charged secondary will lose energy through
bremsstrahlung, whereby it radiates a photon in the electrostatic field of a nucleus.
If the produced photon is sufficiently energetic, Eγ > 10 MeV, it will pair produce
e−e+ in the field of a nucleus. Thus a cascading process of bremsstrahlung and
pair production is initiated: an electromagnetic shower. The length of the shower
is defined in terms of radiation lengths, i.e., the average distance over which the
electron loses 1/e energy due to bremsstrahlung. When the average energy of
the electrons, positrons, and photons in the shower falls below the critical energy,
they will start to lose energy through ionization.

Bremsstrahlung occurs for all charged particles but is inversely proportional to
the square of the particle mass. This entails that lighter particles lose more energy
through bremsstrahlung. Hence the muon rate of energy loss by bremsstrahlung is
suppressed by (me/mµ)2 relative to that of electrons, and only become a significant
at Eµ >100 GeV.

Charged hadrons lose energy through ionization as they travel through matter,
but they can additionally lose energy in strong interactions with nuclei of the ice,
and produce particles. These particles will again interact strongly with nuclei
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Figure 3.5. – Event view of νe, νµ and ντ for a typical DeepCore neutrino energy of
50 GeV. The color represent the time-stamp for the hit, red being earlier
hits and green later. The size of the dot represents the deposited charge.
Figure from [29].

downstream, giving rise to a cascade of particles: a hadronic shower. The mean
distance between hadronic interactions is given by the nuclear interaction length,
λint. The nuclear interaction length is longer than the radiation length, and the
hadronic shower will thus be more extended than the electromagnetic shower.

Cascade Electromagnetic showers are produced in CC νe and some CC ντ inter-
actions (blue showers of Figure 3.4). Hadronic showers are produced in all deep
inelastic neutrino interactions (red showers of Figure 3.4). As the electromagnetic
shower, in general, is more contained than the hadronic shower, it can overlap
with the hadronic cascade, making them indistinguishable. However, the distance
between DOMs is large compared to both the hadronic and electromagnetic
shower volume, and the light pattern spreads out almost spherically – resulting in
a cascade event. Cascade events are often entirely contained within the detector,
resulting in good energy resolution. For NC events the energy reconstruction is
biased toward lower energies, as some energy is carried away by the undetectable
neutrino.

The decay of leptons is mediated by the weak interaction exclusively. It can
be shown that the mean lifetime, τl, at low energy, ml � mW , is τl ∝ 1/(G2

Fm
5
l ).

Thus the relatively high mass tau lepton produced in CC tau neutrino interactions
will decay quickly to produce a cascade event.

Tracks The muon does, (1) not lose energy quickly through bremsstrahlung,
and (2) have a longer lifetime than the tau lepton due to the mass difference.
Thus it will travel significant distances through the ice, resulting in a track event.
This unique signature entails that the muon is the only particle from neutrino
interactions that can be identified with some confidence in IceCube. Muons are
produced in the CC interaction of νµ, and in some cases, the tau lepton from a
CC ντ interaction decays to a muon (∼ 17% BR) [28]. At DeepCore energies,
the angular resolution of tracks is generally better than for cascades. The energy
resolution is usually worse, particularly at high energy, since the muon track
might not be contained within the detector volume.
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Figure 3.6. – The survival probability of muon neutrinos (averaged over νµ and ν̄µ) as a
function of zenith angle and energy. Figure from [31].

In general events at higher energy show much more well-defined topologies,
resulting in clearer event signatures in the main IceCube array than in DeepCore.
Even muon tracks can be so short at DeepCore energies that they are easily
mistaken for cascade events. Figure 3.5 shows some typical event views of νµ, νe,
and ντ events, for neutrino energy of around 50 GeV.

3.6 Neutrino Oscillation Studies in DeepCore
IceCube is designed as a neutrino observatory, meaning that its main science

goal is the observation of astrophysical neutrinos. To shield for cosmic ray
background, IceCube is designed to be more sensitive to upward-going neutrinos.
The PMTs of the DOMs are facing downward and measure Cherenkov radiation
initiated by neutrinos that have traveled through the Earth. The oscillation
probability of equation (2.10) is dependent on the neutrino path lengths, L, and
the neutrino energy, Eν . The neutrino path lengths in IceCube – the baseline of
oscillation – range from 10 km to 12 700 km, depending on the zenith arrival
angle, θz, of the neutrino.

Given the range of baselines, one can in principle observe oscillations of
neutrinos with 1 GeV . Eν . 25 GeV. However, due to background rejection and
reconstruction, DeepCore has an energy threshold. In recent IceCube analyses,
the event sample extended down to 5.6 GeV [30]. Thus, there is a lower limit
to the zenith arrival direction of neutrinos undergoing oscillations that can be
observed with DeepCore.

There are two possible signatures of neutrino oscillations: appearance, i.e.,
observation of neutrino flavors not expected unless oscillation occurs, and disap-
pearance, i.e., observation of fewer neutrinos of a particular flavor than expected,
unless oscillation occurs.

νµ+ ν̄µ disappearance Because of the large mass splitting of ∆m2
32, the strongest

flux modification that oscillations produce is muon neutrino disappearance. The
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Figure 3.7. – The Upgrade array geometry. Red marks on the left panel shows the layout
of the 7 IceCube Upgrade strings with the IceCube high-energy array (blue)
and its sub-array DeepCore (green). The right panel shows the depth
of sensors/devices for the IceCube Upgrade array. The different colors
represent different optical modules and calibration devices. From [33].

survival probability of a muon neutrino as a function of path length through
the Earth is shown in Figure 3.6. For the largest baseline, cos θz = –1, there is a
maximum νµ disappearance at about 25 GeV. At lower energies, the maximum
shifts towards a more horizontal direction.

Based on the muon neutrino disappearance observation, with three years of
data of neutrinos with energy between 10 GeV and 100 GeV, IceCube has put
limits to the mass splitting, ∆m2

32, and the mixing angle, sin2 θ23[30].

ντ appearance Because of the smallness of ∆m2
13 the wavelength of the oscilla-

tion probability of Eν ≤ 10 GeV is too large to be detectable over the baseline of
the Earth, and νµ → νe is negligible. Thus, muon neutrinos that disappear appear
as tau neutrinos in the detector, and the maximum νµ disappearance is matched
by a maximum ντ appearance at 25 GeV. The latest measurement of tau neutrino
appearance was published in 2019 and is the topic of Section 8.6 [30].

3.7 The IceCube Upgrade
Recently, the IceCube collaboration received funding for an upgrade, to

be deployed in the 2022/2023 Antarctic summer season [32]. The Upgrade
consists of seven new strings, embedded near the bottom center of the existing
layout, between 2150 m and 2425 m below the surface (Figure 3.7)[33]. The
instrumentation will be much more dense, with a horizontal spacing of 20 m and
vertical spacing of 3 m[33]. The strings will consist of around 700 optical sensors,
and new optical sensors will be deployed: Multi-PMT Digital Optical Module
(mDOM) and Dual optical sensors in an Ellipsoid Glass for Gen2 (D-Egg) [33].
There are three science goals of the Upgrade:
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Figure 3.8. – Fully contained atmospheric νµ (left) and ντ (right) in the DeepCore
(dashed lines) and Upgrade (full line) arrays, at analysis level event selec-
tion. Red is the inner fiducial area (r = 50 m) and blue is the outer fiducial
area (r = 145 m). From [33].

More Sensitive Oscillation Studies The Upgrade entails denser and more effi-
cient instrumentation. As a result, the DeepCore sensitivity at low energies will be
improved, and one will be able to measure photons from interactions of neutrinos
with energy O(1) GeV [33]. Figure 3.8 shows a significant enhancement in the
event rates below 30 GeV for muon neutrinos (left) in the Upgrade array (full
lines) compared to the present day DeepCore (dashed lines). As the enhancement
is in energy regions relevant for oscillation studies, DeepCore will have an overall
improved sensitivity to oscillation effects.

The right plot of Figure 3.8 shows that a considerably larger rate of ντ will be
detected after the Upgrade, as the discrimination between tracks and cascades will
be improved compared to DeepCore. Both due to a larger sample and improved
reconstruction, the sensitivity to ντ appearance will increase. The Upgrade
strings will surpass the precision of the world’s most accurate measurement of ντ
appearance by a significant amount [33].

Improved Calibration The understanding of the ice properties, how the DOMs
function in situ, and how the hole around each string re-freezes is limited – since
the DOMs cannot be investigated once they are installed. This is a significant
source of systematic uncertainty in studies of astrophysical neutrinos.

One goal of the Upgrade is to improve calibration. Each optical module of the
Upgrade strings encloses several calibration devices, such as LEDs and cameras.
In between the modules, stand-alone emitters are also planned to be deployed.
With the new calibration, ten years of data can be re-analyzed with a smaller
systematic uncertainty. Combined with a better angular resolution, this will result
in improved sensitivity in searches for astrophysical point sources.

R&D for IceCube Gen-2 The upgrade is also a development platform for the
future. There are plans to expand IceCube to IceCube Gen-2, an 8 km3 neutrino
detector, to improve the sensitivity in astrophysical point source searches[34].
The plan is to use smaller sensors, to reduce costs, and these can be tested in the
Upgrade.
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Within the energy range that DeepCore is sensitive to, naturally occurring neu-
trinos are of atmospheric origin. In the following chapter, I will present the
properties of the atmospheric neutrino flux, and provide an outline of how these
properties can be derived.

Atmospheric neutrinos are produced when cosmic rays (Section 4.1) collide
with particles in the atmosphere and initiate air showers (Section 4.2). The
production modes of atmospheric neutrinos result in a characteristic flavor com-
position of the flux (Section 4.4). The flux also exhibits an azimuthal dependency
due to the geomagnetic field (Section 4.5), and a zenith and seasonal dependence
due to the atmosphere of the Earth (Section 4.6).

4.1 Cosmic Rays
Cosmic rays consist of about 90% protons, 9% helium nuclei, and the rest

being heavier nuclei. The nuclei are accelerated up to extremely high energies in
astrophysical sources, the nature of which is still unknown, and is the topic of
intense research.

The observed cosmic ray flux covers an energy range from below 109 eV up to
several 1020 eV. To perform measurements over 11 orders of magnitude in energy,
a variety of different detection methods must be utilized. Below ∼ 100 TeV, cosmic
rays are measured directly in air-born or satellite experiments, such as AMS[35],
PAMELA[36], ATIC-2[37], CREAM[38] and TRACER[39]. At higher energies,
cosmic rays are measured indirectly, through air shower experiments like the
Pierre Auger Observatory[40] and KASCADE-Grande[41].

In Figure 4.1, the all-particle cosmic ray flux, as measured by air-born,
satellite, and air shower experiments is plotted. The spectrum exhibits some
features, and cannot be described by a single power law. At lower energies, it is
observed that a power law of E−γ, γ ≈ 2.7, can describe the cosmic ray spectra.
At around 3 PeV – the so-called «knee» – there is a steepening of the spectrum
caused by the spectral index changing to γ ≈ 3.1. At about 3 EeV there is a
softening of the spectrum, called the «ankle», with γ ≈ 2.7.

The most popular theory is that transitions from different sources of accelera-
tion cause the broken power laws of the cosmic ray spectrum. As first pointed out
by B. Peters[43], there is a maximal energy to which particles can be accelerated,
which depends on the rigidity R = Pc/(Ze), where P is the total momentum of
the nucleus and Ze is its electrical charge. A cut-off will first be observed in the
proton flux. Following this, a cut-off is expected on the helium, carbon, an so
on, flux at energies equal to the electric charge of the nuclei times the maximum
energy of an accelerated proton.

Most attempts to parametrize the cosmic ray spectrum are based on the
theory by B. Peters. Several models are assembled series of «Peter cycles»: broken
power-laws with rigidity dependent cut-offs. Examples of these are the H3a[44],
the GST-3/GST-4[45] and the Gaisser-Honda[46] model, further described in
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Figure 4.1. – All-particle cosmic ray spectrum. Experimental results plotted as dots. The
lines are obtained from parametrizations. Figure from [42] by R. Engel.

Appendix B. The resulting all-particle spectrum predicted by the various models
is superimposed on air shower data in Figure 4.1.

In contrast to the mentioned models, the Global Spline Fit does not build
on any theoretical assumptions[65]. Rather than being based on power-laws
and rigidity dependent cut-offs, the approach of splining between data from
measurements is taken. Thus the only assumption is a smoothly varying flux.

4.2 Air Showers
The energy of the cosmic ray particles far exceeds the binding energy of the

air molecules in the atmosphere. As a cosmic ray collides with an atom in the
atmosphere, the atom will break up in a deep inelastic scattering interaction,
resulting in a hadronic and an electromagnetic cascade. The height at which the
cosmic ray-air collision occurs will vary with the density of the atmosphere but is
often O(10-20) km above the surface of the Earth.

Electromagnetic cascade The most abundant particles in the cascade are the
lightest mesons: pions and kaons. When the pions re-interact there is a 30%
probability of producing a neutral pion, which almost exclusively decays to
photons and electrons. Thus, the hadronic cascade also feeds an electromagnetic
component of the shower. Since most hadrons re-interact, most of the energy
of the cosmic ray eventually finds its way into the electromagnetic component.
Hence, most of the energy of the air shower is dissipated by ionization losses of
electrons and positrons. However, for the scope of this work, the electromagnetic
component is of little interest: it rarely converts energy back to neutrinos. As the
electromagnetic component of the air shower gives a negligible contribution to
the neutrino flux, it will henceforth be ignored.
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Figure 4.2. – The curves represent the average particle number per cascade, counting all
particles with an energy above 30 GeV for an incoming proton at 45° zenith
angle and 10 PeV energy. Figure from unpublished work by A. Fedynitch
and R. Engel [47].

Hadronic cascade As for the hadronic component, hadrons can re-interact to
create sub-cascades or decay. The number of particles in the shower will reach
a maximum, after which the shower attenuates as fewer and fewer particles in
the shower have enough energy to produce secondaries. In Figure 4.2, one can
see that the number of mesons in a shower initiated at around 35 km above the
surface is drastically reduced at altitudes smaller than 10 km above the ground.
However, muons, due to their long lifetime, and neutrinos, due to their small
cross section, will reach the ground. Figure 4.2 demonstrates this effect by the
monotonic increase of the muon and neutrino particle density.

4.3 The Cascade Equation
As the oscillation probability depends on the energy of the neutrino, we are

interested in the energy spectrum of neutrinos and define the flux as a differential
expression

Φh = dφh
dE

= dNh

dEdAdΩdt, (4.1)

where A is a differential area and Ω is a differential angle. The number of particle
species h, h = π+, π−, K+..., is Nh.

Now, imagine that you choose a small volume of the atmosphere, and count
the number of particles at a certain time interval as an air shower transverses
the imagined volume. The change of number of particles of type h over the
time interval is described by the Boltzmann equation: dNh = f(r,p, t)d3rd3p,
where f is a probability density function and d3rd3p is the volume of atmosphere
and momentum space. The number of particles of type h can either increase
or decrease over the time interval. The number would decrease as particles of
type h decay into particles of type k, or as particles of type h interact with air
molecules and produce particles of type k. When counting over a momentum
space, the number can also decrease as particles of type h lose energy. However,
the number of particles of type h can also increase: particles of type k can enter
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the imagined volume and decay into particles of type h, or as they enter, interact
with air molecules and produce particles of type h.

Rather than describing the development of the shower in terms of time, we
can differentiate with respect to the slant depth. The slant depth is the amount of
material penetrated by the shower and is calculated by integrating the density
of the air from the height at which the air shower is initiated to the altitude in
question, h0.

X(h0) =
∫ h0

0
dlρair(l), (4.2)

where l is the path length and ρ is the air density. For a homogeneous medium,
the slant depth is simply the density multiplied with the path length, X = lρ.
However, the density of the atmosphere varies. How this affects the integral is
further discussed in Section 4.6.

To sum up, three processes can cause the number of particles of type h
to decrease, and two processes can lead to an increase. This five-term linear
Boltzmann transport equation in terms of slant depth is termed the cascade
equation.

dΦh(E,X)
dX

=− Φh(E,X)
λint,h(E) (4.3a)

− Φh(E,X)
λdec,h(E,X) (4.3b)

− ∂E(µ(E)Φh(E,X)) (4.3c)

+
∑
k

∫ ∞
E

dEk
dNk(Ek)→h(E)

dE

Φk(Ek, X)
λint,k(Ek)

(4.3d)

+
∑
k

∫ ∞
E

dEk
dNdec

k(Ek)→h(E)

dE

Φk(Ek, X)
λdec,k(Ek, X) . (4.3e)

In the following, I will go through each term of the cascade equation, ex-
plaining all variables.

