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ABSTRACT

The interaction of mesoscopic atomic ensembles with a single
optical mode in the strong coupling regime can be realized using
optical nanofibers. The evanescent field of light, guided by an op-
tical fiber of sub-wavelength diameter, allows for strong confine-
ment of neutral atoms by utilizing dipole forces.

The same strong confinement allows for the resolution of mo-
tional sidebands, which reveal information about the motional state
of the atomic ensemble.

In this thesis, the fabrication, characterization and installation
of a new nanofiber is presented. The analysis of sideband re-
solved Raman spectra gives us an insight into the temperature of
trapped Cesium atoms. Different methods of accounting for sys-
tematic errors are presented and critically evaluated. The motional
states of the trap potential are studied numerically and compar-
isons with the experimental temperature estimation method show
good agreement with the numerical results.

SAMMENFATNING

Interaktionen mellem mesoskopiske atomare ensembler med
en enkelt optisk mode i det stærke koblingsregime, kan realise-
res ved brug optiske nanofibre. Det hurtigt aftagende lysfelt, ledet
af en optisk fiber med sub-bølgelængde diameter, muliggør stærk
indskrænkelse af neutrale atomer ved at udnytte dipolkræfter.

Den selvsamme stærke indskrænkelse tillader os at opløse be-
vægelsessidebånd, som afslører information om bevægelsestilstan-
den for det atomare ensemble.

I denne afhandling vil fabrikationen, karakteriseringen og in-
stallationen af en ny nanofiber blive præsenteret. Analysen af si-
debåndsopløste Raman spektre giver os en indsigt i temperaturen
af de fangede Cæsium atomer. Forskellige måder at tage højde for
systematiske fejl præsenteres og evalueres kritisk. Bevægelsestil-
standene i fældepotentialet bliver studeret numerisk og sammen-
ligninger med den eksperimentelle temperaturestimeringsmetode
viser god overensstemmelse med de numeriske resultater.
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INTRODUCTION

Since the first measurements of quantum systems, exploration into the
fundamental physical properties has allowed for observations of phe-
nomena which radically changed our perception of the physical world.
Recent years have seen the emergence of quantum technologies, har-
nessing the exotic features of quantum systems. The prospect of quan-
tum computing reaching commercial availability has attracted many in-
terested eyes and has roused the public interest.

One of the next frontiers in quantum computing is distributing quan-
tum states using a "Quantum Internet", proposed by Kimble [2008]. For
such a system to work, one needs to be able to exchange quantum infor-
mation between nodes of the network. The widespread use of optical
fibers in current information technology lays a strong foundation for
light based exchange of quantum information.

For quantum computation, one needs a two-level system, a Qubit,
which can be efficiently manipulated and which has coherence times
longer than the duration of the quantum computation. Atoms are a
promising candidate, given the long coherence times, by virtue of their
weak coupling to their environment, Preskill [1998].

The use of atoms as Qubits necessitates the trapping and cooling
of atomic motion. Many types of atomic traps exist, however, they
mostly fall into two regimes: single atoms and macroscopic ensembles
of ∼ 106−109 atoms. Free space dipole traps of single atoms allow for
strong interaction but suffer from poor scalability, whereas achieving
consistent interaction across the entire ensemble is challenging for traps
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XII INTRODUCTION

of macroscopic ensembles.
Optical nanofibers offer a way of interacting with quantum systems

of ∼ 1000 atoms on a single pass, bridging the gap between the two
previously mentioned regimes.

Optical nanofibers are realized as adiabatically tapered single mode
optical fibers, first proposed by Tong et al. [2004]. The fast decay of the
evanescent field around a sub-wavelength diameter nanofiber provides
the steep intensity gradients needed for tight confinement using dipole
forces, Kien et al. [2004]; Vetsch et al. [2010]. The diffraction-free propa-
gation of the evanescent field allows for steep intensity gradients across
the entire length of the nanofiber. The steep intensity gradients also al-
low for operation in the strong coupling regime, with single atom ODs
of ∼ 2.4 % Béguin [2015].

However, the same steep intensity gradients, coupled with the an-
harmonicity of the trap potential, lead to motional state dependent in-
teractions. Several experiments on the manipulation of atoms trapped
around a nanofiber have found the finite temperature of the atomic en-
semble to be a limiting factor, making cooling of the trapped atoms an
important task to improving the performance of nanofiber traps.

On the other hand, the same motional state dependent interaction
can be utilized to manipulate the state of the atomic ensemble to real-
ize non-classical motional states, leading to entanglement between the
internal and external degrees of freedom of the atoms.

Goal of this thesis
The goal of this thesis is to measure the motional transitions of nanofiber
trapped atoms. Using the asymmetric coupling of the motional side-
bands one may measure the temperature of the atomic ensemble using
stimulated Raman transitions. To study the behavior of trapped atoms
in the nanofiber potential, numerical simulations will be employed to
grant a deeper insight into the motional spectra.

