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Abstract

Spacetime Algebra (STA) has proved to be a powerful tool for the study of a number of
physics’ theories. Many concepts in physics arise naturally from its geometric structure,
which allows a simple and coordinate-free formulation of physics. Motivated by its uncompli-
cated description of the electromagnetic theory, in this work we derive a gravitational force
within this framework, which consists of a Newtonian term and an additional ~v × ~L term,
and implement it on 200 test particles orbiting around the Milky Way.

By additionally implementing a standard Newtonian force, we compare the orbits gener-
ated by both forces and conclude that the extra term causes orbit precession. In this way,
the STA formulation of gravity might prove advantageous over the Newtonian theory, given
that it seems to be able to properly describe precession.
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Chapter 1

Introduction

The Milky Way has since bygone ages been a major source of interest. Marvelling at
the immense band of white light traversing the sky, many thinkers would wonder about its
origin, trying to answer two fundamental questions about it: what it was and why it was
there. After a large number of hypotheses and with the development of improved telescopes,
we eventually came to learn that what we saw in the sky was a rotating disk of stars, bound
together by gravity, and that our Solar System was part of it. However, among these stars
there were other bright bodies that did not follow their motion; these had a similar structure
to that of the Milky Way, and we called them galaxies.

As the constituent elements of our Universe, galaxies have always played a central role in
what we know about it. Some of the most fascinating breakthroughs of modern cosmology
were in fact made by studying them, which shows the great value they hold as natural labora-
tories. In particular, we were able to postulate the existence of dark matter from examining
galactic dynamics, and we found out that the Universe is expanding by observing galaxies’
redshifts.

There are still many things that we can learn from studying galaxies. For example, there
is a particularly intriguing discrepancy between standard cosmological predictions and obser-
vations regarding the Milky Way’s satellite galaxies. According to our current cosmological
paradigm, dwarf galaxies orbiting the Milky Way should be spherically distributed around
it. However, a number of investigations [1, 2, 3] indicate that their orbits lie on a plane. In
theory this could be due to statistical fluctuations, there is in fact a recent report [4] that
argues that the plane of satellites could be transient and thus compatible with the standard
cosmological model, but additional studies show that the Andromeda galaxy has a very simi-
lar structure [5], suggesting that the planar distribution of satellite galaxies might be related
to cosmological causes.

In this project we will focus on the orbits of these dwarf galaxies around the Milky Way.
Given that current simulations using the standard gravitational force are not able to repro-
duce their planar distribution, we are going to add a new term to the Newtonian force.

The suggested term, introduced in [6], is derived from spacetime algebra (STA), which is
the geometric algebra of Minkowski spacetime G(M4) — or equivalently the Clifford algebra
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C(1, 3). This framework was developed by the theoretical physicist David Hestenes in the
second half of the 20th century, and has lately gained considerable attention due to its simple
and straight-forward formulation of physics. In our current physical framework, a thorough
understanding of many concepts and theories often requires one’s familiarity with complex
mathematical tools, which usually entail several limitations. A good example of this is the
standard tensor algebra, which, apart from being essentially coordinate-based — and thus,
significant effort needs to be put into proving covariance of quantities —, is highly restricted
to the field of relativity theory; spins, for example, are not adequately described by tensors,
and therefore require learning the completely different language of spinors. By changing the
way we treat geometry, spacetime algebra allows a coordinate-free formulation of physics, as
well as a uniform description of classical, quantum and relativistic physics. Thus, Hestenes
introduced it as a unified mathematical framework that would provide a deeper understand-
ing of physical concepts, making physics available to a wider range of students, for which he
won the Ørsted award of teaching [7].

The formulation of electromagnetism within STA is specially interesting for our case.
By combining the electric and magnetic fields into a single electromagnetic bivector field
F = ~E + ~BI, both Maxwell’s equations and the Lorentz force appear naturally. The sim-
plicity provided by this framework is made manifest in that Maxwell’s equations are reduced
to a single equation. Based on the electromagnetic case, we can similarly define an angular
momentum bivector M that combines the dynamic mass moment ~N and the angular mo-
mentum ~L as M = −c ~N − ~LI, which will allow us to derive Maxwell’s equations of gravity
and a gravitational force that is equivalent to the Lorentz force. It is in this force that we
find the new term, in addition to a Newtonian term.

The present work aims to study the effect of the new force term, which we will do by
simulating the orbits of a number of randomly generated satellite galaxies around the Milky
Way. These orbits will be computed using both the standard Newtonian force and the new
gravitational force derived within spacetime algebra. We will then be able to analyze the
effect of the additional term by comparing both simulations.

The work is divided into two main parts. We start with a detailed introduction to space-
time algebra in Chapter 2, where we build the specific tools we need in order to derive the
gravitational force in the last section. Chapter 3 presents the numerical implementation of
the force, with a description of the simulation and the discussion of the results, as well as
suggestions for further explorations. Finally, some conclusions are drawn in the last chapter.
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Chapter 2

Spacetime algebra

Fundamentally, a vector is a mathematical object characterized by its magnitude and
its direction. Vector spaces generalize this concept by defining vector addition and scalar
multiplication, but in order to describe geometry we also need to be able to work with dis-
tances and angles, which we can do by introducing an adequate multiplication rule for vectors.

One would instinctively think of the scalar product, as it introduces the concepts of length
and orthogonality, but it has one significant limitation – it is not invertible. The fact that
we have to project one vector into another means that we will be losing information on the
way. The same can be said of the cross product; although we would now be generating a
third vector instead of a bare scalar, it can be seen that for two perpendicular vectors ~a and
~c, there exist infinitely many vectors ~b that satisfy ~a×~b = ~c.

Developing a proper vector algebra is certainly not a trivial matter. In fact, the need
to place geometry within a unified algebraic framework became a major concern for 19th
century mathematics. The first attempt was made by the mathematician W. R. Hamilton
with the discovery of quaternion formulation in 1843 [8], based on the multiplication between
complex numbers. He wanted to generalize the unit imaginary i to more dimensions; given
that complex numbers can be represented by two perpendicular axes on a plane, this would
allow him to represent vectors in space by adding a third axis perpendicular to the other
two. He found that one perpendicular axis representing a second complex number j was
not enough to construct an adequate product – he still needed a third complex number, k.
Thus, he introduced the expression (a + ib + jc + kd) that he called a quaternion, where
i, j and k satisfied i2 = j2 = k2 = −1, and claimed that vectors could be represented by
pure quaternions of the form (ib+ jc+ kd). Multiplying two vectors would now give a scalar
part and a vector part, leading to the definition of our familiar scalar and cross products.
And this new quaternion product had a great advantage, since it turned out to be invertible.
However, it was still not good enough. One problem was that the algebra did not close – the
full product still had a scalar part despite coming from two pure vectors. Nevertheless, its
major limitation was the impossibility to generalize it for arbitrary dimensions, because the
cross product could only be defined in three dimensions.

It was Hermann Grassmann who studied this issue and introduced the exterior product as
a generalization of the cross product in 1844 [9]. The reason we cannot define the cross prod-
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uct for arbitrary dimensions is that it relies on a vector perpendicular to the plane containing
the two multiplying vectors, and for higher dimensions this vector is not unique. Instead,
the exterior product encoded an oriented plane, which Grassmann called a bivector. The
fact that the product was now intrinsic to the plane containing the pair of vectors made it
possible to think of it in any dimensions, and for any number of vectors.

Although Grassmann’s work didn’t have a big impact at first, it ended up influencing the
mathematician W. K. Clifford in his development of a geometric algebra. The exterior prod-
uct was still not invertible, so motivated by Hamilton’s quaternion formulation, he combined
inner and outer products into what he called the geometric product. The new product was
not only invertible, but also defined a closed algebra. This is often referred to as Clifford
algebra, although he originally referred to it as geometric algebra [10].

It is not until the second half of the 20th century that David Hestenes takes Clifford’s geo-
metric algebra and constructs spacetime algebra (STA) from it, using Minkowski’s spacetime
metric. This algebraic framework provides a unified approach for electromagnetism, classical
mechanics and quantum mechanics, amongst other areas, which Hestenes himself develops
in his work (see for instance [7, 11, 12]) drawing attention to the universal nature of the
geometric algebra. Since then, many authors have continued developing spacetime algebra;
in particular, it is worth mentioning Dressel, Bliokh and Nori’s comprehensive approach to
the study of electromagnetism within the context of STA [13], and Doran and Lasenby’s work
on the development of gauge theory gravity [14], along with their thorough introduction to
geometric algebra and its applications in [15].

Spacetime algebra formulation of physics comes with a number of advantages, as will be
seen in the following sections. Among other things, it allows a coordinate-free — and con-
sequently reference-frame-independent – formulation, the unit imaginary I arises naturally
from the geometry of spacetime, and many physical quantities are intrinsic to the framework,
such as Pauli and Dirac matrices — they represent orthonormal bases in STA. These benefits
provide a simple and straight-forward way of formulating many problems in physics, such as
Maxwell’s equations of electromagnetism or the Kepler problem in classical mechanics, which
makes spacetime algebra a remarkable tool for understanding physics.

In this chapter, we will first introduce the foundations of geometric algebra and build
our way to spacetime algebra, revealing a number of properties that make the framework
particularly advantageous. We will then be able to define the angular momentum bivector
M and derive a new expression for the gravitational force within the framework of STA.

2.1 Geometric algebra

The following four axioms govern the properties of the geometric product between vectors:

(i) Associativity: (ab)c = a(bc),

(ii) Left-distributivity: a(b+ c) = ab+ ac,

(iii) Right-distributivity: (b+ c)a = ba+ ca,
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(iv) Contraction rule: a2 ∈ R.

Having defined its properties, from the geometric product ab one can define two new
products, one that is symmetric,

a · b =
1

2
(ab+ ba) = b · a, (2.1)

and another one that is antisymmetric,

a ∧ b =
1

2
(ab− ba) = −b ∧ a. (2.2)

Thus, the geometric product can be written as the sum of an inner (symmetric) and an outer
(antisymmetric) product:

ab = a · b+ a ∧ b. (2.3)

This is the canonical decomposition of the geometric product.