The first sink term (4.3a) model the loss of particles of type h due to interactions
with air nuclei. The rate of particle interaction is expressed as the flux of particle
h divided by the average distance traveled by a particle between two successive
collisions, i.e., the interaction length

λint,h(E) = 〈mair〉
σinel

p-air(E)
. (4.4)

The air-molecule is approximated as an average reflecting the atmospheric com-
position of oxygen and nitrogen nuclei, meaning that 〈mair〉 = 14.5mp, where mp

is the proton mass. As seen in Figure 4.3a, the inelastic cross section for baryons
and mesons grows with energy. As the cross section increases with energy, the
interaction length will decrease with energy (dashed line of Figure 4.3b).
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Figure 4.3. – (a) Hadron-air cross section as calculated with the DPMJET-III (dashed
lines) and SIBYLL2.3c interaction models (see Section 5.2). The black
curves represent all baryons, green curves all light mesons and red curves
all heavy mesons. The collision energy in the rest frame of the air molecule
is Elab. (b) Decay lengths for a selection of hadrons. Superimposed is the
interaction length λint of K± and π±.

The second sink term (4.3b) models the loss of particles of type h due to decay
into particles of type k. The average distance a particle travels before decay is
expressed in the decay length

λhdec(E,X) = cτhEρair(X)
mh

, (4.5)

where τh and mh is the lifetime and mass of particle h respectively.
In Figure 4.3b I have plotted the decay length λhdec ≈ (cτhE)/mh. Since

the lifetime is dilated for ultra-relativistic particles, a proportionality to E is
introduced, visible as a near-linear dependence of λhdec on E. The D± meson has
a lifetime five orders of magnitude smaller than that for charged pions.

The intersection in Fig. 4.3b, where λdec = λint, is the critical energy, ε.

εh(ρair) = mhc
2ρair

cτh
. (4.6)

As an example, charged pions have a critical energy of ε ≈ 115 GeV. Below 115 GeV
the decay length is smaller than the interaction length, and charged pions tend
to decay. Charged pions with an energy higher than 115 GeV are more likely to
interact with air nuclei and initiate sub-cascades than to decay. This means that
in the energy range relevant for this work, Eν &100 GeV, decay is the dominant
production mode of atmospheric neutrinos.

The energy loss term (4.3c) is due to energy loss through bremsstrahlung and
ionization. As the electromagnetic cascade is ignored, the energy loss does mainly
affect the muons of the hadronic shower, that lose energy through ionization. The
Bethe-Block formula gives the stopping power µ(E).
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The gain terms (4.3d) and (4.3e) In the case of zero particle coupling and negli-
gible energy loss, equation (4.3) is a homogeneous linear first-order differential
equation where the solution has a simple exponential form. The couplings, either
due to inelastic hadronic interactions with air or due to decay, link the evolution of
different species h and thus increase the complexity of the system. The interaction
couplings are the differential cross section of particle production, normalized to
the total cross section of particle-air interaction.

dNk→h(Ek)
dE

= 1
σinel,k−air(Ek)

dσk→h(Ek)
dE

. (4.7)

Decays are expressed in a similar way

dNdec
k→h(Ek)
dE

=
∑
i

BRi,k→h
dNi,h

dE
, (4.8)

BRi denotes the branching ratio for a decay channel i.
Integrating equation (4.3) with respect to the slant depth will yield the

energy-dependent flux, and is one method of estimating the flux of particles at the
surface of the Earth. In the next section, relevant properties of the atmospheric
neutrino flux are presented.

4.4 Overview of Neutrino Flux Calculations
Spectral index of the neutrino flux The energy dependence of the neutrino flux
is determined by the competition between decay and interaction of the parent
mesons, as well as the spectrum of cosmic rays. For instance, when Eνµ � επ+ , the
muon neutrinos are dominantly produced in the two-body decay of pions and the
spectral index of the muon neutrino flux will be that of the pion and hence of the
cosmic ray spectrum. This means that at low energies, Eν .100 GeV, we expect
the neutrino flux from meson decay to follow an E−2.7 power law. For Eν � εh,
the neutrinos are primarily a product of particle h interacting. As the cross section
of interaction depends on E, the neutrino spectrum will be one power steeper,
i.e., follow an E−3.7 power law. This is shown in the overall neutrino flux plot in
Figure 4.4.

Pion decay At low energies, the atmospheric neutrinos come primarily from the
two-body decay of charged pions and kaons and the subsequent muon decays.
The pion is the lightest meson, consisting of ud̄(π+), dū(π−), or (uū−dd̄)/

√
2 (π0),

and thus cannot decay through the strong interaction. Hence charged pions must
decay weakly to charged leptons. Specifically, the pion decays by π± → µ±νµ(ν̄µ)
with a branching ration of∼ 99.98%. This is a manifestation of the chiral structure
of the weak interaction: only left-chiral particles and right-chiral antiparticles
couple to the weak force.

In a π− decay, the produced antineutrino must be right-chiral. Since it is
effectively massless, mν � Eν , the chiral state is equivalent to the helicity state.
As the pion has spin 0, the lepton and neutrino in a pion decay must be produced
with oppositely directed spins. As the antineutrino is right-handed, conservation
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Figure 4.4. – The total flux (upper) of electron (blue), muon (red) and tau neutrinos
(green) and the flavor ratio (lower) averaged over zenith arrival angles at
the surface of the Earth.

of angular momentum implies that the charged lepton is also produced in a
right-handed helicity state. Since the weak force does not couple to right-hand
particles, the lepton is produced with the «wrong helicity» for weak interaction.
The reason why pion decay occurs at all is that helicity is not the same as chirality.
Because leptons have mass, the weak decay of right-handed helicity states can
occur. The higher the mass, the more likely will the helicity and chirality differ.
Thus the pion decay into the lightest lepton, the electron, is suppressed by a factor
of 10−4.

Because of the conservation of lepton numbers, muon decay exclusively to
electrons and neutrinos. Thus the pion decay chain is given as

π± → µ± +νµ(ν̄µ)

e± + νe(ν̄e) + ν̄µ(νµ)

A similar argument can be done for kaons, as charged kaons have a branching
ratio of ∼ 63% into muons and muon neutrinos. The other dominant decay
channels consist of charged and neutral pions.

2:1 flavor ratio If we assume that all neutrinos are created in pion decay, we
should, looking at the decay chain, expect a 2:1 ratio of νµ : νe. As can be seen in
the lower plot of Figure 4.4, this is indeed the case in the lower energy limit of the
relevant energy range, Eν . 100 GeV. However, at higher energy, the atmospheric
neutrino flux becomes almost entirely dominated by muon neutrinos.

In its own reference frame, the muon has a mean lifetime of τµ ∼2.2µs,
which corresponds to a path length O(600) m. However, the muons created in
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(a) (b)

(c)

Figure 4.5. – (a) Muon neutrino (νµ + ν̄µ),
(b) electron neutrino (νe+ν̄e),
and (c) tau neutrino (ντ + ν̄τ )
flux, split up into individual
contributions of parent parti-
cles. From [42].

the atmosphere are highly relativistic, and due to time dilation, they will typically
propagate tens of kilometers through the atmosphere before decaying. As the path
length depends on the muon energy, high energy muons will be more likely to hit
the ground before they have time to decay. A muon hitting the ground will lose
energy rapidly and produce only very low energy neutrinos that can be neglected
because they are below the threshold of IceCube or any future extensions. As
a result, the νe component of the neutrino flux from muon decay will decrease
rapidly with energy.

Based on the pion decay chain, it seems like a feasible approach to estimate
the neutrino flux based on the muon flux, which is much easier to measure.
However, this is only the case in the energy range where the muons are energetic
enough to reach the ground before decay, but before the energy is so high that
the kaon contribution to the neutrino flux becomes significant.

Kaon production dominates at higher energy Above Eν &100 GeV, there will
be a small νe flux of < 5% of the total atmospheric neutrino flux. The electron
neutrinos are dominantly produced via kaon decay. In general, the ratio of
neutrinos produced in kaon decay will increase with energy. This is due to
εK > επ, as seen in Figure 4.3b. Thus the contribution from pion decay will drop
off at lower energy than that of kaon decay. The contribution from kaon decay
increases with energy and become dominant at Eν &100 GeV. This means that
in the energy range relevant for this work, Eν & 100 GeV, νµ are dominantly
produced in pion decays and νe are dominantly produced in muon decay.
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Prompt atmospheric flux The neutrino flux can be divided into a conventional
and a prompt component. Prompt atmospheric neutrinos are produced in decays
of particles with a critical energy larger than the critical energy of the D± meson,
which is the most long-lived charmed particle. Since ε(D±) ∼5×107 GeV, the
prompt decay becomes dominant only at very high energies. Neutrinos from
charmed decay follow the spectral index of the cosmic ray flux, ∼ E−2.7.

The notions presented above is summarized in Figure 4.5, showing the
production modes of muon neutrinos (4.5a), electron neutrinos (4.5b), and tau
neutrinos (4.5c) as a function of neutrino energy. It illustrates how the prompt
flux becomes dominant at higher energy, due to the smaller spectral index.

Atmospheric tau neutrinos A tau neutrino is produced in association with the
heavy tau lepton (mτ ∼1.7 GeV). As the mass of the tau lepton exceeds that of
the pion and kaon, tau neutrinos cannot be created by light mesons. The first
available production mode is the decay of charmed mesons. This entails that the
ντ flux only has a prompt component. As seen in Figure 4.5c and Figure 4.4, the
contribution of tau neutrinos is negligible below 100 GeV. For this reason, the tau
neutrino component of the neutrino flux is ignored throughout this thesis, and
most results are shown only for the muon and electron neutrino component of
the atmospheric neutrino flux.

4.5 The Geomagnetic Field and the Azimuth
Dependence of the Neutrino Flux

The geomagnetic field affects both particles inside and outside the atmo-
sphere. Cosmic rays are subject to a rigidity cut-off, i.e. the geomagnetic field is
filtering out cosmic rays of low energy per unit charge. Since the geomagnetic
field is more complex than a simple, symmetric dipole, the rigidity cut-off is
strongly dependent on geographical location and direction, and must generally
be calculated with backtracing techniques [46]. This affects mostly cosmic ray
particles up to about 20 GeV.

The rigidity cut-off causes an asymmetry in the azimuthal arrival direction of
cosmic rays. Cosmic rays, being mostly protons, are generally positively charged,
and are thus deflected by the vertical component of the geomagnetic field. If
the cosmic ray is arriving from the North or South, its directionality is parallel
with the field lines of the geomagnetic field, and no deflection occurs. However,
if the cosmic ray is arriving from the East, its trajectory will be bent upwards,
away from any potential surface detectors. Correspondingly, the flux of cosmic
rays from the West will be enhanced, as a higher portion of the primaries is bent
towards the surface of the Earth.

The geomagnetic field also causes an asymmetry by muon bending. The field
will affect positively charged muons in the same manner as cosmic rays, causing
a reduced ν̄µ and νe, the decay products of µ+, flux from the East. Negatively
charged muons will bend in the opposite direction resulting in an enhanced ν̄e
and νµ from the East, and suppression from the West. However, the effect of
enhancing the µ− flux from the East, is working in the opposite direction as that
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Figure 4.6. – Azimuth dependence of the flux of neutrinos with Eν = 3.2 GeV in 5 zenith
angle bins at the South Pole. The angle is measured counter clockwise from
the meridian degree of 180° longitude. From [48].

of the rigidity cut-off, so the azimuthal dependency will assume a much more
complicated form (upper left and lower right plot of Figure 4.6) than when the
muon bending and rigidity cut-off is working in the same direction (upper right
and lower left plot of Figure 4.6), as it is with ν̄µ and νe.

The azimuthal asymmetry at the South Pole is small, as the geomagnetic
field is almost vertical, with only a small horizontal component that increases
at small zenith angles. Thus muon bending and rigidity cut-off will only affect
particles coming from the horizon. As seen in Figure 4.6, there is only an
azimuthal dependency on events from the horizon, i.e. with a zenith angle
0.2< cos(θz) < −0.2 (green curves). Honda et al. found that the effect of the
geomagnetic field is negligible for Eν &10 GeV. Thus the azimuthal dependency
of Figure 4.6, which is plotted for the flux of neutrinos with Eν = 3.2 GeV, is
exaggerated compared to the relevant energies of DeepCore.
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energies. The full line is the summer flux, and the dashed line the winter
flux. Plot generated using MCEq [1].

4.6 The Atmospheric Density and Zenith
Dependence of the Neutrino Flux

The path length of a muon from the horizon is much larger (up to 500 km)
than when coming from above (about 20 km). Thus a larger fraction of muons
from above will hit the surface before decaying, resulting in a lower neutrino flux
from above. This zenith dependence is energy-dependent. Figure 4.7 is showing
the flux of muon neutrinos at three energies, as a function of zenith angle. In
the energy range where kaons and pions decaying to muons are the primary
production mode of atmospheric muon neutrinos, the flux is enhanced from the
horizon, cos θz = 0.

The flux of atmospheric neutrinos created in particle interaction will also
be enhanced from the horizon. This is because the particles of the shower will
have more potential targets when coming from the horizon than from above. The
prompt component of the flux is almost independent of the zenith angle (right
plot Figure 4.7), as charmed mesons have negligible decay lengths.

Both the decay length of equation (4.5) and the integrand of the cascade
equation – the slant depth of equation (4.2) – depend on the density of the atmo-
sphere, ρair. The most simplistic model of the atmospheric density is the isothermal
model, which assumes the pressure to decrease exponentially with height and
the temperature to be constant. However, the atmosphere contains layers and is
subject to daily and seasonal variations. An often-used approach, first proposed
by Linsey [49], is to model the atmosphere as five piecewise exponential functions
to account for the layers. An even higher degree of complexity can be achieved
with tabulated atmospheric data or numerical models, like NRLMSISE-00[50].

The atmospheric conditions also cause a seasonal variation in the flux. In
the summer, the density of the atmosphere will be increased at higher altitudes,
meaning that the air showers on average will be initiated at higher altitudes.
Thus the flux of atmospheric neutrinos will be increased during the summer. In
Figure 4.8 (upper), a 10% increase in the neutrino flux in the summer (December-
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Figure 4.8. – Seasonal variations of the atmospheric neutrino flux, generated using MCEq
[1]. The upper plot is showing an increase in summer (Jan. at the South
Pole) of the flux in all flavours, as compared to a yearly average. The
flavour ratio also varies seasonally. Lower plot is showing νe+ν̄e

νµ+ν̄µ of summer
(full line) and winter (dashed line) as compared to a yearly average.

February at the South Pole), when compared to an averaged yearly flux, is
shown. In regions where most atmospheric neutrinos are produced through
particle interaction, there is no seasonal variation, as the interaction length is
independent of the atmospheric density. The decay length of charmed mesons is
dependent on the density of the atmosphere, resulting in an increased prompt
flux at higher energies in the summer, compared to the winter.

As seen in Figure 4.8 (upper), the air density affects the electron neutrinos at
lower energies than the muon neutrino. This causes a seasonal variation in the
flavor ratio of the atmospheric flux, plotted in Figure 4.8 (lower). Compared to a
yearly average, the flux of low energy νe/ν̄e is lower in winter. This is because the
muon is produced lower in the atmosphere during winter, and more often hits
the ground before it has time to decay to νe/ν̄e.
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5Calculating the Atmospheric
Neutrino Flux with MCEq

An open-source program solving the cascade equation, equation (4.3), is MCEq1[1].
The solver of MCEq integrates over the slant depth to yield the inclusive atmo-
spheric lepton flux. This chapter intends to present an overview of the functional-
ity of MCEq, as it is used extensively for the remainder of this work.

5.1 Inclusive and Exclusive Neutrino Flux
Estimates

Over the last decades, the standard atmospheric neutrino flux estimates have
been based on Monte Carlo (MC) techniques. In these schemes, a realistic final
state is modeled on a single initial state, by tracking each particle of the air
shower. Thus the exclusive lepton flux, meaning the flux per shower, is estimated.
This is very much in contrast to analytical solutions, like MCEq, that predicts the
inclusive lepton flux, meaning the flux generated by an average of air showers.