The nanofiber breaks
On May 5th, 2019, we were struck by tragedy as the nanofiber in our
setup broke. This meant that we had to fabricate, characterize and in-
stall a new nanofiber into the existing setup. The fiber pulling setup,
which had last been used in the summer of 2017, needed to be rebooted.
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With the help of Jürgen Appel, we were able to get the setup working,
however, we would not have a new nanofiber installed in the setup
until November of 2019. This process was immensely educational and
allowed us to learn the art of handling optical fibers and how to handle
ultra high vacuum components. However, it also meant that progress
on the nanofiber experiment was halted for seven months. Our first
atomic signal on the new fiber was acquired on the 30th of January,
2020, about nine months after the rupture of the old fiber. Roughly a
month and a half later, on the 11th of March, 2020, the novel corona
virus, COVID-19, forced the Danish population into quarantine.

These events have had a dramatic effect on my time in the lab. This
means that we did not have time to tie up every loose end and explore
quite as many different avenues as we would have liked. I urge the
reader to keep this in mind while reading this thesis.

Structure of the thesis
This thesis is divided into three main parts. The first part lays the the-
oretical foundations for understanding the experiment. We first treat
atoms and their interaction with light, we will then see how light prop-
agates through sub wavelength diameter optical fibers and finally how
these properties can be combined to form a nanofiber atom trap.

The second part concerns the experimental work carried out during
the project. The first chapter involves the fabrication, characterization
and installation of a new nanofiber. In the second chapter the exper-
imental setup and procedures are presented. The next two chapters
involve the calibration of the setup, including the optimization of the
trapping parameters and the cancellation of differential Stark shifts due
to the Raman laser. The final chapter of the second part presents the
work on resolved Raman spectroscopy with a focus on temperature es-
timation.

In the third part we treat the trapping potential numerically. We first
establish the necessary theoretical foundations for simulating a two-
level atom with motional states. We then move on to finding the wave-
functions of the one dimensional radial trap potential and subsequently
simulating Raman spectra, comparing the results to the experimental
methods. We then extend our treatment to the two dimensional poten-
tial, finding the wavefunctions and studying the non-separability of the
potential. We finally highlight some of the possible improvements and
future paths for the simulations.





Part I

Foundations
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CHAPTER

1
ATOMIC PHYSICS

One of the early ground-breaking results in quantum mechanics was
solving the energy structure of hydrogen. Hydrogen, being the simplest
atom in the periodic table of elements, has a single electron orbiting the
nucleus. The use of hydrogen-like atoms is prevalent in atomic physics;
using hydrogen-like atoms, also known as alkali metals, allows us to
draw from the results obtained in the treatment of the hydrogen atom
to understand larger, more complicated atoms.

In this chapter the structure of Cesium will be presented, following
the treatment given in [Foot, 2005] and [Steck, 2007].

1.1 The Cesium atom
The atom of choice for this work is Cesium. Cesium, being the second
heaviest of the alkali metals (no. 55 in the periodic table), is well suited
for low temperature experiments. Cesium has a single stable isotope,
133Cs, which is by far the most naturally abundant isotope.

Cesium has a single electron in its outermost orbital, with the re-
maining orbitals fully occupied. This allows us to treat Cesium as hav-
ing a single electron orbiting a modified central potential. We can there-
fore use the results for the hydrogen atom to gain some insight into the
nature of Cesium.

Given the rotational symmetry of the Hydrogen atom, the solutions
can be separated into radial and angular wave functions, Rn,l and Yl,m,

3



4 CHAPTER 1. ATOMIC PHYSICS

were n, l,m are quantum numbers describing the orbitals. In Hydrogen,
the energy structure only depends on the principal quantum number n.
For each n there are n − 1 degenerate states with angular momentum l
and 2l + 1 magnetic quantum numbers, determining the projection of l
on to the z-axis.

Due to the modified central potential of Cesium, the l degeneracy is
lifted. In this work we shall focus on the D-line; the transition between
|N = 6, L = 0,m〉 and |N ′ = 6, L′ = 1,m′〉, where we have written n, l in
capital letters to differentiate from the hydrogen wavefunction. Addi-
tionally we denote excited states with a prime, e.g L′, throughout this
thesis. The quantum numbers N and L describe the gross electronic en-
ergy structure of the atom, i.e. the largest energy scale for the atoms.

We will now delve into the smaller energy scales, which are relevant
in this work.

1.1.1 Fine structure
The fine structure concerns the interaction of an electrons spin with its
own angular momentum. From the perspective of the orbiting electron,
the charge of the nucleus produces a magnetic field. This magnetic field
interacts with the magnetic dipole moment of the electron leading to
energy splitting dependent on the orientation of the electron spin with
respect to the magnetic field.

