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0. Abstract

In this thesis, I combine probabilistic inverse problems with Markov Chain Monte
Carlo algorithms and informed proposal Monte Carlo algorithms to estimate the
posterior probability distribution of two different experiments. The first experiment
I investigate is a box experiment, where I consider gravity data from a buried box,
which I sample with a Markov Chain Monte Carlo, and an Informed proposal Monte
Carlo. The second experiment is an acoustic wave reflected on a wall experiment,
where I combine both methods once again to sample the thickness of two alternating
layers inside the wall. Both experiments are supported by clear representations to
obtain overview of the the content. I generate all observed data by knowing the
forward function and the model parameters, and I sample the model parameters
with inverse problem theory. Due to the modelization error, the informed proposal
algorithm performs the sampling incredibly faster, compared to the blind Markov
Chain Monte Carlo algorithm. In the box experiment, the Informed proposal Monte
Carlo algorithm performs the sampling with 200 times less iterations compared to
the Markov Chain Monte Carlo, and in the acoustic wave experiment the Informed
proposal performs the sampling with 1000-1500 times less iterations compared to the
Markov Chain Monte Carlo.
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1. Introduction

As there is an increasing interest and progress in the development of algorithms
in technology, scientists must be innovative in speeding up the advancement of an
algorithm. One of the things that can contribute to this process is the implementation
of informed algorithms. Compared to blind algorithms, informed algorithms have
proven to perform incredibly faster due to the information an informed algorithm is
given.
Ever since the discovery of a Monte Carlo algorithm, it was realized that sampling
algorithms could lead to fantastic scientific developments within research of inverse
problems and geophysics, for example, reservoir characterization investigation for
creating geological models. with the purpose of gaining all the knowledge available
about the parameters of the earth, the probabilistic inverse problems are used and
the uncertainty analysis is performed.
For now the informed algorithms are a field of computational physics which attracts
vast efforts and investments since it would enable us to solve more complex problems
much faster, and it would minimize the delay in technological instruments using the
algorithm.
In the daily use of an informed proposal algorithm, more intelligent technology could
be developed. For example, instruments using an acoustic wave towards a building
wall to measure the distance between the layers inside the wall with no delay in obtain-
ing the results. This experiment has been investigated in this thesis, and furthermore,
an experiment imitating a box structure inside the earth has been investigating. Both
experiments have been solved with a blind Markov Chain Monte Carlo algorithm and
an Informed Proposal Algorithm. Finally, the results are compared and the speed up
process has been investigated.

1



2. Inverse Problems

The way of working in geophysics is sometimes opposite from the classical way of
working in physics. Especially, when inner earth physics is investigated. This means
that we in geophysics sometimes need to describe the earth with mathematics in an
inverted way, and it can be either inversion or parameterization. In this process, we
wish to obtain a group of model parameters which we call m. The model parameters
m are obtained through a function f . E.g the function f describes a mapping of the
structure of the earth. This leads to a very simple equation.

m = f(m) (2.1)

Furthermore, it is important to remember that data is hugely important for any
investigation in physics. Data is a set of numbers that describes the connection
between our physical system, our measuring tool, and the way we choose to measure.
Data used in inverse problem is called the observed data since it comes from an
observation. Our observation is what is used to find our desired model parameters.
Since the model parameters is not measurable, they are strongly desired to estimate,
and it is done through inverse problem theory. This leads to the formulation of the
inverse problem which can be described as:

dobs = g(m) (2.2)

Where dobs is the observed data, m is the model parameters and g is the transfor-
mation operator, which transforms the data from the model space to the data space.
Furthermore, it is desired to estimate the model parameters m.
Two ways of working with inverse problems are highly used. The fist one is the deter-
ministic approach and the second one is the probabilistic approach. The probabilistic
approach is briefly explained in this section, and further explained later in section
3.3, when sampling the pobability density is explained. In deterministic approaches,
the minimization between the observed data and the result obtained from theoretical
calculations are used. from the minimization one final model is produced, and often
it describes the "best achievable model". The deterministic approach has limitations,
and the limitations are due to the non-uniqueness of the solution obtained and due
to sensitivity to possible errors. Examples of this, could be regularization methods
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such as Tikonov regularization.

In most geophysical experiments, we encounter non-linear problems. However,
linear inverse problem also occur. For this thesis, the non-linear problems will be the
main focus. This leads to a statistical approach for estimating the model parameters.
From statistics, the most powerful equation is the Bayes Theorem, and it describes
the probabilities of an event which can be updated by giving the occurrence of a rel
event. This could be described as the probability of event m giving the event d:

f(m|d) = f(d|m)f(m)
f(d) (2.3)

Where f(m|d) is the posterior, f(d|m) is the likelihood and f(m) is the prior. The
definition of conjunction of information can be used to state that in the joint space
D ×M we get:

σ(d,m) = (ρ ∨ θ)(d,m) = ρ(d,m)θ(d,m)
µ(d,m) (2.4)

Equation 2.4 is the Information Theory Formulation described by Tarantola-Valette
in 1982 (Tarantola, 1982). Furthermore, it is evident that σ(d,m) is the posteori,
ρ(d,m) is the prior and θ(d,m) is the forward density function. Additionally,
µ(d,m) is the null information density function. Now we can use the assumption that
µ(d,m) = µ(d)µ(m) which states that µ, as the homogeneous probability distribution,
denotes a probability proportional to the volume of each region d and m. Furthermore,
the solution to the inverse problem can be defined as the probability density function
and the likelihood function. By knowing that, the posterior probability distribution
is obtained.

σ(m) = kρm(m)L(m) (2.5)

The likelihood function L(m) describes the connection between model parameters
and observed data and will be further explained in the implementation section 3.2.

2.1 Blind Algorithms
In general, a lot of algorithms can be used for mathematical simulations and

sampling. Examples of this could be the Monte Carlo, Genetic algorithms, etc.
These types of algorithms can be defined as blind algorithms. This is due to the
characteristics of the target probability distribution which we do not consider in the
process of constructing the algorithm and the sampling process. This means that the
blind algorithm just considers the input and the output data from an optimization
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"black box", and no additional information about the target distribution is provided
to the algorithm (Khoshkholgh et al., 2021b). The blind algorithm is the opposite of
an informed proposal algorithm, which is going to be used and constructed for this
thesis.

2.2 No-free-Lunch Theorem
Two types of algorithms can be defined based on the information they are provided.

The two types are called blind algorithms and informed algorithms.
Additionally, information about the blind algorithm can be added in terms of a
formulation based on the usage of an oracle. An oracle is a type of function that is
used to evaluate the target distribution f at a given point x. The blind algorithm
uses a more heuristic method to solve problems since the oracle is used as a "black
box" for the algorithmic search. Examples of blind algorithms are Genetic algorithms,
Neural networks and the simple type of MCMC algorithms.
As mentioned earlier, the other type of algorithm is an informed algorithm. An
informed algorithm also uses an oracle, however, the oracle uses known external
properties of the function f to guide or improve the sampling from the function f.
The No-Free-Lunch theorem states that the average efficiency of all blind optimization
algorithms is exactly the same for all optimization problems. This means that a
certain algorithm can be more effective for a specific problem, however it will not be
more effective for other problems. This is due to the reason that the average efficiency
of all optimization algorithms is similar when dealing with all available problems.
Additionally, the No-Free-Lunch theorem states that if an informed algorithm is used
considering features of the desired target distributing it will be more effective than
blind algorithms (Mosegaard, 2012).
The Informed algorithm is the topic of investigation in this thesis, and more specifically,
the informed proposal algorithm is desired to construct and use for performance
investigation. The main purpose is to investigate if the informed proposal algorithm
uses less iterations than a blind MCMC algorithm. All steps used to create the
transition from a blind MCMC algorithm to a informed proposal algorithm will be
explained and the needed approximations will be introduced and shown graphically.

2.2 No-free-Lunch Theorem 4



3. Monte Carlo methods

The Monte Carlo method is a simple technique used to solve problems with high
complexity. The name of the Monte Carlo method is often associated with the
randomness from the casino houses in the district of Monte Carlo in Monaco. This
association is not truly incorrect since the Monte Carlo method is based on randomness,
for example, randomness in gambling.
A more specific definition is that the Monte Carlo method is a random evolving
process that samples what we call the probability density. This sampling is recognized
by performing a random walk in the desired space. This means that the Monte Carlo
process is a numerical process that produces pseudo random numbers. These pseudo
random numbers are series of numbers that appear randomly if they are tested with
a statistical test. A central part of the Monte Carlo process is the generation of
pseudo-random numbers which in most cases are used as a uniformly distribution in
the interval from 0 to 1. This process transforms the pseudo random numbers into
pseudo random samples (Sambridge and Mosegaard, 2002).
For inverse problems, we might encounter a situation where the physical relation
between model space and data space is non-linear. This means that the posterior
probability density function is non-Gaussian, and the posterior probability density
function that cannot be estimated from a linearization method. A Monte Carlo
method is preferable to use to obtain satisfying results for this case. (Sambridge and
Mosegaard, 2002). Additionally, the use of the Monte Carlo method will provide
uncertainty information for the posterior probability density function which can be
used to estimate the model parameters of the inverse problem.

3.1 Markov Chain and Burn in phase
To find feasible solutions for the posterior distribution, we need simulation based

methods. This is due to the intractable behavior of the posterior distribution. To
do this, Markov Chain Monte Carlo (MCMC) can be a good choice of simulation.
The Basic idea behind the implementation of the MCMC is an interplay between
proposals and rejections.
The Markov chain process uses a random walk process since the probability of moving
from a point xi to a point xj in the space χ in a given step is independent of the
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precious path travelled. This leads to the definition of conditional probability distribu-
tion Pij(xi|xj) of visiting xi given that the previous point visited was xj (Sambridge
and Mosegaard, 2002).

One of the most important properties of the MCMC simulation is to take the
burn-in phase into account. This means that often we need to discard some of the
initial states of the simulation since these states are not representative of the desired
distribution needed for the sampling. This means a large amount of the first iterations
can be useless results. This is due to the fact that the simulation chain has not
reached the desired stationary distribution. This is, as mentioned before, the burn-in
period of the Markov Chain Monte Carlo. For some physical problems, this type of
simulation can be time demanding and computationally expensive. The interest and
motivation of this thesis is to investigate if the burn-in phase can be minimized as
much as possible by gaining information from mathematical steps and "give" that
information to the algorithm. This is what we call the informed proposal Monte
Carlo, and in this type of algorithm the Markov Chain process is eliminated from the
sampling process.

3.2 Implementation of MCMC for an inverse problem
The implementation of the MCMC sampler contains a probabilistic formulation

in order to construct a posteriori probability density. The posteriori is the prior
multiplied with the likelihood (Mosegaard and Tarantola, 1995).

Posteriori probability density

σ (m) = ρ (m)L (m)
µ (m) (3.1)

A priori probability density

ρ (m) = const exp
{(

−1
2 (m − m0)T C−1

m (m − m0)
)}
, (3.2)

Likelihood function

L (m) = const exp
{(

−1
2 (dobs − g (m))T C−1

d (dobs − g (m))
)}

(3.3)

Both co-variance matrices Cm and Cd are assumed to be diagonal with a standard
deviation respectively. The homogeneous probability density function µ (m) is assumed
to be constant and therefore not implemented as it would cancel out in calculation
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of acceptance probabilities. Furthermore, instead of using the ρ (m) and L (m) as
they are defined above, the implementation uses the logarithms of both functions to
increase numerical stability.