In general, MC techniques are computationally demanding as they require
generation of initial state particles in all directions at all point on Earth. Speed up
tricks can be utilized, but the MC methods are still slower to run than analytical
methods.

As MC methods propagate each particle of the air shower, the lateral spread-
ing of the shower, both from transverse momentum acquired in the interactions
and from bending of charged particles in the geomagnetic field, is generally taken
into account. The cascade equation assumes that the direction of the products is
adjusted to lie along the trajectory of the primary cosmic ray at the point of the
first collision. This allows the calculations to consider only trajectories that point
directly at the detector, considerably reducing the computation time. In other
words, MCEq is a 1D approximation of the problem, whereas MC predictions are
generally made in 3D. This entails that the inclusive neutrino flux will have no
azimuth dependence. The geomagnetic field is ignored in calculations of inclusive
fluxes with the cascade equation. However, the effect of the geomagnetic field is
small at the South Pole and for neutrinos with energy Eν ≥ 10 GeV. Thus this loss
of complexity will not affect the current DeepCore oscillation studies [48].

5.2 Hadronic Interaction Models
Both inclusive and exclusive calculations of the atmospheric neutrino flux

rely on information about the probability of particle interaction, i.e., the cross
section between particles of the air shower and the air nuclei. This information
has to be generated using Monte Carlo methods.

Event generators, also called hadronic interaction models, have been developed
to describe the final state resulting from a high-energy collision. Among the event
generators that are commonly used to simulate air showers, four are updated

1https://github.com/afedynitch/MCEq/

32



Chapter 5 Calculating the Atmospheric Neutrino Flux with MCEq

with LHC data at 7 TeV: QGSJETII-03 [51], EPOS LHC [52], SIBYLL2.3c [53], and
DPMJETIII 17-1 [54].

MCEq uses SIBYLL2.3c as a default model as it is the latest model that
includes all relevant physics for air shower calculations. In particular, the 2.3c
version contains a model for the production of charmed hadrons and is therefore
capable of predicting the prompt flux. The hadronic interaction models included
in the current version of MCEq are listed in Appendix B.

Most event generators are focused on high-energy collisions. At high energy
the QCD coupling constant is small, and perturbation theory can be used to
calculate the cross sections. In the hadron collisions of an air shower, it is the
particles that are emitted in the forward direction, i.e., approximately parallel
to the collision axis, that is most relevant for the neutrino flux. The forward
collisions are characterized by a small momentum transfer, Q, between the
colliding hadrons. At these low energy scales, the QCD coupling constant is
large, αs ∼ O(1), and thus the collision cannot be described with perturbation
theory2. Thus, there is a lower limit in collision energy,

√
s, on the usage of event

generators based on perturbative QCD.

Some event generators, like SIBYLL2.3c, have a higher low energy limit
than others. To account for this MCEq allows for linear interpolation between
a low energy and a high energy interaction model. The user sets the threshold.
The initial version of MCEq supports only DPMJET-III as a low energy model.
DPMJET-III have a lower limit at

√
s =10-20 GeV [54], which causes an overall

limit to the reliability of MCEq predictions.

5.3 Limits of MCEq
The developer has put a lower limit on the operation of MCEq at Eν ∼10 GeV.

This is because MCEq (1) does not take the geomagnetic field, which becomes
relevant below Eν ∼10 GeV, into account, (2) utilize a set of hadronic interaction
models that have a lower energy limit above

√
s ∼10 GeV.

As the geomagnetic field is not taken into account, there is no difference
except for the seasonal variation in atmospheric density between the up- and
downgoing neutrino flux. Thus, within MCEq atmospheric neutrinos can be
generated with a zenith arrival direction of 0< cos θz <1.

2In the language of Feynman: An infinite number of Feynman diagrams can result in the same
final state. In higher-order-diagrams, more propagators are added, each introducing a vertex
that depends on the coupling constant. If the value of the coupling constant is small, the
contribution to the cross-section is negligible, and the reaction can be approximated as only
the lower-order-diagram(s). At low energies, the coupling constant is large, and an infinite
number of diagrams contribute to the matrix element – thus it cannot be calculated analytically.
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5.4 The Matrix Cascade Equation
The computing scheme of MCEq involves rewriting the cascade equation of

(4.3) into matrix form. This entails that the final solution of the matrix cascade
equation is a vector of the form

~Φ =
[
~Φp ~Φn ~Φπx · · · ~Φν̄µ · · ·

]T
, (5.1)

where each of the inserted vectors contains the scalar fluxes for each energy bin.
For instance

~Φp =
[
~Φp
E0

~Φp
E1 · · · ~Φ

p
EN

]T
. (5.2)

The energy bin is defined on a logarithmic grid, Ei = E0 · 10di, where E0 = 1 GeV
and d is chosen accordingly for ∼8 bins per decade of energy [1]. Thus, the flux
vector has dimension dΦ = (number of energy bins)× (number of particle species)
≈8000 [1]. When neglecting the energy loss term, and making the transition
dE → ∆E, the cascade equation for one energy bin, Ei, and one particle species
h becomes

dΦh
Ei

dX
=−

Φh
Ei

λhint,Ei
(5.3a)

−
Φh
Ei

λhdec,Ei(X) (5.3b)

+
EN∑

Ek≥Ei

∑
k

ck(Ek)→h(Ei)

λkint,Ek
Φk
Ek

(5.3c)

+
EN∑

Ek≥Ei

∑
k

dk(Ek)→h(Ei)

λkdec,Ek(X) Φk
Ek
. (5.3d)

By comparing equation (4.3) and equation (5.3) we find that the interaction
coefficients c are defined as

ck(Ek)→h(Eh) = ∆Ek
dNk→h(Ek)

dEh
= ∆Ek

1
σinel,k−air(Ek)

dσk→h(Ek)
dEh

. (5.4)

The decay coefficients d are defined as

dk(Ek)→h(Eh) = ∆Ek
dNdec

k→h(Ek)
dEh

(Eh) = ∆Ek
∑
i

BRi,k→h
dNi,h

dEh
, (5.5)

where BRi denotes the branching ratio of a decay channel i.
We want to express the terms of the cascade equation as matrices. The

numerator of the first and third term of equation (5.3), λint, can be arranged in a
diagonal matrix sorted with the same order of particle species as the flux matrix
(5.1).
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Λint = diag

(
1

λpint,E0

, · · · , 1
λpint,EN

, (5.6)

1
λnint,E0

, · · · , 1
λnint,EN

, · · ·
)
. (5.7)

The decay length is dependent on the slant depth, as well as the energy. If the
X dependence is factorized out, λdec = ρ(X)λ̃dec, the energy dependence of the
decay length can be expressed as a matrix

Λdec = diag

(
1

λ̃pdec,E0

, · · · , 1
λ̃pdec,EN

, (5.8)

1
λ̃ndec,E0

, · · · , 1
λ̃ndec,EN

, · · ·
)
. (5.9)

The production of particles of species h that come from interactions of particles k
can be written as a matrix of interaction coefficients

Ck→h =


ck(E0)→h(E0) · · · ck(EN )→h(E0)

ck(EN )→h(E1)
. . . ...

0 ck(EN )→h(EN )

 , (5.10)

and equivalently in case of decays

Dk→h =


dk(E0)→h(E0) · · · dk(EN )→h(E0)

dk(EN )→h(E1)
. . . ...

0 dk(EN )→h(EN )

 , (5.11)

The full interaction (decay) coupling are assembled in matrix C (D)

C =


Cp→p Cn→p Cπ+→p Cπ−→p Cn̄→p CK+→p · · ·
Cp→n Cn→n Cπ+→n Cπ−→n Cn̄→n CK+→n · · ·
Cp→π+ Cn→π+ Cπ+→π+ Cπ−→π+ Cn̄→π+ CK+→π+ · · ·

...
...

...
...

...
... . . .

 . (5.12)

With this new notation the cascade equation (4.3) becomes the matrix cascade
equation

d

dX
~Φ =

[
(−1 + C)Λint + 1

ρ(X)(−1 + D)Λdec)
]
~Φ. (5.13)
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5.5 The Inputs of MCEq
MCEq requires several numerical tables as inputs: hadron-air cross sections,

decay tables, and particle production tables. All tables are generated on the same
88× 88 energy grid, and one benefit is that new tables/data files can be updated
independently of the main MCEq code. The purpose of the next few sections is to
go through one-by-one each term of the matrix cascade equation (5.13), each of
them corresponding to an input matrix.

MCEq supports∼ 60 hadron species. A compact mode is recommended, where
only a few species most relevant to the air shower development are retained as
explicit species. Other particles are included implicitly so that they do not appear
in the output but are accounted for in the solution. Rather than transporting the
species, for instance, the Σ− baryon, only the decay products, like n + π−, are
propagated.

5.5.1 Hadron-air cross section
The first and second term of the discretized cascade equation (5.3), depends

on the interaction length λint, contained within Λint. The interaction length is
dependent on the hadron-air cross section, by equation (4.4).

In Figure 4.3a, I have plotted the hadron-air cross section as calculated by
two hadronic interaction models: DPMJET-III (dashed) and SIBYLL2.3c (full). In
SIBYLL2.3c, particles with unknown inelastic cross sections are approximated by
the proton-air cross section, for light mesons by the π+-air cross section, and for
heavier mesons by the K+-air cross section, so all baryons follow the same three
curves at higher energies. DPMJET-III can calculate the cross section between air
and several additional hadrons relevant at collision energies below 1 TeV, without
the approximations into baryons, light, and heavy mesons. This illustrates why
interpolation is needed between a low energy and a high energy regime when
using SIBYLL2.3c.

5.5.2 Decay Length
The elements of Λdec are calculated using equation (4.5). The properties τh

and mh for each species h is included in the ParticleDataTool package3. Using
these properties, I have plotted the decay lengths as a function of energy in Figure
4.3b.

5.5.3 Reinterctions in the Air Shower
The C-matrix of the matrix cascade equation (5.13), has dimension dC =

(number of particle species)× (number of particle species) ≈ 60 × 60. Each
element of the C-matrix is itself a matrix with dimension dCk→h = (energy
grid)× (energy grid) = 88 × 88. The elements of the Ck→h-matrix are inter-
action coefficients, that correspond to the production of particles of type h with
energy Eh.

The differential cross sections are generated with a hadronic interaction
model. Figure 5.1a shows a Ck→h-matrix generated with SIBYLL2.3c, where

3https://github.com/afedynitch/ParticleDataTool
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Figure 5.1. – (a) Particle production table for p → π+ generated in SIBYLL2.3c. The
grey lines indicate the energies plotted in Figure 5.1b. (b) Inclusive π+

cross sections for different projectile proton energies Ep. Apart from the
bin factor ∆E this is the direct illustration for the content of matrix Ck→h
for slices of Ek.

h = p and k = π+. The distribution is inclusive, integrated over final states,
meaning that all states where a p(Ep) collision produces a π(Eπ) is included in
one element. The x- and y-axis show the common energy grid, the z-axis is the
interaction coefficient. This is one of the ∼3600 matrices filling up the C-matrix.
As SIBYLL2.3c is the hadronic interaction model that includes the most species,
the C-matrix generated with SIBYLL2.3c will have the most non-zero sub-matrices.
The C- and D-matrix rarely have more than 3% non-zero elements [1]. The matrix
of Figure 5.1a is triangular because of energy conservation: Eprojectile > Esecondary.

Taking three the specific energies marked with gray on Figure 5.1a, the
particle production estimated by two more models are compared in Figure 5.1b.

Similar distributions are generated for decay using PYTHIA. The energy
distributions of «daughter» particles are generated on the same common energy
grid, but instead of varying the energy of the parent particle, the final state is
boosted into different frames[1]. PYTHIA is chosen because it contains a database
for most of the known branching ratios down to 10−8, whereas other event
generators include less decay channels[1].

5.5.4 Energy Loss
In the matrix form of the cascade equation (5.13) the energy loss was

neglected. The energy loss affects the fraction of neutrinos of Eν .100 GeV
which originates from muon decay. In MCEq the energy loss is included during
integration. After one integration step ∆X each particle has lost a fraction of its
energy Êi = Ei −∆X〈 dE

dX
(Ei)〉, where dE

dX
is defined by the Bethe-Block formula.

One can thus obtain a distribution after energy loss, Φµ(Ei, X + ∆X). It is found
that it is sufficient to calculate the energy losses every 5 g/cm2. This is further
described in [1].
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5.6 The Physical Models of MCEq
In addition to the models of decay and hadronic interaction already discussed,

cosmic ray models and the model of atmospheric density are also implemented in
MCEq. MCEq allows for the use of arbitrary combinations of current state-of-the-
art models.

Density profile of the atmosphere As discussed in Section 4.6, the atmosphere is
most easily modelled by an isothermal model. More complex models like CORSIKA
[49] and NRLMSISE-00 [50] are also implemented in MCEq. These models
contain information on seasonal variations. The models currently implemented
in MCEq are listed in Appendix B.

Cosmic ray flux The flux of cosmic rays at the top of the atmosphere is the initial
value for the inclusive flux calculations. Except for the GSF model, cosmic ray
models are generally parameterizations of the measured cosmic ray spectrum.
This is further reviewed in Appendix B.

Prompt Production Prompt production, where a charmed meson promptly de-
cays to a neutrino, occurs above the TeV-range and is thus not relevant for this
work. However, it should be briefly mentioned that SIBYLL2.3c can simulate the
prompt neutrino flux [55]. In MCEq it is also possible to inject custom models of
charmed hadron production, by implementing a custom class.
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6PYTHIA/Angantyr as an
Interaction Model in
Atmospheric Flux
Calculations

PYTHIA is a much-used event generator among LHC experimentalists and is well
tested for proton-proton (pp) collisions. PYTHIA assumes perturbative QCD, and
this assumption is only valid at center-of-mass energies larger than

√
s & 10 GeV.

PYTHIA developers have set an upper limit at
√
s .100 TeV [56].

Unlike the many pp collisions generated at the LHC, collisions of cosmic ray
initiated air showers are not pp, but rather collisions between protons and air
molecules (pA). In recent years, work has been done on extending PYTHIA to
describe heavy ion (pA and AA) collisions: the Angantyr model [57]. This event
generator could thus be a convenient choice of hadronic interaction model for
atmospheric neutrino flux calculations.

In order to use PYTHIA/Angantyr in air shower calculations, the following
must be added:

1. PYTHIA/Angantyr does not include kaon projectiles. As kaons are an
abundant particle species in an air shower, the kaon-proton cross section
must be added to the model.

2. Oxygen and nitrogen targets must be included.

In the following chapter, kaons and pions are assumed to be charged.

6.1 Deriving the Cross Section
Consider a pO → κ collision, κ being the production yield of a particle of a

specific type. As the proton collides with the oxygen atom, it can interact with
one or more of the ∼16 nucleons of the nucleus. A simplification would be to
model each of these nucleon-nucleon collisions as a pp collision and add the
production yield from each sub-collision together to find a final production yield,
κ, from the pO collision. With this approach, PYTHIA can be used to model each
pp collision, a process further described in [56]. The problem that then needs
to be solved is: how many nucleon-nucleon sub-collisions can we expect? The
participants of nucleon-nucleon sub-collisions that contribute to the final particle
production yield are called «wounded» nucleons. The question will be answered
in the following steps 1:

1. Find the position of each nucleon within the nucleus

2. Find the nucleon-nucleon cross section
1This presentation of the Angantyr model follows closely that of Bierlich, Gustafson, Lönnblad,

and Shah [57].
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3. Find the number of wounded nucleons

4. Show how we can determine the number of wounded nucleons by providing
a kaon-proton cross section

Nucleon positions The potential of the nucleus is assumed to follow a Woods-
Saxon potential as a function of the nucleus radius. Using Monte Carlo techniques,
one can sample randomly from the distribution, yielding nucleon positions within
the nucleus.

