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Abstract

I will investigate whether it is possible to detect gravitational redshift in galaxy clusters
using photometric data, and if this is possible with the Large Synoptic Survey Telescope
(LSST). This is done by using simulated data representing different types of spectroscopic
and photometric data for galaxy clusters with a mass above 1014M�h

−1. The three
datasets analysed represent: (1) spectroscopic data for all galaxies, (2) spectroscopic data
for the Brightest Cluster Galaxies (BCG) and photometric data for all other galaxies,
and (3) photometric data for all galaxies, including the BCGs.

The analysis of the spectroscopic data (1) show a clear gravitational redshift signal
in clusters, and it is traced out to a radius of 6 Mpc with an average error of ±0.8 km/s.
With regards to the photometric data, (2) and (3), the results are less conclusive, as
these datasets show a large scatter. The average error in the gravitational redshift for
the photometric datasets are ±3.5 km/s and ±5.4 km/s respectively. The analysis was
carried out with a sample of 9.1 · 106 galaxies distributed over 6 · 104 clusters.

The LSST is expected to observed 105 clusters, which would make it possible to
obtain a total of 1-2·107 galaxies from these. Based on extrapolations performed, this
would make it possible to bring the error on the gravitational redshift down to ±3 km/s
for the photometric datasets, (2) and (3), making it possible to detect gravitational
redshift with photometry.
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1 Introduction

Since Einstein proposed the theory of General Relativity in 1915 describing the rela-
tionship between space, time and matter, it has been an integral part of astronomy and
physics in general. It has been shown to apply to a large range of scales from time delays
of GPS satellites to gravitational lensing in galaxy clusters. The most commonly used
metric in cosmology, the Friedman-Robertson-Walker metric, is also derived from gen-
eral relativity. As a result thereof most cosmological models today are based on general
relativity.

General relativity is not the only theory capable of explaining observations. More
recently different theories of modified gravity, like f(R), have been introduced to explain
the expansion history of the universe. Although general relativity has been shown to
make accurate predictions in many areas there are still problems, like explaining singu-
larities and the incompatibility with other forces, indicating that some modification is
needed.

Testing of general relativity is a very active field within research, with the latest
addition being the observation of gravitational waves (Abbott et al., 2016). The approach
I will take is to investigate more accurate measurements, or the prediction thereof, of an
already measured effect of general relativity, namely gravitational redshift, by simulating
larger dataset than what is available from observations now, as well as consider the use
of photometric surveys.

Making accurate determinations of the gravitational redshift in galaxy clusters could
prove to be another test of general relativity. A more accurate determination of the
signal will result in tighter constraints on the theory used to describe it, and could rule
out theories not consistent with the observations.

With upcoming surveys, like the Large Synoptic Survey Telescope (LSST) under way,
collecting large datasets of photometric data will soon be possible. Construction of the
LSST began in 2015 in Chile and is expected to make science first light in 2021 followed
by a 10-year survey covering 20,000 deg2 of the sky. From LSST the expected number
of galaxies observed is 1010 and 105 clusters (LSST Science Collaboration, 2009; Tyson
et al., 2006), which is about twenty times the size of the entire Sloan Digital Sky Survey
(SDSS) database right now. The main part of the LSST survey will be photometric
observations, which is what will be the focus of this thesis by determining if it is possible
to measure the gravitational redshift with this data.

Generally, redshift reflects the change in energy of the photon from emission to obser-
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vation which is a sum of the contribution from different effects. The main components
of redshift are effects of the Hubble flow and Doppler effect from peculiar velocities, but
other smaller effects can also contribute, such as gravitational redshift (Wojtak et al.,
2011), transverse Doppler effect (Zhao et al., 2013), relativistic beaming (Kaiser, 2013)
and surface brightness modulation (Kaiser, 2013). In this thesis I will be focusing on
the effect of gravitational redshift.

All these effects are small, of the order 10 km/s, compared to the typical velocity
distribution of galaxies in clusters which is of the order 1000 km/s. As these effects
are so much smaller than the velocity distribution, it has only recently been possible to
determine them as measurements have become more accurate and the databases have
become larger.

Photometric redshifts, which will be the focus in this thesis, are based on observations
using multiple broad band filters. The reason photometric redshifts are not typically used
for precision measurements are that they are less accurate than spectroscopic redshifts,
because of the difficulty in determining the exact position of the features of the spectrum.
The advantage of photometric redshift is that it is possible to obtain for a fainter number
of objects. Also, observation time is much shorter, and multiple objects can be observed
at the same time.

Spectroscopic redshifts have very small redshift errors compared to photometric mea-
surements, because they are determined by observing emission or absorption lines which
are very accurate. The largest disadvantage of spectroscopic measurements is the obser-
vation time.

In this thesis I will investigate whether it is possible to determine gravitational red-
shift, using simulated data of what can be expected to come from surveys like LSST
with photometry, as well as the precision at which it can be achieved. Also, I will be
looking at different samples with varying cuts on mass of the galaxy clusters and the
effect of sample size.

In section 2 I will describe the theoretical background of gravitational redshift as
well as present the relevant equations. I will then move on to present the simulation
parameters, the datasets generated and the processing of the data in section 3 before
analysing the results in section 4 and comparing the different datasets and estimating
the sizes required for an accurate determination of gravitational redshift. Finally, in
sections 5 and 6 I will discuss the results in a broader context, including what is possible
with data available right now, and conclude on my findings.
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2 Gravitational redshift

As mentioned above redshift is the effect of a photon loosing energy between emission
and observation. If the photon gains energy it is usually called a blueshift. Gravitational
redshift, zgrs is caused by the emitter of photons and the observer being in potentials of
different depths, ∆Φ causing the photon to either loose or gain energy. This effect can
therefore make both positive and negative contributions to the total redshift depending
on the reference frame and relative potentials.

zgrs = ∆Φ
c2 (1)

The effect is relatively small so a potential of a certain depth is required in order
to detect the additional redshift, for example that of a galaxy cluster. If a galaxy is
situated in a cluster, the gravitational redshift effect relative to the centre of the cluster
will result in a blueshift because the orbiting galaxy is at a potential with smaller depth
than the cluster centre. This effect is small, typically with a size of the order 10 km/s,
compared to the Doppler redshift caused by the peculiar motion of the galaxies in the
cluster, which is of the order 1000 km/s.

The theoretically predicted mean gravitational redshift of galaxies (Wojtak et al.,
2011) as a function of cluster centric distance, R is

czgrs(R) = 2
cΣ(R)

∞∫
R

[Φ(0)− Φ(r)] ρ(r)r√
r2 −R2

dr (2)

where Σ is the 2D surface density, Φ is the gravitational potential at distance R from
the cluster centre, ρ is the 3D density profile and c is the speed of light. Here, the
gravitational redshift is in units of velocity, which will be used throughout this thesis.

The 2D surface density is used as a normalization and takes the form

Σ(R) = 2
∞∫
R

ρ(r)r√
r2 −R2

dr (3)

from Lokas & Mamon (2001). The 3D density is assumed to be an NFW profile (Navarro
et al., 1996)

ρ(r) ∝ 1
r
rv

(
1 + cv

r
rv

)2 (4)
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where rv is the virial radius and cv is the concentration parameter approximated by

cv = 9.60
(

Mv

1012M�h−1

)−0.075
(5)

for distinct halos at low redshift from Klypin et al. (2011). Mv is the virial mass of the
cluster.

The virial radius is defined as the radius at which the density of the cluster is a
certain multiple, given by the overdensity parameter ∆c, of the critical density of the
universe, ρc. It is also the radius containing the virial mass, Mv of the cluster.

rv =
( 3Mv

4π∆cρc

)1/3
(6)

where ρc = 3H2

8πG is the critical density of the universe today. The overdensity parameter
used here takes the value ∆c = 97.2, which is a result of a matter overdensity of 360 with
respect to the mean background density of Ωmρc. The matter overdensity is defined as
360, because this is the value used in the cluster finder algorithm used in the simulation
described in section 3.1 below.

Finally, the gravitational potential of a galaxy with an NFW density profile is

Φ(r) = −GMv

rv
g(cv)

ln
(
1 + cv

r
rv

)
r
rv

(7)

where g(cv) is defined as g(cv) = 1
ln(1+cv)− cv

1+cv

.

From the equations above it is clear that clusters with different masses will have dif-
ferent gravitational redshift profiles because of differences in the depth of the potential,
see figure 1. The more massive clusters have a deeper potential at the centre than the
less massive, which results in a larger difference in potential between the centre of the
cluster and the outer parts, resulting in different gravitational redshift profiles.

Notice the flattening of the profile beyond the virial radius (rv ≈ 1.7 Mpc for the
profile with a mean cluster mass of 1.84 ·1014M�h

−1), but also that the profile continues
to decrease at greater radius as well. Usually the virial radius is used to determine the
outer limit of a cluster, but galaxies at greater radii can still be affected gravitationally
by the cluster. Therefore, galaxies beyond the virial radius are included in this analysis
as they contribute to the gravitational redshift signal evident by the continued decrease
of the profile.
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Figure 1: The prediction of the gravitational redshift profile of two clusters with different masses;
1.84 · 1014M�h

−1 (full line) and 4.67 · 1014M�h
−1 (dashed line). 1.84 · 1014M�h

−1 is the typical
mean mass of the full samples described in section 3.2. 4.67·1014M�h

−1 is the typical mean mass
of the samples containing only massive clusters with mass above 3 · 1014M�h

−1. The prediction
of the gravitational redshift of a cluster galaxy is relative to the centre of the cluster

Gravitational redshift can be detected by using the velocity distribution of the galaxies
in clusters. The Doppler effect from peculiar motions results in a broadening of this
distribution, while the gravitational redshift will cause a shift of the centroid of the dis-
tribution. If the velocities of the galaxies are measured relative to the cluster centre as
indicated in equation 2, the shift of the centroid will be negative (a blueshift).

This method of measuring the signal also means the signal will be stronger for larger
distances from the centre of the cluster because this is were the largest differences in
potentials are. This is consistent with the expectation from looking at the gravitational
redshift profile in figure 1.

