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Abstract

Type Ia supernovae (SNe) have played a significant role in measuring the acceler-

ation of the Universe’s expansion and the existence of dark energy. However, un-

derstanding the nature of SNe and the impact of population, originating from two

distinct progenitor channels (single- and double-degenerate), changes over cosmic

time is crucial to accurately measuring these phenomena. In this talk, we present

a novel Bayesian hierarchical two-population model of Type Ia SNe which enables

us to measure the properties of the two populations, redshift evolution of their rela-

tive fractions and thus investigate the impact of these elements on the precision and

accuracy of constraints on the cosmological parameters.

Our model builds on earlier work by accounting for the varying fraction of two dis-

tinct Type Ia supernova populations over cosmic time. By modeling the redshift de-

pendence of the two populations, we can estimate their respective fractions at differ-

ent epochs and explore the impact of these changes on measurements of cosmological

parameters.

We apply our model to simulations and observational data from Pantheon+. We

show that observational data has signatures of redshift dependent fractions of the su-

pernova populations and discuss these results in the framework of basic expectations

related to the star formation history. We find that this demographic drift has potential

implications for measuring cosmological parameters, as it affects the derived distance

and intrinsic properties of Type Ia SN.

We discuss the implications of our results for future observations and the study of

cosmology. Our model provides a framework for incorporating demographic drift

into the two population model of Type Ia SNe, which could lead to more accurate

measurements of the properties of dark energy. We also highlight the importance of

continued observational efforts to constrain the properties of Type Ia SNe and their

progenitor scenarios. In conclusion, our Bayesian two-population model of Type Ia

SNe provides a powerful tool for exploring the demographic drift of these popula-
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tions and its implications for measuring cosmological parameters. By accounting for

the changing fraction of the two populations over cosmic time, we can improve our

understanding of the nature of Type Ia SNe and their use as cosmological probes.
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1Introduction

"Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean,
you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to
space."

- Douglas Adams, The Hitchiker’s Guide To The Galaxy

Astronomy and astrophysics are unique amongst the sciences due to the nature of

what is being worked with. While other fields are able to probe nature within their

laboratories or in the field, astronomers are limited to what they can deduce from

observations of the sky. This poses unique challenges, one of them being the mea-

surement of distances and scales. As an example, how does one measure the distance

to a far-away galaxy without being able to put down a yardstick? This simple ques-

tion is still up for debate to this day, and will be central to this thesis.

In this thesis we focus on the usage of Type Ia supernovae (SNe) as a tool for mea-

suring distances on a cosmological scale. This is possible due to these SNe acting

as standard candles (Tripp, n.d.). These SNe are the result of white dwarf stars ig-

niting in runaway thermonuclear explosions (Hillebrandt et al., 2013), resulting in

explosions with a remarkable degree of uniformity amongst their luminosities. This

property is what we refer to when we describe Type Ia SNe as standard candles, and

allows us to measure relative distances between SNe. One can even measure abso-

lute distances given a set of calibration SNe with independently measured distances

(Riess et al., 2022). Due to the large luminosity of these events, often exceeding the

output of their host galaxies, Type Ia SNe can be used to measure distances at large

scales. Scatter is still present in Type Ia SNe peak luminosities, despite attempts at

standardization, implying that Type Ia SNe are imperfect candles or that some under-

lying physics is not being modelled (Wojtak et al., 2023).

The fact that Type Ia SNe can be used to measure distances across large scales means

that we can use them as a probe of cosmological models. These models aim to

describe the evolution of the Universe across large time and distance scales, with the

current standard model of cosmology being ΛCDM. Type Ia SNe proved instrumental

as cosmological probes to discover cosmic acceleration due to the presence of dark

energy (Riess et al., 1998; Perlmutter et al., 1999), the Λ component of ΛCDM.
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The standard model of cosmology is of course not complete, and Type Ia SNe are

expected to help find cosmological tensions that hopefully will lead to new physics.

One such current tension is the Hubble tension. This refers to a roughly 5σ difference

between the value of the Hubble constant H0 measured using Type Ia SNe Riess et al.,
2022 and that measured by using the cosmic microwave background (CMB). Upcom-

ing all-sky surveys conducted with next-generation telescopes such as the Vera C.

Rubin Observatoryand the Nany Grace Roman Space Telescopeare expected to probe

other cosmological parameters such as the dark energy equation of state parameter

and matter density of the Universe to percent-level precision. This level of precision

is expected to reveal further tensions within the current standard model of cosmol-

ogy.

The fact that future surveys aim to achieve percent-level precision means that we

have to ensure current modelling efforts are free of any systematics or biases at this

level. In spite of how central Type Ia SNe are to making these measurements, remark-

ably little is known about the explosion mechanisms and progenitor systems of Type

Ia SNe (Maoz et al., 2014). The fact that Type Ia SNe are not very well understood

and with models requiring an intrinsic scatter means that some underlying physics

is being glossed over, posing a chance for astrophysical biases to be introduced into

cosmological measurements.

1.1 Cosmology

"The evolution of the world can be compared to a display of fireworks that has just ended:
some few red wisps, ashes and smoke. Standing on a well-chilled cinder, we see the slow
fading of the suns, and we try to recall the vanished brilliance of the origin of worlds."

- Georges Lemaître, The Primeval Atom, 1950

Cosmology is the study of the origin, evolution and fundamental properties of the

Universe as a whole. Although the field is large in scope, it deals with fundamental

questions that have been asked by humanity throughout history; "Where did every-

thing come from?", "Is the world infinite in extent?" and "What is the ultimate fate of

the world around us?". Considering the scope of the questions that cosmology deals

with, one would be hard pressed to cover the whole field in a Msc thesis. Instead this

chapter aims to only scratch the surface, introducing the core assumptions definitions

that form the basis of our current best answer to these fundamental questions, the

ΛCDM model.
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1.1.1 The FLRW Metric

A single principle underlies the current paradigm of thought in cosmology, known

as the Cosmological Principle. This principle states that, if viewed on sufficiently

large scales, the properties of the Universe are the same for all observers. One can

think of this as an generalisation of the Copernican principle, that humans are not

"privileged observers", extending it to cover the Universe as a whole. Assuming the

Cosmological Principle brings with it two predictions for the Universe: homogeniety

and isotropy. The first of these, homogeniety, is the claim that the Universe is ob-

servably uniform at large scales. The second, isotropy, is the claim that there is no

preferred direction in the Universe. The seemingly simple assumption of the Cosmo-

logical Principle has large ramifications for how we describe the Universe around us.

Using this assumption, a metric can be derived that describes a maximally symmetric

Universe that can expand or contract as a function of time. This metric is known as

the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and is defined as

ds2 = −c2dt2 + a(t)2
[
dr2 + Sκ(r)

2dΩ2
]
, (1.1)

where we elegantly skip an introduction to GR and the metric’s derivation. Here

ds is the spacetime separation between two events, t is known as the proper time,

r is a spherical spatial coordinate with dΩ(θ, ϕ) encompassing the remaining two

coordinates, and

Sκ(r) =


R0 sin(r/R0) if κ = +1

r if κ = 0

R0 sinh(r/R0) if κ = −1

. (1.2)

Eq. 1.2 describes the geometry of an isotropic and homogenous Universe. κ ∈
{+1, 0,−1} denotes the curvature with the three values representing a positively

curved, flat and negatively curved Universe, respectively, and the constant R0 de-

notes the radius of curvature. Finally, the function a(t) is known as the scale factor.

As the name implies, the scale factor describes the scaling of the Universe as a func-

tion of time, and is defined to be a(t0) = 1, where t0 is the current age of the Universe.

From this one can define the distance between two points equivalent to the distance

between them which would be measured with rulers at the time they are being ob-

served, as

Dp(t) = a(t)

∫ r

0
dr = a(t)r, (1.3)

1.1 Cosmology 3



known as the proper distance. From this, the rate of change in proper distance can

be written as,

Ḋp = ȧr =
ȧ

a
Dp = H(t)Dp, (1.4)

where H(t) is known as the Hubble parameter. Eq. 1.4 describes the recession veloc-

ity between two points due to evolution of the Universe via the scale factor. Expan-

sion / contraction of the Universe via the scale factor would incur red / blueshift of

light travelling between two points. This cosmological redshift is given by

a(t) =
1

1 + z(t)
. (1.5)

From this we conclude that if we observe a galaxy with cosmological redshift z = 2,

then we would in fact be observing it as it was at the time te when light was emitted

and the Universe had a scale factor a(te) = 1/3.

1.1.2 A Dynamical Universe

Evaluating Eq. 1.4 at t = t0, one gets v = H0D, where H0 is known as the Hub-

ble constant. This linear relation between distance and recession velocity was first

observationally confirmed by Edwin Hubble in 1929, and the equation has come to

be known as Hubble’s law. This was a turning point of a discovery, as the fact that

H0 > 0 implies that the Universe is expanding over time. This in turn means that the

Universe is dynamical, evolving as a function of time. The dependence ofthe scale

factor on time, a(t), is needed to describe a dynamical Universe. To calculate it, three

equations are needed: the Friedman equation, the fluid equation and the equation of

state. The first of these is defined as

1− Ω(t) = − κc2

R2
0a(t)H(t)2

(1.6)

where Ω(t) = ϵ(t)
ϵc

is the ratio between the energy density ϵ and the critical energy

density ϵc corresponding to a flat Universe. In the Newtonian regime, this equation

can be interpreted as describing energy conservation, with the potential and kinetic

energy of expansion being constant. This equation allows us to link the different

components of the FLRW metric, but does not by itself allow us to solve for the scale

factor’s dependence on time. We must introduce the second of the three equations,

the fluid equation. By assuming that the content of the Universe at large scales
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has the properties of a fluid, one can write the first law of thermodynamics in an

expanding / contracting Universe as

ϵ̇+ 3H(t)(ϵ+ P ) = 0, (1.7)

where P is the pressure associated with the material that fills the Universe. We can

combine Eq. 1.6 and Eq. 1.7 to define the acceleration equation,

ä

a
=

4πG

3c2
(ϵ+ 3P ). (1.8)

This equation shows that a positive energy density decelerates the Universe. If the

material in the Universe contributes a negative pressure P < −1
3ϵ, the Universe

instead expands at an accelerating pace. Such a component is commonly referred to

as dark energy.

The last equation needed to be able to describe a dynamic Universe is the equation of

state, which relates the pressure and energy density P = P (ϵ). Assuming dilute gases,

this can be written simply as P = wϵ, where w is a dimensionless scaling constant. It

can be shown that w = 0 corresponds to the non-relativistic matter component of the

Universe, while w = 1/3 corresponds to the relativistic component, such as photons

/ radiation. An especially interesting case is if a component exists that has w < −1/3.

Such a component would provide a positive acceleration to the Universe, leading to

expansion. The special case of w = −1 leads to a constant density of this component.

Given these equations, one can (albeit not analytically) describe the dynamics of a

Universe with, given values for the different constants described.

Assuming the Universe contains non-relativistic matter, radiation, curvature and a

negative pressure component with energy density ϵΛ and equation-of-state w0 < 0.,

the Friedmann equation can be rewritten as

H(a) = H0

√
Ωr,0

a4
+

Ωm,0

a3
+

ΩΛ,0

a3(1+w0)
+

1− Ω0

a2
= H0E(a), (1.9)

where Ωm,0 = ϵm,0/ϵc(0), Ωr,0 = ϵr,0/ϵc(0), ΩΛ,0 = ϵΛ,0/ϵc(0) and Ω0 = Ωm,0 +

Ωr,0 +ΩΛ,0 are the energy density parameters for matter, radiation, dark energy and

curvature respectively. We have reduced Eq. 1.6 to a differential equation in the

scale factor (with the time dependence being implicit in Eq. 1.6), which can be

solved numerically given values for the constants in Eq. 1.9.

Using Eq. 1.9, predictions can be made regarding the expansion, structure and evo-

lution of the observable Universe, which in turn can be used to place constraints on

the parameters of our model: H0, Ωm,0, Ωr,0, ΩΛ,0 and w0. Current constraints have

Ωm,0 ≈ 0.3, Ωr,0 ≈ 0, ΩΛ,0 ≈ 0.7 and w0 = −1. This is the current standard model
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of cosmology, known as ΛCDM. This model contains a cosmological constant corre-

sponding to dark energy, Λ, that leads to the observed expansion of the Universe,

as well as a large component of non-relativistic matter that only interacts via gravity,

known as cold dark matter (CDM). This model fits remarkably well with observations,

but is incomplete. The earlier mentioned Hubble tension is a 5σ difference in mea-

surements of the Hubble constant from probes in the early and late Universe. Similar

tensions exist in other parameters relating to structure formation (Di Valentino et al.,
2021).

1.1.3 Distance Measures

In Eq. 1.3 we introduced the proper distance. To measure this distance would require

an adequately long ruler and a method of measuring said distance in an instant. Ex-

perimentalists have not figured out how to hit the pause button on the Universe, and

as such we need to introduce different, observable distance measures when working

on cosmological scales.

We first introduce the line-of-sight comoving distance DC . From Eq. 1.5 we have that

both that dz = da. Eq. 1.3 that dz/E(z) is proportional to the travel time of a photon

over the redshift-interval dz divided by a. This is equivalent to the proper distance

divided by the the scale factor, and by integrating we get

DC =
c

H0

∫ z

0
E−1(z′)dz′ = DH

∫ z

0
E−1(z′)dz′, (1.10)

where DH is the Hubble distance. This distance corresponds to the constant (over

time) distance between two objects moving with the Hubble flow. We have defined

in terms of redshift instead of scale factor, as we can observe cosmological redshift

by observing distance objects that are less impacted by peculiar motion relative to us.

If instead we have two objects at the same redshift but separated by some angle dθ,

we define the separation to be the transverse comoving distance,

DM =


DH√
1−Ω0

sinh
(√

1−Ω0DC
DH

)
for 1− Ω0 > 0

DC for 1− Ω0 = 0

DH√
|1−Ω0|

sinh

(√
|1−Ω0|DC

DH

)
for 1− Ω0 < 0

. (1.11)

This distance is defined using Sκ(r) from the FLRW metric and Eq. 1.9, which gives

a curvature radius of R0 =
DH√
|1−Ω0|

.

With these definitions in place, we can now relate cosmological distance measures to

observable distances. This work focuses on SNe Ia which are point-like sources. For
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such objects, the luminosity distance is a typical distance measure. It is defined as

the relationship between bolometric flux F and luminosity L,

DL =

√
L

4πF
. (1.12)

Alternatively, it can be defined in terms of apparent and absolute magnitudes m and

M as

m−M = 5 log

(
dL
10

)
. (1.13)

In an expanding Universe the energy per photon will decrease due to cosmological

redshift, reducing the observed flux F by a factor of (1+z). Additionally, the time be-

tween emission of two photons will be increased by a factor of (1+z). This decreases

the rate of photons and thereby the flux is decreased by a total factor of (1 + z)2. In

a flat, static Universe DL = DM , but in the general case where the flux is decreased

by a factor (1 + z)2 this would become

DL = (1 + z)DM . (1.14)

Using Eq. 1.14 we can relate observable distances to the underlying cosmological

model, assuming that the observed redshift is purely due to expansion of the Universe.

We will in the next section explore how SNe Ia can be used to constrain the underlying

cosmology using this relation.

1.2 Type Ia Supernovae as Cosmological
Probes

"Because I have contemplated explaining what I think, not only about the location and
movement of this light, but also about its substance and origin, and believing that I have
found an explanation that, for lack of evident contradictions, may well be true, I have
finally arrived at the belief of being capable of knowing something about this wonder,
beyond the point where pure conjecture ends."

- Galileo Galilei, letter to O. Castelli regarding the Stella Nova of 1604

The observations of the supernovae (SNe) of 1572 and 1604, and the attempts, by

Tycho, Kepler, Galileo, and others, to understand their natures and locations, were

transformational events in the history of science. These attempts can be viewed as

signaling the beginnings of modern astrophysics. Among the handful of historical
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SN events in the Galaxy recorded over the past two millennia, we now know that

at least some were core-collapse (CC) SNe, involving the explosion of massive (M

> 8M⊙ ) stars, while others were the thermonuclear explosions of lower-mass stars,

now known as Type-Ia supernovae (SNe Ia). These stellar infernos have captured

our attention since the time of Galileo, continuing to illuminate the Universe around

us. With advancements in technology and our understanding of physics, the study

of supernovae has evolved into a multidisciplinary endeavor, intertwining astronomy,

astrophysics, nuclear physics, and even cosmology. SNe Ia have proven themselves

especially useful in the field of cosmology due to their remarkable uniform luminosity,

earning the title of "standard candles". These standard candles will be the focus of

this chapter.

SNe Ia are distinguished from CC SNe based on their spectroscopic features: the

absence of hydrogen absorption lines and the presence of strong silicon lines in the

epochs up to and including peak luminosity. These spectral features, combined with

the measured energetics, are what first lead astrophysicists to propose the idea that

SNe Ia are degenerate stellar cores undergoing thermonuclear combustion (Hoyle,

n.d.). The combination of observed spectral features and the presence of SNe Ia in

older stellar populations further indicate that this degenerate core is a carbon-oxygen

white dwarf (Nugent et al., 2011; Bloom et al., 2012). Singular white dwarfs are

stable objects, raising the question of what leads white dwarfs to ignite. This has been

attributed to the accretion of mass onto the white dwarf from a binary companion,

until the white dwarf reaches roughly the Chandrasekhar mass MCh = 1.44 M⊙. At

this mass the the white dwarf reaches a temperature and pressure such that carbon

ignites, leading to the runaway thermonuclear explosion (Maoz et al., 2014).

The fact that SNe Ia are most likely always caused by the thermonuclear detonation of

a C/O white dwarf with M ∼MCh is a natural explanation for the observed homoge-

niety and status as standard candles. This property has led to SNe Ia have playing

an instrumental role in the discovery of the accelerating expansion of the Universe

(Riess et al., 1998; Perlmutter et al., 1999), and they continue to be one of the most

prominent probes for constraining cosmological models described in the previous Sec-

tion. SNe Ia are interesting objects of astrophysical study in-and-of themselves, being

major contributors to the evolution of galaxies, contributing to the chemical enrich-

ment of the Universe and influencing subsequent generations of stars (Hillebrandt

et al., 2013).

Due to their important role both in astrophysics and cosmology, multiple generations

of surveys have been dedicated to the study of SNe Ia. As a result, the number

of observed SNe Ia, as well as our understanding of the physics that drive them,

has increased dramatically since the time of Tycho, Kepler and Galileo. Although
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we have deepened our understanding of SNe Ia, many questions about these stellar

explosions remain. In this section we will provide a short review of SNe Ia, their

usage in cosmology, as well as an overview of some of the main problems in the

field.

1.2.1 Standard Candles

The Tripp Calibration

When a SNe Ia is observed, a light-curve is recovered together with a spectra if obser-

vational resources are available. The light-curve shows the evolution in brightness

for a given band over time. These light-curves are modelled in different ways to ex-

tract information from them, with one of the most common being the SALT model.

This model compresses the light-curve down to three observables: the peak appar-

ent B-band magnitude mB, the stretch x1 which is related to the decline rate, and

an apparent B − V color capp. Examples of B-band light-curves are shown in the

left of Fig. 1.1, where we compare the B-band light curves of multiple SNe Ia. As
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FIGURE 1.1.
Comparison of B-band absolute magnitude light-curves for 4 SNe Ia. Light-curve fits are
Bazin models shown for illustrative purposes. Left: Light-curves before the Tripp calibration
is applied. Right: SNe Ia after the Tripp calibration is applied. Values used are the standard
fiducial values α = 0.148 and β = 3.122.

mentioned earlier, SNe Ia are known as standard candles due to the observed ho-

mogeniety in luminosity across SNe. This homogeniety is due to the majority of SNe

Ia being the result of thermonuclear detonation of C/O white dwarfs with roughly

M ∼ MCh. The peak absolute B-band magnitudes of SNe Ia have an intrinsic dis-

persion of σint = σ(M int
B ) ∼ 0.3 (Hamuy et al., 1996), where M int

B is the corrected,

intrinsic absolute magnitude. This scatter is visible in when comparing the peak ab-

solute magnitudes of the light-curves shown in Fig. 1.1. Reducing the dispersion in
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SNe Ia peak magnitudes is paramount to their usage as standard candles. Empirical

correlations between the peak absolute magnitude and SN properties can be used

to calibrate the observed light curves, such that dispersion is decreased. The first

of these empirical relations is between the peak absolute magnitude and the width

/ rate of decline of the SNe Ia light curve, known as the Phillips relation (Phillips,

1993): brighter SNe have light curves that are wider / slower evolving. A second

correlation that has become standard in the SNe Ia literature is the color correction,

based on the observation that SNe Ia with redder observed colors are fainter (Tripp,

n.d.). These empirical correlations can be combined into what is known as the Tripp

calibration (Tripp, n.d.),

MB = M int
B + αX1 + βcapp. (1.15)

Here MB is the observed peak absolute B-band magnitude. X1 denotes the width,

also known as stretch, with α parameterizing the Phillips relation. In the last term

capp is the B − V color at peak luminosity and β parameterizes the color correction.

This calibration can be rewritten into it’s more commonly used form

mB = M int
B + αX1 + βcapp + µ(z), (1.16)

where mB is the observed apparent B-band magnitude and µ(z) is the distance mod-

ulus. Eq. 1.16 shows how SNe Ia can be used to constrain cosmological parameters,

since the distance modulus depends on the underlying cosmology,

µ(z) = mB −MB = 5 log10

(
DL(z)

10 pc

)
, (1.17)

where DL is the luminosity distance defined in Eq. 1.14. From this we see that

relative distances of SNe Ia should be able to provide constraints on the component

densities in cosmological model, e.g. Ωm,0, ΩΛ,0 and the likes from Section 1.1. One

would have to define an absolute distance scale to constrain the Hubble constant,

which enters Eq. 1.14 as an additive constant. This is done using the cosmic dis-

tance ladder, where different steps or rungs of known distance indicators are used

to calibrate indicates further away (Riess et al., 2022). A typically used approach is

using parallax measurements (first rung) to calibrate the period-luminosity relation

for Cepheids (second rung), wich in turn is used to calibrate extragalactic SNe Ia

(the third rung). Applying the Tripp calibration to SNe has led to reduction of the

intrinsic dispersion from σint ∼ 0.3 to σint ≲ 0.15. The right side of Fig. 1.1 shows

the intrinsic peak B-band magnitudes M int
B,i for the example SNe Ia, where fiducial

values α = 0.148 and β = 3.122 have been chosen (Riess et al., 2022; Brout et al.,
2022a)
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Dust and Intrinsic Dispersion

As the light of SNe Ia leaves its host galaxy, it passes through a random column of

dust in the interstellar medium. This dust absorbs and scatters light in a wavelength-

dependent process, leading to extinction (dimming) and reddening (shifting colors to

positive values). The change in rest-frame B − V color is known as dust reddenning

and is denoted E(B−V ). The resulting extinction in the B-band, AB, is proportional

to the dust reddening AB = RBE(B − V ), where RB is known as the extinction

coefficient. Since dust only dims, E(B − V ) ≥ 0. Likewise, RB can be related to

dust grain size and has the constraint RB ≥ 0, with some theoretical studies placing

higher lower bounds such as RB > 2 (Draine, 2003).