Algorithm 1 Basic MCMC algorithm For an inverse problem
1: Choose: m0 and set m0=mcur

2: Perturb: mper = mcur + (2u− 1)step
3: Compute: ρ(mcur) and ρ(mper)
4: Compute: L(mcur) and L(mper)
5: Compute: pacc = min(1, ρ(mpert)L(mpert)

ρ(mcurr)L(mcurr))
6: Generate: Random numbers u: 0 ≤ u ≤ 1
7: if u ≤ Paccept then
8: accept mper

9: end if
10: if u > Paccept then
11: Reject mper

12: end if
13: return to 2

By looking at algorithm 1, it is possible to write up the way of sampling the
posterior model distribution. According to algorithm 1, we start by choosing a starting
model m0, and we define mcurr which is the current model parameter opposite to
the perturbed model parameter mpert. The basic idea is that mcurr is perturbed
by replacing one parameter in the current model. That parameter is chosen as a
randomly proposed value or as a sequentially chosen value. For the basic example,
the sampling is done by generating a uniformly random distributed value u. For the
basic example, this value is chosen between 0 and 1. This leads to the principle of
the perturbation:

mpert = mcurr + (2u− 1)epert (3.4)

where epert is the direction of perturbation expressed as a unit vector. epert denotes
that only one direction coordinate is perturbed at a time. We remember that if u is a
random number between 0 and 1 then 2u− 1 is a random number between -1 and 1.
Now ρ(m) and L(m) is calculated as shown in equation 3.2 and 3.3. This is done to
calculate the acceptance probability which is given from the Metropolis criteria:

pacc = min(1, ρ(mpert)L(mpert)
ρ(mcurr)L(mcurr)

) (3.5)

The next step is to calculate a random number u between 0 and 1 in order to make the
algorithm decide if the perturbation of the current model is accepted or rejected. This
means that mpert is accepted if u <= pacc and mcurr = mpert. Furthermore, mpert

is rejected if u > pacc and the algorithm starts over, and the mcurr is used during
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the next iteration once again. In general, an acceptance rate between 30-70 percent
accepted models is a well performing MCMC algorithm (Mosegaard and Sambridge,
2002).
Additionally, it is important to remember that it is numerically preferable to work
with logarithms of probability functions or likelihood functions. This is due to the
possibility of getting a results too close to zero that we risk by computational round
off . This can result in making the algorithm move around in low probability areas,
unable to know the desired direction. This means that the actual implementation is
done with the logarithm of the likelihood function, and then calculate the exponential
function of the acceptance probability according to equation 3.5. When the algorithm
is done running, a sequence of vectors are generated, and the idea is that the numbers
generated in the vector are oscillating around some average after cutting the burn-in
phase away. We remember that the output are solutions that fit the data within
the error bars. Additionally, it produces samples from the posteriori probability
distributions σ(m) = ρ(m)L(m). We remember that the sampled solutions are the
probability distribution which can be characterized by computing properties from the
sample.

3.3 Sampling the probability density

Figure 3.1: Basic principle of the sampling with a probability density (Mosegaard, 2006).

By looking at figure 3.1, a 2D space representation of two peaks are shown. The
area of the two peaks are a probability density assigning higher probability to the dark
area. The posterior probability is the desired probability according to formula 3.1.
The posterior probability is the final output estimated from the probabilistic inversion
scheme. The posterior probability is estimated with a Monte Carlo algorithm since
no closed formula solution exits for these non-linear inverse problems. Instead an
algorithm is built that visits points in the space with a density proportional to the

3.3 Sampling the probability density 8



probability density. By looking at figure 3.1, a representation of the sampling is
shown according to the two probability densities. These sampling methods are called
the probabilistic methods in contrast to the deterministic method. As mentioned
earlier, the solution to the probabilistic method is a sampling of the posterior. An
advantage of the Monte Carlo method is that the method will not search for only
one peak but for solutions/samples throughout the desired area, since the probability
density is used to decide the area of the sampling. Figure 3.2 shows the sampling of

Figure 3.2: Basic principle of the sampling with a probability density. The points rep-
resent the sampled probability density as a multi-modal target distribution.
(Mosegaard, 2006).

the posterior probability density as generated points proportional to the probability
density. The samples generated are information about the probability density, and
it can be used for uncertainty analysis. Mostly, integrals can be used in the model
space to find properties of the sampling. For the case in figure 3.1 and figure 3.2, a
multi-modal distribution is evident. For a multi-modal distribution, an expectation of
the samples is not very informative. However, other integral based statistical analysis
could contribute to obtaining useful information about the posterior.

3.3 Sampling the probability density 9



4. Informed Proposal

4.1 Using information derived from an approximate
forward relation

Initially, we consider the general expression for the joint posterior probability in
the formulation of Tarantola and Valette (1982) (Tarantola, 1982):

σ (d,m) = ρ (d,m)L (d,m)
µ (d,m) (4.1)

In this equation d is the data, and m are the model parameters. ρ (d,m) is the
prior probability density, and µ (d,m) is the homogeneous probability density. The
expression θ(d,m) describes the ”uncertainty of the forward relation” between m and
d. Now it is possible to assume that the homogeneous probability density µ(d,m) as
well as the marginal prior in the model space ρm(m) are constant. By making this
assumption, we can write an expression for the joint posterior.

σ(d,m) = kρ(d)θ(d,m) (4.2)

In this equation, k is the normalization constant. Furthermore, it is assumed that the
observed data has a small uncertaincy compared to the modelization errors. Addi-
tionally, it should be remembered that, at small data uncertainties, we obtain MCMC
algorithms showing a critical slowing-down. Now we can write up an approximation
to the posterior in the model space

σm(m) ∝ σ(dobs,m) ≈ θ(dobsm) (4.3)

Equation 4.3 is a rough approximation to the posterior in the model space. This
approximation will be used to speed up the sampling of the MCMC algorithm to
obtain the true posterior. Now the basic idea is to use the solution to the inverse
problem with simplified physics according to the section of the approximate forward
model. We call the approximate model m. The deviation of this from the true
solution is what we call the (true) modelization error δmtrue. This modelization error
is desired since, if obtained, we can use it to build the desired modelization error
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distribution θ(dobs,m). Now the steps for creating the informed proposal MCMC wil
be stated. We must remember that we do not know the true solution for the real data
inverse problem. Furthermore, the calculation of the error δmtrue is not possible since
mtrue in unknown. We remember the idea of using information derived model from
an approximate forward relation. Additionally, we wish to create an artificial inverse
problem that is an approximation to the original problem. For this approximation,
we can write up the approximate modelization error δmapprox. The main point here
is that we construct the approximate problem close to the real problem which makes
δmapprox close to δmtrue.

• Simplified forward model The intention is to create a simplified forward model
g̃(m). The forward model expresses most of the relevant physics. In this case,
the simplified forward model is a box constructed from a sphere with estimated
gravity anomely based on a traditional gravitation model equation 6.3.

• "Pseudo inverse" In this step the pseudo inverse h is used to estimate the solution
m̃ = h(dobs). m̃ is the simplified model with acceptable data fit. Furthermore,
the pseudo inverse h must give a unique answer. This unique answer can be
obtained from a regularization technique.

• Modelization error The modelization error is estimated by using g̃(m) instead
of using the the regular forward function g(m). The distribution θ(dobs,m) is
used to estimate the modelization error. We remember that this error is an
approximation to the posterior σm(m). We define the true modelization error
as

δmtrue = m̃ − mtrue (4.4)

As mentioned earlier, mtrue is unknown so we can rewrite equation 4.4 to

δmtrue = h(g(m̃)) − m̃ (4.5)

Equation 4.5 states a trivial but important property of the modelization error.
It states that the equation estimates what the modelization is if m̃ had been
the true model. Furthermore, if m̃ is close to mtrue, it must be reasonable to
state that δmapprox will be close to δmtrue.

• New proposal distribution Now a new approximate modelization error distri-
bution is obtained and used as proposal distribution.

q(m’|m) = θ(dobs,m) (4.6)

4.1 Using information derived from an approximate forward relation 11



When the probability function q is obtained, the informed proposal can be provided
to the algorithm. The function q will be explained later when the implementation of
the information derived from an approximate forward relation is made (Khoshkholgh
et al., 2021b) (Khoshkholgh et al., 2021a).

4.2 Sampling with informed proposal
An informed proposal Monte Carlo algorithm is useful as it reduces the number

of iterations by using mathematical steps to gain useful information for the basic
Monte Carlo. In principle, highly non-linear problems with a high number of model
parameters can be solved with the cost of only a few number of extra iterations. As
mentioned earlier, the first and second order approximations in algorithm 2 refer to
the modelization error.

Algorithm 2 Implementation of IPMC algorithm
1: Estimate: m0 as the first order approximation.
2: Estimate: m1 as the second order approximation.
3: Compute: u as a random number between -1 and 1.
4: Compute: mpert = m0 · 3 · u · std(m0,m1).
5: Compute: pacc = σ(mpert)

σ(mcurr)
q(mcurr)
q(mpert) .

6: Generate: Random numbers u: 0 ≤ u ≤ 1.
7: if u ≤ Paccept then
8: accept mper

9: end if
10: if u > Paccept then
11: Reject mper

12: end if
13: return to 3

By looking at figure 4.1, the true posterior σ is shown to the left and the informed
proposal q is shown to the right. The name of q is the proposal distribution. Typically
the proposal distribution is given by the following notation as expression 4.7. The
expression denotes the probability of taking a step to point mn+1 given the point mn

is the current point which means the probability of making a perturbation.

q(mn+1|mn) (4.7)

The informed proposal is an approximation to the true posterior. In most cases, the
informed proposal is a normal distribution centered in the first order approximation
with a width corresponding to three times the standard deviation between the first
and the second order approximation. Three times the standard deviation is only
used for this thesis. Normally, it would be considered as a reduction of guidance

4.2 Sampling with informed proposal 12



when the multiplication of a natural number is multiplied with the perturbation. The
dimensions of the normal distribution corresponds to the number of model parameters
that the experiment contains. The proposal distribution is the equation that proposes
new steps to sample without bias, as shown i figure 4.1. Furthermore, q is explained
in equation 4.6. The equation q can be written as:

q(mn) = kexp(1
2((mn) − m1)C−1((mn) − m1) (4.8)

This leads to an extension of the acceptance probability. In a basic MCMC algorithm,

Figure 4.1: A true posterior and an approximate informed proposal is shown. The proposal
q is used to the acceptance probability of sample without bias (Mosegaard).

the acceptance probability is estimated from the posterior of the current and the
perturbed model. However, for the informed proposal Monte Carlo, the modelization
error is calculated as equation 4.8 . The new acceptance probability is given by the
following equation.

pacc = σ(mn+1)
σ(mn)

q(mn|mn+1)
q(mn+1mn) (4.9)

An important difference between the IPMC and the MCMC algorithm is that, in the
MCMC algorithm, each proposal is dependent on the last since it is a Markov Chain
process. However, in the IPMC algorithm, each proposal is independent of the last
step. This leads to the following reduction for the IPMC algorithm.

pacc = σ(mn+1)
σ(mn)

q(mn)
q(mn+1)

(4.10)

Multiplying with the proposal distribution q in equation 4.10 secures no bias to
the sampling since q is used to point where the IPMC is supposed to sample. In
the actual implementation of the proposal distribution q, the logarithm is used to
secure numerical stability. This leads to an even more simple expression with the

4.2 Sampling with informed proposal 13



difference of the current model and the perturbed model. The detailed explanation of
this implementation is explained in the relevant section. One of the most important
properties of this acceptance probability is that it guarantees that in the limit where
the number of models N → ∞, the posterior distribution σ(m) will be correctly
sampled. Another main property of the proposal distribution is that the choice of
proposal is fairly optional. Most important, is that equation 4.10 is well defined for all
perturbed models. However, no knowledge of σ is known before the sampling which
limits the choice of q.

4.2 Sampling with informed proposal 14



5. Box Experiment

The first relevant example to study is the gravity box experiment. This experiment
is constructed by analysing the gravity anomaly over a box. The gravity anomaly
is used as observed data for the Monte Carlo algorithm later with the purpose of
estimating the desired model parameters for the box.

Figure 5.1: This figure shows the principle of the gravity anomaly over a buried box. The
box imitates a reservoir desired for characterization, and the 3D curve shows
the observed data. Adobe illustrator is used to generate this representation.

The idea of the forward function of this experiment is to consider the gravitational
attraction of a prism(Bongiolo et al., 2013). The principle of Newton’s law of attraction
between two bodies is used since the two masses are inversely proportional to the
square of the difference between them. Instead of considering the masses, the corner
points of the prism can be used to estimate the gravity anomaly of the prism. The
gravity anomaly can be estimated according to the formula 5.1 as the integral over
vertical components of the potential field. Furthermore, ai,bj and zk are the corner
points of the squared box used for gravity estimation.

gz = γρ
∫ a2

a1

∫ b2

b1

∫ z2

z1

zdzdydx
r3 (5.1)

This can be rewritten to the desired forward function as a discrete triple sum

gz = γρ
a2∑
a1

b2∑
b1

z2∑
z1
s(zk tan−1 aibi

zkRijk
− ailn(Rijk + bi) − biln(Rijk + ai)) (5.2)
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Rijk is an array including all distances from each grid point generated to the corner
point of the prism and is given by:

Rijk =
√
a

2
i + b

2
j + z

2
k (5.3)

and s is an array consisting of -1 and 1.
For this example, only two transverse points are constructed, since two transverse
points are coordinate representative for all eight corner points of a box. The discrete
gravity anomaly can be estimated as the sum of the edges of the box with distance
Rijk as the distance from the measure grid point to the corner point of the box.