3 Data generation and processing

All data analysed in this thesis are simulated and represent galaxies in clusters. The
data contain cluster-centric distance in Mpc, the velocity of each galaxy relative to the
cluster centre in km/s, the cluster number a given galaxy is associated with and the
total mass of the cluster in M�h−1.

As the focus here is on gravitational redshift, only galaxies in clusters are relevant,
since the effect is small and a potential of a certain size is necessary for detection, e.g.
galaxy clusters.
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Galaxy clusters can vary greatly in the number of members and total mass but all
have a centre where the gravitational potential is greatest, and this space is usually
occupied by a massive elliptical galaxy called the Brightest Cluster Galaxy (BCG). The
BCG is assumed to be at the centre of the potential, but this is an approximation, as the
BCG can have a small peculiar velocity relative to the central potential (Kaiser, 2013;
Kim & Croft, 2004). If this is the case, it will result in a systematic error for the cluster
in question, which is not considered here.

3.1 Mock data generation

The simulated data used in this thesis was generated by Radoslaw Wojtak1 at Kavli
Institute for Particle Astrophysics and Cosmology, Stanford University, using the MDR1
simulation (Prada et al., 2012) with WMAP5 cosmology (Komatsu et al., 2009) from
the MultiDark simulation project. The values of the cosmological parameters used for
the simulation are Ωm = 0.27 as the density parameter for all matter, Ωb = 0.0469
as the density parameter for only baryonic matter, the Hubble parameter h = 0.7 and
σ8 = 0.62 which describes the amplitude of the mass density fluctuations in a 8 Mpch−1

sphere. The simulation uses 20483 particles in a cube with a side length of 1 Gpc h−1

and a mass resolution of 8.721 · 109M�h
−1.

The box size with side length 1 Gpc allows for formation of a wide variety of struc-
tures. Of cause structures larger than the box size are not possible to distinguish, but
considering the typical galaxy cluster has a diameter of 5-30 Mpc this is easily contained
within the simulation.

Only clusters with a halo mass above 1014M�h
−1 are included in the sample, and the

most massive cluster obtained has a mass of 2.36 ·1015M�h
−1. In the simulation galaxies

are defined as subhalos of the cluster halo, and no assumption of an NFW profile are
made to define the galaxies. The halos are found using the Bound Density Maximum
(BDM) algorithm (Klypin & Holtzman, 1997; Riebe et al., 2013), which identifies both
distinct halos and subhalos. To avoid spurious detections of subhalos a cut is applied
to the minimum number of particles needed to form a subhalo, which in this case is 20,
corresponding to a minimum subhalo mass of 2 · 1011M�h

−1.
Clusters are identified based on overdensities compared to the average density of

the universe. The BDM algorithm defines halos using a overdensity of 360 times the
background density as the outer limit of the halo.

Galaxies with halo mass above the limit of 2 · 1011M�h
−1 in the clusters are selected

1Supervising this thesis
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based on their velocity relative to the cluster centre and their cluster centric distance.
The velocity cut used is ±6000 km/s for all datasets. This cut-off in velocity ensures that
all galaxies in the clusters are considered without including too many galaxies dominated
by the Hubble flow as well as being wide enough to sample the full velocity distribution
of all the clusters. For further discussion of this cut-off see appendix B.2. Also, galaxies
must have a cluster centric distance smaller than 6 Mpc, which is the distance at which
the Hubble flow starts to dominate over the local gravitational field. The virial radius is
not used as a cut-off, as all gravitationally bound galaxies contribute to the gravitational
redshift signal, which was also discussed in section 2.

All clusters and galaxies are combined into one final dataset. Combining clusters
of different masses will result in a widening of the velocity distribution of the galaxies,
because clusters have velocity distributions of different widths as the range of peculiar
velocities are affected by the mass of the cluster. An advantage of combining the data
into one cluster is that substructures of individual clusters are smoothed out and some
of the error due to peculiar velocities of the BCGs is reduced.

As a result of the parameters of the simulation, e.g. simulation volume, number of
particles and limits on halo and subhalo masses, each of the projections in the datasets
described below and used in the analysis in section 4 will be of roughly the same size,
with ≈ 3 · 106 galaxies and 2 · 104 clusters in each.

3.2 Datasets

Three different kinds of datasets are analysed in this thesis, each simulates a different
type of data. Each type of dataset contains three different projections, i.e. each has
a different line of sight in the simulation, used to test whether any of the projections
contain significant statistical fluctuations and as well as combine them to a larger dataset.
This gives a total of nine different projections, all with about 3 · 106 galaxies in each
distributed over about 2·104 clusters. The exact number of galaxies vary from projection
to projection, but the sample sizes are very similar with differences in size smaller than
0.5%. Therefore, all samples will be treated as of equal size.

By combining the different projections of a dataset, an even larger dataset can be
obtained. The individual projections are the largest possible samples from the simulation
given the parameters described in section 3.1, but these contain only 20% of the clusters
which are expected to be observed with LSST, which is 105 clusters (Tyson et al., 2006).
The combination of the projections therefore allow for a closer approximation of the
LSST dataset.

Using different projections does not reflect a possibility with actual observations as
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we cannot change our perspective, but is used, as already mentioned, as a method of
detecting the fluctuations in the measurement of the gravitational redshift from the sim-
ulation and to obtain a larger dataset.

First, the dataset (Mock dataset) is assumed to be obtained spectroscopically, mean-
ing the error on the velocity for each galaxy is negligible. This is used to run different
tests, for example to check the pipeline for the data processing as well as the simulation
output. It is also used to compare the two other datasets which represent different types
of observations and the errors they yield. As it is assumed this dataset contain only
negligible observational error this dataset represent the best case scenario for detecting
the gravitational redshift.

The second dataset (LSST mock 1) simulates data as it is expected to come from
photometry using LSST. The velocity of each galaxy, except for the BCGs, is added
with a random Gaussian distributed error with σ = 1500 km/s. The σ for the velocity
distribution of the Mock dataset is ≈ 500 km/s, making the added distribution 3 times
wider than this, which results in an overall widening of the velocity distribution of the
LSST mock 1 dataset, see appendix B.1. A rough estimate for the error of the mean of
the distribution, would be that it is at least 3 times larger for the LSST mock 1 dataset
compared with the Mock dataset because of the widening. This is a lower limit as it does
not take into account the widening of the velocity distribution from peculiar motion of
the galaxies.

The reason for assuming spectroscopic data for the BCGs is that these galaxies
are very bright and therefore relatively easy to obtain spectroscopic measurements for,
whereas the other galaxies in a cluster can be a lot dimmer making photometry a faster
way to observe them.

Finally, the third dataset (LSST mock 2), simulates data where all velocities, includ-
ing the BCGs, are obtained using photometry. The same random error distribution as
for the LSST mock 1 dataset was added to the velocity of each galaxy in this dataset.

The errors on the gravitational redshift of each dataset are expected to increase in
the order they are listed here, as the velocity distribution becomes wider as a result of
the increasing uncertainty of which the galaxies are measured.

The two LSST mocks are simulated photometric data because of the added Gaussianly
distributed error, and σ was chosen to reflect the anticipated uncertainty of the photo-
metric data from LSST. The σ = 1500 km/s chosen, corresponds to a redshift error of
∆z ≈ 0.005. The goal for the photometric error for the LSST survey is σz

1+z ≈ 0.02, but
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maybe get as low as σz
1+z ≈ 0.01 for a subsample (LSST Science Collaboration, 2009).

Considering this goal is for the full survey of the LSST and the kind of observations
needed to detect gravitational redshift, the estimate of ∆z ≈ 0.005 might be optimistic,
but possible. The clusters included in a sample to detect the gravitational redshift would
typically have z < 1, and the galaxies in the clusters included would be elliptical galaxies,
which are easier to determine accurately with photometry.

The typical redshift error for spectroscopy is ∆z ≈ 0.0001, which shows that even
this optimistic estimation of the photometric redshift error, it is still about 50 times less
accurate than spectroscopy. This lack of accuracy can be compensated for by compiling
a larger dataset, which will be discussed further in section 4.4 below.

By using σ = 1500 km/s results in a wider velocity distribution in itself, compared
to the velocity distribution from peculiar motion of the cluster galaxies, which is of
the order 1000 km/s, meaning the added distribution affects the width of the overall
distribution. It also indicates that the error from photometry will be the dominant
source of uncertainty on the measurements.

The spectroscopic redshift error is much smaller making it negligible compared to
the velocity distribution of the cluster. If observations using photometry can be made
with a greater accuracy than what is assumed here, it could become comparable to or
smaller than the velocity distribution of the clusters. This in turn means the photometric
measurements will no longer be the dominant source of error, and data from photometry
might be as useful as that from spectroscopy in this context. This will be considered
further after the analysis of the data in section 4.

Another goal for the LSST is an error of 1% on photometric measurements (LSST
Science Collaboration, 2009) is realistic as it has already been achieved, using a small
dataset of stars from the SDSS database (Ivezic et al., 2007). As also pointed out by
Ivezic et al. (2007), similar calibration using multiple observations of the same objects
should be possible with LSST, resulting in a photometric error of 1% and possibly lower,
supporting the optimistic assumption of the redshift error for photometry made here.

3.3 Fitting procedure

For fitting the data, the emcee algorithm for Python was used (Foreman-Mackey et al.,
2013). The algorithm uses the Markov Chain Monte Carlo (MCMC) method to maximize
the likelihood of any given input function. The MCMC method samples the posterior
probability distribution for the desired parameters using walkers to probe the parameter
space.

The MCMC algorithm works by having a number of walkers scattered randomly
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around the parameter space indicated by the input function as the starting point. The
walkers then performs random steps around the parameter space comparing the likeli-
hood of consecutive steps and based on this either accept the new position or go back
to the old position depending on which one has the largest likelihood of the two. This
results in the walkers converging on the maximum of the probability distribution. To get
a proper distribution of the walkers in the parameter space a certain number is required,
just as the number of steps they perform must be high enough to ensure they converge
on the maximum likelihood.