Cross sections The probability amplitude of nucleon-nucleon sub-collisions
is A, where Ael and Aabs are the probability amplitude of elastic and inelastic
scattering respectively. In general, it is more convenient to express scattering in
impact parameter (b) space. Given that the total probability of nucleon-nucleon
scattering is Ptot = Pel + Pabs, where Pel = |Ael(b)|2 and the sum of the amplitude
of all inelastic channels j is

∑
j |Aj(b)|2 = Pabs, the normalized optical theorem

will give

ImAel(b) = 1
2

(
|Ael(b)|2 +

∑
j

|Aj(b)|2
)
. (6.1)

In high energy collisions the real part of the elastic amplitude is small, and can
be neglected so Ael(b) ∼ ImAel(b). Substituting this into equation (6.1) we find

Ael(b) =i
(
1−

√
1− Pabs(b)

)
. (6.2)

We assume that the projectile nucleon(s) in the projectile nucleus travel
on a straight line through the target, as the nucleon(s) carry enough energy to
be essentially undeflected by the target nucleons. This approximation entails
that the probability of the projectile being absorbed in the nucleus at a fixed
b, is the sum of the probability of absorption with each individual nucleon:
Pabs = f1 + f2 + ... + fn−(double counting). The double counting terms are
inserted to avoid counting the same probability twice. In the case of three
nucleons, i.e., a baryon nucleus, we get:

Pabs = f1 +f2 +f3−f1f2−f2f3−f1f3 +f1f2f3 = 1−(1−f1)(1−f2)(1−f3). (6.3)

If fi is small, this approximates to:

Pabs ≈ 1− Πi exp(fi) = 1− exp
(∑

i

fi
)

= 1− exp(−2F (b)), (6.4)

where F (b) is introduced as a shorthand. Substituting this into equation (6.2)
results in Ael(b) = i(1− eF (b)).

Pel =|Ael(b)|2 = (1− e−F (b))2, (6.5)

Ptot =Pel + Pabs = (1− e−F (b))2 + (1− e−2F (b)) = 2(1− e−F (b)). (6.6)
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We can then define the T -matrix: T (b) ≡ Im(Ael(b)) = 1− e−F (b) yielding

dσel/d
2b = T (b)2 and dσtot/d

2b = 2T (b). (6.7)
(6.8)

Diffractive excitation When deriving the cross sections above, we made the
implicit assumption that all inelastic processes are absorptive, i.e., that Pabs was
the sum of the amplitude of all inelastic channels j,

∑
j |Aj(b)|2. This is not the

case. Absorption means that color exchange between the nucleons results in the
fragmentation of both. However, the interaction can also result in one of the
nucleons being excited to a higher mass state with the same quantum numbers.
The excited nucleon will hadronize, while the other remains intact. This process
is called singe diffractive. If both nucleons are excited to a higher mass state, the
interaction is double diffractive. These interactions give a significant contribution
to the total and elastic cross section and must be accounted for in modeling of
nucleon-nucleon collisions [58]. We have:

σtot = σel + σinel = σel + σabs + σDD + σpD + σDt (6.9)

where subscripts Dt, pD and DD stand for single diffractive excitation of the
target, the projectile, and both.

The diffractive excitations can be accounted for by introducing fluctuations
in the nucleon, i.e., that the mass eigenstate of the nucleon Ψi differs from the
elastic scattering eigenstate Φl. In Appendix C it is shown that this assumption
results in the following cross sections relevant for nucleon-nucleon collisions

dσtot/d
2b = 〈2T (b)〉proj,t, (6.10)

dσabs/d
2b = 〈2T (b)− T 2(b)〉proj,t, (6.11)

dσel/d
2b = 〈T (b)〉2proj,t, (6.12)

dσDt/d
2b =

〈
〈T (b)〉2proj

〉
t
− 〈T (b)〉2proj,t, (6.13)

dσpD/d
2b =

〈
〈T (b)〉2t

〉
proj
− 〈T (b)〉2proj,t, (6.14)

dσDD/d
2b = 〈T 2(b)〉proj,t −

〈
〈T (b)〉2proj

〉
t
−
〈
〈T (b)〉2t

〉
proj

+ 〈T (b)〉2proj,t, (6.15)

where proj and t denotes averages over the projectile and target state, respectively.

Wounded Nucleons Though derived in the context of nucleon-nucleon collisions,
the results are general and equations (6.10–6.15) might just as well describe a
pA or AA collision. As the projectile collides with nucleons in the target, we can
assume that the wave function collapses after the first interaction and remains
«frozen» in a state k. This corresponds to averaging over target states. If so

dσtot

d2b
= 〈2T (b)〉proj. (6.16)
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However, one is normally not interested in the total number of nucleons
interacting in the collision, but rather those that interact in a way that contributes
to particle production. We are therefore interested in the σinel, rather than
σtot. When assuming a «frozen» projectile and averaging over target states, the
inelastic cross section is modified. The average over targets must be done before
the squaring of the second term.

dσw
d2b

= 〈2T (b)〉proj,t − 〈〈T (b)〉2t 〉proj (6.17)

We then have an expression for the probability of wounding a nucleon in a pA or
AA collision, and thus an expression for the number of nucleons contributing to
the particle production.

In [57] it is shown that T (b) can be assumed to follow a certain distribution
(Appendix C). By providing values for σtot, σel, σDt, σpD and σDD a fit is preformed
to T (b) of equation (6.10–6.15) which determines all variables of describing
the nucleon. By determining T (b) we can also fix the number of nucleons, by
equation (6.17), that interact in such a way that they produce particles. After
determining the number of sub-collisions, each sub-collision can be modeled as a
pp collision. The particle production yield from each sub-collision is then added
up to give a final production yield from the pA or AA collision.

6.2 Introducing Kaon Projectiles
From the discussion above, it can be concluded that all parameters of the col-

lision are determined if the cross sections of equation (6.10–6.15) are supplied to
PYTHIA/Angantyr. Of the collision types relevant for air showers, the pion-proton
and proton-proton cross sections are already implemented in PYTHIA/Angantyr,
using a model by Schuler and Sjöstrand [59]. The PYTHIA-calculated cross-
section for p̄(p)p (red full line) and π−(π+)p (blue full line) is shown in Figure
6.1, as a function of center-of-mass energy. The dashed lines in Figure 6.1 are
parameterizations of accelerator data by the COMPAS group [60]. Accelerator
data sparsely cover the phase space used by the COMPAS fit. For pion-proton
collisions there is no data beyond

√
s ∼30 GeV, and for proton-proton collisions

the accelerator data extends to
√
s ∼6 TeV. In the regions of phase space where

data exists, the PYTHIA estimated cross section is reproduced by the COMPAS fit.
In regions of no data, a disagreement between PYTHIA and COMPAS predictions
can be observed.

A projectile relevant for air showers, but not previously included in PYTHIA,
is the kaon. It is feasible that the kaon-proton and pion-proton cross section
will have similarities, as pions and kaons are mesons with similar structures. On
a reductive level, the only difference between them is the increased mass due
to the presence of the more massive strange quark in the kaon. As the cross
section depends on the inverse of the rest mass, this should result in a lower
kaon-proton cross section, than a pion-proton cross section. Indeed the COMPAS
fit in Figure 6.1 shows that the parameterizations of the kaon-proton (green) and
pion-proton cross section (blue) are similar in shape, but with a relative difference
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Figure 6.1. – Comparison between the COMPAS fit [60] (points) and the PYTHIA
hadronic cross sections (full line).

in magnitude. Based on these features, a pragmatic approach can be adopted:
The total kaon-proton cross section is equal to that of the total pion-proton cross
section, but scaled down with a constant factor, a.

σK
∓p = a · σπ∓p (6.18)

The value of a is found by comparing to accelerator data from COMPAS made
available by the Particle Data Group2. The available data is on σtot and σel up
to
√
s ∼17 GeV. The data for total (black) and elastic (red) K+p cross section is

plotted in Figure 6.2. Based on data comparison, the kaon-proton cross section
was estimated to 90% of the pion cross section, a = 0.9. The PYTHIA calculated
total (black) and elastic (red) K+p cross section are plotted by scaling down the
pion-proton cross section with 90%. As PYTHIA is a high energy event generator,
the cross sections are plotted for

√
s ≥5 GeV. The total and elastic K+p cross

sections seem to agree reasonably well with data at low energies.
The Schuler and Sjöstrand model includes the diffractive cross sections. These

are plotted in Figure 6.2. As shown in Section 6.1, the diffractive cross sections
are derived by introducing fluctuations. As the structure of the pion and kaon are
similar, there are no apparent reasons why the range of fluctuations should differ.
Thus it seems feasible that the diffractive cross sections of kaon-proton are equal
to those of pion-proton.

The pragmatic approach of estimating the kaon-proton cross section based
on the pion-proton cross section breaks down at higher energies. In higher energy
collisions, the sea quarks and gluons of the meson are probed, and thus the

2from http://pdg.lbl.gov/2014/hadronic-xsections/
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Figure 6.2. – Data from the COMPAS Group, made available by the Particle Data Group,
of the K+p total and elastic cross section, compared to the K+p cross
section calculated by PYTHIA.

valence quark collisions are sub-dominant. In this case, the mass difference of the
valence quarks between the pion and kaon should cease to be of significance, and
the cross sections should approach each other. By scaling the kaon-proton cross
section to the pion-proton cross section, they will, by design, never approach each
other. This expected behavior is not reproduced by the COMPAS fit either.

We could, in principle, have chosen the COMPAS fit to model the kaon-proton
total and elastic cross section. However, COMPAS does not fit to data for the
single diffractive and double diffractive cross section, which must be included in
order to reproduce data. Based on data, it is not possible to establish which, if
either, of COMPAS and PYTHIA, are more correct. It thus seems reasonable to
choose the model that describes all five cross sections, rather than estimating two
with COMPAS and three with PYTHIA.

6.3 Comparing the Kaon-proton Cross
Section to Data

After supplying PYTHIA with an estimated kaon-proton cross section, PYTHIA
generates possible final states in a Monte Carlo process. In this section, I will
investigate whether the predicted final states agree with data from the NA22
experiment. A 1988 NA22 paper [61] presents data for the inclusive reactions
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π+ + p→ C+ + κ, (6.19)
π+ + p→ π− + κ, (6.20)
K+ + p→ C+ + κ, (6.21)
K+ + p→ π− + κ, (6.22)
p+ p→ C+ + κ, (6.23)
p+ p→ π− + κ, (6.24)

at an incident beam of 250 GeV. Charged particles are denoted as C+, and p
denotes a proton. NA22 was a fixed target experiment at the CERN SPS with a
bubble chamber as a vertex detector, meaning it had full coverage of the transverse
momenta pT . More on the experimental set-up can be found in [61].

In order to compare to data, PYTHIA was set up in the same manner as the
experiment: A 250 GeV beam of projectiles (p, π+, or K+) onto a fixed target (p).
Like in the NA22 analysis, all stable, positively charged hadrons are taken into
account. A cut on pT <1.2 GeV aims to reduce the amount of protons in the C+

and π− sample.

In a fixed-target experiment, all quantities are measured in the laboratory
frame, lab. The data presented in [61] is however in the centre-of-mass frame,
C.M. Thus it is necessary to transform the distributions in PYTHIA from the
laboratory to the center-of-mass frame. The particles from the collision are Lorentz
boosted, meaning that the momentum and energy transform as: p′z = γ(pz − βE)
and E ′ = γ(E − βpz). In a relativistic system, velocities are not an additive
quantity when transforming between frames. However, we can define the rapidity

y = 1
2 ln

(
E + pz
E − pz

)
, (6.25)

where E is the measured energy and pz the z-component of the momentum.
Rapidity differences are invariant under boosts along the beam direction because

y′ =1
2 ln

(
E ′ + p′z
E ′ − p′z

)
= 1

2 ln
(
γ(E − βpz) + γ(pz − βE)
γ(E − βpz)− γ(pz − βE)

)
(6.26)

=1
2 ln

(
(1− β)(E + pz)
(1 + β)(E − pz)

)
= y + 1

2 ln
(

1− β
1 + β

)
= y + yb, (6.27)

where yb is a constant.

The velocity of the particle is β = p/E, and in the laboratory frame where
every component of the momentum is zero, except the z-component of the
projectile particle, p = pz and E = Eprojectile + Etarget = Ek + Ep = Ek + mp,
yielding
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frame, forK++p→ C++X (left) andK++p→ π−+X (right), compared
to distributions obtained in PYTHIA/Agantyr.

β = pz
Ek +mp

, (6.28)

yb =1
2 ln

(
Ek +mp + pz
Ek +mp − pz

)
. (6.29)

where Ek =
√
m2
k + p2

z and pz = 250 GeV. This yields a constant factor of yb ∼ 3.13.
We then have the transformation yC.M = ylab + yb. In Figure 6.3 data for inclusive
distributions dσ/dy∗, y∗ being the rapidity in the centre-of-mass frame, is plotted
for K+ + p→ C+ + κ (left) and K+ + p→ π− + κ (right). The dashed lines are
the corresponding distributions obtained in PYTHIA. The disagreement at high
rapidity is most likely caused by the fact that some beam remnants are present in
the NA22 data sample, while not modelled in PYTHIA. NA22 present their results
normalized to a production cross section that is not quoted in the paper. The
results of Figure 6.3 is thus normalized to one.

In order to compare data to additional data from NA22, the rapidity is
transformed to the pseudorapidity η by formula

η = 1
2 ln

(√
m2
T cosh2 y −m2 +mT sinh y√

m2
T cosh2 y −m2 −mT sinh y

)
, (6.30)
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Figure 6.4. – The pseudo-rapidity distributions, dσ/dη∗, for K+ + p→ C+ +X (black)
and K+ + p→ π− +X (red) compared to distributions from PYTHIA

where the transverse mass mT = m2 + p2
x + p2

y. Thus the fixed target results
from PYTHIA are transformed from ylab → yC.M. → ηC.M. In Figure 6.4 the
inclusive distribution of pseudo-rapidity in the centre-of-mass frame is plotted,
and data (dots) and PYTHIA generated distributions (lines) compared. Again the
distributions are normalized to one.

6.4 Kaon-nucleus Collisions
The Angantyr model assumes that a K±A collision can be modeled as the

sum of the final states of all K±p collisions, provided we have estimated the
correct number of wounded nucleons.

Simulating the kaon-nucleus collision requires the following steps: (1) de-
termine the nucleon position within the nucleus by Monte Carlo sampling a
distribution, (2) calculate the number of wounded nucleons by the method de-
scribed in Section 6.1, (3) generate K±p sub-collision final states (tested on data
in Section 6.3), and (4) sum the final states of all K±p collisions independently.
The latter step is tested in this section by comparing to data.

Within the Angantyr model, any ion can be introduced, by defining spin,
charge, color, and mass in a decay table. Particular types of ions will differ by the
width of the sampling distribution and range of fluctuations. However, the method
of determining the number of wounded nucleons is entirely independent of target
type, meaning that if the model is capable of determining the number of nucleon-
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Figure 6.5. – (a) Multiplicity of negatively charged hadrons N− produced in kaon-
aluminium collisions. Data from [62]. (b) Multiplicity of negatively charged
hadrons N− produced in kaon-gold collisions. Data from [62].

nucleon sub-collisions for one target element, the results should generalize to all
elements. Thus we can test our kaon-atom model on any target type.

This is convenient as there there is no available data on kaon-oxygen or
kaon-nitrogen collisions, which are more relevant for air shower simulations.
There exists data for K+ on gold (Au) and aluminum (Al) nuclei at 250 GeV
[62]. PYTHIA was initialized in a setup similar to that of [62], introducing gold
and aluminum targets. The resulting multiplicity for stable negatively charged
particles where obtained, and the distributions compared to data in Figure 6.5a
and Figure 6.5b.

6.5 Implementation in MCEq and Outlook
Within the Angantyr model p(N/O) → κ collisions, κ being the particle

production yield and N/O being a nitrogen or oxygen atom, were implemented
prior to work presented in this chapter. In Figure 6.6a the production yield
of κ = π+ is plotted and compared to the SIBYLL2.3c model predictions, for
projectile protons of energy 1 TeV (black), 100 TeV (blue), and 1 PeV (red). As
part of this work, the possibility of kaon projectiles was implemented, meaning
the addition of K±(N/O)→ κ collisions to PYTHIA/Angantyr. In Figure 6.6b this
extension is shown for projectile kaons of energy 1 TeV (black), 100 TeV (blue),
and 1 PeV (red).