5.1 Non-linearity of the Inverse Problem
Since the natural logarithmic part of equation 5.2 can be simplified as follows:

∆gj ∝
Nx∑
i=0

ln [fi (x,m|j)] = ln
[

Nx∏
i=0

fi (x,m|j)
]

≡ ln [f ∗(x,m)], (5.4)

with f ∗(x,m) being a rational function. Trivially, the natural logarithm of a rational
function is non-linear. Furthermore, ∆g is proportional to a part in the equation
containing the inverse tangent function. We remember that the inverse tangent
function is non-linear.

5.2 Markov Chain Monte Carlo sampling
Before the Monte Carlo method is used on the box experiment, we wish to decide

the properties of the desired box. To keep the experiment simple, all side lengths
are of the same size. The six model parameters are used for generating the observed
data according to equation 5.2. However, after the generation of the observed data,
the six model parameters are kept unknown for the MCMC algorithm later. Two
vector representing of all six model parameters can be constructed according to two
transverse points of the box:

m1 =


−2.54
2.54
−2

 (5.5)

m2 =


2.54

−2.54
−7.08

 (5.6)
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The sampling is done without a prior. This means that the sampling is done with
only a likelihood function as given in equation 3.3. Herewith the posterior consists of
only the likelihood function and a constant prior equal to 1. The six model parameters
are estimated by running the MCMC sampling for 40,000 iterations. It means that the
two x, the two y and the two z coordinates of the box are estimated, from uncertainty
analysis of the posterior, by giving the algorithm the gravity anomaly data as the
observed data. The sampling is done with 40,000 iteration and a step size of 0.3.
The acceptance rate is around 62 percent as denoted in figure 5.4. The perturbation
is done for one model parameter per iteration. The model parameters perturbed
are chosen randomly due to the concept of figure 5.2. Two parameters are created;
Random Perturbation and Random Index. The parameter, Random Perturbation
can go from 1 to 3, and the parameter Random Index can go from 1 to 2. In that
way, 6 different outcomes are possible and chosen randomly. The random outcome
decides which model parameter is perturbed. The Python code made for producing
the simulation is shown in appendix section 12.1.

Figure 5.2: A flow chart for the possible outcomes chosen randomly. The outcome decides
which model parameter is perturbed. The two x, the two y and the two
z parameters are collected into 3 vectors. That is why 3 different random
perturbations are chosen with its reverse of the same letter together. This
makes the random index 2.

By looking at figure 5.3 and figure 5.4, it is evident that the MCMC simulation
was done successfully. The histograms for the different parameters show a decent
distribution around the desired model parameters. The standard deviation is fairly
small, too. Furthermore, it is evident that MCMC algorithm is challenged to solve
the specific depth of the box, since a more spread out distribution is shown for the
depth parameter (the purple one). The reason is that a change in the depth does not
affect the misfit in the likelihood function as much as a change in width of the box.
A more narrow distribution for the x and y is evident compared to the distribution
of the depth. By looking further at figure 5.4, a clear burn-in phase is shown on a
normal and on a logarithmic scale of the iterations. The logarithmic scale is made to
get a more clear view of the burn-in phase.
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Figure 5.3: The six model parameter distributions sampled with a Markov Chain Monte
Carlo (MCMC) algorithm. The mean and standard deviation is denoted in the
legend for each model parameter sampled. µ1 and µ2 correspond to x1 and
x2. Furthermore, µ3 and µ4 correspond to y1 and y2. Furthermore, µ5 and µ6
correspond to z1 and z2

Figure 5.4: The curve shows convergence towards equilibrium for the box experiment. A
Markov Chain Monte Carlo (MCMC) method is used with 6 model parameters,
which means all the model parameters of the box. The orange part of the
curve shows the burn-in phase, and the red part shows the iterations after
equilibrium. The MCMC was constructed with a Gaussian proposal perturbing
one parameter at a time.
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6. Box Experiment with Informed Pro-
posal

Now the MCMC algorithm is successfully implemented according to algorithm 1,
and it was shown that it was able to estimate all the model parameters for the box
example from the sampled posterior. Now we wish to improve the performance of the
MCMC algorithm by implementing a guided version of the MCMC algorithm. The
guided version of the MCMC algorithm is called an informed proposal algorithm, and
it is based on the modelization error explained in chapter 4. We consider the same
box as before:

Figure 6.1: This figure shows the "true-unknown" box that we wish to sample with an
informed proposal algorithm. Adobe illustrator has been used for these box
representations.

Figure 6.1 shows an illustration of the box that we wish to use for estimating the
model parameters. The center of the box is placed in c =< x = 0, y = 0, z = −4.504 >.
To estimate the model parateres of this box with an informed proposal algorithm, we
wish to use the theory of an approximate forward relation.
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6.1 An approximate forward relation to the box
experiment

In order to implement an approximate forward relation, we consider point mass in
order to use a modelization error technique. The point mass example is inspired by a
classical geophysical problem about finding the depth to the top of a salt dome under
the surface layer of the earth. The idea is that the gravity anomaly can be used to
estimate the distance from the surface of the earth to the salt dome. Instead of using
a salt dome, we use a point mass inside our constructed box and finally the anomaly
is used to create a modelization error that can be used as an informed proposal to
the Marco Chain Monte Carlo algorithm.

Figure 6.2: This figure shows the gravity anomaly over a point mass. Density difference
between the point mass and the surroundings is positive, shown by the upwards
pointing gravity anomaly. This figure is generated in paint.

Figure (6.2) shows how a point mass contributes to a gravity anomaly. The point
mass is placed with a depth z under the surface and a distance x to the measuring
point. The angle between the x line and the point mass is given by θ. By drawing a
rectangular triangle, the gravity anomaly can be estimated. The gravity anomaly is
pointing upwards if the density difference between the point mass and the surroundings
is positive, and the gravity anomaly is pointing downwards if the difference is negative.
We know that the general formula for the gravity contribution by a point mass is
given by ∆g = Gm

r2 . Now we note that the x axis is placed with an angle θ to the
point mass which gives:

∆g = Gm

r2 sin(θ) (6.1)

We can rewrite sin(θ) = z
r

∆g = Gm

r2
z

r
(6.2)
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Furthermore, r2 can be written as r2 = x2 + z2 and we know that m = v∆ρ. That
gives:

∆gz = G

r2
4
3π∆ρR3 z

r
= 4

3πG∆ρR3 z

r3 (6.3)

Now we know that r3 = (x2 + z2)3/2

∆gx = 4
3πG∆ρR3 z

(z2 + x2)3/2 (6.4)

By looking at the formula above it is evident that ∆g will have its maxima or
minimum when x is zero according to a PDF distributed around the point mass. Now
we consider a box with equal side length in SI units according to figure 6.1. This
figure shows the true box with unknown model parameters. Once again the model
parameters of the box are sampled with the earlier implemented MCMC algorithm. A
Gaussian fit on the accepted model parameters is used to estimate the mean of each
model parameter. The minima of the gravity anomaly is noted and used for further
calculations. The minimum of the gravity anomaly is estimated to 3.89 ∗ 10−10 m/s2.
Now it is possible to obtain the radius in equation 6.4.

∆g = −3.89 ∗ 10−10m/s2 = 4
3πG∆ρR3 z

(z2 + 02)3/2 => R = 2.32m (6.5)

The radius of point mass is estimated to R = 2.32m. Forthermore the radius of
the point mass can be used to estimate the mass of the point mass. This is done by
using the classical mass estimation formula used for classical mechanics.

msphere = 4/3π2.32m3(−1kg/m3) = −52.49kg. (6.6)

The mass is estimated to 52.49 kg. Now it is possible to estimate the volume of the
sphere and assume that the volume of the sphere is the same as the volume of the
first order approximation to the box.

vsphere = vbox = msphere

ρsphere

= −52.49kg
−1kg/m3 = 52.49m3 (6.7)

The volume of the sphere is 52.49kg/m3. Since the box has equal side length and
must have the same volume as the sphere, then it is possible to obtain the side length
by taking the third square root.

lbox = 3
√

52.49m3 = 3.74m (6.8)
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Now that we know the side length of this first order approximation of the box, we
can construct and illustrate it. We know that the center of the box is placed in
c =< x = 0, y = 0, z = −4.504 >.

Figure 6.3: This figure shows the first order approximation to the true box

Now the first order approximation to the true unknown box is found. However, it
is of interest to estimate the standard deviation of the model parameters between
the true unknown box, and the first order approximation. This can be done by using
the same procedure once again and construct a second order approximation and
assuming that the standard deviation between the true model parameters and the
first order approximation model parameters are the same as the standard deviation
between the first order approximation of the model parameters and the second order
approximation of the model parameters. The exact same technique is used, and the
second order approximation is shown in figure 6.4

Figure 6.4: This figure shows the second order approximation to the true box

As mentioned before, the second order approximation is used to find the standard
deviation between the true unknown model parameters and the first order approxima-
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tion. This standard deviation will be used for the sampling of the informed proposal
algorithm since the informed proposal algorithm is using a perturbation where the
random generated number is multiplied with 3 times the standard deviation. Since
the boxes are of equal side length, each model parameter will have the same standard
deviation of σstd = 0.23m. Since everything needed for the informed proposal sampling
is known, we can construct the perturbation. Each perturbation step is calculated
as the model parameter corresponding to the first order approximation multiplied
with 3 times the standard deviation. Furthermore, the acceptance probability is
changed. This is done since the true posterior σ(m) and the approximate posterior
(the informed proposal) need a probability function q(mn+1|mn) to secure that the
sampling is done without bias. The acceptance probability is now given by

pacc = σ(mn+1)
σ(mn)

q(mn)
q(mn+1)

(6.9)

where n+1 denotes the perturbed model and n denotes the current model. Once
again, the logarithm of each function is used to secure numerical stability. This leads
to the following rewriting of equation 6.9

σ(mn+1)
σ(mn)

q(mn)
q(mn+1)

= elog(σ(mn+1))−log(σ(mn))+log(q(mn))−log(q(mn+1)) (6.10)

q(mn+1|mn) is given in the same way the prior is given according to the implementation
section.

q (m) = k exp
{(

−1
2 (m − m0)T C−1

m (m − m0)
)}
, (6.11)

Cm is the co-variance matrix, with the standard deviation squared in the diagonal.
The Pyhon code implementation of the IPMC for this box experiment is shown in
the appendix section 12.2.

