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Abstract

The caustic technique of mass estimation of galaxy clusters relies on the assumption of spherical symmetry,
which is not always a valid assumption. Here we demonstrate the effect of spatial anisotropy of galaxy clusters
on the inferred caustic mass profiles by studying mock observational data generated from dark matter N -
body simulations. We find a factor of ∼ 2 discrepancy between major and minor axis mass estimates in
ellipsoidal clusters within the virial radius Rv, and up to ∼ 3 within 3Rv. We also find filaments to influence
caustic mass estimates at a significant magnitude.

By stacking halos to align their principal axes we find that a line of sight along the major axis overestimates
the caustic mass of galaxy clusters, as well as a line of sight along the minor axis underestimates it. The
mass discrepancy between the major and minor axis is a factor of 1.72, 1.95 and 2.44 at 1, 2 and 3Rv for
virial masses within (1− 2)× 1014 h−1M⊙, and (14− 20)% larger for ≥ 2× 1014 h−1M⊙. By stacking halos
to instead align their largest associated filament we find a mass overestimation with line of sight nearly along
the filament, and an underestimation with line of sight orthogonal to the filament. For the low mass bin
we find a factor of 1.22, 1.49 and 1.71 discrepancy within 1, 2 and 3Rv between line of sight along and
across the filament, and a (1 − 19)% smaller discrepancy for the high mass bin. Furthermore, we find no
significant bias due to ellipsoidal structure (< 8%). We provide useful tables which can be used to estimate
mass discrepancy when cluster orientation is known.





Chapter 1

Introduction

1.1 The nature of galaxy clusters

On the very largest of scales to a good approximation the universe can be considered a homogeneous and
isotropic medium of mainly dark matter and energy, with a small trace of baryonic matter added into the
mixture. Homogeneity and isotropy constitute the two fundamental and observationally well founded as-
sumptions of cosmology. The current distribution of matter and energy is a descendant of a pre-historical
energetically dense medium which through a brief period of rapid and violent inflation and through sub-
sequent expansion has evolved into the current state that is our universe. On slightly smaller scales, at
∼ 100 Mpc, elaborate and localized structure emerges, and the fundamental cosmological assumptions start
to break down. The matter component is distributed through a delicate network of over- and underdense
regions, progeny to a weak quantum noise in the pre-historical state frozen in by inflation, and enhanced
by gravity and time. Along these overdense regions is where galaxies have formed. Often galaxies form
in regions of the highest concentrations, and thus tend to cluster together in groups. Clusters of galaxies
place themselves as structural ’knots’ in the context of this network of overdensity commonly referred to as
’the cosmic web’ or ’the large scale structure’ (see Fig. 1.1). Clusters are interconnected by the less dense
string-like ’filaments’ and plane-like ’sheets’ of matter and together they encapsulate the under dense cosmic
voids which in terms of volume take up most of the universe.

As manifestations of the most massive gravitationally bound objects of our universe clusters of galaxies
yield fascinating properties. They are multi-component systems with masses measured between ∼ 1014M⊙
and up to ∼ 1015M⊙. Of this mass, the majority (∼ 90%) is in the form of dark matter, and of the remaining
baryonic component ∼ 90% takes the form of hot ionized gas. Only a few % of the total mass is in the form
of stellar matter found in the collection of 50 − 1000 member galaxies that historically have given name to
the objects. Observationally clusters are visible through a broad range of channels. Their resident galaxies
contribute much at optical and near infra-red wavelengths as exemplified in the left side of Fig. 1.2 for the
Abell 1689 cluster. The image is observed by the Hubble telescope, and shows a large number of clustered
yellow galaxies, as well as blue and red background galaxies. Additionally at these wavelengths clusters may
act as gravitational lenses for light emitted by background sources, visible observationally as round light
arcs and background image distortion. The Abell 1689 cluster of Fig. 1.2 shows clear both lensing arcs and
background distortion, bearing witness to its large mass. The hot gas of the intra cluster medium emits
thermal bremsstrahlung in X-ray regime. An example of this can be seen in the X-ray image on the right
side of Fig. 1.2 for the Abell 2597 cluster. Finally at millimetre wavelengths inverse Compton scattering
on high energy electrons from the hot gas component distorts the cosmic microwave background to produce
an observable signature. All of this spectral information allows for detailed analysis of the nature of galaxy
clusters, and thus has given rise to a large field of study within astrophysics and cosmology.

Though interesting on their own, one of the main motivations of studying the properties of galaxy clusters
comes from their ability to constrain a number of cosmological parameters and test cosmological models and
models of general relativity. A main factor in this ability comes via the cluster mass. Within a bin in
redshift z and mass M different cosmological models predict a number N(z,M) of clusters within some
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Figure 1.1: The cosmic web as obtained from the Bolshoi N -body simulation described in later sections of
this thesis. The figure shows a 225×150×3 Mpc slice through the simulation at redshift z = 0. The black
color indicates volume categorized as ’void’, the blue color indicates places of ’sheet’, the white color indicates
’filaments’ and the red color indicates clusters or ’knots’. Classifications are based on a velocity shear tensor
map obtained from the Multidark Database, also described in later sections of this thesis.

volume, and knowing the true cluster distribution through observational counts thus allows for testing of
these models (Vikhlinin et al., 2009). Other techniques constraining cosmological parameters are the growth
rate of clusters (Mantz et al., 2010; Rapetti et al., 2010; Mantz et al., 2014) and the gas mass fraction
(Allen et al., 2002). Naturally this calls for methods of estimating the mass of clusters to a reasonable
precision. Whilst much of the pioneering work has been done to develop methods capable of obtaining good
mass estimates of the objects, our era of precision cosmology calls for constrains on cosmological parameters
tighter than what is currently possible. Large amounts of data becoming available both from observations
(see the e.g. Sloan Digital Sky Survey (Ahn et al., 2014)) and simulations (e.g. the Millennium Simulation
(Springel et al., 2005), Bolshoi simulation (Klypin et al., 2011) and Illustris simulation (Vogelsberger et al.,
2014)) also permits the extension of previous efforts. Therefore it is of critical importance to further develop
mass estimation techniques to take into account what little uncertainty, scatter and bias that still affects
current observations. For more information on galaxy clusters as cosmological probes see review by (Allen
et al., 2011).

1.2 Methods of mass estimation

Much of the current methodology is formulated within a spherical framework. The very definition of cluster
mass is usually formulated in terms of spherical overdensity, which locates centres of highest concentration
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and evaluates the density within spheres of increasing size against a background density. Choosing a typical
∆ = 100 and the background density to be the critical density ρcrit, the cluster mass M∆ is that contained
within a sphere of radius R∆ such that 3(M∆)/(4πR3

∆
) = ∆ ρcrit. As such the mass definition is spherical by

construction. This naturally fits well with the employment of spherical assumptions in many of the available
mass estimators, however as shall later be discussed it fits poorly with the actual matter distribution of
galaxy clusters, and as such gives rise to systematic uncertainty in any mass estimates currently available.

For the category of mass estimation methods often labeled as ’dynamical’ the input observables are usually
limited to the two angular positional coordinates on the sky, and the redshift of each of the member galaxies.
This of course amounts to only half the components of the full 6-dimensional phase-space of position x and
velocity v, and as such, any dynamical method relies at least on some assumptions of cluster geometry. To
illustrate how this works, two simple dynamical mass estimators are discussed below.

1.2.1 Dynamical mass through the virial theorem

One of the simplest dynamical mass estimators is obtained by invoking the virial theorem. Assume that
an equilibrated system of N galaxies with total mass Mtot = Σmi is bound with some average velocity
〈

v2
〉

= Σmiv
2
i /Mtot, where v2i = |vi|

2 is the velocity of the i’th galaxy, and mi is its mass. The virial
theorem states that the total kinetic energy of the system is related to the total potential energy through
K.E. = − 1

2
P.E.. In our system we have

K.E. =
1

2

∑

i

miv
2

i , P.E. = −
1

2

∑

i6=j

Gmimj

rij
, (1.1)

where rij is the 3D seperation between the i’th and j’th particle. If then one defines the size of the system
as

RG = 2M2

tot





∑

i6=j

mimj

rij





−1

(1.2)

then the virial theorem states using the above that

Mtot =
RG

〈

v2
〉

G
. (1.3)

The velocity dispersion along the line of sight is a measurable quantity, as well as some effective radius of
the system. By taking into account the projection effects by assuming a spherical distribution of the system
observed, equation (1.3) can be used to estimate the mass of a cluster of galaxies. This however requires
assumptions about the distribution of matter both in space and velocity. Furthermore, the quantity RG is
no easily observed parameter, and thus this method may easily be subject to systematic uncertainty. Finally
the above contains only masses of the particles of the dynamical system i.e. the galaxies, which as mentioned
earlier amount to only a few % of the full cluster mass.