It is now interesting to see what the dot (·) and the wedge (∧) products mean. On the
one hand, from the contraction rule, we know that the inner product must be scalar-valued,
and it can therefore be identified with the standard Euclidean dot product. On the other
hand, the outer product describes an oriented plane segment, where commuting a and b
changes the orientation of the plane. This is what Grassmann called a bivector. It can also
be interpreted as the parallelogram obtained by sweeping one vector along the other (see Fig.
2.1). The magnitude of this outer product is the area of the parallelogram, |a||b| sin θ. It is
this geometrical interpretation that makes it possible to generalize the wedge product to any
dimensions, as opposed to the standard cross product.

Figure 2.1: Bivectors a ∧ b and b ∧ a, plane segments of opposite orientation, represented
by parallelograms obtained by sweeping one vector along the other.

Let us discuss two important cases. We start from that of two orthogonal vectors. If two
vectors a and b are orthogonal, we have a · b = 0 and it follows from Eq. 2.1 that ab = −ba.
Alternatively, two collinear vectors will define a parallelogram with vanishing area, which
means a ∧ b = 0, and by Eq. 2.2 we will have ab = ba. We thus see that the geometric
product provides a measure of the relative direction of two vectors. This will be more clear
in Sect. 2.1.1. Therefore, commutativity means that the two vectors are collinear, while
anticommutativity means orthogonality.

At this point we can start constructing the entire algebra, and we do this by successively
multiplying vectors. In the same way that the geometric product of two vectors gives a scalar
and a bivector, if we multiply a third vector c to a plane element a∧b we will get a vector from
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the inner product (a ∧ b) · c and an oriented volume from the outer product (a ∧ b) ∧ c. This
volume is called a trivector, and is now symmetric, since the outer product is antisymmetric
for vectors:

a ∧ b ∧ c = −a ∧ c ∧ b = c ∧ a ∧ b. (2.4)

If we keep multiplying vectors, we will end up forming k-vectors, where k denotes the grade
of the object. The geometric product of a vector v with a k-vector K can be generalized to

vK = v ·K + v ∧K, (2.5)

where the inner product generalizes to

v ·K =
1

2
(vK + (−1)k+1Kv) = (−1)k+1K · v (2.6)

and the corresponding outer product becomes

v ∧K =
1

2
(vK + (−1)kKv) = (−1)kK ∧ v. (2.7)

We therefore see that the symmetry of the inner and outer products alternate with the grade
of the k-vector, as hinted by Eq. 2.4.

The important thing about Eq. 2.5 is that it decomposes vK in a (k− 1)-vector part and
a (k + 1)-vector part. We thus say that the inner product contracts k-vectors and the outer
product inflates them.

However, we have been able to see that vector multiplication does not generate pure k-
vectors (unless the vectors are orthogonal, implying a · b = 0). The way we deal with that is
by introducing the concept of multivector. Multivectors are the elements of the n-dimensional
geometric algebra Gn, and combine objects of different grades. Consequently, the geometric
product defines a closed algebra, and k-vectors form linearly independent subspaces of the
total algebra.

Another advantage of defining the product as Eq. 2.3 is that although the dot and the
wedge product are not invertible on their own, combining them into a single product retains
enough information for the geometric product to be invertible, so we can define an inverse

a−1 =
a

a2
. (2.8)

We finally see that the geometric algebra thus defined overcomes the limitations that
other products may encounter; the geometric product generates a closed and invertible alge-
bra, and it therefore forms an appropriate algebraic framework to describe geometry.

Some of the interesting properties of geometric algebra may be seen by focusing on two
and three dimensions.
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2.1.1 Geometric algebra in two dimensions

All the elements in the two-dimensional geometric algebra G2 can be generated by the
orthonormal set of vectors {σ1, σ2}, satisfying

σi · σj = δij . (2.9)

The only linearly independent elements we can generate from these basis vectors are 1
scalar, 2 vectors and 1 bivector:

σ2
1 = σ2

2 = 1 ; {σ1, σ2} ; σ1σ2 = σ1 ∧ σ2. (2.10)

The bivector σ1 ∧ σ2 is the highest grade element that can be generated in this algebra.
It is not a coincidence that its grade corresponds to the dimension of the algebra; the outer
product between this bivector and any of the other two basis vectors will be zero, which
generalizes to geometric algebras of arbitrary dimension.

We call the highest grade element of a given algebra the pseudoscalar, and denote it by I.
The reason behind the choice of this symbol is that it squares to −1. In the two-dimensional
case we are treating now,

I2 = σ1σ2σ1σ2 = −σ2
1σ

2
2 = −1. (2.11)

Therefore, we have just found that the unit imaginary I =
√
−1 arises naturally from geo-

metric considerations. Considering its properties in the plane happens to be very revealing.
Let us first look into the effect of multiplying vectors by I :

σ1I = σ1σ1σ2 = σ2, (2.12)

and
σ2I = σ2σ1σ2 = −σ2σ2σ1 = −σ1. (2.13)

Assuming that σ1 and σ2 form a right-handed pair, right-multiplication by I rotates vectors
90◦ anticlockwise (in a positive sense). Similarly, left-multiplication rotates 90◦ clockwise (in
a negative sense).

In order to generalize rotations, we can instead consider the product between two arbitrary
vectors a and b and try to get a dependence on the angle θ relating them. We can do that
using the inner and outer products’ geometric interpretations,

ab = a · b+ a ∧ b =

= |a||b| cos θ + |a||b| sin θ σ1 ∧ σ2 = |a||b|(cos θ + I sin θ) = |a||b|eIθ.
(2.14)

Two important implications follow from this. On the one hand, the geometric product ab
can be interpreted as a directed arc relating a and b in a circle of radius |a||b|. The factor eIθ

in Eq. 2.14 is called a rotor, and multiplying a and b by it gives

aeIθ = a
ab

|a||b|
=
|a|
|b|
b (2.15)

and

eIθb =
ab

|a||b|
b =
|b|
|a|
a, (2.16)
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so we can also say that the geometric product ab rotates and rescales a in order to get b,
and vice versa. Consequently, multiplication of any vector by eIθ generates a rotation in the
plane I through an angle θ. This can be written as

x→ x′ = xeIθ. (2.17)

On the other hand, from Eq. 2.14 we find that the geometric product ab is a complex
number of modulus |a||b|; its real and imaginary parts correspond to the inner and outer
products, which reveals the geometric nature of the complex structure.

We have thus been able to understand some of the properties of geometric algebra by
exploring it in two dimensions. The geometric algebra G2 is closely related to the algebra of
complex numbers, and through this we have established a way to manipulate rotations in a
simple and efficient way, without the need to introduce coordinates or matrices. Let us go a
step further and see how this translates to three dimensions.

2.1.2 Geometric algebra in three dimensions

We will now consider the three-dimensional geometric algebra G3, generated by the or-
thonormal basis {σ1, σ2, σ3}. Multiplication between these vectors again satisfies Eq. 2.9.

The G3 algebra has four linearly independent subalgebras:

σ2
1 = σ2

2 = σ2
3 = 1 ; {σ1, σ2, σ3} ; {σ1σ2, σ2σ3, σ3σ1} ; σ1σ2σ3, (2.18)

so the complete algebra is spanned by 1 scalar, 3 vectors, 3 bivectors and 1 trivector.

The pseudoscalar is now the trivector I = σ1σ2σ3, whose grade matches again the dimen-
sion of the algebra, and it follows that

I2 = σ1σ2σ3σ1σ2σ3 = −σ1σ1σ2σ2σ3σ3 = −1, (2.19)

using the anticommutativity of orthogonal vectors. Thus, we have found that a unit imagi-
nary I =

√
−1 also appears naturally in three dimensions.

However, while in G2 multiplication by I caused a 90◦ rotation on vectors, the effect is
different in the three-dimensional case. To see this, let us first examine Iσ1:

Iσ1 = σ1σ2σ3σ1 = σ2σ3, (2.20)

so multiplication of a vector by I gives a bivector. Note that it is not necessary anymore
to distinguish between left- and right-multiplication, since vectors in G3 commute with the
pseudoscalar I.

We call multiplication by the pseudoscalar I a duality operation, since it transforms a
vector in its dual bivector. In other words, every bivector in G3 can be written as the dual of
a vector,

B = Ib = bI, (2.21)
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where we represent bivectors in bold.

In fact, for the rest of the vectors in the generating set, we have

Iσ2 = σ1σ2σ3σ2 = σ3σ1 (2.22)

and
Iσ3 = σ1σ2σ3σ3 = σ1σ2. (2.23)

Thus, equations 2.20, 2.22 and 2.23 satisfy

σi ∧ σj = Iεijkσk, (2.24)

where εijk is the completely antisymmetric Levi-Civita tensor.

A very interesting feature of geometric algebra arises if we extend this relation to include
the complete geometric product,

σiσj = σi · σj + σi ∧ σj = δij + Iεijkσk. (2.25)

This expression reminds us of the Pauli algebra of quantum mechanics. We can therefore
say that Pauli matrices are a matrix representation of the orthonormal basis {σ1, σ2, σ3} of
the geometric algebra G3. The implications of this are remarkable; Pauli matrices are not
inherently quantum mechanical but come instead with substantial geometric properties.

But let us focus anew on the vector-bivector duality. It leads to a particularly interesting
equivalence, which we will find useful in the following sections. If we take Eq. 2.24 and
identify εijkσk as the result of the cross product σi × σj , we can write

Iεijkσk = I(σi × σj) = σi ∧ σj , (2.26)

which generalizes to any product as

Ia× b = a ∧ b. (2.27)

Thus, the standard cross product is dual to the outer product.

This result has significant consequences. The fact that we can translate from the three-
dimensional standard algebra of Euclidean space to the geometric algebra G3 implies that
we will be able to develop a three-dimensional geometric calculus, allowing us to manipulate
physical quantities such as those from classical mechanics in the framework of geometric al-
gebra.