6.2 Box Experiment with IPMC
We remember that the goal of using the informed proposal MCMC algorithm is to

test if the algorithm will improve the performance compared to the MCMC algorithm.
The improvement can be shown by plotting the burn-in phase for both algorithms
over a fixed numbers of iterations. By looking at the first order perturbation, we
see that it has starting values close to the true unknown values. By taking that into
account, we can predict that the IPMC model will do well in order to find acceptable
model parameters from the sampling. Therefore, it is expected that the burn-in phase
will be shorter for the IPMC algorithm compared to the MCMC algorithm. However,
that would not be known prior to the sampling in the real world experiment. By
looking at figure 6.5, the two samplings are shown over 40,000 iterations, for both the
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Figure 6.5: Both curves show convergence towards equilibrium of our Informed Proposal
Monte Carlo (IPMC) method and a Markov Chain Monte Carlo (MCMC)
method. The IPMC algorithm was guided by the approximations. The blue
curve shows the convergence of a simple IPMC algorithm, with the green
indicading the burn in phase and the red curve shows the simple MCMC
with a Gaussian proposal perturbing one parameter at a time, and tuned to
an acceptance rate of around 61 percent. The IPMC sampling resulted in a
acceptance rate of around 15 percent. The IPMC sampling turned out to reach
equilibrium 200 times faster than the MCMC sampling

MCMC algorithm and the IPMC algorithm. It is evident that the burn-in phase of
the IPMC is much shorter than for the MCMC algorithm. A shorter period for the
burn-in phase at around 200-300 times less iteration is evident, which is a reduction
of around 2,000 to 3,000 iterations. By looking at 6.6, the sampling distributions
of all 6 model parameters is shown. The number above each distribution denotes
the highest bar found; marked in orange. The highest bar is the model parameter
sampled that is classified as the most occurring, and it is the most accepted estimate
of the model parameter. By looking at the values, it is evident that the sampling
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finds an decent estimation of the model parameter at the value that occurs most
frequently. Furthermore, this is evident when comparing with figure 6.1. Additionally,
it is relevant to study how the IPMC algorithm behaves. A few tests were made to
study if the IPMC algorithm performed better if the perturbation "size" increased
or decreased. This means that the number which the first order approximation is
multiplied with is increased. It is evident that by increasing the value of the number
from 3 to a higher number, the number of accepted models is increased.
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Figure 6.6: This figure shows how the IPMC sampling distributes the sampling for each
of the six model parameters. The true values are shown in figure 6.1, and the
highest bar in the histograms is denoted above. The statistical analysis of the
probability density is presented in the legend outside each plot.
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7. Acoustic Wave Experiment

Now it is desired to use the MCMC method and the IPMC method on a more
advanced physical problem. The principle of the box experiment will be extended,
however, the two types of algorithm IPMC and MCMC are once again used to sample
the desired model parameters. The more advanced problem consists of an acoustic
wave. The idea is to see if a highly non-linear inverse problem can be solved by
a MCMC algorithm and improved by an IPMC algorithm. Keep in mind that a
few mathematical steps can provide a lot of information to the algorithm which
extends it to a informed algorithm. More specifically, the MCMC is improved by
using approximations of the real problem to sample the true model parameters. To
explain the new, more advanced problem, a wall constructed of different layers is
considered. The thickness of the different layers is desired to be estimated since the
thickness of the layers is the model parameters.
Imagine a building restoration project where the thickness of the layers of a wall can

Figure 7.1: Principle of the acoustic wave experiment with 4 model parameters. The wall
consists of two types alternating materials where the thickness is the desired
model parameters. Adobe Illustrator is used to generate this figure.

be estimated by using an instrument sending an acoustic wave into the wall. The
wall contains a reflectivity constant, while it is remembered that the reflecting wave
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is used as observed data. The acoustic reflectivity constant between the alternating
materials is therefore known. Since the main focus is on the optimization of algorithm
iterations, only the needed wave theory is explained for this example.

7.1 Implementation: Forward function and
Modelization error

Figure 7.2 shows the principle of a cosine Gauss Wavelet used for this experiment.
The shown wavelet is used to create the intended forward function and to generate
the observed data for this experiment. Equation 7.1 is used to construct the wavelet
wWhere N is the number of samples of the wavelet, and T is the dominant period.
Note that N/2 + 1 : N/2 means that the wavelet data is generated in from N half
plus one to N half.

ψ = cos(N2 + 1 : N2 · 2 · π
T

) · exp(1
2 · (N2 + 1 : N2 )2 · 1

2 ·N
(7.1)

Figure 7.2: This figure shows the principle of a a cosine Gauss Wavelet. 3 major peaks are
considered.

The wavelet is used to generate the observed data. This leads to a convolution
between the array containing the reflectivity constant and the wavelet. This is done
to create an array containing the desired waves inside the desired interval. The
interval used is between 1 and 2,500 in a unit-less scale. The likelihood and the prior
is constructed according to equation 3.3 and equation 3.2 in section 3.2. Once the
observed data are calculated, the sampling simulation is ready to be done. During
the simulation, the residuals are calculated as the difference between the calculated
waves and the observed data. This is done to find the misfit summed with a prior.
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We remember that this is done to find the acceptance probability in every iteration
during the simulation. Once again the simulation is done over a large number of
iterations. The choice of iterations is based on the burn in phase which means that
it is adjusted due to the "size" of the burn in phase. An iteration number of 90,000
was chosen to get a clear view of the burn in phase. Furthermore, the IPMC was
constructed since the goal is to compare the burn-in phase for the IPMC and the
MCMC algorithms. Similar to the box experiment, once again the first and the
second order approximation to the forward function was done. This time the first
order approximation is made from a de-convolution of the model parameters, and the
signal is the observed data. A de-convolution means that a wavelet is removed from
a signal, which is the opposite of making a convolution. In the process of making a
de-convolution, a matrix G is constructed from the in-build function called toeplitz
which creates a type of matrix with constant values in the diagonal. Furthermore,
Tikonov is used to generate the acoustic wave approximation:

refapprox = (GT G + ϵ ∗ I)−1(GT dobs) (7.2)

where refapprox is the desired approximation, and I is the identity matrix correspond-
ing to the size of the observed data. For the specific approach here, Matlab code 12.5
in the appendix is used.
That leads to the first figure in figure 7.3. The peaks correspond to the first order
approximation, and the first order approximation is now used for the IPMC simulation.
Since the first order approximation does not provide information on the standard
deviation between the true model and the first order approximation. Furthermore,
another de-convolution is provided, and it is assumed that the standard deviation
between the first order approximation and the second order approximation is the
same as the standard deviation between the true model and the first order approx-
imation. We remember that we obtain the modelization error by calculating the
standard deviation between first and second order approximation. This leads to an
implementation where the "true-and unknown" model parameters is sampled from
the posterior probability density function. Additionally, the prior is used, and the
function q is used to calculate the acceptance probability to ensure no bias during
the sampling.

7.2 Acustic Wave Experiment with 4 and 20 Model
parameters

The first and the second order approximations were found for the experiment with
4 and 20 model parameters. However, only the read of graphs for the experiment with
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Figure 7.3: First and second order approximation for the acoustic experiment. A de-
convolution method is used to make the approximations to obtain the desired
modelization error. The values for both approximations are found by reading
the values of the top of the highest peaks, and the standard deviation between
two corresponding peaks is used for the IPMC sampling.

4 model parameters is presented. By looking at the two approximations, it is evident
that the first and the second order approximations are close to each other, however,
they differ by around a factor of five. This leads to a low standard deviation during
the sampling and narrow sampling distributions. We remember that a low standard
deviation between the two approximation results in a higher guidance of the informed
proposal algorithm. In each perturbation, the first order approximation is multiplied
with 3 times the standard deviation, and the function q contains the covariance matrix
with 3 times the variance in the diagonal. This is done to get a larger area in which
the model parameters are sampled. Furthermore, the noise affects the area in which
the model parameters are sampled. The python code implementation of the MCMC
and the IPMC for the acoustic wave experiment is shown in appendix section 12.3
and 12.4.

By looking at figure 7.4, it is evident that the four model parameters were sampled,
and the sampling distributions are distributed fairly well around the true model
parameters. The acceptance rate of the sampling is within the intended interval of
30-70 percent. The mean of the sampling for each model parameter is presented in
the box next to the figure and the bar with most sample values has its value denoted
over the bar since both the mean of the sampling and the highest bar are relevant in
order to investigate if the sampling was done correctly. By looking at the burn-in
phase shown in figure 7.5, once again the log likelihood function is plotted. Compared
to earlier, the MCMC sampling was modified slightly. The noise, the step size and
the number of iteration were changed compared to 5.4. This was changed to obtain a
better comparison with the IPMC. It is evident that the IPMC algorithm was much
faster than the MCMC algorithm. To get the best comparison, both algorithms were
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Figure 7.4: This figure shows how the IPMC sampling distributes the sampling for each of
the four model parameters. The true values are shown and the highest pointing
bar is noted with the values above. The mean of each distribution is shown in
the four boxes outside the plot.

starter in the limit of the experiment. This means all four model parameters had an
initial value of 2,500 since the experiment is defined in the interval from 1 to 2,500,
in a unit-less scale. The informed proposal uses around 7-10 iterations to real the
equilibrium close to zero, however, the MCMC algorithm uses around 10,000 iterations
to reach the same equilibrium close to zero. The number of iterations is therefore
reduced by a thousand times for the IPMC algorithm compared to the MCMC.

Furthermore, the sampling was done with 20 model parameters. By looking at figure
7.6, once again the log likelihood is plotted to investigate the number of iteration
to obtain the desired equilibrium close to zero. Once again, the improvement is
extensive for the IPMC compared to the MCMC. The IPMC algorithm converges at
around 20 iterations and the MCMC converges at around 30,000 iterations. That is
an improvement of around 1,500 times less iterations for the IPMC algorithm.
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Figure 7.5: Both curves show convergence towards equilibrium. An Informed Proposal
Monte Carlo (IPMC) method and a Markov Chain Monte Carlo (MCMC)
method are used. The IPMC algorithm was guided by the approximations of
making a de-convolution. The blue curve shows the convergence of a simple
IPMC algorithm, and the orange curve shows the simple MCMC with a Gaussian
proposal perturbing one parameter at a time and tuned to an acceptance rate
below 70 percent. The IPMC sampling resulted in a acceptance rate of around
36 percent. The IPMC sampling turned out to reach equilibrium 1,000 times
faster than the MCMC sampling.

Figure 7.6: Both curves show convergence towards equilibrium. An Informed Proposal
Monte Carlo (IPMC) method and a Markov Chain Monte Carlo (MCMC)
method are used with 20 model parameters. The IPMC algorithm was guided
by the approximations of making a deconvolution. The blue curve shows the
convergence of a simple IPMC algorithm, and the orange curve shows the
simple MCMC with a Gaussian proposal perturbing one parameter at a time.
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8. Discussion

The Monte Carlo method is a strong choice of sampling algorithm since it enables us
to sample probabilistic problems. However, one of the challenges associated with the
use of Monte Carlo sampling is due to the highly non-linear and high-dimensional
problems which slow down the efficiency for the MCMC algorithm, and the sampling
is often more iteration consuming than first thought.

In this thesis, the main focus is based on two experiments. In the first experiment,
the gravity field over a box was considered to estimate the model parameters (corner
points) of the box from uncertainty analysis of the posterior. The second experiment
was the an acoustic wave experiment based on a wavelet used to estimate the model
parameters inside a materiel for example a wall. For both experiments, a clear
improvement was visible in the burn-in phase when a MCMC and an IPMC were
compared. For all experiments, the model parameters were estimated and showed
excellent and precise results.
We remember the main idea, when going from a MCMC to an IPMC algorithm, is
that the proposal of the algorithm is the key. The physical proposal is not resulting
from the prior constraints of the model parameters (Khoshkholgh et al., 2021b). In
general, due to the q in equation 4.8 and figure 4.1, the prior will assign a different
probability for a different solution. For a proposal it is different. We know that a
proposal only has an impact on the frequency of the presented model to the acceptance
and rejection criteria. Furthermore, when q (equation 4.8) is added to the acceptance
probability the bias of the proposal will be counterbalanced asymptotically. This
is due to a recompense in the acceptance probability. This means when a model
with high probability is proposed, the acceptance probability is decreased. This was
evident in the results of figure 7.5 and figure 6.5 since a lower acceptance rate was
evident for the IPMC compared to a higher acceptance rate in the MCMC.

It is important to remember that the acceptance rate is allowed to be below 30
percent for the IPMC algorithm. A rejection of a model is not time-consuming for
the program. However, this can be adjusted by changing the factor that decides
the area sampled away from the first order approximation. For the analysis in this
project, the sampling was done with 3 times the standard deviation between first
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and second order approximations. By looking at figure 6.6, it was, however, evident
that 3 times the standard deviation was a fairly low choice since only half of the
expected distribution seems to be visible. In figure 11.1 in the appendix, the results
of a less guided IPMC is shown. In figure 7.4, 3 times the standard deviation seemed
reasonable. We remember that multiplying the standard deviation with 3 makes the
algorithm less guided than multiplying with 1. However, the multiplication with 3
seemed necessary.

Furthermore, to construct an IPMC, we use physics to build a posterior-like pro-
posal, which we use as the first order approximation to the true problem. In that
way, we obtain information on the true problem without knowing the exact solution
and without starting the sampling of the problem. For both experiments, The box
and acoustic wave, the first order approximations turned out to be close to the
"true-unknown" models. However, the starting point for the IPMC and for the MCMC
was the same, which resulted in obtaining a more clear view of the performance of
the two algorithms when comparing them. It is evident since both burn in phases
starts at the same log(L(m)) value shown in figure 6.5, figure 7.5 and figure 7.6.
Additionally, in the process of implementing the methodology described earlier, we
add external information to an existing blind method. It is important to remember
that, we in the process of adding external information to the sampler, we create a
purely specialized algorithm which can only be used for solving a specific problem ac-
cording to the external information gained. However, the possibilities to add external
information to a sampler are open if the relevant approximations can be constructed.