1.2.2 Dynamical mass through the Jeans equation

Another simple strategy which does yield a total mass measure of a gravitating system comes through
the spherical Jeans equation for non-rotational equilibrated systems. Through a relatively straightforward
derivation one can show that

Mtot(r) = −
rσr(r)

G

[

d lnσ2
r

d ln r
+

d ln ν

d ln r
+ 2β

]

, (1.4)

where ν(r) is the galaxy number density, σr(r) is the radial velocity dispersion in 3D and β is the velocity
anisotropy parameter (Binney & Tremaine, 2008). This equation is useful because one can measure the RHS
quantities (except β) through assumptions of the three dimensional structure of a galaxy cluster for only its
galaxy component, and obtain the total mass (i.e. including dark matter and gas) on the LHS. It is important
to point out that this expression assumes multiple properties of the system, with the most important ones
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Figure 1.2: Left: Optical image of the A1689 galaxy cluster as measured by the Hubble telescope. Both
a large number of member galaxies as well as clear lensing arcs are visible. The image was obtained from
http://hubblesite.org/. Right: X-ray image of galaxy cluster A2597 as measured by ROSAT. The isophotal
contours are shown in red, and fitted ellipsoids are shown in green. The pixel size is 22.7 kpc. Clear
asphericity is visible. The image is obtained from Fig. 2 of Lau et al. (2012).

for this study being the spherical and equilibrated conditions. These assumptions are necessary as it allows
for the removal of several terms of the collisionless Boltzmann equation to arrive at the simple form that is
equation (1.4).

1.2.3 Non-dynamical masses

Many mass estimators outside of the dynamical regime are also forced to employ assumptions about the
state and 3-dimensional distribution of cluster matter due to the limited information available. This despite
the fact that clusters are widely represented in the electromagnetic spectrum. Below, we briefly consider
some of the most competitive mass estimation methods available, along with their assumptions and potential
drawbacks.

X-ray The hot ionized gas that resides inside clusters emits bremsstrahlung in the X-ray regime which yields
a radial temperature profile. By assuming the hot gas to be in hydrodynamical equilibrium with the
rest of the cluster components, and by assuming spherical symmetry, this temperature can be directly
related to the total cluster mass profile (Böhringer & Werner, 2010). These however are not always
valid assumptions as shall be discussed later.

Gravitational lensing Due to the large gravitational field exerted by galaxy cluster light passing in its
vicinity is deflected. This lensing effect acts to create multiple images of background sources or even
gravitational light arcs, as well as to systematically distort the background field. Naturally this distor-
tion depends on the mass of the cluster, and through detailed analysis of the received image the cluster
mass may be inferred (see Bartelmann (2010) for a thorough review). The mass received is however in
terms of surface density, and the 3D distribution of matter has to be modelled, which is not always an
easy task. It has been shown that the inferred 3D distribution is dependant of the line of sight through
the structure (Clowe et al., 2004).

Sunyaev-Zel’dovich effect The photons of the cosmic microwave background travel along virtually un-
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perturbed paths since the surface of last scattering. If however they happen to travel through a galaxy
cluster they may interact with the hot gas of the cluster, yielding a net positive energy contribution to
the photon. This in turn makes the cosmic microwave background appear hotter in this direction, and
this temperature increase is related to the cluster mass. This is one of the most promising methods for
mass estimation of galaxy clusters for several reasons, the perhaps most important one being that it is
redshift independent. Therefore it can probe clusters at high redshifts relative to other techniques. Also
it provides a very simple linear measure of column mass, and in this sense it is a relatively unambiguous
signal. For more information see Carlstrom et al. (2002).

1.3 Aspherical clusters and thesis objectives

The virial theorem and Jeans equation masses are examples of dynamical methods of mass estimation. Both
are faced with assumptions of equilibrium and more importantly sphericity, as the limited observable 3D
phase-space of two angular coordinates and redshift in themselves are not sufficient. Naturally a range of
different dynamical methods exist, each with their assumptions for the system under consideration to account
for the limited observational information (Old et al., 2014). Common for most of them is that they assume
spherical conditions.

There is a large body of evidence suggesting that galaxy clusters in fact are highly aspherical. On the
observational side, the non-circular signals received through the available observational channels comprise
density maps derived from the optical, surface brightness from X-ray, Sunyaev Zel’dovich pressure maps,
lensing signals and more, summarized by Limousin et al. (2013). As an example, an X-ray map of Abell
cluster 2597 is displayed in the right side of Fig. 1.2, as obtained from Limousin et al. (2013), showing clear
aspherical features reasonably well fit by an ellipsoidal model. Furthermore, N -body simulations also show
strong triaxiality of galaxy clusters with axial ratios on the order of 0.6 and with a preferentially prolate
structure (Allgood et al., 2006). The anisotropy is present not only spatially, but also the velocity component
of galaxy clusters shows clear anisotropy in observations (Wojtak, 2013).

The focus of the current work is on the effect of cluster asphericity on dynamical mass estimates. We
probe this using the ’caustic technique of mass estimation’ (Diaferio, 1999), which is extensively used to
obtain dynamical masses (Biviano & Girardi, 2003; Rines & Diaferio, 2006; Geller et al., 2013; Rines et al.,
2013). The technique is discussed in depth in the next chapter, however it works by estimating the escape
velocity profile of a system of galaxies as a function of radius, and relates it to the potential and thus the
mass profile of the system. As many of the techniques discussed above, it assumes spherical symmetry. The
method does not rely on assumptions of dynamical equilibrium beyond the virial radius, and as such it can
be used to probe cluster mass at large radii. Therefore it also allows for the possibility of probing asphericity
effects radii beyond the virial radius. We aim to relax the spherical conditions to a triaxial model of galaxy
clusters, as well as consider the possible effects of surrounding large scale structure in the shape of filaments,
both which is expected to modulate the resulting dynamical mass.

The following chapter is organised as follows. Section 2.1 describes the treatment of data from an N -
body dark matter particle simulation, and of selected halos within it. Section 2.2 describes the rotation and
stacking of the clusters in ellipsoidal, filamentary and spherical stacks. Section 2.3 outlines the theory of the
caustic technique for mass estimation of galaxy clusters. Section 2.4 presents the caustic mass estimates of
the stacks as obtained by using different lines of sight, and Section 2.5 discusses how this works as a bias
in mass estimation. Section 2.6 sums up the conclusions of the work done in this thesis, and Section 2.7
contains a brief outlook on potential future work.
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Chapter 2

Asphericity and the caustic technique

The following chapter contains the description and analysis of caustic mass estimates on aspherical mock
data from N -body simulations. It is largely identical to an article submitted to Monthly Notices of the
Royal Astronomical Society based on the work made for this thesis. The article can be found on-line in its
submitted form at http://arxiv.org/abs/1405.0284. Co-author statements from the two co-authors DARK
Fellow Radek Wojtak and Assoc Prof Steen H. Hansen can be found in the back of the thesis.

2.1 Simulations and mock catalogues

The caustic technique of mass estimation takes as input the projected phase-space data of an observed galaxy
cluster, i.e. the projected sky positions and line of sight velocities of its member galaxies. In order to apply
and evaluate the performance of the caustic technique in spatially isotropic and anisotropic settings we set
out to compile a range of mock phase-space diagrams of simulated galaxy clusters. We assume that realistic
representations of phase-space diagrams of clusters can be obtained by considering just dark matter particles
from N -body simulations. The particle data were obtained from the Bolshoi simulation1, which simulates
20483 dark matter particles, each with a mass of 1.35×108h−1 M⊙ (Klypin et al., 2011). The simulation
evolves from redshift z = 80 inside a box volume of side length 250 h−1Mpc and uses cosmological parameters
consistent with measurements based on the WMAP five-year data release (Komatsu et al., 2009) and the
abundance of optical clusters from the Sloan Digital Sky Survey (Rozo et al., 2010), Ωm = 0.27, ΩΛ = 0.73,
σ8 = 0.82 and h = 0.7 such that H0 = 100 h km s−1Mpc−1 = 70 km s−1Mpc−1.

We construct the phase-space diagrams by using two sets of data from the Bolshoi simulation at redshift
z = 0 in conjunction, namely a location and velocity subset of 8.6 × 106 randomly drawn dark matter
particles, along with a Bound Density Maximum (BDM) halo catalogue also obtained from the Multidark
database, which lets halos extend up to an overdensity limit of 360 ρcrit, where ρcrit is the critical density.
Throughout, we shall refer to the former dataset when mentioning particles, and the latter when mentioning
halos. For each halo in the catalogue all particles were assigned an additional radial Hubble flow velocity
vh = 100 h r km s−1Mpc−1 according to their 3-dimensional distance r to the halo center. We choose to
use the exact halo centers of the BDM catalogue here and throughout our analysis in order to provide
optimal conditions for the application of caustic technique. To ensure comparable proportions of the halos,
the positions of their member particles were normalized by the virial radius Rv and their velocities by
the virial velocity Vv =

√

GMv/Rv, where Mv is the virial mass. All of these quantities along with the
halo center locations are provided in the BDM halo catalogue. Clusters were chosen within two mass bins,
namely in the range of Mv ∈ [1, 2] × 1014h−1M⊙, which yielded 230 distinct halos in the catalogue, and
Mv > 2 × 1014 h−1M⊙ which yielded 101 distinct halos in the catalogue. The two shall throughout be
referred to as the ’low mass bin’ and the ’high mass bin’ respectively.