After introducing the concept of duality, we can now write multivectors in G3 in their
extended form as

M = α+ a+ Ib+ Iβ, (2.28)

where α and β represent scalars and a and b represent vectors.

From this, one can also notice that trivectors are dual to scalars, and in the two-dimensional
case we dealt with in the last section, it was bivectors that were dual to scalars. This is in
fact why we use the pseudo prefix together with scalar to denote the highest grade element;
because it is always the scalars dual.
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Rotations

In a similar manner to how the two-dimensional geometric algebra provided an easy way
of handling rotations, G3 formulation allows a simple and coordinate-free treatment of rota-
tions and reflections in space. Reflections will not be addressed in this report, suffice it to
say that they work in a similar way to rotations (see [7] for a proper description).

We already defined a rotor in the previous section, and saw how it transforms vectors in
Eq. 2.17. In three-dimensions, this transformation generalizes to

x→ x′ = RxR̃ = e−Bθ/2xeBθ/2, (2.29)

where R denotes a rotor and R̃ is its reverse, and the two-sided multiplication by it generates
a rotation through an angle θ in the plane described by the bivector B.

This is a good point to pause and introduce the reversion operator. Under this transfor-
mation, the order of all geometric products is reversed, in such a way that a bivector’s reverse
is its negation B̃ = (a ∧ b)˜= b ∧ a = −B and thus the rotor R = e−Bθ/2 becomes

R̃ = (e−Bθ/2)˜= cos(θ/2)− B̃ sin(θ/2) = eBθ/2. (2.30)

There are two things to note on how we generalized Eq. 2.17 into Eq. 2.29. The first
is that while I = σ1σ2 was the only plane of rotation in G2, we now have three linearly
independent bivectors in the algebra and the number of planes we can rotate a vector in is
thus infinite. Hence, we need to specify the plane by the bivector B.

The second noticeable thing is that we are now multiplying the rotor on both sides and
using the half-angle θ/2, instead of using θ and multiplying on just one side. The reason
behind this is that when rotating a vector, it is only its component in the plane that is
affected, as seen in Fig. 2.2, and the two-sided multiplication allows this by choosing this
component. To see this, we can decompose the vector x into its component orthogonal to
the plane, x⊥, and its component in the plane, x‖. The rotated vector x′ is given by

x′ = RxR̃ = Rx⊥R̃+Rx‖R̃ = RR̃x⊥ +RRx‖ = x⊥ +R2x‖, (2.31)

where we have used that x⊥ commutes with the bivector B, and thus with R̃, and x‖ anti-
commutes with them.

Figure 2.2: Rotation of a vector x into the transformed vector x′ in the plane B through
an angle θ. The figure shows how it is only the component in the plane that is rotated, while
the orthogonal component is left intact.
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We therefore see that by multiplying both the rotor and its conjugate on each side of the
vector, the squared rotor only affects the component x‖; as a consequence, we recover our
expression from Eq. 2.17 and the rotation ends up being through an angle θ.

It is due to the simple treatment of rotations provided by Eq. 2.29 that the geometric
algebra of space becomes such a powerful tool for solving problems in classical mechanics, i.e.
rigid body physics or the two-body problem. A detailed description of these applications can
be found in Hestenes’ book New Foundations for Classical Mechanics [16] and, in particular,
T. Vold’s approach to geometric algebra’s application in rigid body mechanics [17] is specially
instructive.

Now that we have introduced geometric algebra and seen its implications in two and three
dimensions, which has served to gain a better understanding of the framework by example,
we are ready to extend the formulation to Minkowski spacetime and introduce the so called
spacetime algebra.

2.2 Spacetime algebra

Up to this point we have been constructing our algebras by choosing a set of orthonormal
vectors that satisfied Eq. 2.9 as a generating basis. In order to define the geometric algebra
of spacetime G4 = G(M4), the standard frame {γµ}3µ=0 must instead satisfy

γµ · γν = ηµν , (2.32)

where ηµν is the Minkowski metric of signature (+,−,−,−).

By iteratively multiplying γµ we can form five linearly independent subalgebras

1 , {γµ} , {γµγν} , {γµγνγρ} , γ0γ1γ2γ3, (2.33)

generated by 1 scalar, 4 vectors, 6 bivectors, 4 trivectors and a 4-vector 1, respectively:

1 , {γ0, γ1, γ2, γ3} , {γ10, γ20, γ30, γ12, γ23, γ31} , {γ123, γ023, γ310, γ012} , γ0123. (2.34)

Since we are dealing with spacetime, it is useful to distinguish between timelike, spacelike
and lightlike elements. The sorting is made in relation to their signature ε. When we defined
the geometric product at the very beginning of this chapter, the contraction rule that was
the fourth axiom dictated that a2 ∈ R for a vector a. In terms of a signature, we can rewrite
that as

a2 = ε|a|2, (2.35)

and thus we say the vector is timelike if ε = 1, spacelike if ε = −1 or lightlike if |a| = 0.
In the standard frame {γµ}, for example, we have the timelike vector γ0 and the spacelike
vectors γi with i = 1, 2, 3. This distinction extends to any element of the algebra; it is easy
to see that in the case of bivectors γ10, γ20 and γ30 are timelike, while γ12, γ23 and γ31 are

1Here and in the following, 4-vector refers to a k-vector of grade k = 4, as opposed to four-vectors from
special relativity. The latter are actually 1-vectors in a geometric algebra of four dimensions.
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spacelike.

The pseudoscalar of this algebra is the 4-vector γ0123. In fact,

I2 = γ0γ1γ2γ3γ0γ1γ2γ3 = −γ0γ1γ2γ0γ1γ2γ3γ3 =

= −γ0γ1γ0γ1γ2γ2γ3γ3 = γ0γ0γ1γ1γ2γ2γ3γ3 = −1,
(2.36)

where we used that orthogonal vectors anticommute, as well as γ2
0 = 1 and γ2

i = −1 for
i = 1, 2, 3. Thus, we once more find a unit imaginary I from the geometric structure, space-
time in this case.

Let us now consider the different dualities. We start by finding the dual of a vector, by
computing γ0I:

γ0I = γ0γ0γ1γ2γ3 = γ1γ2γ3 = γ123. (2.37)

Similarly, we will have
γ1I = γ1γ0γ1γ2γ3 = γ0γ2γ3 = γ023, (2.38)

γ2I = γ2γ0γ1γ2γ3 = −γ0γ1γ3 = −γ013 = γ310, (2.39)

γ3I = γ3γ0γ1γ2γ3 = γ0γ1γ2 = γ012. (2.40)

We see that the vector subalgebra’s dual is the trivector subalgebra, and thus we can call
trivectors pseudovectors.

It is important to note that vectors anticommute with the pseudoscalar I, as opposed
to the three-dimensional case. In fact, it is easy to verify from equations 2.37 – 2.40 that
left-multiplication of vectors {γµ}3µ=0 by I will lead to trivectors of opposite sign. This

means that since any vector a can be written as a linear combination of {γµ}3µ=0 in the form
a = a0γ0 + a1γ1 + a2γ2 + a3γ3, it will anticommute with I.

So far we have seen that in the G4 algebra of spacetime scalars’ duals are 4-vectors
(pseudoscalars) and vectors’ duals are trivectors (pseudovectors). We can additionally take
a look at how bivectors change under a duality transformation. To do this, let us examine
the product γ10I

γ10I = γ1γ0γ0γ1γ2γ3 = −γ2γ3 = −γ23. (2.41)

Therefore, from multiplying a bivector by I we get another bivector orthogonal to it. If we
check the rest of the elements in the bivector subalgebra {γµγν}, we can see that bivectors
are their own duals. Their duality relations can be summarized by

γi0I = −εijkγjk (2.42)

and
γjkI = εijkγi0. (2.43)

We thus say that bivectors define a self-dual subalgebra.

In contrast with how vectors anticommute with I, bivectors commute with it, which can
be easily checked from Eq. 2.41. Consequently, we can say that I commutes with even-graded
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subalgebras (scalars, bivectors) and anticommutes with odd-graded subalgebras (vectors).

Taking all dualities into account, we can express multivectors M ∈ G(M4) as

M = α+ a+ B + bI + βI = α+ a+ B− Ib+ Iβ, (2.44)

where we see that they consist of a complex scalar λ = α+ βI, a complex vector c = a+ bI
and a bivector B.

Before proceeding further into rotations in spacetime, it is worth noting the reason behind
the particular choice of the symbol representing the basis vectors {γµ}3µ=0. Taking Eq. 2.32,
we can extend it and get to

γµγν + γνγµ = 2ηµν , (2.45)

which is the anticommutation relation defining the Dirac matrix algebra. Consequently, the
Dirac matrices define a representation of the algebra of spacetime G(M4), which means their
connection to relativistic quantum mechanics is not intrinsical, as for the case of the Pauli
matrices; they instead characterize spacetime geometry.

2.2.1 Lorentz transformations

When we discussed the geometric algebras of two and three dimensions we obtained a
simple formulation for rotations. Using rotors of the form R = e−Bθ/2, we could rotate
vectors by an angle θ in a plane defined by the bivector B. An important advantage of
this formulation is that it is generalizable to geometric algebras of any dimension, and this
includes spacetime algebra.

In fact, the bivector basis {γµν} forms the Lie algebra of the Lorentz group, and as a
consequence Eq. 2.29 generates Lorentz transformations in G(M4). In order to see this, we
define a commutator bracket for bivectors that will give us the relations defining the genera-
tors of the Lorentz group [13].

We begin by considering the product of two bivectors A and B. It turns out that the
antisymmetric part of AB, that we write as a commutator bracket,

[A,B] ≡ 1

2
(AB−BA), (2.46)

gives a third bivector. To see that, let us compute the commutator relations between the six
bivectors that constitute the basis. For the spacelike bivectors γ12, γ23 and γ31 we get the
following relations

[γ12, γ23] = γ31 [γ23, γ31] = γ12 [γ31, γ12] = γ23 . (2.47)

For the timelike bivectors, we get

[γ10, γ20] = −γ12 [γ20, γ30] = −γ23 [γ30, γ10] = −γ31. (2.48)
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And if we mix spacelike and timelike bivectors we get the rest of the commutation relations

[γ12, γ10] = γ20, [γ23, γ20] = γ30, [γ31, γ30] = γ10,

[γ31, γ10] = −γ30, [γ12, γ20] = −γ10, [γ23, γ30] = −γ20,

[γ23, γ10] = 0, [γ31, γ20] = 0, [γ12, γ30] = 0.