The color-luminosity relation in Eq. 1.16 relates the observed apparent color to the

SNe Ia luminosity. If the intrinsic SNe Ia color is cint = 0 then this relation can

be understood as being entirely due to the effects of dust. In this case, one would

expect β = RB and capp = E(B − V ). This does not hold, however, if there are

non-zero intrinsic SNe Ia colors or a variation in them. SNe Ia analyses using the

Tripp calibration presented in Eq. 1.16 find RB varying between 2− 4 depending on

the sample and specific methodology used (Mandel et al., 2017). These values are

inconsistent with values measured in the Milky Way (MW), varying between 2.1−5.8

with a typical value of RB ≈ 4.3 (Schlafly et al., 2016).

From the previous section we also know that intrinsic dispersion still exists, with

σint ≲ 0.15. This is also visible in the right side of Fig. 1.1. Assuming SNe Ia are

truly standardizable, this dispersion can be thought of as a fudge factor to account

for missing physics in the chosen model. All of this suggests that accounting for

extinction and dust reddening can lead to a more physical SNe Ia calibration. In

this case, the observed apparent color would be a convolution of the distributions

describing intrinsic SNe Ia colors and extrinsic extinction due to dust. To account

for this, (Mandel et al., 2017) introduced hierarchical models (see Section ??) that

extend Eq. 1.16,

mB = M int
B + αX1 + βcint +RBE(B − V ) + µ(z), (1.18)

capp = cint + E(B − V ), (1.19)

where cint is the intrinsic SNe Ia color. Using this approach (Mandel et al., 2017)

find RB = 3.8 ± 0.3, consistent with the normal MW value. Similar work by (Brout

et al., 2021) find a reduced intrinsic dispersion of σint ≈ 0.08. As we can see, SNe Ia

become better standard candles when applying physically motivated models instead

of purely empirical relations.
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Impact of Host Galaxy Properties

In the previous section we introduced the Tripp calibration and its extension to in-

clude dust properties. This extension led to a reduction in intrinsic scatter by making

the calibration more physical, but did not succeed in fully removing the dispersion.

Although more physical, the calibration is still largely driven by empirical relations

between observables. Additional correlations between SNe Ia luminosities and prop-

erties of their host galaxies have been observed (Kelly, 2007), and have become a

common extension of Eq. 1.16 in the SNe Ia literature. The observed correlation for

host stellar mass can be seen in Fig. 1.2, where we plot SNe Ia absolute magnitudes

MB from Pantheon+ (see Section 3.3) versus the global stellar mass of their host

galaxies, including a mass cut SM∗ = 10.. This correlation is often referred to as
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FIGURE 1.2.
SNe Ia absolute B-band magnitudes after applying Eq. 1.16 versus host galaxy mass. A cut
is made at SM∗ = 10., with low mass SNe Ia shown in blue and high mass SNe Ia shown in
orange. Average magnitudes M̂ low

B = −19.28 ± 0.02 mag and M̂high
B = −19.14 ± 0.02 mag

are shown by the solid lines. The shaded regions show the 3σ scatter around the mean. The
value of the observed mass step is ∆M∗ = 0.14± 0.03 mag.

the mass step, due to the approximately step-like change in luminosity between low-

and high-mass galaxies. This step parameterizes the observed relation that SNe Ia in
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more massive galaxies appear dimmer after standardization, compared to SNe Ia in

lower mass galaxies. This step is typically parameterized as (Scolnic et al., 2022)

δM∗ = ∆M∗

[
1

2
− (1 + exp ((M∗ − SM∗)/τM∗))

−1

]
, (1.20)

where ∆M∗ is the magnitude of the SN Ia luminosity difference between SNe above

and below the step value SM∗ for the host mass M∗. This is equivalent to a smooth

sigmoid transition from a value of −∆M∗/2 for M∗ << SM∗ and ∆M∗/2 for M∗ >>

SM∗ . Applying this to Tripp calibration, we get an extended calibration given by

mB = M int
B + αx1 + βcapp + µ(z) + δM∗ . (1.21)

(Mandel et al., 2017) explore the dependence between the host mass step and dust

properties as a potential explanation for the observed correlation between host mass

and SNe Ia luminosity. They allow for differing distributions of dust reddening E(B−
V ) between low- and high-mass host galaxies, and find that roughly a third of the

observed mass step can be explained by differences in dust distribution between the

two populations of galaxies. Similarly (Brout et al., 2021) allow for differing E(B−V )

and RB between low- and high-mass host galaxies, finding mean values RB = 3.94

and RB = 2.85 for low- and high mass galaxies respectively. In their study they

find that the majority of the observed mass step is explained by differences in dust

properties and distribution between low- and high mass galaxies. As noted by (Brout

et al., 2021), similar results have been found by (Wang et al., 2009) when splitting

SNe Ia on velocities derived from spectra, which imply differences driven by intrinsic

SNe Ia properties.

Similar empirical correlations and step functions have been applied to other host

properties, both to the local SNe Ia environment and the global host environment. Ex-

amples of properties studied include local/global specific star-formation rate (LsSFR

/ sSFR), rest-frame U-V color and morphological type (Rigault et al., 2020; Jones

et al., 2015; Pruzhinskaya et al., 2020). Results vary across the cited studies due to

(amongs other things) differences in the samples used, and the physical explanation

for the observed correlations is still a topic of debate. A potential explanation to these

observed correlations will be explored in the following section.

1.2.2 The Progenitor Problem

In the previous section we introduced how SNe Ia can be used as standard candles

due to the observed homogeniety in peak luminosity. We introduced the Tripp calibra-

tion used to reduce intrinsic dispersion in observed luminosities, as well as physical

and empirical extensions to reduce this intrinsic dispersion. As mentioned previously,
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this intrinsic dispersion can be understood as a fudge factor that accounts for unmod-

elled astrophysics. It may come as a surprise to the reader, but one such unmodelled

aspect is the progenitor of SNe Ia. We have previously described how SNe Ia are

the result of runaway thermonuclear detonation of a C/O WD, with the detonation

most likely being caused due to accretion of mass up to the Chandrasekhar limit of

MCh = 1.44 M⊙. The specifics of how the SNe Ia accretes this mass, what kind of

binary partner (or donor) provides this mass and how the detonation starts, is cur-

rently an open question (Liu et al., 2023; Maoz et al., 2014; Hillebrandt et al., 2013)

This is known as the Progenitor Problem. Multiple different progenitor scenarios and

explosion mechanisms have been proposed by theoreticians and computational astro-

physicists. These scenarios can generally be divided into two main categories: the

single-degenerate (SD) and double-degenerate scenarios, which we will explore in

this section.

The Single-Degenerate Scenario

In the single-degenerate scenario, a WD accretes material from a non-degenerate

donor / companion star via a Roche-lobe overflow or stellar wind(Liu et al., 2023).

By accreting material from the donor star, the WD’s mass continues to grow until

it reaches the Chandrasekhar mass MCh, at which point thermonuclear detonation

begins. This scenario is illustrated in the top of Fig. 1.3. Although this scenario

would explain the observed homogeniety of SNe Ia, due to detonation occurring at

a homogenous stage of accretion, observations pose some challenges. For the WD to

retain the accreted material and grow in mass, a narrow range of accretion rates on

the order of 10−8 − 10−7 M⊙ yr−1 are required. This in turn reduces the predicted

SNe Ia rate, which is in conflict with the observed no. of SNe Ia (Liu et al., 2023).

Numerical simulations of SNe Ia reproduce the expected behaviour of homogeniety,

although one may say that it does so too well. Although simulations reproduce ho-

mogeniety, they struggle to reproduce the observed scatter in SNe Ia decline rate /

stretch and luminosity (Liu et al., 2023; Hillebrandt et al., 2013). Finally, most sub-

classes of the SD scenario predict that the donor star survives the explosion. No such

surviving companion stars have been found at the time of writing.

The Double-Degenerate Scenario

In the double-degenerate scenario, two C/O WDs in a binary system are brought

into contact by the emission of gravitational waves (Maoz et al., 2014), illustrated

in the bottom of Fig. 1.3. At the point of contact, the binary pair merges via tidal

interaction, triggering the thermonuclear explosion if their combined mass exceeds

MCh. Multiple evolutionary paths can lead to this scenario (see Fig. 2 in (Liu et al.,
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FIGURE 1.3.
Upper: Evolutionary path for the single-degenerate progenitor scenarios. 1) A binary pair
of stars. 2) The main binary star reaches the asymptotic giant branch, growing in size and
shedding outer layers. 3) The main binary continues along it’s evolutionary path, cooling
into a white dwarf. 4) The white dwarf begins accreting mass from the donor star. 4) The
white dwarf reaches the Chandrasekhar mass MCh and undergoes runaway thermonuclear
fusion, leading to a SNe Ia. Lower: Evolutionary path for a double-degenerate path. 1) A
binary pair of a white dwarf and a star. 2) The stellar companion reaches the asymptotic
giant branch, growing in size and shedding outer layers. 3) The stellar companion continues
along it’s evolutionary path, cooling into a white dwarf. 4) The white dwarfs spiral closer due
to gravitational wave emission, potentially allowing for accretion. 5) The two white dwarfs
either merge or begin burning He, leading runaway thermonuclear fusion, leading to a SNe
Ia. The donor white dwarf may or may not survive this event.

2023)), but the key question is if it can lead to a SNe Ia explosion. Different studies

have indicated that the merger could lead to off-center carbon-burning, with the

predicted result that the merger would lead to a neutron star instead of a SNe Ia.

As with the SD scenario, sub-classes of the DD scenario exist that circumvent this

issue. One of these is the "double detonation" model, where the binary consists of

a C/O WD and a He donor WD (Maoz et al., 2014). In this scenario an initial He

detonation can be triggered by accumulating a He shell on top of the C/O WD, which

in turn can trigger the burning of carbon and the runaway thermonuclear explosion.

This scenario has the added benefit that sub-Chandrasekhar mass WDs can lead to

SNe Ia, alleviating some of the tension between theoretical and observed SN Ia rates.

The DD scenario would also explain the lack of detected companion stars in SNe Ia

that the SD scenario predicts. Finally, recent detection of high-velocity WDs by (El-

Badry et al., 2023) are a smoking gun of this double detonation model, with the high

velocity and chemical composition indicative of the double detonation model.

The DD scenario is however not without issues. Simulations predict a relatively wide

range of explosion masses, making reproduction of the observed SNe Ia homogeniety

hard to reproduce. Additionally, observations with Gaia [CITE GAIA STUDIES] have

attempted to identify WD binaries that are expected to merge within a Hubble time.
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150 DD systems have been detected so far, but only about 10 of these systems are

predicted to merge within a Hubble time, in direct conflict with observed SNe Ia

rates.

Relation to Observations

Of the two proposed proposed progenitor scenarios, neither agree fully with observa-

tions. In fact, the current line-of-thought is that a combination of different progenitor

scenarios is needed to fully explain current SNe Ia observations, known as the A+B

model (Maoz et al., 2014). This model originates from early observations of a cor-

relation between the observed SNe Ia rates and the host-galaxy color, morphology

and sSFR (Mannucci et al., 2005; Li et al., 2011; Smith et al., 2012). This model pro-

poses the existence of two populations of SNe Ia progenitor systems, with the rate of

occurence for population A SNe being proportional to the host stellar mass and the

rate for population B SNe being proportional to the host SFR. These have also been

described as delayed and prompt populations, referring to the amount of time that

passes between a burst of star-formation and a SNe Ia for each of these progenitor

populations.

The possibility that multiple progenitor channels contribute to observed SNe Ia poses

a simple explanation to the observed intrinsic dispersion and to empirical correlations

between SNe Ia luminosity and host properties. As (Brout et al., 2021) show, the

impact of extrinsic environmental properties can not be ignored, but inclusion of

such extrinsic effects like dust do not fully remove intrinsic dispersion. Instead one

could explain this dispersion as being due to the implicit assumption in Eq. 1.16 that

all SNe Ia stem from a single progenitor channel. (Rigault et al., 2020) explore this

via correlations between SNe Ia luminosity and LsSFR, finding the strongest-to-date

measured luminosity step δLsSFR = 0.163± 0.029 mag. LsSFR is used, as the authors

argue that it is a a relatively pure tracer of SNe Ia progentior ages, making it a useful

probe for identifying differences in SNe Ia due to underlying progenitor differences.

Using the LsSFR cut SLsSFR = −10.8, one can clearly observe a bimodality in the

distribution of SNe Ia stretch, as shown in Fig. 1.4. This bimodality in SNe Ia stretch

is well-known in the literature, but as of yet unexplained. The proposed impact

of multiple progenitor channels can also be used to explain the luminosity steps

observed with host properties other than LsSFR. (Briday et al., 2022) simulate SNe

Ia with extinction coefficients RB that vary between young and old host galaxies

as well as a difference in intrinsic luminosity between young and old progenitor

systems and use different host property tracers to model the differences. They find

that local specific star formation rate (lsSFR) is a relatively pure tracer of the galaxy

age difference, but can not rule out any intrinsic difference in SNe Ia luminosity
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FIGURE 1.4.
Recreation of Fig. 4 in (Rigault et al., 2020). Left: SNe Ia stretch versus local specific star-
formation rate, with a cut SLsSFR = −10.8. Right: Normalized distribution of stretch parame-
ters for SNe Ia below and above SLsSFR, respectively.

the case of multiple properties driving the observed differences. The authors also

explore other local and global properties as tracers of these differences, finding that

the simulated differences lead to correlations and luminosity steps similar to those

described in the previous section.

As we saw in the previous section, increasing the physicality of the Tripp calibration

lead to better SNe Ia standardisation and reduced intrinsic dispersion. Work by theo-

reticians such as (Maoz et al., 2014; Hillebrandt et al., 2013) and observers (Rigault

et al., 2020; Wiseman et al., 2023) indicate that improved constraints on SNe Ia pro-

genitors will lead to improved constrains on SNe Ia standardization, and thus better

cosmological constrains. In the next section we will explore how such constraints can

be obtained.

1.2.3 SNe Ia Rates

In the previous section we introduced the progenitor problem, the fact that the na-

ture and identity of SNe Ia progenitor systems are not yet well understood. We also

introduced the single- and double-degenerate progenitor models, the two main pro-

genitor channels for SNe Ia discussed in the literature. These progenitor channels

have different characteristic timescales between formation of the binary pair and the

resulting SN Ia detonations. This delay between a burst of star-formation and the

eventual SNe is known as the delay-time, τ . The distribution over the SN rate versus

delay-time that would follow a brief burst of star formation leading to a unit total

mass of stars is known as the delay-time distribution, or DTD. One can think of this

as the response function to star formation that embodies physical information about

the system. The DTD is directly linked to the lifetimes of the stars leading up to
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SNe Ia detonation and can thus be used to differentiate between different progeni-

tor models. Theoretical DTDs have been derived using binary population synthesis

models, forward modelling the formation and evolution of SD and DD binary pop-

ulations leading up to detonation. Others approaches include physically motivated

parametric models and ad-hoc functions to best fit the observed rate of SNe Ia.

Generic features can be derived for the DD and SD models from physical consider-

ations. For example, a power law distribution is generic to progenitor models char-

acterized by gravitational wave driven mergers. This can be found by first consider-

ing the dynamics of a system driven by gravitational waves as in the DD progenitor

model, where the time τ until merger is given by

τ ∼ a4, (1.22)

where a is the initial separation. If the distribution of a follows a power law

dN

da
∼ aϵ (1.23)

the the rate of SNe Ia is given by

dN

dτ
=

dN

da

da

dτ
∼ τ (ϵ−3)/4. (1.24)

For ϵ ≈ −1 the DTD for the DD progenitor model will have an exponent close to −1.

This is in agreement with observed separations between non-interacting binaries and

binary population synthesis models, although in reality the behaviour is likely to be

more complex. If one instead assumes that the delay-time between the formation

of a WD and a SN Ia detonation is always brief compared to the formation time of

the WD, a simple proxy for the SD progenitor model, then the DTD will simply be

proportional to the formation rate of WDs. Assuming that the main sequence lifetime

depends on a stars mass

τ ∼ mδ, (1.25)

and a power law initial mass function,

dN

dM∗
∼Mλ

∗ , (1.26)

then the WD rate, and by extension the DTD, is given by

dN

dτ
=

dN

dm

dm

dτ
∼ τ (1+λ−δ)/δ. (1.27)

Using δ = −2.5 from stellar evolution models and the Salpeter slope λ = −2.35
(Maoz et al., 2012), the DTD exponent is ∼ −1/2. Eq. 1.24 and Eq. 1.27 can be
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combined as a broken power law such that the −1/2 slope represents a bottleneck in

the formation of progenitor systems up to some time tc, after which the gravitational

wave driven mergers take over as the main driver of mergers. One such choice could

be τ = 500 Myr corresponding to the lifetime of 3M⊙ stars, after which the supply of

new SD progenitor systems goes to zero, letting the −1 slope dominate (Maoz et al.,
2012). Different approaches have been used to further describe the SD progenitor

model, but the general trend is that of a sharp drop in SNe Ia rate after a few Gyrs.

Measurements of the DTD derived from observations are shown in Fig. 8 in (Maoz

et al., 2012) together with a scaled τ−1 power law, showing good agreeance especially

at higher delay times. At lower delay times the picture is less clear, and the presence

of a τ−1/2 component is not clear.

A typical parameterization of the combined DTD for the SD and DD progenitor mod-

els is given by (Rodney et al., 2014). This parameterization is a broken power law

describing prompt and delayed SNe Ia, corresponding to the simple SD and DD pro-

genitor models listed earlier, referring to the time it takes from formation of the bi-

nary to detonation. (Rodney et al., 2014) assume a constant DTD for the prompt SNe

Ia component due to lacking observational constraints for early delay times (Maoz

et al., 2014; Liu et al., 2023). This DTD is given as

Ψ(τ) =


0 for τ < τ0,

Kη
fp

1−fp
for τ0 ≤ τ < τ1,

ητ−1 for τ1 ≤ τ ≤ τmax,

(1.28)

where η denotes the efficiency of generating SN Ia after a burst of star formation,

in units of NIa
yrM⊙

, and fp sets the fraction of all SNe Ia that arise from the prompt

channel. The constant K is defined by the chosen time-thresholds,

K =
log (τmax/τ1)

τ1 − τ0
, (1.29)

As in (Rodney et al., 2014) we choose τ0 = 40 Myr equivalent to the shortest possible

time to create a SNe Ia explosion [CITE Belczynski 2005], τ1 = 500 Myr marking the

transition from a constant DTD to a τ−1 power law as earlier, and τmax equal to the

age of the Universe for the chosen cosmology.

Constraining the DTD observationally can give valuable insight into the progenitor

systems of SNe Ia. One such way is by measuring volumetric SNe Ia rates by binning

SNe Ia from untargeted / wide-field surveys by redshift and normalizing the number

of SNe Ia to the rest-frame volume and duration of observation. An example of such

observations from (Wojtak et al., 2019) can be seen in Fig. 1.5.
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The DTD can be converted to the volumetric SNe Ia rate via a convolution with a

parameterized representation of the cosmic star-formation history (cSFH), χ(z),

RIa(t) =

∫ t

0
χ
(
f−1(t− τ)

)
Ψ(τ)dτ, (1.30)

where t is the input age of the Universe, f(z) is the function mapping a given redshift

to the corresponding age of the universe, and f−1 is the inverse mapping from age

to redshift. This conversion is necessary as most cSFHs are expressed in terms of

redshift. As mentioned earlier, the rate of SNe Ia can be understood as a response

(in the form of the DTD) to a burst of star-formation (as a function of redshift / time

via the cSFH). In this work we use the (Madau et al., 2014) cSFH determined from

ultraviolet (UV) and infrared (IR) observations,

χ(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
h70 M⊙ yr−1 Mpc−3. (1.31)

The volumetric SNe Ia rate can be decomposed into the volumetric rate of SNe Ia

originating from the prompt or delayed channel as

RP
Ia(t) = Kη

fp
1− fp

∫ τ1

τ0

χ
(
f−1(t− τ)

)
dτ, (1.32)

RD
Ia(t) = η

∫ t

τ1

χ
(
f−1(t− τ)

)
τ

dτ. (1.33)

Fig. 1.5 shows the total, prompt and delayed progenitor channel volumetric SNe

Ia rates, where we use η = 1.02+0.27
−0.15 × 10−4h270 yr−1 M−1

⊙ and fp = 0.63+0.07
−0.11 from

(Wojtak et al., 2019).

Physical scenarios have been proposed that can leard to a correlation between di-

verse host galaxy properties such as stellar mass, specific star-formation rate (sSFR)

or morphology (and thus the delay time distribution) and intrinsic SN properties

such as stretch and luminosity. Although mechanisms have been proposed, none are

currently preferred and current constraints on the DTD do not take the well-known

(see Section 1.2.2) bimodality in stretch into account. Linking SNe observables to

progenitor models via observations poses an opportunity towards constraining and

driving theoretical progenitor models.
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FIGURE 1.5.
Volumetric SNe Ia rate given by Eq. 1.32 and Eq. 1.33 compared with observations compiled
in (Wojtak et al., 2019). η = 1.02+0.27

−0.15 × 10−4h2
70 yr−1 M−1

⊙ and fp = 0.63+0.07
−0.11 from (Wojtak

et al., 2019) are used, with the shaded regions showing the 68% confidence interval.

1.3 Bayesian Inference in Cosmology

"... there is a valid defense for using non-Bayesian methods, namely incompetence."

- John Skilling, Fundamentals of MaxEnt in data analysis, 1991

Observational cosmology seeks to understand the universe and its evolution through

the analysis of observational data. Bayesian statistics, a powerful framework for

probabilistic reasoning, has become the approach of choice in much of astronomy

and astrophysics throughout the last decades. It provides a consistent framework for

incorporating prior information and updating beliefs in a principled manner. This is

particularly valuable in situations where data are scarce, and prior knowledge can

help guide the analysis. As such, an understanding of Bayesian statistics is necessary

before we dive into current results from SNe Ia cosmology.

The primary objective of this chapter is to provide a comprehensive introduction

to Bayesian statistics and its applications to inference problems, which forms the

foundation for all subsequent modeling and analysis in this thesis. Section 1.3.1

will introduce the cornerstone of Bayesian statistics - Bayes’ Theorem. We will ex-

plore its mathematical formulation and discuss how it underpins the entire Bayesian

framework, allowing us to calculate posterior probabilities of a given model based

on prior knowledge and observations. This section will build heavily on (Thrane
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et al., 2019). The focus of Section 1.3.3 is model comparison within the Bayesian

framework. Model comparison is a critical aspect in any inference problem as it

enables researchers to evaluate competing hypotheses and different models given ob-

served data. Two relatively recent developments in Bayesian inference and model

comparison, suspicion and Bayesian model dimensionality, will be introduced in this

section.

