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Abstract

On-demand single-photon sources at room-temperature are attractive due to their

potential scalability and experimental simplicity compared to their ultracold analogues.

However, their performance is not at the same level. Single-photon sources based on

the DLCZ scheme with an anti-relaxation coated caesium vapour cells require the use

of motional averaging to store collective excitations efficiently. Shaping the driving

light to a squared Top Hat beam with a homogeneous light distribution will increase

the filling factor between the light and the atomic ensemble and speed up the motional

averaging.

In this thesis, we aim to implement a Top Hat beam shaper to a fundamental Gaussian

beam (TEM00). The reshaping is performed using a Diffractive Optical Element which

produces a squared profile with homogeneous power distribution at the focal plane of

a focusing system. Furthermore, a second lens allows for the collimation of the flat

profile along 180 mm under the proper conditions.

This work also includes the characterisation of the new batch of vapour cells created.

The cell characterisation consists of several tests that return the main features of the

vapour cell: its atomic density, the transmission of the light through the cell, and the

relaxation times.

Keywords: Top Hat profile, Beam shaping, motional averaging, cell characterisation.
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1Introduction

‘Light-atomic ensembles’ quantum interfaces have been proven to be a robust tool for

quantum technologies [1–7]. For quantum communication, it is essential to be able

to store (write) and retrieve (read) information efficiently from the quantum system

[3]. Therefore, ultracold atomic ensembles have been considered for their exceptional

performance [3, 5]. However, room-temperature atomic ensembles are easier to work

with and are especially attractive due to their scalability since they do not require

extended cooling devices [3, 5].

Room-temperature atomic ensembles contained in vapour cells are a building block

in the experiments in our laboratories. They have been proven to be very useful in

fields such as magnetometry [1], quantum teleportation [2], quantum memory [4],

single-photon sources [5], and entanglement [7].

Vapour cells are attractive due to their high performance in, for example sensing

technologies or non-classical light sources [8], yet they are a relatively simple system

[3]. Our vapour cells consist of a glass container filled with Caesium atoms. To prevent

the spin decoherence induced by the collisions of the atoms with the walls, the cells

are coated with an anti-relaxation coating. It has been shown in [9] that coated vapour

cells can allow for spin coherences on the order of minutes.

As mentioned before, writing and reading information are crucial for quantum commu-

nication. The ‘write’ process starts after preparing all the atoms in the ground state,

|0⟩. Then, we rely on creating a single collective excitation of the ensemble, which can

be represented by the symmetric Dicke state [6]

|ψD⟩ = 1√
N

∑
j

|1⟩j ⟨0| |00 . . . 0⟩ (1.1)

where j represents the j-th atom, N is the number of atoms, and |0⟩ and |1⟩ are the two

ground states of the atoms. In the ‘write’ process, an atom is excited to a far detuned

excited level |e⟩, which is coupled to the state |1⟩ emitting a photon and projecting the

atomic state into |ΨD⟩ [3].
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(a) ‘Write’ process of a collective excita-
tion.

(b) Visual representation of the motional averaging
process.

Figure 1.1.: In (a) ‘Write’ process of a collective excitation. The excitation |0⟩ → |e⟩ is far
detuned ∆. In (b) Atoms bouncing inside a cell shined by a Gaussian laser (red
spot). The black dots represent other single atoms. The coupling of the atom with
the light is represented by gi(t)
Pictures extracted from [8].

The problem with room-temperature atomic ensembles is the intrinsic motion of the

atoms. In an experimental setup, lasers have a thinner width than the ensemble

volume. The movement of the atoms with the inhomogeneous distribution of light of a

Gaussian beam causes an uneven light-atom interaction, which leads to an asymmetric

state [3]. But, as the cell walls are anti-relaxation coated, the atoms bounce into

the wall without losing their atomic state. After bouncing, they may cross the beam

(again). After a long enough time, all the atoms would have experienced the same

interaction with the light [3]. We refer to this effect as motional averaging.

In the proposal of ‘scalable quantum interfaces based on motional averaging in room-

temperature ensembles’, made by [3] and explored, e.g. in [8, 10] the following

experimental setup is proposed. A Caesium atomic ensemble is contained in an anti-

relaxation coated microcell of 2L × 2L × Lz with 2L = 0.3 mm and Lz = 10 mm. To

enhance the interaction with light, the cell is placed in a single-sided optical cavity

referred to as ‘cell-cavity’. In addition, an external filter cavity is placed to separate the

emitted quantum photon from the classical light of the beam. A ‘written’ excitation

can afterwards be read out during the read-out process by driving a pulse in |1⟩ → |e⟩
transition such that the excitation is converted into a photon in the transition |e⟩ → |0⟩.

2 Chapter 1 Introduction



Figure 1.2.: Schematic of the setup described in Borregaard, Zugenmaier, Petersen, Shen,
Vasilakis, Jensen, Polzik, and Sørensen. κ1 and κ2 are the cell-cavity and the filter
cavity decay rates, respectively. â(t) described the field in the detector.
Figure extracted from [10].

The efficiency of the ‘write’ process can be written as [3]

ηW =
[
1 + k2

2Γ + k2

(
4L2

πw2 − 1
)]−1

(1.2)

Where k2 and Γ are the decay rates of the filter cavity and the excited photon and

atomic position correlations [3]. The term
πw2

4L2 describes the beam cross-section and

channel size ratio. It is often referred to as the filling factor. This equation shows that

ηW → 1 when
k2

Γ → 0 and when
4L2

πw2 → 1 where w is half the waist of the beam. That

is, the writing efficiency improves with the duration of the effective interaction time

and when the beam covers more area of the cell area [3].

As shown in Figure 1.3, the output of the cell-cavity is formed by two different spectral

components [8]:

1. A narrowband component associated to the long coherent interaction of the

atoms with the beam (symmetric collective excitations).

2. A broadband component associated to incoherent asymmetric contributions.

In [8], Dideriksen pointed out some possible improvements to the described setup:

• The main limiting factor in the coherence time are the collisions with the cell’s

wall. Therefore, a bigger cross-section would increase the time between collisions,

which would increase the coherence time of the spin state.

• The utilisation of a Top Hat (TH) profile. The uniformity of a TH profile would

increase the effective filling factor speeding up the motional averaging.

• The removal of the cell cavity. The cell cavity limits the overall efficiency. Addi-

tionally, the TH configuration and the cell cavity are not compatible.
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Figure 1.3.: Power spectral density (PSD) of the writing process. It consists of a narrowband
associated with the symmetric collective excitations, and a broadband associated
with incoherent asymmetric contributions due to insufficient motional averaging
[5].
Figure extracted from [8].

Hence, for the future incarnation of this experiment, we chose to implement a new

larger cell combined with a TH beam profile. A larger optical depth will enhance the

light-atom interaction. These proposals guided the development of this thesis.

My work
This thesis will discuss the characterisation of new fabricated cells that fit our specifica-

tions. Characterising the features of new vapour cells is an essential requirement. The

techniques used are well known in the lab. Taking advantage of the visit of the Assoc.

Prof. Mikhail Balabas of Saint-Petersburg State University, the producer of our Caesium

anti-relaxation coated vapour cells, we requested different kinds of cells fitting all the

experiments in our lab. The characterisation of all these cells is covered in Part I.

Part II will cover the implementation of the Top Hat profile using a diffractive beam

shaper. First, it will cover the creation of a squared flat profile from a fundamental

Gaussian mode, its proper alignment, and an exhaustive analysis to determine its size,

main intensity, and quality. Afterwards, an introduction to the collimation of the TH

profile will be given. The Top Hat implementation was the central part of my project,

where I spent most of the time during the thesis.

At the end of the thesis, some concluding statements and future prospects will be

stated.

4 Chapter 1 Introduction
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2Theoretical background

This chapter will introduce the theoretical background necessary to understand the

cell characterisation.

First, the atomic properties of Caesium will be explained in section 2.1. Then, the

interaction with light with an atomic ensemble and its dynamics equations are intro-

duced in section 2.2. The following sections describe the theoretical background used

to characterise the cells. Namely, the atomic density in section 2.3, the Faraday effect

in section 2.4 and the magneto-optical resonance in section 2.5. Finally, spin relaxation

times are introduced in section 2.6.

2.1 Caesium atom
In the experimental setups, we use caesium vapour cells as atomic ensembles. In this

section, we shall introduce the caesium atom.

The caesium atom (Cs) is an alkali element with only one valence electron. Its only

stable isotope is 133Cs with a nuclear spin of I = 7/2. Caesium’s electronic configuration

can be written as [Xe] 6s1, which means its only valence electron occupies the 62S1/2

orbital. This energy level is described with the spectroscopic notation n2S+1LJ, where

n is the principal quantum number, L is the orbital angular momentum (S → L = 0),
J is the total electronic angular momentum, S is the electron spin, and 2S + 1 denotes

the multiplicity. J is described by J = L ± S. The electron spin of Cs’ only valence

electron is S = 1/2.

The ground state of the Cs splits into two hyperfine manifolds characterised by the

quantum number F = I ± J, which is the total angular momentum. This leads to F = 3
and F = 4.

Our experiments work only with transitions to the first excited states 62P1/2 and

62P3/2 (L = 1). The transition 62S1/2 → 62P1/2 is referred to as D1 with a wavelength

of λ = 895 nm. The one from 62S1/2 → 62P3/2 is referred to as D2 with a wavelength

of λ = 852 nm. Similar to the ground state, both excited states split into hyperfine

levels. Two (F = {3, 4}) for 62P1/2 and four (F = {2, 3, 4, 5}) for 62P3/2.

Each hyperfine level has |2F + 1| magnetic sublevels, and its degeneracy is lifted when

applying a magnetic field. This effect is called Zeeman splitting. These sublevels are

6



characterised by the magnetic quantum number mF = {−F,−F + 1, ..., F − 1, F}. mF

describes the projection onto the field’s orientation with magnitude B. The energy

shift of these sublevels is given in [11] by

∆EB = µBgFmFB (2.1)

Where µB is the Bohr magneton, and gF is the Landé g-factor. For low magnetic field,

the Zeeman effect splits the hyperfine manifolds into equidistant sublevels. At room

temperature, the Cs atoms are equally distributed in the magnetic sublevels. The

magnetic sub-levels can be represented in the Dirac notation as |F,mF ⟩.

Figure 2.1.: Caesium level structure for the ground state and the two first excited states,
including hyperfine and Zeeman splitting. Data taken from [12]. Figure adapted
from [8].

2.1.1 Atomic spin operators
As we will see later in section 4.5, in our experiments, we work with atomic ensembles

of ∼ 107 − 1010 atoms, which makes it difficult to keep track of their dynamics.

Hence, we will define some collective operators to describe the collective properties

of the atomic ensemble. In literature, J is usually used to describe the total angular

momentum of the ensemble (collective spin) [13]. But, as we use it to describe the

2.1 Caesium atom 7



orbital angular momentum, we will use Ĵ . With this new notation in mind, the

collective spin can be defined as

Ĵ =
Na∑
i=1

Fi (2.2)

WhereNa is the number of atoms in the ensemble and Fi is the total angular momentum

of the i-th single atom. This total momentum has projections operators in the three

Cartesian axis, Ĵx, Ĵy and Ĵz [14]. These operators satisfy the commutation relations

[
Ĵj, Ĵk

]
= ϵjkliĴl (2.3)

and the Heisenberg uncertainty principle [15]

Var
(
Ĵy

)
Var

(
Ĵz

)
≥ Ĵ 2

x

4 (2.4)

In the case all the atoms are oriented in one direction creating a coherent spin state,

CSS, (e.g. all the atoms in the F = 4 are in the Zeeman sublevel mF = 4), we can treat

the collective spin in that direction as a macroscopic spin with a classical number. Since

we define our quantisation axis to be the x- axis, Ĵx → Jx. In this case, Equation 2.4

will be equalised. When

Var
(
Ĵy

)
= Var

(
Ĵz

)
= Sx

2 → Var
(
Ĵy

)
Var

(
Ĵz

)
= S2

x

4 (2.5)

we call the atomic noise to be at the fundamental projection noise level.

2.2 Light-Atom interaction
In order to describe light-atom interaction, we need to have a formalism to describe

light section 2.2.1 and atoms section 2.2.2, in order to develop a notation for the

combined system section 2.2.3.

2.2.1 Polarisation states of light
The experiments in our lab involve light interacting with atomic ensembles. To describe

the polarisation states of light, we use the Stokes operators [16]. For light propagating

along the z-direction

Ŝx = 1
2 (n̂x − n̂y) (2.6)

Ŝy = 1
2 (n̂+45° − n̂−45°) (2.7)

Ŝz = 1
2
(
n̂σ+ − n̂σ−

)
(2.8)
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Where the operator n̂i indicates the number of photons in a certain direction i. With

these operators it can also be defined the photon flux operator as

ϕ̂(z, t) = n̂x + n̂y = n̂+45° + n̂−45° = n̂σ+ + n̂σ− (2.9)

These operators count the number of photons in a beam. The flux operator com-

mutes with the other Stokes operators. The Stokes operators satisfy the following

commutation and uncertainty relations [14]

[
Ŝj, Ŝk

]
= ϵjkliŜl (2.10)

Var
(
Ŝy

)
Var

(
Ŝz

)
≥ Ŝ2

x

4 (2.11)

If we assume all the photons in our light pulse to be x-polarised, then any photon

would be y-polarised (vacuum state), and Equation 2.11 will be equalised. As all the

photons are polarised along the x-direction, we can do the substitution Ŝx → Sx. When

Var
(
Ŝy

)
= Var

(
Ŝz

)
= Sx

2 → Var
(
Ŝy

)
Var

(
Ŝz

)
= S2

x

4 (2.12)

we call the light to be at shot-noise level.