(2.49)

We can now denote our bivectors by S1 = γ23, S2 = γ31, S3 = γ12 and K1 = γ10,
K2 = γ20, K3 = γ30 and summarize the commutation relations in Eq. 2.47, 2.48 and 2.49
respectively as

[Si,Sj ] = εijkSk , [Ki,Kj ] = −εijkSk , [Si,Kj ] = εijkKk. (2.50)

Thus, bivectors in G(M4) form the closed nonassociative Lie algebra of the restricted Lorentz
group. In particular, the spacelike bivectors Si generate rotations in space and timelike bivec-
tors Ki generate boosts.

It follows from this that we can find the Lorentz transform M ′ of a multivector M through
Eq. 2.29 by choosing the plane of rotation to be any of the generators of the Lorentz group.
Thus, spacetime algebra reduces Lorentz transformations to simple rotor multiplication, en-
abling once more an easy and coordinate-free formulation.

2.2.2 Spacetime split

One of the main advantages of STA is that we can formulate conventional relativistic
physics without the need to refer to a coordinate system. However, it is sometimes useful to
write equations in terms of variables tied to a specific inertial system, which brings us to the
concept of spacetime split.

We can characterize a given inertial system by the timelike unit vector γ0 [11]. By choosing
this particular reference frame, we can connect the spacetime algebra of G(M4) to its even
subalgebra G3 = G(P3), where P3 = P3(γ0) consists of all bivectors generated by the set
{γ10, γ20, γ30}. We can decompose these bivectors as

~σi ≡ γio = γi ∧ γ0. (2.51)

If we now take the standard basis {~σi ; i = 1, 2, 3} introduced in Sect. 2.1.2 for P3, P3 will
be the Pauli algebra embedded within G(M4).

The elements ~σi correspond to the three spatial directions γi orthogonal to γ0, and thus
generate the vector quantities with three spatial components that we use in standard vector
analysis. These vectors are called relative vectors because they are relative to the γ0-system,
and we use arrows to distinguish them from vectors in G(M4).

In order to understand spacetime split and how choosing a reference frame γ0 leads to
it, let us consider the example of the position vector x. We can write it in terms of the
generating vectors as x = ctγ0 + x1γ1 + x2γ2 + x3γ3. Multiplying x by γ0 yields

xγ0 = x · γ0 + x ∧ γ0 = ct+ x1~σ1 + x2~σ2 + x3~σ3 = ct+ ~x. (2.52)
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Thus, spacetime split separates vectors into a relative scalar and a relative vector. We call
this combination a paravector.

The reverse of Eq. 2.52 is

(xγ0)˜= γ0x = γ0 · x+ γ0 ∧ x = ct− ~x. (2.53)

Hence, combining Eqs. 2.52 and 2.53 we get the interval

x2 = xγ0γ0x = (ct+ ~x)(ct− ~x) = (ct)2 − |~x|2. (2.54)

We can see that the interval between two events does not depend on the chosen inertial frame
and it is thus Lorentz invariant.

It is interesting to further explore some important physical quantities and their spacetime
splits. Let us examine the proper velocity v = dx/dτ :

vγ0 =
dx

dτ
· γ0 +

dx

dτ
∧ γ0 = c

dt

dτ
+
d~x

dτ
= c

dt

dτ
+
d~x

dt

dt

dτ
=
dt

dτ
(c+ ~v), (2.55)

where ~v = d~x/dt is the relative velocity and dt
dτ is the Lorentz or time dilation factor denoted

by γ.

The value of the Lorentz factor γ can be obtained from

v2 = vγ0γ0v =
dt

dτ
(c+ ~v)

dt

dτ
(c− ~v) =

(
dt

dτ

)2

(c2 − |~v|2). (2.56)

Noting that v2 = c2,(
dt

dτ

)2

(c2 − |~v|2) = c2 ⇒ γ =
dt

dτ
=

√
c2

c2 − |~v|2
=

1√
1− |~v|

2

c2

. (2.57)

The spacetime split of the proper momentum p into the energy E and the relative mo-
mentum ~p is

pγ0 =
E

c
+ ~p. (2.58)

Squaring p gives the invariant quantity

p2 = (
E

c
+ ~p)(

E

c
− ~p) =

(
E

c

)2

− |~p|2, (2.59)

and we can thus relate it to the proper mass m2c2 = (E/c)2 − |~p|2.

It therefore follows that the proper momentum – or energy-momentum vector – is con-
served, which makes this formulation advantageous once more. While we where able to see
this by merely considering spacetime geometry, deriving energy-momentum conservation us-
ing standard vector analysis requires a longer derivation, as can be seen in Appendix A.
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Another interesting quantity is the electromagnetic field bivector F, that splits into electric
and magnetic parts. However, instead of needing to distinguish between polar and axial
vectors, the distinction here has a truly geometrical meaning; ~E is a relative vector and I ~B
is a relative bivector. We can write the electromagnetic field F in terms of the bivector basis
as

F = E1γ10 + E2γ20 + E3γ30 +B1γ32 +B2γ13 +B3γ21 =

= E1γ10 + E2γ20 + E3γ30 +B1γ10I +B2γ20I +B3γ30I,
(2.60)

following the bivector dualities from Eq. 2.42. From definition 2.51, its spacetime split gives

F = E1~σ1 + E2~σ2 + E3~σ3 +B1~σ1I +B2~σ2I +B3~σ3I = ~E + ~BI. (2.61)

It is worth noting that this time we have been able to split F into a relative vector and a
relative bivector without the need to multiply it by a specific inertial system γ0; since F is a
bivector, it is sufficient to write it in terms of the relative basis {~σi}.

The quantity we are interested in in this work is the angular momentum bivector M,
which has a relative form similar to that of the electromagnetic field bivector F. This will be
dealt with in the following section.

2.3 Derivation of the gravitational force

After having introduced the spacetime algebra G(M4) and its properties, we are now
ready to derive a gravitational force.

As suggested in [6], we start by defining the angular momentum bivector M as a gener-
alization of the three-dimensional angular momentum:

M = x ∧ p, (2.62)

where x is the proper position and p is the proper momentum. Their spacetime splits are
given by Eqs. 2.52 and 2.58, and we can rewrite them as x = γ0(ct−~x) and p = (E/c+ ~p)γ0.
Using these expressions, Eq. 2.62 yields

M = γ0(ct− ~x) ∧ (
E

c
+ ~p)γ0 =

= γ0(ct ∧ E
c

)γ0 − γ0(~x ∧ E
c

)γ0 + γ0(ct ∧ ~p)γ0 − γ0(~x ∧ ~p)γ0.

(2.63)

The first term in Eq. 2.63 is the wedge product of two scalars, which gives 0. Since γ0

anticommutes with relative vectors, and using the duality in Eq. 2.27, the angular momentum
bivector M becomes

M =
E

c
~x− ct~p− ~x× ~pI. (2.64)

It is now possible to identify the dynamic mass moment ~N = ct~p−E~x/c as given by [18] and
the angular momentum ~L = ~x× ~p. Eq. 2.64 hence takes the final form

M = −c ~N − ~LI. (2.65)
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We thus see that similarly to how the bivector F combines the electric ~E and magnetic ~B
fields, M combines the dynamic mass moment ~N and the angular momentum ~L.

Now that the angular momentum bivector is defined we can proceed with the derivation
of the gravitational force, which is given by the contraction of M with mv, where m is the
mass of the particle and v is its proper velocity.

The fact that the force takes this form can be demonstrated as follows [15, 19]. Consider
a particle of mass m on a trajectory x(τ), with the velocity given by v(τ) = ẋ. At a later
time, the proper velocity will be given by

v(τ + ∆τ) = Rv(τ)R̃. (2.66)

This transformation, that we recognize from Eq. 2.29, is a pure Lorentz boost generated
by the set of timelike bivectors {γi0} contained inside the rotor R = R(τ). Our rotor will
therefore have the usual form

R = e−B∆τ/2, (2.67)

where the bivector B contains the boost generators. We do not need to look too far in order
to find such a bivector; it turns out that the angular momentum bivector we defined in Eq.
2.65 is written in terms of the relative basis {~σi ≡ γi0}, so it will indeed be a boost generator.
Therefore, the rotor R will be given by

R = e−M∆τ/2 = e(c ~N+~LI)∆τ/2. (2.68)

We can now examine the proper acceleration v̇,

v̇(τ + ∆τ) = Ṙv(τ)R̃+Rv(τ) ˙̃R. (2.69)

It follows from Eq. 2.66 that
R̃v(τ + ∆τ) = v(τ)R̃ (2.70)

and
v(τ + ∆τ)R = Rv(τ). (2.71)

Inserting Eqs. 2.70 and 2.71 into 2.69 yields

v̇(τ + ∆τ) = ṘR̃v(τ + ∆τ) + v(τ + ∆τ)R ˙̃R, (2.72)

which we can further simplify by noting that (ṘR̃)̃ = R ˙̃R = −ṘR̃, because ṘR̃ defines a
bivector and therefore its reverse is its own negation, as we mentioned earlier. Thus, the
acceleration becomes

v̇(τ + ∆τ) = ṘR̃v(τ + ∆τ)− v(τ + ∆τ)ṘR̃ = 2ṘR̃ · v(τ + ∆τ). (2.73)

Note that the dot product of a bivector with a vector is antisymmetric (recall 2.6).

If we compute the bivector 2ṘR̃ using R = e−M∆τ/2,

2ṘR̃ = −Me−M∆τ/2eM∆τ/2 = −M, (2.74)
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we finally get to the equation of motion

v̇ = −M · v. (2.75)

This is the acceleration of the particle, caused by the angular momentum bivector M. Of
course, had we used a different bivector in Eq. 2.68, the acceleration would have been due to
said bivector. One gets the equivalent result, for example, when applying the electromagnetic
field bivector F.