The advantages of using MCMC sampling are that it works well for high dimen-
sionality of the parameter space and it marginalizes nuisance parameters automatically.
The functions used to fit the data in this thesis has 4-7 free parameters, and several of
these are nuisance parameters. Further, the emcee algorithm is very user friendly and
only require tuning of a few parameters. See the full code used for setting up the emcee
algorithm and fitting of the data in appendix A.

To fit the data maximizing of the likelihood, L is used.

L =
N∏
i=1

f(xi|θ̄) (8)

where i is the index running over all the data, which in this case is galaxies, x is the
data for each galaxy and θ is the set of parameters to be fitted.

It is often more convenient to use the logarithmic likelihood when fitting to avoid
numerical mistakes when computing.

lnL =
N∑
i=1

ln
(
f(xi|θ̄)

)
(9)

The function, f used in this thesis is a composite of multiple parts, which can vary
from fit to fit. It will have a component of a linear function, (mx + b), to account for
background galaxies and a component of a Gaussian function which can vary between a
single Gaussian

f(x) = 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
pc + (mx+ b) (1− pc) (10)
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and a double Gaussian

f(x) =

 1√
2πσ2

1

exp
(
−(x− µ)2

2σ2
1

)
pg + 1√

2πσ2
2

exp
(
−(x− µ)2

2σ2
2

)
(1− pg)

 pc
+ (mx+ b) (1− pc) (11)

where µ is the mean of the Gaussian and is the measure of gravitational redshift, pc is
the probability of a given galaxy being in the cluster or part of the background, and pg
is the normalising weight of the two Gaussian components. It is important to remember
normalization of the different components, but the scaling is arbitrary. For the double
Gaussian it is assumed they have the same mean value, µ, but different widths, σ1 and
σ2. For a discussion of this assumption see appendix B.6.

For the single Gaussian fit there are four free parameters to be fitted; µ, σ, pc and
m, where the last two are nuisance parameters. The most interesting parameter is µ
which represents the gravitational redshift. The double Gaussian fit has two additional
parameters, σ2 and pg where pg is also a nuisance parameter. The parameter b, in the
linear component, is a constant from integrating over the linear function, which should
be normalized to 1 over the range of velocities used.

The linear component of the fitting function is assumed to have a slope of zero in
the simulation, but if data from a survey were used, a small negative slope would be
expected. This would be a result of flux limited surveys, giving the impression of more
galaxies closer to the observer than further away.

For the fitting procedure certain priors are used. The linear function used to fit the
background cannot assume a negative value as it would not make sense to have a nega-
tive contribution from the background. The weights used, pc and pg, must have a value
between 0 and 1 to normalize the functions. The width of the Gaussian function, σ, is
constrained as always being larger than zero. Finally, for the double Gaussian fit the
width of the two Gaussian components, σ1 and σ2, one is always larger than the other,
which is to prevent a mixing of the two components.

The best-fit values used in all the plots in this thesis, are from the walker with the
largest likelihood and the errorbars shown are the 1σ error calculated based on the dis-
tribution of the walkers in the parameter space. In some of the plots in section 4 the
probability distribution of the parameters appear to be asymmetric based on the error-
bars or that the fitting algorithm did not converge. However, this is explained by the
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fact that the value with the maximum likelihood is not necessarily in the middle of the
distribution. All fits are tested for convergence, and the probability distribution of all
parameters are Gaussianly distributed. For details on convergence and distribution of
the parameters see appendix B.4.

3.4 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) can be used to compare models or to select
a preferred model. It is calculated using the maximum likelihood, L, but also takes into
account the number of parameters in the model, as it is always possible to get a better
fit using more parameters, which can result in overfitting.

BIC = −2 ln(L) + k ln(N)

= χ2 + k ln(N) (12)

where k is the number of free parameters and N is the number of data points. The second
term is a penalty for adding parameters to the fit. The second equation assumes errors
are identically and independent distributed, which is typical for a Gaussian distribution.

The model with the lowest BIC-value is preferred, either because it has the fewest
parameters or a better fit or both apply. By calculating the BIC for each model, it is
possible to compare multiple models at once.

When analysing data in this thesis two models will be considered when calculating the
BIC; one assuming no gravitational redshift, and one assuming a gravitational redshift
with a mass corresponding to the mean mass of the data fitted. Comparing these two
values will indicate whether a detection of the gravitational redshift is made.

4 Analysis

As mentioned in section 3.2 a total of three different datasets, each with three indepen-
dent projections were used in the following analysis.

Each projection was binned into seven bins, which were chosen to be smaller in the
inner regions of the clusters and larger at greater distance from the centre of the clusters.
This was done because the features in the gravitational redshift profile vary the most at
smaller radii within the virial radius, which is rv ≈ 1.7 Mpc for the full datasets, but
dependent on cluster mass, see equation 6 and figure 1. Making few evenly spaced bins
over the full range, or too few bins in the inner regions, could obscure the gravitational
redshift signal. Therefore, the size of the bins were chosen to be uneven, with more bins
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closer to the centre of the clusters and fewer at greater cluster centric distance.
There are more galaxies in the outer parts of a cluster because of a larger volume,

therefore the number of galaxies in each bin vary greatly, which is reflected in the size of
the errors of each bin. The number of bins can also affect the size of the errors, because
a larger number of bins require the data to be distributed more thinly resulting in a
smaller amount of data in each. On the other hand, too few bins can obscure the signal
as already mentioned. For a full discussion of the number of bins used see appendix B.3.

The values from fitting the data of a specific bin is plotted using the value of grav-
itational redshift with the largest likelihood and the median radius of the bin, and all
errorbars show a 1σ confidence interval.

Originally I expected to run double Gaussian fits on all the data for the best deter-
mination of the gravitational redshift based on previous work. But a double Gaussian
fit has two more parameters (width of the second Gaussian, σ2, and weighting of the
Gaussians, pg) than a single Gaussian fit, meaning the computational time is longer and
there is a danger of adding meaningless parameters in order to get a better fit. Ap-
pendix B.5 discusses the factors affecting computation time as well as give examples of
the length of the computation time for the different functions.

I ran tests fitting both functions from equations 10 and 11 to the same Mock dataset
projection in order to compare the values and errors from the fits. Visually the differences
in fitted values and errors seem negligible indicating the two functions fit the data equally
well with regards to the gravitational redshift, see figure 2.

However, when calculating the BIC values for the different fits, I found that the
single Gaussian fit obtained the smaller value, which makes it the preferred model. This
difference in BIC values is in large part because of the penalty of the two additional
parameters for the double Gaussian function, indicating the additional parameters of
the double Gaussian function is an unnecessary addition to the fitting function.

When setting up the double Gaussian function in section 3.3, it was assumed the
mean of the two components was the same, and as described in detail in appendix B.6,
when this assumption is not made, the largest contribution to the mean of the double
Gaussian fit is the narrow component, further supporting the adequacy of the single
Gaussian fit over the double Gaussian fit.

The differences between single and double Gaussian fits was also tested for the LSST
datasets with similar results. The differences between the two fitting functions becomes
smaller for the LSST mocks as their velocity distribution is wider as is described in
section 3.2. For spectroscopically obtained data, i.e. the Mock dataset, the velocity
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Figure 2: Profiles of the fitted gravitational redshift from one of the projections of the Mock
dataset using a single Gaussian fit, equation 10 (blue) and a double Gaussian fit, equation 11
(green). Both fits show similar values of the gravitational redshift and size of errors in all bins
indicating the two functions fit the data equally well with respect to the gravitational redshift

distribution is more peaked and the single Gaussian fit has difficulty fitting the wings
of the distribution, but this does not affect the mean value significantly as is shown in
figure 2. See appendix B.1 for histograms of the distributions of the different datasets.

Therefore, all fits in the rest of this section are results of a single Gaussian fit of
equation 10.

4.1 Mock dataset

The Mock dataset represent data obtained using spectroscopy as described previously.
This dataset is expected to have a gravitational redshift signal close to the profile pre-
dicted by equation 2, and with smaller errors than the LSST mocks analysed in the
following sections, because of the smaller errors on the measurements.

This dataset is similar to the data analysed in Wojtak et al. (2011), but with two
key differences; firstly, the data analysed here are simulated, whereas the data used in
the paper are from SDSS Data Release 7, and secondly the size of the dataset used here
is roughly 24 times larger. Because of the smaller dataset, the data is only divided into
four bins, whereas there is used seven here.

The fitted values of the gravitational redshift in all bins for the three projections of
this dataset are shown in figure 3(a). There are variations between the projections as
is to be expected due to statistical fluctuations, but all data agrees with the prediction.
In figure 3(b) a weighted average of the combination of the three projections are shown.
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(a) Profiles of the three projections of the Mock
dataset. The average error over all bins is ±1.4
km/s

(b) Profile of the weighted average of the three pro-
jections of the Mock dataset

Figure 3: Gravitational redshift values from fitting the full Mock dataset (points) and the theo-
retical prediction of the gravitational redshift profile (line). The data from the simulation are in

agreement with the theoretical prediction

To calculate the weighted average, symmetric errors on the fitted values were assumed,
see appendix B.4 for typical parameter distributions.

These results are as expected, as they have relatively small errors of ±1.4 km/s on
average over all bins for each projection, which contains roughly 3 · 106 galaxies dis-
tributed over 2 · 104 clusters each, and are close to the prediction. For the combination
of the three projections the average error is ±0.8 km/s for a dataset containing 9.1 · 106

galaxies and 6 · 104 clusters.

I also looked into the possibility of obtaining a larger and possibly clearer signal of
the gravitational redshift signal by using data only from massive clusters with cluster
masses Mc > 3 · 1014M�h

−1, and the results from these fits are plotted in figure 4.
By using only the clusters with a mass above 3 · 1014M�h

−1, the sample becomes
smaller, consisting of just over 5.2 · 105 galaxies in each projection (≈ 17% of the full
sample) and 2.8 · 103 clusters (≈ 14% of the total number of clusters). The cut chosen,
was to obtain a large enough sample that included a sufficient amount of clusters and
galaxies to get useful results. If too few clusters were included, this could affect the
results because substructures might not be smoothed out.