In general, the MCMC and the IPMC were constructed with the goal of getting an
acceptance rate between 30 percent and 70 percent. However, the IPMC often showed
a lower acceptance rate which was reasonable due the the low cost of a rejection. The
MCMC algorithem could be tuned to have an acceptance rate within the desired inter-
val by changing the step size, noise, and number of iterations. The noise was chosen by
trial and error, and a noise around 15 times less than the maxima of the gravity peak
was chosen. The most important parameter was the step size since decreasing the
step size would increase the acceptance rate. Finally, the number of iterations needed
to be fairly large, otherwise the MCMC sampler would not find the target distribution.

Since the IPMC algorithm is not using a step size, the story for tuning the accep-
tance rate is different. However, once again the noise has an influence. The noise
was chosen to be the same as for the MCMC to get the best comparison. The space
used for the sampling was adjusted to get decent samplings. If the space for the
sampling was chosen to be too narrow, the algorithm would converge extremely slow
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towards the target distribution, and the acceptance rate would be extremely small.
This was slightly evident in figure 6.6 since a fairly small modelization error was
found. However, the results showed the desired model parameters agreeable to the
expectations. Finally, it was evident that both approximations according to both
experiments were acceptable in order to construct the informed proposal algorithm.
However, poor approximation cannot mislead the the algorithm asymptotically, but
only affect the computational time (Khoshkholgh et al., 2021a).
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9. Conclusion

In this thesis, the Markov Chain Monte Carlo algorithm has been implemented
and compared to an implemented Informed proposal Monte Carlo algorithm. Two
examples have been investigated to make the analysis; the gravity box experiment
and the acoustic wave experiment. For both experiments, the two types of algorithms
were implemented successfully, and the model parameters were estimated extremely
accurately. As expected, the burn-in phase of the IPMC was shorter than the burn-in
phase of the MCMC algorithm.
For the box experiment, an improvement of around 200 times less iterations was
obtained by implementing the IPMC algorithm. For the acoustic wave experiment, an
improvement of around 1,000 iterations was obtained for 4 model parameters and an
improvement of around 1,500 iterations was obtained for 20 model parameters. These
improvements are excellent results, and the contribution, which an IPMC algorithm
can provide to solve inverse problems is promising.
Furthermore, it is remembered that the performance of the IPMC algorithm de-
pends on the constructed external proposal which is problem dependent. The aim
is to construct similarity between the target distribution and the proposal since
this will result in higher sampling efficiency. This results in the conclusion that
this methodology can be implemented to any type of MCMC sampling algorithm if
a proposal probability density can be constructed as an approximation to the posterior.
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11. Appendix

Figure 11.1: Shows the sampling with a less guided informed proposal

Acoustic Waves Experiment
Appendix

Figure 11.2: In addition to figure 7.4, the model parameters are plotted individually
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12. Appendix Code

12.1 Markov Chain Monte Carlo Box
import numpy as np
import matplotlib.pyplot as plt
import numba as nb
from numba import jit
from tqdm.notebook import tqdm, trange
from matplotlib.colors import Normalize
from scipy.stats import norm
from scipy.stats import norm
from numba import njit, objmode
from mpl_toolkits import mplot3d
d_obs = np.loadtxt("msdata.txt", delimiter = ",") #mgal / cm/s^2
x_sensors = np.loadtxt("xmsdata.txt", delimiter = ",")
y_sensors = np.loadtxt("ymsdata.txt", delimiter = ",")
n_obs = len(d_obs)
Nx = 2
er = 10**-(50)
noise = np.abs((np.mean(d_obs))/35)# np.abs((np.mean(d_obs))/50) #mgal
d_obs
d_obs.shape
def betta1(i,b,y):

betta = np.zeros((1,len(y)))
betta=b[i]-y
return betta

def alfa1(i,m,x):
alfa = np.zeros((1,len(x)))
alfa=m[i]-x
return alfa

def R1(i,j,k,m,b,x,y,h): # Beregner værdierne for de afstande, der bruges i "F" -funktionen med formlen
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R = np.zeros((1,len(y)))
R=np.array([np.sqrt(alfa1(i,m,x)**2+betta1(j,b,y)**2+h[k]**2)])
return R

def f1(m,b,h,x,y,i,j,k,s): # Funktion "f" for formlen ifølge Plouff (1976).
f = np.zeros((1,len(y)))
f=s[i]*s[j]*s[k]*((h[k]*np.arctan(alfa1(i,m,x)*betta1(j,b,y)/(er+R1(i,j,k,m,b,x,y,h)*h[k]))-alfa1(i,m,x)*np.log(R1(i,j,k,m,b,x,y,h)\

+betta1(j,b,y))-betta1(j,b,y)*np.log(R1(i,j,k,m,b,x,y,h)+alfa1(i,m,x))))
return f

def g(m,b,h): #mgal
#m = np.array([-2.54, 2.54])
#b = np.array([2.54, -2.54])
#h = np.array([-2.0,-4.0]) #np.array([-2, -7.0800])
qx = np.linspace(-10,10,100)
qy = np.linspace(-10,10,100)
x, y = np.meshgrid(qx, qy, sparse=False, indexing=’ij’)
s = np.array((1,len(np.array([-2.0,-4.0]))))
s[0]=-1
s[1]=1
ac=(m[1]+m[0])/2 # Finder koordinaterne for prismaets centrum og flytter systemet fra
bc=(b[1]+b[0])/2 # koordinater for dette center.
x=x-ac
y=y-bc
m=m-ac
b=b-bc

g = np.zeros((1,len(y)))
g=6.67*10**(-11)*(f1(m,b,h,x,y,0,0,0,s)+f1(m,b,h,x,y,0,0,1,s)+f1(m,b,h,x,y,0,1,0,s)+f1(m,b,h,x,y,0,1,1,s)+\

f1(m,b,h,x,y,1,0,0,s)+f1(m,b,h,x,y,1,0,1,s)+f1(m,b,h,x,y,1,1,0,s)+f1(m,b,h,x,y,1,1,1,s))

return g[0,:]

g(np.array([-2.54, 2.54]),np.array([2.54, -2.54]),np.array([-2.0,-4.0])).shape
#constructing the log likelighood function
Cd = np.eye(len(d_obs))*(noise)**2
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Cd_inv = np.linalg.inv(Cd)
def log_L(m,b,h):

mitfit_m = d_obs - g(m,b,h) #misfit
return np.min(-0.5 * (mitfit_m.T@Cd_inv@mitfit_m)) #Cd_inv, Cd er std noise

log_L(np.array([-2.54, 2.54]),np.array([2.54, -2.54]),np.array([-2.0,-4.0])).shape
# run MCMC iteration
iterations = 40000
i_creation = iterations
j_creation = iterations
log_L_mat = np.zeros((iterations - 1))
m = np.zeros((iterations, Nx))+np.array([-2,2])#simulate Nx model paraters [-7,7], iterations time. iterations is number of rows, and nx is number of coulms
b = np.zeros((iterations, Nx))+np.array([2,-2])
h = np.zeros((iterations, Nx))+np.array([-1,-3])

step = 0.9 #0.004 #decreasing step increasing acc rate
accepted_model = np.zeros(iterations - 1) #create the zero base for counting accepted models
accepted_model_b = np.zeros(iterations - 1)
accepted_model_h = np.zeros(iterations - 1)

#log_L_mat =
#log_L_bat =
#log_L_hat =

for i in trange(iterations - 1):
m_curr = m[i, :].copy() #to secure current model has same dimensions as initial model size
b_curr = b[i, :].copy()
h_curr = h[i, :].copy()

log_L_mat[i] = log_L(m_curr,b_curr,h_curr) #calculate lokelihood of the current model

rnd_index = np.random.randint(len(m_curr)) #create a random index
rnd_index_b = np.random.randint(len(b_curr)) #create a random index
rnd_index_h = np.random.randint(len(h_curr)) #create a random index

m_pert = m_curr.copy() #copy current model
b_pert = b_curr.copy() #copy current model
h_pert = h_curr.copy() #copy current model

12.1 Markov Chain Monte Carlo Box 41



u = np.random.rand()
rnd_pert = np.random.randint(1,5)
if rnd_pert ==1:

m_pert[rnd_index] += (2. * u - 1.) * step #perturb current model
if rnd_pert ==2:

b_pert[rnd_index_b] += (2. * u - 1.) * step #perturb current model
else:

h_pert[rnd_index_b] += (2. * u - 1.) * step #perturb current model

log_pL_curr = log_L(m_curr,b_curr,h_curr) #calculate likelihood of current model
log_pL_pert = log_L(m_pert,b_pert,h_pert) #calculate likelihood of peterbed model

p_accept = min(1, np.exp(log_pL_pert - log_pL_curr).all()) #metropolis acceptance criteria

u = np.random.rand() #create new random value for pertubation
if u < p_accept:

m[i + 1, :] = m_pert
accepted_model[i] = 1

else:
m[i + 1, :] = m_curr

if u < p_accept:
b[i + 1, :] = b_pert
accepted_model_b[i] = 1

else:
b[i + 1, :] = b_curr

if u < p_accept:
h[i + 1, :] = h_pert
accepted_model_h[i] = 1

else:
h[i + 1, :] = h_curr

#print("pacc {}".format(p_accept))
#print("log_pL_pert {}".format(log_pL_pert))
#print("log_pL_curr {}".format(log_pL_curr))

12.1 Markov Chain Monte Carlo Box 42



print("acceptance rate {}%".format(sum(accepted_model_b) /
iterations * 100))

print("number of accepted models {}".format(sum(accepted_model_b)))
cutoff = 10000
m_wo_burn = m[cutoff:, :]
m_mean = np.average(m_wo_burn, axis=0)
m_std = np.std(m_wo_burn, axis=0)

b_wo_burn = b[cutoff:, :]
b_mean = np.average(b_wo_burn, axis=0)
b_std = np.std(b_wo_burn, axis=0)

h_wo_burn = h[cutoff:, :]
h_mean = np.average(h_wo_burn, axis=0)
h_std = np.std(h_wo_burn, axis=0)
# Plot the histogram.
mu1, std1 = norm.fit(m_wo_burn[:,0])
mu2, std2 = norm.fit(m_wo_burn[:,1])
plt.hist(m_wo_burn[:,0],label="Fit results: $\mu_{1}$ = %.2f, std = %.2f" % (mu1, std1), bins=10, density=True, alpha=0.6, color=’dodgerblue’)
plt.hist(m_wo_burn[:,1],label="Fit results: $\mu_{2}$ = %.2f, std = %.2f" % (mu2, std2), bins=10, density=True, alpha=0.6, color=’darkgreen’)
plt.legend()