2.2.2 Interaction Hamiltonian
To describe the dynamics of the atoms, we have first to describe the interaction of

the atomic ensemble with light. This interaction is detailed in the effective interaction
Hamiltonian, Ĥeff

I . This Hamiltonian has been thoroughly derived by Julsgard in [13],

so we will just briefly depict it.

The effective interaction Hamiltonian describing the interaction of an ensemble in the

6S1/2, F = 4 ground stated with a light far detuned from the D2-line propagating along

the z-axis, can be expressed as [13]

Ĥeff
int = − h̄cγ

4A∆
λ2

2π

∫ L

0

(
a0 · ϕ̂(z, t) + a1 · Ŝz(z, t)F̂z(z, t)

+a2
[
ϕ̂(z, t)F̂ 2

z (z, t) − Ŝ−(z, t)F̂ 2
+(z, t) − Ŝ+(z, t)F̂ 2

−(z, t)
])
ρAdz (2.13)

Where γ is the decay rate (Full width half maximum, FWHM, of the 6P3/2 excited

state) and can be expressed as γ = 2π · 5.21 MHz, λ is the wavelength of the light,

∆ the detuning of the light, A is the cross-section of the atomic ensemble and ρ is

the atomic density. a0, a1 and a2 are dimensionless parameters that depend on the
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detuning. For F = 4 is the light is far blue-detuned a0 → 4, a1 → 1 and a2 → 0.

Where Ŝj are the Stokes operators with dimension m−1 and F̂j are the total angular

momentum operators that are dimensionless. j represents the projection direction in

the Cartesian axis x, y or z. ’+’ and ’−’ represent the vector on circular basis, which

may be expressed as, in the case of the Stokes vector,

Ŝ+ = Ŝx + iŜy (2.14)

Ŝ− = Ŝx − iŜy (2.15)

These operators, obey the following commutation relations [14]

[
Ŝj(z, t), Ŝk (z′, t)

]
= ϵjklδ (z − z′) iŜl(z, t) (2.16)[

F̂j(z, t), F̂k (z′, t)
]

= ϵjkl
1
ρA

δ (z − z′) iF̂l(z, t) (2.17)

In the Hamiltonian in Equation 2.13, the first term describes a Stark shift[1] proportional

to the photon flux. The second term rotates around the z-axis the Stokes vector Ŝ and

the spin vector F̂ (total angular momentum of a single atom). The last term describes

high-order light-atom interaction [13].

Under these conditions, the Hamiltonian can be reduced to

Ĥeff
int = − h̄cγ

4A∆
λ2

2π

∫ L

0

[
a0 · ϕ̂(z, t) + a1 · Ŝz(z, t)F̂z(z, t)

]
dz (2.18)

2.2.3 Equations of motion
To obtain the dynamics of our system, we want the equations of motion of the spin

operators F̂ and the Stokes operators Ŝ.

The equations of motion of the spin operators can be obtained by solving the Heisenberg
equation [15]

∂F̂(z, t)
∂t

= − i

h̄

[
F̂(z, t), Ĥeff

I

]
(2.19)

1. The Stark shift is a shift in the energy levels produced by a perturbing radiation[11] (e.g. the incident
light to the atomic ensemble).
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which leads to

∂F̂x(z, t)
∂t

= a1
cγλ2

16πA∆ Ŝz(z, t)F̂y(z, t) (2.20)

∂F̂y(z, t)
∂t

= −a1
cγλ2

16πA∆ Ŝz(z, t)F̂x(z, t) (2.21)

∂F̂z(z, t)
∂t

= 0 (2.22)

For commodity, we will define C = −a1(cγλ2)/(16πA∆). From this equation, it can be

seen that the z component is constant, and the spin will suffer a rotation on the x− y

plane proportional to the Stokes operator Ŝz. Now we redefine the collective spin in

each direction as

Jj =
∫ L

0
F̂j (z, t) ρAdz (2.23)

for j = x, y, z. If we consider the incident light linear polarised in one axis, e.g. x-axis,

the Stokes and the spin operators in the x will not vary much from this situation. In this

case, we can substitute the operators for macroscopic quantities (Ŝx → Sx , Ĵx → Jx)

[17].

Then, the motion equations for the collective spin are reduced to

∂Ĵy(z, t)
∂t

= CŜz(z, t)Jx(z, t) (2.24)

∂Ĵz(z, t)
∂t

= 0 (2.25)

For the Stokes operators, we can rewrite the Heisenberg equation as [14]

(
∂

∂t
+ c

∂

∂z

)
Ŝ(z, t) = − i

h̄

[
Ŝ(z, t), Ĥeff

I

]
(2.26)

To simplify these equations, we will neglect the retardation effects of
∂

∂t
by taking

c → ∞ [17]. This leaves us with the following motion equations

∂Ŝx(z, t)
∂z

= a1
γλ2ρ

16π∆ Ŝy(z, t)Ĵz(z, t) (2.27)

∂Ŝy(z, t)
∂z

= −a1
γλ2ρ

16π∆ Ŝx(z, t)Ĵz(z, t) (2.28)

∂Ŝz(z, t)
∂z

= 0 (2.29)
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To solve this equation, we will define the input/output operators, which describe the

state of the Stoke operator before crossing the atomic ensemble and after respectively

[14]

cŜi (0, t) ≡ Ŝ in
i (2.30)

cŜi (L, t) ≡ Ŝout
i (2.31)

This new operators have the dimension s−1. From the equations of motion we see that

the z is constant so the input and the output will be the same. The coupled differential

equations for the x and y component can be solved as [14]

Ŝout
x (t) = Ŝin

x (t) cos 2θF − Ŝin
y (t) sin 2θF (2.32)

Ŝout
y (t) = Ŝ in

y (t) cos 2θF + Ŝin
x (t) sin 2θF (2.33)

Ŝout
z (t) = Ŝ in

z (t) (2.34)

Where we see that the Stokes operators suffer rotated along the propagation axis of

the light (i.e. z-axis) with an angle

θF = −a1
γλ2ρL

32π∆ ⟨Ĵz(z, t)⟩ (2.35)

Now, if we make the same assumption that before and consider the light to be linearly

polarised along the x-axis and the collective spins, we can reduce the equations of

motion to

∂Ĵy(t)
∂t

= CŜ in
z (t)Jx(z, t) (2.36)

∂Ĵz(t)
∂t

= 0 (2.37)

Ŝout
y (t) = Ŝ in

y (t) + CSxĴx(t) (2.38)

Ŝout
z (t) = Ŝ in

z (t) (2.39)

2.2.4 Rotation Frame
If we apply a homogeneous magnetic field B along the x-direction (could be any

direction), the energy levels will split into the Zeeman magnetic sublevels and cause

the so-called Larmor precession. The Larmor precession describes a spin precession

along the direction of the magnetic field with frequency Ω (Larmor frequency).
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The magnetic field contribution to the Hamiltonian is

ĤB = h̄ΩĴx (2.40)

Thus, defining a new set of coordinates [13]

Ĵ ′
y(t) = +Ĵy(t) cos(Ωt) + Ĵz(t) sin(Ωt), (2.41)

Ĵ ′
z(t) = −Ĵy(t) sin(Ωt) + Ĵz(t) cos(Ωt) (2.42)

The equations of motion can be rewritten as

Ŝout
y (t) = Ŝ in

y (t) + aSx

(
Ĵ ′

y(t) sin(Ωt) + Ĵ ′
z(t) cos(Ωt)

)
(2.43)

Ŝout
z (t) = Ŝ in

z (t) (2.44)
∂

∂t
Ĵ ′

y(t) = aJxŜ
in
z (t) cos(Ωt) (2.45)

∂

∂t
Ĵ ′

z(t) = aJxŜ
in
z (t) sin(Ωt) (2.46)

2.3 Atomic density
The atomic density in a cell can be estimated by Beer’s law which relates the attenuation

of linearly polarised light with the properties of the material through which the light is

travelling [18] as

Iν (x) = I0e
−ρσ(ν)x (2.47)

Where x denotes the distance that the light crossed the absorptive medium, ρ is the

density of the atom and σ(ν) is the absorption cross-section. Rearranging Equation 2.47

and integrating over the frequency ν leads to [17],

ρ =
−
∫ Iν(L)

I0
dν

L
∫
σ(ν)dν (2.48)

Where L is the length of the cell. The integral of the cross-section over all frequencies

gives [19] ∫
σ(ν)dν = πrecf (2.49)

Where re is the classical electron radius, c is the speed of light, and f is the oscillator

strength. Combining Equation 2.49 to Equation 2.48, we find,

ρ =
−
∫ Iν(L)

I0
dν

Lπrecf
(2.50)
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2.4 Faraday effect
When linear polarised light passes through matter in a longitudinal magnetic field, it

experiences a rotation on its polarisation. That effect is known as the Faraday effect
[20].

Linear polarised (π polarised) light can be decomposed as the sum of two circular

polarised light with the same amplitude but with opposite rotation, clockwise (σ+

polarised) and anti-clockwise (σ− polarised). A wave with σ+ polarisation couples a

ground state to an excited state sublevel of magnetic number +1 or ∆mF = 1 [2]. On

the other hand, for a wave with σ− polarisation, the coupling is with ∆mF = −1. Thus,

these two waves propagate in media with two different refractive indices, n+ and n−

[21]. After crossing a media of length L, both waves recombine in a π polarised wave

rotated by the angle [20, 21]:

θF = πL

λ

(
n+ − n−

)
(2.51)

where λ is the optical wavelength. This is the so-called Faraday angle. As seen in

section 2.2, θF ∝ ⟨Ji⟩ where i is the direction of the magnetic field.

Figure 2.2.: Graphic representation of the Faraday effect. In the image, the matter under the
longitudinal field is represented by the blue cylinder.
Picture extracted from [22].

2. Here ∆mF denotes the increment of the magnetic quantum number in a transition between two
states, e.g. 6S1/2 |F = 4, mF = 3⟩ → 6P1/2 |F ′ = 4, mF ′ = 4⟩
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2.5 Characterisation of the spin state
In the experiments in our lab, we usually require the atomic ensemble to be prepared

in a coherent spin state. To study this state, magneto-optical resonance spectroscopy
(MORS) is used [23]. But to reduce the decoherence induced by the continuous

application of pumping light, MORS is used in a pulsed regime [10].

In MORS, atoms are optically pumped along a static magnetic field, B0, on the x-axis,

whereas they are also subjected to an RF-field, BRF, on the z-axis resonant to the

atomic level splitting to modulate the transverse spin components Jy and Jz. Finally,

the output signal is used to obtain the final MORS signal by doing a fast Fourier
transformation, either manually or with a lock-in amplifier.

Following [17], the total macroscopic angular momentum of the atoms can be written

as

Ĵx = N
∑
mF

mF σ̂mF ,mF
(2.52)

Ĵy = Re

N F −1∑
mF =−F

C(F,mF )σ̂mF +1,mF

 (2.53)

Ĵz = Im

N F −1∑
mF =−F

C(F,mF )σ̂mF +1,mF

 (2.54)

where C(F,mF ) =
√
F (F + 1) −mF (mF + 1) and σ̂i,j = 1

N

∑N
k=1 |i⟩k ⟨j|k are the den-

sity operators with i, j = −F,f +1, ..., F and |i⟩ and |j⟩ are the Zeeman magnetic

sublevels in Dirac notation. We can write the Hamiltonian with the second-order cor-

rection of spins subjected to a static magnetic field B0 in the x-direction and RF-field

BRF cos (wt+ ϕ) in the z-direction [23], as

Ĥ =
F∑

mF =−F

h̄ωmF
σ̂mF ,mF

+ gFµB

4

F −1∑
mF =−F

(
C(F,mF )σ̂mF +1,mF

BRFe−iωt + h.c.
)

(2.55)

Where the first term is the DC contribution and the second the RF. Considering all the

atoms pumped to the |4, 4⟩ state, we only care about the decay to mF = 3. Then, the

equations of motion can be obtained by solving the Heisenberg equation considering

the decay terms [17]. In the pulse regime, considering that the spins are highly

oriented to the x-axis and hardly deviate (Ĵx > Ĵy, Ĵz), the solution of the motion

equation is [23]:

σ̃43(t) = σ̃43(0)e(i∆−Γ/2)t − iχ
i∆ − Γ/2 × [σ̂44 − σ̂33]

(
1 − e(i∆−Γ/2)t

)
(2.56)
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Where ∆ = ω − ω43, χ = gFµBBRFC(F, 3)/4h̄, we introduced the slowly varying

operators σ̃ = σ̂eiωt, and Γ is the decay rate. For two neighbouring Zeeman sublevels,

we have the Lorentzian response of a two-level atom, so the decay rate is equal to the

line width with Γ = FWHM = (πT2)−1 [13].