1The simulation is publicly available through the Multi Dark database (http://www.multidark.org). See Riebe et al. (2011)
for details of the database.
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2.2 Stacking the data

Two big sources of spatial anisotropy in clusters stems from elongation of the clusters themselves and
surrounding large scale structure i.e. filaments, walls and voids. In order to isolate these morphological
features for further analysis the halos from each mass bin were arranged concentrically in three separate
stacks. For each stack all halos and their particles were rotated individually to align and isolate the geometric
features of elongation and filamentary structure. This yielded for each mass bin:

• An ellipsoidal stack where halos were modelled as ellipsoidal structures and rotated so that the three
principal axes of each halo were aligned

• A filamentary stack that aligned the direction of largest filament associated with each halo

• A spherical stack for reference with arbitrary orientation of each halo

The three configurations made it possible to choose any line of sight through the anisotropic stacks and
compare mass estimates from caustics with those of the spherical stack. Because the stacks differ only in
orientation of individual halos, they have the same true cumulative mass profile M(< r). Therefore any
difference in caustic mass estimation between the ellipsoidal or filamentary stack and the spherical stack

expresses an anisotropy bias in the caustic method of mass estimation.

2.2.1 Ellipsoidal geometry and alignment

To create a smooth halo with clearly pronounced triaxiality and little interference from cluster substructure,
ongoing merging or large scale structure, each of the halos were rotated according to their directions of
elongation and placed in a stack. As a measure of elongation and orientation we invoked an ellipsoidal model
by considering the shape tensor of each halo. Its three eigenvalues λi define the principal axes of the ellipsoid,
and its eigenvectors define their orientation. For each halo the shape tensor Sjk (see e.g. Zemp et al. (2011))
can be obtained by summing over its N member particles within some radius:

Sjk =
N
∑

i=1

(xj)i(xk)i. (2.1)

Here xj and xk are the j’th and k’th components of the 3-dimensional position vector of the i’th particle.
We use particles within Rv to avoid interference from any nearby large-scale structure. The eigenvalues λa,
λb and λc of Sjk then give the principal axes of the ellipsoid: a = (λa)1/2, b = (λb)

1/2 and c = (λc)
1/2.

The eigenvalues are ranked so that a ≥ b ≥ c. Their corresponding eigenvectors dictate the direction of
each principal axis. The three semi-axes a, b and c of each cluster were aligned with the x-, y- and z-axis
respectively. This configuration is sketched in the top part of Fig. 2.1, and it shall be referred to as an
ellipsoidal stack.

For each of the halos, the triaxiality parameter T (Franx et al., 1991) is defined as

T =
a2 − b2

a2 − c2
. (2.2)

Clusters with T = 0 are purely oblate, those with T = 1 are purely prolate. The triaxiality parameter will
assist in dividing the clusters from each mass bin into ellipsoidal substacks binned according to T . This allows
for an examination of the properties of predominantly oblate or prolate clusters. After stacking all halos
in each mass bin the shape tensor was calculated within Rv for the stacks as a whole, yielding b/a = 0.78,
c/a = 0.65 and T = 0.69 for the low mass bin, and b/a = 0.76, c/a = 0.63 and T = 0.70 for the high mass
bin. Consequently this is a significantly aspherical prolate configuration for both mass bins. These numbers
are also summarized in the ’Triaxiality’ columns of Table 2.1.

2.2.2 Filament geometry and alignment

Filamentary structure may manifests itself as not necessarily straight strings of material between galaxy
clusters. As a simple approach to create a smooth halo with a pronounced filament associated with it, we
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Figure 2.1: Top: Sketch showing the geometry of an ellipsoidal stack. Note how the ellipsoid has its longest
major axis a along the x-axis, the shorter b along y and the shortest c along the z-axis. Bottom: Sketch
showing the geometry of a filamentary stack. Notice the placement of the 30◦ cone frustum (filament) along
the positive x-axis. The ’l.o.s.’ arrow indicates the line of sight. Note that both figures are not to scale.

rotate each individual halo such that the largest filament associated with each halo (if any) is aligned with
the positive x-axis. As a measure of filamentary structure the direction of highest particle number density
as seen from the center of the halo was used. Particles between 1Rv and 5Rv were examined for each halo.
The direction of maximal number density within a cone frustum of opening angle 30◦ was located. The
particles from each halo were again placed concentrically in a stack, and rotated such that the maximal
density direction was aligned with the positive x-axis. In this way the stack puts emphasis on surrounding
filamentary structure. Because of the axisymmetric geometry of the cone frustum there are no preferred
directions within the plane orthogonal to the filament, and consequently two random (orthogonal) directions
were chosen within this plane for the y- and z-axis for each halo. This configuration is sketched in the bottom
part of Fig. 2.1, and it shall be referred to as a filamentary stack. Note that only the filament frustum and
not the core of the cluster is sketched in this figure, even though naturally still present. Because the stack
is oriented after surrounding filaments, we expect the inner parts of it to be fairly spherical, although some
alignment of ellipsoidal clusters principal axis and filaments have been reported (Hahn et al., 2007; Libeskind
et al., 2013). Using a cone frustum as a geometric model of filaments in a stack will produce a very straight
’filament’, which is true for some but not necessarily all individual clusters (Colberg et al., 2005). After
stacking all halos according to their filamentary structure, the shape tensor for stack particles within Rv had
b/a = 0.89, c/a = 0.86 and T = 0.81 for the low mass bin, and b/a = 0.88, c/a = 0.85 and T = 0.81 for
the high mass bin. This configuration is much more spherical (within Rv) than that of the ellipsoidal stack,
though some triaxiality is still present.

2.2.3 Spherical reference geometry

When testing for effects of anisotropy it is good to have an ideal spherical configuration as a reference point.
To create a spherically symmetric halo, the individual halos in each mass bin were all superposed 10 times
each in a third stack, with a new random rotation for each superposition. This yielded a highly spherical
configuration, where triaxiality of clusters and filamentary structure was smoothed out on average. It shall
be referred to as a spherical stack. With these three stack types in hand it is possible to investigate ellipsoidal
cluster properties along different lines of sight using the spherical cluster properties as reference. The shape
tensor for particles within Rv for this stack yielded b/a = 1.00 and c/a = 0.99 in the low mass bin and
b/a = 0.98 and c/a = 0.97 for the high mass bin. Both are thus very close to a spherical distribution, in
which case T is undefined.
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2.3 The caustic technique

The escape velocity of a spherical gravitationally bound system of particles relates to its gravitational po-
tential through

v2esc(r) = −2Φ(r), (2.3)

where r indicates the 3-dimensional distance to the center of the system. Since the potential is a non-
decreasing function of r, one would expect to find fast moving objects closer to the cluster center, and
gradually slower objects further out, with the maximally observed velocity defined by vesc(r).

Following the work of Diaferio (1999) we conduct an analysis of our stacked cluster particle data using
the now standard caustic technique for mass estimation of galaxy clusters. The idea of the caustic procedure
is to locate the amplitude of a caustic envelope which encloses bound particles placement in the projected
(R-v) phase-space, and relate it to the escape velocity. Here, the observables R and v indicate the projected
distance to the cluster center and the line of sight velocity respectively. The escape velocity profile relates
directly to the potential which may then be integrated to find the contained mass profile of the cluster. To
do so, one must assume sphericity. Note that the following sections relies heavily on derivations presented
in Diaferio (1999), Serra et al. (2011) and Gifford et al. (2013).

2.3.1 Phase space density distribution

Different authors take slightly different approaches to determining the actual caustic amplitude from a set
(R,v) of observed particles in projection. The usual approach involves estimating the underlying density
distribution f(R, v) by using each particle as a tracer in a kernel density distribution estimation. Let (R, v)
describe any position in the projected (R-v) phase space, and let (Ri, vi) describe the location of the i’th
particle tracer. We estimate the local density distribution at (R, v) by summing over all N particle tracers
in our stack:

f(R, v) =
1

N

N
∑

i=1

1

hRhv
K

(

R−Ri

hR
,
v − vi
hv

)

. (2.4)

Here, hR and hv control the width of the kernel smoothing in the R and v directions respectively. Different
forms of the kernel K will naturally yield different f(R, v). Diaferio (1999) uses an adaptive kernel, whereas
Gifford et al. (2013) use a Gaussian type kernel, which they argue introduces no significant error to the
distribution estimate. We shall adapt the latter Gaussian kernel, which takes the form:

K(xR, xv) =
1

2πhRhv
exp

[

−

(

x2
R + x2

v

)

2

]

. (2.5)

We set hR = N− 1

6 σR and hv = N− 1

6 σv as the rule-of-thumb optimal size of the kernel, where σR and σv are
the dispersions in the R- and v-direction respectively. For more information on these choices see statistical
work by Silverman (1986), and cosmological work by Pisani (1993). The next step is to associate contours
of constant f(R, v) = κ with potential caustic amplitudes Aκ(R). A contour of f(R, v) is going to appear
more or less symmetrically around v = 0, and as such we chose for any R the minimum of the lower and the
upper contour. The caustic amplitude at projected radius R is related to the escape velocity of the cluster
by

〈

v2esc
〉

R,κ
=

∫ R

0

A2

κ(r)φ(r)dr/

∫ R

0

φ(r)dr, (2.6)

where φ(r) =
∫

f(r, v)dv. The caustic amplitude A(r) is then chosen as the f(r, v) = κ that minimizes

M(κ,R) =
∣

∣

∣

〈

v2esc
〉

R,κ
− 4

〈

v2
〉

R

∣

∣

∣

2

(2.7)

within the virial radius by setting R = Rv. For more information on this minimization see Gifford & Miller
(2013). For

〈

v2
〉

R
we use the mass-weighted mean line of sight velocity dispersion inside R = Rv. When

observing naturally Rv is not know a priori, and therefore an iterative scheme must be applied. An initial

guess of Rv results in a caustic mass Mv, which converts to a new virial radius ∝ M
1/3
v , with which the
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caustic technique can be re-applied iteratively until convergence on the final caustic amplitude and observed
virial radius Rv,obs. We choose an initial guess of 1Rv. Finally, we limit the caustic amplitude such that if
d lnA/d ln r > ζ we impose a new value for A such that d lnA/d ln r = ζ. Following Serra et al. (2011) we
choose ζ = 2, to only cap the very rapid and non-physical increases in the escape velocity, although some
authors have chosen lower values (Diaferio, 1999; Lemze et al., 2013). This yields a final caustic amplitude
A(r), which will give the caustic mass profile in the next section.