The smaller sample also affects the errors on the fit, which become roughly three
times larger with the size ±3.9 km/s for each projection. This is especially clear for the
inner bin, which has very large errors because of the small number of galaxies, although
the fitted values still remain consistent with theory within the uncertainties.
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(a) Profiles of the three projections of the Mock
dataset. The average error over all bins is ±3.9
km/s

(b) Profile of the weighted average of the three
projections of the Mock dataset showing excellent
agreement with theory

Figure 4: Plot of fits using only galaxies from clusters with a mass above 3 · 1014M�h
−1 from

the Mock dataset (points). The solid line represents the prediction of gravitational redshift using
a mean cluster mass of 4.67 · 1014M�h

−1 corresponding to the mean cluster mass of the massive
clusters fitted, while the dashed red line is the prediction of gravitational redshift for the mean

cluster mass of the entire dataset which is 1.84 · 1014M�h
−1

There are noticeable differences between the projections, where the first projection
has large fluctuations compared to the other two especially within the inner three bins,
but it is not statistically significant. I noticed through out the analysis that the bin with
the largest fluctuations in values and errors was the innermost bin, which is consistent
with this being the bin with the smallest number of galaxies and a smaller number of
clusters contributing.

Notice the greater depth of the profile of gravitational redshift for the massive clusters
compared with the full sample. The data support this, especially at larger cluster-centric
distance where the differences between the predictions are greater. At small radii it is
more difficult to separate the results for the massive clusters from the prediction of the
entire dataset, due to a smaller sample resulting in larger errors and a smaller difference
between the two predictions, figure 4(a). This becomes less noticeable when looking at
the weighted mean of the three projections, figure 4(b), which shows a good agreement
with the prediction.

4.2 LSST mock 1

The LSST mock 1 dataset simulates data as is expected to come with photometry from
LSST. The survey will obtain both photometric and spectroscopic data, but mainly
photometric data. The LSST mock 1 represents data where the BCGs are observed
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(a) Profiles of the three projections of the LSST
mock 1 dataset showning a large scatter. The av-
erage error over all bins is ±5.8 km/s

(b) Profile of the weighted average of the three pro-
jections of the LSST mock 1 indicating a constant
gravitational redshift signal at 6.5 km/s

Figure 5: Gravitational redshift values from fitting the LSST mock 1 (points) and the theoretical
prediction of the gravitational redshift for a mean cluster mass of 1.84 · 1014M�h

−1 (line)

spectroscopically and all other cluster galaxies have photometric data.
First, the same fits as for the Mock dataset above were run, see figure 5. The first

thing to notice is that the errors are about five times larger, ±5.8 km/s, than for the full
Mock dataset, ±1.4 km/s for each projection. This was as expected due to the added
velocity distribution, making the overall distribution wider and therefore more difficult
to determine the centre of it.

The scatter is large between the projections, and it is difficult to conclude whether
the gravitational redshift signal is present and what the associated mass of the cluster
is. Particularly with regards to projection 1, the results indicate that no signal was
detected because the values are scattered around zero. Also, the BIC value assuming no
gravitational redshift is lower than the BIC value assuming that there is one. For the
other two projections there were some indication of a gravitational redshift signal. This
means that the weighted mean does indicate a gravitational redshift signal, figure 5(b).
Although the scatter between the projections is large the results are still consistent with
theory and with each other within the uncertainties which are also quite large.

When looking at the weighted mean, there appears to be a constant gravitational
redshift signal around 6.5 km/s, with an average error of ±3.5 km/s, as no drop off at
small radii is indicated. This could possibly be resolved using a sample larger than the
combination of the three projections consisting of 9.1 · 106 galaxies from 6 · 104 clusters,
as this could bring the errors down, see section 4.4.

Again, the most massive clusters with mass above 3 · 1014M�h
−1 were fitted separately,
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(a) Profiles of the three projections of the LSST
mock 1 dataset. The average error over all bins is
±13 km/s

(b) Profile of the weighted average of the three pro-
jections of the LSST mock 1 dataset

Figure 6: Plot of fits using only galaxies from clusters with a mass above 3 · 1014M�h
−1 from

the LSST mock 1 dataset (points). The solid red line represents the prediction of gravitational
redshift using a mean cluster mass of 4.67 · 1014M�h

−1 corresponding to the mean cluster mass
of the massive clusters fitted. The dashed line is the prediction of the gravitational redshift for

the mean cluster mass of the entire dataset which is 1.84 · 1014M�h
−1

to investigate the size of the signal, see figure 6. As for the full sample, the errors are
large and could be consistent with a gravitational redshift signal of zero. For the massive
clusters, the second projection is the one most consistent with no signal, while none of
the projections clearly differentiate between the prediction for the full sample and the
prediction only for the massive clusters.

The weighted mean in figure 6(b) only has a slight preference for a gravitational
redshift signal compared to no signal. A model with a lower mass, for example the mean
mass for the full dataset 1.84 · 1014M�h

−1, has an even lower BIC making the model
preferable to the model with a mean mass of the clusters used. This indicates that the
dataset is only able to show whether or not a gravitational redshift is present, but it can
not determine the size of it accurately.

Due to the scatter of the data, where the errors are of the same size as the signal,
±13 km/s for a single projection, it is difficult to conclude whether or not it is possible
to detect a gravitational redshift signal based on the massive clusters from a single
projection alone without a significantly larger sample. The combination of the three
projections indicate a gravitational redshift signal with an average error of ±7.0 km/s,
but will require a larger sample than the 1.6 · 106 galaxies and 8.4 · 103 massive clusters
for a more accurate determination.
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(a) Profiles of the three projections of the LSST
mock 2 dataset. The average error over all bins is
±9.5 km/s

(b) Profile of the weighted average of the three pro-
jections of the LSST mock 2

Figure 7: Gravitational redshift values from fitting the LSST mock 2 (points) and the theoretical
prediction of the gravitational redshift (line) for a cluster with mass 1.84 · 1014M�h

−1. The
scatter of the projections makes it difficult to determine whether or not a gravitational redshift

signal is detectable for the individual projections

4.3 LSST mock 2

The LSST mock 2 dataset simulates photometric data for all galaxies in the sample,
including the BCGs, which is expected to make the determination of the gravitational
redshift even more difficult than for the LSST mock 1 sample. The results from the
fitting of the full dataset is shown in figure 7. As was the case for the LSST mock 1
dataset, these projections have a large scatter and some of the projections (projections
1 and 3) are consistent with a gravitational redshift signal of zero. Calculating the BIC
values for models with and without the signal gives very similar results, making them
indistinguishable with regards to this dataset.

Even though the scatter is large it is still consistent with the size of the errorbars.
The errors become almost twice as large, ±9.5 km/s for a single projection, without the
spectroscopic determination of the BCGs in comparison with the LSST mock 1 dataset
where the average error was ±5.8 km/s for each projection. The combination of the three
projections has an average error of ±5.4 km/s and indicate that it is possible to detect
the gravitational redshift using all photometric data, if the sample is large enough.

The velocity distribution for this dataset was so wide that the ±6000 km/s velocity
cut-off used was an absolute minimum in order to get the entire distribution. A wider
velocity cut-off, for example ±7000 km/s, could potentially improve the quality of the
fit, particularly with regards to the wings of the distribution. This larger range could
also reduce the uncertainty of the fit. See plots of the distribution and a discussion of
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(a) Profiles of the three projections of the LSST
mock 2 dataset. The average error over all bins is
±19 km/s

(b) Profile of the weighted average of the three pro-
jections of the LSST mock 2 dataset

Figure 8: Plot of fits using only galaxies from clusters with a mass above 3 ·1014M�h
−1 from the

LSST mock 2 dataset (points). The solid line represents the prediction of gravitational redshift
using a mean cluster mass of 4.67 · 1014M�h

−1 corresponding to the mean cluster mass of the
massive clusters fitted. The dashed line is the prediction of gravitational redshift for the mean

cluster mass of the entire dataset which is 1.84 · 1014M�h
−1

the velocity cut-off used in appendix B.2.

For this dataset it appears that the massive clusters provide a more consistent signal
than the full dataset, see figure 8. It still has large errors of the same order of magnitude
as the signal, ±19 km/s for each projection, which makes it very difficult to determine
the mass of the gravitational redshift profile, which was also the case for the LSST mock
1 dataset.

4.4 Errors and sample sizes

It is clear from the analysis in the sections above, that in order to determine the grav-
itational redshift signal accurately the type of data and the size of the dataset play
important roles. By using data based on photometry a much larger sample is required
compared to a sample of spectroscopic data, because, as is well known in statistics, a
larger sample size can reduce the size of errors.

All the datasets used in this analysis are of the same size and contain data from
an equal amount of clusters making them comparable to each other. Comparing two
different types of data, for example the results from the LSST mock 1 and the results
from the Mock dataset with only the massive clusters, show that the size of the errors
are of the same order of magnitude, see figure 9. The LSST mock 1 sample consisting og

21



Figure 9: Profile of the full LSST mock 1 dataset (green) and the Mock dataset with cluster
masses above 3 · 1014M�h

−1 (blue) and corresponding gravitational redshift profiles in the same
colour (lines). The points are the weighted average of the three projections from the respective
datasets. The LSST mock 1 dataset is about six times larger than the Mock dataset of massive

clusters, but the errors are of the same order of magnitude

all three projections contain 9.1·106 galaxies from 6·104 clusters, while the Mock dataset
of massive clusters from all three projections contain only 1.6 · 105 galaxies distributed
over 8.4 · 103 clusters. This shows that in order to determine the gravitational redshift
signal from a sample of the size that LSST is expected to generate (see below), can also
be accomplished by a smaller sample containing only spectroscopic data.

An important point to keep in mind is that while the gravitational redshift signal
was very clear and in agreement with prediction for the spectroscopic data, it was less
accurate based on the photometric samples of the size available here. But in the follow-
ing, I will only consider the size of the errors of the different datasets and not the values
they are related to.

In order to investigate the effect of sample size on the errors of gravitational redshift,
I drew random subsamples from the datasets and found the weighted average error on
the gravitational redshift of a given sample using fits from each bin, see figure 10. The
upper limit on the sample size available is the combination of the three projections of
each dataset.