This method can be used to compute all the density operators σ̂mF +1,mF
(t) and thus,

Ĵz. Then, the outcoming signal might be expressed as the photocurrent [17]:

i(t) = α⟨Ĵz⟩ = α · [A(t)] (2.57)

Where A(t) is the mean value of the expression in square brackets in Equation 2.54.

Inserting the photocurrent i(t) in a lock-in amplifier, the magneto-optical resonance

signal is experimentally recorded as

MORS(ω) = α2 |A(t)|2 (2.58)

The final spectrum has eight peaks with different heights, corresponding to each

mF + 1 → mF transition.

Atomic orientation
The orientation parameter p represents the projection of the spin and is defined as

p = 1
F

F∑
mF =−F

mF ⟨σ̂mF ,mF
⟩ (2.59)

The parameter will be p = 1 if we have all the spins in the state mF = 4 and p = 0 if

the atomic ensemble is completely unpolarised.

2.6 Spin relaxation times
Usually, in the experiments carried out in our lab, we do not pump the atoms to the

|4, 4⟩ state continuously. Therefore, we need to characterise the lifetime of the spins of

our atoms.

T1 describes the lifetime of the longitudinal spin component Jx; we refer to it as

depopulation time. T2 represents the lifetime of the transverse components Ĵy and Ĵz;

we refer to it as decoherence time. Assuming an exponential decay, we have [17],

Jx (t) = Jx (0) e−t/T1 (2.60)
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We can define T2 equivalently for the transverse decay. We discuss how to obtain T1 in

section 4.3 and T2 in section 2.5.

2.6.1 Relation between T1 and T2
In a two-level system, we can relate the excited population decay Γ with the decoher-

ence decay γ⊥ with [24],

γ⊥ = Γ
2 + γc (2.61)

where γc models inhomogeneous decoherence decay effects such us fluctuations on

the magnetic field. From [13] and [25] we know that:

γ⊥ = (πT2)−1 (2.62)

Γ = (πT1)−1 (2.63)

Adding this rate to the previous equation leads to the following relation:

T2 = 2 T1

1 + πγcT1
(2.64)

which means that

T2 ≤ 2 T1 (2.65)

Where T2 = 2 T1 is absence of inhomogeneous decoherence decay effects.
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3Cells and Experimental setup

This chapter will present an overview of the experimental setup used to characterise

the vapour cells. Most of the parts covered existed before for other experiments in our

lab. In the following chapters, it will be explained how all these elements and methods

were used. We will describe the Cs vapour cell in section 3.1, the homogenisation of the

magnetic field and the magnetic shield in section 3.2, the optical pumping technique to

prepare the CSS 6S1/2 |F = 4,mF = 4⟩ in section 3.3 and the lasers used with a general

picture of the whole experimental setup in section 3.4.

3.1 Vapour cells
The crucial part of the experiments in our lab is the vapour cell. It consists of a

cylindrical glass container that contains the Cs ensemble. Each cell has a stem attached

to the main body, where a droplet of solid Cs is stored. The whole cell is covered with

an anti-relaxation coating called paraffin. This coating allows atoms to collide with the

wall without depolarising. That effect allows a longer CSS. For a high transmission,

both windows have both sides coated with an anti-reflection (AR) coating. The AR-

coating windows have a 99.5% of transmission[3]. A scheme of the cell can be seen in

Figure 3.1.

All cells have a channel inside the main volume. The length and the size of the cross-

section of the channel are carefully chosen. Larger optical depth leads to stronger

light-atom interaction [10]. However, large channels lead to more complex beam-

channel alignments. Improper alignment might cause scattering and clipping losses.

Therefore, the election of length and cross-section is a trade-off.

The new generation of cells had cells with different sizes and lengths of the channel

matching the specification of each group (the exact dimensions are shown in Table 4.1).

For bigger cross-sections, the channel consists of a small tube clamped to the windows,

whereas for the cell that requires a microchannel, a prefabricated chip[4] had to be

used.

Due to the vacuum in the cell, the solid Cs evaporates and fills the entire volume. A

microhole connects the channel to the volume to allow atoms to pass. The hole size

3. Confirmed via measurement by Jun Jia
4. Chips were produced by VitroCom Inc.
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must be small enough that the transfer of atoms in and out of the tube is negligible

for experimental time scales. This allows us to assume that the atomic density in

the channel is constant during the experiments. Moreover, it also allows the vapour

pressure to adjust when we increase the temperature. The microhole is done by

scratching one of the surfaces of the chip or the channel that is attached to the window.

Figure 3.1.: Scheme of a microcell. The red line represents the AR-coating, whereas the yellow
represents the paraffin. This figure was adapted from [26]

All the cells were manufactured by our collaborator, the Assoc. Prof. Mikhail Balabas

of Saint-Petersburg State University.

3.2 Homogenisation of the magnetic field
When characterising the cells, we rely on producing homogeneous magnetic fields to

split the energy levels into the Zeeman magnetic sublevels. However, fluctuations over

time and inhomogeneity over the volume in the magnetic field will lead to fluctuations

in the Zeeman splitting, which will introduce coherence relaxation [10]. Therefore, the

relaxation times are limited by the decoherence induced by magnetic field fluctuations,

especially T2. For this reason, the cells are tested inside a magnetic shield. Inside

the shield, a coil frame produces a homogeneous magnetic field. In the following

subsections, both structures will be explained more in detail.

3.2.1 Magnetic shield
The magnetic shield consists of a cylindrical layer of iron and three layers of a µ-metal,

a high-permeability alloy (see Figure 3.2). These layers are used to reduce the external

magnetic fields progressively. The constant Earth magnetic field or the magnetic field

the power-line would create are some examples of fields that can interfere with our

experiments. The shield has six holes (two on every axis) to allow the laser beams to

pass. Inside the shield, the coil frame creates the inner magnetic field and a plastic
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holder for the cell. The holder itself is placed on a stage outside the shield that allows

the alignment of the laser beam with the cell channel by lifting, lowering and rotating

the cell.

Figure 3.2.: Magnetic shield used in the cell testing. It consists of three layers of µ-metal and
one layer of iron.

3.2.2 Coil frame and magnetic field
Our coil frame consists of a 3D printed rectangular frame with four pairs of cylindrical

coils. To create a homogeneous magnetic field, we measured the field created by

each pair of coils alone with a USB magnetometer[5] to then calculate an appropriate

intensity ratio to compensate the curvature of the fields to improve the magnetic

field homogeneity. Unfortunately, two of the pairs of coils broke. We would have to

disassemble all the coils to repair them, so we proceeded with only two pairs. The

second most inner pair generated a main magnetic field (see Figure 3.3 (a) orange

line marked as ‘2’) while the most inner generated a compensation magnetic field

(see Figure 3.3 (a) green line marked as ‘1’). The compensation field was created by

applying the current in the opposite direction to the compensation coils. We focused

on homogenising the range of 10 cm where the cell would be placed. The current ratio

was 1 : −0.58 (the negative marks the opposite direction of the current).

We will define the axis where the magnetic field is created as the quantisation axis x.

5. BNO055 USB-STICK
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(a) Coil frame. (b) Total (Main + compensation) magnetic field.

Figure 3.3.: Coil frame used for the cell testing. The orange line marked as ‘2’ indicates the
main coils, while the green line marked as ‘1’ indicates the compensation coils,
which have a ratio 1:-0.58 in intensity. In Figure 3.3 (b), we can see the magnetic
field. Right before the position 150 mm, we have a bump due to a re-calibration
of the magnetometer. In the cell range, [105, 205] mm, the STD of the magnetic
field is 3.5 µT, a 1.2% normalised to the mean.

3.3 Optical pumping
For many of our experiments, we use the magnetic sublevel 6S1/2 |4, 4⟩ as one of the

ground-states levels. Therefore, to prepare the initial state, we want to put all our

atoms in the magnetic sublevel mF = 4. This leads to a spin polarisation along the

direction of the magnetic field that we assigned as the x-axis in the previous section.

The x-component of the macroscopic collective spin is then represented as Jx.

At room temperature, atoms are equally distributed in all the Zeeman sublevels of the

hyperfine manifolds F = 3 and F = 4. Therefore we use two lasers to prepare the |4, 4⟩
state. When atoms interact with near-resonant optical fields, transitions occur. We use

these transitions to transfer all the atoms. These transitions are limited by the selection
rules. These rules arise from the conservation of energy and momentum. Energy is

conserved by matching the wavelength of the laser with the energy difference between

the two levels in the transition. From the conservation of the momentum, we get a

group of constraints on the difference of the quantum numbers between the two levels

in the transition [11].

∆L = ±1 (3.1)

∆S = 0 (3.2)

∆J = 0,±1 (3.3)

∆F = 0,±1 (3.4)

∆mF = depends on the polarisation of the light (3.5)
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We want to drive the atoms to the |4, 4⟩ state. Therefore, we use right-handed circularly

polarised light, σ+, with an ∆mF = +1. The atom can decay with spontaneous emission

with ∆mF = ±1, 0. That means that the quantum number mF never decreases and,

on average, increases. If an atom reaches mF = 4, it will not couple to the light since

the selection rules don’t allow any transition. At this point, the atoms will not move

further. We call this state a dark state. This is called optical pumping. Occasionally,

atoms may decay to the hyperfine level F = 3. In that case, we need to repump the

atoms to the F = 4 state. Both optical pumping and repumping are schematically

shown in Figure 3.4.

In our experiment, we pump with a laser tuned to the F = 4 → F ′ = 4 transition of the

D1-line ( 6S1/2 → 6P1/2). And we repump with a laser tuned to the F = 3 → F ′ = 2, 3
crossover transition of the D2-line ( 6S1/2 → 6P3/2).

Figure 3.4.: Representation of the optical pumping (orange arrows) and repumping (red
arrows) in the Cs’ level structure. The crossed orange arrow marks the dark state
|4, 4⟩ where are remain.

3.4 Experimental setup
For both absorption and T1 measurements, only laser beams propagating along the

cell channel are required. All the lasers we used went through the cell in the same

direction. As discussed in the previous section, to pump the atoms to the |4, 4⟩ state,

we used a laser with a wavelength of λ = 895 nm (D1 line). The laser is a TOPTICA

External Cavity Diode Lasers (ECDL)[6]. To repump the atoms from the F = 3 manifold,

we used a laser tune to λ = 852 nm (D2 line). The laser is a TOPTICA ECDL[7]. To read

6. TOPTICA DL 100 diode laser
7. TOPTICA DL 100 diode laser

22 Chapter 3 Cells and Experimental setup



out the state of the atoms, we used a third laser called probe. The probe laser is a

TOPTICA ECDL[8], and it is blue detuned ∆ ∼ 2 GHz with an Electro-Optical Modulator
(EOM) from the croosover transition F = 4 → F ′ = 4, 5 of the D2-line (λ = 852 nm).

The lasers are locked using Doppler-free spectroscopy [8, 10].

To optimise the optical pumping, we ensured that the polarisation of both lasers was

circular using a half-wave plate (HWP) and a quarter-wave plate (QWP). For the probe,

we wanted linear polarisation obtained with a HWP and a QWP. All three lasers were

later overlapped with beam splitters (BS). Then, the lasers cross the cell through the

channel, and we read out its response with a detector.

For the T1 measurement, we used all three lasers and a balanced photodetector (BPD)

to do the homodyne detection (green areas in Figure 3.5). But for the absorption

measurement, to avoid broadening and depumping effects, we had to use low powers.

To get a good signal to noise ratio, we required an avalanche photodiode (APD). To

ensure low powers, we placed some attenuators in the path. Besides that, we used a

Mach-Zender interferometer (MZI) to correct the non-linearity of the probe scan of the

frequency (blue areas in Figure 3.5). Both experiments and setups are explained in

more detail in the next Chapter 4.

A general overview of the experimental setup is shown in Figure 3.5.

8. TOPTICA DL Pro diode laser
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Figure 3.5.: Experimental setup used for the characterisation of the cells. Green areas were
used for the T1 measurement, whereas the blues were used for the absorption
measurement. Areas without a background colour were used in both experiments.
This figure was created using A. Frazen’s svg component library.
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4Cell characterisation

NOTE: The following test and results of T2 measurement were provided by Jun Jia and
Ryan Yde. For transmission, absorption and T1 measurement, the test and results were
obtained in collaboration with Rebecca Schmieg.

Vapour cells are a crucial element in our experiments. Therefore they have to be

subjected to various tests. Namely:

• A transmission measurement: allows us to know how well light travels along the

cell and how much light we lose.

• An absorption measurement: allows us to determine the atomic density of the

atoms ins the channel.

• A T1 measurement: the spin depopulation time allows us to determine the decay

of the longitudinal spin component Ĵx.

• A T2 measurement: the spin decoherence time allows us to determine the decay

of the transverse spin components Ĵy and Ĵz.

For all the tests, the waists of the beams were adjusted to fit the channel[9]. A beam

too big would lead to clipping and scattering losses. And a beam too small might not

reflect the characteristics studied adequately.

4.1 Transmission
For the transmission measurement, we measured the intensity of a laser before and

after placing a cell, usually the probe. A ray diagram of this experiment is shown in

Figure 4.1. Cells are aligned to the beam to maximise the transmission. The waist of

the beam is adjusted too to avoid scattering and clipping effects.