In order to use the developed framework within MCEq, production yield
tables (C-matrices) must be generated using PYTHIA. This entails repeating the
exercise indicated in Figure 6.6a and 6.6b for projectile energies on a logarithmic
grid, defined as Ei = E0 · 10di, where E0 = 1 GeV and d is chosen accordingly for
∼ 8 bins per decade of energy. A continuation of the work presented in the chapter
would be to generate these tables and compare the neutrino flux predictions using
PYTHIA as a hadronic interaction model to other, already MCEq-implemented
hadronic interaction models.
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(a) (b)

Figure 6.6. – (a) Inclusive cross section of pN → π+, (b) Inclusive cross section of
K+N → π+, plotted for different projectile energies: 1 TeV (black), 100 TeV
(blue), and 1 PeV (red). The distributions are normalized to the production
cross section.

Though physically motivated, scaling the π±p cross section to estimate the
K±p cross section is a somewhat crude approach. An improvement would be to
use a kaon-proton cross section calculated using designated software. Besides
this, further development of the suggested scheme will require more experimental
data, such as measurements of the cross section at higher center-of-mass energy,
measurement of the diffractive cross sections and measurements of the kaon
parton distribution function (PDF).
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7Uncertainties on the
Atmospheric Neutrino Flux

All models that are used as an input in MCEq have an associated uncertainty. In
Uncertainties in Atmospheric Neutrino Fluxes, G.D. Barr, S. Robbins, T.K. Gaisser
and T. Stanev[63] review the sources of uncertainty in atmospheric neutrino flux
estimates. They find that the dominant source of uncertainty stems from hadronic
interaction, and following this, the flux of cosmic rays. Thus the uncertainty
on the atmospheric density profile, the muon energy loss, and the model of the
geomagnetic field is sub-dominant for the atmospheric neutrino flux uncertainty
in the relevant energy range for IceCube/DeepCore.

In previous chapters, methods of estimating the absolute atmospheric neu-
trino flux have been presented. The topic of this chapter is the uncertainty on
that estimate. Following the conclusions of Barr et al., the focus will be on
uncertainties stemming from hadronic interactions and the flux of cosmic rays.

7.1 Uncertainties on the Particle Production
In the atmosphere, most neutrinos with energy below 100 GeV are produced

from the decay of mesons, themselves being products of pA→ (π/K)±κ interac-
tions. The projectile is labeled p, the target nucleus A, and the meson of interest
(π/K)±. The rest of the interaction products are represented as κ. As seen in
chapter 6, a pA collision is a complex system, and there can be multiple parton
collisions, either absorptive, diffractive, or elastic. The uncertainty on the cross
section of pA→ (π/K)±κ is therefore substantial, though difficult to estimate.

An uncertainty on the cross section corresponds to an uncertainty on the
particle production yield. The effect on the absolute neutrino flux is reasonably
straightforward: underestimating the production of hadrons that contribute to the
neutrino production by 10% results in a 10% underestimation of the atmospheric
neutrino flux [63].

As different physical effects are relevant at different collision energies, the
uncertainty on particle production will, in general, be energy-dependent. Because
the neutrinos produced in meson decay are of lower energy than the meson itself,
the uncertainty on meson production will affect a different region of the neutrino
phase space than the meson phase space. This is demonstrated in Figure 7.1,
showing the absolute flux of muon and electron neutrinos. In the left plot, a 30%
increase in the number of produced K+ with energy larger than 3 GeV has been
introduced. This results in an increase of the neutrino fluxes (dashed lines) – but
also for neutrinos with energy less than 3 GeV.

7.1.1 Comparing Hadronic Interaction Models
A naive way of assigning an uncertainty on the particle production is by

comparing the predictions of different hadronic interaction models. In general,
there are several reasons why estimating an uncertainty based on the spread
of physical models is problematic: (1) the divergence between the mean of the
model predictions does not necessarily yield any information on the variance
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Figure 7.1. – Nominal fluxes of muon (anti)neutrinos (blue and orange respectively)
and electron (anti)neutrinos (green and pink respectively) calculated with
MCEq and averaged over zenith angles. A 30% uncertainty in the particle
production yield of K+ (K−) with EK > 3 GeV is introduced, and the effect
on the neutrino flux is plotted with dashed lines on the left (right) plot.

on each model prediction, and (2) models might be tuned to the same data or
each other at an early stage, meaning that the model predictions are correlated.
For these reasons, it is more methodically sound to estimate the uncertainty
based on data, rather than model comparison. In the following section, a method
proposed by Barr et al. of estimating the uncertainty on particle production based
on accelerator data is presented.

7.1.2 The Barr Scheme
The atmospheric neutrino flux spans a large region of parameter space,

sparsely populated by measurements from accelerators. Figure 7.2 summarizes
the measurements as of 2006 in a region of phase space relevant for DeepCore[63].
The energy of the projectile, Ei, ranges between 1 GeV and 1 TeV, whereas the
produced meson can assume energies, Es, in the range between 0.1 GeV and
1 TeV. The bands for each experiment represent the range in which data exist for
at least one value of transverse momentum, pT .

In regions of phase space where data exist, the uncertainty on the particle
production can be assumed to be equivalent to that reported by the experiment.
If more than one measurement exists, the uncertainty must be combined to reflect
agreement or disagreement between measurements. In regions with little or no
data, extrapolation in pT , xlab = Es/Ei, or Ei is required – Ei being the energy of
the projectile and Es being the energy of the produced meson. The uncertainty on
the particle production should then reflect the amount of extrapolation needed.

Based on these considerations, Barr et al. divide the phase space into a given
number of regions and assign discrete uncertainties on the particle production
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Figure 7.2. – The available data of particle production yield as a function of primary and
secondary energy. The bands for each experiment represent the range of
primary and secondary particle energies where measurements exist for at
least one value of pT . The boxes indicate the contribution of contained
underground neutrino events as computed by simulation. The red and
black boxes are the extremes of geomagnetic field effects for high and low
geomagnetic latitude, respectively. From [63].

yield in each region (see Figure 7.3). The phase space in question is defined as Ei
versus xlab = Es/Ei.

Spelling out the Barr scheme To illustrate the Barr scheme, consider a ∼ 20 GeV
primary. Looking at Figure 7.2, considerable measurements on the production
yield of pions with energy between 5 and 20 GeV have been performed. Thus
the production rate can be determined without significant extrapolation. Indeed,
Barr et al. assign an uncertainty of 5% for 0.2< xlab <0.6 (Region E of the
left diagram of Figure 7.3). This is somewhat below the errors quoted by a
single experiment, to account for good agreement between measurements. At
xlab >0.6 the coverage of data decreases and extrapolation is required, resulting
in a 10% uncertainty on pion production (Region F of the left diagram of Figure
7.3). At 0.1< xlab <0.2 there is only one measurement, resulting in an 10%
uncertainty (Region D3 of the left diagram of Figure 7.3). At xlab <0.1 there
are no measurements at all, leading to a 30% uncertainty (Region D2 of the left
diagram of Figure 7.3).

As of 2006, no data for pA → (π/K)±κ existed for projectiles with energy
larger than 500 GeV. To account for the extrapolation, an energy dependent
uncertainty is introduced by Barr et al. [63]

u(Ei) = 12.2%× log10

(
Ei

500GeV

)
. (7.1)
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Figure 7.3. – Uncertainties assigned by Barr et al. to the production rates of pions (left)
and kaons (right) as a function of xlab = Es/Ei, Ei being the energy of the
projectile and Es being the energy of the produced meson. The regions of
meson phase space that are of significance for the production of neutrinos
in the DeepCore energy range are marked in green. Modified from [63].

The function u is then the definition of region I and Z in the diagrams of Figure
7.3. Thus the uncertainty in these regions increases with projectile energy so that
the energy-dependent uncertainty on the production of pions with 10 TeV and
100 TeV energy is 16% and 28% respectively. Pions produced from projectiles
with energy larger than 6 PeV is assigned a flat 50% uncertainty [63].

Using this method, uncertainties are assigned to the whole phase space.
Though many of the experiments in Figure 7.2 have measured both pion and kaon
yield, there are few measurements for the production of kaons from projectiles
of energy less than 15 GeV. Thus, a large uncertainty of 40% is assigned. The
uncertainty on kaon production is shown in the right diagram of Figure 7.3.

The pion ratio The Barr scheme applies to both meson and antimeson produc-
tion. Figure 7.1 shows a 15% increase in the K+ (left) and the K− (right)
production. The effect on the neutrino flux is quite different. Positively charged
kaons dominantly decay to νµ and νe, so any modification to the K+ production
will predominantly affect the νµ and νe flux (and vice versa for the K− produc-
tion). However, as pions of some kaon decay channels will contribute to the
neutrino flux, the modifications to the K+ production will also affect the ν̄µ and
ν̄e flux (and vice versa for the K− production).

As the effect is distinct, the uncertainty on the meson and antimeson produc-
tion should be introduced independently. Thus, the uncertainty on the neutrino
flux is determined by 26 parameters in the Barr scheme (9 from π+, 9 from π−, 4
from K+, and 4 from K− production). However, we can reduce the number of
parameters by considering that the uncertainty on the antimeson production is
determined by the uncertainty on the meson–antimeson production ratio. The
rate of neutrinos produced by (π/K)± is given by:

R± = Φ±(1 + ∆±), (7.2)
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where Φ+ is the absolute neutrino flux and Φ− is the absolute antineutrino flux.
The uncertainty on the flux, ∆, is taken to be positive. We can thus define the
ratio of neutrinos produced from (π/K)+/(π/K)−

R+

R−
= Φ+(1 + ∆+)

Φ−(1 + ∆−) = Φ+

Φ−α, (7.3)

giving

α =1 + ∆+

1 + ∆− , (7.4)

∆− =1 + ∆+

α
− 1, (7.5)

∆R = 1 + ∆+

1 + ∆− − 1 = α− 1. (7.6)

We thus have that

∆− = 1 + ∆+

1 + ∆R − 1. (7.7)

The uncertainty on the antimeson production is then expressed as a function of
the uncertainty on the meson production and meson–antimeson production ratio.

The π+/π− ratio is determined to a precision of ∆R = ± 5%. Using this,
a 15% uncertainty on the π+ production, as an example, will result in a 10%
uncertainty on the π− production. The same simplification cannot be assumed
in the kaon sector. The K+/K− ratio is poorly measured, and cannot be used to
restrict the K− production uncertainty. Thus the uncertainty on K+ and K− must
be kept independent. However, we have still reduced the number of parameters
describing the π± production uncertainty. The number of uncertainty sources is
18 in total (9 from π±, 4 in K+, 4 in K−, and 1 for the π+/π− ratio).

The reliability of the Barr scheme The strict boundaries between regions are
not realistic. It implies uncorrelated uncertainties, meaning that a shift in the
production yield of one region of phase space will not affect the yield in other,
neighboring regions of phase space. In their paper, Barr et al. investigate whether
the regions are indeed correlated. This is done by drastically increasing the
number of regions in xlab. They repeat the exercise, this time increasing the
number of regions in Ei. Both attempts show that increasing the number of
regions has little effect on the neutrino flux. Though the method suggested by
Barr and collaborators is subjective, it seems stable to changes in the number of
regions and modifications of the definition of the region boundaries.

7.1.3 The Barr Scheme in MCEq
The information on particle production yield is contained within the C-matrix

in MCEq. Each element of the C-matrix is itself a matrix, Ck→h, of discretized
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Figure 7.4. – Applying a Barr variable means to modify the particle production yield
matrices of MCEq. The left modification matrix shows a 15% increase
in pion production from projectiles with energy larger than 500 GeV and
xlab < 0.1 (Barr variable H2). The right modification matrix shows a 15%
increase in pion production for xlab > 0.1 (Barr variable G).

differential cross sections (this is further explained in Section 5.5.3). As the Barr
scheme applies to kaon and pion production, it is specifically the Cp→π± and
Cp→K± matrices that will be modified under the Barr scheme.

«Applying» a Barr modification in MCEq refers to generating a modification
matrix that has a percentage value in a region of phase space, as assigned by Barr
et al. In Figure 7.4 the modification matrices of Barr variable H2 (left) and G
(right) are shown, illustrating a 15% increase in a phase space defined by Ei and
xlab = Es/Ei. This modification matrix is then multiplied by the Cp→(π/K)±, to
yield an overall increase in the differential cross section in the given region.

The modified particle production yield matrix is then used when calculating
the neutrino flux by the matrix cascade equation of equation (5.13). The result
is an overall modification of the neutrino flux. As an example, Figure 7.1 (left)
shows the effect of modifying the Cp→K+ matrix with W = + 30% on the overall
neutrino flux. The right plot of Figure 7.1 shows the effect of modifying the
Cp→K− matrix with the same amount.

The Barr scheme only dictates the uncertainty on pion and kaon production.
This entails that only four of approximately 60 × 60 Ck→h matrices are subject
to change under the Barr scheme. In practice, this means that uncertainty is
introduced at a singular point along the path of neutrino production. With this
approach, two aspects are neglected. (1) The meson can re-interact and produce
a string of hadrons, before decaying to a meson. In this case, the introduced
uncertainty will be that of the meson first produced. (2) Cosmic ray baryons
might produce a string of baryons – each interaction introducing an uncertainty –
before a kaon or pion is produced. This is particularly problematic because there
are significant uncertainties associated with low energy proton production and
neutron production.
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Figure 7.5. – The nominal νµ (upper) and ν̄µ (lower) flux as calculated with four different
hadronic interaction models. The gray band indicate all uncertainties on
particle production, i.e., all Barr variables, shifted by ±1σ as compared to
the SIBYLL2.3c flux and added in quadrature.

7.1.4 Spread in Interaction Model is Sub-dominant
Applying a Barr uncertainty modifies the Ck→h matrix, yielding a flux estimate

that deviates from the nominal neutrino flux. Several Barr uncertainties can
be applied by adding the deviation in quadrature, under the assumption that
Barr uncertainties are uncorrelated. In Figure 7.5 the nominal νµ (upper) and
ν̄µ (lower) flux is taken to be that calculated with the SIBYLL2.3c interaction
model. Deviations from the nominal caused by taking each uncertainty on (π/K)±
production into account, are added in quadrature to form a 1σ uncertainty band
(gray) around the nominal flux. Atmospheric neutrino flux estimates calculated
using three other hadronic interaction models are plotted for comparison1. All
estimates are within ∼ 1σ of the nominal flux. This means that if the uncertainty
on particle production is determined through model comparison, the estimated
uncertainty will be less than the data-driven uncertainties of the Barr scheme. It
indicates that the choice of hadronic interaction model has a sub-leading effect
on the atmospheric neutrino flux estimate.

Figure 7.5 is reproduced for the νe and ν̄e flux in Appendix D.

1I would like to give credit to A. Fedynitch and J.P. Yáñez for advising me on which models to
compare: SIBYLL2.3c[53], QGSJETII-04[51], EPOS LHC[52], and DPMJET-III 2017[64]
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Figure 7.6. – The nominal νµ (upper) and ν̄µ (lower) flux as calculated with four different
cosmic ray models. The gray band indicates the result of shifting the
spectral index with ±1σ = 0.1, assuming that the nominal flux is that
calculated with GSF.

7.2 Uncertainties on the Cosmic Ray Flux
In the DeepCore energy range (10 GeV. Eν .100 GeV), the atmospheric

neutrinos are primarily produced by cosmic ray particles with energy less than
3 PeV. In this region, below the «knee», the cosmic ray spectrum can be described
by a single power law E−γ, γ being the spectral index. As neutrinos in this
energy range are mainly produced in decay, the spectral index of the neutrino
flux will approximately follow that of the primaries. Under this assumption, the
uncertainty stemming from the cosmic ray flux can be assigned a single parameter
∆γ. This approach has been adopted in previous IceCube analyses and is carried
on in the work presented here.

In previous IceCube analyses, the uncertainty on the cosmic ray spectrum
has been estimated to ∆γ = ±0.1. Modifying the spectrum by E∆γ corresponds
to tilting the energy dependency of the flux around a pivot point. In previous
IceCube analyses, the pivot point has been Eν ≈24 GeV. In Figure 7.6, the
nominal νµ (upper) and ν̄µ (lower) flux is taken to be that calculated using the
Global Spline Fit model (GSF)[65]. The 1σ uncertainty is then estimated, under
the same assumptions as prior IceCube analyses (gray band). The flux estimates
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calculated using the GH[46], H3a[44], and GST[45] cosmic ray models are
plotted for comparison in Figure 7.62.