2.3.2 Caustic amplitude and gravitational potential

With a measure of the caustic amplitude in hand, the usual approach is to relate it to the potential profile
of the system. Diaferio (1999), Serra et al. (2011) and Gifford et al. (2013) implement some form of the
equation

−2Φ(r) = g(β)A2(r), (2.8)

where g(β) = 3−2β
1−β and β(r) = 1 −

〈

v2θ + v2φ

〉

/2
〈

v2r
〉

is the velocity anisotropy parameter. Here vθ, vφ and

vr are the longitudinal, azimuthal and radial components of the 3-dimensional velocity, and brackets indicate
the average over velocities in the volume d3r at position r. We write the infinitesimal mass element for a
sphere of density ρ(r) in the form

Gdm = −2Φ(r)F(r)dr, (2.9)

where F(r) = −2πGρ(r)r2/Φ(r). Using equation (2.8) in the above and integrating we get the cumulative
mass profile as a function on A(r), F(r) and g(r):

GM(< R) =

∫ R

0

F(r)g(r)A2(r)dr. (2.10)

Diaferio (1999) argues that the product Fβ = F(r)g(r) varies slowly with r, and can be taken as constant,
which finally relates the caustic amplitude directly to the cumulative mass profile as

GM(< R) = Fβ

∫ R

0

A2(r)dr. (2.11)

The choice of Fβ varies for different authors. We use a value of Fβ = 0.58 which is in line with previous
work (e.g. Diaferio, 1999; Serra et al., 2011; Gifford et al., 2013). It is slightly low compared to Fig. 7 of
(Biviano & Girardi, 2003), however in good agreement with Fig. 11 of (Biviano et al., 2013) and Fig. 9 of
(Lemze et al., 2009). Using this value we recover the true cumulative mass profiles using the spherical stacks

excellently up to within 2Rv, as shall be discussed in later sections of this paper (see bottom of Fig. 2.3).
In any case when considering relative cumulative mass profiles this factor cancels itself out.

In short the distribution of particles in projected phase space as obtained by equation (2.4), and the
velocity dispersion entering in equation (2.7) work together to define and select the caustic amplitude. It
is precisely the interplay between these two mechanisms that spatial anisotropy is expected to affect, such
that the inferred mass profile from aspherical clusters obtained with equation (2.11) might deviate from the
spherical case. An overview of the computational process from particle data to caustic amplitudes can bee
seen in Fig. 3 of the appendix.

2.4 Results

To quantify how the geometry of clusters affects the amplitude selected by the caustic technique for different
projections, both the spherical, ellipsoidal and filamentary stack were projected using varying lines of sight
for both mass bins under consideration. Fig. 2.2 shows the density distribution f(R, v) as calculated by the
kernel density estimation technique described in Section 2.3.1. The distribution is calculated from the low
mass bin spherical stack for an example choice of line of sight at (θ, φ) = (90◦, 0◦). The black isodensity
contours show the classical trumpet shape along which we expect the caustic amplitude to lie. The white
dashed lines on the plot shows the actual caustic amplitude for this distribution as found by the caustic
method described above. The widening velocity dispersion at > 2Rv is a natural consequence of the added
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Figure 2.2: Projected density distribution of DM particles of the 230 clusters from the low mass bin spherical

stack as obtained by the Gaussian kernel. Black lines indicate isodensity contours, and the white dashed
lines indicates caustic amplitude selected by the caustic technique.
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Figure 2.3: Top: Caustic amplitudes for the low mass bin ellipsoidal stack using 4 different lines of sight with
φ = 0◦ and θ as indicated by the legend. This corresponds to moving gradually from a line of sight along
the major axis of the stack towards a line of sight along the minor axis. The grey area shows two standard
deviations of caustic amplitudes through the spherical stack, as obtained by integrating the grey area in
the bottom panel of this figure (see below). Bottom: The resultant cumulative mass profiles as obtained
by applying equation (2.11) to the amplitudes of the top plot. Grey area shows two standard deviations of
10,000 mass profiles from random lines of sight through the spherical stack. The solid black line shows the
true mean mass profile of the 230 clusters as calculated from the full Bolshoi particle data set.
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Hubble flow. We stress that this figure is very representative of the density distribution from any line of
sight through the spherical stacks.

In the top panel of Fig. 2.3 the curves which are symmetric around v = 0 show caustic amplitudes found
for the low mass bin ellipsoidal stack for 4 lines of sight with directions as indicated on the bottom panel. The
outer red long dashed curves show the caustic amplitude found using a sight line along the semi-major axis
of the stack, i.e. (θ, φ) = (90◦, 0◦). The inner blue dash-dot-dot-dotted curves show the caustic amplitude
found from a sight line along the semi-minor axis of the stack, ie. (θ, φ) = (0◦, 0◦). The two curves in between
shows caustic amplitudes using sight lines θ = 60◦ (green short dashed) and θ = 30◦ (cyan dash-dot) (see
legend in the bottom plot of Fig. 2.3). The bottom panel of Fig. 2.3 shows the cumulative mass profiles
M(< R) as obtained from the caustic amplitudes shown in the top panel combined with equation (2.11).
The red long dashed, green short dashed, cyan dash-dotted and blue dash-dot-dot-dotted lines are thus from
the low mass bin ellipsoidal stack with line of sight as indicated in the legend, keeping φ = 0◦.

In order to gain a reference point for evaluating the anisotropic stacks, lines of sight where chosen to
cover the half sphere of both the low and high mass bin spherical stack in a 15◦× 15◦ grid from θ ∈ [0◦, 90◦]
and φ ∈ [−180◦, 180◦]. The mean cumulative mass profile Ms(< R) was then calculated for the spherical
stacks. This was done by choosing 10,000 pairs of (θ, φ) randomly distributed on the sphere, interpolating
the mass profiles from the 15◦ × 15◦ grid to obtain 10,000 mass profiles, and then taking the average profile.
Ms(< R) and its 95.4% variability for the low mass stacks can be seen as the grey shaded area of Fig. 2.3 on
the bottom. The black solid line shows the mean of the true cumulative mass profiles calculated from the full
Bolshoi particle data set for each of the 230 clusters used in the three stacks. The caustic mass estimates of
the spherical stack agrees well with the true mass profile until 2Rv, from where the mass is overestimated.
We note that this is the case given Fβ = 0.58, which motivates our choice, however the overestimation of
mass at large radii suggests that Fβ should be taken as a function of radius. As we (in line with previous
work) assume a constant Fβ and furthermore consider only relative mass estimates, the actual value of Fβ

becomes irrelevant. Through equation (2.11) the caustic amplitude obtained from Ms(< R) and its 95.4%
variability is shown in the top part of the same figure.

To fully map out the angular dependency of the mass estimates of the caustic technique on the anisotropic
stacks, lines of sight where chosen in the same 15◦ × 15◦ grid as above, covering the half sphere. From
an ellipsoidal point of view, the four octants that span the half sphere are equivalent. Thus properties
like position, velocity dispersion and inferred caustic mass for the four example lines of sight (θ, φ) =
{(−165◦, 15◦), (−15◦, 15◦), (15◦, 15◦), (165◦, 15◦)} should be symmetric in these octants. By using the chosen
grid, the cumulative mass profiles Mθ,φ(< R) for each octant were calculated, and the average octant was
taken. The resulting profiles were normalized to the mean of the spherical stack Ms(< R) (grey shaded area
of Fig. 2.3 bottom). This way the normalized profiles express an intrinsic bias of the caustic method from
spatial anisotropy, relative to the caustic mass profile inferred when the assumption of sphericity is perfectly
valid.