From the orbital angular momentum L and spin S, we can find the
total angular momentum

J = L + S, (1.1)

which can take on values, in increments of 1, of

|L− S| ≤ J ≤ L+ S. (1.2)

This coupling leads to the splitting of the excited state |N ′ = 6, L′ = 1〉
into |N ′ = 6, L′ = 1, J ′ = 1/2〉 and |N = 6, L′ = 1, J ′ = 3/2〉. The ground
state hasL = 0 and therefore there is only one level, |N = 6, L = 0, J = 1/2〉.
In the absence of strong magnetic fields these states all have 2J + 1 de-
generate magnetic levels, denoted mJ . In our experiment we are only
concerned with the transition between L = 0, J = 1/2 and L′ = 1, J ′ =
3/2, known as the D2-line. These states are also referred to as 62S1/2 and
62P3/2.
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To transition between the states of the fine structure, certain rules
have to be obeyed. For electric dipole transitions the change in total
angular momentum J must obey

∆J = 0,±1

∆mJ = 0,±1 (1.3)
J = 0 = 0

Transitions which preserve mJ are called π-transitions and are driven
by linearly polarized light, whereas transitions which change mJ by ±1
are called σ±-transitions, driven by circularly polarized light.

S
1/2

P
3/2

2

2

Fʹ = 5
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g = -1/4
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F
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Figure 1.1 — Energy levels of the D2 line of Cesium. The ground state splitting
has no uncertainty since it is defined as this exact value. The Landé g-factors
are shown along with the Zeeman splitting per Gauss. This figure is heavily
inspired by a similar figure from [Steck, 2007]

1.1.2 Hyperfine structure
Another splitting occurs due to the fact that the nucleus of the atom has
a spin with a corresponding magnetic moment. This magnetic moment
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interacts with the angular momentum of the electron. This splitting is
known as the hyperfine splitting. Analogously to the fine structure we
can define a total angular momentum, now including the nuclear spin

F = J + I, (1.4)

which takes on values in increments of 1 of

|J − I| ≤ F ≤ J + I (1.5)

equivalently to the fine structure this leads to splitting of the fine struc-
ture levels. For Cesium the nuclear spin is 7/2 leading to values of
F = 3, 4 for the ground state and 2, 3, 4, 5 for the excited state 62P3/2.
Each hyperfine level has 2F + 1 magnetic sublevels.

Due to the fact that the nuclear magnetic dipole moment is signifi-
cantly smaller than that of the electron, the effect of this interaction is
much smaller than the fine structure. The fine structure splitting of the
N = 6, L = 1 level is ∼ 16 THz, while the hyperfine splitting is only
∼ 9 GHz for the ground state.

The selection rules governing electric dipole transitions in the hyper-
fine structure are completely equivalent to those of the fine structure.

∆F = 0,±1

F = 0 = 0 (1.6)
∆mF = 0,±1

The rules in eq. 1.6 are of course on top of the fine structure selection
rules. Due to parity, transitions between the two ground state hyper-
fine levels are electric dipole forbidden and thus cannot be directly ac-
cessed this way. One can, however, drive these transitions with mag-
netic dipole transitions, although these are significantly weaker than
their electric counterparts.

1.1.3 Zeeman effect
If an applied magnetic field is weak compared to the hyperfine splitting
we can look at this as a perturbation to the hyperfine structure. The
Zeeman effect leads to a shift of the magnetic sublevels of the hyperfine
structure, which is linear in mF . The shift is given by

E = gFµBmFB, (1.7)
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where µB is the Bohr magneton, B is the applied magnetic field and mF

is the projection of F onto the magnetic field direction. The factor gF is
the Landé g-factor and is given by

gF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
gJ , (1.8)

where gJ is the g-factor for the electron angular momentum.
If we plug in values for the ground state hyperfine levels, 3 and 4,

we find that the factors gF will be equal in magnitude, but with oppo-
site sign. This is shown in figure 1.1. Throughout this work we will pri-

Fʹ = 5

Fʹ = 4
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Fʹ = 2

F = 4

F = 3
0

0

0

0

0

0

-3

-3 3

3
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-4

-4 4

4

5-5

Figure 1.2 — Plot of the D2 line with magnetic sublevels. Numbers under lines
refer to the mF quantum number of the state.

marily focus on the mF = 0 levels of the ground state and the stretched
levels, i.e. |F = 3,mF = −3〉 and |F = 4,mF = −4〉, shown in figure 1.2.





CHAPTER

2
LIGHT-ATOM
INTERACTIONS

In this chapter we will study the interaction between light and atoms.
We will first derive the two-level Hamiltonian and study its consequences.
Then, using the concepts from the two level case, we will expand into
multi-level systems and use this to understand some of the manipu-
lations of atoms made possible using electromagnetic radiation. This
chapter largely follows the treatment found in [Steck, 2007].