1.3.1 Bayes’ Theorem

Suppose some data d has been observed, which we are attempting to describe using

a model parameterized by the parameters θ. The goal is then to determine the prob-

ability distribution over parameters θ given the observed data. To determine this we

start with the joint probability of observing d and θ, p(d, θ),given by

p(d, θ) = p(d|θ)p(θ) = p(θ|d)p(d), (1.34)

where p(d|θ) is the conditional probability of observing d given some θ, and p(θ) (p().
is the prior distribution over parameters (data). We can rewrite this as

p(θ|d) = p(d|θ)p(θ)
p(d)

=
L(d|θ)π(θ)
Z

. (1.35)

Eq. 1.35 is known as Bayes’ Theorem, the central equation in Bayesian statistics and

inference. The notation for each factor of Bayes’ Theorem used in this work is shown

on the right-hand-side of Eq. 1.35. The factors can be interpreted as follows:

• π(θ) is the prior distribution on the model parameters θ. This represents any

prior knowledge, such as physical constraints, on the chosen model.

• L(d|θ) is the likelihood function or likelihood. The likelihood is a probability

distribution over the data d given some choice of the model parameters θ.

• Z is known as the (Bayesian) evidence and can be considered as a normalizing

constant to ensure that Bayes’ Theorem produces a valid distribution.

• p(θ|d) is the posterior distribution over the model parameters θ, that is the

probability density over the chosen model given the observed data and prior

knowledge.
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If we have N independent observations d = d1, . . . dN , then the posterior can be

written as

p(θ|d) = L(d|θ)π(θ)
Z

=
π(θ)

Z

N∏
i

L(di|θ). (1.36)

Given the definitions of the factors, the power of Bayes’ Theorem in inference be-

comes clear. Bayes’ Theorem provides a way of incorporating prior knowledge into

statistical analysis, which in turn allows us to update our beliefs when new observa-

tions are made.

Baye’s Theorem has subjectivity built into it via the choice of model and correspond-

ing priors, which means one must be careful when choosing priors. When little or

no information is available, the standard approach is to choose uninformative priors.

These are often chosen to be uniform priors across a large range. Another choice is

the maximum entropy distribution. In this case one picks the prior distribution π(θ)

that maximizes the entropy given by

H(π) =

∫
θ
π(θ) log(π(θ))dθ (1.37)

given some chosen constraints on π, such as
∫
θ π(θ)dθ = 1 and π(θ) ≥ 0 ∀ θ. Informa-

tion contained in the prior is minimized by maximizing the entropy. In this way, one

can construct uninformative priors even in cases where some information is known,

such as the case where θ ≥ 0.

It is rarely simple or tractable to sample from the posterior distribution defined by

Bayes’ theorem. Instead computationally intensive methods such as Markov Chain

Monte Carlo (MCMC) and nested sampling must be used to sample from the poste-

rior.

1.3.2 Hierarchical Models

As more and more SNe Ia are observed, it is increasingly interesting to study pop-

ulation properties when it comes to standardisation. These are properties common

to all of the SNe Ia, such as the distributions of intrinsic luminosity, stretch and ap-

parent color. Hierarchical Bayesian Inference is a formalism that allows inference of

population-scale properties from individual observations.

To put this more concretely, let us again assume that we have N observations d that

we try to describe using a model parameterized by θ. Sampling the posterior given

each observation individually may yield different parameter predictions θi, which we
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denote as the vector θ, also known as the latent parameters. In order to probe the

population properties of an ensemble of events, we make the prior for θ dependent

on a set of hyper-parameters ϕ, such that

π(θ) = π(θ|ϕ). (1.38)

The hyper-parameters ϕ parameterize the prior on the latent parameters θ. Assigning

a prior to the hyper-parameters, known as the hyper-prior, we can rewrite Eq. 1.35

as

p(θ, ϕ|d) =
N∏
i

L(di|θi)π(θi|ϕ)π(ϕ)
Z

. (1.39)

The latent variables are typically not of interest and can in many cases lead to com-

plications when sampling due to complicated posterior geometry and the curse of

dimensionality (Betancourt, n.d.). The former is due to the relationship between

hyper- and latent parameters leading to geometries such as Neal’s Funnel, while the

latter is due to dimensionality increasing as O(N) since each observation has a cor-

responding set of latent parameters θi. To circumvent this the latent parameters are

marginalized over when possible, such that

p(ϕ|d) =
N∏
i

∫
θ

L(di|θ′i)π(θ′i|ϕ)π(ϕ)
Z

dθ′i. (1.40)

In most cases this marginalization is not analytically tractable, and other methods

must be taken into use, such as numerical integration, pseudo-marginalized methods

or expectation propagation, see (Alenlöv et al., 2019) and (Vehtari et al., 2019).

1.3.3 Model Comparison

Within the Bayesian framework, hypotheses are defined via the likelihood and the

chosen model parameterization. A necessary component for science is hypothesis

testing, that is comparing, accepting and rejecting hypotheses based on observations.

The equivalent of hypothesis testing in the Bayesian framework is model comparison.

This methodology can also be extended to the case of dataset comparison to deter-

mine if two datasets can be combined, which is especially relevant in Section 4. In
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this section we introduce different methods for model and dataset comparison used

in this work, expanding both benefits and caveats with each approach.

Evidence & Bayes’ Factors

The most commonly used approach for model comparison is via the Bayesian evi-

dence and the Bayes’ factor. For a given model M the Bayesian evidence is defined

as

Z =

∫
θ
L(d|θ′,M)π(θ′|M)dθ′ = L(d|M), (1.41)

which we recognize as the normalizing constant from Eq. 1.35, where we have explic-

itly denoted the dependence on the chosen model. This describes the marginalized

probability of the observed data given the chosen model parameterization, equiva-

lent to the likelihood of the data given the model. Using the Bayesian evidence one

can define how many more times M1 is than M2 between two models, known as the

odds ratio, as

p(M1|d)
p(M2|d

=
L(d|M1)π(M1)

L(d|M2)π(M2)
=
Z1π(M1)

Z2π(M2)
= B12

π(M1)

π(M2)
. (1.42)

Here B12 is the ratio of model evidences, known as the Bayes’ factor, and π(Mi) is

the prior probability of the ith model. One can interpret the Bayes’ factor as being

the degree to which we update our relative belief in the chosen models after having

observed data. The model priors can be chosen as π(M1) = π(M2) if no prior infor-

mation on model preference is assumed before observing data, which results in the

Bayes’ factor being equal to the odds ratio. In this case the Bayes’ factor can be used

directly to compare the two models. When B12 = 1 the models are equally supported

by the data, while B12 > 1 shows support for M1 and likewise B12 < 1 shows support

for M2.

Although the interpretation of the Bayes’ factor is clear, the scale or significance of

the Bayes’ factor is more complicated. Model choice via the Bayes’ factor is typically

done using the Jeffrey’s scale Nesseris et al., 2013, shown in Table 1.1.
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Log10 Range Strength of Evidence
0 ≤ log10Bij < 1 Weak
1 ≤ log10Bij < 3 Definite
3 ≤ log10Bij < 5 Strong
5 ≤ log10Bij Very Strong

TABLE 1.1.
Jeffrey’s scale for logarithmic Bayes’ factors between models i and j.

Although commonly used in the literature, both the Bayes’ factor and the Jeffrey’s

scale exhibit pathologies that make their usage non-trivial. Nesseris et al., 2013 show

that the Bayes’ factor is not necessarily a quantitative Occam’s razor as is typically

assumed, but instead a measure of model predictiveness. The study shows that given

data from a simple model, the bounds given by the Jeffrey’s scale fail to distinguish

between the simple model and an over-parameterized model as one would otherwise

expect. Related to this (Joachimi et al., 2021) and (Keeley et al., 2022) show that

the evidence is dependent on the observed data, with the distribution of possible

resulting Bayes’ factors being able to exceed that of the Jeffrey’s scale, making model

comparison an inherently noisy process. (Llorente et al., 2023) also highlight that

the Bayes’ factor is prior dependent since the log evidence is the expectation value

of the likelihood with respect to the prior. If the bulk of the prior contains regions of

low likelihood the evidence will be correspondingly lower, meaning that sufficiently

diffuse priors can hide preference of a model by the data.

We will in this work make use of the Jeffrey’s scale (Table 1.1), since the improved

methodology presented (Joachimi et al., 2021) and (Keeley et al., 2022) is currently

out of scope. In the next two sections we introduce metrics from (Handley et al.,
2019a) and (Handley et al., 2019b)that, in addition to Bayes’ factor, are designed to

alleviate the Occam’s razor issue as well as extend the framework to comparison of

datasets.

Bayesian Model Dimensionality

One of the pathologies with the Bayes’ factor is the misinterpretation of it a as a

strict quantitative Occam’s razor, as shown in (Nesseris et al., 2013). Although the

prior volume does increase with increasing number of parameters, this can be com-

pensated for by overfitting from the additional parameters. To break this degeneracy

one can make use of the Bayesian Model Dimensionality (BMD), fist introduced by
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(Handley et al., 2019a). The BMD, denoted by d̃ is a measure of the effective number

of constrained parameters of a model that a given dataset can support.

The BMD is defined in (Handley et al., 2019a) as

1

2
d̃ =

∫
θ
p(θ′|d)

(
log

p(θ′|d)
π(θ′)

−D
)2

dθ′, (1.43)

where D is the Kullback-Leibler divergence over the posterior with respect to the

prior

D =

∫
θ
p(θ′|d) log p(θ′|d)

π(θ′)
dθ′. (1.44)

The Kullback-Leibler divergence can be understood as a quantification of the infor-

mation provided by the observed data d, and is correspondingly the mean of the

Shannon information. The Shannon information,

I(θ) = log
p(θ|d)
π(θ)

, (1.45)

represents the amount of information gained when moving from the prior to the pos-

terior. It is clear that the Kullback-Liebler divergence is the mean of the Shannon

information by definition, but that it does not contain any individual parameter in-

formation due to the marginalization over θ. This is why the BMD defined in Eq.

1.43 is given by the variance of the posterior Shannon information, with the special

case of a Gaussian posterior giving d = d̃. A benefit of this definition is that it is

weakly dependent on the choice of priors compared to the Bayesian evidence and

the Kullback-Leibler divergence.

Another benefit of the BMD is that it can be used to break the previously mentioned

degeneracy where a simple model M1 and a correspondingly more complex model

M2 exhibit log10B12 ∼ 0. If d̃1 > d̃2 then M2 would be preferred by the data. (Hand-

ley et al., 2019a) propose doing so by applying a post-hoc model prior

π(Mi) = e−d̃i . (1.46)

Although not fully Bayesian due to π(Mi) being computed from the data and thus not

being a true prior, the addition directly introduces an Occam’s razor penalty when

comparing models.
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Suspicion

In this work we will make use of two SNe Ia catalogs, SuperCal (Scolnic et al., 2015)

and Pantheon+ (Scolnic et al., 2022) (see Sections 3.2 and 3.3). The focus of this

work is the Pantheon+ catalog, but the SuperCal catalog is included for comparison’s

sake with the work done in W23. The Pantheon+ catalog can be viewed as a modern

version of the SuperCal catalog, with an increased number of SNe Ia and updated

preprocessing / data-reduction pipelines. This means it is prudent to compare results

from the two datasets and gauge if any potential changes are due to the inclusion

of new SNe Ia, systematics in new included surveys or the updated preprocessing

pipelines. That is, we aim to quantify consistency between the two SNe Ia catalogs.

The Bayesian suspiciounsness, introduced by (Handley et al., 2019b), is a relatively

new metric used to quantify consistency (or inversely, tension) between two datasets

in a Bayesian manner. Assume two independent datasets A and B are observed, and

a model parameterized by θ is chosen. The log Bayes’ factor between the model given

the combined datasets and the model given each dataset independently is

logRAB = logZAB − logZA − logZB. (1.47)

We here use Rij instead of Bij (with i,j being alphabetic instead of numeric) to differ-

entiate between Bayes’ factors used for model comparison and dataset comparison.

One can interpret this Bayes’ factor as the relative confidence in dataset A after hav-

ing observed B, compared to having only observed A. That is if RAB > 1 then B

strengthens the conclusions of A, while RAB << 1 implies either a problem with

the assumed model or a problem with either or both of the datasets, which prohibits

combining them. As mentioned earlier, the Bayes’ factor is prior dependent, and this

is also the case for Rij . Assuming A and B are consistent, increasing the width of

parameter priors would lead to an increase in Rij as it is then a priori less likely that

parameters constrained by the datasets should be similar. Based on this argument,

(Handley et al., 2019b) argue that if any physically reasonable priors which do not

significantly alter the posterior bulk that renders Rij < 1, then the given datasets

should be considered in tension. The Bayesian suspicion S removes this prior depen-

dence by making use of the Kullback-Leibler divergence definend in Eq. 1.44, and is

defined as

logSij = logRij +Dij −Di −Dj = logRij − log Iij . (1.48)

Here log Iij = Di + Dj − Dij is the information ratio between the chosen model on

A and B independently versus the combined data AB. Note that for Di the subscript

here denotes the dataset and not the model as in Eq 1.44. The suspiciousness Sij has

the qualities of the Bayes’ factor Rij while remaining insensitive to priors, assuming
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the chosen priors do not dramatically change the posterior bulk. In the case of a

Gaussian likelihood with d parameters and uniform priors (Handley et al., 2019b)

show that d̃ − 2 logS is χ2-distributed, where d̃ = d̃i + d̃j − ĩj given by the BMD

defined in Eq. 1.43. Using this a tension probability can be derived, given by

P =

∫ ∞

d
χ2
d(x)dx, (1.49)

where χ2 is chi-squared distribution and, meaning a χ2-like test can be used to deter-

mine the tension. If P ≲ 0.05 then the datasets in question should be considered in

moderate tension and if P ≲ 0.003 then they should be considered in strong tension,

with the limits corresponding to 2σ and 3σ Gaussian standard deviations. It is em-

phasized in (Handley et al., 2019b) that for non-Gaussian likelihoods only extremely

small values of P should be regarded as indicators of tension.

It is important to highlight that this tension metric is derived for the case where

data is uncorrelated. The method is extended to correlated datasets in (Lemos

et al., 2020), which requires taking into account a full covariance matrix between

the datasets being compared. The model outlined in Section 2 is not yet capable

of handling such an input, and the extension is deemed out of scope due to time

constraints. Instead we will (incorrectly) assume datasets being compared are inde-

pendent and leave a complete covariance matrix analysis for future work.

1.4 Current SNe Ia Results and
Limitations

"One of the simplest reconcilings of the Hubble constant values is that some measure-
ment is incorrect. Indeed, in the nearly 100 year history of the Hubble constant this has
always been the answer..."

- Eric V. Linder, A Whole Cosmology View of the Hubble Constant, 2023

SNe Ia are most likely the best-established late-time (or low redshift) probes for

testing and constraining cosmological models. The status of SNe Ia dates back to

the measurement of the accelerating expansion of the Universe by Riess et al., 1998

and Perlmutter et al., 1999, which they have maintained since. Today, SNe Ia are

perhaps more well known for the Hubble tension. This refers to a tension between

measurement of H0 using the cosmic microwave background (CMB) [CITE PLANCK]

and late-time measurements of, such as SNe Ia standardized using the distance ladder.

This tension began with the release of the 2013 Planck results [CITE PLANCK 13] and

has since grown to a 4−6σ tension, depending on the dataset and methodology used.
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This is shown in Fig. 1.6, comparing results derived from [CITE PLANCK 18] and the

the largest cosmological SNe Ia catalog so far, Pantheon+ (Scolnic et al., 2022). It

is still debated whether this tension is due to physics beyond ΛCDM or as-of-yet-

unaccounted-for systematics in either the CMB or SNe Ia measurements.
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FIGURE 1.6.
Comparison of the Planck 2018 [CITE] and Riess et al., 2022 measurements of the Hubble
constant. Assymetric errors have been symmetrized for visualization purposes.

Disregarding the distance ladder, relative SNe Ia distances have been used as a com-

plementary constraint on the matter density Ωm,0 and dark energy equation-of-state

parameter w0. Constraints on these parameters are orthogonal to those derived from

early-time observations of the CMB and baryon acoustic oscillations, leading to over-

all tighter constraints. Pantheon+ combines both low- and high-redshift SNe Ia, al-

lowing for joint constraints on H0, Ωm,0 and w0. This joint approach leads to tighter

constraints, but also raises questions regarding the impact of systematics. If system-

atics contribute to the Hubble tension, what impact may they have on cosmological

constraints using either relative SNe Ia distances or a joint distance-ladder analysis?

That is the focus of this section, were we present the latest constraints for H0, Ωm,0

and w0 using SNe Ia in Section 1.4.1. After having introduced these results, we will

discuss both the potential for new physics as well as potential impacts of systematics.

The former is the focus of Section ??, and the latter is covered Section 1.4.2.
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1.4.1 SH0ES+Pantheon+ Constraints

The Pantheon+ catalog is the state-of-the-art compilation of type Ia SNe surveys,

and underlies the to-date most stringent late-time constraints on the cosmological

parameters H0, Ωm,0 and w0. This catalog combines SNe Ia from a multitude of

different targeted and untargeted surveys (see Section 3.3), resulting in a single

commonly-calibrated catalog that spans the redshift rang 0.001 < z < 2.26. Within

this range the Pantheon catalog contains 1550 distinct SNe Ia, including 42 calibrator

SNe Ia from the SH0ES team (Scolnic et al., 2022). The SH0ES (or Supernova H0 for

Equation of State) team focuses on increasing precision and reducing systematics in

the cosmic distance latter, such as by detection of new calibrator SNe Ia. In addition

to this the SH0ES Team focuses on better constraints on the first and second rungs of

the distance ladder (cepheids and their calibration), as well as alternate calibration

methods such as TRGB The joint efforts of the Pantheon+ and SH0ES teams have

resulted in the landmark measurement H0 = 73.04 ± 0.99 km s−1 Mpc−1 presented

in Riess et al., 2022 and visualized in Fig. 1.6. This result was determined by making

use of 277 Hubble flow SNe Ia (0.023 < z < 0.15) from Pantheon+ in combination

with the 42 SH0ES calibrator SNe Ia. Work has continued to refine this measurement,

attempting to eliminate both potential systematics in the distance ladder as well as

in the SNe Ia themselves. The most recent is presented in Murakami et al., 2023,

where spectroscopically similar SNe Ia are used to improve constraints, giving H0 =

73.29± 0.90 km s−1 Mpc−1 and a Hubble tension of 5.7σ.

Brout et al., 2022a perform joint cosmological analyses of the parameters H0, Ωm,0

and w0 as well as more exotic models using the full Pantheon+ catalog. The aim

of this is two-fold: quantify the impact of and constraints on cosmological models

with increased freedom compared to ΛCDM, and determine the impact of SNe Ia

systematics on H0. Brout et al., 2022a investigate four cosmological models:

• FlatΛCDM: Ωm,0 is free to vary, while w0 = −1 and Ωm,0 +ΩΛ,0 = 1.

• ΛCDM: Ωm,0 and ΩΛ,0 are free to vary, with w0 = −1.

• FlatwCDM: w0 and Ωm,0 are free to vary, with the constraint Ωm,0 +ΩΛ,0 = 1.

• Flatw0waCDM: Redshift-dependent dark energy equation-of-state model, also

known as CPL cosmology (Brout et al., 2022a), where w(z) = w0 + wa(1 + z).

The free parameters in this model are Ωm,0, w0 and wa, subject to the constraint

that Ωm,0 +ΩΛ,0 = 1.
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In this work we will be focusing on the FlatΛCDM and FlatwCDM models (see Chap-

ter 7), and we present the Pantheon+ results here for comparison. For a FlatΛCDM

model using only Pantheon+ SNe Ia, Brout et al., 2022a find Ωm,0 = 0.326 ± 0.016,

consistent with results found in the H0 analysis by Riess et al., 2022. For the FlatwCDM

model, Brout et al., 2022a find Ωm,0 = 0.309+0.063
−0.069 and w0 = −0.90 ± 0.14. These re-

sults are consistent with a cosmological constant, w0 = −1. as described in Section

1.1. It is interesting to note the change in matter density between the FlatΛCDM

and FlatwCDM. This degeneracy via Eq. 1.6, where we see that w0 > −1. will lead

to increased contribution from the dark energy component at higher redshift, com-

pared to the case where w0 = −1. In Table 3 and Fig. 9 of Brout et al., 2022a results

for joint analysis of Pantheon+ and other probes are shown. Pantheon+ is analysed

with SH0ES and Planck independently, owing to the incompatibility of these datasets

due to the aforementioned Hubble tension. Interestingly, a roughly 2σ tension is

found between Ωm,0 measurements for a FlatwCDM, with Ωm,0 = 0.325+0.010
−0.008 and

Ωm,0 = 0.309+0.063
−0.069 for Planck and SH0ES, respectively. No tension in w0 is mentioned,

owing to larger uncertainties for the Pantheon+ & SH0ES measurement. Based on

simulations in (Popovic et al., 2021), Brout et al., 2022a report that systematic errors

are a minor component of the overall error budget.

1.4.2 Potential Issues and Systematics

Presence or lack-there-of of systematics in SNe Ia analyses is topic of hot debate

within the SNe Ia community. In this section we will describe some of the latest

developments in this debate, and how they relate both to the Hubble tension as

well as constrains on FlatΛCDM and FlatwCDM models described in the previous

section.

In the context of the Hubble tension, the presence of systematics can be split roughly

into two sectors, the distance ladder sector and the SNe Ia sector. The former relates

to potential systematics and biases in the first rungs of the distance ladder, the most

prominent being potential systematics in cepheid distances. Large effort has gone

into showing that the systematic contribution from this rung is minor, with the most

recent work using JWST to test the validity of the cephied period-luminosity relation.

The latter, the SNe Ia sector, is the main focus of this work. As described in Section

1.2.2, knowledge on SNe Ia progenitors and explosion mechanisms are lacking and

may contribute to systematics in cosmological analyses. Different approaches have

been used to quantify this impact, e.g Popovic et al., 2021 who’s work is used to

quantify systematics in Brout et al., 2022a. Popovic et al., 2021 use SNe Ia observa-

tions to constrain an assumed single asymmetric parent population in intrinsic color

and stretch, which afterwards is used as input for simulations to determine selection
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effectsand systematics in Brout et al., 2022a. To capture any redshift dependence,

Popovic et al., 2021 split SNe Ia into low- and high-redshift bins and model popula-

tion distributions separately. They report a bimodality in stretch in the low-redshift

bin, which their assumed single component asymmetric distribution can not describe.

Instead they adopt a two-component mixture of asymmetric distributions to better

describe this bimodality at low redshift. This binning approach may miss redshift-

dependent evolution in SNe Ia observables within a given bin. Such an unmodelled

evolution could lead to biased distance estimates in studies such as Pantheon+ that

cover a large redshift range.