The value of the pivot point and shift in spectral index A problem with the ap-
proach presented above is that the values of the ∆γ and the pivot point are
subjective. For instance, if the objective of the approach is to describe the spread
in model predictions, Figure 7.6 shows that the pivot point should be set to a
higher energy and ∆γ can be fixed at a lower value than ± 0.1. However, as previ-
ously discussed, there are apparent drawbacks with basing uncertainty estimates
on model comparisons.

A measure of the uncertainty on cosmic ray data is contained within the
GSF model. The GSF model is determined by splining available data and yields
a covariance matrix that represents the experimental uncertainty of the input
data[65]. The value of ∆γ and the pivot point can be determined by comparing to
the data-driven GSF uncertainties, under the assumption that the spectral index
of the cosmic ray flux and atmospheric neutrino flux is the same.

The problematic pivot point Another more fundamental problem with estimating
the uncertainty by shifting the spectrum around a pivot point is that it implies
that the uncertainty approaches zero at the pivot point. This is clear from the
zenith distributions of Figure 7.6 (right column), where the flux of neutrinos with
energy Eν ≈ 28 GeV is plotted. Being close to the pivot point, the 1σ uncertainty
is negligible. This is unrealistic. A potential solution can be to find a different
model, for instance scaling the flux by a constant, based on a comparison to GSF
uncertainties.

To sum up, incorporating the uncertainty stemming from the cosmic ray
spectrum as a shift in the neutrino spectral index has several shortcomings.
However, it is still the chosen approach in this work. This is due to (1) consistency,
as previous IceCube analyses have used the same approach, (2) conservatism,
as no better model is evident, (3) and practicalities, as I did not have access
to the GSF uncertainties during the course of this work. In the following, the
uncertainty stemming from the cosmic ray spectrum is thus estimated as a shift
in the spectral index of the neutrino flux. Figure 7.6 is reproduced for the νe and
ν̄e flux in Appendix D.

7.3 Overall Uncertainty on the Atmospheric
Neutrino Flux

In this chapter it has been suggested to estimate the uncertainty on the
atmospheric neutrino flux by estimating the uncertainty on each model input of
the neutrino flux calculation, ignoring the muon energy loss and atmospheric
density model uncertainty. The individual uncertainties are then propagated
through in MCEq to yield an overall uncertainty on the neutrino flux.

The total uncertainty on the νµ (left) and ν̄µ (right) flux is plotted in Figure
7.7. In the DeepCore energy range, an overall, energy-dependent uncertainty

2The choice of relevant models is made based on advice from A. Fedynitch and J.P. Yáñez.
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Figure 7.7. – Breakdown of the uncertainties (averaged over zenith angles) on the νµ
(left) and ν̄µ (right) flux, with different regions of meson production as
a function of neutrino energy. The capital letters correspond to the Barr
variables of Figure 7.3. Green curves are uncertainties stemming from pion
production, blue from kaon production. The uncertainty on the pion ratio is
represented by π+/π− (pink). The brown curve represents the uncertainty
arising from the spectral index of the cosmic ray spectrum. The topmost,
gray line is the total uncertainty on the flux. The estimate by Barr et al. is
plotted in gray, dashed line for comparison [63].

of 10%-50% is found. This is comparable to results found by Barr et al. (gray,
dashed line in Figure 7.7). No single hadronic source of uncertainty dominates.
At higher energies, the flux of neutrinos produced in pion decay decreases, so
the uncertainty on pion production becomes less dominant at higher energies
(green curves). The contribution from kaon production uncertainty increases with
energy (blue curves), as the flux of neutrinos produced in kaon decays increases.
At higher energies, the uncertainty arising from the cosmic ray spectrum (brown
curve) is dominating the overall uncertainty on the neutrino flux.

It is unlikely that primaries of energy Ei < 30 GeV give a significant contribu-
tion to the neutrino flux at DeepCore energies. Indeed, applying all Barr variables
of Figure 7.3 shows that only six Barr variables affect the flux of neutrinos within
the DeepCore energy range: G, H, and I on the pion production, and W , Y ,
and Z on the kaon production (marked in green in Figure 7.3). Figure 7.7 is
reproduced for the νe and ν̄e flux in Appendix D.

7.4 Uncertainties of Neutrino Ratios
Up until this point, all calculations have been done using absolute atmo-

spheric neutrino fluxes. In this section, it is demonstrated that there is an
advantage of computing the ratio of atmospheric neutrino fluxes. The objective
of this section is to reproduce results by Barr et al., thereby verifying that the
implementation in MCEq is true to the approach suggested by Barr et al.

Cancellation of uncertainties in ratios At low energies each muon produced in
the atmosphere is associated with one neutrino and one anti-neutrino, and any
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Figure 7.8. – Dashed lines are digitally interpolated from Figure 6 of [63], full lines are
the same results derived with MCEq. The uncertainty in % on the νµ and
ν̄µ flux is plotted in green. The νµ/ν̄µ flux is estimated (blue), and the
uncertainty on the ratio in % is plotted in black.

overestimation of pions (and thus muons) will result in a similar overestimation
on the neutrino and antineutrino flux. Thus the numerator and denominator will
have similar uncertainties in a νµ/ν̄µ ratio and will cancel. The cancellation is most
powerful at low energies where most muons decay in the atmosphere. At higher
energies, where an increasing number of muons hit the ground before decay, and
only one neutrino is produced per pion decay, the cancellation ceases to have an
effect. At Eν &100 GeV there is hardly any cancellation at all. The cancellation
is demonstrated in Figure 7.8, where the individual νµ and ν̄µ uncertainties
(green) are larger than the uncertainty on the νµ/ν̄µ ratio (black). The effect of
cancellation decreases with increasing energy.

MCEq and Barr comparison The MCEq estimate for the uncertainty on the
absolute muon neutrino flux deviates from that predicted by Barr (green curves
of Figure 7.8). This is due to a «dip» in the uncertainty around the spectral index
pivot point at Eν ≈ 24 GeV, which is demonstrated with the brown curve of Figure
7.7. Thus, the MCEq estimate is 50% compared to that of Barr et al. around the
pivot point, and converges at higher energies.

Flux flavor ratios Figure 7.9 presents the uncertainty on three neutrino flux
ratios: νµ/ν̄µ (black, also shown in Figure 7.8), νe/ν̄e (red), and (νµ+ ν̄µ)/(νe+ ν̄e)
(green) digitized from Figure 7 of [63] (dashed lines) and computed with MCEq
(full lines). A breakdown of the individual sources of uncertainty is shown in
Figure 7.10.
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Figure 7.9. – The uncertainty in % on the νµ/ν̄µ flux (black), νe/ν̄e flux (red) and (νµ +
ν̄µ)/(νe + ν̄e) flux (green). Dashed lines are digitally interpolated from
Figure 7 of [63], full lines are the same results derived with MCEq.

Figure 7.10 shows that the uncertainty on the spectral index completely
cancels out when taking the flavor ratio of neutrino fluxes. Thus the same «dip»
as observed in the absolute neutrino uncertainty is not seen in the νµ/ν̄µ ratio.
The disagreement between MCEq and Barr estimated νe/ν̄e uncertainty is due to
a difference in the kaon contribution to the electron neutrino production.

IceCube is not sensitive to the charge of the lepton produced in a neutrino
interaction, and can therefore not take advantage of the cancellation of uncertain-
ties in the νµ/ν̄µ and νe/ν̄e flux ratios. The (νµ + ν̄µ)/(νe + ν̄e) ratio will however
appear experimentally as a ratio between cascade and track events, and the
cancellation of uncertainty can be utilized in IceCube analyses.

Directional ratios Cancellations of uncertainties also occur in ratios of neutrinos
from different directions. At Eν &10 GeV there is a complete cancellation of the
uncertainty in the up/down neutrino ratio. This is because the cosmic ray particles
and air showers are not affected by the geomagnetic field at high energies, and
there will in principle be no difference between the neutrino flux at any two
locations at Earth.

At low energies, a similar ratio of neutrinos from above and from the horizon
is from muon decay. Down is defined as cos θz >0.6, horizontal as |cos θz| <0.3.
Thus, the uncertainty cancellation in the down/horizontal ratio will be more
pronounced at low energies. This is observed for both the electron and muon
neutrino flux in Figure 7.11. As the energy increases fewer muons from above will
decay to neutrinos before hitting the ground. Thus, the effect of the cancellation
decreases with energy and the uncertainty on the down/horizontal ratio increases.
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Figure 7.10. – Breakdown of uncertainties in flavor ratios with different regions of
hadron production, shown as a function of neutrino energy. (top) νµ/ν̄µ
(middle) νe/ν̄e (bottom) (νµ + ν̄µ)/(νe + ν̄e)
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Figure 7.11. – Uncertainties in directional ratios as a function of neutrino energy, for
νµ + ν̄µ (green) and νe + ν̄e (blue). Dashed lines are digitally interpolated
from Figure 9 of [63], full lines are the same results derived with MCEq.

At energies O(1) TeV, the decay of muons produced in pion decay ceases to be
a dominant mode of neutrino production, and the contribution from the pion
production uncertainty to the overall uncertainty drops. This is shown in the
breakdown of the individual sources of uncertainty on the down/horizontal ratio
in Appendix E.

Doing analyses in IceCube on directional neutrino ratios has the potential
of limiting the systematic uncertainty from the neutrino flux estimate. Further
studies should aim to quantify the potential gain.
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8Implementation of MCEq in
PISA

All aspects of the atmospheric neutrino flux discussed in previous chapters are
tied together in a new analysis method in PISA, which is the analysis tool of low
energy IceCube analyses. The topic of this chapter is the development and testing
of this model.

In the following sections, all results are shown for the muon neutrino and
antineutrino flux. Corresponding results on the electron neutrino and antineutrino
flux can be found in Appendix D.

8.1 The PISA Framework
The key experimental quantities in IceCube are the length of neutrino propa-

gation – which is proportional to the zenith arrival direction cos θz – and neutrino
energy Eν . As such analyses in IceCube are conducted using data that is binned
in a (cos θz, Eν)–grid.

Likelihood Analysis The objective of a physics analysis is to investigate to what
degree a theoretical model can describe data. For instance, given a model of
neutrino oscillations where all parameters are known, except the number of tau
neutrinos to expect, how well is the observed 2D distribution described? The
unknown parameter – in this example the number of tau neutrinos – is called the
physics parameter. To answer the question, data must be generated within the
relevant theoretical model, which often requires Monte Carlo (MC) methods. The
simulated data is binned on the same 2D grid to form a «template».

The likelihood of data xi and physics parameter ω is

L(x1, x2, ..., xn|ω) = ΠiP (xi|ω), (8.1)

where P (xi|ω) is the probability to observe the data xi assuming ω. Thus the
likelihood for multiple values of the physics parameter ω can be derived. By
choosing the value of ω that yields the maximum likelihood value, the best physics
parameter to describe the data is found ω̂.

Above it is assumed that all parameters in the theoretical model are fixed,
except the physics parameter. This is rarely the case. For example, all neutrino
oscillation parameters have an associated uncertainty. The systematic uncertain-
ties in an experiment are sometimes called nuisance parameters. In this work, the
relevant nuisance parameters are the 19 sources of flux uncertainty introduced
in the previous chapter. For every value of the physics parameters ω several
templates with different combinations of nuisance parameter values must be
generated. As multiple values of ω are taken into account when maximizing the
likelihood, the MC simulation of templates requires a quickly increasing amount
of computational time.

Weighting To avoid repeated simulation of events every time the value of a
nuisance parameter is changed, the data of the templates can be «weighted» to
account for the change in parameters. This can be done because the nuisance
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parameters of the physics processes are independent, e.g., changing the value of
∆m2

32 does not affect the value of the spectral index of the atmospheric neutrino
flux.

Each simulated neutrino of a given flavor β is assigned an individual weight
wβ. The weight corresponds to the sum over the atmospheric flux Φα over all
initial flavors α, and the probability of oscillating into β, P osc

α→β [66]

wβ ∝
∑
α

Φα(ωflux)× P osc
α→β(ωosc). (8.2)

Thus taking the nuisance parameters of the oscillation model or flux model into
account requires only a single generated template. The parameters associated
with detector response cannot be assumed to be uncorrelated with the other
nuisance parameters, and thus a full MC simulation must be performed for each
template.

Staged approach In PISA the physical processes are broken up into stages. The
simulated data enters a pipeline, in which each physical process is applied as a
stage. Stages that are built on the weighting scheme calculate a transformation
matrix that is applied to the data coming from the previous stage in the pipeline.
One of the first stages to be applied in the pipeline is generally the flux stage.
As an illustration, if the spectral index nuisance parameter is defined as a large
positive value, the flux stage will find a transformation matrix that yields small
weights to high-energy events and large weights to low-energy events. The MC
distribution is thus altered before entering the next stage of the pipeline.

Since the production of ντ is negligible in the atmosphere, the flux stage only
takes into account νe and νµ.

The staged approach in one dimension is illustrated in Figure 8.1. In step (1)
the flux stage is applied. In step (2) the oscillation stage is applied. The dotted
green line illustrates the alteration when changing one parameter in the oscillation
stage. Step (3) is the effective area of the detector. The three transformation
matrices are multiplied to yield an expected event distribution (lower left). Taking
detector response into account (4), the final expected observable distribution is
shown in the lower right. This template can then be compared to data using a
likelihood analysis to find the value of the physics parameters that best describes
the data.

In the following, I will describe the current flux stage and the new flux stage
implemented in PISA. For further information on the other stages of PISA refer to
[66].

8.2 The Honda Flux Stage
The current flux stage in PISA is based on Monte Carlo generated tables1.

The calculations – hereafter referred to as the «Honda flux» – are performed by
M. Honda and collaborators and were last updated February 2015 [48].

1http://www.icrr.u-tokyo.ac.jp/∼mhonda/nflx2014/index.html
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Figure 8.1. – Illustration of the staged approach shown in one dimension (energy). The
first stages (step 1-3) are applied for the energy of the event Etrue. The
product of these yields the expected event distribution (lower left). The
expected spectrum is then smeared out with energy-dependent energy
resolution functions (step 4). The reconstructed event rate spectrum is
shown in the lower right plot. The effect of changing a nuisance parameter
in the oscillation stage is illustrated in the dotted green line in step 2. From
[66].

The Honda Flux Estimates The Honda prediction is a full 3D exclusive flux
calculation. This means that the path of each air shower particle is traced,
resulting in a lateral spread of the air shower. The Honda flux thus has a zenith,
azimuth, and energy dependence. The azimuthal dependence, which is found
to be small at the South Pole at the energies relevant for IceCube, is currently
averaged out in the PISA implementation.

Additionally, the predictions from Honda et al. take variations in solar activity
and season into account and are generated at the maximum and minimum of the
solar cycle, and for summer and winter seasons.

The Honda flux is estimated using a particular choice of models for hadronic
interactions, the atmospheric density profile, the geomagnetic field, and the
cosmic ray spectrum. For hadronic interactions, the calculation relies on the
DPMJET-III [54] model at high energies, Eν ≥32 GeV, though modified to re-
produce the muon spectra observed by the BESS group [48]. Below 32 GeV the
JAM interaction model is used [67]. The group has compared the DPMJET-III–
JAM combination to other model combinations and found a better agreement to
measurements at balloon altitudes [68]. The latest Honda fluxes are calculated
using the NRLMSISE-00 [50] atmospheric model and the IGRF [69] geomag-
netic model. As for the cosmic ray model, they use a model based on AMS and
BESS data, with a spectral index of γ =–2.71 above 100 GeV [48]. The model is
described in [46], which is the same reference as for the GaisserHonda-model
within the CRFluxModel-module of MCEq[70]. As the same selection of models is
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Figure 8.2. – The nominal νµ (left column) and ν̄µ (right column) flux as calculated with
the MCEq PISA stage (topmost, orange row) and the Honda stage (middle,
blue row). The ratio of the two is shown in lower row.

not available in MCEq, a direct comparison between the effect of the different
calculation methods of MCEq and Honda is not possible.

The nominal νµ (left) and ν̄µ (right) flux estimated by Honda et al. and
implemented as a stage in PISA are shown in the middle row of Figure 8.2.

8.3 A New Flux Stage in PISA
In the developed MCEq stage the nominal flux is found by running MCEq.

As MCEq is not subject to statistical fluctuations, it will yield the same result
every time the calculations are run. Thus, the muon and electron neutrino flux is
calculated, splined, and stored in an external file.