2.1 The two-level atom
Let us consider a two level system interacting with a classical light field.
We will denote the two levels as |g〉 for the ground state and |e〉 for the
excited state. The system is driven by a classical field E(t) = ε̂E0 cos(ωt),
where ε̂ is the field polarization, ω is the angular frequency of the field,
where we have neglected any spatial contribution to the phase of the
electric field over the characteristic size of the electron cloud1. Choosing
the ground state energy to be zero we can write the atomic Hamiltonian
as

HA = ~ω0 |e〉〈e| (2.1)

and the atom-field Hamiltonian as

HAF = −d · E, (2.2)

1The dipole approximation

9
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where d is the atomic dipole operator, d = −ere. Here e is the electron
charge and re is the position of the electron w.r.t. the nucleus. The full
Hamiltonian is then the sum of the two terms,

H = HA +HAF. (2.3)

Writing the electric field in terms of complex exponentials and intro-
ducing the atomic lowering operator

σ = |g〉〈e| (2.4)

with the Hermitian conjugate of this being the raising operator, we can
write the atom-field part of the Hamiltonian as

HAF =
~Ω

2

(
σeiωt + σ†e−iωt

)
(2.5)

where we have introduced the Rabi frequency, Ω = − 〈g|ε̂·d|e〉E0

~ .
Moving into a rotating frame, rotating at angular frequency ω, we

can write the full Hamiltonian without explicit time dependence as,

H = −~∆ |e〉〈e|+ ~Ω

2

(
σ + σ†

)
, (2.6)

where ∆ = ω − ω0.

2.1.1 Rabi flopping
Solving the Schrödinger equation with the Hamiltonian , eq. 2.6, gives
us the time evolution of a two-level atom interacting with light. For an
initially unexcited atom, i.e. Pe(0) = 0, we get

Pe(t) =
Ω2

Ω̃2
sin2

(
Ω̃t

2

)
(2.7)

where Pe is the probability of the atom being in the excited state and
where Ω̃ =

√
Ω2 + ∆2 is the generalized Rabi frequency, [Steck, 2008].

0 π 2π 3π 4π

0

0.2

0.4

0.6

0.8

1

Ω̃t

Pe

∆ = 0
∆ = Ω
∆ = 2Ω

Figure 2.1 — Rabi flopping
for different detunings.

Rabi oscillations at different detunings are plotted in figure 2.1. We
see that for a resonant driving field, i.e. ∆ = 0, we can transfer the atom
into the excited state by applying a pulse with pulse-angle Ωt = π, these
are fittingly called π-pulses and are an integral part of the experimental
toolbox. We can similarly do a resonant pulse with pulse-angle Ωt =
π/2; this will bring the atom into an equal superposition of |g〉 and |e〉.
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2.1.1.1 The Bloch sphere

A useful tool for visualizing the Rabi pulses is the Bloch sphere,
[Milonni and Eberly, 2010] and [Foot, 2005]. We can represent a pure
state of a two-level system as a unit vector on the surface of a sphere.
We begin by introducing the density matrix of a state |ψ〉,

ρ = |ψ〉 〈ψ| =
(
ρ11 ρ12

ρ21 ρ22

)
(2.8)

where ρij = cicj∗, with ci,j being the coefficients of the state, and where
the matrix is Hermitian. We can define the Bloch vector R = uî+vĵ+wk̂,
where

u = ρ12 + ρ21

v = −i(ρ12 − ρ21) (2.9)
w = ρ11 − ρ22.

The Bloch vector contains all of the information about the atomic state.
The time evolution of the Bloch vector is governed by,

dR

dt
= τ ×R (2.10)

where τ is defined as

τ = Re(Ω)̂i+ Im(Ω)ĵ + ∆k̂. (2.11)

For a pure state the length of the Bloch vector is constant. Therefore the
state can be described by only two numbers, allowing us to write the
state as

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiφ |1〉 (2.12)

where we have named the two states of the two level system |1〉 and
|2〉. Applying a resonant pulse, ∆ = 0, amounts to placing a torque
vector in the equatorial plane of the Bloch sphere. A resonant π-pulse
takes the state vector to the antipode. By changing the phase of the
Rabi frequency the torque vector can be moved in the equatorial plane.
A graphical representation of the Bloch sphere is shown in figure 2.2.
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10 +

10 +i
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φ

θ

τ

k

j

i

Figure 2.2 — The Bloch
sphere. A state ψ is rep-
resented as a point on a
unit sphere. The state can
be uniquely defined by the
angles θ and φ. A torque
vector describes the effect of
light interacting with a two
level system.