The three top panels of Fig. 2.4 show the relative cumulative mass estimates at 1, 2 and 3Rv for the
average octant of the low mass bin ellipsoidal stack. The lower right corner of each panel at (90◦, 0◦) repre-
sents the line of sight along the major axis. The upper right corner at (90◦, 90◦) represents the intermediate
axis and the entire left side at θ = 0◦ represents the minor axis for any φ. The color of the figure shows
the value of the cumulative mass at a given radius relative to the spherical mass estimate. Table 2 of the
Appendix shows the numeric values for each set of angles. The bottom three panels of Fig. 2.4 shows the
same as the top three but for the filamentary stack. The lower right corner of each panel represents the line
of sight along the maximal density direction i.e. along the filament. The entire upper (φ = 90◦) and left
(θ = 0◦) side represents lines of sight orthogonal to the filament. Table 3 of the Appendix shows the numeric
values for each set of angles in each panel.

We stress that the masses displayed here (and throughout the paper) are evaluated at multiples of the
true virial radius Rv, not the observed virial radii Rv,obs provided by the caustic method. Upon iteratively
determining the caustic mass and caustic virial radius Rv,obs, the masses at 1,2 and 3 Rv,obs deviate from
those displayed in this figure. As an example the data mass profiles of Fig. 2.4 are evaluated at Rv,obs rather
than Rv in Fig. 4 of the Appendix.

Fig. 2.5 also shows the angular dependency of the caustic mass estimates for the ellipsoidal and filamen-

tary stack but for the high mass bin i.e. the same thing as Fig. 2.4 but for more massive clusters. Tables 4

16



Jacob Svensmark Effect of asphericity in caustic mass estimates

Table 2.1: Values of triaxiality and mass estimates for the different stacks under consideration. The three
’Triaxiality’ columns show the intermediate to major axis ratio b/a, the minor to major axis ratio c/a and the
triaxiality parameter T for each of the stacks in questions for particles within Rv. The ’Mean mass’ columns
show the mean of 10,000 mass measurements obtained from 10,000 interpolations of each panel in Fig. 2.4
and Fig. 2.5 for 10,000 directions randomly distributed on the sphere. The ’Scatter in masses’ columns
show the scatter defined as the standard deviation of the 10,000 mass measurements. The ’Max/min mass’
columns show the ratio of the maximum mass estimate to the minimum mass estimate for each panel in Fig.
2.4 and Fig. 2.5. All mass values are normalized by Ms.

Stack name Triaxiality Mean mass Scatter in masses Max/min mass
b/a c/a T 1Rv 2Rv 3Rv 1Rv 2Rv 3Rv 1Rv 2Rv 3Rv

[1, 2] × 1014 h−1M⊙

Ellipsoidal Stack 0.78 0.65 0.69 1.02 1.05 1.06 0.14 0.19 0.27 1.72 1.95 2.44
Filamentary Stack 0.89 0.86 0.81 1.00 0.99 0.98 0.06 0.13 0.21 1.22 1.49 1.71

Sperical Stack 1.00 0.99 - 1.00 1.00 0.99 0.01 0.01 0.01 1.03 1.06 1.13

≥ 2 × 1014 h−1M⊙

Ellipsoidal Stack 0.76 0.63 0.70 1.03 1.05 1.07 1.19 0.23 0.34 2.06 2.22 2.95
Filamentary Stack 0.88 0.85 0.81 1.01 1.00 1.00 0.07 0.09 0.14 1.21 1.32 1.38

Spherical Stack 0.98 0.97 - 1.00 1.00 0.99 0.01 0.01 0.02 1.04 1.06 1.11

and 5 of the Appendix show the numerical values for each set of angles in each panel.
Table 2.1 shows values derived from the data displayed in Fig. 2.4 and 2.5. The ’Mean mass’ columns

were generated in the same way as the spherical mean mass profiles Ms(< R) by choosing 10,000 sets of
(θ,φ) randomly distributed on the sphere, and then interpolating the mass estimates shown in Fig. 2.4 and
2.5. The mean of these 10,000 mass estimates are then the ’Mean mass’ at a given radius, but normalized
to Ms(< R). The ’Scatter in masses’ columns show the 68.3% standard deviation of the 10,000 mass
estimates for each stack and radius. Finally the ’Max/min mass’ columns show for the spherical stack the
maximum mass estimated relative to the minimum mass estimate at 1, 2 and 3Rv. For the ellipsoidal

stack it shows the major axis mass estimate relative to the minor axis mass estimate for each of the top
panels in Fig. 2.4 and 2.5. For the filamentary stack the columns show the mean of the mass estimates at
(θ, φ) = {(75◦, 0◦) , (75◦, 15◦) , (90◦, 15◦)} relative to the mean of the seven mass estimates orthogonal to the
filament at φ = 90◦. This represents the largest mass estimate relative to the lowest, taking into account the
symmetry of the stack because the biggest mass overestimate appears when the line of sight is tilted slightly
at ∼ 15◦ to the filament axis. This will be discussed in detail in the next section.

2.5 Discussion

The increased statistics of the two spherical stacks allows for a very consistent estimate of their true caustic
amplitudes and masses, regardless of the choice of line of sight. Both the spherical, ellipsoidal and filamentary

stacks consist of the same number of clusters within each mass bin, and thus have the same true cumulative
mass profile. Any cumulative mass profiles found in the ellipsoidal and filamentary stacks that differ from
those of the spherical stacks therefore result from a spatial anisotropy bias in the caustic technique. Fig. 2.3
shows clearly how the mass profiles from the caustic procedure can be affected by asphericity for the low mass
bin: When observing the ellipsoidal stack along its most elongated direction (major axis at (θ, φ) = (90◦, 0◦))
the caustic amplitude and its subsequent mass estimate (red long dashed curves) are larger than for a spherical
object of the same true mass (grey areas). By choosing lower θ for the line of sight and thereby making the
cluster less elongated in these directions, the caustic amplitudes systematically drop in magnitude until they
reach a minimum at θ = 0◦ (blue dash-dot-dot-dotted curves), well below the mass estimate of the spherical
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Figure 2.4: Effect of the cluster orientation on the mass estimate with the caustic method for the low mass
bin i.e. Mv ∈ [1, 2] × 1014 h−1M⊙. The panels show the mass estimates as a function of the orientation,
relative to the mass Ms inferred from the spherical stack. The three columns show results for three choices
of radii. The top row shows mass estimates for the ellipsoidal stack and the bottom row shows the same for
the filamentary stack. θ and φ indicates the line of sight in question, defined for each stack in Fig. 2.1. For
the top panels (90◦, 0◦) represents the sight line along the major axis, (90◦, 90◦) represents light line along
minor axis and entire left side at θ = 0◦ represents the minor axis for any φ. For the bottom panels (90◦, 0◦)
represents the sight line along the filament, and entire left side (θ = 0◦ for any φ) and top (φ = 90◦ for
any θ) represent sight lines orthogonal to the filament. The color for any (θ, φ) indicates the value of the
mass estimate as indicated on the linear colorbar. The lines in each panel show equally-spaced isodensity
contours.
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Figure 2.5: Same as Fig. 2.4 but for the high mass bin i.e. Mv ≥ 2 × 1014 h−1M⊙.
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object. Clearly the more an elongated object has its axis of most elongation along the line of sight, the
larger cumulative mass the caustic procedure will find at any radius. Similarly, the closer its least elongated
direction is to the line of sight, the smaller cumulative mass the caustic procedure will find.

2.5.1 Low mass bin

Focusing on the low mass bin, Fig. 2.4 shows the mass estimates at 1, 2 and 3Rv for a line of sight at varying
angles θ and φ for both the low mass bin ellipsoidal and filamentary stack. All mass estimates are normalized
by the mean cumulative mass profile Ms(< R) from the spherical stack. Consistent with expectations from
Fig. 2.3 the largest deviations from spherical mass estimates in the ellipsoidal stack (top three panels)
appears once the line of sight coincides with either the major ((θ, φ) = (90◦, 0◦)) or the minor axis (θ = 0◦

for any φ). The mass estimate along the intermediate axis ((θ, φ) = (90◦, 90◦)) lies comfortably in between
the two extremes and generally the mass estimates follow a smooth transition between the extremes of the
three principal axes. Along the major axis the cumulative mass estimates are 1.30, 1.46 and 1.60 times larger
than the spherical mass estimates at 1, 2 and 3Rv respectively. Along the minor axis the cumulative mass
estimates are a factor of 0.75, 0.74 and 0.66 lower than the spherical mass estimates at the same radii as
before. Taking the ratio of the maximal mass estimate to the minimal mass estimate, this effect spans a
factor of 1.72, 1.95 and 2.44 at 1, 2 and 3Rv respectively, as noted in Table 2.1. Table 2.1 also lists the mean
mass of 10,000 random direction interpolations of the three top panels, i.e. an estimate of the bias. For the
ellipsoidal stack this is close to one at any of the measured radii, meaning that caustics used on ellipsoidal
structure on average is unbiased relative to spherical cluster mass estimates. The standard deviation of the
10,000 random direction mass profiles relative to the spherical mass is also listed in Table 2.1. The listed
values of 0.14 at 1 Rv and 0.27 at 3Rv is in good agreement with the lower limits of Serra et al. (2011) and
Gifford et al. (2013) who both estimated scatter for a variable number of member galaxies.