The data appears as a straight line in a log-log plot indicating a power law relation
between the size of the error and the sample size. This is consistent with errors commonly
being proportional to ∝ 1/

√
N , where N is the number of data points. In the plot it is

also evident that spectroscopic data (Mock dataset) have noticeably smaller errors than
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Figure 10: Plot of the combined weighted average error in the gravitational redshift of the different
datasets as a function of the size of the respective datasets. The size of the errors depend on
the number of bins, and this plot is based on the use of seven bins. The errors decrease with
increasing sample size at the same rate for all types of data with a proportionality ∝ 1/

√
N

(dashed lines)

the photometric datasets (LSST mock 1 and 2), which was as expected and clear in the
analysis above.

The errors plotted in figure 10 are the weighted average of the errors in each bin for
a specific dataset. By fitting the entire dataset as one bin the error will be significantly
smaller for a given sample size than what is plotted in figure 10. But by doing this it
will not be possible to trace the gravitational redshift profile as a function of the radius
of the cluster. The errors for each dataset, as calculated here, therefore depends on the
number of bins, as fewer bins will result in a larger sample in each and therefore smaller
errors, while the opposite applies to more bins. The arguments for the number of bins
used here are described in section 4 and appendix B.3.

The gravitational redshift value and error quoted by Wojtak et al. (2011), -7.7± 3.0
km/s, is the result of fitting all their data in a single bin. This is over half the size of
error, which is shown in figure 10 for a sample the same size but binned in seven bins
(±6.9 km/s for a sample with 1.25 · 105 galaxies). By fitting a subsample of the Mock
dataset of the size 1.25 · 105 galaxies in a single bin, similar results were achieved with
the simulation with regard to the size of the error, -12.8± 3.2 km/s, showing the Mock
dataset is comparable to spectroscopic data.

The average error on the gravitational redshift of a sample of spectroscopic data (Mock
dataset) consisting of 2.5 · 105 galaxies (±5.1 km/s) has roughly the same error as a
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±1 km/s ±2 km/s ±3 km/s ±4 km/s
Mock dataset 6 · 106 1.5 · 106 7 · 105 4 · 105

LSST mock 1 108 3 · 107 1.5 · 107 8 · 106

LSST mock 2 3 · 108 7 · 107 3 · 107 2 · 107

Table 1: Total sample sizes required to achieve a certain average error on the gravitational redshift
in the different datasets analysed. The errors and sample sizes are calculated based on the use of

seven bins to trace the gravitational redshift profile

sample of photometric data for all galaxies except the BCGs (LSST mock 1) of 3 · 106

galaxies (±5.8 km/s) or a sample of data with photometry for all galaxies (LSST mock
2) of 9.1 · 106 galaxies (±5.4 km/s).

The relation between the size of errors are a constant scaling factor between the
datasets, indicated by the identical slopes in figure 10, and the relation between the
sample sizes are the square of this factor, because of the proportionality to 1/

√
N . The

scaling factor between the Mock dataset and LSST mock 1 is 4.5, between Mock dataset
and LSST mock 2 is 6.5 and between LSST mock 1 and 2 is 1.5. Remembering the added
random error for the LSST mock 1 and 2 had σ = 1500 km/s, which were 3 times the σ
for the velocity distribution of the Mock dataset, these factors are of the same order of
magnitude, showing the relation between the width of the velocity distribution and the
error and sample size of the dataset.

These scaling factors are also roughly reflected in the width of the final velocity dis-
tributions of the datasets, though usually slightly smaller, see appendix B.1 for velocity
distributions of the datasets. This is consistent with the fact that the errors on the mean
of the Gaussian, i.e. the gravitational redshift, increases when the distribution becomes
wider/flatter.

By extrapolating the LSST mock 1 and 2 datasets, beyond the sample sizes available
from the simulation used in the analysis here, in order to get the error down to ±3 km/s,
sample sizes of 1.5 · 107 and 3 · 107 galaxies will be needed for LSST mock 1 and LSST
mock 2 respectively. Because of the power law relation getting very low errors of the
size ±1 km/s will require much larger samples of 108 and 3 · 108 galaxies for LSST mock
1 and LSST mock 2 respectively. See table 1 for sample sizes required for different error
sizes for all three datasets analysed.

The LSST is expected to observe about 105 clusters with a mass above 2 · 1014M�

(Tyson et al., 2006), but will be sensitive to clusters with masses above 0.5 · 1014M�

(LSST Science Collaboration, 2009). Also, the LSST survey will observe around 1010

galaxies, but not all of these will be in clusters. Comparing these numbers to the
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Figure 11: Plot of the combined weighted average error of the different datasets, containing only
the massive clusters with a mass above 3 · 1014M�h

−1, as a function of the size of the respective
datasets (diamonds). The transparent points represent the full datasets (the same as in figure
10). The size of the errors depend on the number of bins, and this plot is based on the use of
seven bins. The errors decrease with increasing sample size at the same rate for all types of data

with a proportionality ∝ 1/
√
N (dashed lines)

sample sizes extrapolated it only seem marginally possible to get errors below 3 km/s
for photometric data as this would require data on over 500 galaxies per cluster, which
would only be possible for the most massive clusters. The average number of galaxies
in a cluster in the simulation was 153, making it likely to obtain 1-2 ·107 galaxies from
the 105 clusters expected from LSST.

The largest available datasets used here would be a combination of the three projec-
tions consisting of 9.1 ·106 galaxies from 6 ·104 clusters in total, and are still smaller than
what is expected by the LSST. Therefore, for photometric data for all galaxies except
the BCGs the error can be expected to have an upper limit of ±3.5 km/s, while the
upper limit for photometric data for all galaxies including the BCGs is ±5.4 km/s.

In figure 11 the weighted average errors on the gravitational redshift of the samples
of massive cluster with a mass above 3 ·1014M�h

−1 are plotted with the results from the
full samples indicated as well. It is interesting to note that for the spectroscopic data the
errors for the massive clusters are slightly larger, while they for the photometric data
are smaller than for the full samples.

The difference in errors for the same sample size for the spectroscopic data are
small (less than 0.5 km/s), meaning that there is little to no gain in using only massive
clusters for the determination of the gravitational redshift. But for the two types of
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photometric data the difference is more significant, 3-4 km/s. This is probably because
the velocity distribution of galaxies in the clusters are slightly more narrow for the
massive clusters compared with the full sample, making it easier to determine the centre
of the distribution as described in section 3.2. This is not the case for the spectroscopic
sample, where the massive clusters have a wider distribution than the full dataset because
of the well defined distribution, where the less massive clusters are the main contribution.

Initially this wider distribution for the massive clusters for the spectroscopic data
seems counter-intuitive as adding constraints on the cluster mass, should focus the ve-
locity distribution. This is because some of the uncertainty from the combination of
different velocities for different cluster masses should be removed. When this is not the
case for the massive clusters, it is because this sample span an order of magnitude in
cluster mass, whereas the full sample cover only a slightly larger range. But the smaller
mass range omitted from the sample of massive clusters contain the largest amount of
clusters, making these the dominant contribution to the overall velocity distribution for
the full sample. For the photometric datasets this apparently plays a smaller role, as the
distribution is already widened because of the measurement uncertainties dominating
over the width of the distribution due to peculiar motion. If the error on photomet-
ric measurements becomes smaller, this difference between massive clusters and the full
sample might even out.

5 Discussion

Detection of the gravitational redshift signal, with the method described here, does not
depend on observations of a specific type of galaxy (i.e. spiral or elliptical galaxies), the
only requirement is that they are situated in a cluster. Elliptical galaxies are very typical
in clusters, especially in the central regions, and the BCG of a cluster is almost always
a large elliptical galaxy. Spectra of elliptical galaxies usually only have few features,
such as the Lyman and Balmer breaks at ∼1000 Å and ∼4000 Å respectively at rest
wavelengths, making the spectra relatively easy to determine and fit with a redshift.

Photometric redshifts are obtained observing in multiple broadband filters, and by
using the colour differences between filters, determine the wavelength of the features in
the spectrum. The redshift of an object is determined based on strong features, such
as the Lyman and Balmer breaks. A drop in brightness between two bands can be an
indicator of one of these breaks. Mistaking the Lyman and Balmer breaks with one
another at identification can lead to large systematic errors. This can happen for a
Balmer break at a low redshift or a Lyman break at a high redshift, because they would
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appear in the same filter.
Because of their simple spectra with few features, elliptical galaxies have better

redshift determinations with photometry than spiral galaxies. Considering the simplicity
of the spectrum, it might also be possible to determine the photometric redshift for
this type of galaxy with an accuracy better than the σ = 1500 km/s assumed in this
thesis, see section 3.2. If this becomes the case then the errors and sample sizes for
the photometric datasets calculated in section 4.4 and shown in figure 10 would become
smaller, approaching the errors and sample sizes calculated for the spectroscopic data,
meaning the scaling factors between the datasets will go down. Given that the samples
sizes expected with an average error of ±3 km/s for the photometric data with and
without the spectroscopic determination of the BCGs are 1.5 ·107 and 3 ·107 respectively,
assuming σ = 1500 km/s, any decrease in sample size would be a gain as these samples
are large, even considering the size of the LSST survey.

Another way of affecting the sample sizes required for a certain error, would be
to use fewer bins when binning the data with respect to cluster centric distance. If
this is considered, then it will also be harder to trace the gravitational redshift profile
accurately, especially within the virial radius of the cluster, see appendix B.3. On the
other hand if a more accurate trace of the gravitational redshift profile is wanted than
what is suggested here, the larger number of bins would result in larger sample sizes for
the same size of error.

When selecting galaxies and clusters from a survey, different cuts are made in order
to compile a useful dataset. Data on the BCGs are necessary, and if this needs to be
spectroscopic data, a significant amount of clusters is typically disregarded. Also, a lower
limit on the number of cluster members is typically set, so clusters with data on less
than for example five members are disregarded, in order to have a robust determination
of the cluster. These cuts can eliminate a significant amount of galaxies in a survey, so
typically only 10-40% of the galaxies in a survey can be used if only spectroscopic data
are considered. But if photometric data can be used, these cut will most likely be less
severe as more data can be included in the samples.