To address a potential redshift evolution, Nicolas et al., 2021 use LsSFR, which they

argue is a tracer of progenitor age, to model redshift evolution of SNe Ia stretch. This

approach ascribes a physical model to the observed bimodality and evolution in SNe

Ia observables based on the two progenitor models described in Section 1.2.2. Al-

though promising in the sense that it ascribes a physical explanation for the bimodal-

ity and evolution, LsSFR measurements are not available for high-redshift catalogs

like Pantheon+. In a similar vein, Wojtak et al., 2023 attempt to model observed

bimodalities as well as reduce intrinsic dispersion by employing a two-population

hierarchical model for SNe Ia light-curve observables. This model is parameterized

as a mixture of two distributions, with a normalizing weighting parameterizing the

amplitude of each component. Wojtak et al., 2023 focus on SNe Ia in the Hubble flow,

where a constant weighting can be assumed. They report strong support for a two

component model compared to a single component model, finding that the observed

SNe Ia can be described by a mixture of low-stretch / redder and high-stretch / bluer

parent populations. Like Nicolas et al., 2021, Wojtak et al., 2023 argue that these

potential sub-populations on SNe Ia light-curve observables could be due to two un-

derlying progenitor channels. These results are an interesting addition to the debate

on SNe Ia systematics, as Wojtak et al., 2023 manage to fully remove the need for

intrinsic dispersion. The model can not be applied, however, to high-redshift surveys

in it’s current state due to the assumption

This two-population model has the potential to solve multiple issues in SNe Ia cosmol-

ogy. The first of these is regarding the Hubble tension. If a systematic bias towards

one population was present in the calibration sample of SNe Ia during calibration

with the second rung of the distance ladder, but a mixture of populations is present

in the cosmological sample, biases may be incurred in inferred parameters such as

the Hubble constant. Wojtak et al., 2022 hints at this, finding an intrinsic tension

in color between the calibration and cosmological samples. This model may also be

applicable to high-redshift surveys. Wojtak et al., 2023 assume a constant weighting

between populations, which is an acceptable approximation in the Hubble flow. As

outlined in Section1.2.2 and 1.2.3, theoretical models point at populations of SNe Ia
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progenitors changing as a function of redshift. Over the next few chapters we will ex-

plore how we can extend the two-population model to include progenitor evolution,

and apply it across a wider redshift range.
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2BayeSNova

"Since all models are wrong the scientist must be alert to what is importantly wrong. It
is inappropriate to be concerned about mice when there are tigers abroad."

George Box, Science and Statistics, 1976

The main product of this thesis is the Python package BAYESNOVA, an extension

and standardisation of the work done in (Wojtak et al., 2023). The purpose of this

extension is to tackle issues and limitations pointed out in Section 1.4.2 and 1.2.1,

enabling the usage of SNe Ia at high redshifts to constrain cosmological parame-

ters. BAYESNOVA is built using the probabilistic programming language PYAUTOFIT

(Nightingale et al., 2021), which allows for modular construction of hierarchical mod-

els and ease-of-access to different sampling algorithms for MCMC and nested sam-

pling. BAYESNOVA provides a set of model components implementing different vari-

ations and extensions of the Tripp calibration as well as for related data such as

host properties, allowing users to construct models across a range of complexity to

describe observed data.

We will first outline and describe the hierarchical model used in (Wojtak et al., 2023),

complementing the rationale described in Section 1.4.2. Consider a single SNe Ia

with lightcurve observables given by Xi = {mB,i, x1,i, ci} and observational covari-

ance matrix Σi. These observables can be further decomposed into intrinsic and

extrinsic parameters θi = {MB,i, X1,i, cint,i, E(B − V )i, αi, βi, RB,i} via the extended

Tripp calibration introduced in Eq. 1.18:

Xi(θi) =

MB,i + αiXx,i + βicint,i +RB,iE(B − V )i + µ(zi)

X1,i

cint,i + E(B − V )i

 . (2.1)

The intrinsic noise-free (latent) SNe Ia parameters are the peak absolute magnitude

MB,i, the light curve stretch X1,i and the intrinsic B−V color cint,i. The intrinsic pa-

rameters provide a phenomological description of the physical processes underlying

the observed SNe Ia light curves. The extrinsic parameters are the dust reddening

E(B − V )i and the extinction coefficient RB,i, both of which are related to the SNe
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Ia environment. Using this a Gaussian likelihood for the i’th SNe Ia can be written

as

L(Xi|θi) = G(Xi|Xi(θi),Σi). (2.2)

(Wojtak et al., 2023) propose a hierarchichal model which describes the latent param-

eters as being generated by an underlying two-population distribution. This is given

by the prior

π(θi|ϕ) = f1π(θi|ϕ1) + (1− f1)π(θi|ϕ2), (2.3)

where f1 ∈ [0, 1] is a normalizing weight parameter and ϕ = ϕ1 ∪ ϕ2 ∪ {f1} is the

full set of hyper-parameters that parameterize the priors on the latent parameters

θi. (Wojtak et al., 2023) assume independent Gaussian priors for the SNe Ia intrinsic

properties as well as the extinction coefficient and the distance modulus,

πj(MB,i|M̂B,j , σint,j) = G(MB,i|M̂B,j , σint,j), (2.4)

πj(X1,i|X̂1,j , σXint,j) = G(X1,i|X̂1,j , σXint,j), (2.5)

πj(cint,i|ĉint,j , σcint,j) = G(cint,i|ĉint,j , σcint,j), (2.6)

πj(RB,i|R̂B,j , σRB ,j) = G, (RB,i|R̂B,j , σRB ,j) (2.7)

πj(µi|µ̂j , σµ,j) = G(µi|µ̂j , σµ,j), (2.8)

where the subscript j ∈ {1, 2} denotes the population. Delta distributions are as-

sumed for the calibration parameters α and β,

πj(αi|α̂j) = δ(αi, α̂j) (2.9)

πj(βi|β̂j) = δ(βi, β̂j). (2.10)

The prior distribution for the dust reddening E(B − V )i is chosen to be a gamma

distribution, parameterized by

πj (yi,j = E(B − V )i/τj) =
yγ−1
i,j exp{−yi,j}

Γ(γ)
, (2.11)
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where E(B − V )i has been reparameterized using the scales τj of the prior gamma

distributions for numerical stability. The latent-marginalized likelihood is then given

by

L(Xi|ϕ) =
∫ ∞

0
f1G(Xi|Xi(ϕ1),Σi,1)πj (yi,1) dy1+ (2.12)∫ ∞

0
(1− f1)G(Xi|Xi(ϕ2),Σi,2)πj (yi,2) dy2,

where all latent parameters except E(B−V ) have been marginalized out analytically

giving

Xi(ϕj) =

M̂B,j + α̂jX̂1,j + β̂j ĉint,j + R̂B,jτjyj + µ̂(zi)

X̂1,j

ĉint,j + τjyj

 (2.13)

and

Σi,j = Σi +

σ
2
int,j + σ2

µ,i + α̂2
jσ

2
X1,j

+ β̂2
j σ

2
cint,j

+ y2j τ
2
j σ

2
RB ,j α̂jσ

2
X1,j

β̂jσ
2
cint,j

α̂jσ
2
X1,j

σ2
X1,j

0

β̂jσ
2
cint,j

0 σ2
cint,j

 .

(2.14)

For cosmological SNe Ia in the Hubble flow the distance modulus µ̂ is given by the

chosen cosmology. In this regime peculiar velocities are the dominant source of un-

certainty in µ̂, and the corresponding uncertainty is given by

σµ =
5

log 10

σv
c

1

zi
, (2.15)

where (Wojtak et al., 2023) assume σv = 200 km s−1. The posterior distribution of

population hyper-parameters ϕ given N observed SNe Ia is then

p(ϕ|X) ∝
N∏
i=1

L(Xi|ϕ)π(ϕ, ) (2.16)

where the proportionality is due to the unknown evidence Z and π(ϕ) are the hyper-

priors for the hyper-parameters.

Throughout this work, we will refer to a baseline model, which corresponds to the

baseline two-population model presented in (Wojtak et al., 2023). We make use of

the same hyperpriors as Wojtak et al., 2023. For any new hyperparameters intro-

duced, we make use of wide, uniform priors U(θ| − 100, 100) where applicable. If

thes hyperparameters are strictly positive, which is the case for any uncertainties σ,

we use the strictly uniform priors U(θ|0, 10).
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2.1 Duplicate SNe Handling

Current SNe Ia analyses are based on compiled catalogs that combine observations

from different surveys to obtain higher statistics, better coverage and reach higher

redshifts. This work is no different, and as a consequence the case of duplicate obser-

vations of a single SNe Ia from different surveys and instruments must be considered.

The two-population model from (Wojtak et al., 2023), shown in Eq. 2.13, implicitly

assumes that all observations are independent SNe Ia. If a catalog containing a large

number of duplicate observations then the inferred population distributions may be

biased towards certain regions of parameter space.

(Wojtak et al., 2023) makes use of the SuperCal catalog, see Section 3.2, which con-

tains a relatively low number of duplicate SNe Ia observation, and the authors assume

that the number of duplicates does not have a major impact on the inferred results.

This assumption does not hold for thee main focus of this work, the Pantheon+ cat-

alog described in Section 3.3, which contains on the order of 103 duplicate observa-

tions. (Brout et al., 2022a) perform their analysis on an Nobs-dimensional Gaussian

where Nobs is the total number of SNe Ia observations, as opposed to the number of

unique SNe Ia. The covariance between duplicate observations, as well as system-

atics related to photometric cross-calibration are given by a Nobs × Nobs covariance

matrix. Although this approach would be an ideal extension of the two-population

model, extension of the hierarchical likelihood to this case is non-trivial and deemed

out-of-scope. We instead adopt an approach that combines duplicate observations

into a single effective observation of the unique SN Ia. Consider the latent likelihood

for the i’th unique SN Ia, defined in Eq. 2.2. Furthermore assume that Mi inde-

pendent observations of this SN Ia are present in the catalog being used. Then the

likelihood can be written as

L(X̃i|θi) = CiG(X̃i|Xi(θi), Σ̃i) =

Mi∏
k=1

G(Xi,k|Xi(θi),Σi,k), (2.17)

where X̃i and Σ̃i denote the effective observation X and covariance Σ that corre-

sponds to the combination of the Mi duplicate observations, and Ci is a normal-

ization constant. This factorization assumes that all observations are independent,

which we know is not the case based on (Brout et al., 2022a). Furthermore we as-

sume a singular redshift for all observations such that Xi(θi) is the same for all

duplicate observations. Values for X̃i, Σ̃i and Ci can be derived as follows. Given

fixed observations we can rewrite Eq. 2.17 as

Mi∏
k=1

G(Xi|Xi(θi),Σi) =

Mi∏
k=1

G(Xi(θi)|Xi,Σi), (2.18)
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due to the Gaussian distribution being symmetric in the mean Xi(θi). Rewriting to

canonical form we get

Mi∏
k=1

G(Xi(θi)|Xi,Σi) =

Mi∏
k=1

exp

(
ϵi,k −

1

2
XT

i (θi)Λi,kXi(θi) + ηT
i,kXi(θi)

)
(2.19)

= exp

(
Mi∑
k=1

ϵi,k −
1

2
XT

i (θi)

(
Mi∑
k=1

Λi,k

)
Xi(θi) +

(
Mi∑
k=1

ηT
i,k

)
Xi(θi)

)
,

where

Λi,k = Σ−1
i,k , ηi,k = Λi,kXi,k, ϵi,k = −1

2

(
log |2πΛi,k|+ ηT

i,kΛ
−1
i,kηi,k.

)
(2.20)

By redefining

Λ̃i =

Mi∑
k=1

Λi,k, η̃i = Λ̃iX̃i,=

Mi∑
k=1

ηi,k, (2.21)

ϵ̃i = −
1

2

(
log |2πΛ̃i|+ η̃T

i Λ̃
−1
i η̃i

)
, ϵi =

Mi∑
k=1

ϵi,k,

we can rewrite Eq. 2.20 as

Mi∏
k=1

G(Xi(θi)|Xi,Σi) = exp

(
ϵi − ϵ̃i + ϵ̃i −

1

2
XT

i (θi)Λ̃iXi(θi) + η̃T
i Xi(θi)

)
(2.22)

= exp (ϵi − ϵ̃i) exp

(
ϵ̃i −

1

2
XT

i (θi)Λ̃iXi(θi) + η̃T
i Xi(θi)

)
= CiG(Xi(θi)|X̃iΣ̃i)

= CiG(X̃i|Xi(θi), Σ̃i) (2.23)

where

Σ̃i = Λ̃
−1
i =

[
Mi∑
k=1

Λi,k

]−1

=

[
Mi∑
k=1

Σ−1
i,k

]−1

, (2.24)

X̃i = Λ̃
−1
i η̃i =

[
Mi∑
k=1

Σ−1
i,k

]−1

·

[
Mi∑
k=1

Σ−1
i,kXi,k

]
, (2.25)

logCi = −
1

2

[
Mi∑
k=1

(
log |2πΣ−1

i,k |+XT
i,kΣ

−1
i,kXi,k.

)
+ log |2πΣ̃i| − X̃T

i Σ̃iX̃i

]
. (2.26)

From this derivation we see that, under the assumption of independent duplicate ob-

servations and a singular redshift, the duplicate observations can be reduced down to

a single effective observation X̃i with covariance Σ̃i given by Eq. 2.24 and Eq. 2.25.

This reduction of observations is equivalent to a weighted average of multivariate ob-
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servations with corresponding covariance. Eq. 2.26 gives the normalizing constant

needed to ensure proper weighting of each unique SNe Ia observation.

As mentioned, we know a priori that the assumption of independence between du-

plicate observations does not hold. We leave extending the two-population model

to the full light-curve covariance for future work. The assumption of singular red-

shift values for duplicates works for current data since the majority of SNe Ia have

spectroscopically confirmed redshifts. Future large scale surveys will rely heavily on

photometry due to the large number of observations, which could increase redshift

uncertainties and covariances due to the usage of photometric and host galaxy red-

shifts. We leave extension of the model for non-singular redshifts for future work as

well.

2.2 New Prior Options

The two-population model is hierarchical, and as such the choice of priors on latent

variables has a significant impact on the shape of the prior. In this section we will

introduce extensions made to the latent priors used in (Wojtak et al., 2023), with the

aim of increasing flexibility as well as physicality of the model.

2.2.1 Selective Extinction Prior

As outlined in Section 1.4.2, the two-population model proposes two major exten-

sions compared to typical SNe Ia analyses: the introduction of two sub-populations

of SNe Ia, and the usage of a Gamma distribution prior for the selective extinction

E(B − V )i. The selective extinction, or reddening, is a positively defined parame-

ter (i.e line-of-sight dust does not make an object appear bluer), and the standard

approach in SNe Ia analyses has been to model this using an exponential distri-

bution (Mandel et al., 2017; Brout et al., 2021). This prior choice respects that

E(B − V )i ≥ 0, but assigns majority of the probability mass close to 0, as seen

in the left of Fig. 2.1. Intuitively this seems situation seems impropable, as it implies

that the majority of SNe Ia are to be found in regions with a low amount of dust in

the line-of-sight. (Wojtak et al., 2023) propose a more flexible prior in the form of

the Gamma distribution, shown in Eq. 2.11, parameterized by the shape parameter

γ and scale τ . The gamma distribution is the maximum entropy distribution for pos-

itively defined variables with constrained means of the variable and it’s logarithmic

counterpart. As outlined in Section 1.3.1, the maximum entropy requirement is desir-

able for priors when constraints (such as E(B − V )i ≥ 0) are available. Furthermore

the exponential distribution typically used in the literature is a special case of the
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FIGURE 2.1.
Left: Comparison of different Gamma distributions with varying shape parameters γ. Right:
Comparison of probability mass for different Gamma distributions integrated up to the limit
y = 10, showing that values of high γ have correspondingly lower probability mass for a
constant integration limit.

gamma distribution when γ = 1. For γ > 1 the Gamma distribution is peaked at

y = E(B − V )/τ > 0. This is shown in the right of Fig. 2.1.

The use of this prior is also why E(B − V )i in Eq. 2.13 must be marginalized numer-

ically. In (Wojtak et al., 2023) this is done in the range 0 ≤ y ≤ 10, after which the

distribution is renormalized, for numerical stability. We argue that this choice can

bias the derived value of γ low due to low probability mass of distributions within

the range 0 ≤ y ≤ 10. for high values of γ. This can in turn impact other parameters

such as RB, cint and β due to the relations shown in Eq. 2.1. Our proposed solution

is to make use of a variable integration cutoff ymax that satisfies

Pmax =
1

Γ(γ)

∫ ymax

0
yγ−1 exp{−y}dy, (2.27)

where Pmax ≤ 1 is the chosen cutoff in probability mass. In practice this is done by

precomputing a set of pairs {(y1max, γ
1) . . . (yNmax, γ

N )} within the hyper-prior range

γ ∈ [γmin, γmax], and then matching the sampled γ to an integration bound. Here N

is given by N = γmax−γmin

∆γ where ∆γ is some chosen resolution. The default setting

in this work and in BAYESNOVA is Pmax = 0.995 and ∆γ = 0.01. The impact of this

extension is shown in Section 4.
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2.2.2 Extinction Coefficient Prior

(Wojtak et al., 2023) use a Gaussian distribution G(RB|R̂B, σRB
) as a prior for the la-

tent extinction coefficient RB. The extinction coefficient can be related theoretically

to dust grain size, which imposes constraints on the value of RB, with (Draine, 2003)

giving a lower expected limit of RB = 2.2 for Rayleigh scattering. Although (Wojtak

et al., 2023) find that only low 2σ limits of their best fit model is comparable with

this lower limit, concluding negligible influence, we will this section we will explore

alternative priors that respect this theoretical limit.

The general constraint that RB ≥ Rmin
B > 0, together with the assumption of a well

localised mean implied by the choice of a Gaussian prior, makes the Gamma distri-

bution a good candidate for a maximum entropy prior. Although such an approach

would be ideal, it would incur large numerical costs due to needing to numerically in-

tegrate over two dimensions for every evaluation of the likelihood. Instead we follow

the methodology used elsewhere in the SNe Ia literature (Brout et al., 2021; Thorp

et al., 2021) and include a truncated Gaussian prior given by

π(RB|R̂B, σRB
, Rmin

B ) =


GRB |R̂B ,σRB

)

1−Φ(Rmin
B )

ifRB ≥ Rmin
B

0 ifRB < Rmin
B

, (2.28)

where Φ(Rmin
B ) denotes the CDF evaluated at Rmin

B for the one-dimensional Gaussian

GRB|R̂B, σRB
). Using this we can re-derive the marginalized likelihood given in Eq.

2.13. We start by assuming all other latent variables besides the dust reddening

E(B − V )i and extinction coefficient RB,i have been marginalized analytically, such

that we can define partially model subtracted observables for the j’th population

XP
i,j =

mB,i − M̂B,j − α̂X̂1,j − β̂ĉint,j − µ̂(zi)

x1,i − X̂1,j

ci − ĉint,j − E(B − V )i

 (2.29)

ΣP
i,j = Σi +

σ
2
int,j + σ2

µ,i + α̂2
jσ

2
X1,j

+ β̂2
j σ

2
cint,j

α̂jσ
2
X1,j

β̂jσ
2
cint,j

α̂jσ
2
X1,j

σ2
X1,j

0

β̂jσ
2
cint,j

0 σ2
cint,j

 ,

and partially marginalized posterior

Lp(X
P
i,j |RB,i, E(B − V )i) = G(XP

i,j |Mi ·RB,i,Σ
P
i,j), (2.30)
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where

M i =

E(B − V )i

0

0


RB,i =

[
RB,i

]
. (2.31)

Using the methodology described in (Hogg et al., 2020), we can analytically marginal-

ize the latent parameter RB,i,

Lp(X
P
i,j |R̂B,j , E(B − V )i) =

∫ ∞

−∞
Lp(X

P
i,j |RB,i, E(B − V )i)π(RB|R̂B, σRB

, Rmin
B )dRB,i

=
1

1− Φ(Rmin
B )

∫ ∞

Rmin
B

G(XP
i,j |Mi ·RB,i,Σ

P
i,j)GRB|R̂B, σRB

)dRB,i

=
G(XP

ij |b,B)

1− Φ(Rmin
B )

∫ ∞

Rmin
B

G(RB,i|a,A)dRB,i

=
1− Φa(Rmin

B )

1− Φ(Rmin
B )

G(XP
ij |b,B)dRB,i, (2.32)

where

A−1
i,j =

1

σ2
RB,j

+MT
i Σ

P−1

i,j Mi (2.33)

ai,j = Ai,j ·

(
1

σ2
RB,j

R̂B,j +MT
i Σ

P−1

i,j XP
i,j

)
(2.34)

Bij = ΣP
i,j +

R̂
2
B,iE

2(B − V )i 0 0

0 0 0

0 0 0

 (2.35)

bij = R̂B,jE(B − V )i (2.36)

and Φa(R
min
B ) corresponds to the CDF of the 1D Gaussian G(RB,j |a,A) evaluated at

Rmin
B . We see from Eq. 2.32 that the latent-marginalized likelihood LT (Xi|ϕ) using

a truncated Gaussian prior on the latent parameter RB,i is given by

LT (Xi|ϕ) =
1− Φa(R

min
B )

1− Φ(Rmin
B )

L(Xi|ϕ), (2.37)

where L(Xi|ϕ) is the latent-marginalized likelihood shown in Eq. 2.13. The intro-

duction of a truncated Gaussian prior on RB,i modifies the likelihood by a scaling

factor dependent on the observables as well as the hyper-parameters being sampled.

Rmin
B can be left as a free parameter, but the value used in this work and the default

value for BAYESNOVA is chosen to be Rmin
B = 1.5 in line with (Brout et al., 2021).
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2.3 Host Property Inclusion

As outlined in Section 1.2.1, empirical relations between host properties such as

global stellar mass have been used to improve calibration of SNe Ia. SNe Ia in mas-

sive, passive, older environments appear dimer after having been standardized by

their light-curve properties, leading to a step in luminosity that depends on host

properties. These steps are typically parameterized as (Scolnic et al., 2022)

δh = ∆h

[
1

2
− (1 + exp ((h− Sh)/τh))

−1

]
, (2.38)

where ∆h is the magnitude of the SN Ia luminosity difference between SNe above

and below the step value Sh for the host property h. This is equivalent to a smooth

sigmoid transition of from a value of −∆h/2 for h << Sh and ∆h/2 for h >> Sh.

As described in Sections ?? multiple studies have shown correlations between local

and global host properties other than global stellar mass and differences in SNe Ia

properties. (Wiseman et al., 2023) simulate SNe Ia with extinction coefficient RV

that varies between young and old host galaxies as well as a difference in intrinsic

luminosity between young and old progenitor systems and use different host property

tracers to model the differences. They find that local specific star formation rate

(lsSFR) is a relatively pure tracer of the galaxy age difference, but can not rule out

any intrinsic difference in SNe Ia luminosity the case of multiple drivers. This serves

as an argument for using multiple local and global host properties as tracers of any

extrinsic and intrinsic differences in SNe Ia.