9. All the beam’s waists were checked during the thesis using the BP209-VIS/M waistmeter from
Thorlabs [27]. It allowed us to determine the waist of a beam in two perpendicular directions and
record bitmap images of the profiles. In addition, the interface of the waistmeter permitted us to
compare the longitudinal and transversal projection of the beam with a Gaussian and compare how
close they were.
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Figure 4.1.: Ray diagram of the transmission measurement. Power was measured with and
without the cell to determine the transmission of each cell. Usually, we use the
probe to state the total transmission.
This figure was created using A. Frazen’s svg component library.

Windows with anti-reflective coating have a 99.5% of transmission. Thus, we would

expect a transmission of 99%. However, the maximum transmission we obtained

through a cell was 96.7% (see Table 4.1). A further study revealed that the windows

reflected nearly 1.5% for different bare and filled cells [25]. This would indicate that

this reflection was not caused by the coating but by defects in the windows produced

during the glass-blowing. Defects such as cracks, cuts, and additional curvature added

to the windows during the cell fabrication process. A tilt, a bend or a twist in the

channel also introduces losses (see Figure 4.2). But, while the tilt can be compensated

in the aligning process, a bend or a twist have more complex ways to overcome. When

the performance was poor due to the coating, re-curing the cells usually helps. To

re-cure procedure consists of creating a temperature gradient between the cell and the

stem for a long time. This is accomplished by warming the cells in an oven at 60-70

degrees for 12 hours with the stem covered with wet cotton [25].

(a) Tilt channel (b) Bend channel (c) Twist channel

Figure 4.2.: Cell defects caused by imperfections in the channel. In Figure 4.2 (c), the green
square represents the orientation of the channel in the input and the red square
in the output.
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4.2 Atomic density
The absorption measurement is used to determine the atomic density. This section will

explain the method used to determine the atomic density of our new cells, including

the experimental setup, the experiment, and the analysis.

4.2.1 Experimental setup
For the absorption measurement, the probe laser was used to scan the transitions over

the two manifolds of the hyperfine levels of the grounds state 6S1/2 (F = 3 and F = 4)

to the excited state 6P1/2 (D2 line). We used low power (range within 20 nW and

1 µW) to avoid broadening and population redistribution. In image Figure 4.4, we

can see an asymmetry in the absorption dips for high powers that disappear for low

powers. Also, we used a slow scan of 10 Hz to avoid a non-equilibrium population

between the ground state manifolds. To correct the non-linearity of the frequency scan,

we used an asymmetric MZI with a path difference of 2.58 m. The absorption signal

was recorded with an APD while the MZI with a variable gain photodetector (PD), as

shown in Figure 4.3.

Figure 4.3.: Absorption laser diagram. The probe laser is detected with APD, whereas the MZI
records a signal simultaneously to correct the non-linearity of the frequency scan
of the probe.
This figure was created using A. Frazen’s svg component library.
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4.2.2 Absorption measurement
As mentioned before in section 4.2.1, to correct the non-linearity of the scan, we

recorded the signal from the MZI and the absorption spectrum at the same time. In

Figure 4.4, we can see that the power of the laser depends on the position of the

scan. Hence, we did a linear fit to obtain the power dependence of the scan. With this

dependence, we could normalise the signal.

(a) Absorption spectrum probing with 50 nW.

(b) Absorption spectrum probing with 1000 nW.

Figure 4.4.: Absorption spectrum for 50 nW and 1000 nW. In Figure 4.4b (b), it can be clearly
seen an asymmetry in the absorption dips for high powers.

For considerable optical depth, the absorption of the signal can drop to intensities

near-zero (full absorption). As the absorption spectrum is limited by the optical depth,

using the raw data in Equation 2.50 can lead to inaccurate results. To avoid this

problem, we used a model of the absorption spectrum of the D2 line to fit the data.
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4.2.2.1 Absorption spectrum Model
NOTE: The absorption spectrum model used to fit the data including the program used for
the analysis was obtained from Schmeig ‘Coherent dynamics of atomic vapours’ [28].

According to the selection rule Equation 3.4,

∆F = 0,±1 (4.1)

If we scan over the two manifolds F = 3 and F = 4 of the ground state, only six

transitions are allowed:

F = 3 → F ′ = 2, 3, 4 (4.2)

F = 4 → F ′ = 3, 4, 5 (4.3)

And since we are probing with a linear polarisation light ∆mF = 0. As a consequence of

the splitting of the hyperfine levels, each transition has different resonance frequencies.

Moreover, each transition between different Zeeman sublevels has different strengths

proportional to the Clebsh-Gordan coefficients [28].

Ideally, with all these considerations along with assuming thermal equilibrium and

homogeneous broadening, the absorption spectrum is obtained as a superposition of

six Lorentzian spectral components [28]:

S(ν) =
∑
F,F ′

∑
mF

AmF
F F ′

γ/2(
ν − νF F ′

0

)2
− (γ/2)2

(4.4)

Where the Lorentzians (obtained from [24]) are located in the resonant frequencies

of the D2 line νF F ′
0 with width of the decay rate γ. AmF

F F ′ is a normalisation factor that

includes the Clebsch-Gordan coefficients. The sums are over all the possible transitions

described before.

In reality, each atom has different velocities distributed according to the Maxwell-

Boltzmann distribution. These different velocities lead to distinct Doppler shifts, which

lead to Gaussian line shapes [24]. We take into account these effects by convolving

the Lorentzians of Equation 4.4 with a Gaussian velocity distribution [24, 28], and the

resulting line shape is the Voigt profile [18]. For our case [28]:

S(ν) =
∑
F,F ′

∑
mF

AmF
F F ′

∫ ∞

0
dν

γ/2(
ν − νF F ′

0

)2
− (γ/2)2

· cD exp
(

4 ln 2
(
νF F ′

0 − νD

∆νD

))
(4.5)
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(a) Spectral distribution of the six possible transi-
tions.

(b) Convolution of the six transitions into two over-
lapped peaks.

Figure 4.5.: Absorption model design to fit the spectrum obtained. In Figure 4.5 (a), we can
see the spectral distribution of the six possible transitions F = 3 → F ′ = 2, 3, 4
and F = 3 → F ′ = 2, 3, 4. In Figure 4.5 (b), we can see the two overlapped peaks
resulting of the Doppler broadening caused by the convolution of the Lorentzian
spectral components with the Gaussian velocity distribution.
Figures obtained with the code provided in [28].

Where cD incorporates the normalisation factors for the Gaussian distribution and ∆νD

is the Doppler width. The convolution in the Voigt profile allows us to represent the

Doppler broadening in the spectrum, which leads to two overlapping peaks in the

absorption spectrum. In the absorption spectrum in Figure 4.5 (b), we can see the two

peaks corresponding to the overlapping absorption peaks.

As mentioned before in section 2.3, light is absorbed when it passes through an atomic

medium following an exponential relation.

Iν (x) = I0e
−α(ν)x (4.6)

Where the absorption coefficient α(ν) is directly related to the spectral distribution

stated in Equation 4.5 [24]. Thus, the model used to fit the absorption data is the one

described in [25]:
Iν(x)
I0

= exp (c1 · S ((ν − c2) · c3)) (4.7)

Where the fitting parameters are c1 an overall scaling factor, c2 the centre of the

spectrum, c3 a correction to our frequency scaling. Once we have the fit we can

compute the atomic density with Equation 2.50 with re = 2.817 · 10−15 m [29] and

f = 0.7164 [12]. From the absorption spectrum of the cell O15, Figure 4.6 we obtained

an atomic density of:

ρ = (2.9 ± 0.1) · 1016 m−3 (4.8)

The error in these measurements is the statistical error obtained from various samples

of the absorption measurement and for different powers.
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Figure 4.6.: Absorption measurement (blue line) fitted with the convolution model (orange
dashed lines). From this fit, the atomic density can be obtained with Equa-
tion 2.50.

The results for this measurement for the other cells tested are shown in Table 4.1.

4.3 Depopulation time - T1
As mentioned before in section 2.6, ⟨Jx⟩ decay exponentially with T1, proportional to

the Faraday angle θF . Therefore, measuring the decay of θF allows us to obtain the T1

value. This section will explain the methodology used to determine the T1 of our new

cells, including the experimental setup, the experiment and the analysis.

4.3.1 Experimental setup
To determine T1, we combined a pulse to optically pump the atoms to the |4, 4⟩ state

with a second pulse to read out the decay of the Faraday angle. We used AOMs and

a function generator to generate the pulses. We can recall from section 2.4 that the

polarisation of linearly polarised light rotates as it passes through an atomic sample

polarised in the direction of the propagation. The beam diagram of this measurement

can be found in FIG. 4.7.

The sequence used was:

1. 500 ms of optical pumping (long enough to prepare the atomic ensemble to the

|4, 4⟩ state.)

2. 100 ns of delay to avoid overshooting responses of the detector
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3. Probing (multiple T1 times)

To optimise the initial state, we had to ensure that the polarisation of the optical

pumping was circular with a QWP and a HWP. For the detection, we used a BPD.

Figure 4.7.: Ray diagram of the experimental setup used to compute T1. The polarisation of
the beams (circular for pump and repump and linear for the probe) is controlled
with HWP and QWP. The detection of the Faraday decay is done with a BPD.
This figure was created using A. Frazen’s svg component library.

4.3.2 Balanced detection
The electric field of a linear polarised wave travelling along the propagation x-axis can

be written as the superposition of two perpendicular linear polarised waves oscillating

in the y− and z-axis [30]. For a linear polarised wave rotated by an angle ϕ from the

horizontal direction, we can write the electric field as

E = Ec cos (ϕ) ey + Ec sin (ϕ) ez (4.9)

Where Ec = E0 cos (kx− ωt) is the so-called complex amplitude which describes the

electric field of both orthogonal waves propagating along the x-axis. E0 is the amplitude

of the field, and ei denotes the vector component in the direction i. If we split both
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components in a polarising beam splitter (PBS)[10] and measure their intensity with

two PDs, we will have

I1 = |Ey|2 = E2
c cos2 (ϕ) (4.10)

I2 = |Ez|2 = E2
c sin2 (ϕ) (4.11)

From these equations, we can see that for a ϕ = π/4 angle, both intensities are the

same. This polarisation can be obtained with a HWP. When both detectors of the

PD receive the same intensity, we call the signal balanced, and its light field can be

expressed as

E = Ec cos
(
π

4

)
ey + Ec sin

(
π

4

)
ez (4.12)

For the light suffers a rotation, for example, due to the Faraday effect both, components

will gain a phase of θF , and its electrical field would be,

E = Ec cos
(
π

4 + θF

)
ey + Ec sin

(
π

4 + θF

)
ez (4.13)

And the intensities,

I1 = E2
c cos2

(
π

4 + θF

)
(4.14)

I2 = E2
c sin2

(
π

4 + θF

)
(4.15)

Following [17], we can obtain the Faraday angle θF with some algebra:

I1 − I2 = E2
c

[
cos2

(
π

4 + θF

)
− sin2

(
π

4 + θF

)]
= E2

c cos
(

2
(
π

4 + θF

))
= E2

c sin (2θF ) (4.16)

I1 + I2 = E2
c

(
cos2

(
π

4 + θF

)
+ sin2

(
π

4 + θF

))
= E2

c (4.17)

Combining the last two expressions we find

θF = 1
2 arcsin

(
I1 − I2

I1 + I2

)
(4.18)

From this expression, we can find the value of the Faraday rotation with the intensities

of the BPD. Measuring the decay of θF until the signal is balanced again allows us to

obtain the value of T1.

10. Polarised beam splitters split an incident beam into two beams of different linear polarisation.

4.3 Depopulation time - T1 33



4.3.3 Methods and analysis
First, with the optical pumping blocked, we balanced the BPD with a HWP, so both

detectors received the same intensity. Unblocking the optical pumping led to a rotation

of the probe. This rotation varied the intensities that each detector of the BPD received.

This effect was translated into a sudden increase in the signal. When atoms decay |4, 4⟩,
the matter aligned to the magnetic field that produced the Faraday effect decreased

so did the rotation caused to the light. This decrease continued until the thermal

equilibrium was reached again and the BPD signal was balanced again. This was

translated to a decay signal proportional to the length of the macroscopic spin.

From Equation 2.60, we know that the macroscopic spin decays like an exponential.

Thus, we can obtain T1 at a specific power by fitting the signal with an exponential

function with an offset like:

f(t) = c1 · exp
(

− t

T1

)
+ c2 (4.19)

Figure 4.8.: Decay signal obtained at the BPD at different powers fitted with the exponential
described in Equation 4.19. These results correspond the cell O16.

As we want the depopulation time in the dark (no laser applied), we repeated the

measurement for different values of the probe power. Then we fitted the result to

extrapolate the T1 value in the dark, as shown in Figure 4.9.
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For the case shown in the Figure 4.8 and Figure 4.9, the cell O16, the T1 computed

was

T1 = 1.19 ± 0.02 ms (4.20)

The error in these measurements is the statistical error obtained through the fit.

The results for this measurement for the other cells tested are shown in Table 4.1.

Figure 4.9.: T1 as a function of the probe power. From these measurements we can extrapolate
the T1 in the dark. These results correspond the cell O16.