The filamentary stacks are different from the ellipsoidal stacks both by construction and in the resulting
bias effect. Inspecting Fig. 2.4 for the low mass bin filamentary stack (bottom three panels) one sees
a general increase in mass at angles close to (θ, φ) = (90◦, 0◦) which represents a line of sight directly
along the filament, and a general decrease in mass at line of sight orthogonal to the filament. Upon closer
inspection of the maximal mass estimate in the lower right corners of the three panels, one notes that the
maximum occurs as the line of sight is slightly tilted to ∼ 15◦ with respect to the filament axis i.e. at
(θ, φ) = {(75◦, 0◦), (75◦, 15◦), (90◦, 15◦)}. The mean of the 3 mass estimates at this tilt is a factor of 1.13,
1.31 and 1.38 larger than Ms(< R) at 1, 2 and 3Rv respectively. Whereas the filament direction was chosen
uniquely as the maximal density direction, the two other directions were selected at random within the plane
orthogonal to the filament. As such, a different realization of the stack would yield a different orientation
of all the clusters two unit vectors within the orthogonal plane. Indeed slight differences were observed for
different realizations of the stack, and the column represented by φ = 90 represents 7 lines of sight within the
plane orthogonal to the filament, and thus we would expect the same mass estimate. We therefore take the
average of these seven values and obtain a mass estimate of the filamentary stack lower by factor of 0.93, 0.88
and 0.80 at 1, 2 and 3Rv when observing orthogonal to the line of sight. This yields a maximum-to-minimum
ratio of 1.22, 1.49 and 1.71 at these radii. As such, the effect of filamentary anisotropy is slightly smaller
than, yet comparable to the effect of elongation of the central structure for the low mass bin. From Table
2.1 we see that the mean mass is slightly smaller than the spherical case, similarly the scatter in masses is
slightly smaller for the case of filaments than for the case of elongation.

In order to explain the shift in maximum of mass estimates for the low mass filamentary stack of ∼ 15◦

we remind that the filamentary stack is constructed by orienting individual structures after the maximal
density direction as found within a search cone frustum spanning 30◦ in angle between 1 and 5Rv (see
Section 2.2.2). As can be seen in e.g. Cuesta et al. (2008), the radial velocity component of particles in
a galaxy cluster is zero on average up to ∼ 1.5Rv. Further out between ∼ 1.5Rv and 3.5Rv the radial
velocity tends to be negative in a zone of infall towards the cluster. Still further out the Hubble expansion
takes over and the radial velocity becomes positive and increases with radius (see Fig. 4 of Cuesta et al.
(2008)). The cone frustum covers roughly equally much of the infall zone and the hubbe expansion zone,
and as such we expect the particles within the filament to appear more or less symmetrically around v = 0
in (R-v)-phase space. Fig. 2.6 shows the phase space density distribution for 4 lines of sight through the
low mass bin filamentary stack. The grey diamonds and white stars show 400 particles drawn from either
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Figure 2.6: Location of filament particles in (R, v) phase-space using different projections. The data is from
the low mass bin filamentary stack (i.e. Mv ∈ [1, 2] × 1014 h−1M⊙) obtained by a constant φ = 0◦ and a θ
as indicated in white in each panel. θ = 90◦ indicates a sight line directly along the filament, and θ = 0◦

indicates the sight line orthogonal to the filament. The coloured contours represent the density obtained by
the kernel density estimation method. The grey diamonds and white stars are projections of a total of 400
randomly drawn particles from within the filament frustum (grey diamonds) or a similar volume orthogonal
to the filament (white stars). The white dashed line marks the location of Rv. Note that some points may
fall outside the plotting range.
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within the cone frustum i.e. the core of the filament, or in a similar volume along the positive y-axis. Points
inside the filament frustum are indicated as grey diamonds, those in the orthogonal volume are shown as
white stars. The majority of the points are located within the filament pr. construction of the stack, and
consequently there are many more diamonds than stars on all figures. The important thing to note is where
filament particles place themselves in projection for a given line of sight. When viewing the stack along its
filament at θ = 90◦ most of the filament particles project well within Rv. Here they add some, but not
much to the overall mean velocity dispersion which is used to calibrate the derived caustic amplitude (see
equation (2.7)). When viewing the filament at a slight angle with θ = 75◦ the filament particles spreads over
the entire inner part of the cluster in projection, acting to pertube the isodensity contours and increase the
velocity dispersion. This in turn results in an overall larger caustic amplitude and thus larger mass estimate.
As the line of sight is shifted even more to θ = 60◦, the filament particles have left the inner parts of the
cluster in projection, and thus affects the caustic amplitude chosen by equation (2.7) less. Finally at line of
sight orthogonal to the filament at θ = 0◦ all the filament particles are projected to high radii, and interfere
only with the mass estimate at these radii.

Fig. 4 of the Appendix shows the same as Fig. 2.4 however with masses evaluated at observed Rv,obs

rather than the true Rv. The caustic method systematically overestimates the virial radius with line of sight
along the semi-major axis, and underestimates it along the semi-minor axis. Thus the mass evaluated at the
observed radii will depend on line of sight in the same way as in Fig 2.4 but with a slightly larger spread as
can be seen in the resemblance of the two figures.

2.5.2 High mass bin

Upon comparing Fig. 2.4 for the low mass bin with Fig. 2.5 for the high mass bin, one notices some
resemblance. For the high mass bin ellipsoidal stack represented in the three top panels of Fig. 2.5 there
is still a systematic effect of overestimation of mass along the major axis and an underestimation along the
minor axis, with the intermediate axis mass estimate lying in between. The effect is even larger for the high
mass bin than low mass bin, with a major to minor axis mass ratio of 2.06, 2.22 and 2.95 at 1, 2 and 3Rv

respectively. As can be seen in Table 2.1 the low and high mass ellipsoidal stacks are very similar in respect
to triaxiality and elongation, so the larger caustic mass estimates may therefore result from differences in
velocity distribution or differences in elongation evaluated from particles at > Rv. The ’Mean mass’ columns
of Table 2.1 show that elongation of the cluster imposes a < 4% systematic bias in the mean of mass profiles
on average within Rv. The ’Scatter in masses’ column shows the slightly higher scatter in comparison with
the low mass bin, however still in line with expectations.

For the high mass filamentary stack shown in the three bottom panels of Fig. 2.5 there is still a maximum
overestimation at a 15◦ tilt from line of sight along the filament. Where ellipsoidal effects caused a larger
scatter in mass estimates for the high mass bin, the effect of filaments seems to be marginally reduced. As
such the filamentary stack showed a maximum to minimum mass estimate ratio of only 1.21, 1.32 and 1.38 at
1, 2 and 3Rv. Colberg et al. (2005) reports that the number of filaments associated with a cluster increases
for increasing halo mass, which may act to smear out the contrast between line of sight along the filament,
and line of sight across the filament in the stack. Furthermore a large cluster does not necessarily mean a
large filament, and as such the heavier clusters are less affected by the filament.

2.5.3 Triaxiality

It is interesting to quantify whether the mass measurements shown in Fig. 2.4 and 2.5 for the ellipsoidal

stacks depend on triaxiality, i.e. if the distribution of mass estimates in (θ, φ)-space looks different for mainly
oblate or prolate clusters. By splitting the ellipsoidal stacks into substacks of the most prolate and the most
oblate, we obtain an ’oblate’ stack with T = 0.31 using the 40 most oblate clusters and a ’prolate’ stack
with T = 0.89 using the 40 most prolate clusters for the low mass bin. Similarly we make a 19 cluster oblate
(T = 0.34) and prolate (T = 0.89) substack for the high mass bin. We perform the same angular gridded
anlysis of all substacks as for the full stacks. Fig. 2 of the Appendix shows the mass estimates of the low
mas bin prolate (top panels) and oblate (bottom panels) substack relative to the mean mass profile Ms(< R)
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of the spherical stack2. Upon comparing the substacks of Fig. 2 to the ellipsoidal stack in the top panels
of Fig. 2.4 one sees very little variation from the low mass bin ellipsoidal stacks to the oblate and prolate
conterparts. Similarly the high mass bin shows little variation between the oblate and prolate substacks
of Fig. 3 of the Appendix and the high mass bin ellipsoidal stacks in Fig. 2.5. For this sparse sample of
galaxy clusters we therefore conclude oblateness and prolateness to affect mass estimation in more or less
the same manner. Naturally by cutting the stack cluster population in half the statistics suffer, and the
estimates of Fig. 2 and 3 should be considered less certain. All values for the prolate and oblate substacks
are summarized in Table 1 of the Appendix.