If we now insert the mass of the particle in Eq. 3.7, we get the gravitational force

mv̇ = −mM · v. (2.76)

Thus, we just saw that we can derive a gravitational force by contracting the angular mo-
mentum bivector M with the proper velocity v and multiplying it by the mass of the particle.

Let us compute Eq. 3.7, using the definition of the angular momentum bivector from Eq.
2.65 and the spacetime split of the proper velocity, v = (cγ + ~vγ)γ0, computed in Eq. 2.55.

v̇ = −M · v =
1

2
((−M)v − v(−M)) =

=
1

2

[
(c ~N + ~LI)(cγ + ~vγ)γ0 − (cγ + ~vγ)γ0(c ~N + ~LI)

]
=

=
1

2

[
(c ~N + ~LI)(cγ + ~vγ)γ0 + (cγ + ~vγ)(c ~N − ~LI)γ0

]
,

(2.77)

where we used that γ0 anticommutes with ~N and commutes with ~LI 2. If we expand the
products and reorganize the terms,

v̇ =
1

2

[
c2 ~N + c~LI + c ~N~v + ~LI~v + c2 ~N − c~LI + c~v ~N − ~v~LI

]
γγ0 =

=

[
c2 ~N + c

1

2
( ~N~v + ~v ~N) +

1

2
(~LI~v − ~v~LI)

]
γγ0 =

(
c2 ~N + c ~N · ~v − ~v ∧ ~LI

)
γγ0,

(2.78)

and if we use the duality ~v ∧ ~LI = −~v × ~L given by 2.27, we get to the final result

v̇ = (c ~N · ~v)γγ0 + (c2 ~N + ~v × ~L)γγ0. (2.79)

Finally, inserting the mass m and taking γ0 to the left-hand side yields the gravitational force

mv̇γ0 = mcγ ~N · ~v +mγ(c2 ~N + ~v × ~L). (2.80)

Note that this is a proper gravitational force; we are looking at its spacetime split.

It is the vector part on the right-hand side of the equation that we are interested in.
It represents the gravitational force md~v/dt in the relative frame γ0 – and the scalar part
can be interpreted as its corresponding rate of work. As we can see, it has two terms: one

2This is because γ0 anticommutes with any timelike bivector γi0, which is the basis of ~N and ~L. However,
when having ~LI, the basis is the dual set of bivectors {γij}, and γ0 commutes with those.
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proportional to ~N and the other proportional to ~v × ~L. We will show in Sect. 2.3.1 that
the ~N term is nothing more than the usual Newtonian force, so it is the ~v × ~L term that
distinguishes the force derived within STA from the standard gravitational force.

The resemblance between Eq. 2.80 and the Lorentz force q(c ~E + ~v × ~B) is evident. In
fact, the Lorentz force can be derived from contracting the field bivector F = ~E + ~BI with a
charge current qv, in a completely analogous way to how we derived the gravitational force
(see [13]).

2.3.1 Computation of ~N and ~L

Before moving forward to the numerical implementation of the force in Eq. 2.80, we will
need to obtain expressions for ~N and ~L so that we can understand what they mean. In
order to do that, we will start by finding the equivalent version of Maxwell’s equations of
electromagnetism for the gravitational case.

The electromagnetic theory is discussed by Dressel, Bliokh and Nori in [13]. Besides
deriving the Lorentz force, they show that within STA, Maxwell’s equations with sources are
reduced to the single equation ∇F = jF, with the source jF consisting of an electric source
vector je and a magnetic source trivector jmI. As we can see from comparing Eqs. 2.61 and
2.65, the gravitational case should be completely analogous. We can therefore describe the
evolution of the angular momentum bivector M as

∇M = jM. (2.81)

Let us expand Eq. 2.81. Since ∇M = ∇ ·M + ∇ ∧M, it will give a vector and a
trivector part. We can compute this by using the spacetime split of the vector derivative,
∇ = γ0(∂0 + ~∇):

∇M = γ0(∂0 + ~∇)(−c ~N − ~LI) = γ0

[
−c∂0

~N − ∂0
~LI − c~∇ ~N − ~∇~LI

]
=

= γ0

[
−c∂0

~N − ∂0
~LI − c~∇ · ~N − c~∇∧ ~N − ~∇ · ~LI − ~∇∧ ~LI

]
= γ0

[
−c∂0

~N − c~∇ · ~N + ~∇× ~L
]

+ γ0

[
−∂0

~L− ~∇ · ~L− c~∇× ~N
]
I,

(2.82)

where we used that ~∇∧ ~N = ~∇× ~NI and ~∇∧ ~LI = −~∇× ~LI.

Now that we can explicitly see the vector and trivector parts, we can write the source as
jM = j1 + j3I, being j1 and j3 both vectors. Thus, Eq. 2.82 can be split into

γ0

[
−c∂0

~N − c~∇ · ~N + ~∇× ~L
]

= j1,

γ0

[
−∂0

~L− ~∇ · ~L− c~∇× ~N
]

= j3.
(2.83)

At the same time, each of these equations has a scalar and a vectorial part, so by spacetime
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splitting the sources as ji = γ0(cρi − ~Ji) we get the four equations:

~∇ · ~N = −ρ1,

~∇ · ~L = −cρ3,

c∂0
~N − ~∇× ~L = ~J1,

∂0
~L+ c~∇× ~N = ~J3.

(2.84)

This is the gravitational version of Maxwell’s equations of electromagnetism, which describe
the evolution of ~N and ~L. In order to solve these equations, we will need to define the sources.

On the one hand, there is j1. From its spacetime split, we see that its scalar part will gen-
erate the ~N force term as seen in Eq. 2.84. Therefore, as we would expect for a gravitational
source, we will take a mass-current of the form

j1 = 4πGρ(r)vs = γ04πGρ(r)(cγs − ~vsγs), (2.85)

where G is the gravitational constant, vs is the proper velocity of the source, and ρ(r) is its
mass density. The subindex in γs, as well as in ~vs, is introduced to distinguish the source’s
time dilation factor from the particle’s in Eq. 2.80.

The scalar part in j3, on the other hand, is responsible for generating the relative angular
momentum ~L. This would mean having an angular momentum monopole and, once again
in complete analogy to the electromagnetic case, such monopoles have not been observed.
Therefore, we will set the j3 source to zero.

With our sources thus defined, Eq. 2.84 becomes

~∇ · ~N = −4πGρ(r)γs,

~∇ · ~L = 0,

c∂0
~N − ~∇× ~L = 4πGρ(r)~vsγs,

∂0
~L+ c~∇× ~N = ~0.

(2.86)

At this point, the only thing left to do in order to get ~N and ~L is solve these equations.

Let us examine ~N first, for which we are going to solve ~∇· ~N = −4πGρ(r)γs. This relation
can be integrated using the divergence theorem∫

V

~∇ · ~NdV =

∮
S

~Nd~S. (2.87)

Assuming that ~N = N(r)r̂ and integrating over a spherical surface of area 4πr2, we get the
expression

~N = −GM
r2

γsr̂, (2.88)

with M =
∫
V ρ(r)dV , which reminds us of Newton’s law. In fact, in the limit that v2

s << c2,
γs −→ 1 and Eq. 2.88 becomes the standard gravitational field.
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Now that we have ~N , we can obtain an expression for ~L. This time, however, instead
of solving another relation in Eq. 2.86, we are going to use a very convenient result from
electromagnetism, ~B = (~v × ~E)/c2 [20]. Translating this to the gravitational case yields

~L = ~vs × ~N. (2.89)

Hence, it follows from Eq. 2.88 that the relative angular momentum ~L is

~L = −GM
r2

γs~vs × r̂, (2.90)

where M is the total mass of the source and ~vs is its relative velocity. Again, when we are
in the limit that v2

s << c2, γs −→ 1. We thus see that ~L is generated by a massive source in
movement.

Therefore, having computed the new expressions for ~N and ~L, the gravitational force in
Eq. 2.80 takes the form

mv̇γ0 = mcγ ~N · ~v +mγ

[
−GM

r2
γsc

2r̂ + ~v ×
(
−GM

r2
γs~vs × r̂

)]
. (2.91)

Note that the relative velocity ~v, the time dilation factor γ and the mass m refer to the
particle, while ~vs, γs and M refer to the gravitational source.

Before moving on to the next chapter, we should pause and look at the implications of
the gravitational force we derived together with Eqs. 2.88 and 2.90. We just saw that a
gravitational source of total mass M will generate both a field ~N – comparable to a New-
tonian gravitational field – and an angular momentum field ~L that is proportional to its
velocity. If we take a particle of mass m travelling with velocity ~v, it will experience a force
that is the sum of a central force (proportional to ~N) towards the source and a second force
perpendicular to both the particle’s velocity and the angular momentum field ~L. This will
happen whenever the source is rotating with a tangential velocity ~vs. However, if the source
is at rest, that means if ~vs = 0, it will not generate any angular momentum, and thus the
only term contributing to the total gravitational force will be ~N .

Having thus derived the gravitational force we were looking for and after computing the
expressions of ~N and ~L, we are ready to move forward with the numerical implementation of
the force.
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Chapter 3

Numerical implementation of the
force

As stated in the Introduction, our main objective is to study the effect that the force
derived in Sect. 2.3 has on orbits. Motivated by the Milky Way’s plane of satellites problem,
we are going to implement this force on a number of satellite galaxies orbiting around our
Galaxy. A comparison between the orbits computed using the gravitational force from space-
time algebra and those computed with the standard Newtonian force will give us information
about the effect of the ~v × ~L term in Eq. 2.80.

In this chapter we will first describe our simulation, from the specific model we used to
the way the force is implemented. We will then be able to show the results obtained from
running the simulations and discuss the effect that the gravitational force derived within
STA seems to have on the orbits. Finally, we will end by giving some suggestions for future
explorations on the topic.