The two-population model introduced in (Wojtak et al., 2023) attempts to model

the observed difference in SNe Ia apparent magnitude as being caused by two sub-

populations with distinct intrinsic and extrinsic properties and is purely driven by

light-curve observables. To include host properties in this framework the canonical

step approach must be reconsidered. We aim to describe the joint distribution over

SNe Ia light curve and host property observables, L(XSN
i ,XH

i |θ
SN
i ,θH

i ), where SNe Ia

/ host observable and latent variables are denoted by the superscripts SN and H. The

simplest approach to constructing such a model would be to extend the Tripp model
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from Eq. 2.1 to 3+NH dimensions, where NH denotes the number of host properties

being considered

Xi(θi) =

[
XSN

i (θSN
i )

XH
i (θ

H
i )

]
(2.39)

=



MB,i + αiX1,i + βicint,i +RB,iE(B − V )i + µ(zi)

X1,i

cint,i + E(B − V )i

H1,
...

HNH


. (2.40)

Here the host observables are XH
i = {h1, . . . , hNH

} and the host latent variables are

θH
i = {H1, . . . , HNH

}. We can then redefine the latent prior from Eq. 2.3 as

π(θi|ϕ) = π(θSN
i |ϕSN)π(θH

i |ϕH)

= f1π(θ
SN
i |ϕSN

1 )π(θH
i |ϕH

1 ) + (1− f1)π(θ
SN
i |ϕSN

2 )π(θH
i |ϕH

2 ), (2.41)

where we assume Gaussian priors on the latent host variables,

π(H1,j) = G(H1|Ĥ1,j , σH1,j )

... (2.42)

π(HNH ,j) = G(H1|Ĥ1,j , σHNH,j
).

This modified Tripp model and prior treats host properties as additional intrinsic

properties that are independent of the light-curve observables. Having defined the

likelihood and prior, the latent-marginalized likelihood can be constructed as in Eq.

2.2. The reasoning for this extension comes from the fact that host-property cor-

relations are expressed as a step function. These steps can be considered binary

approximations to two underlying groups / populations, eq. low vs high mass, star-

forming vs quiescent, blue vs red. If ϕ1 ̸= ϕ2 in Eq. 2.42 then each population of

SNe Ia light-curve observables is associated with a corresponding population of host

property observables. With this construction the goal is to further constrain the in-

trinsic and extrinsic properties by making use of the underlying correlations between

bimodalities in light-curve and host observables. This model has been implemented

in BAYESNOVA, see Chapter 5 for application to observational data.
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As in (Wojtak et al., 2023), this extended model can be used for typing of SNe Ia via

the odds ratio of the mixture components. Following the same derivation,

p(SNi,1,Hi,1)

p(SNi,2,Hi,2)
=

p(SNi,1)p(Hi,1)

p(SNi,2)p(Hi,2)

=
f1
∫
L(XSN

i |ϕ
SN
1 )π(ϕSN

1 )dϕSN
1

∫
L(XH

i |ϕ
H
1 )π(ϕ

H
1 )dϕ

H
1

(1− f1)
∫
L(XSN

i |ϕ
SN
2 )π(ϕSN

2 )dϕSN
2

∫
L(XH

i |ϕ
H
2 )π(ϕ

H
2 )dϕ

H
2

(2.43)

where we note that p(SNi,j ,Hi,j) is separable due to the assumption of independence

in Eq. 2.40. The benefit of Eq. 2.43 is that the SNe Ia observables can be marginalized

over, giving a probabilistic typing

p(SNi,1,Hi,1)

p(SNi,2,Hi,2)
∝ p(Hi,1)

p(Hi,2)
=

f1
∫
L(XH

i |ϕ
H
1 )π(ϕ

H
1 )dϕ

H
1

(1− f1)
∫
L(XH

i |ϕ
H
2 )π(ϕ

H
2 )dϕ

H
2

(2.44)

which can be evaluated even when SNe Ia are not observed in a galaxy. We explore

the relationship between light-curve and host-based typing in Chapter 5.

An issue with this method is that we assume the same weighting f1 and (1− f1) can

be applied between the two SNe Ia and host populations in Eq. 2.42. As (Briday et al.,
2022) discuss, global and local host properties are not necessarily perfect tracers of

the underlying process leading to intrinsic dispersion in SNe Ia. This means that Eq.

2.42 may lead to shifts in both SNe Ia and host hyperparameters ϕSN and ϕH to best

fit both sets of populations. An extreme edge-case would be where one host property

is heavily weighted towards one population while not being fully unimodal, with the

remaining SNe Ia and host populations being bimodal, which would artificially lower

f1. An alternative prior that addresses this issue is

π(θi|ϕ) =f1π(θi|ϕSN
1 )π(θi|ϕH

1 ) + f2π(θi|ϕSN
2 )π(θi|ϕH

2 )

+ f3π(θi|ϕSN
1 )π(θi|ϕH

2 ) + f4π(θi|ϕSN
2 )π(θi|ϕH

1 ), (2.45)

where
∑

fi = 1. Compared to Eq. 2.42, this prior definition allows for cross-

association between the SNe Ia and host property populations, breaking the strong

assumption of equal weighting between the SNe Ia and host mixtures. Akin to Eq.

2.43, we can define the probabilistic typing for this prior as between SNe Ia given

light-curve and host observables is

p(SNi,1)

p(SNi,2)
=

(f1 + f3)
∫
L(XSN

i |ϕ
SN
1 )π(ϕSN

1 )dϕSN
1

(f2 + f4)
∫
L(XSN

i |ϕ
SN
2 )π(ϕSN

2 )dϕSN
2

, (2.46)
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where we have marginalized over the host property distributions. Note that (f1 +

f3)/(f2 + f4) = fSN
1 /(1− fSN

1 ) from Eq. 2.13. This prior also allows for an baseline

model where SNe Ia and host properties are fully independent,

π(θi|ϕ) =
[
fSN
1 π(θi|ϕSN

1 ) + (1− fSN
1 )π(θi|ϕSN

2 )
]

×
[
fH
1 π(θi|ϕH

1 ) + (1− fH
1 )π(θi|ϕH

2 )
]
. (2.47)

This can be extendend further to break with the assumption that all host properties

follow the same bimodal distribution, at the cost of increased model complexity. Due

to the increased model complexity for Eq. 2.45, this proposed approach has not been

explored during this work and is instead left for future work.

2.4 Redshift Dependent Populations

As outlined in Section 1.4, requires taking evolution of SNe Ia populations into ac-

count. This has previously been explored by Nicolas et al., 2021, who use the redshift

evolution of LsSFR to model and constrain the evolution of intrinsic SNe Ia stretch.

In this work we propose a similar strategy to implement a redshift-dependent popu-

lation weight fSN
1 (z), replacing the constant fSN

1 used in (Wojtak et al., 2023) and

shown in Eq. 2.13, by making use of the volumetric SNe Ia rate introduced in Sec-

tion 1.2.3. In Eq. 1.32 and Eq. 1.33 we decomposed the total volumetric SNe Ia

rate into the rate of SNe Ia from the prompt and delayed channels, respectively. A

redshift-dependent population weight can be constructed by taking the ratio between

the delayed rate RD
Ia and total rate RIa,

fSN
1 (z) =

RD
Ia(t(z))

RIa(t(z))
=

∫ t
τ1

χ(f−1(t−τ))
τ dτ.

K
fp

1−fp

∫ τ1
τ0

χ (f−1(t− τ)) dτ +
∫ t
τ1

χ(f−1(t−τ))
τ dτ

(2.48)

This choice of parameterization assumes a direct link between any bimodality in

intrinsic (extrinsic) SNe (environment) properties and the theoretical two-channel

progenitor framework used to define the volumetric SNe Ia rate. Although the nor-

malization parameter η cancels in Eq. 2.48, we see that the prompt fraction fp re-

mains. This means that Eq. 2.48 can at least partially constrain the DTD introduced

in Section 1.2.3 using purely SNe Ia observables. Such a model is highly sought-

after in the literature due to the potential for linking SNe Ia explosions to specific

progenitor models and guiding theory on how progenitor channels impact explosion

mechanisms (Maoz et al., 2012). We show an example of the redshift-dependent SNe

Ia fraction fSN
1 (z) in the right of Fig. 2.2, where we use η = 1.02+0.27

−0.15× 10−4h270 yr−1

M−1
⊙ and fp = 0.63+0.07

−0.11 from (Wojtak et al., 2019).
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FIGURE 2.2.
Left: Volumetric SNe Ia rate given by Eq. 1.32 and Eq. 1.33 compared with observations
compiled in (Wojtak et al., 2019). η = 1.02+0.27

−0.15× 10−4h2
70 yr−1 M−1

⊙ and fp = 0.63+0.07
−0.11 from

(Wojtak et al., 2019) are used, with the shaded regions showing the 68% confidence interval.
Right: Redshift-dependent SNe Ia population fraction fSN

1 (z) given by Eq. 2.48, using the
same DTD parameters as in earlier.

With this choice of parameters we see that the majority of SNe Ia come from the

prompt channel, with SNe Ia from the delayed progenitor channel only becoming the

majority contribution at low redshift. We can understand this by considering the right

side of Fig. 2.2, were we reproduce Fig. 1.5. We can see that the prompt volumetric

rate peaks at z ∼ 1.5, corresponding to the observed peak in cSFH at z ∼ 2. (Madau

et al., 2014), after which the rate of SNe Ia from the prompt progenitor channel

decreases rapidly. Since the delayed progentior channel is less sensitive to the cSFH,

we see that the rate of SNe Ia from the delayed progenitor channel decreases at a

slower pace, leading to fSN
1 ≈ 0.6 at z = 0.

Reparameterizing the Redshift-Dependent Rate

Note that in Eq. 2.48 that the cSFH χ takes the redshift z̃ = f−1(t(z) − τ) as input.

This poses an issue for the computational tractability of the SNe Ia model, as the

calculation of z(t) is computationally expensive. The remainder of this section will

focus on reparameterizing 2.48 in terms of a "delay redshift" z̃ instead of delay time
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τ , due to t(z) being computationally cheaper. To do this we define the following

values

t = f(z) = T0 −
∫ z

0

tH
(1 + z′)E(z′)

dz′, (2.49)

∆t = t− τ = f(z)− τ, (2.50)

z̃ = f−1(f(z)− τ), (2.51)

RIa(z) =

∫ τ1

τ0

χ
(
f−1(f(z)− τ)

)
Ψ(τ)dτ +

∫ f(z)

τ1

χ
(
f−1(f(z)− τ)

)
Ψ(τ)dτ. (2.52)

Here Eq. 2.49 is the age of the Universe for a given redshift, which depends on the

age T0 at z = 0, the Hubble time tH = 1/H0, and the Hubble parameter redshift

scaling function, E(z). Eq. 2.51 is the "delay redshift" at a given time, and Eq. 2.52

is the volumetric SNe Ia rate from Section 1.2.3 restated in terms of z and f(z). We

first perform a change of variable in Eq. 2.52 from τ to ∆t,

RIa(z) = −
∫ ∆t(τ1)

∆t(τ0)
χ
(
f−1(∆t)

)
Ψ(f(z)−∆t) d∆t−∫ ∆t(f(z))

∆t(τ1)
χ
(
f−1(∆t)

)
Ψ(f(z)−∆t) d∆t (2.53)

=

∫ f(z)−τ1

0
χ
(
f−1(∆t)

)
Ψ(f(z)−∆t) d∆t+∫ f(z)−τ0

f(z)−τ1

χ
(
f−1(∆t)

)
Ψ(f(z)−∆t) d∆t (2.54)

Using Eq. 2.49 and Eq. 2.50 we can define the Jacobian as

d∆t

dz̃
=

d

dz̃
f(z̃) = − tH

((1 + z̃)E(z̃)
, (2.55)

and use this to perform a second change of variable from ∆t to z̃.

RIa(z) = −tH
∫ z̃(f(z)−τ1)

z̃(0)

χ (z̃)Ψ (f(z)− f(z̃))

(1 + z̃)E(z̃)
dz̃−

tH

∫ z̃(f(z)−τ0)

z̃(f(z)−τ1)

χ (z̃)Ψ (f(z)− f(z̃))

(1 + z̃)E(z̃)
dz̃ (2.56)

= tH

∫ z̃1

z̃0

χ (z̃)Ψ (f(z)− f(z̃))

(1 + z̃)E(z̃)
dz̃+

tH

∫ ∞

z̃1

χ (z̃)Ψ (f(z)− f(z̃))

(1 + z̃)E(z̃)
dz̃. (2.57)

Eq. 2.57 shows the generic volumetric SNe Ia rate as a function of redshift, where

the integral is taken with respect to a delay redshift z̃. The integration limits are a
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function of the input redshift z and the DTD bifurcation limits τ0 and τ1 defined in

Section 1.2.3,

z̃0 = f−1(f(z)− τ1), (2.58)

z̃1 = f−1(f(z)− τ0), (2.59)

z̃max = f−1(0) =∞. (2.60)

Inserting the chosen cSFH and DTD from Section 1.2.3, we get a volumetric SNe Ia

rate

RIa(z) =
tHKηfp
1− fp

∫ z̃1

z̃0

χ (z̃)Ψ (f(z)− f(z̃))

(1 + z̃)E(z̃)
dz̃+

tHη

∫ ∞

z̃1

χ (z̃)Ψ (f(z)− f(z̃))

(1 + z̃)E(z̃)

1

f(z)− f(z̃)
dz̃, (2.61)

and a redshift-dependent SNe Ia population weight given by

fSN
1 (z) =

∫∞
z̃1

χ(z̃)Ψ(f(z)−f(z̃))
(1+z̃)E(z̃)

1
f(z)−f(z̃)dz̃

Kfp
1−fp

∫ z̃1
z̃0

χ(z̃)Ψ(f(z)−f(z̃))
(1+z̃)E(z̃) dz̃ +

∫∞
z̃1

χ(z̃)Ψ(f(z)−f(z̃))
(1+z̃)E(z̃)

1
f(z)−f(z̃)dz̃

. (2.62)

Although Eq. 2.62 is seemingly more complicated than Eq. 2.48, the computational

cost is considerably lower.
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3Data

Upcoming large-scale surveys such as LSST and Euclid are expected to discover up-

wards of 105 and 103 SNe yearly over a large redshift range (Wojtak et al., 2019). This

dwarfs the number of SNe Ia observed over the last 40 years, and is orders of magni-

tude higher than current transient surveys (Scolnic et al., 2022). The expected SNe

Ia rates open up the possibility of doing cosmological analyses using single surveys.

This has of course historically not been the case. Instead, progress in SNe Ia analy-

sis has come from compilations of multiple surveys (Jones et al., 2019; Scolnic et al.,
2015; Scolnic et al., 2022). The reason for this is that different surveys have been op-

timized to discover SNe in different redshift ranges. As outlined in Sections 1.1 and

1.2.1, cosmological and astrophysical analyses using SNe Ia benefit from leveraging

measurements at different redshifts. Due to this, combining different surveys into

compilation datasets currently lead to the tightest constraints on both cosmological

parameters and SNe Ia rates.

In this thesis we make use of two different compilations of SNe Ia observations, Su-

perCal and Pantheon+ (Scolnic et al., 2015; Scolnic et al., 2022). The SuperCal com-

pilation is an older compilation, which contributed to an increase in Hubble tension

due to large reductions in systematics. This compilation was also used in (Wojtak

et al., 2023), making it instrumental in testing the extensions outlined in Section 2.

The Pantheon+ compilation is the modern successor to SuperCal, including new sur-

veys and observations, making use of updated photometric cross-calibrations, and

updated light curve models. This compilation has been used for the state-of-the-art

measurements of, as described in Section 1.4.1.

The Pantheon+ compilation will be the main focus of this thesis, leaving one wonder-

ing why the SuperCal compilation is included. There are two main reasons for this,

the first being that SuperCal allows for comparison of BAYESNOVA with the results

presented in (Wojtak et al., 2023). The second reason is for a comparison of Super-

Cal and Pantheon+. As mentioned, Pantheon+ is a modern successor to SuperCal

with updated preprocessing methods. It is relevant to compare the two datasets such

that we can discern whether any resulting differences between observations in Su-

perCal and Pantheon+ are due simply to the inclusion of more SNe Ia observations,

or instead are due to differences in preprocessing methods.
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In addition to SuperCal and Pantheon+ we also include three additional derived

datasets. The first is a reanalysis of SNe Ia global and local host properties used

in (Jones et al., 2018), hereafter J18. Cross-matching SuperCal with the J18 host

properties allows for a combined analysis, as outlined in Chapter 2. In addition to

the global and local host properties of J18, we also include host galaxy morphology

measurements from the HyperLeda database. The final derived dataset is a compila-

tion of observational determinations of the volumetric SNe Ia rate as used in (Wojtak

et al., 2019), allowing for combined constraints on population evolution as outlined

in Chapter 2.

The outline of this section is as follows. Section 3.1 outlines the preprocessing

pipeline used to construct the SuperCal and Pantheon+ sub-samples used in this

work. Sections 3.2 and 3.3 describe the SuperCal and Pantheon+ compilations, re-

spectively. Finally, Sections 3.4 and 3.5 describe the supplementary datasets used in

this work.

3.1 Preprocessing Pipeline

We must preprocess the SuperCal or Pantheon+ compilations before we can make

use of either in the BAYESNOVA framework. Preprocessing is necessary to ensure the

quality and cosmological usefulness of the sub-samples used in this work, in addition

to including supplementary observations. Preprocessing can be split up into 3 steps,

which we refer to as the preprocessing pipeline:

1. Quality cuts applied to the SNe Ia light curve observables to ensure that SNe

are sufficiently well modelled by SALT. Additional filters are also applied during

this step.

2. Internal cross-matching of duplicate SNe Ia based on SNe IDs and sky-positions

to enable the duplicate handling features of BAYESNOVA.

3. External cross-matching with J18 and HyperLeda to include observed global

and local host galaxy properties, enabling the host property analysis features of

BAYESNOVA.

Each of these steps are described in detail in the following subsections. Fiducial val-

ues of relevant variables are given when constant across all sub-samples in this work.

Sub-sample specific values are given in their respective subsections, see Sections 3.2

and 3.3.
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3.1.1 Quality Cuts & Filters

Both SuperCal and Pantheon+ have been preprocessed using a series of quality cuts

to ensure the quality of the compilations (Scolnic et al., 2015; Scolnic et al., 2022).

We reapply some of these cuts together with additional quality cuts to ensure high-

quality and cosmologically useful sub-samples. Following (Wojtak et al., 2023) we

apply the following series of quality cuts:

1. |x1| < x1,cut: A standard quality cut on the SALT stretch parameter to ensure

that the SNe Ia light curves are well-sampled and modelled by SALT. x1,cut is

fixed to x1,cut = 3. for all sub-samples.

2. |capp| < capp,cut: A standard quality cut on the SALT apparent color parameter

to ensure that the SNe Ia light curves are well-sampled and modelled by SALT.

capp,cut is fixed to capp,cut = 0.3 for all sub-samples.

3. σx1 < σx1,cut: A standard quality cut on the uncertainty of the SALT stretch

parameter. Ensures that pathological light curve fits are avoided and that the

resulting covariance matrices are invertible. σx1,cut is fixed to σx1,cut = 1.5 for

all sub-samples.

4. Pfit > Pfit,cut: A standard quality cut on the χ2 of the SALT light-curve fit. The

value of Pfit,cut is sub-sample dependent, and is in some cases survey dependent.

This choice stems from different approaches in the literature, with studies using

SuperCal use a constant Pfit,cut and studies using Pantheon+ using a survey-

dependent Pfit,cut based on simulations.

5. σtpeak < σtpeak,cut: A standard quality cut on the uncertainty of the SALT-derived

peak time, ensuring proper measurement of light curve parameters. σtpeak,cut is

fixed to σtpeak,cut = 2 days for all sub-samples.

6. σmTripp < σmTripp,cut: A standard quality cut to remove light curves with pro-

hibitively large uncertainties on the corrected peak magnitude, approximated

by the Tripp formula given in Eq. REF TRIPP FORMULA. The error is given by

σmTripp =
√
σ2

int + σ2
µ + α2σx1 + β2c2app. (3.1)

We fix σint = 0.12 mag, |α| = 0.148 mag, |β| = 3.122 and σmTripp,cut = 0.2 mag for

all sub-samples. The fiducial values of σint, α and β are chosen in accordance

with FIDUCIAL VALUE CITATION HERE.
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7. ∆mB
σmTripp

<

(
∆mB
σmTripp

)
cut

: A standard Hubble residual cut to remove potential con-

taminants that are likely non-normal SNe Ia or have misidentified redshifts.

∆mB,i = mi − mTripp,i for the ith light curve, with mTripp,i given by Eq. 1.16.

The fiducial value of the intrinsic absolute magnitude is Mint = −19.253 mag

(Brout et al., 2022a; Riess et al., 2022),, with α and β set to the same values as

in the previous quality cut. σmTripp is given by Eq. 3.1. The cut-off value is set to(
∆mB
σmTripp

)
cut

= 3.5, following Brout et al., 2022a. Fiducial values for this quality

cut are constant across sub-samples.

In addition to the quality cuts above, we also employ a set of filters that vary across

different sub-samples. These filters allow for the definition of sub-samples in spe-

cific redshift ranges across either the full sub-sample or based on surveys, as well as

choosing which surveys are included in the sub-sample. The use of these filters are

by definition sub-sample dependent.

3.1.2 Cross-Matching Duplicate SNe

Both SuperCal and Pantheon+ are compilations of multiple SNeIasurveys, which

means that a single SNe Ia can have multiple independent observations. As outlined

in Section 2.1, we take the approach of combining duplicate observations into a single

effective observation under the assumption of surveys being independent. To do this,

duplicates need to be uniquely identified, which is not the case for the SuperCal or

Pantheon+ compilations. Different surveys have different naming schemes, which

means we must cross-match SNe observations within the given compilation.

We make use of SNe IDs, peak times, positions and redshifts to cross-match duplicate

observations within a given compilation. Two SNe Ia observations i and j are deemed

to be duplicate observations either if they have the same SNe IDs or if they fulfill the

following criteria:

|tpeak,i − tpeak,j | < ∆tpeak,max, (3.2)

|zi − zj | < ∆zmax, (3.3)

sep (Pi, Pj) < ∆Pmax. (3.4)

Here tpeak is the B-band peak time, z is the CMB-frame redshift, P the sky-position

(RA,DEC), sep(Pi,Pj) is the separation between two positions in arc-seconds and

∆tpeak,max, ∆zmax, ∆Pmax are the corresponding cut-off values. For all sub-samples

we set ∆tpeak,max = 10 days, ∆zmax = 10−4 and ∆Pmax = 1 arc-second.
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Cross-matching of duplicates using these constraints is outlined in Algorithm 1. The

output is an M × Nobs boolean array, INDECES, where M is the no. of SNe that

have duplicate observations and Nobs is the total no. of SNe Ia observations. Using

this array, we can assign a unique duplicate ID to each group of duplicate SNe Ia

observations defined by each row in INDECES.