4.4 Results
In the following Table 4.1, there are the results of the before-mentioned tests.
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Table 4.1.: Results of the tests mentioned in sections section 4.1, section 4.2 and section 4.3.
This table is extracted from [25].

Cell Size /mm3 %Trans. Density ρ /1016/m−3[11] T1 /ms[12] T2 /ms[13]

O1 40x1x1 94.7 (2.33 ± 0.01) 5.7 ± 0.1

O2 40x1x1 96.2 no atoms no atoms

O3 40x1x1 96.4 (2.51 ± 0.00) 4.7 ± 0.1

O4 40x1x1 96.0 (2.31 ± 0.09) 2.5 ± 0.1

O11 40x1x1 95.8 (2.70 ± 0.00) 2.8 ± 0.1

O22 40x1x1 94.9 (2.9 ± 0.3) 5.9 ± 0.1

O5 60x1x1 96.1 (4.04 ± 0.07) 2.4 ± 0.1

O6 60x1x1 87.6 no atoms no atoms

O7 80x2x2 96.7 (2.65 ± 0.04) 6.4 5.9

O8 80x2x2 96.3 (2.95 ± 0.11) 9.1 10

O12 80x2x2 95.2 (2.77 ± 0.09) 4.5[14] 7.8

O13 80x2x2 95.4 (2.39 ± 0.15) 5.9 5.8

O15 80x2x2 95.8 (2.9 ± 0.1) 7.2 ± 0.1 9

O9 25x0.5x0.5 94.9 (0.81 ± 0.02) 1.05 ± 0.02

O10 25x0.5x0.5 71 0.4 ± 0.01[15]

O16 25x0.5x0.5 91.0 (2.36 ± 0.01) 1.19 ± 0.02

O14 80x(4π) 93.5 16

O17 80x(4π) 96.2 (3.7 ± 0.1) 20

O18 80x(4π) 96.4 (3.54 ± 0.02) 6.5[16]

O19 80x3x3 94.8 (3.78 ± 0.02) 11.5

O20 80x3x3

O21 80x3x3 95.3 (4.8 ± 0.4) 7

11. [table] These measurements were done in collaboration with Rebecca Schmieg.
12. [table] These measurements were done in collaboration with Rebecca Schmieg.
13. [table] These numbers were provided by Jun Jia and Ryan Yde.
14. [table] This was after re-curing, before re-curing this cell, it had dropped to 1 ms. Comparison

between both times, therefore maybe not reliable.
15. [table] This result was obtained after re-curing three times. Before, the transmission was even

lower.
16. [table] This result was obtained after re-curing. Before re-curing, it was 8.5 ms. The only example

where re-curing made it worse.

36 Chapter 4 Cell characterisation



4.4.1 T1 vs. T2
In subsection 2.6.1, we determined that the relation between T1 and T2 is T2 ≤ 2T1

(see Equation 2.65). Hence, we determined the relation that our cells exhibit by fitting

a linear fit to the relation between both times. In Figure 4.10, we compare the relation

of T1 with T2 for the new cells. L3 is an old cell we used to test the setup before we

had the new cells.

Figure 4.10.: T2 as a function of T1. The new cells were compared to one old cell to check
if their behaviour matched. The blue line is a linear fit to extrapolate more
precisely the relation between both times.

The parameters obtained from the fit were:

a = 1.16 ± 0.04 (4.21)

b = 0.08 ± 0.04 (4.22)

This would mean that for our cells, we can expect that,

T2 ≈ 1.16T1 (4.23)

4.5 Discussion
As previously mentioned, the vapour cells are a crucial part of our experiments.

Therefore, it is essential to know its features. In this part of the thesis, we have covered
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the methods and results for cell characterisation. More concretely, we measured the

transmission of light through the cell, the absorption of light to determine the atomic

density and the Faraday rotation, which allows us to obtain the depopulation time T1

measurement[17].

Discarded cells
Of all the cells tested, four cells performed considerably worse.

• O2 had no atoms inside, so we did not get any signal, so it was discarded.

• O6 had no atoms inside, so we did not get any signal. Besides, its channel was

twisted. It was discarded.

• O10 after had a considerably low transmission, only 71% after being re-cured

three times. Thus, it was discarded.

• O20 had the channel loose. It made it complicated to align and measure. There-

fore, it was discarded as well.

The test result will be discussed without taking these cells into account.

Transmission
For the rest of the cells, the majority had a transmission between 94.7% and 96.7%.

The outliers are O9 (91.0 %) and O14 (93.5%).

We would generally expect up to a 1.5% loss per window (including the 0.5% of the

AR-coating). Therefore, the rest of the reduction in the transmission comes from

additional defects introduced to the cell in the glass-blowing process. These defects

are for example the bending or twisting of the channel.

We do not know exactly where the transmission loss comes from. However, there are

some solutions to consider. To solve the glass-blowing complications in the channel,

we could use a solid volume and drill a channel of the desired size on it. Thus, it would

not bend, twist or get loose. For the complications on the window, a new shape for the

windows was defined in [25]. The new form consists of a cylindrical window with a

wedged shape, as shown in Figure 4.11. With this new window in the glass-blowing

process, it would only be needed to heat the outer part of the window. Therefore the

central part would be less affected.

17. Recall the decoherence time T2 measurements were done by Jun Jian and Ryan Yde.
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Figure 4.11.: Possible new design for the windows with a wedged shape and AR-coating only
in the centre.
Image extracted from [25].

Atomic density
For the atomic density, we see that for the cells that have atoms in the channel, all the

densities are of the same order of magnitude.

ρ ∼ 1016 m−3 (4.24)

at room-temperature. This value agrees with the values of old cells used in the

experiments.

With this order of magnitude, the smallest cells (25x0.5x0.5) will have Na ∼ 107 Cs

atoms in the channel and the biggest (80x4π), Na ∼ 1010.

T1 and T2
T2 is more sensitive to the magnetic field inhomogeneity and usually is the one that

limits our experiments, so usually, we are more interested in T2. But, since for

measuring T1, we measure the decay of the Faraday angle, we do not need a perfect

initial state which makes T1 easier to measure experimentally and more practical to

obtain feedback. Moreover, with Equation 2.65, we can define an upper bound for T2.

However, we are still interested in the value of T2. Since there was an experimental

setup available for cells of size 80 × 2 × 2, T2 was experimentally determined. With the

relaxation times of these cells, we extrapolated the relation between the two times to

be

T2 ≈ 1.16T1 (4.25)

But, as the magnetic field produced by the coil frames used in the different experiments

in the lab is not the same, we have to be aware that this relation might only be an

indicator, and it might not be accurate. It should be used as an estimation for T2.
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It has also been observed that the re-curing process usually increases (or recovers)

the T1 and T2 values. For example, in the case of O12, it had degraded between the

T2 (7.8 ms) and T1 (1 ms) measurements. With the values obtained, the relation in

Equation 2.65 was not fulfilled. After re-curing, T1 increased to 4.5 ms, fulfilling the

relation. Only in the case of O18 T1 got worse (8.5 ms → 6.5 ms).

The cells proposed for the single-photon experiments are the ones with 80 mm length

and 2 × 2 mm2, 3 × 3 mm2 and 4π mm2 cross-section. Its expected T2 obtained with

Equation 2.65 will be in concordance with the T2 of the previous cells used in the

single-photon experiment (T2 = 2 ms [5]).
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Part II

Beam shaping



5Beam shapers: Gaussian to
Square Top Hat

This chapter will introduce the theoretical background of the beam shapers.

In section 5.1, Gaussian beams will be introduced, followed by a brief explanation

of Top Hat profiles in section 5.2. Finally, in section 5.3, several ways to transform a

Gaussian beam into a Top-Hat will be explained. Precisely, Diffractive Optical Elements.

5.1 Gaussian Beams
The propagation of electromagnetic waves can be described by the solutions of the

spatial Helmholtz equation [31] which is given by

∆A+ k2A = 0 (5.1)

Where ∆ is the Laplacian operator, A is the amplitude, and k is the wavenumber.

The eigenfunction solution of the Helmholtz equation can be written in the form of a

Gaussian beam (in Cartesian coordinates) as [31]

A = a
w0

w(z)exp

−x2 + y2(
w(z)

2

)2 − ikz − ik
x2 + y2

2R(z) + iζ(z)

 (5.2)

Where w(r) is the waist[18] of the beam, w0 is the waist at z = 0, R(z) describes the

radius of curvature of the wavefront, and ζ(z) is the Gouy’s phase shift[19]. Higher order

eigenfunctions can be obtained as a product of a Hermite polynomial with a Gaussian

function [33].

Alm(x, y, z) =a w0

w(z)Hl

 x
√

2(
w(z)

2

)
Hm

 y
√

2(
w(z)

2

)


× exp

−x2 + y2(
w(z)

2

)2 − ik
x2 + y2

2R(z) + i (1 + l +m) ζ(z)


(5.3)

18. In this section of the thesis, we will use the terms waist’ and ’width’ indistinctly to refer to the
diameter of the beam.

19. Gouy’s phase shift is a phase shift that a converging light wave undergoes when passing through its
focus [32]
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Where Hl and Hm are the Hermite polynomials of orders l and m respectively. These

eigenfunctions are denoted as lm transverse modes or TEMlm [34].

(a) Gaussian beam with the common defini-
tions of waist and its intensities

(b) First twelve Gaussian-Hermite modes

Figure 5.1.: Representation of the fundamental mode of the Gaussian beam and the twelve
Gaussian-Hermite (TEMlm) modes.
Picture extracted from [35].

The lowest mode, or TEM00, also called fundamental mode and its amplitude is given

by Equation 5.2. The imaginary part in the exponential of Equation 5.2 is related to

the phase of the beam, whereas the real part is related to the irradiance of the beam

[36]. The time-averaged intensity of the mode can be obtained as the square of the

amplitude over two times the impedance of the propagating medium η [37]. In the

case of the fundamental mode,

IT EM00 = |A00|2

2η = I0

(
w0

w(z)

)2

exp

−2 (x2 + y2)(
w(z)

2

)2

 (5.4)

Where I0 is the maximum intensity of the mode.

5.1.1 Characteristics of a Gaussian beam
Width
There are several ways to define the width of a beam, and in some cases, it is useful

to express the waist in terms of the FWHM [38], but commonly it is expressed as the

so-called 1/e2 width. In this formalism, it is more intuitive to express the intensity in
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cylindrical coordinates where the waist expands along with a radius r, and the beam

propagates along the z-axis. Therefore in z = 0,

I(r, z = 0) = I0 exp

 −2r2(
w0
2

)2

 (5.5)

Now imposing that the radius of the beam to be half of the waist for z = 0, r = w0/2,

I
(
r = w0

2 , z = 0
)

= I0

e2 (5.6)

So the waist is defined as the diameter where the intensity has 1/e2 (13.5%) of the

value of the peak intensity. A perfect collimated beam is not realistic since diffraction

causes the beam to spread transversely as it propagates [34]. The following equation

describes how the waist of the beam evolves along the propagation axis [36]

w (x) = w0

√√√√1 +
(
zλ

πw2
0

)2

(5.7)

Where λ is the wavelengths of the beam in the propagating media.

Figure 5.2.: Representation of the characteristics of a Gaussian beam. where w(z) is the waist
of the beam at a distance z, w0 is the waist of the beam at z = 0, zR is the Rayleigh
range, b the depth of focus and θ the divergence angle.
Picture edited from [39].

Divergence angle
For large z, the Equation 5.7 asymptotically approaches

w(z) = λz

πw0
(5.8)
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For z ≫ πw0/λ the waist resembles an angular cone [34] with

θ = w(z)
z

= λ

πw0
(5.9)

This divergence angle describes the behaviour of the beam when propagating to infinity.

θ is inversely proportional to the waist, which means better collimation will be obtained

for the larger waists.

Radius of curvature
The radius of curvature describes the curvature of a spherical wavefront centred at

(x, y, z) = (0, 0, 0) [33]. Even if the initial wavefront was flat, during its propagation, it

would gain curvature with the relation [36],

R (z) = z

[
1 +

(
πw0

λz

)2
]

(5.10)

Where for z close to 0, R → ∞ meaning the wavefront is a plane. And for z →
∞ , R → z, normal for a spherical wavefront.

Rayleigh range
The Rayleigh range, or zR is the distance where the waist of the beam has increased by

a factor of
√

2 [33]. It can be defined as

zR = πw0

λ
(5.11)

This distance, apart from having the maximum wavefront curvature, is considered the

separation point of the near-field and mid-field divergence [34]. The distance between

z = −zR and z = zR is called depth of focus.

5.1.2 Propagation factor - M2

Pure Gaussian laser beams are nonexistent in the real world [34]. The output mode

contains higher-order modes that do not propagate as the previous formulation for

most lasers. The propagation factor M2 was introduced utilising the fact that for all

lasers, the product between the waist and the divergence angle is constant [34]. Thus,

we define

M2 = w0RθR

w0θ
(5.12)

5.1 Gaussian Beams 45



Where the subindex R denotes the real beam. For pure Gaussian M2 = 1. Equation 5.7

and Equation 5.10 can be rewritten as

w (x) = w0R

√√√√1 +
(
zλM2

πw2
0R

)2

(5.13)

R (z) = z

[
1 +

(
πw0R

zλM2

)2
]

(5.14)

M2 quantifies how "Gaussian" a real beam is. It is used as a quality factor.