As previously shown by Wojtak et al. (2011); Kaiser (2013); Kim & Croft (2004) and
Zhao et al. (2013) among others, it is possible to determine the gravitational redshift
using the velocity distribution of galaxy clusters, which was also confirmed here with a
greater certainty, based on simulated data. In addition it also appears to be possible
to determine the effect based on photometric measurements, although a much larger
sample than what was used here is required for an accurate determination.

27



The scatter of the photometric data appear to be larger than of the spectroscopic
data, so further studies of larger samples are needed to determine if this is due to
drifts in the simulation or actual effects seen in observations. It appears that a larger
sample would solve the problem of observing the gravitational redshift signal with greater
accuracy using photometric data, considering the results from the combination of the
three projections of each dataset.

It is already possible to use data from Sloan Digital Sky Survey (SDSS), as done
by Wojtak et al. (2011), and the Dark Energy Survey (DES) to measure the effect of
gravitational redshift. The SDSS has collected data from around 470 million objects
with photometry and a smaller sample with spectroscopy since data collection started in
2000. The survey covers both stars, galaxies and quasars, so in order to get a sample of
only galaxies from clusters of the order needed to detect the gravitational redshift using
photometry, a larger sample is needed.

The DES is going to count galaxy clusters in order to determine the gravitational
growth of structures in the universe. This data could also be used to determine the
gravitational redshift of these clusters, but as the full DES survey is expected to include
around 300 million galaxies (Dark Energy Survey Collaboration, 2016), this survey will
not be large enough on its own to give an accurate determination of the gravitational
redshift using only photometric data, based on the analysis carried out here.

The scope of the LSST is larger than the SDSS and DES combined and a total of
1010 galaxies and 105 clusters are expected to be observed throughout this survey (LSST
Science Collaboration, 2009; Tyson et al., 2006). Because of the large amount of data,
it might be possible to select galaxies in clusters with the smallest error for a better
determination of redshift and velocity distribution.

If the LSST is able to bring the photometric redshift error below their goal of σz
1+z ≈

0.02 and ∆z < 0.005 (corresponding to σ = 1500 km/s used here), even if it is only for
a subsample, this sample might be large enough to determine the gravitational redshift
accurately. By lowering the assumed error on photometry the sample sizes extrapolated
in section 4.4 for the LSST mock 1 and 2 will become smaller, approaching the sample
sizes for the Mock dataset.

Considering the 105 clusters LSST is expected to observe, the sample size required
for an error on gravitational redshift of ±3 km/s for photometric data for cluster galaxies
and spectroscopy for the BCGs is 1.5 · 107 galaxies, or data on 150 galaxies on average
for all the clusters in the LSST survey. This is definitely possible, but with a lower
photometric redshift error and the correspondingly smaller sample size, makes it more
probable to obtain this average error.
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All three surveys mentioned above could provide data for an accurate determination
of the gravitational redshift signal if a combination of spectroscopic and photometric data
were to be used. As shown in section 4.4 the difference in accuracy by obtaining the
BCGs with spectroscopy is considerable and reduces the sample size required noticeably.

By only using data from galaxies in massive clusters, it becomes easier to detect whether
or not a gravitational redshift signal is present, but in order to determine the accuracy
of the measurement samples of around the same size as described above is required.

Kim & Croft (2004) have argued that the number of clusters needed for detection
does not depend on the mass of the cluster once it is above 1014M�h

−1, which is the
lower limit on clusters selected for the simulation used here. This is consistent with my
findings for spectroscopic data, but when considering photometric data there might be a
gain in using massive clusters as they have a slightly more narrow velocity distribution
as described in section 4.4. If the error on photometric observations becomes comparable
to the velocity distribution, this difference between the full sample and samples using
only massive clusters might even itself out and become similar to a spectroscopic sample,
removing the gain in using massive clusters.

On the other hand, as Kim & Croft (2004) points out, there may not be enough
massive clusters in the universe to make an accurate gravitational redshift detection
using only these. Massive clusters are more rare than lower mass clusters, making it less
probable to collect a large sample consisting only of these, especially when considering
the large number of galaxies and clusters needed to make accurate determinations with
photometric data. In the simulation used, only 14% of the clusters had a mass above
3 ·1014M�h

−1, classified as massive clusters here, which is not enough to collect a sample
of the required size even considering the gain in the size of error of 3-4 km/s.

With photometric data, detection of gravitational redshift using only massive clusters
does not seem possible because a large enough sample might never be available. But
with spectroscopic data or a sample of photometric data using a wide range of cluster
masses an accurate detection seems possible with LSST.
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6 Conclusion

In this thesis I have investigated whether it is possible to determine gravitational redshift
using different types of data based on simulations. The dataset containing only spectro-
scopic data showed a clear gravitational redshift signal consistent with the prediction.

The photometric data of two different types, where one of the datasets had spectro-
scopic measurement of the BCGs and the other had photometric measurements, both
showed a large scatter but within errors. This made the detection of the gravitational
redshift less certain based on the samples available here, where the largest were 9.1 · 106

galaxies distributed over 6 · 104 clusters. By looking at only the massive clusters from
the photometric datasets, it was possible to detect a gravitational redshift signal with
a larger certainty, although the uncertainties of the cluster mass associated with the
gravitational redshift profile were large.

The sample size required for detection of the gravitational redshift signal, with a
certain error for all datasets, was investigated and extrapolated based on the simulated
data used for the analysis. To achieve an average error of ±3 km/s over seven bins,
sample sizes of 1.5 · 107 and 3 · 107 galaxies is required with photometric data with
and without a spectroscopic determination of the BCG respectively. Based on what is
expected to be observed with the LSST, it appears that these sample sizes of photometric
data are reachable. This means that it will be possible to detect gravitational redshift
with photometric data.
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A Code

Below is the Python-code used to run the fittings described in section 4. It is written
using Python 2.7

1 # ∗ coding : utf 8 ∗
2 " " " author : Idavras " " "
3

4 import numpy as np
5 import matp lo t l i b . pyplot as p l
6 import emcee
7 import operator
8 import corner
9

10 #Loading data
11 #data = np . l oadtx t ( " Mock2x_new . txt " ) #Mock 2x
12 #data = np . l oadtx t ( " Mock2y_new . txt " ) #Mock 2y
13 #data = np . l oadtx t ( " Mock2z_new . txt " ) #Mock 2z
14

15 #data = np . l oadtx t ( " LSSTx_new . txt " ) #LSST 1x
16 #data = np . l oadtx t ( " LSSTy_new . txt " ) #LSST 1y
17 #data = np . l oadtx t ( " LSSTz_new . txt " ) #LSST 1z
18

19 #data = np . l oadtx t ( " LSST2x_new . txt " ) #LSST 2x
20 #data = np . l oadtx t ( " LSST2y_new . txt " ) #LSST 2y
21 data = np . l oadtx t ( "LSST2z_new . txt " ) #LSST 2z
22

23 de f b inning ( data , xx , lower , upper ) :
24 " " "
25 Bins " data " in range from " lower " to " upper " in column " xx " .
26 data > array
27 xx > i n t e g e r
28 lower > i n t e g e r
29 upper > i n t e g e r
30 " " "
31 binned_data = [ ]
32

33 f o r index in range ( l en ( data [ : , xx ] ) ) :
34 i f data [ index , xx ] < upper and data [ index , xx ] > lower :
35 binned_data . append ( data [ index , : ] )
36

37 binned_data = np . asar ray ( binned_data )
38

39 re turn binned_data
40

41 R05=binning ( data , 0 , 0 . 0 , 0 . 5 )
42 R10=binning ( data , 0 , 0 . 5 , 1 . 0 )
43 R15=binning ( data , 0 , 1 . 0 , 1 . 5 )
44 R23=binning ( data , 0 , 1 . 5 , 2 . 3 )
45 R36=binning ( data , 0 , 2 . 3 , 3 . 6 )
46 R49=binning ( data , 0 , 3 . 6 , 4 . 9 )
47 R60=binning ( data , 0 , 4 . 9 , 6 . 0 )
48
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49 #%% MCMC
50 " " "
51 Parameters to change , when running MCMC:
52 data_used > what datase t / bin i s f i t t e d
53 v e l c u t o f f > v e l o c i t y c u t o f f o f data
54 ndim > number o f parameters in f i t t i n g model
55 nwalkers > number o f walkers
56 l n p r i o r > which model i s be ing f i t t e d
57 l n l i k e > which model i s be ing f i t t e d
58 " " "
59

60 data_used = R05
61 v e l c u t o f f = 6000 #Ve loc i ty cut o f f
62 b = 1/(2 . ∗ v e l c u t o f f ) #Constant from i n t e g r a t i o n o f l i n e
63 ndim = 4 #Number o f parameters in f i t t i n g func t i on
64 nwalkers = 250 #Number o f walkers must be even
65 s t e p s = 1000 #Steps taken by the MCMC
66

67 de f l n p r i o r ( theta ) :
68 " " " Pr io r " " "
69 #S i n g l e gauss + l i n e
70 mu, s ig1 , m, pc = theta
71 i f s i g 1 > 0 .0 and 0 .0 <= pc <= 1.0 and (m∗ ( v e l c u t o f f ) ∗(1 e 8 ) + b) > 0

and (m∗( v e l c u t o f f ) ∗(1 e 8 ) + b) > 0 :
72 re turn 0 .0
73

74 #Double gauss + l i n e
75 # mu, s ig1 , m, pc , s ig2 , pg = theta
76 # i f s i g 1 > 0 .0 and s i g 2 > s i g 1 and 0 .0 <= pg <= 1.0 and 0 .0 <= pc <=

1.0 and (m∗ ( v e l c u t o f f ) ∗(1 e 8 ) + b) > 0 and (m∗( v e l c u t o f f ) ∗(1 e 8 ) + b)
> 0 :

77 # return 0 .0
78

79 re turn np . i n f
80

81 de f l n l i k e ( theta , y ) :
82 " " " L ike l i hood " " "
83 #S i n g l e gauss ian + l i n e
84 mu, s ig1 , m, pc = theta
85 re turn np . sum(np . l og (np . exp ( 0 . 5 ∗ ( y mu) ∗∗2/( s i g 1 ∗∗2) ) ∗(1/( np . s q r t (2∗np .