# Plot the histogram.
mu1, std1 = norm.fit(b_wo_burn[:,0])
mu2, std2 = norm.fit(b_wo_burn[:,1])
plt.hist(b_wo_burn[:,0],label="Fit results: $\mu_{3}$ = %.2f, std = %.2f" % (mu1, std1), bins=10,density=True, alpha=0.6, color=’darkgreen’)
plt.hist(b_wo_burn[:,1],label="Fit results: $\mu_{4}$ = %.2f, std = %.2f" % (mu2, std2), bins=10,density=True, alpha=0.6, color=’dodgerblue’)
plt.legend()
# Plot the histogram.
mu1, std1 = norm.fit(h_wo_burn[:,0])
mu2, std2 = norm.fit(h_wo_burn[:,1])
plt.hist(h_wo_burn[:,0],label="Fit results: $\mu_{5}$ = %.2f, std = %.2f" % (mu1, std1), bins=10, density=True, alpha=0.6, color=’dodgerblue’)
plt.hist(h_wo_burn[:,1],label="Fit results: $\mu_{6}$ = %.2f, std = %.2f" % (mu2, std2), bins=10, density=True, alpha=0.6, color=’darkgreen’)
plt.legend()
# Plot the histogram.
plt.figure(figsize=(8, 6))
mu1, std1 = norm.fit(m_wo_burn[:,0])
mu2, std2 = norm.fit(m_wo_burn[:,1])
plt.hist(m_wo_burn[:,0],label="Fit results: $\mu_{1}$ = %.2f, std = %.2f" % (mu1, std1), bins=10, density=True, alpha=0.6, color=’blue’)
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plt.hist(m_wo_burn[:,1],label="Fit results: $\mu_{2}$ = %.2f, std = %.2f" % (mu2, std2), bins=10, density=True, alpha=0.6, color=’darkgreen’)
plt.legend()
# Plot the histogram.
mu1, std1 = norm.fit(b_wo_burn[:,0])
mu2, std2 = norm.fit(b_wo_burn[:,1])
plt.hist(b_wo_burn[:,0],label="Fit results: $\mu_{3}$ = %.2f, std = %.2f" % (mu1, std1), bins=10,density=True, alpha=0.6, color=’red’)
plt.hist(b_wo_burn[:,1],label="Fit results: $\mu_{4}$ = %.2f, std = %.2f" % (mu2, std2), bins=10,density=True, alpha=0.6, color=’orange’)
plt.legend()
# Plot the histogram.
mu1, std1 = norm.fit(h_wo_burn[:,0])
mu2, std2 = norm.fit(h_wo_burn[:,1])
plt.hist(h_wo_burn[:,0],label="Fit results: $\mu_{5}$ = %.2f, std = %.2f" % (mu1, std1), bins=10, density=True, alpha=0.6, color=’grey’)
plt.hist(h_wo_burn[:,1],label="Fit results: $\mu_{6}$ = %.2f, std = %.2f" % (mu2, std2), bins=10, density=True, alpha=0.6, color=’purple’)
plt.legend()
plt.title("Six model parameters sampled")
plt.xlabel("Model Parameter value")
plt.ylabel("Sequence")
plt.savefig(’all_parameters2.jpg’)

12.2 Informed proposal Monte Carlo Box
import numpy as np
import math
import matplotlib.pyplot as plt
import numba as nb
from numba import jit
from tqdm.notebook import tqdm, trange
from matplotlib.colors import Normalize
from scipy.stats import norm
from scipy.stats import norm
from numba import njit, objmode
from mpl_toolkits import mplot3d
import random
from matplotlib.offsetbox import AnchoredText
random.seed(142)
d_obs = np.loadtxt("msdata.txt", delimiter = ",") #mgal / cm/s^2
mcmc_data = np.loadtxt("mcmc40kiter.txt", delimiter = ",")
x_sensors = np.loadtxt("xmsdata.txt", delimiter = ",")
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y_sensors = np.loadtxt("ymsdata.txt", delimiter = ",")
n_obs = len(d_obs)
Nx = 2
er = 10**(-50)
noise = ...
noise
def betta1(i,b,y):

betta = np.zeros((1,len(y)))
betta=b[i]-y
return betta

def alfa1(i,m,x):
alfa = np.zeros((1,len(x)))
alfa=m[i]-x
return alfa

def R1(i,j,k,m,b,x,y,h): # Beregner værdierne for de afstande, der bruges i "F" -funktionen med formlen
R = np.zeros((1,len(y)))
R=np.array([np.sqrt(alfa1(i,m,x)**2+betta1(j,b,y)**2+h[k]**2)])
return R

def f1(m,b,h,x,y,i,j,k,s): # Funktion "f" for formlen ifølge Plouff (1976).
f = np.zeros((1,len(y)))
f=s[i]*s[j]*s[k]*((h[k]*np.arctan(alfa1(i,m,x)*betta1(j,b,y)/(er+R1(i,j,k,m,b,x,y,h)*h[k]))-alfa1(i,m,x)*np.log(R1(i,j,k,m,b,x,y,h)\

+betta1(j,b,y))-betta1(j,b,y)*np.log(R1(i,j,k,m,b,x,y,h)+alfa1(i,m,x))))
return f

def g(m,b,h): #mgal

qx = np.linspace(-10,10,100)
qy = np.linspace(-10,10,100)
x, y = np.meshgrid(qx, qy, sparse=False, indexing=’ij’)
s = np.array((1,len(np.array([-2.0,-4.0]))))
s[0]=-1
s[1]=1
ac=(m[1]+m[0])/2 # Finder koordinaterne for prismaets centrum og flytter systemet fra
bc=(b[1]+b[0])/2 # koordinater for dette center.
x=x-ac
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y=y-bc
m=m-ac
b=b-bc

g = np.zeros((1,len(y)))
g=6.67*10**(-11)*(f1(m,b,h,x,y,0,0,0,s)+f1(m,b,h,x,y,0,0,1,s)+f1(m,b,h,x,y,0,1,0,s)+f1(m,b,h,x,y,0,1,1,s)+\

f1(m,b,h,x,y,1,0,0,s)+f1(m,b,h,x,y,1,0,1,s)+f1(m,b,h,x,y,1,1,0,s)+f1(m,b,h,x,y,1,1,1,s))

return g[0,:]

m0_tmp = np.array([-1.87, 1.87])
b0_tmp = np.array([1.87, -1.87])
h0_tmp = np.array([-2.63, -6.38])

m0 = np.concatenate((m0_tmp, b0_tmp, h0_tmp), axis=0)
Cm = np.eye(len(m0))*3*np.std(np.array([-1.42, -1.87]))**2
Cm_inv = np.linalg.inv(Cm)

def log_q(m,b,h): #spørgmål om denne kan være rigtig
res = np.concatenate((m, b, h), axis=0)
dm = res - m0
return (-0.5 * (dm.T @ Cm_inv @ dm))

#constructing the log likelighood function ln(e**x) = x
Cd = np.eye(len(d_obs))*(noise)**2
Cd_inv = np.linalg.inv(Cd)

def log_L(m,b,h):
mitfit_m = d_obs - g(m,b,h) #misfit
return (((-0.5 * (mitfit_m.T@Cd_inv@mitfit_m)))) #Cd_inv, Cd er std noise

# run MCMC iteration
iterations = 40000

log_L_mat = np.zeros((iterations - 1))
m = np.zeros((iterations, Nx))
b = np.zeros((iterations, Nx))
h = np.zeros((iterations, Nx))
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accepted_model_m1 = np.zeros(iterations - 1)
accepted_model_m2 = np.zeros(iterations - 1)
accepted_model_b1 = np.zeros(iterations - 1)
accepted_model_b2 = np.zeros(iterations - 1)
accepted_model_h1 = np.zeros(iterations - 1)
accepted_model_h2 = np.zeros(iterations - 1)

for i in trange(iterations - 1):
m_curr = m[i, :].copy() #to secure current model has same dimensions as initial model size
b_curr = b[i, :].copy()
h_curr = h[i, :].copy()

m_pert = m_curr.copy() #copy current model
b_pert = b_curr.copy() #copy current model
h_pert = h_curr.copy() #copy current model

log_L_mat[i] = np.min(log_L(m_curr,b_curr,h_curr)) #save log_l values into log_l_mat

# u skal være +/- 2-3 spredninger bred og have middelværdi i 0, samt være uniform:
u_m = np.random.uniform(-1,1)

#pertubation of each model parameter
m_pert[0] = m0_tmp[0]+u_m*-5*np.std(np.array([-1.42, -1.87]))
m_pert[1] = m0_tmp[1]+u_m*5*np.std(np.array([1.42, 1.87]))
b_pert[0] = b0_tmp[0]+u_m*5*np.std(np.array([1.42, 1.87]))
b_pert[1] = b0_tmp[1]+u_m*-5*np.std(np.array([-1.42, -1.87]))
h_pert[0] = h0_tmp[0]+u_m*5*np.std(np.array([-3.08,-2.63]))
h_pert[1] = h0_tmp[1]+u_m*-5*np.std(np.array([-5.93,-6.38]))

log_q_curr = log_q(m_curr,b_curr,h_curr)
log_q_pert = log_q(m_pert,b_pert,h_pert)
log_pL_curr = log_L(m_curr,b_curr,h_curr) #calculate likelihood of current model
log_pL_pert = log_L(m_pert,b_pert,h_pert) #calculate likelihood of peterbed model

p_accept = min(1, (np.exp(log_pL_pert - log_pL_curr+log_q_curr - log_q_pert)).all())#metropolis acceptance criteria
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u = random.uniform(0,1) #normal virker vist også
if u < p_accept:

m[i + 1, 0] = m_pert[0] #for all model parameters in the first coulom; x1, y1, z1
accepted_model_m1[i] = 1

else:
m[i + 1, 0] = m_curr[0]

if u < p_accept:
b[i + 1, 0] = b_pert[0]
accepted_model_b1[i] = 1

else:
b[i + 1, 0] = b_curr[0]

if u < p_accept:
h[i + 1, 0] = h_pert[0]
accepted_model_h1[i] = 1

else:
h[i + 1, 0] = h_curr[0]

if u < p_accept:
m[i + 1, 1] = m_pert[1] #for all model parameters in the second coulom; x2, y2, z2
accepted_model_m2[i] = 1

else:
m[i + 1, 1] = m_curr[1]

if u < p_accept:
b[i + 1, 1] = b_pert[1]
accepted_model_b2[i] = 1

else:
b[i + 1, 1] = b_curr[1]

if u < p_accept:
h[i + 1, 1] = h_pert[1]
accepted_model_h2[i] = 1

else:
h[i + 1, 1] = h_curr[1]
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#print("p_acc {}".format(p_accept))

print("acceptance rate {}%".format(sum(accepted_model_b1) /
iterations * 100))

print("number of accepted models {}".format(sum(accepted_model_b1)))
cutoff = 150
m_wo_burn = m[cutoff:, :]
m_mean = np.average(m_wo_burn, axis=0)
m_std = np.std(m_wo_burn, axis=0)

b_wo_burn = b[cutoff:, :]
b_mean = np.average(b_wo_burn, axis=0)
b_std = np.std(b_wo_burn, axis=0)

h_wo_burn = h[cutoff:, :]
h_mean = np.average(h_wo_burn, axis=0)
h_std = np.std(h_wo_burn, axis=0)
# Plot the histogram.
mu1, std1 = norm.fit(m_wo_burn[:,0])
mu2, std2 = norm.fit(m_wo_burn[:,1])
y, x, bars= plt.hist(m_wo_burn[:,0],label="Fit results: $\mu_{1}$ = %.2f, std = %.2f" % (mu1, std1), bins=7, density=True, alpha=0.6, color=’darkblue’,rwidth=0.5)
y1, x1, bars1= plt.hist(m_wo_burn[:,1],label="Fit results: $\mu_{2}$ = %.2f, std = %.2f" % (mu2, std2), bins=7, density=True, alpha=0.6, color=’darkgreen’,rwidth=0.5)
plt.legend(loc=’center left’, bbox_to_anchor=(1, 0.5))
plt.title(’IPMC sampling of x model parameters’)
plt.xlabel(’x value of model parameters’)
# Compute the max value (plt.hist returns the x and y positions of the bars)
ymax = y.max()
idx = np.where(y == ymax)[0][0]
xval = x[idx]
xmin = np.round(x.min(), 4)#x.min()
# Annotate the highest value
plt.gca().text(xval, ymax, xmin, ha=’left’, va=’bottom’)
# Make one bin stand out
bars[0].set_fc(’darkorange’) # Set color
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bars[0].set_alpha(1) # Set opaci
# Compute the max value (plt.hist returns the x and y positions of the bars)
ymax1 = y1.max()
idx = np.where(y1 == ymax1)[0][0]
xval = x1[idx]
xmax1 = np.round(x1.max(),5) #x1.max()
# Annotate the highest value
plt.gca().text(xval, ymax1, xmax1, ha=’left’, va=’bottom’)
# Make one bin stand out
bars1[-1].set_fc(’darkorange’) # Set color
bars1[-1].set_alpha(1) # Set opaci