3.1 Simulation

Our simulation comprises a number of test particles that characterize the satellite galax-
ies, orbiting around a simplified model of the Milky Way. The randomly generated test
particles will be isotropically distributed on a sphere around the Galaxy, and we will then
let them orbit for 10 Gyr, both under the influence of a Newtonian gravitational force and
the force derived within STA, which will allow us to compare the orbits. Since the system is
considered to be collisionless, the trajectories of these particles will solely be governed by the
Milky Way’s smooth gravitational potential. We will therefore use the leapfrog integrator to
compute the orbits, as suggested in [21]. More details on this will be given in what follows.

Overall, there are four steps on our implementation: simulating the Milky Way; generat-
ing the test particles, by assigning a random initial position and an accordant initial velocity
to each; computing the trajectories, both with the Newtonian force and the STA gravita-
tional force; and comparing the orbits produced by each force. A basic diagram illustrating
the implementation of the code is shown in Figure 3.1.
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Figure 3.1: Diagram showing the structure of the code. There are four steps for the
implementation: simulation of the Milky Way, creation of test particles, computation of
trajectories and comparison of orbits. When creating the particles, positions and velocities
have been assigned. The trajectories are computed using a Newtonian force and the force
derived within STA.

These steps will be explained throughout this section. Should the reader not be interested
in an in-depth (and rather tedious) description of the simulation, they are encouraged to jump
to the discussion of the results in Sect. 3.2.

3.1.1 Simulating the Milky Way

Let us begin with the first step, creating a simplified model of the Milky Way. As was
mentioned, it is the potential of the Galaxy that we are interested in, this will give us the
acceleration of the test particles. Our Milky Way model consists of the following elements: a
black hole, a bulge of stars, a dark matter halo and an axisymmetric disk of stars. The total
potential is thus given by

φMW(R, z) = φbh(r) + φbulge(r) + φdm(r) + φdisk(R, z;Lz). (3.1)

We will now look at each contribution:

• The black hole’s potential is that of a point mass, given by

φbh(r) =
−GMbh

r
, (3.2)

where G is the gravitational constant and M is the total mass.

• The bulge of stars has a potential described by Hernquist’s profile [22] (see Appendix
B.1), yielding

φbulge(r) =
−GMbulge

r + a
, (3.3)

where a is a scale length. This potential leads to rosette-like orbits.

• The dark matter halo can also be characterized by Hernquist’s model, so its potential
is similarly given by Eq. 3.3.

• The disk of stars consists of a thin and a thick part. As [23] suggests, the potential of
a disk at rest is given by

φdisk,0(R, z) = φthick(R, z) + φthin(R, z) =

=
−GMthick

(R2 +
[
athick +

√
z2 + b2thick

]2

)1/2

+
−GMthin

(R2 +
[
athin +

√
z2 + b2thin

]2

)1/2

, (3.4)
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with R2 = x2 + y2. This time the potential is not spherical anymore, and thus one has
to take into account an additional scale width b for the z-axis. However, since we are
dealing with a rotating disk, we need to add a contribution in order to have an effective
potential φdisk(R, z;Lz) [24]. For an angular momentum Lz = Mdiskvtr, the potential
becomes

φdisk(R, z;Lz) = φdisk,0(R, z) +
L2
z

2R2
= φdisk,0(R, z) +

(Mvtr)
2

2R2
, (3.5)

where vt is the tangential velocity of the disk and r is its radius.

The values used to compute the potential are specified in Table 3.1, and have been taken
from [23] and [25]. In order to determine the angular momentum of the disk, we have used
vt = 220 km s−1 and r = 12 kpc.

Body M / M� a / kpc b / kpc

Black hole (Sagittarius A*) 4 ·106 — —
Bulge of stars 4.5 ·109 4 —

Dark matter halo 1012 200 —
Thick disk of stars 3900 ·107 2.6 0.8
Thin disk of stars 3900 ·107 5.3 0.25

Table 3.1: Mass and scale parameter values used for the modelling of the Milky Way, with
masses given in solar mass units and scale parameters given in kpc.

3.1.2 Generating the test particles

Having created the potential, the next step would be to place some test particles in it,
which are characterized by their initial position and velocity.

We start by assigning to each particle a random position (r, θ, φ) in spherical coordinates,
with r ∈ [1, 31] kpc the distance to the center of the Galaxy, θ ∈ [0, π] the inclination angle
and φ ∈ [0, 2π) the azimuthal angle. We chose that particular interval for the distance r
because we want to include orbits that are close to the center, where the effect of the force is
the biggest, as well as some others that are at typical distances. For example, the Sagittarius
dwarf galaxy is lying at a distance of ∼ 24 kpc from the center [26], and the Canis Major
dwarf galaxy is at a distance of 8.0 kpc [27]. In reality the majority of dwarf galaxies lie a
bit further from our Galaxy, but we will see in Sect. 3.2 that the effect of the ~v × ~L term is
the most appealing to us at small distances.

Initial velocities are assigned according to the specific positions of the particles. In or-
der to ensure closed trajectories, the magnitude of the velocity is given by the orbital speed
v0 =

√
GM(r)/r. Then, we assign a random direction in the plane perpendicular to the

position vector.

Now that the Milky way is simulated and the particles have been assigned initial positions
and velocities, we are ready to compute the orbits.
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3.1.3 Orbit integration

The orbits are computed using the leapfrog algorithm [21, 28]. This is a second-order
integrator that allows an accurate integration of orbits, as opposed to the more simple Euler
method, which performs quite poorly in practice. The leapfrog algorithm is based on updating
the positions ~x and velocities ~v of a particle at interleaved timesteps via{

~xn+1 = ~xn + ~vn+1/2 δt

~vn+3/2 = ~vn+1/2 + ~a(~xn+1) δt,
(3.6)

where δt is the interval between each timestep and n = 0, 1, 2, ..., N is the step number.
For a more thorough description of the algorithm and a comparison to the first-order Euler
algorithm, see Appendix B.2.

For our case, we are going to integrate the orbits for a total time of 10Gyr, the estimated
age of our Galaxy [25]. Specifically, we update positions and velocities every δt = 0.05 Myr
for a total of N = 200000 times. These numbers can be modified depending on the precision
we are seeking.

The orbits are computed twice: first using a Newtonian acceleration ~aN and then using
the acceleration produced by the STA gravitational force ~aSTA. For the computation of New-
tonian orbits, we determine the acceleration using that ~aN = − #   »∇φMW, with φMW given by
Eq. 3.1. It is now straightforward to obtain the trajectories by calculating the positions at
each timestep using Eq. 3.6.

For the implementation of the STA force there are some things we must take into ac-
count. While every element in the Milky Way contributes to the ~N term in Eq. 2.80, we see
in Eq. 2.91 that the ~v × ~L term depends on the velocity of the source ~vs. Thus, the only
element contributing to this force term will be the rotating disk, with its tangential velocity
vt. Moreover, we can simplify Eq. 2.91 by noting that both the velocities of the particles —
of order ∼ 105 m s−1 — and the velocity of the disk — we use vt = 220 km s−1 — satisfy
v2 << c2 and v2

s << c2, so we have that γ −→ 1 and γs −→ 1. Therefore, the ~N term is
completely equivalent to the Newtonian force.

Noting that Eq. 2.91 characterizes a proper quantity, the relative acceleration yields

~aSTA = ~aNc
2 + ~v × (− #   »∇φdisk vt ẑ). (3.7)

However, the second term’s contribution is too small to observe its effect on the orbits.
What we do is introduce a parameter ξ that we can adjust in order to increase the effect.
It is convenient to multiply Eq. 3.7 by 1/c2, so we keep the first term equivalent to the
Newtonian force. Thus, what we are implementing in practice is

~aSTA

c2
= ~aN +

ξ

c2
~v × (− #   »∇φdisk vt ẑ). (3.8)

Using the leapfrog algorithm through Eq. 3.6, we once again determine the positions at
each timestep and obtain the orbits that the STA acceleration leads to.
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3.1.4 Comparing the orbits

Figure 3.2 depicts the trajectories of three test particles orbiting around the Milky Way,
where for illustrative purposes we use ξ = 20000 to strengthen the effect of the ~v×~L. In order
to avoid complicated figures, only the last 2.5 Gyr are plotted. Comparing the Newtonian
orbits to the STA orbits, we see that the particle that is closer to the center has a slightly
different angle as seen from above (xy-plane). In fact, this variation is also manifest in the
third column (yz-plane).

Figure 3.2: Last 2.5 Gyr of three test particles orbiting around the Milky Way. Orbits have
been computed using the standard Newtonian force (top panels) and the gravitational force
derived from STA (bottom panels). We have used ξ = 20000 for the computation of the STA
orbits. Plots show the view of the xy-plane (left), the xz-plane (middle) and the yz-plane
(right).

However, it is not so easy to observe the difference between the effect of each gravitational
force at plain sight — there is not much to be said about the other two particles’ orbits. This
requires a careful examination of the difference between final positions, which we can do by
representing the particles in the phase space, as shown in Figure 3.3. For instance, with the
help of the vertical black line, we see that the particle in red — corresponding to the red
orbit in Figure 3.2 — had indeed rotated its orbit, with a shift in the azimuth angle (and a
slight variation in the inclination).
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Figure 3.3: Particles’ positions at the beginning of the simulation (left), and after orbiting
for 10Gyr with a Newtonian acceleration (middle) vs. the STA acceleration (right) with
parameter ξ = 20000.

Thus, a proper analysis of the effect of the ~v × ~L term can be done by measuring ∆φ
and ∆θ for each particle. Regarding their physical interpretation, a shift in the azimuth
angle φ means that the orbits are rotating in the xy-plane — which can be understood as a
precession —, while a shift in the inclination θ might imply an orientation towards a plane —
comparable to the Milky Way’s plane of satellites. This will be elaborated upon throughout
the discussion of the results.

In this example we have used ξ = 20000 in order to be able to observe the rotation of the
orbits in Figure 3.2. As we will see in the next section this is an exceedingly high value, as
it leads to rather chaotic orbits. In the following we will use lower values that still cause a
measurable effect, while trying to keep the orbits stable.