5.2 Top hat beams
One of the problems of the Gaussian beams is the low-intensity external parts of the

profile known as ‘wings’. These wings usually contain energy below the threshold of

the desired application but still have enough energy to interact with the surroundings

of the target area [40, 41].

Figure 5.3.: Representation of waste power of Gaussian beams compared to a TH profile.
Image obtained from [41]

For applications such as material ablation, where an intensity higher than the threshold

might damage the underlying material [41], a Gaussian beam is not the most efficient

profile. A profile with a homogeneous distribution of the intensity is more suitable.

The steeper edges and the lack of wings reduce the surrounding interaction outside

the target range [40]. Tuning the intensity of the profile to the application threshold

make the so-called Top-Hat (TH) profile more efficient in these situations. Another

advantage is the possibility of changing the round cross-section shape of the beam to

other shapes like squares, lines, rectangles or stars during the transformation [41].

A drawback in beam-shaping a Gaussian beam into a TH is the need to add extra optical

components to reshape the beam (e.g. an aperture or reflective/refractive/diffractive
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elements. More details are provided in the following section 5.3). Usually, these

components are highly dependent on the input beam conditions and sensitive to

alignment. An exhaustive study of the effects of the misalignment is given in section 6.2.

Furthermore, the TH is not invariant under transformations. The flat profile is lost as

the beam propagates [40].

Often, to represent flat-top profiles, super-Gaussian are used. The equation of the

super-Gaussian can be written as [42],

G(P )(x, y) = A exp
−

(
(x− x0)2

2σ2
X

+ (y − y0)2

2σ2
Y

)P
 (5.15)

for a circular super-Gaussian, and

G(PX ,PY )(x, y) = A exp
−

(
(x− x0)2

2σ2
X

)PX

−
(

(y − y0)2

2σ2
Y

)PY
 (5.16)

For a rectangular super-Gaussian. If PX = PY , the super-Gaussian becomes squared.

In Figure 5.4, it can be seen how a squared Gaussian evolves with different values of

PX = PY .

(a) P = 1 (b) P = 1.5 (c) P = 3 (d) P = 5

Figure 5.4.: Evolution of a super-Gaussian for different values of P = PX = PY . For P = 5
the super-Gaussian resembles a squared flat profile.

As the value of P increases, the flatness of the profile increases too, and the edges

become sharper.

However, for simplicity, in this thesis, we will consider the TH profile an ideal square

where all the intensity is distributed homogeneously on the surface. It can be repre-

sented as

TH(x, y) =

ITH if |x− x0| ≤ a and |y − y0| ≤ a

0 Otherwise
(5.17)
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Where (x0, y0) us the centre of the TH, a is half the waist of the profile, and ITH is the

intensity of the profile.

Figure 5.5.: Representation of an ideal TH of waist wx = wy = 2a, centred in the position
(x0, y0) propagating along the z-axis.

5.3 Beam shaping a Gaussian into a Top Hat
Many techniques exist to reshape a Gaussian laser beam [43]. In this section, it will

be briefly explained some of these procedures, including Diffractive Optical Elements
(DOE), which are used in this thesis.

The most trivial way to obtain a flat beam is the use of an aperture [44]. The aperture

is located at a flat section of the beam as shown in Figure 5.6 (a). The output size can

be modified later with a telescope. The main inconvenience of this procedure is the

loss of light.

A second way to obtain a TH profile is the so-called beam integrators [44]. Beam

integrators are formed with two components

1. A sub-aperture array that splits the input beam into an array of sub-beams. It

also applies a phase aberration to each sub-beam.

2. A focusing element that superposes the sub-beams in its focal plane (F in Figure

5.6 (b)).

This system is especially optimal for multimode lasers, and it can be designed to be

lossless [44]. A more extensive description of these techniques can be found in [45].

A third technique of beam shaping is the so-called field mapping. Field mappers

transform single-mode gaussian by remapping the intensity of the beam, as shown in

Figure 5.7, to create a wide variety of forms [46]. This lossless transformation can be
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(a) Aperture applied to a beam to create
a flat profile.

(b) Overlapping of the split sub-beams, after applying a
phase aberration to them.

Figure 5.6.: Representation of laser beam shaping: (a) aperture technique, and (b) beam
integrator.
Image obtained from [45]

Figure 5.7.: Representation of laser beam shaping: field mapping.
Image obtained from [45]

obtained with refractive, reflective or diffractive optics [44]. Some examples of these

optics are:

- Binary diffractive optics [47]

- Two aspheric elements [48]

- Single bi-aspheric element [49]

Many other options can be found in [43].
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5.3.1 Field mapping
The field mapping problem aims to determine the phase function ψ (x1, y1) that repre-

sents the lossless beam shaping element [44]. This problem can be expressed as the in

terms of the Fresnel integral as [44]

U (x0, y0) =exp(ikz)
iλz

∫∫
U (x1, y1) expψ (x1, y1)

× exp
{
ik

2z
[
(x0 − x1)2 − (y0 − y1)2

]}
dx1dy1

(5.18)

Where where k = 2π/λ, λ the wavelength of the light, U (x1, y1) represents the input

beam, and U (x0, y0) represents the shaped output beam.

In [50], Romero and Dickey provide a detailed solution for turning a circular Gaussian

beam into a round and squared TH (representation of the system shown in Figure

5.9 (b)). In the solution, they expressed the phase function as ψ = βϕ, which turned

the 2-dimensional problem for the squared separable into two 1-dimension solutions.

Thus, ψ = [βxϕx (x) + βyϕy (y)].

The solutions presented in [50] are, for the squared TH,

ϕ(ξ) =
√
π

2 · ξ · erf(ξ) + 1
2 · exp

(
−ξ2

)
− 1

2 (5.19)

where

ξ =
√

2 · x
r0

or ξ =
√

2 · y
r0

(5.20)

And r0 is the 1/e2 radius of the input beam. For the round TH,

ϕ(ξ) =
√
π

2 ·
∫ ξ

0

√
1 − exp (−ρ2)dρ (5.21)

where

ξ =
√

2 · r
r0

(5.22)

and r is the distance from the centre of the beam. And finally,

β = 2
√

2πr0y0

Fλ
(5.23)

where y0 is half the waist of the desired profile (both circular and squared), and F is

the focal length of the focusing lens.
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(a) (b) (c)

Figure 5.8.: Different squared TH field mapping solutions simulated for different β. (a) β = 4,
(b) β = 8, and (c) β = 16.
Image obtained from [44]

For large β better solution of the field mapping can be obtained [44]. This can happen

by increasing the input or output desired beam waist.

5.3.2 Diffractive Optical Elements
Diffractive Optical Elements use diffraction to change the distribution of light. The

elements are subjected to etching processes that create specific micro- or nanostructures

that cause the diffraction [40]. The effect of these structures depends on the incidence

features of the beam, so each beam shaper is designed to operate under specific

conditions (e.g. wavelength, input and output beam size, working distance) [40, 51].

DOEs can transform fundamental Gaussian modes (TEM00) to any custom shape with

sharp edges, but they require M2 < 1.3 [51, 52].

(a) (b)

Figure 5.9.: Transformation of a focused Gaussian beam (a) to a Top Hat (b) beam by intro-
ducing a Diffractive Optical Element (DOE).
Image obtained from [43].

There are two types of DOE [52]

• Focal beam shapers: Hybrid of diffractive element and lens. The TH appears at

the effective focal length (EFL) of the hybrid.
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• Angular bam shaper: the diffractive element produces the TH at the infinity, so it

is focused in a plane with a focusing system. The TH appear at the focal length

of the focusing system.
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6Implementation of a Squared
Top Hat Beam Shaper

This chapter will review the process of the creation of a TH profile.

First, in section 6.1, the optical elements used in the experimental process will be

explained. Afterwards, the alignment of the TH and its final measurement will be

detailed in section 6.2 and section 6.3, respectively. Finally, the collimation of the TH

will be introduced in section 6.4.

6.1 Optical elements and setup
The experimental setup used to obtain the TH is described in [52–55]. It consists of a

Diffractive Optical Element (DOE) used to transform a Gaussian beam (TEM00) to a

squared homogeneous-intensity spot in a specific work plane. For angular DOEs, this

work plane is determined by the focal length of the focusing system placed right after

the DOE [52].

6.1.1 Beam shaper
The beam shaper used is theGTH−4−2.2, a DOE manufactured by TOPAG lasertechnik

[54, 55]. It is an angular beam shaper, so it projects the flat-intensity profile at infinity

unless we use a focusing system. The DOE has a flat angle of 2.2 mrad and requires a

beam with an input diameter (1/e2) of win = 4.00±0.15 mm. The TH will be generated

at the focal plane of the focusing system placed after it. From [54, 55], we know the

TH’s width is determined by

wj
T H = 2.2 · f

1000 (6.1)

where wT H is the size of the TH, j is the direction of measuring, [x, y] and f is the focal

length of the focusing system.

6.1.2 Camera
The camera used is a BFLY − PGE − 12A2M − CS manufactured by FLIR [56]. The

camera is powered via PoE (Power over Ethernet). This feature allows us to supply

current to the camera and receive data through the same cable. The camera’s size is
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ultra-compact, 29 × 29 × 30 mm3. It is monochromatic and has a resolution of 1.2 MP

with pixels distributed as 1288 × 960. Its pixel size is,

lp = 3.75 × 3.75 µm2 (6.2)

The images obtained are stored as a Bitmap of the saturation of the pixels (from 0
to 255) due to the beam’s intensity. The analysis of the pictures is performed using

python.

6.1.3 Setup

(a) Beam shaper setup.

(b) Beam shaper ray diagram.
This figure was created using J. Lodewyck’s Gaussian Beam program.

Figure 6.1.: Optical elements of the beam shaper experiment: a - Camera, b - Focusing system
lens, c - Beam shaper DOE, d,e - Resizing telescope (focal lengths of 50 and 100
mm to double the size), f - Fibre coupler. The green line in (b) is the location
where the TH profile is obtained.

As shown in Figure 6.1, the experimental setup to obtain a squared TH beam consists

of a DOE and a focusing system.

First, we have to produce a beam matching the specification of the DOE, i.e. a

collimated beam of waist win = 4.00 ± 0.15 mm. In our case, the output beam of the

fibre coupler was around half the desired waist and diverging with θ = 3.67 mrad.

Therefore, we used a basic telescope of magnification m = 2 to increase the beam’s

diameter to 4 mm and correct the divergence (this will be explained in more detail in

section 6.2.1). The specifications of the setup are summed up at Table 6.1
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Table 6.1.: Distances between the optical elements of the TH setup. The absolute distances
are measured from the fibre coupler and the relative from the previous optical
element mentioned.

Optical element Absolute position /mm Relative position /mm

Fibre coupler 0 0
f1 = 50mm 83 83
f2 = 100mm 244 161
Beam shaper DOE 319 75
Focusing system f = 100mm 337 18
Camera (TH) 437 100

Afterwards, the DOE and the focusing system are placed. We used a two-inch achro-

matic cemented doublet[20] of f = 100 mm. Finally, a camera records the profile. It

will be formed at the focal plane of the focusing system, which is equal to its focal

length. In this case, at 100 mm after the lens. According to Equation 6.1, the size of

the TH would be,

wTH = 220 × 220 µm2 (6.3)

This is equivalent to 59 × 59 pixels.

6.2 Alignment
NOTE: Some of the figures in this section are inspired or taken from [52].

The more crucial part of obtaining a TH profile is the alignment of the lenses. But first,

we must ensure the input beam matches the specifications.

6.2.1 Input beam
As stated in section 6.1.3 the output beam of the fibre coupler was wout = 1.82 mm

with a divergence angle of θ = 3.67 mrad. Thus, we needed to compensate for the

divergence and double the size of the beam.

As shown in Figure 6.2a, if the input beam is collimated, its size can be doubled with

a simple two-lens telescope of augmentation m = f2

f1
= 2. This is obtained with two

20. An achromatic cemented doublet consists of two lenses cemented together. Usually, one is convex
and the other concave. These lenses are computer designed to minimise spherical aberration and
coma effectively. As a result, doublet lenses have superior optical performance than singlet lenses.
They offer better broadband and off-axis performance and nearly constant focal length across the
spectrum [400,1100] nm. In an achromatic doublet, the chromatic aberration is compensated using
glasses of two different refractive indexes [57].
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lenses, one with focal length f and the second with 2f . The separation of the lenses

must be equal to the sum of both lenses’ focal lengths. E.g. one of focal length f1 = 50
mm and another of f2 = 100 mm separated a distance d = 150. Indeed, in this case,

m = 100
50 = 2.

(a) Resizing a collimated 2 mm beam to 4 mm
with a telescope of m = 2.

(b) Resizing a beam of 1.82 with a divergence
of θ = 3.67 mrad to a collimated 4 mm
beam.

Figure 6.2.: Comparison between: (a) resize a collimated beam, (b) resize and off-collimated
beam.

The beam divergence could have been compensated with the adjustable lens of the

fibre coupler. However, the collimated size was wout = 1915 µm. To reach the 4 mm, we

needed a telescope of augmentation m = 2.09, and it would require lenses with precise

focal lengths. Instead, we took advantage of the divergence and compensated for

these defects by increasing the distance between the two lenses. The final separation

between the lenses was d = 161 mm (see Figure 6.2b). Once the beam matches

the specifications, we are ready to place the rest of the elements as described in

section 6.1.3.