# Plot the histogram.
mu1, std1 = norm.fit(b_wo_burn[:,0])
mu2, std2 = norm.fit(b_wo_burn[:,1])
y, x,bars= plt.hist(b_wo_burn[:,0],label="Fit results: $\mu_{1}$ = %.2f, std = %.2f" % (mu1, std1), bins=7, density=True, alpha=0.6, color=’darkblue’,rwidth=0.5)
y1, x1,bars1 = plt.hist(b_wo_burn[:,1],label="Fit results: $\mu_{2}$ = %.2f, std = %.2f" % (mu2, std2), bins=7, density=True, alpha=0.6, color=’darkgreen’,rwidth=0.5)
plt.legend(loc=’center left’, bbox_to_anchor=(1, 0.5))
plt.title(’IPMC sampling of y model parameters’)
plt.xlabel(’y value of model parameters’)
# Compute the max value (plt.hist returns the x and y positions of the bars)
ymax = y.max()
idx = np.where(y == ymax)[0][0]
xval = x[idx]
xmin = np.round(x.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xmin, ha=’left’, va=’bottom’)
# Make one bin stand out
bars[-1].set_fc(’darkorange’) # Set color
bars[-1].set_alpha(1) # Set opaci
# Compute the max value (plt.hist returns the x and y positions of the bars)
ymax1 = y1.max()
idx = np.where(y1 == ymax1)[0][0]
xval = x1[idx]
xmax1 = np.round(x1.min(),4)
# Annotate the highest value
plt.gca().text(xval, ymax1, xmax1, ha=’left’, va=’bottom’)
# Make one bin stand out
bars1[0].set_fc(’darkorange’) # Set color
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bars1[0].set_alpha(1) # Set opaci
# Plot the histogram.
mu1, std1 = norm.fit(h_wo_burn[:,0])
mu2, std2 = norm.fit(h_wo_burn[:,1])
y, x, bars = plt.hist(h_wo_burn[:,0],label="Fit results: $\mu_{1}$ = %.2f, std = %.2f" % (mu1, std1), bins=7, density=True, alpha=0.6, color=’darkblue’,rwidth=0.5)
y1, x1,bars1 = plt.hist(h_wo_burn[:,1],label="Fit results: $\mu_{2}$ = %.2f, std = %.2f" % (mu2, std2), bins=7, density=True, alpha=0.6, color=’darkgreen’,rwidth=0.5)
plt.legend(loc=’center left’, bbox_to_anchor=(1, 0.5))
plt.title(’IPMC sampling of z model parameters’)
plt.xlabel(’z value of model parameters’)
# Compute the max value (plt.hist returns the x and y positions of the bars)
ymax = y.max()
idx = np.where(y == ymax)[0][0]
xval = x[idx]
xmin = np.round(x.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xmin, ha=’left’, va=’bottom’)
# Make one bin stand out
bars[-1].set_fc(’darkorange’) # Set color
bars[-1].set_alpha(1) # Set opaci
# Compute the max value (plt.hist returns the x and y positions of the bars)
ymax1 = y1.max()
idx = np.where(y1 == ymax1)[0][0]
xval = x1[idx]
xmax1 = np.round(x1.min(),4)
# Annotate the highest value
plt.gca().text(xval, ymax1, xmax1, ha=’left’, va=’bottom’)
# Make one bin stand out
bars1[0].set_fc(’darkorange’) # Set color
bars1[0].set_alpha(1) # Set opaci
m_wo_burn = m[cutoff:, :]
log_L_burn = np.empty(cutoff)
log_L_states = np.empty(iterations - cutoff)

log_L_burn = log_L_mat[:cutoff]
log_L_states = log_L_mat[cutoff:]

#Saving the array in a text file
#np.savetxt("fem.txt",log_L_mat,delimiter=’,’);
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iter_count = np.linspace(0, iterations, iterations - 1)

plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(iter_count[:cutoff], log_L_burn, c="tab:green",linewidth=1.0,label="IPMC Burn in phase")
plt.plot(iter_count[cutoff:], log_L_states, c="tab:blue",linewidth=1.0,label="$IPMC$")
#plt.plot(iter_count, mcmc_data, c="red",linewidth=1.0,label="$MCMC$")
plt.xlabel("iteration")
plt.ylabel("Log(L(m))")
plt.legend()
plt.xscale("log")
plt.title("Illustration of burn-in phase [log scale]")

plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(iter_count[:cutoff], log_L_burn, c="tab:green",linewidth=1.0,label="IPMC Burn in phase")
plt.plot(iter_count[cutoff:], log_L_states, c="tab:blue",linewidth=1.0,label="$IPMC$")
#plt.plot(iter_count, mcmc_data, c="red",linewidth=1.0,label="$MCMC$")

plt.xlabel("iteration")
plt.ylabel("Log(L(m))")
plt.legend()
plt.title("Illustration of burn-in phase")

12.3 Markov Chain Monte Carlo Acoustic Wave
import numpy as np
import matplotlib.pyplot as plt
import numba as nb
from numba import jit
from tqdm.notebook import tqdm, trange
from matplotlib.colors import Normalize
from scipy.stats import norm
from numba import njit, objmode
from mpl_toolkits import mplot3d
import random
import math
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from numpy.linalg import norm
from matplotlib.offsetbox import AnchoredText
import matplotlib.patches as mpl_patches
from scipy import signal
import scipy.signal

obsdata = np.loadtxt("obsdata.txt", delimiter = ",") #mgal / cm/s^2 #doent work #without data
mtrue = np.array([780,930,1080,1200,1305,1410,1620,1695]).T
mtrueL = np.array([1,1,1,1,1,1,1,1])
mtrueU = np.array([1,1,1,1,1,1,1,1])*2500
mtrueU
NparamUsed = 4
mtrue = mtrue[0:NparamUsed]
mtrueL = mtrueL[0:NparamUsed]
mtrueU = mtrueU[0:NparamUsed]
mtrueL[0:NparamUsed]
Nparam = 4
#make the function that calculates the misfit
def TestInvScat(model,model0,obsdata):

Nparam = len(model)
ref1 = np.zeros((10000)) #ref skal opdateret så hver iteration skubber disse tal da bølgen bevæger sig!

# så fordi vi får en ny raf hver gang, så vil waves også opdatere

for kk in range(0,3):
n = np.array([1,2,3,4])
ref1[model[kk]] += 0.02*(-1)**(n[kk]+1)

# BEGIN Initialize Basic Constants

nsamp = 4096 # samples in seismogram

# Cosine-Gauss Wavelet with 3 major peaks

N = 960 # 40; # Number of samples of wavelet
wav = np.zeros([N])
T = 200 # 240; # Dominant period
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wav = np.cos((np.arange(-N/2+1, (N/2)+1))*(2*np.pi)/T) \
*np.exp(-(1/2)*((np.arange(-N/2+1, (N/2)+1))**2)/(2*N))

#calculate the waves
ref = ref1[0:nsamp]
#waves = np.convolve(ref,wav,’same’)

if np.logical_or((model == 1),(model == 2500)).any():
waves = np.zeros(nsamp)

else:
npad = len(wav) - 1
u_padded = np.pad(ref, (npad//2, npad - npad//2), mode=’constant’)
waves = np.convolve(u_padded, wav, ’valid’)

#find misfit

stand = 0.10 # 0.02; # Small value -> target distribution closer to 0
residual = np.zeros([nsamp,1])
residual = waves - obsdata

hx = (norm(residual[:],2)/stand)**2+(model-model0).T@(model-model0)/(150**2) #første led likelihood, sidste led apirori fordeling

return hx
N = 120000
mod = np.zeros((Nparam,N)) # # Array with output model parameters #korrekt
mod[:,0] = mtrueL#mtrue # mtrueL #korrekt
mod[:,1] = mtrueU#mtrue # mtrueU #korrekt

tv = np.zeros([N]) #target value
tv[0] = TestInvScat(mtrueL,mtrue,obsdata)
tv[1] = TestInvScat(mtrueU,mtrue,obsdata)
sigma =40 #0.6 # 30 # 500 # 20 # 10 # 3 # 30 # 300
nacc = 2
rej=0
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print("tv[0] {}".format(tv[0]))
print("tv[1] {}".format(tv[1]))
iterations = N
accepted_model = np.zeros(iterations)
log_L_mat = np.zeros((iterations))
for i in trange(2,iterations):

prp = mod[:,i-1]
prp = prp.astype(int)
m_pert = -1
u_z = np.random.uniform()

rnd_pert = np.random.randint(1,5)

#pertubation af model parameter 1
if rnd_pert == 1:

m_pert = mod[0,i-1]+(2. * u_z - 1.) * sigma #nu blivr den jo bare ved med at lægge tal til
if np.logical_or((m_pert > 1),(m_pert < 2500)).all():

prp[0] = m_pert
else:

pass
#pertubation af model parameter 2
if rnd_pert == 2:

m_pert = mod[1,i-1]+(2. * u_z - 1.) * sigma #
if np.logical_or((m_pert > 1),(m_pert < 2500)).all():

prp[1] = m_pert
else:

pass
#pertubation af model parameter 3
if rnd_pert == 3:

m_pert = mod[2,i-1]+(2. * u_z - 1.) * sigma #
if np.logical_or((m_pert > 1),(m_pert < 2500)).all():

prp[2] = m_pert
else:

pass
#pertubation af model parameter 4
if rnd_pert == 4:

m_pert = mod[3,i-1]+(2. * u_z - 1.) * sigma #
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if np.logical_or((m_pert > 1),(m_pert < 2500)).all():
prp[3] = m_pert

else:

log_L_mat[i] = TestInvScat(prp,mtrue,obsdata)

val = TestInvScat(prp,mtrue,obsdata) #prp skal opdateres evt m_pert af alle 4 index?
p_acc = np.exp(-(1/2)*(val-tv[i-1]))

u = random.random()#random.uniform(0,1)
if u < p_acc:

mod[:,i] = prp
tv[i] = TestInvScat(prp,mtrue,obsdata)
accepted_model[i]=1

else:
mod[:,i] = mod[:,i-1]
tv[i] = tv[i-1]

#print("mod[:,i] {}".format(mod[:,i]))
print("prp {}".format(prp))

print("acceptance rate {}%".format(sum(accepted_model) /
iterations * 100))

print("number of accepted models {}".format(sum(accepted_model)))
#hvad er mtrueU vs mt
mp_1 = mod[0,:][1000:-1]
mp_2 = mod[1,:][1000:-1]
mp_3 = mod[2,:][1000:-1]
mp_4 = mod[3,:][1000:-1]

f, ax = plt.subplots(1,1)
y, x, bars = plt.hist(mp_1,label="True = 780",bins=20, density=True, alpha=0.6,rwidth=0.9)
y1, x1, bars1 = plt.hist(mp_2,label="True = 930",bins=20, density=True, alpha=0.6,rwidth=0.9)
y2, x2, bars2 =plt.hist(mp_3,label="True = 1080",bins=20, density=True, alpha=0.6,rwidth=0.9)
y3, x3, bars3 =plt.hist(mp_4,label="True = 1200",bins=20, density=True, alpha=0.6,rwidth=0.9)
plt.legend()
plt.title(’Histogram of four sampled model parameters’)
plt.xlabel(’Model parameter value’)
ymax = y.max()
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idx = np.where(y == ymax)[0][0]
xval = x[idx]
xmin = np.round(x.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’darkblue’)
#
ymax = y1.max()
idx = np.where(y1 == ymax)[0][0]
xval = x1[idx]
xmin = np.round(x1.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’orange’)
#
ymax = y2.max()
idx = np.where(y2 == ymax)[0][0]
xval = x2[idx]
xmin = np.round(x2.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’green’)
#
ymax = y3.max()
idx = np.where(y3 == ymax)[0][0]
xval = x3[idx]
xmin = np.round(x3.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’red’)
mu1 = np.mean(mp_1)
mu2 = np.mean(mp_2)
mu3 = np.mean(mp_3)
mu4 = np.mean(mp_4)

box_style=dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.1)
plt.figtext(1.12,0.7, "Sample results: $\mu_{1}$=%.2f," % (mu1), ha="center", va="center", fontsize=13, bbox={"facecolor":"lightblue", "alpha":0.9})
plt.figtext(1.12,0.6, "Sample results: $\mu_{2}$=%.2f," % (mu2), ha="center", va="center", fontsize=13, bbox={"facecolor":"orange", "alpha":0.4})
plt.figtext(1.13,0.5, "Sample results: $\mu_{3}$=%.2f," % (mu3), ha="center", va="center", fontsize=13, bbox={"facecolor":"green", "alpha":0.4})
plt.figtext(1.13,0.4, "Sample results: $\mu_{4}$=%.2f," % (mu4), ha="center", va="center", fontsize=13, bbox={"facecolor":"red", "alpha":0.4})

print("np.mean(mp_1) {}".format(np.mean(mp_1) ))
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print("np.mean(mp_2) {}".format(np.mean(mp_2) ))
print("np.mean(mp_3) {}".format(np.mean(mp_3) ))
print("np.mean(mp_4) {}".format(np.mean(mp_4) ))

plt.plot(log_L_mat[1:-1])
plt.xscale("log")

12.4 Informed proposal Monte Carlo Acoustic Wave
import numpy as np
import matplotlib.pyplot as plt
import numba as nb
from numba import jit
from tqdm.notebook import tqdm, trange
from matplotlib.colors import Normalize
from scipy.stats import norm
from numba import njit, objmode
from mpl_toolkits import mplot3d
import random
import math
from numpy.linalg import norm
from matplotlib.offsetbox import AnchoredText
import matplotlib.patches as mpl_patches
from scipy import signal
import scipy.signal

obsdata = np.loadtxt("obsdata.txt", delimiter = ",") #mgal / cm/s^2 #korrekt
refapprox = np.loadtxt("refapprox.txt", delimiter = ",")
plt.plot(refapprox)
plt.plot(obsdata)
mtrue = np.array([780,930,1080,1200,1305,1410,1620,1695]).T #korrekt
mtrueL = np.array([1,1,1,1,1,1,1,1])
mtrueU = np.array([1,1,1,1,1,1,1,1])*2500
np.random.randint(1,5)
NparamUsed = 4
mtrue = mtrue[0:NparamUsed]
mtrueL = mtrueL[0:NparamUsed]
mtrueU = mtrueU[0:NparamUsed]
Nparam = 4
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#make the function that calculates the misfit
def TestInvScat(model,model0,obsdata):

Nparam = len(model)
ref1 = np.zeros((10000)) #ref skal opdateret så hver iteration skubber disse tal da bølgen bevæger sig!