3.2 The effect of the ~v × ~L term

As we saw in Sect. 3.1.4, an adequate analysis of the orbits requires determining the
difference between the final positions that the two forces lead to. For that, we compare the
azimuth angle φ and the inclination θ for each particle, measuring the shifts ∆φ and ∆θ. We
then study their dependence with the distance to the center r.

Before doing this we should, however, think about the choice of ξ in Eq. 3.8. We want
to find a balance between having a big enough contribution so that the effect is measurable,
and having consistent orbits. We assess this by measuring | ~N |/(| ~N |+ |ξ ~v × ~L/c2|) through
time. This coefficient quantifies the contribution of the ~v × ~L term normalized with respect
to the ~N term. In particular, when ξ is too big, this term becomes increasingly important
compared to ~N , meaning that the orbits lose their stability, and the coefficient will eventually
drop. Hence, we are interested in parameters ξ that keep the coefficient stable in time. But
this is not the only criterion we must follow in order to set a limit on ξ.
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Figure 3.4 shows the evolution of | ~N |/(| ~N | + |ξ ~v × ~L/c2|) for different parameters, av-
eraged over 200 test particles. We see that for both ξ = 20000 and ξ = 2000 the coefficient
keeps stable through time. However, the error bars for ξ = 20000 deviate significantly from
the average, meaning that different particles will have very different coefficients and the effect
of the ~v× ~L term will fluctuate a lot. Having consistent orbits thus requires a coefficient that
is both constant in time and has a small variation from the average, such as for the ξ = 2000
case.

Figure 3.4: Evolution of | ~N |/(| ~N |+ |ξ ~v × ~L/c2|) in time, averaged over 200 test particles,
for ξ = 20000 (left) and ξ = 2000 (right). Error bars are shown in light blue.

Let us thus examine the 200 orbits computed with ξ = 2000. The correlation between the
shifts ∆φ and ∆θ and the distance of the particles to the center of the Galaxy r is represented
in Figure 3.5.

Figure 3.5: ∆φ (left) and ∆θ (right) depending on the distance to the center r. Number
of particles: 200. ξ = 2000.
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On the one hand, we see that there is in general — except for the numerical noise at
small distances — no variation in the inclination angle θ, which means that orbits have the
same inclination when computed with the Newtonian acceleration or computed with the STA
acceleration. Therefore, we can conclude that the gravitational force derived from spacetime
algebra does not have a tendency to align orbits, and hence bears no relation to the Milky
Way’s plane of satellites.

On the other hand, the ~v × ~L term does have an effect on the azimuth angle φ. As was
hinted in Sect. 3.1.4, orbits under the influence of this force experience a rotation in the
xy-plane as compared to Newtonian orbits. This effect is significant at lower distances, as
can be seen in Figure 3.5. We can try to fit the data as

∆φ =
αGMvt
r2

, (3.9)

where α is the fitting parameter. For this it is convenient to represent the data in logarithmic
scale, as has been done in Figure 3.6, and fit it linearly as log ∆φ = b + m log r, with
b = log(αGMvt). Hence, we get α from the intercept. Doing this for ξ = 2000 yields
α = (3021± 714).

Figure 3.6: Correlation between ∆φ and r in logarithmic scale. Number of particles: 200.
ξ = 2000. The black line represents the linear fit log ∆φ = b+m log r, where b = log(αGMvt).

In order to further study this effect we can compute the orbits for different parameters ξ
and obtain α. We do this for 500 ≤ ξ ≤ 3000, increasing in steps of 500. A value bigger than
ξ = 3000 gives an effect that fluctuates too much from particle to particle — an example of
this is shown in Figure B.8 for ξ = 3500, where we see that the fit is not sufficiently good,
since there are a lot of particles that deviate from the curve. With this in mind, Figure 3.7
shows the correlation between the fitting parameter α and the STA parameter ξ (see Table
B.1 for the corresponding values, obtained by fitting the data in Figures B.3 – B.7). A linear
fit gives α = (1.4 ± 0.2)ξ + (178 ± 272). Note that if we extrapolate from the linear fit, for
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ξ = 0 we find α(0) = 178± 272. At this point we should see no rotation in the orbits, since
the only term present in the gravitational force is the Newtonian acceleration — this falls
within the margin of error of our fit. Alternatively, we can also force the fit to go through
the origin, obtaining α = (1.50± 0.14)ξ.

Figure 3.7: Correlation between α and the STA parameter ξ. The black line shows a linear
fit, and the dashed line extrapolates the fit to ξ = 0. Additionally, the orange line represents
the linear fit when we force the line to go through the origin.

All things considered, our work fails to give an explanation for the plane of dwarf galaxies
— no significant difference has been found on the inclination angle of the orbits of the test
particles. Nevertheless, the results interestingly reveal that the ~v × ~L term causes orbits
to rotate in the disk plane, with the shift in the angle increasing at small distances. We
believe that this may be related to orbit precession, which Newtonian gravity is not able to
explain properly. This will need to be studied in a more exhaustive investigation of the effect.

In order to get an idea of the magnitude of this effect, it might be interesting to consider
some examples. If we get realistic and consider ξ = 1, which is the case where the Newtonian
and the ~v×~L term have the same weight on the force, we can extrapolate that α(ξ = 1) = 1.50
from the linear fit in Figure 3.7 and using Eq. 3.9 we see that a test particle at a distance
r = 10kpc from the center of the Galaxy would experience a shift of ∆φ = 7 · 10−7 ′′. In
order to see a more meaningful effect we would have to go to small radii — at r = 1ly, for
instance, the effect would be ∆φ = 0.22◦.

3.3 Discussion and further explorations

In this chapter we have discussed the implementation of the gravitational force derived
within the framework of spacetime algebra. Comparing the resulting orbits to the ones in-
tegrated using the standard Newtonian force, we have been able to analyze the effect of the
additional ~v × ~L term and find that it causes orbit precession. However, it is important to

30



be judicious in the interpretation of this effect, given that our data may be influenced by a
number of limitations.

One of our code’s weaknesses concerns the level of precision of the results. The orbits
were integrated using timesteps of δt = 0.05 Myr. Higher precision could have been reached
by taking smaller timesteps; however, that would have required an unreasonably high com-
putation time — integrating the trajectories of 200 particles during 10 Gyr with timesteps
δt = 0.05 Myr took ∼ 72h. This can be dealt with by introducing variable timesteps [29, 30],
which improves the performance of the code by assigning a different timestep to each particle,
depending on their distance to the center of the Galaxy. In this way, most of the computation
time is employed in particles near the center, which require very small timesteps, whereas
more distant orbits can be integrated in less time using big timesteps.

An additional complication arises from forces going to infinity very close to the center of
the Galaxy, leading to numerical divergences. We could overcome this issue with the imple-
mentation of force softening [21, 31], therefore getting more accuracy in our results at small
distances.

We believe that these two numerical tricks will substantially improve the precision of
the integrated trajectories at small distances, diminishing the numerical noise in ∆θ (seen
in Figure 3.5). Thus, these techniques are expected to provide more reliable results. They
remain to be implemented in future analyses.

With our current results we have concluded that the ~v× ~L term of the force makes orbits
precess in the disk plane. Future explorations on the topic should focus on further studying
this precession in order to validate our conclusions. In particular, it would be an interest-
ing idea to test the effect of the force at planetary level, such as in the Solar System, and
see whether our results support Christiansen’s [19] findings regarding Mercury’s orbital pre-
cession within the framework of spacetime algebra. Assuming STA manages to accurately
predict the precession of elliptical orbits, the framework would prove advantageous over the
Newtonian theory of gravity, which does not succeed in giving an appropriate description of
precession.

In conclusion, it is crucial to bear in mind the several limitations of our implementation,
and therefore we should treat the obtained results with the utmost caution. However, the
code has in general an adequate performance, and this first implementation of the STA
gravitational force serves at least as a base for future studies, having given an initial idea of
what the effect of the ~v × ~L term is.
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Chapter 4

Conclusions

Thanks to its simple description of physics, spacetime algebra has lately gained increasing
popularity within the scientific community. In many areas such as crystallography [32] —
with its simple handling of point symmetry groups — or quantum mechanics [33] — where it
provides a geometric interpretation of Pauli and Dirac matrices —, the framework has proven
to substantially simplify physics. What is more, spacetime algebra entails a unified language
for mathematics, since it integrates all methods required to formulate physical concepts.
Nonetheless, to the best of our knowledge the theory has primarily been developed from a
theoretical viewpoint, and its practical implications have not been tested numerically. With
the main purpose of exploring the effects of the gravitational force derived within STA as
an alternative to the standard Newtonian force, in this work we have investigated spacetime
algebra as a tool to describe gravity.

In order to do so, first we have given a fully theoretical approach to the framework,
starting from an introduction to the more general geometric algebra. We have been able to
provide a comprehensive description of some general notions, such as complex numbers or
Lorentz transformations, from mere geometric considerations. The implications of this are
remarkable: we find that many physical concepts are inherently geometrical in nature, which
significantly simplifies physics’ formulation. Having thus built the tools we need, we have
derived a gravitational force within the framework of spacetime algebra, given by Eq. 2.91,
which differs from the Newtonian gravitational force by an additional ~v × ~L term. We have
then implemented the force on a system consisting of 200 randomly generated test particles
orbiting around a simplified model of the Milky Way. Additionally computing the orbits
using a standard Newtonian force, we have finally been able to compare the orbits produced
by each force, which has shed some light on what the extra term in the gravitational force does.

The results from this study point towards the idea that the ~v × ~L term causes orbit
precession. This means that, as opposed to Newtonian gravity, spacetime algebra might
be able to properly describe precession, as general relativity does. However, there are many
nuances to this statement, and a lot of investigation remains to be carried out into this matter.

The present work entails no more than a preliminary exploration of a much more am-
bitious study. The importance of the obtained results lies on having revealed the value of
implementing this alternative force rather than the standard Newtonian force. So far we have
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seen that the idea is feasible and that it is worth examining the precession effect in a more
detailed study. Moreover, the implementation still presents several limitations that need to
be overcome in future stages of the development of the work, such as introducing variable
timesteps or force softening techniques.