The Ramsey sequence

We see that applying a π/2-pulse puts the state into the equatorial plane.
If the pulse is detuned, the state will continue to precess around the ẑ-
axis with angular velocity ∆. This precession is the basis for Ramsey
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spectroscopy; applying an initial π/2-pulse and allowing the state to
evolve for a dark time τ , then applying a second π/2-pulse to complete
the transfer. If the initial pulse is detuned the state will precess in the
equatorial plane and the subsequent pulse is no longer perpendicular to
the state vector, thus not completing the transfer. By scanning the phase
of the second transfer pulse one can map out a fringe which allows for
extremely precise measurement of the detuning.

2.1.2 The AC Stark shift
The mixing of levels seen in the previous sections means that the orig-
inal atomic states are no longer the eigenstates of the coupled system,
[Dalibard and Cohen-Tannoudji, 1985]. We therefore need to diagonal-
ize the Hamiltonian, eq. 2.6 to find the new eigenstates and energies.
Writing the Hamiltonian as a matrix we get

H = ~
(
−∆ Ω

2
Ω
2

0

)
(2.13)

We can now find the eigenvalues of the Hamiltonian

E+,− = −~∆

2
± ~
√

∆2 + Ω2

2
(2.14)

with the two eigenstates |+〉 and |−〉 defined by

|+〉 = sin(θ) |g〉+ cos(θ) |e〉
|−〉 = cos(θ) |g〉 − sin(θ) |e〉 (2.15)

where tan(2θ) = −Ω
∆

. This shift of the energy levels is known as the AC
Stark shift. In the limit of |∆| � Ω, the eigenenergies become

E± ≈
~
2

(
−∆±

(
∆ +

Ω2

2∆

))
(2.16)

and the states become

|+〉 ≈ |e〉
|−〉 ≈ |g〉 (2.17)

0

ω0

∆ > 0|−〉

∆ > 0

∆ < 0|+〉

∆ < 0

Ω

E/h̄

Figure 2.3 — The shift of en-
ergy levels due to the pres-
ence of detuned light.

This means that for a fixed detuning |∆| � Ω and a spatially depen-
dent Rabi frequency the Stark shift leads to a potential,

Udip(r) =
~Ω(r)2

4∆
(2.18)



2.2. MULTI-LEVEL ATOMS 13

of the ground state of the atom. Equation 2.16 is plotted as a function of
Rabi frequency in figure 2.3. The shift of the ground state energy is de-
pendent on the square of the Rabi frequency and thus is linear in inten-
sity. Therefore, strong intensity gradients lead to strong dipole forces, a
phenomenon which will be exploited to form the nanofiber trap.

2.2 Multi-level atoms

2.2.1 Scalar, vector and tensor light shifts
In the treatment of the Stark shift we only considered a two level atom.
In reality atoms have an infinite number of bound states which should,
in principle, be taken into account. The derivation of the effects of the
full level structure is very lengthy and will therefore not be presented.
The light shifts can be written in terms of scalar, vector and tensor po-
larizabilities as

∆E(F,mF, ω) =− α(0)(F, ω)|E(+)
0 |2

− α(1)(F, ω)(iE
(−)
0 × E(+)

0 )z
mF

F
(2.19)

− α(2)(F, ω)

(
3|E(+)

0z |2 − |E(+)
0 |2

)
2

(
3m2

F − F (F + 1)

F (2F − 1)

)
where α(1,2,3)(F, ω) are the scalar, vector and tensor polarizabilities, re-
spectively and where E(±) are the positive(negative) frequency parts of
the electric field, [Steck, 2008].

The first term of equation 2.19 is the scalar term, which is essentially
what we derived in the previous section. The second term is the vector
shift. This is also known as a fictitious magnetic field because it interacts
with the magnetic sublevels in a fashion very reminiscent of a magnetic
field. This fictitious magnetic field arises from circularly polarized light;
the term (E

(−)
0 × E

(+)
0 ) = 0 for linearly polarized light. The fictitious

magnetic fields may be vector-added to real magnetic fields, [Le Kien
et al., 2013].

The final term is the tensor shift. This induces shifts on the levelsmF

proportional to m2
F as opposed to the linear shift due to the vector shift.