6.2.2 Alignment
Following the steps of [52], the easiest way to proceed was to fix the focusing system

and locate its focal plane before placing the DOE. Afterwards, put the DOE, align it to

the beam and the focusing system, and record the TH with a camera.

The focal plane of the focusing system can be found using a camera or a waistmeter.

The focal plane is where the beam size is reduced to the minimum. Theoretically, it is

placed at a distance equal to the lens’ focal length.

Once the focal plane is located, we placed the beam shaper right before the focusing

lens. A TH profile would appear at the found focal plane if the focusing system, the

DOE and the beam are perfectly aligned. Unfortunately, this is unlikely to happen.
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Mounting the DOE in a 6-axis kinematic mount allowed us to correct the misalignment.

The mount enables adjustments in displacement and rotation along the three-axis: x,

y, and z.

During this section of the thesis, the convention of axes we will use is z, the direc-

tion of propagation of the beam and x and y, the horizontal and vertical directions

perpendicular to the z-axis, respectively.

The leading causes of the misalignment are:

- Misplacement of the DOE towards the beam in the x/y plane (Adjustment: x/y

position and tilt)

- Recording the TH with the camera before/after the focal plane of the focusing

system, i.e. the position where the TH is created (Adjustment: z position)

- Input beam smaller/bigger than the specified (Adjustment: beam size)

6.2.2.1 x/y position and tilt
If we have a tip/tilt or an x/y misalignment of the DOE, the intensity allocates uneven

on the square profile, as shown in Figure 6.3. In this case, the TH’s shape and size

remain the same.

Figure 6.3.: Misalignment on x/y axis / tilt-tip of the DOE. The size of the TH is roughly 203
x 206 µm. The colour bar goes from 0 to 255 of the saturation of each pixel. This
is useful for qualitatively showing how the light is distributed along the entire
profile.
This picture is inspired by the one in [52].

6.2 Alignment 57



The profile in the central picture of Figure 6.3 is not entirely flat. The size determined

for this TH was wTH = 203(3) × 206(3) µm2. It was slightly smaller than expected.

These indicated the beam was not aligned yet. It needs further adjustments. However,

the shape of the beam was now squared. And the intensity was distributed across the

whole profile. In section 6.3, we will introduce how to estimate the quality of the

obtained TH profile.

6.2.2.2 z position
As mentioned before, the TH is only created at the focal plane of the focusing system.

Hence, the TH profile can not be observed outside the focal plane. Shown in Figure 6.4

and Table 6.2, there are the representation and the characteristics of this misalignment.

Figure 6.4.: Misalignment on z- axis (Before the TH position, at TH and after TH). The pictures
are on scale for a better comparison. Sizes are written in Table 6.2.
This picture is inspired by the one in [52].

Table 6.2.: Characteristics of the misalignment on the z-axis. The column ‘Distance’ refers to
the distance between the DOE and the obtained image.

Position Distance /mm Size /µm Profile

Before TH 85 261 × 272 (±3) Convex

At TH 100 203 × 206 (±3) TH

After TH 115 153 × 125 (±6) Dog-ears[21]

As we see, before the proper position, the TH is bigger and convex and after is smaller

and has dog-ears.

6.2.2.3 Beam waist
A deviation from the required input beam waist (4 mm in our case) can lead to a

deformation of the TH too. When the beam is smaller, the profile becomes larger and

21. [table] Dog-ears refer to a profile where the mid-part has a lower intensity than the corners or
edges.
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more convex, and when the beam is bigger, it becomes smaller and with dog-ears, as

we see in Figure 6.5 and Table 6.3.

Figure 6.5.: Change in the input beam size (smaller, correct and bigger). The pictures are on
scale for a better comparison. Sizes are stated in Table 6.3.
This picture is inspired by the one in [52].

Table 6.3.: Characteristics of the change of the input beam size. *Dog-ears refer to a profile
where the mid-part has a lower intensity than the corners.

Beam size Size /µm Profile

Smaller 246 × 254 (±3) Convex

4 mm 203 × 206 (±3) TH

Bigger 116 × 123 (±9) Dog-ears

As we see comparing Figure 6.4 and Figure 6.5. Having a small input beam causes the

same defects as recording the TH before its ideal position (Bigger and convex profile).

Having a larger beam or recording the TH after the ideal position causes the same

defects (Smaller profile and dog-ears.).

In Figure 6.6, it is more clearly seen how the beam’s profile evolves while we move

along its propagation axis (z-axis). Before the proper position, the profile exhibits

more curvature in the edges. After this position, the intensity is more distributed to

these edges than the centre creating the dog-ears.
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Figure 6.6.: Evolution of TH profiles along z-axis. It exhibits the curvature change from convex
(dark blue and green) to TH (red) to dog-ears (light blue and purple).
This picture is extracted from [52].

6.3 Analysis and final TH
To determine the best approximation to a squared flat profile, we compared the

standard deviation of the obtained profile subtracted from an ideal TH. But first, we

had to determine what this ideal TH is. Therefore, we determined what size and

intensity our profile had.

6.3.1 Intensity and size
From [54, 55], we know that 95% of the input power applied to the beam shaper is

distributed along the TH. Thus, we can consider the other 5% distributed on the wings

of the TH. To find the threshold value separating the wings from TH, we integrated the

pixels from lowest to highest values until we reached 5% of the total power (integral

of the whole picture). Then, we determined the intensity by averaging the values

above the threshold. Additionally, we computed an acceptance range by calculating

the standard deviation (STD). We computed the background the same way but with

the values below the threshold.
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The intensity is normalised to the maximum saturation level of the camera’s pixels.

Hence, all intensities from now on will be given in units of relative intensity (r.i.).

Then, the computed amplitude (intensity) of the ideal TH is,

ATH = 0.468 ± 0.002 r.i. (6.4)

The error on the amplitude can be estimated from the STD divided by the squared root

of the number of samples.

δX = σX√
N

(6.5)

Where δX is the uncertainty of a given variable X, σX is the STD of X, and N is the

number of samples.

In the following, we present an exemplary approach to determine which pixels numbers

the TH profile starts and ends to determine its size for the x-direction. For y-direction

was done the same way but on the vertical axis. y results are stated after x approach

and results.

(a) TH with 5% x and y external
ranges marked.

(b) Expansion of the red circle in a

Figure 6.7.: TH with round corners and x (blue) and y external (pink) range coloured. The
ranges correspond to the initial and final 5% of the profile.

We started determining in each row at what pixel number the intensity changes from

background and wings to TH (pi) and from TH to background and wings again (pf ). We

neglected the rows with only background. As the edges were not entirely straight and

the corners were round (see Figure 6.7b), we discarded the first and the last 5% rows

(pink areas in Figure 6.7a). In those pink areas, the curvature of the corner modified

the pixel number where the intensity increased/decreased. As we computed the pi and

pf of the ideal TH as the average of the pi and pf measured in every row, the pixels in
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those curves would falsify the value. Thus, the mean and the STD were computed only

in the inner horizontal 90% range (blue and purple areas of Figure 6.7a). In the y case,

we discarded the background and the first and last 5% of the columns (blue areas in

Figure 6.7a) and did the mean and STD from the inner vertical 90% (pink and purple

areas in Figure 6.7a).

pX
i = 17.00 ± 0.07 pixels

pX
f = 78.47 ± 0.09 pixels

(6.6)

Finally, we computed the size by subtracting both pixel positions and multiplying by

the pixel size as in Equation 6.7.

wj
TH =

(
pj

f − pj
i

)
· ljp (6.7)

Where wTH is the TH width, pi is the pixel where the intensity increases from back-

ground to TH, pf is the pixel where the intensity decrease to the background again, lp
is the pixel size (Equation 6.2) and j is the direction in which we measure, [x, y]. Its

uncertainty can be computed with the error propagation formula,

δf(x1,x2,...) =

√√√√ n∑
i=1

(
∂f

∂xi

)2

δ2
xi

(6.8)

as

δwTH =
√(

δ2
pf

+ δ2
pi

)
l2p + (pf − pi)2 δ2

lp
(6.9)

Where we supposed the pixel error to be 1% of the pixel size and the error of the

increasing and decreasing pixels are taken from Equation 6.6. The representation of

these ideal THs in the x-direction and some random TH ‘slices’ from our measure are

shown in Figure 6.8a.

The same procedure was done to obtain the width in the y (vertical direction) with the

pixels,

pY
i = 18.14 ± 0.09 pixels

pY
f = 79.70 ± 0.09 pixels

(6.10)

Hence, the size of out TH was,

wX
TH = 231 ± 2 µm

wY
TH = 231 ± 2 µm

(6.11)
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The representation of these ideal THs in the y-direction and some random TH ‘slices’

from our measure are shown in Figure 6.8b.

(a) x profiles.

(b) y profiles.

Figure 6.8.: Representation of the ideal x (a) and y (b) TH profile with three random slices of
the th measured. The black line represents the ideal TH calculated. The red and
blue lines represent the acceptance ranges of the ideal TH calculated adding (red)
and subtracting (blue) the respective STD.

To see if our profiles resemble more a TH or a Gaussian, we can compute the STD of

the difference between various profiles with the ideal TH and an ideal Gaussian. The

ideal Gaussian was modelled from the power and amplitude of the ideal TH. The total
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power of a slice was computed by doing the integral of the 1D function. The Gaussian

integral in the equation was retrieved from [15]. In this case,

W
(1D)
TH = ATH · wX

TH

W (1D)
gauss = Agauss

√
2πσX

gauss

(6.12)

Where ATH/gauss is the amplitude of the TH/Gaussian and σX
gauss is the STD of the

Gaussian. Apart from having the same power, we wanted that they were comparable

in size. Using the waistmeter we determined the waist of the Gaussian to be,

wgauss = 4 · σj
gauss (6.13)

with j being the direction measured, [X, Y ]. Imposing that both waists had to be equal,

we solved the amplitude of the Gaussian to be,

Agauss = ATH
4√
2π

(6.14)

In Figure 6.9 we can see the qualitative comparison of a 1D TH and Gaussian with the

random slices in the x-direction. In Table 6.4 we can compare the STD of difference

between each slice and the ideal contours.

Figure 6.9.: Comparison between the ideal TH (black) and Gaussian (red) with the random
slices (green) in the x-direction. The STD of the difference can be found in
Table 6.4.
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Table 6.4.: Standard deviation of the difference of the TH and the Gaussian contour with
three random slices in the x-direction. Note that the STD with that TH is at least
1.5 times smaller in all the cases.

Shape STD slice 1 /r.i. STD slice 2 /r.i. STD slice 3 /r.i.

Gaussian 0.160 0.199 0.154
TH 0.095 0.086 0.103

In the following, we wanted to extend our description to the whole TH profile, extend-

ing from 1D to the 2D case.

(a) (b) (c)

Figure 6.10.: Comparison between: (a) the ideal Gaussian, (b) our profile and (c) the ideal
TH in 2D.

Similar to 1D, we compared the total power of a 2D TH with the equivalent 2D Gaussian

in size by integrating the 2D profile. The Gaussian integral in the equation was retrieved

from [15]. In this case, the powers were,

W
(2D)
TH = ATH · wX

TH · wY
TH

W (2D)
gauss = Agauss2πσg

xσ
g
y

(6.15)

Imposing that the x and y waist of both beams had to be the same and using Equa-

tion 6.13, we found,

W
(2D)
TH = ATH · (4 · σg

x)
(
4 · σg

y

)
= 16 · ATH · σg

x · σg
y (6.16)

Equalising Equation 6.15 and Equation 6.16, we find the relation between the ampli-

tudes in the 2D representation.

ATH = 8
π

· Agauss (6.17)
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With this relation, we plotted and compared the 2D ideal profiles with the one obtained

in the experiment. The 2D representation can be found in Figure 6.10, and the STD

comparison in Table 6.5. For a better comprehension of the shape of the beams, a 3D

plot has been added in Figure 6.11, where the redistribution of energy can be better

(qualitatively) appreciated.

(a) (b)

(c)

Figure 6.11.: Comparison between: (a) the ideal Gaussian, (b) the ideal TH and (c) our profile
in 3D.

Table 6.5.: Standard deviation of the difference of the TH and the Gaussian contour with the
obtained profile. Note that the STD with that TH is smaller.

Shape STD /r.i.

Gaussian 0.167
TH 0.096
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Note that the STD when subtracting the ideal TH to our profile is 1.74 times smaller

than with the ideal Gaussian. This verifies that the beam is closer to a TH profile than

a Gaussian.

6.4 Collimation
With the DOE and the experimental setup described before, we obtained a TH profile

in the focal plane of the focusing system. However, in our experiments, we might be

dealing with cells with an 80 mm long channel. Thus, we need a way to collimate the

TH.

To collimate the TH into a squared beam of a desired waist, we needed four lenses.