2.6 Conclusion

We studied the bias in the mass estimate of galaxy clusters based on the caustic technique, resulting from
orientation of clusters with respect to the line of sight. We analysed dark matter particle data from the
Bolshoi N -body simulation for a set of 230 dark matter halos at Mv ∈ [1, 2]× 1014 h−1M⊙ and a set of 101
dark matter halos at Mv > 2× 1014 h−1M⊙. Each of the halos were superposed concentrically in 3 separate
stacks differing only by orientation of the individual halos: The ellipsoidal stack had each halo rotated such
that the three principal axes from its shape tensor inside Rv were aligned with the x-, y- and z-axis. The
filamentary stack had each halo oriented after the direction of maximal density inside a cone frustum of
angle 30◦ between 1Rv and 5Rv, such that they were all oriented along the positive x-axis. The spherical

stack had all halos stacked with completely random orientation, were each halo was used 10 times with a new
random orientation each time to increase sphericity of the stack. Using the now standard caustic technique
for mass estimation of galaxy clusters we projected each of the stacks to a 15◦ × 15◦ angular grid in both
mass bins and estimated the apparent caustic amplitude and cumulative mass profile for all angles. When
using the mass estimate of the spherical stack for the low mass bin we found a good correspondence with
the true cumulative mass profiles when using Fβ = 0.58, as shown in Fig. 2.3. Using the spherical stack as
reference for the idealized situation under which the caustic method can be applied, we saw that the caustic
amplitudes varied systematically with line of sight in the ellipsoidal stack. Using a line of sight along the
major axis, we found that the caustic mass estimate was overestimated by a factor of 1.30, 1.46 and 1.60
relative to the mean spherical stack mass estimate at 1, 2 and 3Rv respectively. Similarly with a line of
sight along the minor axis the mass was underestimated with a factor of 0.75, 0.74 and 0.66 at the same
radii relative to the spherical stack. Taking the ratio of the maximal mass estimate to the minimal mass
shows that the effect is as large as a factor of 1.72, 1.95 and 2.44 at 1, 2 and 3Rv respectively. We found
that on average the caustic mass estimates for the ellipsoidal stack were unbiased relative to the spherical
stack on average. For the low mass bin filamentary stack the same analysis was performed and yielded an
overestimation of cumulative mass of 1.13, 1.31 and 1.38 at 1, 2 and 3Rv with line of sight slightly tilted to
along the filament, and an underestimation by factor of 0.93, 0.88 and 0.80 at 1, 2 and 3Rv when observing
orthogonal to the filament. This gave a maximum to minimum ratio of 1.22, 1.49 and 1.71 at these radii,
which very somewhat smaller than, but comparable to the ratios of the ellipsoidal stack. We investigated
the fact that the largest mass overestimate occurred when the line of sight was tilted at a 15◦ angle to the
filament. We traced this effect to the location of the filament particles in projection, which had a maximal
influence on velocity dispersion and caustic isodensity contours at 15◦ as demonstrated in Fig. 2.6.

For the large of the two mass bins, the systematics of the effects were the same, but the magnitude
different. The caustic masses were still overestimated along the major axis of the ellipsoidal stack and
underestimated along the minor axis. This effect was however even larger for the high mass bin with a
maximum mass to minimum mass ratio of 2.06, 2.22 and 2.95 at 1, 2 and 3Rv respectively. On the other
hand the filamentary stack showed a lower influence of filaments on larger clusters, spanning only a maximum
to minimum mass ratio of 1.21, 1.32 and 1.38 at 1, 2 and 3Rv.

We found that the scatter in mass estimates due to ellipsoidal and filamentary anisotropy is in good
agreement with the lower limits of Serra et al. (2011) and Gifford et al. (2013) who both estimated scatter in
caustic mass for a variable number of member galaxies. Thus a significant portion of the scatter presented

2Note that Ms(< R) is for the full spherical stacks, and as such may differ slightly from the true mass profile of the prolate
and oblate substacks
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in these references may be explained by anisotropic models in the form of ellipsoids, and to a lesser extent
filaments.

To test the sensitivity of caustic mass estimates on oblate- and prolateness we considered substacks of
the 40 most oblate and prolate halos of the low mass bin ellipsoidal stack as defined by T , and substacks of
the 19 most oblate and prolate halos of the high mass bin ellipsoidal stack. We found no significant variation
by comparing oblate to prolate mass estimates, or by comparing the oblate and prolate masses to the full
ellipsoidal stack.

The mass estimates plotted it Fig. 2.4 and 2.5 can be used to correct caustic mass estimates when cluster
orientation is known. The numerical values from these figures are available in Table 2, 3, 4 and 5 of the
Appendix.

The caustic method of mass estimation performs well when the condition of cluster sphericity is met. If
however spatial anisotropy is present in the form of cluster elongation of filamentary structure, the caustic
masses are strongly dependent on the line of sight through the cluster. Even within the virial radius the
mass estimates may vary by a factor of ∼ 2 for heavy clusters, and as such great care should be taken when
applying this method.

The reason why the caustic mass measurements depend on the cluster orientation with respect to the line
of sight is the anisotropy of the spatial as well as velocity distribution of galaxies in clusters. Considering the
velocity component, this means that the effect of asphericity on the measurement of cluster masses is expected
to be a generic feature of all kinematic methods for the cluster mass determination, e.g. methods based on the
virial theorem or the scaling relation between cluster mass and the line-of-sight velocity dispersion (Biviano
et al., 2006; Saro et al., 2013), methods based on the Jeans analysis of the velocity moments profiles (Sanchis
et al., 2004;  Lokas et al., 2006), methods using models of the projected phase space distribution (Wojtak
et al., 2009; Mamon et al., 2013) or dynamical models of the infall velocity profile (Falco et al., 2013) (for
a comparison between a broad range of available methods see Old et al. (2014)). The discrepancy between
the measured and the actual cluster mass may differ between the methods; therefore, our results cannot be
regarded as a general prediction for all of them. However, the substantial mass discrepancy shown for the
caustic technique provides strong motivation for detailed studies of this effect in all other kinematic methods.

2.7 Outlook

One of the main objectives of this thesis has been to describe systematic scatter in the caustic effect due
to spherical assumptions in the case of aspherical clusters and filaments. As discussed in the introductory
sections many methods besides caustics employ an isotropic framework for deriving masses of galaxy clusters.
Analyses of the type presented here on any mass estimation technique might demonstrate how much of the
current total scatter in masses can be attributed to triaxiality, and to what degree the implementation of a
triaxial framework is worth the effort. Naturally the true cluster orientation remains a free parameter, but
future techniques might help to constrain it and in that case masses could be determined to higher precision
that what is currently possible.
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Figure 1: Flowchart describing the computational process in obtaining stacked mock phase-space diagrams
and caustic amplitudes given number of input parameters. Overview is given in the top, and a more elaborate
flowchart is given in the bottom with the same color coding. Note that all code to perform the above was
made in Interactive Data Language (IDL).

28



Jacob Svensmark Effect of asphericity in caustic mass estimates

Table 1: Values of triaxiality and mass estimates for the oblate and prolate substacks of the ellipsoidal stacks.
The three ’Triaxiality’ columns show the intermediate to major axis ratio b/a, the minor to major axis ratio
c/a and the triaxiality parameter T for each of the stacks in questions for particles within Rv. The ’Mean
mass’ columns show the mean of 10,000 mass measurements obtained from 10,000 interpolations of each
panel in Fig. 2.4 and Fig. 2.5 for 10,000 directions randomly distributed on the sphere. The ’Scatter in
masses’ columns show the scatter defined as the standard deviation of the 10,000 mass measurements. The
’Max/min mass’ columns show the ratio of the maximum mass estimate to the minimum mass estimate for
each panel in Fig. 2.4 and Fig. 2.5. All mass values are normalized by Ms.

Stack name Triaxiality Mean mass Scatter in masses Max/min mass
b/a c/a T 1Rv 2Rv 3Rv 1Rv 2Rv 3Rv 1Rv 2Rv 3Rv

[1, 2] × 1014M⊙h−1

Prolate Stack 0.66 0.60 0.89 1.02 1.03 1.00 0.14 0.14 0.18 1.67 1.78 1.83
Oblate Stack 0.92 0.72 0.31 0.98 1.01 1.10 0.14 0.20 0.23 1.74 1.82 1.88

≥ 2 × 1014 M⊙h−1

Prolate Stack 0.66 0.61 0.89 1.03 1.11 1.19 0.19 0.26 0.43 2.04 2.41 3.08
Oblate Stack 0.90 0.68 0.34 1.02 1.06 1.13 0.20 0.26 0.46 2.12 2.18 2.61

Table 2: Caustic mass estimates of the low mass bin ellipsoidal stack within 1Rv, 2Rv and 3Rv for varying
line of sight, normalized by the estimate from the spherical stack. Columns represent θ angles, rows represent
φ angles, both are indicated in bold in the table and both are in degrees. These values are also represented
as the top 3 panels of Fig. 2.4.