As the basis for the PISA staged approach is to reweight the same template,
the underlying MC data is unaltered when the template is regenerated. Thus, the
precomputed splines only have to be evaluated once, which saves considerable
computational time. The nominal νµ (left) and ν̄µ (right) flux, calculated with
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Figure 8.3. – The nominal νµ (upper) and ν̄µ flux as calculated with the MCEq PISA
stage (orange) and the Honda PISA stage (blue)

SIBYLL2.3c and GSF, as evaluated on the same grid as the Honda stage is shown
in the topmost row of Figure 8.2.

The lowermost row of Figure 8.2 shows the ratio between the nominal νµ
(left) and ν̄µ (right) flux calculated with MCEq and that of Honda. Compared
to Honda, MCEq predicts a lower flux at low energies and a higher flux at high
energies. This is more easily seen when plotting in one dimension (see Figure
8.3). The disagreement is discussed in Section 8.5.

8.4 Flux Nuisance Parameters
Up until this point, the nominal fluxes as calculated with the Honda and

MCEq PISA stages have been compared. In this section, the uncertainty on that
estimate is taken into account.

Evaluating uncertainties on the flux in the Honda stage The uncertainty on the
Honda flux is partly based on parameterizations of the neutrino flux ratio un-
certainties presented in Barr et. al [63] and reproduced in Section 7.4. The
uncertainty on the νe/ν̄e, νµ/ν̄µ, (νµ + ν̄µ)/(νe + ν̄e), and the ν down/horizontal
ratios are parameterized, and define the uncertainty on the flux. An uncertainty
on the spectral index, ∆γ, is also implemented.

For each physics parameter value, the template is reweighted for multiple
values of nuisance parameters. The variation in the nuisance parameters are
constrained by Gaussian priors, based on the work in Barr et al. For instance,
assuming that the only flux nuisance parameter is the spectral index, generating
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Table 8.1. – Nuisance Parameters of the Honda (left) and MCEq (right) PISA stage
Honda stage MCEq stage

Parameter Variance Range Parameter Variance Range
∆γ 1 σ = 0.1 ±5σ ∆γ 1 σ = 0.1 ±5σ
ν/ν̄ 1 σ = 1.0 ±3σ π+/π− 1 σ = 0.3 ±5σ
νµ/νe 1 σ = 0.05 ±5σ A 1 σ = 0.1 ±5σ
ν down/horizontal 1 σ = 1.0 ±3σ B 1 σ = 0.3 ±5σ

C 1 σ = 0.1 ±5σ
D 1 σ = 0.3 ±5σ
E 1 σ = 0.05 ±5σ
F 1 σ = 0.1 ±5σ
G 1 σ = 0.3 ±5σ
H 1 σ = 0.15 ±5σ
I 1 σ = 0.122 ±5σ
W 1 σ = 0.4 ±5σ
X 1 σ = 0.1 ±5σ
Y 1 σ = 0.3 ±5σ
Z 1 σ = 0.122 ±5σ
W̄ 1 σ = 0.4 ±5σ
X̄ 1 σ = 0.1 ±5σ
Ȳ 1 σ = 0.3 ±5σ
Z̄ 1 σ = 0.122 ±5σ

∆γ = 0 will correspond to the nominal flux. The 1σ variance of this parameter
is 0.1, so the reweighting matrices are more likely to be generated with an
uncertainty on the spectral index of less than 0.1. The priors on the flux nuisance
parameters are listed in Table 8.1. In Figure 8.4 all flux nuisance parameters in
the Honda stage are set to +1σ, and the resulting changes in predicted flux added
in quadrature (blue, middle row).

Evaluating uncertainties on the flux in the MCEq stage Rather than relying on
plot parameterizations like the Honda stage, the implementation of hadronic
uncertainty in the MCEq stage is based on splines of the altered flux with each
Barr variable applied.

In Chapter 7, we studied the effect of applying one or more Barr variables at
1σ. We saw that applying +1σ uncertainty on meson production resulted in an
increased neutrino flux, i.e., the modified flux φ+. However, within the PISA stage,
the nuisance parameters must be allowed to assume a range of values between
±5σ. Thus, rather than splining the 1σ modification, we spline the derivative
with respect to each Barr variable. A positive uncertainty on meson production
results in the modified flux of φ+. We then find the modified flux assuming a
negative uncertainty, φ−. The derivative for a small step-size δ is then

dφ

dB
= φ+ − φ−

2δ , (8.3)
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Figure 8.4. – All flux nuisance parameters shifted by +1σ and added in quadrature as
calculated in the MCEq stage (topmost, orange) and in the Honda stage
(middle, blue) for the νµ (left column) and ν̄µ (right column) flux. The
ratio between the systematic fluxes are plotted in the lowermost row.
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νe (red) and ν̄e (green). The result is shown for 6 different zenith angles,
and 8 different energies

where B is the considered Barr variable. This is done for several points on a
(E, cos θz)–grid, yielding the derivative of the Barr modification.

In this scheme, the derivatives of the Barr modifications are assumed to
be linear. In Figure 8.5 this assumption is tested for 6 zenith angles, and 8
different energies. The result shows that modifications to the νµ, ν̄µ, νe, and ν̄e
flux are linear for modifications of magnitude –100%. b .+100%, b being the
magnitude of the nuisance parameter. Figure 8.5 shows the result for the H Barr
variable, but all Barr variables were tested and found to modify the flux linearly
in the range –100%. b .+100%.

The uncertainty on the cosmic ray flux is taken into account by introducing
an uncertainty on the spectral index of the energy-dependent neutrino flux

∆φ =
(

E

24GeV

)∆γ

. (8.4)

The flux with uncertainties hereafter referred to as the systematic flux is then
calculated as

φsys = (φnom ·∆φ) +
(
b · dφ
dB

)
. (8.5)
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band.

The flux template is then generated with the MCEq calculated nominal flux, mul-
tiplied by a shift in the spectral index which is generated from a prior defined in
Table 8.1, plus a positive or negative increase that is due to the meson production
uncertainty. The value of the meson production uncertainty, b, can assume values
as defined in Table 8.1.

In Figure 8.4 all flux nuisance parameters in the MCEq stage are set to +1σ,
and the resulting changes in predicted flux added in quadrature (orange, topmost
row).

8.5 The MCEq stage vs. the Honda stage
The nominal flux predicted by Honda and MCEq disagrees (Figure 8.3). No

comparison to atmospheric neutrino data is done in this work, so there is no
indication that one prediction is «more correct» than the other. Recent results
show that MCEq predictions agree with the best fit of the atmospheric muon flux
measured in IceCube [71]. However, the Honda flux is not included in the study
for comparison. Further studies must be undertaken in order to reveal whether
the disagreement between the MCEq and Honda prediction is a real concern.

Taking the uncertainties on the flux into account, the disagreement is within
∼1σ of the MCEq predicted flux. This is demonstrated in Figure 8.6. As the Honda
prediction is within ∼1σ of the MCEq flux, the likelihood will only be moderately
penalized if the best fit flux nuisance parameters result in a flux prediction that
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agrees with the Honda estimate. In other words, it is a possible outcome of the
maximization of the likelihood that the MCEq and Honda prediction agree.

It is predominately the uncertainty on the spectral index that causes the
Honda prediction to be within ∼1σ of the MCEq prediction. It is problematic to
introduce such a large uncertainty without it being founded in data when the
effect might potentially conceal model differences or relevant physics. This should
be improved in future work on flux estimates within the IceCube collaboration.

Advantages of the Honda flux stage MCEq has lower energy limit of Eν ≈10 GeV.
As the Honda flux calculation is a full 3D Monte Carlo simulation, it takes the
geomagnetic field and the solar field into account. This means that the prediction
is valid for the neutrino flux below Eν ≈10 GeV. At the moment, this is in the
lower energy range of IceCube DeepCore, and the MCEq and Honda stage should
be equally appropriate approaches. However, with the IceCube Upgrade, the
sensitivity of IceCube will improve down to ∼1 GeV. In this case, the present
implementation of the MCEq stage is no longer valid.

Advantages of the MCEq flux stage The MCEq stage is much more flexible than
the Honda flux stage. Any user within the IceCube collaboration can estimate the
atmospheric neutrino flux based on any selection of hadronic interaction, cosmic
ray, and atmospheric density models. Newer models can also be implemented as
they are developed. The user must then generate input-tables in the appropriate
format, as discussed in Chapter 5. However, this requires less computational
time than running the full Monte Carlo calculation in the manner of Honda et
al. This allows new experimental cosmic ray or hadronic interaction data to be
implemented consecutively.

The treatment of the flux systematic is more physically motivated within the
MCEq stage, compared to the Honda stage. The parameterization of uncertainties
of flavor ratios and directional ratios that makes up the basis for the Honda
flux uncertainty are assumed to be uncorrelated. Within the MCEq stage, the
uncertainty on meson production is applied directly as a modification on the
(E, cos θz)-grid, keeping the correlation between flavor and directional ratios.
Accounting for these correlations should decrease the contribution from neutrino
flux uncertainties on the overall systematic uncertainty in analyses.

Additionally, the parameterizations of the Barr results that the Honda un-
certainties are based on are calculated including the uncertainty on the cosmic
ray flux. Thus, when both assuming the Barr parameterized uncertainties and an
uncertainty on the spectral index, the uncertainty from cosmic ray flux is counted
two times in the Honda stage. This will probably result in a larger systematic
uncertainty from the atmospheric neutrino flux.

There are thus several reasons to expect that the developed MCEq stage
should result in a lower systematic flux uncertainty. This prospect is investigated
in the next section.
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8.6 Atmospheric Tau Neutrino Appearance in
DeepCore

Most neutrino oscillation experiments are based on measuring electron neu-
trino and muon neutrino appearance or disappearance. Prior to the IceCube
results only two experiments (OPERA and SK) had measured the appearance of
tau neutrinos through oscillation [72][73]. Tau neutrinos can appear through
νe → ντ , νµ → ντ , and ντ → ντ . The νe → ντ channel is experimentally disfavored
as the signature of νe and ντ is very similar, and as the magnitude of the oscilla-
tions is low due to the small mixing. The ντ → ντ channel has the disadvantage
of a very low flux of atmospheric ντ at energies relevant for neutrino oscillations.
In practice, νµ → ντ is the only feasible channel to measure oscillation parameters
related to the tau neutrino. In the standard oscillation picture, the dominant
appearance mode of νµ → ντ is given by [74]

Pνµ→ντ =
∑
j,k

UµjU
∗
τjU

∗
µkUτk exp

(
i
∆m2

jkL

2Eν

)
(8.6)

≈ cos4 θ13 sin2 2θ23 sin2
(

∆m2
31L

4Eν

)
(8.7)

where U are elements of the PMNS matrix, ∆m2
31 = m2

3−m2
1 are the mass-squared

splitting, L is the oscillation baseline and Eν the neutrino energy. The mixing
angles are defined as θ13 and θ23.

As the ντ interaction is indistinguishable from interactions other than νµ CC
in DeepCore, the ντ appearance analysis cannot be done on an event-by-event
basis. However, if ντ do appear, this can be observed as a distortion in the 2D
distribution of energy and zenith angle for tracks and cascades. Thus the analysis
is based on a comparison between templates and observed distribution.

The physics parameter of the IceCube ντ appearance analysis is the ντ nor-
malization, Nντ . This is defined as the ratio of the measured ντ flux to that
expected when assuming best-fit nuisance parameters, including muon neutrino
disappearance oscillation parameters. This means that if Nντ = 1 we observe the
same number of events as expected with standard neutrino oscillations.

The data xi is compared to the template by minimizing the χ2 of binned data
for different values of Nντ and nuisance parameters. The χ2 function is defined
as [30]

χ2 =
∑

i∈{bins}

(N exp
i −Nobs

i )2

N exp
i + (σexp

i )2 +
∑

j∈{syst}

(sj − ŝj)2

σ2
sj

, (8.8)

where N exp
i and Nobs

i is the expected and observed number of events in the i’th
bin respectively. The second term of equation (8.8) is the sum of penalty terms
for nuisance parameters, where sj is the central value of the prior of the j’th
systematic parameter, ŝj is the maximum likelihood estimator, and σ2

sj
is the

prior on the systematic uncertainty. The effect of the penalty terms is that if
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Figure 8.7. – The relative impact from each systematic uncertainty on the final 1σ con-
fidence interval width in the ντ appearance analysis. The line shows the
combined systematic uncertainty from each group of systematics. From
[30].

the variance on the nuisance parameter is large, or the estimated value of the
nuisance parameter is far away from its expected nominal value, large deviations
will be disfavored in the minimization.

In order to establish the individual contribution, or rank, of each systematic
uncertainty, tests were completed where a specific parameter was fixed to its
nominal value, and the analysis was rerun to examine the impact on the test
statistic. The tests were done for individual systematic uncertainties, as well as
groups of systematic uncertainty. Figure 8.7 shows the impact of each systematic
uncertainty on the 1σ confidence interval of the tau neutrino normalization. It
shows that detector systematic uncertainties together account for 41% of the
total systematic uncertainty, and atmospheric neutrino flux uncertainties and
the uncertainty on neutrino oscillation parameters each account for ∼15% of
the systematic uncertainty on the ντ normalization physics value. Thus limiting
the uncertainty on the atmospheric neutrino flux will result in a more sensitive
measurement of Nντ .

The ντ analysis of [30] was done using the Honda stage, with flux nuisance
parameters as defined in Table 8.1. Scanning over different values of the physics
parameter, i.e., 0<Nτ<2, the minimum of the test statistics given the best-fit
nuisance parameters was found (blue curve of Figure 8.8). To test the effect of
flux nuisance parameters on the ντ normalization sensitivity, all other nuisance
parameters of the analysis were fixed at the mean value. The test statistic was
based on MC generated data.
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The analysis was then rerun, with the same setup but with the MCEq stage
taking the place of the Honda stage. The result is shown in Figure 8.8 (orange
curve). The best-fit values for the individual nuisance parameters can be found
in Appendix F. With the Honda stage, the physics parameter was determined
to Nντ = 1.00 ± 0.17, with all nuisance parameters except the flux systematic
uncertainties fixed at the mean value. Using the MCEq stage yielded Nντ =
1.00 ± 0.11. Thus the 1σ sensitivity is on Nντ in the tau neutrino appearance
analysis improved by around 35%.

The result of this work is a developed neutrino flux stage in PISA, based on
MCEq. The stage is completed and tested, and is to be implemented in the PISA
framework and used in future IceCube analyses. The new flux stage is more physi-
cally motivated and ensures a more correlated treatment of the flux uncertainties.
It is expected that this new flux uncertainty treatment will improve the precision
of the new generation of DeepCore oscillation measurements currently under
development.
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The result of this work has been the development of a new, improved way of
handling systematic uncertainties from the atmospheric neutrino flux in IceCube.
Previously the flux treatment in IceCube relied on precomputed Monte Carlo
tables by Honda et al.[48]. The new method is an improvement as it is more
flexible to updates. If new models of hadronic interaction or the cosmic ray
spectrum are developed and found to describe data better, the new method does
not require re-running Monte Carlo simulations with updated models. The user
can herself choose an appropriate combination of models. Additionally, if updated
measurements are done on meson production, the uncertainties can be adjusted
within the developed software without requiring reparameterizations.

Previously the uncertainty on the atmospheric neutrino flux has been based
on parameterizations of results derived by Barr et al.[63]. The uncertainty on
the atmospheric neutrino flux has been described in terms of the uncertainty on
the neutrino–antineutrino ratio, and the up/horizontal neutrino flux ratio. These
uncertainties are treated uncorrelated. This is unrealistic, as both sets of uncer-
tainties fundamentally are caused by uncertainty on the meson production. In the
developed stage, the effect of meson production uncertainty on neutrino flavor
and direction is treated as being correlated. This entails an overall improvement
in the treatment of neutrino flux systematic uncertainties in IceCube.

Implementing PYTHIA in MCEq The work presented here has primarily been
focused on the uncertainties stemming from particle production. I have also
extended an event generator, PYTHIA, to be used for atmospheric neutrino flux
predictions, which is a new aspect of PYTHIA. This work aims to implement
PYTHIA as a hadronic interaction model in MCEq, but work is yet to be done on
the interface between these two softwares.