Algorithm 1 Duplicate SNe Cross-Matching Algorithm
Require: Nobs > 0
Require: ∆tpeak,max ≥ 0
Require: sepmax ≥ 0

i← 0
Indeces← [ ]
IDs← [ID0, . . . , IDNobs]
Redshifts← [z0, . . . , zNobs]
Tpeak ← [tpeak, 0, . . . , tpeak,Nobs

]
Coords← [P0, . . . , PCNobs]
Condition← True

while Condition do

IDstmp ← IDs where not Indeces
Redshiftstmp ← Redshifts where not Indeces
Tpeak,tmp ← Tpeak where not Indeces
Coordstmp ← Coords where not Indeces

ti ← Tpeak,tmp[i]
zi ← Redshiftstmp[i]
Pi ← Coordstmp[i]
IDi ← IDstmp[i]

Matches← |Tpeak − tpeak,i| < ∆tpeak, max
Matches← Matches and |Redshifts− zi| < ∆zmax
Matches← Matches and sep(Coords, Pi) < ∆Pmax
Matches← Matches or IDs = IDi

if sum(Matches) > 1 then
Append Matches to Indeces

else
i← i + 1
Condition← len(IDstmp) = i

end if

end while
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3.1.3 Cross-Matching Host Galaxy Properties

As outlined in Chapter 2, host mass is one of the most commonly used empirical

indicators of a step in SNe Ia luminosity during calibration. The SuperCal and Pan-

theon+ compilations contain stellar mass estimates for the host galaxies of observed

SNe. In this work, however, we aim to explore the impact of including multiple dif-

ferent host properties both independently and jointly, as outlined in Chapter 2. The

package HOSTPHOT (Müller-Bravo et al., 2022) could be used to compile arperture

photometry for each SNe Ia host galaxy across different catalogs, after which SED

fitting could be used to extract global and local properties such as stellar mass, U-V

color and sSFR. Host morphology could be extracted using a package such as PYAU-

TOGALAXY (Nightingale et al., n.d.). This is sadly out of scope for the project.

Instead we will rely on previous analyses by J18 and HyperLeda for host galaxy

properties. In this case we once again need to cross-match catalogs, although the

approach used can be simplified as we do not have to take duplicates into account as

in the previous section. Further details on the datasets can be found in Section 3.4.

To cross-match morphologies we simply query the HyperLeda database for matches to

the provided host galaxy coordinates, and cross-match between the resulting catalog

and our chosen SNe compilation by position, redshift, and where applicable, SNe Ia

ID. For the remaining host properties provided by J18, we again match SNe to their

corresponding host galaxies’ properties by position, redshift, and where applicable,

SNe Ia ID.

A SNe Ia and a host galaxy observation is deemed to be a match if they fullfill the

following criteria:

|zSN − zHOST| < ∆zmax, (3.5)

sep (PSN,PHOST) < ∆Pmax. (3.6)

Here z is the CMB-frame redshift, P the sky-position (RA,DEC), sep(PSN,PHOST) is

the separation between SNe Ia and host positions in arc-seconds and ∆zmax, ∆Pmax

are the corresponding cut-off values. For all sub-samples we set ∆zmax = 10−4 and

∆Pmax = 1 arc-second. If a SNe Ia ID match between the chosen compilation and

J18/HyperLeda is found, then the SNe Ia and host observation are deemed a match

iregardless of the previous constraints. This is however not always applicable due
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to the different naming schemes across the component surveys of SuperCal and Pan-

theon+.

3.2 SuperCal

The SuperCal catalog is a compilation of the Pan-STARRS1 (PS1), Hubble Space Tele-

scope (HST), Sloan Digital Sky Survey (SDSS), Carnegie Supernova Project (CSP)

and CfA 1-4 SNe (Scolnic et al., 2015). Each of these surveys are independently cali-

brated, at times using significantly different methods. Analyses of systematics at the

time found that > 70% of the total systematic uncertainty was due to inhomogeneous

photometric calibration (Scolnic et al., 2015). The purpose of the SuperCal catalog

was to introduce the SuperCal cross-calibration method whereby multiple indepen-

dently calibrated surveys can be placed on a single, consistent photometric system.

The methodology centers around the untargeted PS1 survey, which is used as the ref-

erence photometric system to cross-calibrate the remaining surveys. No quality cuts

have been applied to SNe light curve observables.

3.2.1 Sub-Samples

For this work we will be making use of a single sub-sample of the SuperCal catalog,

the Hubble flow sub-sample, as defined in W23. This sub-sample is limited to the

redshift range 0.023 < z < 0.15, known as the Hubble flow, where the effects of

peculiar velocities are minor in comparison to the expansion of the Universe. The

Hubble flow sub-sample is necessary to compare the impact of changes and improve-

ments outlined in Chapter 2 to the model presentend in (Wojtak et al., 2023). This

sub-sample is also used in Section 4.3 to test for any tensions between the SuperCal

and Pantheon+ Hubble flow sub-samples. An overview of sub-sample statistics can

be seen in Table 3.1. The sub-sample of the SuperCal catalog has been created using

the preprocessing pipeline outlined in Section 3.1 with Pfit,cut = 0.001.

As can be seen in Table 3.1, the no. of SNe Ia with multiple light curve observations

is relatively low. As expected, the majority of SNe have observed host galaxy stellar

masses, with at least 92% of SNe Ia having well-defined host masses. The remaining

host properties lie in the range of 21.1 − 39.5%, with a higher fraction of SNe hav-

ing well-defined host properties in the Hubble flow. This is due to host properties

being observed mainly at lower redshifts, thus increasing the fraction of observations

within the lower redshift range of the Hubble flow sub-sample. The most frequently

observed property besides global host mass within the Hubble flow sub-sample is

host morphology T .
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Full Hubble Flow
Range 0.0008 < z < 1.06 0.023 < z < 0.148

NLC 737 236

NSN 713 219

NDuplicate
SN 22 15

fT 0.122 0.381

fglobal
M∗

0.920 0.941

fglobal
sSFR 0.106 0.250

fglobal
U-V 0.111 0.267

flocal
M∗

0.128 0.288

flocal
sSFR 0.090 0.211

flocal
U-V 0.111 0.267

TABLE 3.1.
Summary statistics for sub-samples of the SuperCal catalog used in this work, describing the
redshift range, no. of light curves, SNe, and fraction of host galaxy properties observed. All
sub-samples have been created following Section 3.1, using Pfit,cut = 0.001.

3.3 Pantheon+

The Pantheon+ catalog is the state-of-the-art combination of type Ia SNe surveys, and

underlies the to-date most stringent late-time constraints on cosmological parameters

from type Ia SNe (Scolnic et al., 2022). The main improvements over the SuperCal

catalog are improved photometric calibration as outlined in (Brout et al., 2022b) and

an increased no. of SNe due to the inclusion of modern surveys. In comparison

to SuperCal, light curve observables are derived using updated SALT models. The

catalog is comprised of 18 different surveys, increasing the total no. of observed

unique SNe Ia observations to 1550 within a redshift range of 0 < z < 2.3, allowing

for joint constraints of H0 and other cosmological parameters such as w and Ωm. See

Table 1 in (Scolnic et al., 2022) for further details on specific surveys included.

In comparison to the SuperCal catalog, published light curve parameters are only

available for the cosmological sample outlined in (Scolnic et al., 2022) and (Brout

et al., 2022a). This sub-sample, which we will refer to as the Pantheon+ catalog

moving forward, is created using similar quality cuts to the ones outlined in Section

3.1. The specific cuts and corresponding no. of discarded light curves are shown in

Table 2 in (Scolnic et al., 2022). Compared to the cuts we use in our pre-processing
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pipeline and those underlying the SuperCal catalog, the main differences are the

following:

1. Pfit: The minimum fit probability Pfit,cut is survey dependent and derived via

simulations, in comparison to the constant value employed here and in W23.

Values of 0.01, 0.001 and 0.001 are used for DES, PS1 and SDSS, respectively.

No cuts are used for the remaining surveys.

2. U-band sensitivity: SNe above z > 0.8 exhibit a large distance moduli depen-

dence on the inclusion of the U band, which S22 are not able to calibrate via

cross-calibration.

3. Trest < 5: S22 require that a given light curve has atleast one observation

within 5 days of the estimated peak brightness in the SNe Ia rest frame. This

requirement is not used in previous analysis, but aims to increase the quality of

derived light curve observables.

4. Chauvernet’s criterion: Although we use the same σ-limit of 3.5 as in (Brout

et al., 2022a), the choice of fiducial Tripp calibration parameters is not stated

in either (Scolnic et al., 2022) or (Brout et al., 2022a). As such there can be a

difference between discarded SNe in this work and in the cosmological sample.

5. Valid BiasCor: SNe Ia light curves are discarded if their light curve observables

fall within sparsely populated regions of the simulations used in S22 and B22

to estimate bias corrections. Such corrections are not performed in SuperCal.

6. Systematics: Light curves discarded due to the requirement that they pass all

other cuts in Table Bla for a series of different systematic perturbations outlined

in B22. Such perturbations are not performed in SuperCal.

As seen in Table 2 in (Scolnic et al., 2022), these additional cuts can at most amount

to a difference 151 in the no. of observed light curves between the SuperCal and

Pantheon+ catalogs. Additional differences can be caused by changes in light curve

observables due to updated photometric calibration and SALT models, leading to ex-

clusion during standard quality cuts.

3.3.1 Sub-Samples

As mentioned earlier, the Pantheon+ catalog is the main focus of this work. Com-

pared to the SuperCal catalog, the Pantheon+ catalog’s extended redshift range and
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no. of observed SNe allow us to constrain both cosmological parameters and test the

redshift dependence of W23’s two-population model. To do this we make use of 4

sub-samples of Pantheon+. The first two are the full sample and the Hubble flow

sub-sample, defined in the same way as for Section 3.2. Summary statistic for these

sub-samples can be found in Table 3.2. The last two sub-samples are volume limited

sub-samples of Pantheon+. These sub-samples are necessary to accurately probe a

redshift dependence under the assumption that any sub-populations of type Ia SNe

are linked to the progenitor model mentioned in Section 1.2.2. This is due to a poten-

tial difference in intrinsic SNe properties between populations, which in turn would

lead to a selection effect in magnitude-limited surveys via the apparent magnitude’s

dependence as seen in Eq. 1.16. Similarly a redshift dependence in observables can

also be qualitatively seen in Fig. 3.1, which shows stretch and color observables for

untargeted surveys in Pantheon+ with varying redshift cuts. Although it is possible

to account for this selection effect via simulations akin to S22, we instead opt for con-

structing volume-limited sub-samples. Such simulations would require extension of

the SNANA simulation code to include a possible redshift dependence in the intrinsic

SNe property distributions, which we deem out of scope for this project.
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FIGURE 3.1.
SNe Ia apparent color versus stretch derived with SALT for untargeted surveys in Pantheon+.
The color map shows the absolute magnitude given the color, stretch, and fiducial Tripp cal-
ibration parameter values. A bounding circle with |c| < 0.3 and |x1| < 3, which bounds the
majority of SNe Ia observed, shows the absolute magnitudes dependence on SNe Ia observ-
ables. Gray lines represent the corresponding cuts in the c− x1 plane for a given zcut
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Full Hubble Flow Fiducial Conservative
Range 0.0008 < z < 1.36 0.023 < z < 0.148 0.01 < z < 0.64 0.01 < z < 0.55

NLC 1274 398 741 420

NSN 1199 358 740 420

NDuplicate
SN 64 33 1 0

fT 0.064 0.204 0.009 0.017

fglobal
M∗

0.892 0.874 0.953 0.986

fglobal
sSFR 0.095 0.221 0.042 0.074

fglobal
U-V 0.097 0.226 0.043 0.076

flocal
M∗

0.137 0.302 0.069 0.121

flocal
sSFR 0.087 0.211 0.040 0.071

flocal
U-V 0.097 0.226 0.043 0.076

TABLE 3.2.
Summary statistics for sub-samples of the SuperCal catalog used in this work, describing the
redshift range, no. of light curves, SNe, and fraction of host galaxy properties observed. All
sub-samples have been created following Section 3.1, using Pfit,cut = 0.001.

We follow the methodology of (Nicolas et al., 2021) to construct roughly volume-

limited sub-samples of the Pantheon+ catalog. Assuming sufficient (and unbiased)

spectroscopic follow-up for acquiring SNe Ia types and host galaxy redshifts, the

observation selection effects of magnitude-limited surveys should be negligible below

a given redshift at which even the faintest normal SNe Ia can be observed. Given

such a survey can then be used to construct a volume-limited sub-sample using the

relation

µ(zcut) = mi,limiting −MB,max

where MB,max is the maximum SNe Ia peak absolute magnitude in the B band and

mi,limiting is the limiting magnitude / depth in the nearest band i to the rest frame B

band in the redshift range of the survey. A value of MBmax = −18.0 is assumed as in

(Nicolas et al., 2021).

The Pantheon+ catalog is a compilation of both targeted and untargeted surveys.

Targeted surveys do not fulfill the unbiased criteria necessary for a volume-limited

sub-sample, leaving only the untargeted surveys. The untargeted surveys present

in Pantheon+ are SDSS, SNLS, PS1 and DES. Additionally we include the targeted

Foundation survey, as it primarily is used as a follow up of low-redshift candidate

SNe discovered by untargeted surveys. This results in 95% SNe in the Foundation

survey having been discovered by untargeted surveys (Jones et al., 2019).

Redshift ranges, filters covering the typical rest frame B band, corresponding limiting

magnitudes and redshift cutoffs are shown in Table BLA. Redshift cutoffs are calcu-

lated assuming the fiducial cosmology defined in Section 1.1 assumed throughout

this work. For all surveys except Foundation we report a fiducial and conservative

cutoff redshift. The fiducial cutoff is derived from the deepest available limiting
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magnitude of each survey, while the conservative cutoff is given by correspondingly

conservative estimates.

The SDSS observed SNe Ia in the redshift range 0.05 < z < 0.35. The corresponding

filter for this range is the SDSS r filter, which has a 50% completeness limiting mag-

nitude of 22.6 mag (Frieman et al., 2008). This corresponds to a fiducial zcut = 0.27,

slightly higher than the value reported in (Nicolas et al., 2021). During the first

year of SDSS SNe Ia with r < 20.5 mag were favoured due to limited spectroscopic

resources, corresponding to a redshift cutoff zcut = 0.15. We adopt this as the conser-

vative cutoff for SDSS.

The SNLS aquired SNe Ia in the redshift range 0.4 < z < 0.8. Within this redshift

range the rest-frame B band roughly corresponds to the SNLS i filter, which has a 5σ

depth of 24.8 mag (CFHTLS Final Release Executive Summary n.d.). This corresponds

to zlim = 0.64, which we adopt as a fiducial cutoff. As in (Nicolas et al., 2021), we

use a conservative cutoff zlim = 0.55.

PS1 observed SNe Ia in the range 0.02 < z < 0.6, corresponding to the PS1 g filter.

This filter has a 5σ limiting magnitude of 23.2 mag (Rest et al., 2014; Chambers et al.,
2019), corresponding to a fiducial redshift cutoff zcut = 0.34. Comparing with Fig.

6 of (Scolnic et al., 2018), this cutoff redshift contains some bias due to selection

effects. Based on this figure we adopt a conservative redshift cutoff zcut = 0.27.

DES observed SNe Ia in a wider range from 0.1 < z < 0.8, which roughly corre-

sponds to the DES i-band filter. The DES-SN survey observed in eight "shallow" and

two "deep" fields with corresponding 5σ limiting magnitudes of 23.5 and 24.5 mag,

respectively. The observing fields of SNe Ia from the DES-SN survey are not reported

in the Pantheon+ catalog. For the fiducial redshift cutoff we assume all SNe Ia are

observed in the deep fields with a zcut = 0.57. Correspondingly for the conserva-

tive redshift cutoff we assume all SNe Ia are observed in the shallow fields with a

zcut = 0.39.

Foundation is the only low-z survey to be included in the volume-limited sub-samples,

and ranges from 0 < z < 0.1. A limiting magnitude could not be readily found for

the Foundation survey. Instead we assume a single redshift cutoff of zlim = 0.036,

corresponding to when the redshift distribution of the Foundation survey peaks.

The redshift distributions and number counts of SNe Ia observed by each survey can

be seen in Fig. 3.2, along with the corresponding fiducial and conservative redshift

cutoffs. Summary statistics for the fiducial and conservative sub-samples can be seen

in Table 3.2.
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FIGURE 3.2.
Redshift distributions of untargeted surveys in Pantheon+. Colored regions correspond to
SNe Ia included in the volume-limited sub-samples, with the fiducial and conservative sub-
samples represented by the transparent and solid colored ranges, respectively.
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As can be seen in Table 3.2, the no. of duplicates is higher than seen in Section

3.2, due to the inclusion of additional surveys. The no. of duplicates in the fiducial

and conservative sub-samples is correspondingly low due to the lack of overlap be-

tween the untargeted surveys in Pantheon+. As expected, the majority of SNe have

observed host galaxy stellar masses, with at least 87% of SNe Ia having well-defined

host masses. The remaining host properties lie in the range of 1− 30%, with a higher

fraction of SNe having well-defined host properties in the Hubble flow. As in Section

3.2, this is due to host properties being observed mainly at lower redshifts, thus in-

creasing the fraction of observations within the lower redshift range of the Hubble

flow sub-sample. The most frequently observed property besides global host mass

within the Hubble flow is local mass.

3.4 Host Galaxy Properties

As outlined in Section 1.2.1, empirical relations between SNe Ia and host galaxies

have been used to decrease intrinsic scatter and improve SNe Ia standardization.

The most prominent of these is the step in SNe Ia luminosity as a function of host

galaxy mass. As such we want to explore the impact of host properties beyond host

mass, using the methodology outlined in Chapter 2. Derivation of global and local

host properties is out of scope for this project, as mentioned in Section 3.1.3, and

we instead use to cross-matching with earlier works to construct a partial sample of

measured host properties. Specifically we make use of the J18 catalog for global and

local host properties and the HyperLeda database for host morphologies.

J18 is the resulting catalog of SNe Ia light curve observables and related global and

local host properties from a study of the relation between type Ia SNe and host proper-

ties. The catalog contains 273 SNe Ia at z < 0.1, with host mass, sSFR and rest-frame

U-V color measured globally and locally within a 1.5 kpc radius aperture around the

related SN. The HyperLeda catalog provides host galaxy morphologies parameterised

by the continuous variable T , which combines various indicators of galaxy morphol-

ogy such as photometric structure, colour index and/or hydrogen content. The value

of this metric can be mapped directly to the Hubble sequence with T = −4 for the

earliest types (E) and T = 10 for the latest types such as irregular galaxies.

SNe Ia with observed host properties beyond global mass come from both targeted

and untargeted surveys, as seen for the Pantheon+ Hubble Flow sub-sample in Table

3.3. This could introduce a bias in any observed intrinsic luminosity difference in the

proposed two-population model. We choose to account for this in the same manner

as J18; Split the Pantheon+ Hubble Flow sub-sample into two further sub-samples

with and without host properties from targeted surveys, and by including bias cor-
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rections as described in Section 1.4.2. The latter is only applicable when analyzing

the Hubble Flow sub-sample, where we assume a redshift-independent weighting of

the two sub-populations. As described in Section 1.4.2, this is due to bias corrections

being produced under the assumption that intrinsic SNe Ia properties are redshift-

independent. For a high-z analyses only the latter approach is applicable to account

for any potential biases from targeted surveys.

Full Hubble Flow
Targeted Untargeted Targeted Untargeted

Mglobal
∗ 211 (18.69%) 918 (81.31%) 132 (36.97%) 225 (63.03%)

sSFRglobal 46 (46.46%) 53 (53.54%) 30 (38.96%) 47 (61.04%)

U-Gglobal 46 (45.1%) 56 (54.9%) 30 (37.97%) 49 (62.03%)

Mlocal
∗ 61 (42.07%) 84 (57.93%) 35 (33.02%) 71 (66.98%)

sSFRlocal 39 (42.39%) 53 (57.61%) 26 (35.14%) 48 (64.86%)

U-Glocal 46 (45.1%) 56 (54.9%) 30 (37.97%) 49 (62.03%)

T 7 (12.07%) 51 (87.93%) 51 (87.93%) 7 (12.07%)

TABLE 3.3.
Number (percentage) of observed host galaxy properties for SNe Ia from targeted and un-
targeted surveys for the Pantheon+ Full and Hubble flow sub-samples. The Fiducial and
Conservative sub-samples are not shown, as they by definition only contain observations for
SNe Ia from untargeted surveys.

As seen in Table 3.2, host properties besides global mass have relatively few obser-

vations compared to the total no. of SNe Ia in each sub-sample. The proposed

methodology in Chapter 2 accounts for this by marginalizing out unobserved host

properties. This can not account for the reduced constraining power that follows

with low statistics, yet setting an arbitrary lower bound on the necessary no. of host

property observations is unsatisfying. Instead we will in Section 5 make use of model

comparison both via Bayes factors as well as the Bayesian model dimensionality as

described in Section 1.3.3.

3.5 SN Ia Rates

The model extensions in Chapter 2 introduce a redshift dependent weighting between

the proposed sub-populations of SNe Ia. This redshift dependence comes from the

usage of models for volumetric SNe Ia rates as a function of redshift, which depends

on the prompt fraction fp and normalization η. Although the proposed model has the

capability of constraining fp, the normalization is removed when calculating weights

as seen in Eq. 2.48. We include volumetric SNe Ia rate measurements to constrain η

as well as explore potential increases in constraining power on fp.
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The data used is equivalent to that in (Wojtak et al., 2019), which is a compilation

of observational determinations of the volumetric type Ia SN rates from (Rodney

et al., 2014) and updated with results from the CANDELS survey. These observational

measurements span the redshift range 0 < z < 2.5, and were shown earlier in Fig.

1.5 together with the volumetric rate prediction from Eq. 2.62.

Observational measurements of the volumetric SNe Ia rate are derived mainly from

untargeted surveys, which means there is significant overlap between the observa-

tions underlying the Pantheon+ catalog and the volumetric rate compilation used.

In this work we assume the two to be independent, but more work needs to be done

to account for covariance between the two datasets.
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4Reproducing Results

BAYESNOVA can be seen as a framework to modularize and extend the model pre-

sented in Wojtak et al., 2023. It is important to quantify the impact of each extension

as well as the baseline model defined in Chapter 2 in comparison to Wojtak et al.,
2023 to ensure proper implementation. This is done by running each extension of

the model on the SuperCal Hubble flow sub-sample defined in Section 3.2, and is

the focus of Section 4.1. As mentioned earlier, however, is the Pantheon+ catalog.

Since this catalog can be seen as a modern succesor of SuperCal, one would expect

results between the two to be in agreement. This is explored in Section ??, were we

find a potential discrepancy between SuperCal and Pantheon+ similar to that found

between SuperCal and Foundation in Wojtak et al., 2023. We therefore in Section 4.3

use techniques outlined in Section 1.3.3 to quantify the tension between the SuperCal

and Pantheon+ catalogs.

4.1 SuperCal

In this section we compare the impact of the model extensions in BAYESNOVA to

the results in Wojtak et al., 2023. The model results are calculated using the default

prior and sampler settings described in Section ??. The models that we compare with

BAYESNOVA are:

• Base: BAYESNOVA implementation of the baseline model defined in Wojtak

et al., 2023, fit to the SuperCal Hubble flow dataset without reduction or re-

moval of duplicate SNe Ia.

• Base+Duplicates: Base-model with duplicate SNe Ia observations reduced ac-

cording to the methodology outline in Section 2.1.

• Base+Duplicates+Variable: Base+Duplicates-model with variable E(B−V ) prior

integration limits, as described in Section ??.