The first lens compensated the divergence angle of the DOE and focused the TH

(we referred before to that lens as the focusing system), the second collimated the

beam, and the third and fourth lenses formed a Keplerian telescope to resize the TH

beam. We could reduce these four lenses to two (see Figure 6.12) with the help of a

program designed by Christian F. Bærentsen. The program employed the ABDC matrix
formalism (see Appendix A) to return the distances between two lenses of a given focal

and the DOE to create a collimated TH of a desired waist. In concrete, it returned

three distances:

1. The distance between the DOE and the first lens (focusing lens).

2. The distance between the first and second lens (collimation lens).

3. The distance from the second lens where we obtained the TH with the desired

waist.

As the divergence of the DOE is 2.2 mrad, the distance between the DOE and the

focusing lens is not very relevant. On the other hand, we experienced the distance

between the focusing lens and the collimation lens to be extremely sensitive. The

third distance is the point where the desired TH will be created (EFL). As mentioned

before in the theory part, the perfect collimation does not exist, and the TH is not an

exemption. The ‘collimated’ beam obtained was still diverging, and hence the waist

was not maintained along z.

6.4.1 Experimental setup
To test the collimation, we aimed for a collimated beam of w = 1.3 mm created using

two lenses of focal lengths f1 = 100 mm (focusing lens) and f2 = 45 mm (collimation

lens). The program returned the distances shown in Table 6.6.
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Table 6.6.: Distances between the DOE and the lenses (f1 = 100mm and f2 = 45 mm) to
obtain a collimated TH of w = 1.3 mm.

Distance measured Distances /mm

DOE to f1 186.9

f1 to f2 152.6

f2 to TH 310.9

To record the profile of the collimation, we switched from the FLIR camera to a Thorlabs

beam profiler[22]. The FLIR camera presented some interference patterns caused by

the attenuators placed in front of the camera, making the beams’ analysis impossible.

However, the interference did not affect the non-collimated TH because its size was

an order of magnitude lower. Another benefit is that for the working wavelengths,

the beam profiler power range extends from tens of µW to 1 W [27]. Therefore, we

are not power limited as with the FLIR camera. Unfortunately, this has a drawback.

The images obtained with the beam profiler are recorded as bitmaps that store the

intensity from 0 to 255. Thus, the intensity resolution will decrease as the power

applied increases. The usage of the beam profiler was introduced in the collimation

part because it was not available before. For more rigorousness, we would have already

used the beam profiler for the TH alignment if we had it.

Figure 6.12.: Experimental setup to convert a Gaussian beam into a collimated Top Hat. In
the image: a - Beam shaper (DOE), b - Focusing lens, and c - collimation lens.

6.4.1.1 Collimation results
In the process of the collimation, we found two interesting results. For a distance

between the focusing and the collimation lenses (f1 to f2 in Table 6.6) of D = 153

22. THORLABS BP209-VIS/M [27]
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mm we find that the TH profile was maintained for 180 mm. However, the waist

of the beam was bigger (wcol ∼ 2100 µm) than what we expected from the program

(w ∼ 1.3 mm). Moreover, the collimation of the TH was produced further than the EFL

predicted by the program (distance f2 to TH in Table 6.6, EFL ∼ 310.6 mm) too. For

this case, the beam diverged θ = 0.24 mrad.

The other interesting result happened for D = 156 mm. With this configuration, the

waist of the TH at the EFL matched the description of the program. However, the

TH was only maintained for around 80 mm, and its waist decreased noticeably. The

divergence angle computed for this configuration was θ = 2 mrad. So we could see

that the beam was not collimated.

The results of both configurations are resumed in the following Table 6.7.

Table 6.7.: Results of the two possible configurations for the collimation. In the table the two
configurations are represented. For each configuration, we state the distance D
between the focusing and the collimation lens, the position where the collimated
TH begins until it ends relative to the collimation lens and the length of this
collimation, the waist during this collimation, and the divergence angle.

Distance D /mm Collimation /mm Waist /µm Diver. /mrad

f1 to f2 Initial Final Length Initial Final ∆ Waist θ

153 410 590 180 2076 2115 ∼ 40 0.24

156 280 360 80 1375 1190 ∼ 160 2

In Appendix B, there is a compilation of the images obtained for these two configura-

tions[23],

6.5 Discussion
In this part of the thesis, we covered the creation of a Top Hat profile from a Gaussian

beam with a DOE, and explored a way to collimate it. In this section, we shall discuss

the results found and their implications.

Top Hat
For the TH, we focused on the experimental setup and creation of the profile and the

analysis of its resemblance to a squared homogeneous profile.

In principle, the experimental setup seemed relatively simple. We could effectively

obtain a TH with only two lenses: a DOE and a focusing system. However, getting a

23. Images gathered by Rebecca Schmieg.
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beam that matched the specifications of the DOE and the alignment of the lenses was

demanding. Imperfections in the collimation and the size of the input beam impaired

the homogeneity of the profile. Any misalignment caused a redistribution of the power

leading to an increase in the inhomogeneity of the profile. Precise alignment and

iterative optimisation of the placement of the optics were therefore required.

Alignment had to be taken into account when sizing the profile, too. Not having

rotational symmetry made the analysis of the profile more cumbersome. The model

created was prepared for a squared profile aligned with the x-y axes. The size is

determined by averaging the pixel where the TH starts and ends in each row. For

rotated TH (e.g. diamond), the pixel where the TH starts, and end are different since a

square is not rotational symmetric. Thus, the horizontal and vertical waist obtained

would not fairly represent the TH. The graphical representation and the comparison

in 2D and 3D (see Figure 6.10 and Figure 6.11) are modelled from the data obtained

from the profile. Therefore, its representation will not be a fair depiction either.

Regarding the quality of the TH, we have seen in Table 6.4 that the STD of three

random slices inside the profile was at least 1.5 times smaller when compared with

a perfect TH than with a Gaussian. In Table 6.5 we have seen that the STD of the

whole profile compared with an ideal TH was 1.74 times smaller than compared to a

Gaussian. That indicated that our profile resembles more a TH than a Gaussian.

To further improve the quality of the TH (i.e. enhance homogeneity), we will need to

check the quality of the input beam. Not having a perfect input beam, well collimated,

with the required size and without ellipticity, will lead to inhomogeneity in the intensity

distribution of the squared TH. Furthermore, the more lenses the beam crosses, the

more imperfections are introduced to the beam (e.g. by optical aberration).

Finally, it should be noted that from Table 6.2, it can be seen that the creation of the TH

profile is very sensitive to the distance after the focusing system. We can see that in a

range of 3 cm, we went from the convex profile (pre-TH) to dog-ears profile (post-TH).

The TH is maintained less than 3 cm.

Collimation
For the collimation, we see that we could collimate the beam by just adding a collima-

tion lens. However, we obtained two interesting results. With one, the collimation was

better, but its waist and position did not match the program’s predictions. Then, the

other matched the position and waist predicted by the program, but the collimation

was worse.
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For future experiments, the best configuration is the first one (D= 153 mm in Table 6.7).

First of all, the new cell that will be implemented in the single-photon experiment will

have a length of 80 mm. We would expect, then, collimation that exceeds that length.

For the second case, D = 156 mm, we see that the collimation is maintained less than

80 mm, so this would not be a suitable option. Even though we know where it will be

created and its waist.

The problem of the configuration that provides the good collimation is that the profile

seems to have a lower intensity distribution in the corners. The cause and solution to

these fainted corners remain to study in the future development of the collimation. A

first guess would be that the input beam is not exactly 4 mm or that the input beam

presents some ellipticity and its horizontal and vertical waist are not exactly the same.

To overcome the problem of the unknown waist and position of the collimated TH, it

will be necessary to try the setup beforehand with the same laser we are going to use

but without the rest of the experiment. Then, the location and size of the TH need

to be checked. Once we know the distance of the two lenses to create the TH and

the position where the TH is collimated, it would be ready to be implemented in the

experiment. First, the distance between the focusing and the collimation lens would

be fixed, and then the lenses placed at the correct separation from the cell to ensure

the TH appears in the region where the cell is. As the distance between the DOE and

the focusing lens is not critical, the beam shaper could be placed in any suitable place

before the collimation system.
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7Conclusion and outlook

This thesis aimed to implement a method to reshape a fundamental Gaussian beam

to a squared profile with a homogeneous distribution of the intensity and collimate

that profile to be used in the next iteration of the on-demand single-photon source as

presented in [5].

On the new setup proposed for the single-photon experiment, the cell cavity will be

removed, and replaced by a new larger cell, more precisely, one with a length of 80 mm
and a cross-section of 2 × 2, 3 × 3 or 4π mm2. With the cell characterisation, we have

proved that the fabricated cells of these dimensions have an atomic density of the

order of ρ ∼ 1016 m−3 at room temperature (Na ∼ 1010 − 1011 atoms), a transmission

above 95% and depopulation times of between 5 to 20 ms. Moreover, we can expect

up to double this time for the decoherence time T2. Which will be at least an order of

magnitude higher than the microcell used in the old setup (Told
2 =2 ms [5].)

For the main part of this thesis, a Top Hat profile was implemented. In section 6.3, we

successfully demonstrated the viability of obtaining a TH with a DOE and a focusing

system. In section section 6.4 we collimated the TH with a magnification factor by

adding an additional lens.

The result obtained in the collimation and the collimation process itself need further

studying since we observed a discrepancy between the obtained and expected result

(see section 6.4). Two possible configurations have been obtained to collimate the

beam. However, for implementing the TH in the single-photon experiment, only the

collimation with the separation between the focusing lens and the collimation lens D

= 153 mm provided a collimation long enough (along ∼ 180 mm). The collimation

provided by the other configuration (along ∼ 70 mm) was not long enough to cover

the whole cell (80 mm).

The homogeneity of the intensity and the increase of the filling factor introduced with

the Top Hat should speed up the motional averaging. Therefore, the next step in the

investigation will be to see if, indeed, with the TH beam, the motional averaging is

accelerated and the broadband contribution of the ‘write’ spectrum decreased. Leading

to an improvement of the write efficiency, meaning the ratio between coherent write

and total spectrum. For the cells with round channels, a beam shaper with a rounded

flat profile shall be tried.
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ARay transfer matrix analysis -
ABCD matrix formalism

As described in [58], under the paraxial approximation, any optical transformation

to a light ray (entering a surface, reflecting on a mirror, crossing a lens, etc., even

travelling in a medium) can be described as a 2x2 matrix transformation applied to a

vector that describes the incident light. These matrices are the so-called ray transfer
matrices. The light vectors are composed of two components, the transverse coordinate

of the ray y and the angle at which the beam enters the system θ.

Under the paraxial approximation, the relation between two rays (y1, θ1) and (y2, θ2) is

linear and can be written as

y2 = Ay1 +Dθ̂1

θ̂2 = Cy1 +Dθ̂1
(A.1)

In matrix notation y2

θ̂2

 =
A B

C D

y1

θ̂1

 (A.2)

Where the ABCD matrix describes the transformation. Some examples of these matrices

are [58]:

• Propagation through a free space d of index n

S =
1 d

n

0 1

 (A.3)

• Propagation through a lens with focal distance f

L =
 1 0

− 1
f

1

 (A.4)

• Reflection of a mirror with effective radius Re

The effective radius is defined as Re = Rcosϕ where R is the radius of curvature
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Figure A.1.: Representation of ray transfer analysis. The grey box represents any optical
transformation.

and ϕ is the angle of incidence.

M =
 1 0

− 2
Re

1

 (A.5)

Different transformations might be taken into account at the same time. For example,

the transformation of a beam travelling a distance d1, crossing a lens with f1, and

travelling a distance d2 can be represented as

y2

θ̂2

 = S2L1S1

y1

θ̂1

 (A.6)
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B
Collimation images

Images of the two collimation approaches described in section 6.4.

1. Collimation setup where the distance between the focusing lens and collimation

lens isD = 153 mm. In this approach, the TH waist does not match the predictions

at the EFL, and the collimation of the beam is noticeable. In 180 mm the TH waist

changes ∆w ∼ 40 µm.

2. Collimation setup where the distance between the focusing lens and collimation

lens is D = 156 mm. In this approach, the TH waist matches the predictions at

the EFL, and the convergence of the beam is noticeable. In 70 mm, the TH waist

changes ∆w ∼ 160 µm.

B.1 D=153 mm

(a) d = 330 mm, w = 2066 µm (b) d = 370 mm, w = 2075 µm
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(a) d = 410 mm, w = 2076 µm (b) d = 440 mm, w = 2083 µm

(c) d = 480 mm, w = 2088 µm (d) d = 520 mm, w = 2089 µm

(e) d = 560 mm, w = 2105 µm (f) d = 590 mm, w = 2115 µm

Figure B.2.: Collimation of the TH with a separation of 153 mm between the focusing lens
and the collimation lens. In the plots d is the distance where the image was taken
in respect to the collimation lens, and w is the parameter that represents the
squared waist of the profile (wT H = w × w)
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B.2 D=156 mm

(a) d = 270 mm, w = 1410 µm (b) d = 290 mm, w = 1348 µm

(c) d = 310 mm, w = 1300 µm (d) d = 320 mm, w = 1260 µm

(e) d = 340 mm, w = 1210 µm (f) d = 360 mm, w = 1190 µm

Figure B.3.: Collimation of the TH with a separation of 156 mm between the focusing lens
and the collimation lens. In the plots d is the distance where the image was taken
in respect to the collimation lens, and w is the parameter that represents the
squared waist of the profile (wT H = w × w)
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