Better treatment of the cosmic ray spectrum uncertainty The uncertainty stem-
ming from the cosmic ray spectrum has been somewhat sidelined in this work.
The current implementation of the cosmic ray flux uncertainty is the same as the
previous method and is not optimal. Implementing the cosmic ray flux uncer-
tainty by shifting the spectral index of the neutrino flux is not the most favorable
approach, especially at higher energies when the power law behavior is broken.
As a continuation of this work, a better approach should be found. In this thesis,
it is suggested to base the cosmic ray flux uncertainty on the GSF model.

The IceCube Upgrade The planned IceCube Upgrade will likely improve detector
calibration considerably. The detector systematic uncertainty is currently on the
order of 40% and is expected to decrease after the IceCube Upgrade is able to
take data and conduct new calibrations. If so, the uncertainty on the atmospheric
neutrino flux will have an even larger contribution to the overall systematic
uncertainty in IceCube analyses. The work presented here is promising in this
regard, as it indicates that the developed method will decrease the flux systematic
uncertainty. However, the method developed builds on MCEq, which has a
lower energy limit of Eν &10 GeV. With the Upgrade, IceCube will be sensitive
to a neutrino flux with energies extending down to 1 GeV. This flux cannot
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presently be accurately modeled with MCEq. Work is being done on implementing
geomagnetic field effects in MCEq to support the Upgrade. Independently of this
work, two strategies can be investigated in order to use the developed scheme in
the Upgrade

1. One can use 3D Monte Carlo flux estimates at low energies, and MCEq
at higher energies where the 1D approximation is valid, and work out a
method of extrapolation between the two energy regimes.

2. Methods of utilizing directional ratios can be explored. The up/down
neutrino flux ratio will only be dependent on the geomagnetic field, and
thus applying an uncertainty on the ratio, as found by Barr et al., can
potentially describe the effect of the geomagnetic field on the 1D MCEq
estimate.

Overall the new method is more physically motivated, and should thus yield
a more accurate flux prediction. The prediction deviates from estimates by
Honda et al., but within 1σ. To determine the accuracy of the developed method
comparison to neutrino flux data should be performed.

As the flux uncertainties are treated more correlated, the developed method
should also be more precise, yielding smaller systematic uncertainties from the
atmospheric neutrino flux. The developed method has been applied to an IceCube
analysis on tau neutrino appearance, and the systematic uncertainty on 1σ level
was found to decrease by around 35% when taking only the flux nuisance param-
eters into account. The method should be applied to additional analyses before
concluding whether it in general yields a smaller systematic flux uncertainty.
However, it is expected that this new treatment will improve the sensitivity of the
new generation of DeepCore oscillation studies currently under development.
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ADerivation of Oscillation
Probability

Starting from equation (2.9):

Pνα→νβ(L,E) =
∑
k,j

U∗αkUβkUαjU
∗
βj exp

(
− i

∆m2
kjL

2E

)
(A.1)

=
∑
k

U∗αkUβkUαkU
∗
βk +

∑
k 6=j

U∗αkUβkUαjU
∗
βj exp

(
− i

∆m2
kjL

2E

)
. (A.2)

We can derive the following identity

eiA = cosA+ i sinA (A.3)

= 1− 2 sin2 A

2 + i sinA. (A.4)

As ∆m2
kj = −∆m2

jk, we can assigning A = ∆m2
jk

L
2E and rewrite equation(A.2) as

Pνα→νβ(L,E) =
∑
k

U∗αkUβkUαkU
∗
βk (A.5)

+
∑
k 6=j

U∗αkUβkUαjU
∗
βj (A.6)

− 2
∑
k 6=j

U∗αkUβkUαjU
∗
βj sin2

(
∆m2

jk

L

4E

)
(A.7)

+ i
∑
k 6=j

U∗αkUβkUαjU
∗
βj sin

(
∆m2

jk

L

2E

)
. (A.8)

Expanding term (A.7) we get
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∑
k 6=j

U∗αkUβkUαjU
∗
βj sin2

(
∆m2

jk

L

4E

)
(A.9)

=
∑
k>j

U∗αkUβkUαjU
∗
βj sin2

(
∆m2

kj

L

4E

)
+
∑
k<j

U∗αkUβkUαjU
∗
βj sin2

(
∆m2

kj

L

4E

)
(A.10)

=
∑
k>j

U∗αkUβkUαjU
∗
βj sin2

(
∆m2

kj

L

4E

)
+
∑
k>j

U∗αjUβjUαkU
∗
βk sin2

(
∆m2

kj

L

4E

)
(A.11)

=
∑
k>j

sin2
(

∆m2
kj

L

4E

)
(U∗αkUβkUαjU∗βj + U∗αjUβjUαkU

∗
βk) (A.12)

=
∑
k>j

sin2
(

∆m2
kj

L

4E

)
(U∗αkUβkUαjU∗βj + UαkU

∗
βkU

∗
αjUβj) (A.13)

=
∑
k>j

sin2
(

∆m2
kj

L

4E

)
(U∗αkUβkUαjU∗βj + (U∗αkUβkUαjU∗βj)∗) (A.14)

= 2
∑
k>j

Re(U∗αkUβkUαjU∗βj) sin2
(

∆m2
kj

L

4E

)
, (A.15)

where Re(A) is the real part of a complex number A. We can interchange the
indices in equation (A.10) without changing signs as sin2 is an even function. A
similar exercise for term A.8 yields

∑
k 6=j

U∗αkUβkUαjU
∗
βj sin

(
∆m2

jk

L

2E

)
(A.16)

= 2i
∑
k>j

Im(U∗αkUβkUαjU∗βj) sin
(

∆m2
kj

L

2E

)
. (A.17)

where Im(A) is the imaginary part of a complex number A. The sign is reversed
as sin is an odd function.

As term (A.5) plus term (A.6) equals

∑
k

U∗αkUβkUαkU
∗
βk +

∑
k 6=j

U∗αkUβkUαjU
∗
βj (A.18)

=
∑
i

∑
j

U∗αkUβkUαjU
∗
βj (A.19)

=
∑
k

(U∗αkUβk)
∑
j

(UαjU∗βj) (A.20)

As U is unitary
∑
k UαkU

∗
βk = δαβ, where δ is the Kronecker delta function. This

means that the (A.5)+(A.6)=δαβ.
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Putting all terms together we find

Pνα→νβ(L,E) = δαβ − 4
∑
k>j

Re(U∗αkUβkUαjU∗βj) sin2
(

∆m2
kj

L

4E

)
(A.21)

+ 2
∑
k>j

Im(U∗αkUβkUαjU∗βj) sin
(

∆m2
kj

L

2E

)
(A.22)
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BModels of MCEq

B.1 Hadronic Interaction Models in MCEq
Table B.1. – Hadronic interaction models representations in MCEq for proton-air simula-

tions. The (pp) version is for a hydrogen target. Copied from [1].
Name Reference
SIBYLL 2.1 [75]
SIBYLL 2.3 [76]
SIBYLL 2.3c [53]
SIBYLL 2.3c (pp) [53]
QGSJET 01-c, II-03, II-04 [51]
EPOS LHC [52]
DPMJET-III [54]
DPMJET-III 2017 [64]

B.2 Density Profile of the Atmosphere
The isothermal model is

ρ(a) = X0

aiso
e
− a
aiso (B.1)

where X0 and aiso are chosen to resemble a good approximation of the density at
relevant altitudes a for neutrino production.

Table B.2. – Table of models for the density of the Earth’s atmosphere, incorporated in
MCEq. Copied from [1].

Name Reference Description
Isothermal [77] According to eq. (B.1) with X0 = 1300g/cm2 and aiso = 6.3 km
CORSIKA [49] Piece-wise fit of 5 exponentials to other models or data.
NRLMSISE-00 [50] Global numerical static atmospheric model.
Tabulated atmosphere Template class for tabulated atmopheres, which can be extrapo-

lated at high altitudes with NRLMSISE-00
GeneralizedTarget A piece-wise defined homogeneous target density (for general

purpose calculations of cascades)

B.3 Cosmic Ray Models
The most relevant cosmic ray flux models implemented in MCEq are described

below. Other models, such as poly-gonato[78] or Zatsepin-Sokolskaya[79] are
also implemented, but describe new data worse than the four models mentioned
below [42].

H3a [44] Based on a proposal of Hillas, the model assumes three populations of
cosmic rays. The first population is associated with the acceleration of supernova
remnants, with the «knee» signaling the cut-off. The second population is a
higher-energy galactic component of unknown origin, while the highest energy
population is assumed to be of extragalactic origin. All three components contain
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Appendix B Models of MCEq

five groups of nuclei and cut off exponentially at a characteristic rigidity Rc,j, as
suggested by B. Peters. The all-particle spectrum is given by

φi(E) =
3∑
j=1

ai,jE
γi,j × exp

[
− E

ZiRc,j

]
, (B.2)

where the subscript i runs over the standard five groups (p, He, CNO, Mg-Si
and Fe) and a is a normalization constant. The parameters are adjusted to
CREAM data at lower energies, and the majority of high energy observations. An
alternative version, H4a, contains only protons in the third population.

GST-3/GST-4 [45] The Gaisser-Stanev-Tilav model is building on many of the
same considerations as H3a, assuming three populations and five groups. The
spectrum is fitted, rather than adjusted, to data using equation (B.2). The fit is
restricted to certain rigidity cut-offs for each group, in order to reproduce features
like the «second knee» as reported by KASCADE [80]. GST-4 is an alternative
version with four generations and only protons above the «knee».

GH [46]The Gaisser-Honda model, is somewhat older (2002). The primary flux
is assumed to follow

φ(Eh) = K × (Ek + b exp
[
−c
√
Eh

]
)−α, (B.3)

and is fitted to balloon measurements (AMS and BESS). Thus it is developed for
data below the PeV scale and does not aim to model the high energy features as
the «knee» and «ankle» [42].

Table B.3. – Table of models included in the sub-module CRFluxModels in MCEq. Copied
from [1].

Short name Reference Description Valid range [GeV]
H3a [44] three astrophysical populations, broken power laws, five mass

groups, heavier composition at ultra-high energies (UHE)
103 − 1011 GeV

H4a [44] same as H3a but with proton composition at UHE 103 − 1011 GeV
GST-3 [45] three population, broken power-law fit heavier composition be-

tween «knee» and «ankle» («second knee»)
103 − 1011 GeV

GST-4 [45] like GST-3 but with an fourth extragalactic proton component at
UHE

103 − 1011 GeV

GH [46] power-law model with five mass groups, often used in atmospheric
neutrino flux calculations below «knee» energies

<PeV

cHGp [44] [46] [81] combination of GH at low energy and H4a above tens – 1011 GeV
cHGm [44] [46] [81] like cHGp but with H3a instead of H4a tens – 1011 GeV
Polygonato [78] broken power-law fit, based on renormalization of various cosmic

ray measurements up to «knee» energies
few TeV – PeV

ZS [79] original model by Zatsepin and Sokolskaya, also including re-fitted
parameters by the PAMELA collaboration

tens GeV – PeV

TIG simple broken power law spectrum of nucleons (protons) TeV – PeV
GSF [65] Global Spline Fit to recent cosmic ray observations with errors 10 GeV – 1012 GeV
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CTheory of the Angantyr
Model

C.1 Diffractive Cross Sections
We can include diffractive excitation by introducing fluctuations in the indi-

vidual nucleon-nucleon interaction1. We can do this by assuming that the mass
eigenstate of the nucleon Ψi, differs from the elastic scattering eigenstate Φl with
corresponding eigenvalues Tk. The mass eigenstates are linear combinations of
the elastic eigenstates: Ψ = ∑

i aijΦl.

The transition amplitude going from an initial state to the i’th state is

〈Ψi|T |Ψ0〉 =
∑
k

aikTka0k. (C.1)

An elastic process corresponds to no change in mass state, and thus the
elastic cross-section at a fixed b is

dσel
d2b

= 〈Ψ0|T |Ψ0〉2 = 〈T (b)〉2. (C.2)

The total diffractive scattering at fixed b (including the elastic) is the transi-
tion to all states Ψi, so that

σdiff

d2b
=
∑
i

〈Ψ0|T |Ψi〉〈Ψi|T |Ψ0〉 = 〈T 2(b)〉. (C.3)

Consequently the cross section for diffractive excitations given by the fluctuations
is

dσD
d2b

= dσdiff

d2b
− dσel

d2b
= 〈T 2(b)〉 − 〈T (b)〉2. (C.4)

Both target and projectile can fluctuate. For an elastic process we can average
over all states. In a single diffractive process, where e.g. the projectile is excited,
we can average over the target states. Finally we can find the cross section for a
double diffractive process by subtracting the cross section of the single diffractive
processes (Dt and pD) from the total diffractive cross section of equation (C.4).
The result is

1This approach is called the Good-Walker formalism [82]
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dσtot/d
2b = 〈2T (b)〉proj,t, (C.5)

dσabs/d
2b = 〈2T (b)− T 2(b)〉proj,t, (C.6)

dσel/d
2b = 〈T (b)〉2proj,t, (C.7)

dσDt/d
2b =

〈
〈T (b)〉2proj

〉
t
− 〈T (b)〉2proj,t, (C.8)

dσpD/d
2b =

〈
〈T (b)〉2t

〉
proj
− 〈T (b)〉2proj,t, (C.9)

dσDD/d
2b = 〈T 2(b)〉proj,t −

〈
〈T (b)〉2proj

〉
t
−
〈
〈T (b)〉2t

〉
proj

+ 〈T (b)〉2proj,t, (C.10)

where proj and t denotes averages over the projectile and target state, respectively.

C.2 Distribution of T
In [57] it is shown that T (b) can be assumed to follow the distribution:

T (b) = T0(rp + rt)Θ
(√

(rp + rt)2

2T0
− b

)
, (C.11)

where T0 is an opacity parameter T0 ≤ 1.
We have seen that introducing diffractive excitation in the form of a fluctu-

ation modifies the cross sections. This corresponds to fluctuating the internal
structure of the nucleus, i.e., we must allow rp and rt to fluctuate according to
some distribution, found in [83][57]

P (r) = rk−1e−r/r0

Γ(k)rk0
, (C.12)

k being a shape parameter and r0 setting the position of the distribution. The
function Γ(k) is Γ(k) = (k − 1)! evaluated at k. The opacity has an exponential
shape, so that:

T0(rp + rt) = 1− exp
(
π(rp + rt)2/σt

)
(C.13)

giving three free parameters: σt, r0, k.
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D
Results on the Atmospheric
Electron Neutrino Flux

In Chapter 7 and Chapter 8 most results are shown for νµ and ν̄µ flux. In this
Appendix results are repeated for the νe and ν̄e flux.
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Ȳ

Z̄

Total

101 102 103

Eν[GeV]

10−1

100

101

102

E
rr

or
in
ν̄ e

flu
x

(%
)

Figure D.1. – Breakdown of the uncertainties (averaged over zenith angles) on the νe
(left) and ν̄e (right) flux, with different regions of meson production as
a function of neutrino energy. The capital letters correspond to the Barr
variables of diagram 7.3. Green curves are uncertainty stemming from
pion production, blue from kaon production. The uncertainty on the pion
ratio is represented by π+/π− (pink). The brown curve represents the
uncertainty arising from the spectral index of the cosmic ray spectrum.
The topmost, gray line is the total uncertainty on the flux. The estimate by
Barr et al. is plotted in gray, dashed line for comparison [63]
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Figure D.2. – The nominal νe (upper) and ν̄e (lower) flux as calculated with four different
hadronic interaction models. The gray band indicate all uncertainties on
particle production, i.e., all Barr variables, shifted by ±1σ as compared to
the SIBYLL2.3c flux and added in quadrature.
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Figure D.3. – The nominal νe (upper) and ν̄e (lower) flux as calculated with four different
cosmic ray models. The gray band indicates the result of shifting the
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Figure D.4. – The nominal νe (left column) and ν̄e (right column) flux as calculated with
the MCEq PISA stage (topmost, orange row) and the Honda stage (middle,
blue row). The ratio of the two is shown in lower row.
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Figure D.5. – The nominal νe (upper) and ν̄e flux as calculated with the MCEq PISA
stage (orange) and the Honda PISA stage (blue)
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Figure D.6. – The nominal νa (upper) and ν̄a (lower) flux as calculated with MCEq
(orange) and Honda (blue stage). All nuisance parameters in the MCEq
stage shifted by ±1σ and added in quadrature to make up the grey 1σ
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Figure F.1. – Best-fit values for all flux nuisance parameters for 0< Nντ <2.
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