# så fordi vi får en ny raf hver gang, så vil waves også opdatere

for kk in range(0,3):
n = np.array([1,2,3,4])
ref1[model[kk]] += 0.02*(-1)**(n[kk]+1)

# BEGIN Initialize Basic Constants

nsamp = 4096 # samples in seismogram

# Cosine-Gauss Wavelet with 3 major peaks

N = 960 # 40; # Number of samples of wavelet
wav = np.zeros([N])
T = 200 # 240; # Dominant period
wav = np.cos((np.arange(-N/2+1, (N/2)+1))*(2*np.pi)/T) \
*np.exp(-(1/2)*((np.arange(-N/2+1, (N/2)+1))**2)/(2*N))

#calculate the waves
ref = ref1[0:nsamp]
#waves = np.convolve(ref,wav,’same’)

if np.logical_or((model == 1),(model == 2500)).any():
waves = np.zeros(nsamp)

else:
npad = len(wav) - 1
u_padded = np.pad(ref, (npad//2, npad - npad//2), mode=’constant’)
waves = np.convolve(u_padded, wav, ’valid’)

#convolution is the operation of taking two signals, inverting one of them,
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#and then shifting by multiplying with the value of the two signals and then summing together.

#find misfit

stand = 0.01#0.045 # 0.02; # Small value -> target distribution closer to 0
residual = np.zeros([nsamp,1])
residual = waves - obsdata

hx = (norm(residual[:],2)/stand)**2+(model-model0).T@(model-model0)/(150**2) #første led likelihood, sidste led apirori fordeling

return hx
N = 65000
mod = np.zeros((Nparam,N)) # # Array with output model parameters #korrekt
mod[:,0] = mtrueL#mtrue # mtrueL #korrekt
mod[:,1] = mtrueU#mtrue # mtrueU #korrekt

tv = np.zeros([N]) #target value
tv[0] = TestInvScat(mtrueL,mtrue,obsdata)
tv[1] = TestInvScat(mtrueU,mtrue,obsdata)
std_mp1 = np.std(np.array([777,772]))
std_mp2 = np.std(np.array([927,922]))
std_mp3 = np.std(np.array([1083,1088]))
std_mp4 = np.std(np.array([1197,1191]))
nacc = 2
rej=0
#vi skal bruge vores proposal q til vores p_acc
m0 = np.array([777, 927, 1083,1197])
Cm = np.eye(len(m0))*1*np.std(np.array([777, 772]))**2
Cm_inv = np.linalg.inv(Cm)

def log_q(mod,m0):
dm = mod - m0
return (-0.5 * (dm.T @ Cm_inv @ dm))

iterations = N
accepted_model = np.zeros(iterations)
log_L_mat = np.zeros((iterations))
for i in trange(2,iterations):
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current_model = mod[:,i-1]
prp = mod[:,i-1]
prp = prp.astype(int)
m_pert_mp1 = -1
m_pert_mp2 = -1
m_pert_mp3 = -1
m_pert_mp4 = -1
if i == 2:

log_L_mat[i] = TestInvScat(prp,mtrue,obsdata)
rnd_pert = np.random.randint(1,5)
if rnd_pert == 1:

if np.logical_or((m_pert_mp1 > 1),(m_pert_mp1 < 2500)).all():
u_m = np.random.uniform(-1,1)
m_pert_mp1 = 777+u_m*12*std_mp1
prp[0] = m_pert_mp1

else:
pass

if rnd_pert == 2:
if np.logical_or((m_pert_mp2 > 1),(m_pert_mp2 < 2500)).all():

u_m = np.random.uniform(-1,1)
m_pert_mp2 = 927+u_m*12*std_mp2
prp[1] = m_pert_mp2

else:
pass

if rnd_pert == 3:
if np.logical_or((m_pert_mp3 > 1),(m_pert_mp3 < 2500)).all():

u_m = np.random.uniform(-1,1)
m_pert_mp3 = 1083+u_m*12*std_mp3
prp[2] = m_pert_mp3

else:
pass

if rnd_pert == 4:
if np.logical_or((m_pert_mp4 > 1),(m_pert_mp4 < 2500)).all():

u_m = np.random.uniform(-1,1)
m_pert_mp4 = 1197+u_m*12*std_mp4
prp[3] = m_pert_mp4

else:
pass

if i > 2:
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log_L_mat[i] = TestInvScat(prp,mtrue,obsdata)
log_q_curr = log_q(current_model,m0)
log_q_pert = log_q(prp,m0)
val = TestInvScat(prp,mtrue,obsdata)

p_acc = np.exp(-(1/2)*(val-tv[i-1]+log_q_curr-log_q_pert))

u = random.uniform(0,1)#random.random()
if u < p_acc:

mod[:,i] = prp
tv[i] = TestInvScat(prp,mtrue,obsdata)
accepted_model[i]=1

else:
mod[:,i] = mod[:,i-1]
tv[i] = tv[i-1]

print("prp {}".format(prp))

print("acceptance rate {}%".format(sum(accepted_model) /
iterations * 100))

print("number of accepted models {}".format(sum(accepted_model)))
#hvad er mtrueU vs mt
mp_1 = mod[0,:][1000:-1]
mp_2 = mod[1,:][1000:-1]
mp_3 = mod[2,:][1000:-1]
mp_4 = mod[3,:][1000:-1]

acc_rate = sum(accepted_model) / iterations * 100
f, ax = plt.subplots(1,1)
y, x, bars = plt.hist(mp_1,label="True = 780",bins=10, density=True, alpha=0.6,rwidth=0.9)
y1, x1, bars1 = plt.hist(mp_2,label="True = 930",bins=10, density=True, alpha=0.6,rwidth=0.9)
y2, x2, bars2 =plt.hist(mp_3,label="True = 1080",bins=10, density=True, alpha=0.6,rwidth=0.9)
y3, x3, bars3 =plt.hist(mp_4,label="True = 1200",bins=10, density=True, alpha=0.6,rwidth=0.9)
plt.legend(loc=’center left’, bbox_to_anchor=(1, 0.8))
plt.title("4 Model Parameters: Acceptance rate = %.2f" % (acc_rate))
plt.ylabel("Sequence")
plt.xlabel(’Model parameter value’)
ymax = y.max()
idx = np.where(y == ymax)[0][0]
xval = x[idx]
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xmin = np.round(x.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’darkblue’)
#
ymax = y1.max()
idx = np.where(y1 == ymax)[0][0]
xval = x1[idx]
xmin = np.round(x1.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’orange’)
#
ymax = y2.max()
idx = np.where(y2 == ymax)[0][0]
xval = x2[idx]
xmin = np.round(x2.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’green’)
#
ymax = y3.max()
idx = np.where(y3 == ymax)[0][0]
xval = x3[idx]
xmin = np.round(x3.max(),4)
# Annotate the highest value
plt.gca().text(xval, ymax, xval, ha=’left’, va=’bottom’,color=’red’)
mu1 = np.mean(mp_1)
mu2 = np.mean(mp_2)
mu3 = np.mean(mp_3)
mu4 = np.mean(mp_4)

box_style=dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.1)
plt.figtext(0.92,0.6, "Sample results: $\mu_{1}$=%.2f," % (mu1), ha="center", va="center", fontsize=10, bbox={"facecolor":"lightblue", "alpha":0.9})
plt.figtext(0.92,0.5, "Sample results: $\mu_{2}$=%.2f," % (mu2), ha="center", va="center", fontsize=10, bbox={"facecolor":"orange", "alpha":0.4})
plt.figtext(0.93,0.4, "Sample results: $\mu_{3}$=%.2f," % (mu3), ha="center", va="center", fontsize=10, bbox={"facecolor":"green", "alpha":0.4})
plt.figtext(0.93,0.3, "Sample results: $\mu_{4}$=%.2f," % (mu4), ha="center", va="center", fontsize=10, bbox={"facecolor":"red", "alpha":0.4})
plt.tight_layout()

print("np.mean(mp_1) {}".format(np.mean(mp_1) ))
print("np.mean(mp_2) {}".format(np.mean(mp_2) ))
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print("np.mean(mp_3) {}".format(np.mean(mp_3) ))
print("np.mean(mp_4) {}".format(np.mean(mp_4) ))
#normal_mcmc = np.loadtxt("mcmcseis_burn_in.txt", delimiter = ",")
plt.plot(log_L_mat[1:-1],label="IPMC")
#plt.plot(normal_mcmc[1:-1],label="MCMC")
plt.legend()
plt.xscale("log")
plt.title("4 Model Parameters: Acceptance rate = %.2f" % (acc_rate))
plt.xlabel("Iterations")
plt.ylabel("Log(L(m))")
box_style=dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.1)
CM = np.std(np.array([777, 772]))**2
stand = 0.045
apriori = 150
plt.figtext(0.8,0.6, "$C_{m}^{q}$=%.2f," % (CM), ha="center", va="center", fontsize=10, bbox={"facecolor":"white", "alpha":0.9})
plt.figtext(0.8,0.5, "$Noise$=%.2f," % (stand), ha="center", va="center", fontsize=10, bbox={"facecolor":"white", "alpha":0.9})
plt.figtext(0.8,0.4, "$C_{m}^{prior}$=%.2f" % (apriori), ha="center", va="center", fontsize=10, bbox={"facecolor":"white", "alpha":0.9})
plt.savefig(’ipmc_burnin_4_mp.pdf’)

12.5 Matlab De-convolution
function [refapprox] = decon(model,obsdata)
Nparam = length(model);

ref = zeros(10000,1);
for kk = 1:Nparam

ref(model(kk)) = ref(model(kk)) + 0.02*(-1)^(kk+1); %gemmer reflektionskoefficienterne i index:780,930,1080,1200

end

%%% BEGIN Initialize Basic Constants %%%

nsamp = 4096; % # samples in seismogram

% Cosine-Gauss Wavelet with 3 major peaks
N = 960; % 40; % Number of samples of wavelet
wav = zeros(N,1);
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T = 200; % 240; % Dominant period
wav = cos((-N/2+1:N/2)*(2*pi)/T).*exp(-(1/2)*((-N/2+1:N/2).^2)/(2*N));
%%% BEGIN Generate approximate model ’refapprox’ from linear inversion %%%
% Compute simplified seismic data through convolution
a = zeros(1,nsamp); % ’nsamp’ is the length of the reflectivity
a(1:length(wav)/2+1) = wav(length(wav)/2:length(wav))’; % a is the "right half" of the wavelet ’wav’
b = a’;
G = toeplitz(a,b);

ntimewin = 3900;
dobspad = zeros(nsamp,1);
dobspad(1:ntimewin) = obsdata(1:ntimewin);

eps2 = 0.5e-1;
refapprox = inv(G’*G + eps2*eye(nsamp,nsamp))*(G’*dobspad);

%%% END Generate approximate model ’refapprox’ from linear inversion %%%

end
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