• Base+Duplicates+Truncated: Base+Duplicates-model with a truncated Gaus-

sian RB prior, as described in Section ??.
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• Baseline: Baseline model described in ??, combining the previous 3 extensions.

As can be seen in Table 4.1, leaving duplicates untreated in the dataset has a large

impact on the parameters that are recovered. The presence of duplicate observa-

model Wojtak et al., 2023 Base Base+Duplicates Base+Duplicates+Variable Base+Duplicates+Truncated Baseline

SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2

M̂B −19.49+0.05
−0.05 −19.40+0.07

−0.07 −19.37+0.06
−0.07 −19.32+0.07

−0.2 −19.41+0.07
−0.05 −19.29+0.05

−0.07 −19.41+0.08
−0.06 −19.28+0.05

−0.06 −19.49+0.04
−0.06 −19.36+0.04

−0.08 −19.54+0.07
−0.24 −19.43+0.09

−0.23

X̂1 −1.3+0.3
−0.2 0.4+0.1

−0.1 −0.9+0.4
−0.6 0.5+0.2

−0.1 −1.2+0.5
−0.3 0.5+0.2

−0.1 −1.4+0.2
−0.2 0.4+0.1

−0.1 −1.3+0.3
−0.2 0.4+0.1

−0.1 −1.4+0.3
−0.3 0.4+0.1

−0.3

σX1 0.7+0.2
−0.1 0.65+0.09

−0.09 1.+0.2
−0.3 0.6+0.1

−0.1 0.8+0.2
−0.2 0.61+0.09

−0.13 0.7+0.1
−0.1 0.66+0.10

−0.07 0.7+0.2
−0.1 0.64+0.10

−0.07 0.7+0.2
−0.2 0.68+0.19

−0.09

ĉint −0.04+0.04
−0.03 −0.11+0.03

−0.04 −0.06+0.02
−0.03 −0.11+0.04

−0.03 −0.05+0.03
−0.04 −0.10+0.03

−0.04 −0.06+0.03
−0.07 −0.11+0.03

−0.05 −0.02+0.02
−0.04 −0.06+0.02

−0.04 −0.04+0.04
−0.14 −0.09+0.04

−0.10

σcint 0.08+0.01
−0.01 0.043+0.008

−0.009 0.06+0.02
−0.03 0.04+0.02

−0.02 0.08+0.01
−0.02 0.04+0.01

−0.02 0.07+0.02
−0.03 0.04+0.01

−0.02 0.09+0.01
−0.01 0.059+0.009

−0.012 0.08+0.02
−0.04 0.06+0.01

−0.02

τ 0.017+0.008
−0.010 0.034+0.008

−0.009 0.04+0.02
−0.01 0.04+0.02

−0.01 0.032+0.011
−0.009 0.04+0.01

−0.01 0.03+0.01
−0.01 0.04+0.01

−0.02 0.024+0.011
−0.008 0.028+0.009

−0.008 0.03+0.01
−0.01 0.025+0.009

−0.008

α −0.19+0.03
−0.03 −0.16+0.04

−0.03 −0.19+0.03
−0.02 −0.19+0.03

−0.02 −0.20+0.03
−0.02 −0.18+0.04

−0.03

β 3.1+0.3
−0.2 3.0+0.3

−1.0 3.1+0.3
−0.2 3.2+0.3

−0.3 2.9+0.2
−0.3 2.7+0.3

−1.0

R̂B 4.1+0.6
−0.2 3.9+0.6

−0.4 4.1+0.0
−0.5 3.9+0.5

−0.4 6.0+1.3
−1.0 5.0+2.0

−1.0

σRB
1.0+0.3

−0.3 1.0+0.4
−0.2 1.0+0.5

−0.3 1.0+0.4
−0.3 0.5+0.2

−0.1 0.5+0.2
−0.2

γ 3.0+1.0
−1.0 2.0+1.2

−0.7 2.1+1.1
−0.7 2.4+2.2

−0.9 1.9+1.3
−0.6 3.0+4.

−2.0

fSN
1 0.38+0.10

−0.09 0.6+0.2
−0.2 0.5+0.2

−0.1 0.35+0.07
−0.09 0.39+0.09

−0.08 0.34+0.09
−0.13

∆Z - 0.0 −28.7+0.2
−0.2 28.6+0.2

−0.2 8165.5+0.2
−0.2 8161.8+0.2

−0.2

d̃ - 27.0+1.0
−1.0 31.0+2.0

−1.0 28.6+0.2
−0.2 25.1+0.8

−0.7 25.8+0.5
−0.5

TABLE 4.1.
Comparison between baseline results in Wojtak et al., 2023 and model extensions introduced
in Section 2. Parameter values are posterior medians, with errors given by the 16th and 86th
percentiles. Bayes’ factors ∆Z are calculated wrt. the BAYESNOVA baseline model and are
shown together with model BMDs d̃ for model comparison’s sake.

tions drives the model towards specific regions of parameter space due to over-

representation of certain SNe Ia, leading especially to worse constraints on fSN
1 and

a low γ value. Due to this, the remaining models are evaluated with duplicates re-

duced.

Including duplicates, we see general agreeance within 1σ between Wojtak et al., 2023

and BAYESNOVA, except for the γ and fSN
1 parameters. This result can be attributed

to the inclusion of SNe Ia that were not present in Wojtak et al., 2023, due to some

duplicates being filtered out.

Using a variable integration limit alleviates this minor tension however, increasing γ

and decreasing fSN
1 . Including a truncated prior on RB has a similar affect, albeit

with R̂B increasing to R̂B = 6.0, which in turn impacts color related parameters β,

cint, τ and γ. Although R̂B is increased, constraints are correspondingly decreased.

It is not currently clear why inclusion of the truncated RB prior has this impact.
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FIGURE 4.1.
Posterior distribution of baseline model fit to the SuperCal Hubble flow. Independent param-
eters are over-plotted in orange and blue for Population 1 and Population 2, respectively.

Finally we have the baseline model, combining all model extensions mentioned so

far. We here find overall agreeance with Wojtak et al., 2023, with increased errors on

R̂B, β, γ and cint, which can also be seen in Fig. 4.1. This is due to the impact of the

truncated RB prior. Regarding population-level parameters, the largest difference

between this work’s model and Wojtak et al., 2023 is in the ĉint and τ parameters,

which are less distinct from each other compared to Wojtak et al., 2023. This is

perhaps not too surprising considering the higher value and errors of R̂B and its

relationship to the remaining parameters via Eq. 1.18

Due to the difference in data used (reduction vs. no reduction of duplicates), we only

calculate Bayes’ factors between BAYESNOVA models using reduced duplicate SNe Ia.

Comparing Bayes’ factors, we see that the baseline and truncated-prior models are

strongly preferred by the data. The large difference is attributed to the truncated
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prior normalization introduced in Eq. ??. Comparing model dimensionalities, we see

that the data generally supports d̃ ∼ 25 parameters for all variations of model priors.

Although we can not clearly claim that the baseline model is preferable compared to

the truncated-prior model based on these metrics, we chose to maintain usage of the

baseline model due to arguments of physicality given in Section 2.

4.2 Pantheon+

Having shown that we can generally recover the results of Wojtak et al., 2023 using

BAYESNOVA, we move on to the main focus of this work, the Pantheon+ catalog. We

fit the BAYESNOVA baseline model to the Pantheon+ Hubble flow sample described

in Section 3.3 and compare with the results from fitting the SuperCal catalog. These

results can be seen in Table 4.2 and in Fig. 4.2.

Model Wojtak et al., 2023 Baseline Baseline

Sub-sample SuperCal Hubble Flow SuperCal Hubble Flow Pantheon+ Hubble Flow

SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2

M̂B −19.49+0.05
−0.05 −19.40+0.07

−0.07 −19.54+0.07
−0.24 −19.43+0.09

−0.23 −19.62+0.06
−0.07 −19.53+0.07

−0.06

X̂1 −1.3+0.3
−0.2 0.4+0.1

−0.1 −1.4+0.3
−0.3 0.4+0.1

−0.3 −1.1+0.2
−0.1 0.49+0.08

−0.07

σX1 0.7+0.2
−0.1 0.65+0.09

−0.09 0.7+0.2
−0.2 0.68+0.19

−0.09 0.67+0.09
−0.07 0.058+0.05

−0.05

ĉint −0.04+0.04
−0.03 −0.11+0.03

−0.04 −0.04+0.04
−0.14 −0.09+0.04

−0.10 −0.13+0.02
−0.03 −0.16+0.02

−0.02

σcint 0.08+0.01
−0.01 0.043+0.008

−0.009 0.08+0.02
−0.04 0.06+0.01

−0.02 0.034+0.01
−0.01 0.030+0.006

−0.005

τ 0.017+0.008
−0.010 0.034+0.008

−0.009 0.03+0.01
−0.01 0.025+0.009

−0.008 0.039+0.007
−0.006 0.038+0.007

−0.006

α −0.19+0.03
−0.03 −0.18+0.04

−0.03 −0.18+0.02
−0.01

β 3.1+0.3
−0.2 2.7+0.3

−1.0 1.3+0.4
−0.2

R̂B 4.1+0.6
−0.2 5.0+2.0

−1.0 3.8+0.2
−0.1

σRB
1.0+0.3

−0.3 0.5+0.2
−0.2 0.27+0.02

−0.02

γ 3.0+1.0
−1.0 3.0+4.

−2.0 3.5+1.3
−0.8

fSN
1 0.38+0.10

−0.09 0.34+0.09
−0.13 0.37+0.06

−0.05

d̃ - 25.8+0.5
−0.5 21.0+1.1

−0.9

TABLE 4.2.
Comparison between baseline results in Wojtak et al., 2023 and model extensions introduced
in Section 2. Parameter values are posterior medians, with errors given by the 16th and 86th
percentiles. Bayes’ factors ∆Z are calculated wrt. the BAYESNOVA baseline model and are
shown together with model BMDs d̃ for model comparison’s sake.

Starting with similarities, we find similar trends across all parameters between Su-

perCal and Pantheon: Pop. 1 is intrinsically brighter than pop. 2, pop. 1 has lower

stretch than pop. 2 and pop. 1 is intrinsically redder than pop. 2. For the shared

parameters we find similar values for α̂, R̂B, and γ. Differences are, however, also
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present, with the most prominent being the reduction in β. We see in Fig. 4.2 that this

parameter is upper-bounded, tending towards β̂ ∼ 0. Differences can also be found

in other color-related parameters, with intrinsic colors being significantly bluer in

Pantheon+ compared to SuperCal. We also find no difference in dust distribution,

with τ1 ≈ τ2. At the same time we find tighter constraints on the majority of these

parameters, as one would expect due to the increased number of observed SNe Ia.
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FIGURE 4.2.
Posterior distribution of baseline model fit to the Pantheon Hubble flow. Independent param-
eters are over-plotted in orange and blue for Population 1 and Population 2, respectively.

This result is somewhat similar to that found by Wojtak et al., 2023 when comparing

SuperCal with the Foundation survey, one of the surveys which make up Pantheon+.

When performing this comparison, Wojtak et al., 2023 find that β̂ is unconstrained,

and use a tighter prior based on results from SuperCal to ensure convergence. They

argue that this is due to larger errors on the observed apparent colors capp in combi-

nation with Foundation survey preferring tighter intrinsic color distributions. In our

case we find that β̂ is upper-bounded, trending towards the lower-bound β̂ = 1 of
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the chosen prior. We also find that Pantheon+ tends towards tighter intrinsic color

distributions.

4.3 SuperCal vs. Pantheon+

In the previous section we found differing results when fitting the baseline model

to the SuperCal and Pantheon+ Hubble flow sub-samples. As outlined in Section

3.3, the Pantheon+ catalog is a modern sucessor of SuperCal, containing new SNe

Ia observations and featuring an updated preprocessing pipeline. Due to this, the

comparison in the previous section is not a 1-to-1 comparison and we must quantify

if this difference is simply due to increased statistics or systematics introduced by

new SNe Ia, new preprocessing methods or a combination thereof. In Fig. 4.1 we

compare SNe Ia observables for SNe present in both the SuperCal and Pantheon+

Hubble flow sub-samples.
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FIGURE 4.3.
Comparison of SNe Ia light curve observables for SNe Ia cross-matched between the SuperCal
and Pantheon+ Hubble flow sub-samples.

We see that qualitatively there is good agreement between the SNe Ia common to

both catalogs, with the largest deviations being seen in the apparent color. This

is perhaps to be expected, since one of the major preprocessing changes between

SuperCal and Pantheon+ are changes made to the photometric cross-calibration. We

choose to make use of the suspicion metric outlined in Section 1.3.3 to quantify the

degree of difference, or tension, between SuperCal and Pantheon. The hypotheses

we want to compare are
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• H0: The SuperCal and Pantheon+ Hubble flow sub-samples can be described

by the same posterior distributions,

• H1: The SuperCal and Pantheon+ Hubble flow sub-samples can not be de-

scribed by the same posterior distributions due to

– HA
1 : changes made to the preprocessing pipeline,

– HB
1 : and/or the exclusion of SNe Ia from Supercal and inclusion of new

SNe Ia in Pantheon+.

We can test the null hypothesis H0 versus the alternative H1 using the suspicion met-

ric. In this case we need to fit the baseline model to SuperCal and Pantheon+ in-

dependently, as well as to the union of the two datasets, after which the suspicion

can be calculated according to Eq. 1.44. The two sub-hypotheses, HA
1 and HB

1 be-

come relevant if significant tension is found between SuperCal and Pantheon. These

alternative hypotheses allow us to determine any observed tension is due the up-

dated preprocessing pipeline, the inclusion / exclusion of SNe Ia observations, or a

combination of the two.

For HA
1 we define the sub-samples D1

A and D2
A, where D1

A consists of observations in

SuperCal for SNe Ia present in Pantheon+ and D2
A consists of observations in Pan-

theon+ for SNe Ia present in SuperCal. That is, D1
A and D2

A are the set of SNe Ia

observations corresponding to cross-matched SNe Ia between the two catalogs. If

the tension is at the same level as when comparing SuperCal and Pantheon+ directly

then one would conclude that changes to the photometric calibration is at fault. If in-

stead we find reduced or no evidence for tension between D1
A and D2

A would indicate

that changes to the photometric calibration has not had a large impact on inference.

In that case, we continue onwards to sub-hypothesis HB
1 .

For HB
1 we define the sub-samples D1

B and D2
B, where D1

B is the SuperCal Hubble

flow sub-sample and D2
B = D2

A + S P is the set of Pantheon+ observations of SNe

Ia that occur in SuperCal combined with the set of SNe Ia that occur in SuperCal but

not in Pantheon+. In this sense we extend the cross-match between SuperCal and

Pantheon+ to include SNe Ia that have been excluded by the Pantheon+ preprocess-

ing pipeline. Reduced or no evidence for tension would in this case imply that the

exclusion of SuperCal SNe Ia observations is the cause of the tension. If we instead

find that tension persists, then this would imply that new, duplicate observations are

at fault.
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Applying the suspicion metric to compare H0 and H1, we find suspicion logS =

152.6 ± 0.3 and d = 16.4+1.1
−0.9. The tension probability introduced in Section 1.3.3 is

calculated using the χ2-distributed variable d− 2 logS, which was derived assuming

a Gaussian likelihood, uniform priors and uncorrelated data. We break with all of

these assumptions, which most likely is the cause of d− 2 logS < 0., which excludes

the usage of a χ2-test to calculate the tension probability. The suspiciously high con-

cordance implied by the large value of logS is most likely due to the high correlation

between the SuperCal and Pantheon+ samples, which we did not take into account

due to current model limitations in BAYESNOVA. As such, we must conclude that the

suspicion metric breaks down in the current use-case, and can not be used to deter-

mine the potential tension between the observed SuperCal and Pantheon+ results.

We leave a repeat of this analysis, using the full covariance between datasets being

compared, as future work.
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5Host Galaxy Properties

Although referred to throughout this thesis and implemented in BAYESNOVA, tech-

incal issues has prevented the inclusion of host-property related results. I hope to

be able to present these results at the defence of this thesis, as well as include in

an updated document in the future. As such, we defer inclusion and study of host

properties according to Chapter 2 to future work.
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6SNe Ia Progenitor
Constraints

A potential explanation for the two sub-populations of SNe Ia found using BAYESNOVA

is due to the existence of atleast two distinct progenitor channels. Such distinct pro-

genitor channels have been proposed by theoretical physicists, in the form of prompt

and delayed progenitors, as outlined in Section 1.2.3. Although no direct detections

of SNe Ia progenitors have been made, indirect constraints have been placed on

these progenitors via the DTD. These constraints come mainly from measurements

of volumetric- as well as individual galaxy SNe Ia rates. The well-known bimodal-

ity in SNe Ia stretch is thought to be linked to the underlying progenitors (Liu et al.,
2023), but no statistical models currently exist to model the joint DTD and stretch

distribution. We have in Section 2.4 introduced an extension to the two-population

model from Wojtak et al., 2023 that allows for the SNe Ia population fraction fSN
1 to

be redshift-dependent via Eq. 2.48. This redshift-dependence comes from the DTD-

derived volumetric SNe Ia rate, whereby we link the two model sub-populations

directly to the DTD. In this way we aim to jointly constrain the underlying sub-

populations in SNe Ia light-curve observables as well as SNe Ia progenitors via the

DTD.

6.1 SNe Ia Constraints

We first fit the baseline and redshift-dependent models to the fiducial Pantheon+

sub-sample introduced in Section 3.3.1. This sub-sample is constructed such that it is

roughly volume-limited, so that we avoid the impact of selection effects on inference.

As described in Section 2.4, the redshift-dependent SNe Ia model is only sensitive

to the fraction of prompt SNe Ia fprompt and insensitive to the DTD normalization η.

We therefore fix η = 1.02+0.27
−0.15 × 10−4h270 yr−1 M−1

⊙ from (Wojtak et al., 2019), while

allowing fprompt to be free.

We present the results of these model fits in the first two columns of Table ??. We see

that the redshift-dependent model is strongly supported by the data according to the

Jeffrey’s scale when compared with the baseline model, with ∆logZ = 52.88+0.08
−0.10.

Comparing SNe Ia population parameter values, we see that the redshift-dependent
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value has a less significant bimodality in SNe Ia stretch, with the mean population

1 stretch parameter being larger by roughly a factor two between the baseline and

redshift-dependent models. Other than that, parameters are within 1σ between the

two models. This difference in stretch may imply that the DTD-based population

fraction is not expressive enough to fully capture the underlying stretch evolution

in redshift. Alternatively it could imply that perhaps only part of the redshift de-

pendence / bimodality is due to the presence of two distinct progenitor channels.

This mismatch between observations and predictions is also clear in the left side of

Fig. 6.1, where we compare the mean model stretch vs observed mean stretch as a

function of redshift, with the fiducial sub-sample shown in blue. The mean stretch

predicted by the model is given by

⟨X̂1⟩(z) = fSN
1 (z)X̂1 + (1− f1(z)

SN )X̂2. (6.1)

We see the largest deviation between observations and model predictions at low red-

shifts, which is to expected considering the the higher posterior value for X̂1 found

when using the redshift-dependent model.

The posterior value of the prompt fraction fprompt = 0.67+0.05
−0.05 is consistent with

measurements made in the past, such as by Rodney et al., 2014 who find fprompt =

0.53+0.14
−0.36 and Wojtak et al., 2019 who find fprompt = 0.63+0.07

−0.11. Our model increases

constraining power on fprompt by roughly a factor of 2, highlighting the benefit of

using SNe Ia light curves directly to constrain SNe Ia progenitors.

Having shown that the redshift-dependent model is strongly supported by the data,

we move on to the remaining high-z sub-samples. In the last two columns of Table 6.1

we present the resulting parameter constraints when fitting the redshift-dependent

model to the conservative and full Pantheon+ sub-samples. Not unexpectedly we

find essentially the same posterior parameters for the fiducial and conservative sub-

samples. The largest difference is in the stretch parameters, were find ∆X̂1 = X̂con
1 −

X̂fid
1 ≈ −0.1 and X̂2 = X̂con

2 − X̂fid
2 ≈ 0.1, showing that the stretch parameters shift

further apart. This difference is not significant considering the size of the errors,

but may indicate that the fiducial sample is not fully volume limited. For the full

Pantheon+ sub-sample we find a 3σ difference in X̂1, with X̂full
1 = −0.71 ± 0.09.

Intrinsic colors are shifted towards redder values, and we find a large difference in

the dust reddening shape parameter γ, with γfull = 2.7 compared with γ > 3 for the

remaining 3 models. This observed difference between the full and volume-limited

sub-samples confirms that selection effects must be included if the full redshift-range

is to be used. For completeness sake, we show the posterior population 1 fraction

and mean stretch evolution for the conservative and full sub-samples in Fig. 6.1. We

see that although the conservative and full sub-samples lead to lower mean stretch
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Model Baseline Redshift-Dependent Redshift-Dependent Redshift-Dependent

Sub-sample Pantheon+ Fiducial Pantheon+ Fiducial Pantheon+ Conservative Pantheon+ Full

SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 2 SNe Pop 2

M̂B −19.63+0.04
−0.04 −19.56+0.05

−0.06 −19.64+0.04
−0.04 −19.56+0.05

−0.06 −19.61+0.04
−0.05 −19.56+0.06

−0.07 −19.63+0.03
−0.03 −19.52+0.03

−0.03

X̂1 −0.45+0.09
−0.10 0.61+0.05

−0.06 −0.49+0.10
−0.10 0.58+0.06

−0.06 −0.6+0.1
−0.1 0.65+0.06

−0.06 −0.71+0.09
−0.09 0.58+0.04

−0.04

σX1 0.80+0.05
−0.05 0.47+0.04

−0.04 0.80+0.05
−0.05 0.48+0.04

−0.04 0.79+0.06
−0.06 0.45+0.05

−0.04 0.83+0.05
−0.05 0.48+0.03

−0.03

ĉint −0.13+0.01
−0.02 −0.16+0.02

−0.02 −0.13+0.01
−0.02 −0.16+0.02

−0.02 −0.13+0.02
−0.02 −0.17+0.02

−0.02 −0.121+0.009
−0.011 −0.141+0.009

−0.010

σcint 0.042+0.004
−0.004 0.012+0.007

−0.008 0.043+0.005
−0.004 0.013+0.007

−0.008 0.040+0.006
−0.005 0.014+0.007

−0.008 0.045+0.004
−0.003 0.021+0.004

−0.005

τ 0.033+0.005
−0.004 0.031+0.005

−0.005 0.031+0.005
−0.005 0.033+0.004

−0.004 0.033+0.007
−0.006 0.036+0.006

−0.005 0.042+0.005
−0.004 0.039+0.004

−0.004

α −0.20+0.01
−0.01 −0.20+0.01

−0.01 −0.19+0.01
−0.01 −0.200+0.009

−0.009

β 1.13+0.2
−0.10 1.13+0.2

−0.10 1.2+0.2
−0.1 1.09+0.1

−0.07

R̂B 3.9+0.1
−0.1 3.9+0.1

−0.1 3.9+0.1
−0.1 3.89+0.10

−0.09

σRB
0.29+0.02

−0.01 0.29+0.02
−0.01 0.29+0.02

−0.02 0.29+0.01
−0.01

γ 4.0+1.3
−0.8 3.9+1.0

−0.8 3.9+1.4
−0.9 2.7+0.5

−0.4

fprompt 0.51+0.06
−0.06 0.67+0.05

−0.05 0.66+0.05
−0.06 0.70+0.03

−0.04

∆logZ 0.0 52.88+0.08
−0.10 - -

d̃ 18.8+0.6
−0.4 8.06+0.08

−0.07 5.35+0.05
−0.05 6.02.0+0.07

−0.06

TABLE 6.1.
Comparison between the baseline redshift-dependent model fit to the fiducial Pantheon+ sub-
sample (first two columns) as well as the redshift-dependent model fit to the conservative and
full Pantheon+ sub-samples. Parameter values are posterior medians, with errors given by
the 16th and 86th percentiles. Bayes’ factors ∆Z are calculated wrt. the BAYESNOVA baseline
model, and is only calculated for the redshift-dependent model fit to the fiducial sub-sample.
BMDs d̃ for model comparison’s sake.

for population 1 they still struggle to capture the evolution of stretch at low redshift.