In conclusion, spacetime algebra might prove to be a valuable tool to formulate gravity,
as it already is for the description of many branches in physics, like electromagnetism or
quantum mechanics. For this reason, and because it allows an uncomplicated and coordinate-
free formulation of many fundamental notions, we want to restate the educational value of
the framework and its benefits as a unified mathematical language.
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Appendix A

Conserved quantities within
classical field theory

This appendix aims to illustrate how the framework of spacetime algebra simplifies the
derivation of energy and angular momentum conservation. In fact, this is inherent to the
geometric structure of the framework, in classical field theory, as it will be seen, requires a
much longer derivation.

Let us assume a Lagrangian density that depends on the fields φi(x
µ) as follows:

L ≡ L(φi, ∂µφi).

We have a continuous variation in spacetime such that the fields transform as

φi(x
ν)→ φi(x

ν + εν) = φi(x
ν) + εν∂νφi(x

ν) +O(ε2),

where we identify δφi(x
ν) = εν∂νφi(x

ν).

Now we have to look at the variation of the Lagrangian,

δL =
∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ∂µφi =

∂L
∂φi

δφi +
∂L

∂(∂µφi)
∂µδφi. (A.1)

At this point we can use the Euler-Lagrange equations of motion,

∂L
∂φi
− ∂µ

(
∂L

∂(∂µφi)

)
= 0.

Therefore, Eq. A.1 becomes

δL = ∂µ

(
∂L

∂(∂µφi)

)
δφi +

∂L
∂(∂µφi)

∂µδφi = ∂µ

(
∂L

∂(∂µφi)
δφi

)
=

= ∂µ

(
∂L

∂(∂µφi)
εν∂νφi

)
.

(A.2)

On the other hand one can write the variation of the Lagrangian as

δL =
∂L
∂xµ

δxµ =
∂L
∂xµ

δµν ε
ν = ∂µ (Lδµν εν) , (A.3)
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since the delta function and the infinitesimal variation do not change the derivative when
included in it.

It is now a matter of combining Eqs. A.2 and A.3 into

∂µ

([
∂L

∂(∂µφi)
∂νφi − Lδµν

]
εν
)

= 0.

Defining here the energy-momentum tensor Tµν , we find that

∂µ

(
∂L

∂(∂µφi)
∂νφi − Lδµν

)
= ∂µT

µ
ν = 0.

Tµν is thus a conserved current. We just derived that spacetime homogeneity leads to energy
and momentum conservation. Time translations with ν = 0 lead to energy conservations and
space translations with ν = j with j ∈ 1, 2, 3 lead to momentum conservation.

One can also apply a Lorentz transformation to the spacetime coordinates. Expanding
the Lorentz transformation gives Λµν = δµν + ωµν +O(ω2). The fields thus change as

φi(x
µ)→ φi(Λ

µνxν) = φi(x
µ + ωµνxν) = φi(x

µ) + ωµνxν∂µφi(x
µ) +O(ω2),

where ωµν is the infinitesimal Lorentz transformation.

We start by writing the variation of the Lagrangian like before, but this time what we
identify as the field deformation is δφi = ωµνxν∂µφi, so Eq. A.2 will be

δL = ∂σ

(
∂L

∂(∂σφi)
δφi

)
= ∂σ

(
∂L

∂(∂σφi)
ωµνxν∂µφi

)
= ∂σ

(
∂L

∂(∂σφi)

1

2
ωµν (xν∂µφi − xµ∂νφi)

)
,

(A.4)
where we have used that ωµν is antisymmetric. Similarly, Eq. A.3 becomes

δL =
∂L
∂xσ

δxσ =
∂L
∂xσ

1

2
ωµν

(
δσµxν − δσν xµ

)
= ∂σ

(
L1

2
ωµν

(
δσµxν − δσν xµ

))
. (A.5)

Combining Eqs. A.4 and A.5 and manipulating the result a bit yields

∂σ

([
∂L

∂(∂σφi)
∂µφi − Lδσµ

]
xν −

[
∂L

∂(∂σφi)
∂νφi − Lδσν

]
xµ

)
= 0.

Using the definition of Tµν , we get that

Jσµν = T σµ xν − T σν xµ. (A.6)

is a conserved quantity, which is the angular momentum.

We have thus derived the conservations of the energy-momentum and the angular mo-
mentum within classical field theory.
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Appendix B

Numerical implementation

B.1 Hernquist potential

Hernquist’s model [22] is described by the following density profile:

ρ(r) =
M

2π

a

r

1

(r + a)3
, (B.1)

where M is the total mass and a is a scale length. We can find the potential φ(r) by
integrating Poisson’s equation ∇2φ(r) = 4πGρ(r) for Eq. B.1, and for that we can use the
Green’s function of the Laplacian:

φ(r) = −4πG

∫
V

1

4π|~r − ~r′|
ρ(~r′)d3~r′ = −G

∫ 2π

0

∫ π

0

∫ r

0

M

2π

a

r

1

(r + a)3

1

|~r − ~r′|
r2 sin θdθdφdr =

= −GM2a

∫ r

0

r

(r + 1)3

1

|~r − ~r′|
dr.

(B.2)

Solving the integral to get Hernquist’s potential

φ(r) = − GM

r + a
, (B.3)

we can finally obtain the acceleration that such a potential would cause to a test particle
using that ~a = − #   »∇φ, yielding

~a = − GM

(r + a)2

~r

|~r|
. (B.4)

B.2 Leapfrog integrator

An adequate algorithm that integrates the equations of motion of a system, for example
for orbit computation, needs to fill some requirements, depending on the type of simulation
one is running. For example, for long integrations, it is important that the integrator con-
serves quantities of motion such as energy or momentum, given that equations of motion do
satisfy conservation laws and one should find an integrator that resembles reality as much
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as possible. This is the case for the leapfrog integrator, in contrast with the simpler Euler
method. These two integration algorithms will be compared in the following.

Given a position x and a velocity v at time t, we want to generate new coordinates x′ and
v′ at time t+ δt, where δt is the timestep. The goal is to solve Newton’s equations of motion,

v =
dx

dt
(B.5)

and

a(x) =
F (x)

m
=
dv

dt
, (B.6)

which Euler approximates by {
xn+1 = xn + vn δt

vn+1 = vn + a(xn) δt.
(B.7)

This is a first-order integration algorithm. That means the error per step δt will be pro-
portional to O(δt2). Thus, the orbits integrated using the Euler method will considerably
deviate from the actual curve, unless δt −→ 0. However, if we update positions and velocities
at interleaved time-points, {

xn+1 = xn + vn+1/2 δt

vn+3/2 = vn+1/2 + a(xn+1) δt,
(B.8)

we get the leapfrog integrator, which is second-order, so the error is O(δt3).

Figure B.1 compares Euler and leapfrog integrators for different time-steps. As δt −→ 0
the error in the Euler method decreases significantly, and starts to reach the accuracy of the
leapfrog integrator.

Figure B.1: Orbit integration using the Euler method (blue) and the leapfrog method
(green) for different timesteps. From left to right, δt = 0.5, δt = 0.2 and δt = 0.01. We can
see that as δt −→ 0, the error in the Euler method is smaller, and reaches the accuracy of
the leapfrog method.
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Although accuracy is not the only reason why one would choose the leapfrog integrator
over Euler. Time-reversibility is an important feature of the leapfrog algorithm. We want
to make sure that when integrating an orbit, and going from (x, v) to (x′, v′) in a timestep,
we can reverse this by going from (x′,−v′) to (x,−v) in the same time. This means there is
energy conservation, since if there were dissipation, then it would not be reversible in time.

It can be checked numerically that the leapfrog integrator conserves energy, while the
Euler method does not. Figure B.2 shows each integrator’s behaviour if one computes the
energy of an orbit at each time-step. The orbit corresponds to an arbitrary test particle or-
biting around the Milky Way. The leapfrog integrator (in green) fluctuates within the period
of an orbit, but is preserved in time, while in the Euler case (in blue) the particle’s energy
is slowly dissipated, and it is manifest that the energy conservation is lost. This means the
Euler method is not reversible in time.

Figure B.2: Energy fraction as a function of time for the leapfrog method (green) and for
the Euler method (blue).

The leapfrog algorithm is thus preferred over the Euler algorithm, since it does not require
the use of such small timesteps in order to obtain accurate orbits.

B.3 Additional figures

This appendix presents the angle comparisons ∆φ and ∆θ as a function of the distance r
for parameters 500 ≤ ξ ≤ 3500.
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Figure B.3: Correlation between ∆φ and r in logarithmic scale (left) and ∆θ and r (right).
Number of particles: 200. ξ = 500. The black line represents the linear fit log ∆φ = b+m log r,
where b = log(αGMvt).

Figure B.4: Correlation between ∆φ and r in logarithmic scale (left) and ∆θ and r (right).
Number of particles: 200. ξ = 1000. The black line represents the linear fit log ∆φ =
b+m log r, where b = log(αGMvt).

Figure B.5: Correlation between ∆φ and r in logarithmic scale. Number of particles: 200.
ξ = 1500. The black line represents the linear fit log ∆φ = b+m log r, where b = log(αGMvt).
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Figure B.6: Correlation between ∆φ and r in logarithmic scale (left) and ∆θ and r (right).
Number of particles: 200. ξ = 2500. The black line represents the linear fit log ∆φ =
b+m log r, where b = log(αGMvt).

Figure B.7: Correlation between ∆φ and r in logarithmic scale (left) and ∆θ and r (right).
Number of particles: 200. ξ = 3000. The black line represents the linear fit log ∆φ =
b+m log r, where b = log(αGMvt).

Figure B.8: Correlation between ∆φ (left) and ∆θ (right) and the distance to the center
r. Number of particles: 200. ξ = 3500.
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ξ α σα
500 847 200
1000 1556 368
1500 2294 542
2000 3021 714
2500 3478 823
3000 4138 979

Table B.1: Fitting parameter α± σα for each parameter ξ.
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