1Rv 0 15 30 45 60 75 90

90 0.75 0.76 0.80 0.86 0.91 0.95 0.95
75 0.75 0.76 0.81 0.87 0.93 0.97 0.99
60 0.75 0.77 0.83 0.91 0.99 1.04 1.06
45 0.75 0.78 0.86 0.95 1.05 1.13 1.13
30 0.75 0.78 0.89 1.01 1.12 1.21 1.25
15 0.75 0.79 0.91 1.04 1.16 1.25 1.29
0 0.75 0.80 0.91 1.05 1.18 1.26 1.30

2Rv 0 15 30 45 60 75 90

90 0.74 0.76 0.80 0.87 0.93 0.96 0.98
75 0.74 0.76 0.80 0.88 0.94 0.99 1.01
60 0.74 0.77 0.82 0.91 1.01 1.07 1.07
45 0.75 0.77 0.84 0.95 1.08 1.19 1.22
30 0.75 0.78 0.87 1.01 1.16 1.35 1.38
15 0.74 0.78 0.90 1.05 1.25 1.37 1.42
0 0.74 0.79 0.90 1.06 1.23 1.39 1.46

3Rv 0 15 30 45 60 75 90

90 0.65 0.67 0.70 0.78 0.88 0.93 0.99
75 0.66 0.67 0.70 0.79 0.87 0.98 1.00
60 0.66 0.69 0.73 0.85 0.97 1.04 1.06
45 0.66 0.69 0.77 0.90 1.12 1.29 1.32
30 0.66 0.68 0.80 1.02 1.21 1.49 1.54
15 0.65 0.69 0.82 1.06 1.36 1.57 1.61
0 0.65 0.69 0.82 1.07 1.27 1.58 1.60
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Figure 2: Effect of the cluster orientation on the caustic mass estimate for the 40 most oblate (top panels)
and prolate (bottom panels) clusters as sorted by triaxiality T for the low mass bin. The panels show the
mass estimates as a function of the orientation, relative to the mass inferred from the spherical stack. The
three columns show results for three choices of radii. θ and φ indicate the line of sight in question, defined for
each stack in Fig. 2.1. For the top panels (90◦, 0◦) represents the sight line along the major axis, (90◦, 90◦)
represents light line along minor axis and entire left side at θ = 0◦ represents the minor axis for any φ. The
color for any (θ, φ) indicates the value of the mass estimate as indicated on the linear colorbar. The lines in
each panel show equally-spaced isodensity contours.
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Figure 3: Effect of the cluster orientation on the caustic mass estimate for the 19 most oblate (top panels)
and prolate (bottom panels) clusters as sorted by triaxiality T for the high mass bin. The panels show the
mass estimates as a function of the orientation, relative to the mass inferred from the spherical stack. The
three columns show results for three choices of radii. θ and φ indicate the line of sight in question, defined for
each stack in Fig. 2.1. For the top panels (90◦, 0◦) represents the sight line along the major axis, (90◦, 90◦)
represents light line along minor axis and entire left side at θ = 0◦ represents the minor axis for any φ. The
color for any (θ, φ) indicates the value of the mass estimate as indicated on the linear colorbar. The lines in
each panel show equally-spaced isodensity contours.
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Figure 4: Effect of the cluster orientation on the caustic mass estimates for the low mass bin ellipsoidal and
filamentary stacks evaluated at the observed virial radii Rv,obs. The panels show the mass estimates as a
function of the orientation, relative to the mass inferred from the spherical stack. The three columns show
results for three choices of radii. θ and φ indicate the line of sight in question, defined for each stack in Fig.
2.1. For the top panels (90◦, 0◦) represents the sight line along the major axis, (90◦, 90◦) represents light
line along minor axis and entire left side at θ = 0◦ represents the minor axis for any φ. The color for any
(θ, φ) indicates the value of the mass estimate as indicated on the linear colorbar. The lines in each panel
show equally-spaced isodensity contours.

32



Jacob Svensmark Effect of asphericity in caustic mass estimates

Table 3: Caustic mass estimates of the low mass bin filamentary stack within 1Rv, 2Rv and 3Rv for varying
line of sight, normalized by the estimate from the spherical stack. Columns represent θ angles, rows represent
φ angles, both are indicated in bold in the table and both are in degrees. These values are also represented
as the bottom 3 panels of Fig. 2.4.

1Rv 0 15 30 45 60 75 90

90 0.91 0.91 0.93 0.93 0.94 0.93 0.93
75 0.91 0.91 0.93 0.95 0.94 0.95 0.94
60 0.91 0.91 0.94 0.96 0.98 0.98 0.98
45 0.91 0.92 0.96 0.99 1.02 1.03 1.04
30 0.91 0.93 0.96 1.01 1.05 1.09 1.14
15 0.91 0.92 0.98 1.02 1.08 1.12 1.14
0 0.91 0.93 0.99 1.02 1.08 1.13 1.14

2Rv 0 15 30 45 60 75 90

90 0.85 0.86 0.89 0.90 0.90 0.88 0.88
75 0.85 0.85 0.88 0.90 0.90 0.90 0.87
60 0.85 0.85 0.89 0.91 0.91 0.91 0.92
45 0.85 0.88 0.90 0.93 0.96 0.99 1.02
30 0.85 0.88 0.90 0.95 1.04 1.16 1.28
15 0.85 0.87 0.92 0.97 1.13 1.39 1.19
0 0.85 0.88 0.93 0.99 1.22 1.35 1.09

3Rv 0 15 30 45 60 75 90

90 0.74 0.78 0.83 0.84 0.84 0.82 0.78
75 0.74 0.76 0.79 0.81 0.81 0.80 0.79
60 0.75 0.77 0.81 0.84 0.84 0.84 0.85
45 0.74 0.80 0.81 0.88 0.95 1.02 1.11
30 0.75 0.82 0.83 0.93 1.11 1.36 1.46
15 0.75 0.79 0.85 0.99 1.30 1.54 1.19
0 0.75 0.81 0.85 1.03 1.39 1.39 1.06
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Table 4: Caustic mass estimates of the high mass bin ellipsoidal stack within 1Rv, 2Rv and 3Rv for varying
line of sight, normalized by the estimate from the spherical stack. Columns represent θ angles, rows represent
φ angles, both are indicated in bold in the table and both are in degrees. These values are also represented
as the top 3 panels of Fig. 2.5.

1Rv 0 15 30 45 60 75 90

90 0.70 0.73 0.77 0.82 0.87 0.92 0.93
75 0.71 0.73 0.77 0.83 0.89 0.95 0.99
60 0.70 0.73 0.79 0.87 0.96 1.03 1.08
45 0.71 0.73 0.82 0.93 1.06 1.16 1.20
30 0.70 0.74 0.85 1.01 1.17 1.30 1.35
15 0.70 0.75 0.87 1.05 1.23 1.37 1.40
0 0.70 0.75 0.87 1.08 1.27 1.38 1.45

3Rv 0 15 30 45 60 75 90

90 0.69 0.73 0.77 0.82 0.88 0.95 0.99
75 0.70 0.72 0.77 0.83 0.89 0.98 1.01
60 0.69 0.73 0.78 0.87 0.96 1.04 1.12
45 0.70 0.73 0.82 0.92 1.05 1.18 1.26
30 0.69 0.74 0.84 1.00 1.19 1.39 1.43
15 0.70 0.74 0.85 1.07 1.27 1.51 1.58
0 0.69 0.74 0.86 1.07 1.36 1.50 1.54

3Rv 0 15 30 45 60 75 90

90 0.62 0.65 0.69 0.74 0.84 0.91 1.00
75 0.63 0.65 0.70 0.76 0.84 0.96 0.99
60 0.62 0.66 0.72 0.82 0.91 1.03 1.08
45 0.63 0.66 0.74 0.87 1.02 1.22 1.27
30 0.62 0.66 0.77 0.96 1.24 1.60 1.67
15 0.63 0.66 0.79 1.04 1.35 1.78 1.85
0 0.63 0.67 0.81 1.07 1.53 1.90 1.85
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Table 5: Caustic mass estimatess of the high mass bin filamentary stack within 1Rv, 2Rv and 3Rv for
varying line of sight, normalized by the estimate from the spherical stack. Columns represent θ angles, rows
represent φ angles, both are indicated in bold in the table and both are in degrees. These values are also
represented as the bottom 3 panels of Fig. 2.5.

1Rv 0 15 30 45 60 75 90

90 0.87 0.88 0.91 0.92 0.95 0.94 0.95
75 0.87 0.88 0.92 0.95 0.95 0.96 0.97
60 0.87 0.90 0.94 0.97 1.00 1.00 1.01
45 0.87 0.90 0.95 1.00 1.04 1.06 1.09
30 0.87 0.91 0.96 1.03 1.08 1.12 1.13
15 0.87 0.91 0.96 1.04 1.12 1.14 1.10
0 0.87 0.91 0.96 1.04 1.13 1.11 1.05

3Rv 0 15 30 45 60 75 90

90 0.87 0.86 0.89 0.90 0.94 0.94 0.95
75 0.86 0.87 0.91 0.93 0.94 0.96 0.97
60 0.86 0.89 0.92 0.95 0.97 0.97 0.99
45 0.86 0.88 0.93 0.96 1.00 1.03 1.09
30 0.87 0.89 0.94 0.99 1.05 1.13 1.16
15 0.87 0.90 0.93 0.99 1.15 1.26 1.14
0 0.87 0.90 0.94 0.99 1.14 1.21 0.98

3Rv 0 15 30 45 60 75 90

90 0.84 0.82 0.85 0.85 0.88 0.88 0.90
75 0.81 0.83 0.85 0.89 0.89 0.91 0.90
60 0.82 0.86 0.86 0.92 0.93 0.91 0.94
45 0.82 0.82 0.87 0.91 0.99 1.08 1.12
30 0.84 0.82 0.87 0.96 1.15 1.29 1.27
15 0.83 0.84 0.88 0.98 1.34 1.26 1.09
0 0.83 0.84 0.90 1.01 1.23 1.22 0.87
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