6.2 Joint Volumetric Rate / SNe Ia
Constraints

We have shown that the DTD prompt fraction fprompt can be constrained at a precision

close to current best measurements. Due to how redshift-dependence is implemented

in the two-population model, however, we can not constrain the DTD normalization

η. By combining volumetric SNe Ia rate measurements (see Section 3.5) with SNe

Ia catalog observations, we can jointly constrain SNe Ia sub-populations and the

DTD parameters fprompt and η. We present the results of these model fits in the first

two columns of Table 6.2. We see that SNe Ia population parameters are essentially

unchanged compared to Table 6.1. This is to be expected, since the DTD contributes

to the SNe Ia population fraction, which only depends on the prompt fraction fprompt

and is independent of η.

Constraints on fprompt are consistent with the previous result, implying that under

the assumptions of the redshift-dependent model the light-curve parameters are suf-
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FIGURE 6.1.
Left: Redshift-dependent SNe Ia population 1 fraction for models fit to the fiducial, conser-
vative and full Pantheon+ sub-samples. Lines show posterior medians while shaded regions
show the 68% confidence interval. Right: Observed mean SNe Ia stretch compared to the
predicted redshift evolution of mean population stretch, given by Eq. 6.1. Each sub-sample
is divided into 5 bins of varying width such that each bin contains approximately the same
no. of observations.

ficient to constrain the DTD progenitor fractions. The recovered normalizations are

lower than but consistent with results in the literature, with η = 1.60+0.25
−0.6

10−4 h2
70

yr M⊙
and

1.020.27−0.15
10−4 h2

70
yr M⊙

reported by Rodney et al., 2014 and Wojtak et al., 2019, respectively.

We note again that our results have increased precision by a factor of roughly two,

showing that the light-curve observables and volumetric rates are complementary

when it comes to constraining the DTD normalization.

In Fig. 6.2 we compare the posterior volumetric rates with the volumetric SNe Ia rate

measurements. We see that the volumetric rate follows a similar redshift evolution

as reported in Wojtak et al., 2019 and shown in Fig. 6.2, with the prompt channel

producing the majority of SNe Ia at high redshift, and both channels contributing

roughly equally at low redshift. Compared to Wojtak et al., 2019, the volumetric rate

is tightly constrained, with errors being small compared to that of observations. This

could indicate that the majority of the constraining power comes from the SNe Ia

light-curve observables, such that the volumetric rate observations do not contribute

majorly beyond the normalization.
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FIGURE 6.2.
Comparison of observed volumetric SNe Ia rates and the posterior volumetric rate obtained
from a joint fit of the fiducial Pantheon+ sub-sample and volumetric rate observations. Solid
lines show median values, while shaded regions show the 68% confidence interval. See Table
6.2 for parameter values fprompt and η used.
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Model Redshift-Dependent Redshift-Dependent Redshift-Dependent

Sub-sample Pantheon+ Fiducial Pantheon+ Conservative Pantheon+ Full

Supp. Data Volumetric Rates Volumetric Rates Volumetric Rates

SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2 SNe Pop 2 SNe Pop 2

M̂B −19.63+0.04
−0.04 −19.56+0.05

−0.06 −19.61+0.04
−0.05 −19.56+0.06

−0.07 −19.56+0.03
−0.03 −19.47+0.03

−0.03

X̂1 −0.48+0.09
−0.09 0.58+0.05

−0.05 −0.6+0.1
−0.1 0.65+0.06

−0.06 −0.72+0.9
−0.9 0.56+0.04

−0.04

σX1 0.80+0.05
−0.05 0.49+0.04

−0.04 0.79+0.06
−0.06 0.45+0.04

−0.04 0.84+0.04
−0.04 0.50+0.03

−0.03

ĉint −0.13+0.01
−0.01 −0.16+0.02

−0.02 −0.13+0.02
−0.02 −0.17+0.02

−0.02 −0.117+0.09
−0.010 −0.138+0.009

−0.010

σcint 0.043+0.005
−0.004 0.013+0.007

−0.008 0.040+0.006
−0.005 0.014+0.007

−0.008 0.044+0.004
−0.003 0.021+0.004

−0.004

τ 0.031+0.005
−0.005 0.033+0.004

−0.004 0.033+0.007
−0.006 0.036+0.006

−0.005 0.044+0.005
−0.005 0.040+0.004

−0.004

α −0.20+0.01
−0.01 −0.19+0.01

−0.01 −0.198+0.08
−0.08

β 1.13+0.2
−0.10 1.2+0.2

−0.1 1.09+0.14
−0.07

R̂B 3.9+0.1
−0.1 3.9+0.1

−0.1 3.83+0.09
−0.09

σRB
0.29+0.02

−0.01 0.29+0.02
−0.02 0.28+0.01

−0.01

γ 3.9+1.0
−0.8 3.9+1.4

−0.9 2.6+0.5
−0.4

fprompt 0.66+0.04
−0.05 0.65+0.05

−0.05 065+0.04
−0.04

η [10−4 h2
70

yr M⊙
] 0.78+0.1

−0.01 0.80+0.1
−0.1 0.79+0.9

−0.8

d̃ 6.95+0.07
−0.07 5.35+0.05

−0.05 8.32+0.1
−0.10

TABLE 6.2.
Comparison between redshift-dependent models fit to different datasets in combination with
volumetric SNe Ia rate measurements. Parameter values are posterior medians, with errors
covering the 68% confidence interval. Model BMDs d̃ shown for model comparison’s sake.
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7Cosmological Constraints

We have so far focused on astrophysical aspect of modelling SNe Ia, quantifying the

impact of catalog changes between SuperCal and Pantheon+, exploring the impact of

including host properties, and constraining the SNe Ia progenitor DTD. In this section

we increase the scale of the analysis, focusing on the usage of SNe Ia as cosmological

probes. A SNe Ia sub-sample with a high redshift-range such as Pantheon+ allows

for constraints to be put on the density parameters and equation for state described

in Section 1.1. We will in this work test 3 different models: a FlatΛCDM model

where the matter density Ωm,0 is free, a FlatwCDM model where Ωm,0 = 0.3, and a

FlatΛCDM model where both Ωm,0 and w0 are free parameters. These 3 models are

covered in Sections 7.1, ??, 7.3.1, respectively.

Strong support two SNe Ia sub-populations that evolve over redshift, as shown in

the previous section, has implications for constraints on the mentioned cosmological

parameters. We showed in the previous section that these two populations have dif-

ferent intrinsic luminosities, stretch parameters and colors. Standard cosmological

SNe Ia surveys assume a single population of SNe when using the Tripp calibration,

with some variation allowed via usage of the mass-step described in Section 1.2.1.

If observed SNe Ia are produced by two distinct underlying populations, such an as-

sumption would lead to SNe Ia that are intrinsically dimmer / redder / in dustier

environments to be falsely assigned higher distance moduli. This in turn changes

the relative distances of the SNe, and an lead to biases in constraints. To quantify

this potential bias, we simulate 200 mock Pantheon+ catalogs containing 2000 SNe

Ia each, with redshifts sampled uniformly in the range 0.01 < z < 2.5. Light-curve

observables mB, x1, and capp are generated by sampling from the redshift-dependent

two-population model defined in Chapter 2, with parameters chosen to those re-

ported in Table 6.1 for the fiducial sub-sample. Cosmological parameters are fixed

to those defined in Section 1.1, with Ωm,0 = 0.3 and w0 = −1. For each of the 200

mock catalogs we resample while allowing fprompt to vary between 0.01 − 0.99 with

step sizes of ∆f = 0.01. By doing so we have 200 mock catalogs for each value of

fprompt.

Given the simulated mocks, the potential bias can be estimated by fitting a single-

population Tripp model as defined in Eq. 1.16, leaving the chosen cosmological

parameters free. Note that this model has intrinsic scatter σint free, as this is only
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fixed to 0 for the baseline model. We define the resulting percent bias in Ωm,0 and

w0 to be

δΩm,0 =
ΩFit
m,0 − ΩTrue

m,0

ΩTrue
m,0

(7.1)

δw0 =
wFit
0 − wTrue

0

wTrue
0

. (7.2)

Note that since wTrue
0 = −1 that positive values of δw0 correspond to underestimated

or overly negative wFit
0 . Similarly, negative values of δw0 correspond to overestimated

or overly positive wFit
0 with respect to wTrue

0 .

7.1 Constraining Matter Density

7.1.1 Simulations

The first model we consider is FlatΛCDM where the only free parameter is the matter

density Ωm,0. We fit a single-population Tripp model given by Eq. 1.16 to the 200 sets

of mock Pantheon+ catalogs, thereby measuring the percent-level bias as a function

of fprompt. The result of this is shown in Fig. 7.1. We see that δΩm,0 is generally

underestimated, with a symmetry around fprompt ≈ 0.5. This corresponds to equal

contribution of the two sub-populations, leading to a bias of δΩm,0 ≈ −2%. One

would expect the bias to reduce to 0 for fprompt = 0 or fprompt = 0, but this is not the

case in Fig. 7.1. This can be explained by the fact that the simulated data include the

effects of dust, which were not included in the simple Tripp model used to recover

Ωm,0. Mandel et al., 2017 show that that distance moduli are overestimated by 0.1

mag when SNe Ia apparent color is not deconvolved into intrinsic color and dust

distribution. Assuming a FlatΛCDM model as we are now, this would correspond to

an underestimation as we see in Fig. 7.1.

What then, is the contribution from the mixture of SNe Ia populations to this bias?

The single-population model must account for underlying SNe Ia properties that

evolve with time. As seen in Fig. 6.1, the proportion of population 2 SNe Ia in-

creases as a function of redshift. This population of SNe Ia is intrinsically blue and

has high stretch, compared to population 1. Modelling the SNe Ia stretch as coming

from a single population when fprompt would lead to a population stretch between

the X̂1 and X̂2 in Table 6.1. This would in turn lead to overestimated luminosities

for population 1 and vice-versa for population 2. Considering Eq. 1.9, this scenario

could correspond to a Universe that became dominated by the accelerating expan-

sion of the Λ-component at an earlier time, which would correspond to a lower value
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FIGURE 7.1.
Bias in Ωm,0 as a function of fprompt. Colored lines depict the average bias across 200 simula-
tions, smoothed using a Gaussian kernel with σ = 1. Shaded region shows ±1σ-interval, and
dashed line shows ±1% from the true value

of Ωm,0. Considering the bias contribution from the two populations as well as from

unmodelled dust both lead to underestimation, we expect this bias to be less sig-

nificant when using a more physical model. We leave such an analysis, using the

dust-extended Tripp model in Eq. 1.18 for future work.

7.1.2 Results

Having studied potential systematics in Ωm,0 using simulations, we now move on-

ward to constraining the parameter using the Pantheon+ catalog. We present results

for the fiducial and conservative sub-samples in Table 7.1. The full sub-sample is

not evaluated fact that systematics caused by unaccounted for selection effects can

obscure any shifts in the cosmological parameters due to the adopted two-population

model. We have left out constraints on SNe Ia parameters, as they are all found to be

within < 1σ of the values found in Table 6.1.

As shown in Table 7.1, we find values of Ωm,0 higher than that measured by Brout

et al., 2022a, Ωm,0 = 0.326 ± 0.16, which we would expect based on our previous

simulation study. The size of our errors means that we, however, are still consistent
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Model Redshift-Dependent Redshift-Dependent

Sub-sample Pantheon+ Fiducial Pantheon+ Conservative

SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2

fprompt 0.64+0.04
−0.05 0.65+0.05

−0.05

Ωm,0 0.37+0.02
−0.02 0.36+0.03

−0.03

∆logZ 5.33+0.06
−0.06 4.12+0.06

−0.07

d̃ 3.05+0.04
−0.03 8.3+0.11

−0.10

TABLE 7.1.
Comparison between the redshift-dependent model fit to the fiducial, conservative and full
Pantheon+ sub-samples with Ωm,0 as a free parameter. We show only the marginalized
population fraction and cosmological parameters for the readers’ sake, as remaining SNe Ia
and dust parameters are equivalent < 1σ of those found Table 6.1. Parameter values are
given posterior medians, with errors given by the 16th and 86th percentiles. Bayes’ factors
∆Z are calculated wrt. the redshift-dependent models with fiducial cosmology presented in
Table 6.1. BMDs d̃ are shown for model comparison’s sake.

with the results presented in Brout et al., 2022a, and no evidence is found for any

bias in the Pantheon+ results.

7.2 Constraining The Dark Energy
Equation of State

7.2.1 Simulations

The second model we consider is FlatwCDM where the only free parameter is the

dark energy equation of state parameter w0. As before, we fit a single-population

Tripp model given by Eq. 1.16 to the 200 sets of mock Pantheon+ catalogs, thereby

measuring the percent-level bias as a function of fprompt. The result of this is shown

in Fig. 7.2.

Similar to before, we find δw0 ≲ 0 with an apparent symmetry around fprompt ≈ 0.5.

This corresponds to equal contribution of the two sub-populations, leading to a bias

of δw0 ≈ −1%, although δw0 = 0 is within 3σ at all times. Ignoring the contributions

of unaccounted for dust, we can attribute the slight negative bias similarly to the

FlatΛCDM case, where instead the biases in distance moduli are accounted for by w0.

Since the bias is negative, this corresponds to wf it
0 > −1. A value of −1 < w0 <

−1/3 corresponds to a Universe that becomes dark energy dominated at an earlier
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FIGURE 7.2.
Bias in w0 as a function of fprompt. Colored lines depict the average bias across 200 simula-
tions, smoothed using a Gaussian kernel with σ = 1. Shaded region shows ±1σ-interval, and
dashed line shows ±1% from the true value

time. In this way, the single-population model can account for the impact of the

two underlying sub-populations by overestimating the value w0. If we consider Eq.

1.9, we see that w0 enters in the exponent of the scale factor for the Λ-component,

a−3(1+w). This may explain why the observed bias is small, since a minor change in

the exponent will lead to large change as a function of a.

7.2.2 Results

Having shown that a weak bias may be present in constraints of w0, we will now

attempt to constrain this parameter using the Pantheon+ catalog. We present results

for the fiducial and conservative sub-samples in Table 7.2. The full sub-sample is

not evaluated due to the fact that systematics caused by unaccounted for selection

effects can obscure any shifts in the cosmological parameters due to the adopted two-

population model. We have left out constraints on SNe Ia parameters, as they are all

found to be within < 1σ of the values found in Table 6.1.

We find w0 = −0.84 ± 0.04 and w0 = −0.83 ± 0.03 for the fiducial and conservative

sub-samples, respectively. These values are marginally lower than the value reported
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Model Redshift-Dependent Redshift-Dependent

Sub-sample Pantheon+ Fiducial Pantheon+ Conservative

SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2

fprompt 0.66+0.05
−0.06 0.67+0.03

−0.04

w0 −0.84+0.04
−0.04 −0.83+0.03

−0.03

∆logZ 3.01+0.06
−0.06 4.92+0.07

−0.06

d̃ 2.29+0.03
−0.03 9.2+0.1

−0.1

TABLE 7.2.
Comparison between the redshift-dependent model fit to the fiducial and conservative Pan-
theon+ sub-samples with w0 as a free parameter. We show only the marginalized population
fraction and cosmological parameters for the readers’ sake, as remaining SNe Ia and dust pa-
rameters are equivalent < 1σ of those found Table 6.1. Parameter values are given posterior
medians, with errors given by the 16th and 86th percentiles. Bayes’ factors ∆Z are calculated
wrt. the redshift-dependent models with fiducial cosmology presented in Table 6.1. BMDs d̃
are shown for model comparison’s sake.

by Brout et al., 2022a in their joint analysis, but consistent within < 2σ. As such we

find no evidence of any shifts in the dark energy equation of state when using a two

population model. It is interesting to note that the value does slightly shift to higher

values, as we would expect the opposite based on the previous simulation study.

7.3 Joint Constraints

7.3.1 Simulations

Last but not least, we consider a FlatwCDM where both the matter density, Ωm,0, and

the dark energy equation of state, w0, parameters are allowed to vary. As before,

we fit a single-population Tripp model given by Eq. 1.16 to the 200 sets of mock

Pantheon+ catalogs, thereby measuring the joint percent-level bias as a function of

fprompt. The result of this is shown in Fig. 7.3.

In this joint-model scenario, we see a negative bias in both Ωm,0 and w0. Unexpect-

edly, these biases are both roughly a factor 2 larger than the individual biases found

in the previous simulation experiments, with δΩm,0 ≈ −4% and δw0 ≈ −2% at peak.

The location of the largest bias is also shifted to fprompt ≈ 0.4, vs fprompt ≈ 0.5 as

seen earlier. The physical reasoning behind the underestimation of Ωm,0 and overes-

timation of w0 is the same as in the earlier sections, with the biases corresponding
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FIGURE 7.3.
Left: Bias in Ωm,0 as a function of fprompt. Right: Bias in w0 as a function of fprompt. Colored
lines depict the average bias across 200 simulations, smoothed using a Gaussian kernel with
σ = 1. Shaded region shows ±1σ-interval, and dashed line shows ±1% from the true value.

to a Universe dominated by expansion at an earlier time to account for biased dis-

tance moduli. When both parameters are free, one would expect that the individual

contributions from each are reduced, not increased as we see in this case. This may

also be an artifact of the analysis, as we instead should consider the joint bias in the

Ωm,0 − w0 space, instead of bias on the marginalized parameters as we are currently

doing. We leave a deeper analysis of this interesting interplay between cosmological

parameters for further study in the future.

7.3.2 Results

We now turn towards constraining Ωm,0 and w0 on the Pantheon+ catalog. We

present results for the fiducial, conservative and full sub-samples in Table 7.3. We

have left out constraints on SNe Ia parameters, as they are all found to be within

< 1σ of the values found in Table 6.1.

We find that the fiducial and conservative sub-samples agree with the constraints

given by Brout et al., 2022a within < 1σ. Compared to the previous two models, the

constraints presented in Table 7.3 are a factor 2 less precise. This can be explained by

the degeneracy in Ωm,0 and w0 as shown in Fig. 7.4, in combination with the reduced

redshift range in the fiducial and conservative sub-samples.
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Model Redshift-Dependent Redshift-Dependent

Sub-sample Pantheon+ Fiducial Pantheon+ Conservative

SNe Pop 1 SNe Pop 2 SNe Pop 1 SNe Pop 2

fprompt 0.66+0.05
−0.06 0.64+0.06

−0.07

Ωm,0 0.3+0.1
−0.2 0.3+0.1

−0.2

w0 −0.9+0.2
−0.3 −0.9+0.2

−0.3

∆logZ 5.08+0.10
−0.09 4.3+0.34

−0.09

d̃ 4.45+0.05
−0.05 4.78+0.06

−0.04

TABLE 7.3.
Comparison between the redshift-dependent model fit to the fiducial and conservative Pan-
theon+ sub-samples with Ωm,0 and w0 as free parameters. We show only the marginalized
population fraction and cosmological parameters for the readers’ sake, as remaining SNe Ia
and dust parameters are equivalent < 1σ of those found Table 6.1. Parameter values are
given posterior medians, with errors given by the 16th and 86th percentiles. Bayes’ factors
∆Z are calculated wrt. the redshift-dependent models with fiducial cosmology presented in
Table 6.1. BMDs d̃ are shown for model comparison’s sake.
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8Summary & Conclusion

We have in this work touched upon a large fraction of the SNe Ia field, as it pertains to

cosmology. We introduced how SNe Ia are used to constrain cosmological parameters,

but also how issues currently exist wrt. their usage as cosmological probes. Specif-

ically this refers to intrinsic dispersion in SNe Ia, as well as the potential relation

between SNe Ia systematics and the Hubble tension, as discussed in Section 1.4.2.

Wojtak et al., 2023 introduced a novel hierarchical two-population model which al-

lows for the existence of two sub-populations of SNe Ia. We have in this work taken

this model and generalized it in the form of the Python package BAYESNOVA.

We have in Chapter 2 introduced a several extensions to make the model more phys-

ical, such as extensions to the latent priors on the extinction coefficient and dust

redddening. We compared results derived by Wojtak et al., 2023 and BAYESNOVA on

the SuperCal catalog, finding some discrepancies but overall agreeance. Further work

is needed here to fully quantify what causes these differences, although experiments

during this thesis have shown that it may be due to slight differences in the prepro-

cessing pipeline introduced in Chapter 3. We have then moved on to the modern

SNe Ia catalog, again comparing with the results of Wojtak et al., 2023. We here find

some larger differences in posterior values, especially for the color, stretch and Tripp

parameter β. We attempted to use modern Bayesian methodology to determine the

cause of this tension, but where unsuccessfull due to the assumption that SuperCal

and Pantheon+ are independent. Future work will attempt to determine the cause of

these differences, potentially by implementing the full covariance matrix of Scolnic

et al., 2022 in BAYESNOVA.

We aimed to study the impact of host properties in the framework of a two-population

model, and this has beeen implemented in BAYESNOVA. As discussed in Chapter 2,

this is one avenue of improving constraints on the presence of SNe Ia two-populations.

Technical issues with sampling these high-dimensional posteriors has however pre-

vented these results from making their way into this thesis. We hope to present these

results at the upcoming defence, as well as include them in an updated version of

this document in the future.

The main extension to Wojtak et al., 2023 is the inclusion of redshift dependence in

the relative weighting of the two SNe Ia sub-populations. This is done by making
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use of the SNe Ia DTD and volumetric rates, linking the populations of this observa-

tional light-curve based model to theoretical SNe Ia progenitor channels. This serves

as a way to use light-curve observables directly to constrain SNe Ia, and we have

shown in Chapter 6 that we find results consistent with the latest constraints but at

a higher level of precision. Some issues persist, with the posterior predictive distribu-

tion of SNe Ia stretch being impacted by this model extension. Further work will be

dedicated to studying this further.

Finally, we have in this work applied this redshift-dependenet two-population model

to constraining cosmological parameters using high-redshift SNe Ia surveys such as

Pantheon+.
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