p i ) ∗ s i g 1 ) ) ∗pc+(m∗y ∗(1 e 8 ) +b) ∗ ( 1 pc ) ) )
86

87 #Double gauss ian + l i n e
88 # mu, s ig1 , m, pc , s ig2 , pg = theta
89 # return np . sum(np . l og ( ( np . exp ( 0 . 5 ∗ ( y mu) ∗∗2/( s i g 1 ∗∗2) ) ∗(1/( np . s q r t (2∗

np . p i ) ∗ s i g 1 ) ) ∗pg +(1 pg ) ∗np . exp ( 0 . 5 ∗ ( y mu) ∗∗2/( s i g 2 ∗∗2) ) ∗(1/( np . s q r t (2∗
np . p i ) ∗ s i g 2 ) ) ) ∗pc+(m∗y ∗(1 e 8 ) +b) ∗ ( 1 pc ) ) )

90

91 de f lnprob ( theta , y ) :
92 " " " P o s t e r i o r p r o b a b i l i t y = l i k e l i h o o d ∗ p r i o r " " "
93 p r i o r = l n p r i o r ( theta )
94

95 i f not np . i s f i n i t e ( p r i o r ) :
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96 re turn np . i n f
97

98 re turn p r i o r + l n l i k e ( theta , y )
99

100 #I n i t i a l p o s i t i o n s between zero and one one f o r each walker
101 pos0 =[np . random . rand ( ndim ) f o r i in xrange ( nwalkers ) ]
102

103 #Set t ing up the sampler
104 sampler=emcee . EnsembleSampler ( nwalkers , ndim , lnprob , args =([ data_used [ : , 1 ] ] ) )
105

106 #Running MCMC
107 pos , prob , r s t a t e =sampler . run_mcmc( pos0 , s t ep s )
108

109 p r i n t ( "Mean acceptance f r a c t i o n : " , np . mean( sampler . acceptance_f rac t i on ) )
110 p r i n t ( " Autoco r r e l a t i on time : " , sampler . get_autocorr_time ( ) )
111

112 burnin = 300
113 corner . corner ( sampler . chain [ : , burnin : , : ] . reshape ( 1 , ndim ) ) #Corner p l o t
114 pl . show ( )
115

116 #%% Finding best f i t va lue s from walker p o s i t i o n s
117 de f b e s t f i t v a l u e ( f i t v a l u e s ) :
118 " " "
119 Takes walker p o s i t i o n s from MCMC f i t t i n g , s o r t the values ,
120 removes the l a r g e s t and s m a l l e s t 15.85% , the remaining 68.3% i s 1 sigma

,
121 f i n d walker with maximum l i k e l i h o o d ( best f i t va lue ) ,
122 f i n d upper and lower e r r o r s on best f i t ,
123 r e tu rn s best f i t value , upper and lower bounds
124 " " "
125 sorted_data=np . s o r t ( f i t v a l u e s )
126 onesigma_values=sorted_data [ round ( nwalkers ∗0 .1585) : nwalkers round (

nwalkers ∗0 .1585) ]
127

128 #Finding walker with maximum l i k e l i h o o d
129 max_index , max_value = max( enumerate ( prob ) , key=operator . i t emge t t e r (1 ) )
130 b e s t f i t _ v a l u e = f i t v a l u e s [ max_index ]
131

132 #Finding upper and lower boundary f o r best f i t va lue
133 err_lower = b e s t f i t _ v a l u e onesigma_values [ 0 ]
134 err_upper = onesigma_values [ l en ( onesigma_values ) 1 ] b e s t f i t _ v a l u e
135

136 re turn [ be s t f i t_va lue , err_upper , err_lower ]
137

138 p r i n t "mu = " , b e s t f i t v a l u e ( pos [ : , 0 ] ) [ 0 ] , " +" , b e s t f i t v a l u e ( pos [ : , 0 ] )
[ 1 ] , " " , b e s t f i t v a l u e ( pos [ : , 0 ] ) [ 2 ]

139 p r i n t " s i g 1 =" , b e s t f i t v a l u e ( pos [ : , 1 ] ) [ 0 ] , " +" , b e s t f i t v a l u e ( pos [ : , 1 ] )
[ 1 ] , " " , b e s t f i t v a l u e ( pos [ : , 1 ] ) [ 2 ]

140 p r i n t "m = " , b e s t f i t v a l u e ( pos [ : , 2 ] ) [ 0 ] , " +" , b e s t f i t v a l u e ( pos [ : , 2 ] )
[ 1 ] , " " , b e s t f i t v a l u e ( pos [ : , 2 ] ) [ 2 ]

141 p r i n t " pc = " , b e s t f i t v a l u e ( pos [ : , 3 ] ) [ 0 ] , " +" , b e s t f i t v a l u e ( pos [ : , 3 ] )
[ 1 ] , " " , b e s t f i t v a l u e ( pos [ : , 3 ] ) [ 2 ]

142 #p r i n t " s i g 2 =" , b e s t f i t v a l u e ( pos [ : , 4 ] ) [ 0 ] , " +" , b e s t f i t v a l u e ( pos [ : , 4 ] )
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[ 1 ] , " " , b e s t f i t v a l u e ( pos [ : , 4 ] ) [ 2 ]
143 #p r i n t " pg = " , b e s t f i t v a l u e ( pos [ : , 5 ] ) [ 0 ] , " +" , b e s t f i t v a l u e ( pos [ : , 5 ] )

[ 1 ] , " " , b e s t f i t v a l u e ( pos [ : , 5 ] ) [ 2 ]
144

145 # Parameters needed f o r p l o t t i n g
146 mu_fit = b e s t f i t v a l u e ( pos [ : , 0 ] )
147 s i g 1 _ f i t = b e s t f i t v a l u e ( pos [ : , 1 ] )
148 m_fit = b e s t f i t v a l u e ( pos [ : , 2 ] )
149 pc_f i t = b e s t f i t v a l u e ( pos [ : , 3 ] )
150 #s i g 2 _ f i t = b e s t f i t v a l u e ( pos [ : , 4 ] )
151 #pg_f i t = b e s t f i t v a l u e ( pos [ : , 5 ] )
152

153 func_s ing l e = lambda xxx : (1/( np . s q r t (2∗np . p i ) ∗ s i g 1 _ f i t [ 0 ] ) ) ∗np . exp ( 0 . 5 ∗ (
xxx mu_fit [ 0 ] ) ∗∗2/( s i g 1 _ f i t [ 0 ] ∗ ∗ 2 ) ) ∗ pc_f i t [ 0 ] + ( m_fit [ 0 ] ∗ 1 e 8 ∗ xxx+b)
∗ ( 1 pc_f i t [ 0 ] )

154 #func_double = lambda xxx : ( ( ( 1 / ( np . s q r t (2∗np . p i ) ∗ s i g 1 _ f i t [ 0 ] ) ) ∗np . exp
( 0 . 5 ∗ ( xxx mu_fit [ 0 ] ) ∗∗2/( s i g 1 _ f i t [ 0 ] ∗ ∗ 2 ) ) ∗ pg_f i t [ 0 ] + ( 1 pg_f i t [ 0 ] ) ∗(1/(
np . s q r t (2∗np . p i ) ∗ s i g 2 _ f i t [ 0 ] ) ) ∗np . exp ( 0 . 5 ∗ ( xxx mu_fit [ 0 ] ) ∗∗2/( s i g 2 _ f i t
[ 0 ] ∗ ∗ 2 ) ) ) ∗ pc_f i t [ 0 ] + ( m_fit [ 0 ] ∗ 1 e 8 ∗ xxx+b) ∗ ( 1 pc_f i t [ 0 ] ) )

155

156 #%% Pl o t t i n g
157 v b i n s i z e = 50
158 vbins = np . arange ( v e l c u t o f f , v e l c u t o f f +1, v b i n s i z e )
159 hist_data=pl . h i s t ( data_used [ : , 1 ] , b ins=vbins )
160 xvalue=np . l i n s p a c e ( v e l c u t o f f , v e l c u t o f f ,num=100)
161 pl . p l o t ( xvalue , func_s ing l e ( xvalue ) ∗6 .7 e6 , ’ r ’ )
162 #pl . p l o t ( xvalue , func_double ( xvalue ) ∗1 .05 e7 , ’ r ’ )
163 pl . show ( )
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B Additional analysis

In this appendix, additional information on the data and analysis of the data presented
in sections 3 and 4 is described.

B.1 Distribution of data

The datasets described in section 3.2 get a wider velocity distribution as errors on the
velocity distribution becomes larger. This is simulated by adding the Gaussian distri-
bution on the datasets LSST mock 1 and 2, and in figure 13 the wider distribution is
clearly seen.

The distributions appear smooth, which is because the datasets are large. Other bins
with fewer galaxies have small deviations from this, but overall a smooth distribution.
When only using some of a specific dataset, as in section 4.4, the smaller sample size
results in a less smooth distribution, which affects the accuracy of the fit, see figure 12.
The smaller the total sample size becomes the more irregular the distributions in the
individual bins becomes. This can be prevented by making fewer bins, see discussion of
bin size in appendix B.3.

In figure 13 fits of a single Gaussian fit is shown and notice the difficulty of fitting
the wings of the distribution for the Mock dataset in figure 13(a). This could be solved
by fitting a double Gaussian, but as argued in section 4, the fitting values of the centre
of the Gaussian for the two fits, and thereby the gravitational redshift, are similar with
the same size of errors, and as described in section 3.4 more parameters can result in
overfitting.

(a) One bin of the full Mock dataset with 3 ·106

galaxies
(b) One bin of a sample of 2.5 · 105 randomly
drawn galaxies from the Mock dataset

Figure 12: Histogram of the same bin of the Mock dataset, with two different total sample sizes
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(a) Mock dataset (b) LSST mock 1

(c) LSST mock 2

Figure 13: Histograms of data in the outermost bin of one projection of each dataset. The red
line in each plot represents the best fit of a single Gaussian function as described in equation 10

(a) Mock dataset (b) LSST mock 1

(c) LSST mock 2

Figure 14: Histograms of data in the outermost bin of one projection of each dataset. The red
line in each plot indicate the best fit of a double Gaussian function as described in equation 11
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Visually, a double Gaussian fit is better for the Mock dataset, but indistinguishable
for the LSST mock 1 and 2 datasets, As is shown in figures 13 and 14.