The tensor shift is, unlike the vector shift, maximal when the driving
light is polarized along the quantization axis. The tensor shift of the
ground state of Cesium vanishes for detunings large compared to the
hyperfine splitting, [Lacrôute et al., 2012].
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2.2.2 Raman transitions
A useful tool for driving transitions between states of the ground level
manifold are stimulated Raman transitions. Stimulated Raman transi-
tions are two-photon transitions in a three-level system. We would like
to drive transitions between two levels, |g1〉 and |g2〉, that are closely
spaced, via a virtual level, shown in figure 2.4. We set the excited state
energy to zero and thus the two ground states will have energy −~ω1,2.
The system is driven with light at frequencies ωL1,2

HA = −~ω1 |g1〉〈g1| − ~ω2 |g2〉〈g2|

HAF =
~Ω1

2

(
eiω

L
1 σ1 + e−iω

L
1 σ†1

)
+

~Ω2

2

(
e−iω

L
2 σ2 + e−iω

L
2 σ†2

) (2.20)

where σα = |gα〉〈e| and where Ωα is the Rabi frequency between the
ground states and the excited state. We can remove the explicit time
dependence by moving to a rotating frame, where state |gα〉 rotates at
ωLα .

HA = ~∆1 |g1〉〈g1|+ ~∆2 |g2〉〈g2|

HAF =
~Ω1

2

(
σ1 + σ†1

)
+

~Ω2

2

(
σ2 + σ†2

) (2.21)

|g1〉
|g2〉δ

ω1
ωL
1

∆1

ω2
ωL
2

∆2

|e〉

Figure 2.4 — A three-level
system with two driving
fields at frequency ωLα .

where ∆α = ωLα − ωα. Boosting the energies by −~∆, where ∆ =
∆1+∆2

2
and defining the two photon detuning δ = ∆1 −∆2 we can write

the Hamiltonian as

H = ~

 δ
2

0 Ω1

2

0 − δ
2

Ω2

2
Ω1

2
Ω2

2
−∆

 . (2.22)

Assuming that ∆ � δ, |Ω1,2| we can assume the excited state to remain
unpopulated and thus we can adiabatically eliminate the excited state,
[Brion et al., 2007]. This allows us to rewrite the Hamiltonian into an
effective two-level Hamiltonian,

Heff = ~

(
δ
2

+
Ω2

1

4∆
ΩRR

2
ΩRR

2
− δ

2
+

Ω2
2

4∆

)
(2.23)

This Hamiltonian has the same form as for the two level atoms, eq.
2.13, but now with the Rabi frequency replaced by a Raman-Rabi fre-
quency ΩRR = Ω1Ω2

2∆
and with an additional Stark shift of the atomic
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levels Ωα
4∆

. This Stark shift can be eliminated using a multi-frequency
drive described in chapters 6 and 8.

2.3 Laser cooling
In order to observe the effects described in the previous sections we
have to cool down the atomic motion. Atoms at room temperature
move at high speeds in random directions leading to inhomogeneous
Doppler broadening of atomic transitions. Furthermore, the study of
atoms trapped in potential wells of limited depth, requires the atoms to
be sufficiently cold before loading.

In this work, the focus is on trapping atoms using the dipole force
arising from the steep gradients of the evanescent field propagating
along the outside of an optical nanofiber. In order to load atoms into
such a trap we first have to cool the atomic motion.

2.3.1 Optical molasses
Since photons carry momentum, the absorption of a photon by an atom
leads to a change in the momentum of the atom. F=4

F=3

Fʹ=2

Fʹ=3

Fʹ=4

Fʹ=5

Figure 2.5 — Atomic tran-
sitions used for optical
molasses cooling of Cesium
atoms.

Atoms at room temperature have large momenta compared to pho-
tons and thus need to absorb many to slow down the motion. In order
for resonant laser cooling to occur a closed optical loop is necessary.
In Cesium, the transition between |F = 4〉 and |F ′ = 5〉 forms such a
closed optical loop due to selection rules, see figure 2.5. This allows the
atoms to continue to interact with the light, gradually slowing down
the motion. The possibility of off-resonant excitations can lead to atoms
leaving the optical loop and therefore a repumper is needed. The re-
pumper acts on the |F = 3〉 to |F ′ = 4〉 transition to keep atoms out of
|F = 3〉.

v

Frad

Figure 2.6 — The radiative
force exerted by red detuned
light as a function of the
atomic velocity. Dashed lines
are the force of each separate
laser.

The motion of the atoms affects the interaction with the light due to
Doppler shifts; atoms moving towards the beam will see blue shifted
light whereas atoms moving away from the beam will see red shifted
light. By tuning the lasers red of the transition, atoms moving towards
the laser beam will interact more strongly with the light, see figure 2.6.
For a two-level atom the fundamental cooling limit is the Doppler tem-
perature,

kBTD =
~Γ

2
(2.24)
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where Γ is the natural linewidth of the transition. For Cesium on the
D2 line, the Doppler temperature is TD = 125µK. It turns out, how-
ever, that multilevel atoms can be cooled down well below the Doppler
temperature, due to effects of polarization gradient cooling, [Chu, 1992;
Cohen-Tannoudji and Phillips, 1990].

The optical molasses technique allows for cooling of the atomic mo-
tion, but it does not offer trapping, as atoms at sufficiently low temper-
atures will be allowed to disperse out of the laser beams.