When the velocity distribution gets wider, as for the LSST mock 1 and LSST mock
2 datasets, the single Gaussian fit becomes better, see figure 13(b) and (c), compared
with the single Gaussian fit for the Mock dataset. The reason the fit for the LSST mock
2 dataset is not as good as the LSST mock 1 dataset, is probably caused by the velocity
cut-off not being wide enough for the distribution to flatten at the wings, and therefore
the fit cannot determine the normalization of the Gaussian. If the velocity cut-off was
set higher this single Gaussian fit would probably be similar in shape to that for the
LSST mock 1 data.
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(a) Mock dataset (b) LSST mock 1

(c) LSST mock 2

Figure 15: Histogram of data in the inner most bin for one projection for each dataset

B.2 Velocity cut-off for data selection

When selecting a cut-off for the data selection, it is important to make sure it covers
the entire distribution, and that the cut includes the distribution flattening out at large
velocities. This is necessary in order to get a good fit because of normalization of the
Gaussian component.

The velocity cut-off used for the data analysed in section 4 is ±6000 km/s for all
datasets. But the different types of data could have had different cut-off velocities, see
figure 15. For the Mock dataset the cut-off could easily be smaller, for example ±4000
km/s, without affecting the results. On the other hand, the ±6000 km/s cut-off used
is suitable for the LSST mock 1 dataset, while it is too narrow for the LSST mock 2
dataset. The wings of the distribution of the LSST mock 2 dataset are cut off and a
flattening of the distribution is not included, which results in less reliable fits. When
the wings are cut off a different normalization of the Gaussian function would probably
have resulted in a better fit. A velocity cut-off of ±7-8000 km/s would have been better
for this dataset, if it were to be fitted as described in section 3.3.

When making the cut-off larger, more galaxies are included in the final dataset,
compared to a more narrow cut. By having the same velocity cut-off on all the datasets
used, the samples will have similar sizes and be comparable.
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(a) Five bins used of equal range (b) Seven bins used to trace the profile in the inner
regions

Figure 16: Plot of fit values with different number of bins for the full Mock dataset. The line
represent the mean gravitational redshift signal for the full dataset with a mean mass of 1.84 ·
1014M�h

−1. The larger number of bins in the inner regions is able to trace the gravitational
redshift profile better

B.3 Bin size

All the plots shown in section 4 are plotted using seven bins to trace the gravitational
redshift profile. When considering the number of bins there should be enough to trace
the desired profile and its features, but dividing the data into too many bins could result
in too little data in each resulting in large uncertainties for a given bin. The number of
bins also depends on the amount of data available for binning, meaning less data can not
be divided into as many bins as a larger dataset, as this would not yield usable results.

When binning, the data in each should also be considered. In this case, each bin
should contain a representative amount of galaxies and clusters. Too few clusters in a
given bin could result in a bias or substructure of the cluster could affect the value of
the gravitational redshift in that bin.

At first, I used five bins of equal size to cover the range of radii from 0-6 Mpc, see
figure 16(a). With this division the inner most bin covered the range from 0 Mpc to
1.1 Mpc, which is most of the virialized region of a cluster with an average mass of
1.84 · 1014M�h

−1, corresponding to the mean mass of the datasets analysed in section
4. As shown in figure 1 in section 2, the variation in features of the gravitational red-
shift profile is greatest in the inner regions within the virial radius, which has the value
rv ≈ 1.7 Mpc for an average cluster in the datasets analysed here.

By only using five bins the variations in the signal in the inner regions of the clusters
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are obscured, which is evident in comparison to the seven bins used on the same data in
figure 16(b). The use of few bins in the inner regions indicate a constant signal of about
10 km/s throughout the cluster, which is clearly not the case when binning is performed
slightly different and the weaker signal in the inner regions becomes distinguishable.

It is relatively safe to use large bins at larger cluster centric distances, because of
the smaller variation in the size of the gravitational redshift signal for galaxies at these
distances. The difference in the predicted gravitational redshift from 3.0 Mpc to 5.0 Mpc
is ∆zgrs = 0.6 km/s, which is roughly the same as the difference between the predicted
signal at 0.50 Mpc and 0.65 Mpc, ∆zgrs = 0.64 km/s. The differences in the signal
within a bin at larger cluster centric distance are therefore a lot smaller than the error
on the fitted value.

An argument could be made for making even smaller bins when the variations in the
signal is great, as in the inner regions of the clusters. But as already mentioned above,
a certain amount of data is required in each bin to obtain reliable results, and the inner
regions of even the combined datasets do not contain that many galaxies, considering
the sample sizes used in this analysis. Therefore, to use smaller binning a larger sample
of galaxies is needed.

It is also clear from figure 16 how the number of bins affect the error in each bin.
Comparing the data in the inner region being divided into two, figure 16(a), or four,
figure 16(b), bins clearly affects the size of errors, as more bins equals less data in each.
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(a) Converged (b) Not converged

Figure 17: Corner plots of parameters of the same fitting function, but where one is converged
whereas the other is not. The difference between the two are the number of steps the MCMC

algorithm uses, where (a) is with 1500 steps and (b) is with 1000 steps

B.4 Convergence of fits

When running an MCMC routine, it can be difficult to determine the time of convergence
as it, in principle, can run indefinitely. The number of steps need to be large enough to
be sure of convergence, but not too large as to lengthen the computation time needlessly.

To check the convergence of the fits, I looked at the mean acceptance fraction, the
autocorrelation time and corner plots of the parameters. The corner plots are the easiest
way to make a fast determination of convergence, if the parameters are expected to
have a Gaussian distribution, see figure 17. The difference between the two panels are
the number of steps the MCMC-algorithm takes which is 50% larger for the converged
run compared to the non-converged. It is clear that the parameters has a Gaussian
distribution in figure 17(a), whereas the distributions are very skewed and uneven in
figure 17(b).

Because the distribution of the parameters is Gaussianly distributed, an argument
could be made for choosing the value to plot to be the median. But as mentioned in
section 3.3, I use the value with the maximum likelihood in the plots, which can results
in asymmetric errorbars that indicate a skewed distribution, even though that is not the
case.
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B.5 Computation time

There are multiple factors affecting the computation time of an MCMC fitting routine.
Such factors are the number of walkers used, the number of steps the walkers have to
take, the number of parameters of the function being fitted and of cause the size of the
dataset. Three of these are parameters set by the fitting routine.

The number of walkers should be large enough to probe the parameter space and
give a reasonable distribution of the parameter values. Too few walkers can result in the
walkers "getting stuck" in an area of low logarithmic likelihood which is not the global
minimum. I used 250 walkers for all the fits.

The number of steps needed require some testing and can vary from fit to fit. As
already described in appendix B.4 the convergence of a fit needs to be ensured, and
a non-converged fit can converge by running longer. For the single Gaussian fits 1000
steps was enough to converge all the fits. For double Gaussian fits 1500-2000 steps were
sometimes needed for a fit to converge.

When parameters are added to the fitting function the dimensionality of the parame-
ter space goes up. The MCMC algorithm is good at handling this, but it still affects the
total computation time, where more parameters results in longer computation. For the
single Gaussian function there are four free parameters as described in section 3.3, while
the double Gaussian function has six. If the mean (µ) of the double Gaussian function
become independent for each Gaussian component as discussed in appendix B.6, then
the fitting function has seven free parameters. As argued in section 4 the typical fit is
carried out using a single Gaussian fitting function.

The last factor affecting the computation time is the size of the dataset. This is
not a factor which can be manipulated once the data has been obtained, but results in
different computation time for different bins depending on the amount of data in each.

For a typical fit using 250 walkers, taking 1000 steps, fitting a single Gaussian func-
tion to a dataset of about 3 · 105 galaxies the computation time was usually between
four and six hours. For the same setup but fitting a double Gaussian function the
computation time would double to between eight and twelve hours.
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Figure 18: Fit values from two separate fits; one with mean of the double Gaussian fit (blue),
which are the same as plotted in figure 2 and one with a fit where the means of the Gaussians
are independent, µ1 (red) and µ2 (green). µ1 represents the narrow component of the double
Gaussian function, while µ2 represents the wide component. The data used are a projection of

the Mock dataset

B.6 Different mean of double Gaussian

Fits with the double Gaussian function, equation 11, was not carried out consistently,
as described in section 4, but was initially considered in section 3.3. As described, the
double Gaussian function assumes the mean value, µ, to be the same for both Gaussian
components, and I ran some test to see how well this assumption holds.

Making the means of the two Gaussians independent gives another parameter to fit,
which results in a longer computation time, see appendix B.5, making it less desirable
and add to the risk of overfitting, see section 3.4. It also results in each mean, µ1 and
µ2, having larger errors compared to a common mean, see figure 18.

Notice the mean of the first Gaussian, µ1, for all bins, except the innermost, have
small errors and are in agreement with the value from the same mean fit, whereas the
mean from the second Gaussian, µ2, generally has a more negative values and much larger
errors. This is consistent with µ1 being the mean of the narrower Gaussian component
of the two (a result from the priors described in section 3.3), meaning it fits the central
parts of the distribution, while µ2 is the mean of the wider Gaussian, fitting the wings of
the distribution. Fitting the wings of the distribution with a wider Gaussian function,
results in the larger errors shown. This was also the case for the different datasets
analysed in section 4, where the wider distribution of the photometric data, resulted in
larger errors. When looking at the relative weights, pg, of the Gaussian components, µ1
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is weighted the heaviest (60-70%) in all bins, again except the innermost bin.
This indicates that the double Gaussian fit, with the same mean, µ, for both compo-

nents, is in good agreement with the independent means, µ1 and µ2. Also, the compar-
ison with the single Gaussian fit described in section 4 are consistent with this, as the
single Gaussian function fit the central part of the distribution which is weighted the
heaviest, resulting in similar fit values for the single and double Gaussian functions.
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