2.3.2 Magneto-optical trap

The magneto-optical trap (MOT) is one of the most important devel-
opments in atomic physics and can be found in almost any AMO2 lab.
The MOT builds upon the optical molasses technique, but introduces a
quadrupole magnetic field. The magnetic field strength is position de-
pendent and allows for confinement of the atoms. The principle for a
MOT is shown in figure 2.7, [Foot, 2005].

1

-1

-1

1

mFmF

z

E

ω

B

σ+σ-

Figure 2.7 — A position de-
pendent magnetic field tunes
the atomic levels into reso-
nance with the MOT beams.

Counter propagating light with right- and left-hand circular polar-
ization is detuned red w.r.t the cooling transition. The position depen-
dent magnetic field brings the atoms into resonance with the molasses
beams. This allows for both cooling and confinement of the atoms.

In figure 2.8 the setup for a MOT is pictured. Two coils are placed
in Helmholtz configuration, with current flowing in opposite directions
to generate a quadrupole field. Circularly polarized beams propagate
from each of the cardinal directions. A cloud of atoms forms at the zero
of the magnetic field.

2Atomic, molecular and optical physics
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σ+σ+
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Figure 2.8 — A magneto-optical trap. A cloud of atoms is gathered using three
pairs of counter-propagating beams with orthogonal circular polarization. The
confinement of the trap is achieved using a pair of Helmholtz coils with the
current running in opposite directions, forming a quadrupole magnetic field.

2.3.3 Sub-doppler cooling
It was observed that the cooling provided by the MOT alone was not
enough to allow for efficient loading of the nanofiber dipole trap. For
this reason a sub-doppler cooling procedure was implemented. Sub-
Doppler cooling makes use of the polarization gradients formed by the
counter-propagating MOT beams to establish a Zeeman state depen-
dent Stark shift potential. The atomic motion on the scale of the optical
wavelength allows for kinetic energy to be extracted via optical pump-
ing into local dark states. This process allows for cooling significantly
below the Doppler limit.

The cooling scheme used in this work is known as gray molasses or
blue Sisyphus cooling (BSC), [Béguin, 2015; Boiron et al., 1996]. Dur-
ing BSC the cooler and repump beams are ramped down in frequency,
while the power of the repump along with the magnetic field strength
are ramped down. In the process of BSC the MOT cloud is compressed
and the atoms will be left in the F = 3 manifold. The theoretical mini-
mum temperature for this type of cooling is on the order of tens of the
recoil temperature,

Trec =
~2k2

2mkB
, (2.25)
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which for the D2 line is 100 nK. Since we are ultimately interested in op-
timizing the loading of the dipole trap, the actual temperature reached
during the sub-doppler stage is of secondary importance.

2.3.4 Resolved sideband cooling
In the regime where the confinement of atoms is sufficiently strong, the
trap frequency becomes large enough that motional sidebands become
resolved, [Wineland et al., 1998]. This allows for direct manipulation
of the motional state of the atoms. To access these transitions in prac-
tice one needs a mechanism for coupling the motional states. In typical
Raman spectroscopy this is done by counter propagating two beams.
However, coupling can also be achieved by having a sufficiently steep
spatial gradient of a single coupling beam. A steep gradient of the in-

ω
Δ
ω

Δ

Δ

+

-

g 
2

g 
1

e

Δ

sb

sb

Figure 2.9 — The transfer of atoms between motional levels, through a virtual
level. By matching the two photon detuning to the trap frequency atoms can
be transferred to higher or lower motional states.

tensity can be written as the imaginary part of the k-vector of the Raman
light. The electric field is thus,

E = E0e
i(βz−ωt)e−k̃r

where β is the normal propagation constant and where k̃ is the decay
of the electric field in the r direction. The interaction of an atom in a
motional state n will then be

〈g, n|d · E |e, n′〉 = 〈g|d · E0e
i(βz−ωt) |e〉 〈n| e−k̃r |n′〉

In the case of Raman transitions this interaction will be described by
the product of electric fields, and thus the decay of the intensity, k, is
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the relevant quantity. We can write the coordinate r as the position
operator and quantize the motion. Assuming a harmonic potential the
motional transitions can be written as

〈n| e−kr̂ |n′〉 = 〈n| e−η(a+a†) |n′〉 (2.26)

where we have introduced the creation and annihilation operators a(†)

and the Lamb-Dicke parameter, η = k
√

~
2mν

, where m is the mass of the
atom and ν is the trap frequency. We can Taylor expand the exponential
to find,

〈n| e−η(a+a†) |n′〉 = δn,n′+η
(√

nδn,n′−1 +
√
n+ 1δn,n′+1

)
(2.27)

+O(η2) (2.28)

where δn,n′ is the Kronecker delta. From this we see that transitions,
which increase the motional quantum number n, occur with a larger
Rabi frequency than transitions which reduce the motional quantum
number.

This coupling between motional states is what allows for cooling to
occur. It is, however, important that the Lamb-Dicke parameter, η, is
small in order to reduce the effects of recoil changing the motional state
of the atom, [Wineland et al., 1998].

By measuring the interaction of the atoms with light we can also
infer information about the motional state of the atoms. The atoms will
be resonant with light, at two-photon detunings ∆ = ±2π×ν, where ν is
the trap frequency. The motional energy of the atom will be increased at
a detuning equal to +2πν, whereas the energy will be reduced for ∆ =
−2πν, see figure 2.9. The steep intensity gradient of the Raman light
is, in our experiment, achieved using the evanescent field of nanofiber
guided light, described in chapter 3.

Many different resolved sideband cooling schemes exist, such as
[Østfeldt, 2017] and [Albrecht et al., 2016], but the discussion in this
work will be limited to the cooling scheme carried out in the Raman
sideband spectroscopy experiments. This cooling scheme is known as
degenerate Raman cooling.

2.3.4.1 Degenerate Raman cooling

Strong gradients of magnetic fields can lead to coupling between adja-
cent degenerate Zeeman levels of the atom, figure 2.10. The adjacent
Zeeman levels can be tuned into degeneracy with the motional levels,
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i.e. making |mF , n〉 degenerate with |mF + 1, n− 1〉, by proper choice of
the bias magnetic field, [Meng et al., 2018].

-4

-3

Figure 2.10 — The coupling
between degenerate motional
states allows for transfer of
atoms. The motional ground
state of |mF = −4〉 is decou-
pled.

By pumping atoms with σ− polarized light the atoms will gradually
lose motional quanta. The lowest motional state of |F = 4,mF = −4〉
does not couple to adjacent states through the fictitious magnetic field.
In this process atoms accumulate in the motional ground state of
|F = 4,mF = −4〉.

In practice we generate these strong magnetic field gradients using
the fictitious magnetic field of the nanofiber trap lasers. An in-depth
treatment of the cooling scheme along with the experimental imple-
mentation can be found in [Markussen, 2020].

2.4 Optical pumping
An important tool in atomic physics is the ability to prepare atoms in
well-defined states. This ensures that the interaction is the same for
the entire ensemble and increases the number of accessible atoms. By
proper choice of frequency and polarization, atoms can be pumped into
states which are decoupled from the light, also known as dark states.
One way of preparing the atoms is by making use of a linearly polar-
ized pump on the |F = 4〉 → |F ′ = 4〉 transition. The transition between
|F = 4,mF = 0〉 → |F ′ = 4,m′F = 0〉 is dipole forbidden and can there-
fore not be driven by the linearly polarized pumping light. Due to the
possibility of spontaneous decay from |F ′ = 4〉 into the |F = 3〉 man-
ifold a repumper is required. The repumper drives atoms out of the
|F = 3〉manifold and allows them to spontaneously decay into |F = 4〉.
This means that the atoms will gather in the dark state |F = 4,mF = 0〉
over time, the optical pumping scheme is shown in figure 2.11. The
atoms in |F = 4,mF = 0〉 can then be transferred to |F = 3,mF = 0〉 us-
ing a resonant microwave π-pulse and any remaining atoms in the |F = 4〉
manifold are blown away using a pulse from the MOT cooler.

An analogous procedure can be carried out to prepare atoms in the
stretched levels. A σ-polarized optical pumping beam brings the atoms
into the extreme mF levels. A subsequent σ-polarized microwave π-
pulse then brings the atoms into |F = 3,mF = ±3〉.

In the practical implementation of this scheme, for atoms trapped
around an optical nanofiber, the optical pumping beam is modulated
at 20 MHz resulting in two frequency components at ±20 MHz w.r.t the
|F = 4〉 → |F ′ = 4〉 transition. This ensures that the light is not absorbed
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Figure 2.11 — Scheme for preparing atoms in the |F = 3,mF = 0〉 state. The
cooler drives atoms from F = 4 to F ′ = 4, however the transition between
|F = 4,mF = 0〉 and |F ′ = 4,mF = 0〉 is dipole forbidden, leading to the accu-
mulation of atoms in |F = 4,mF = 0〉. A repumper ensures that atoms in the
F = 3 manifold are brought back into F = 4.

and can propagate through the entire atomic ensemble without exerting
a dipole force on the atoms, [Østfeldt, 2017].

A typical optical pumping signal is shown in figure 2.12. We see
that after turning on the repumper we get an additional amount of
signal due to the atoms residing in other levels than |F = 3,mF = 0〉.
The repumped signal serves as a useful reference to the total number of
trapped atoms and will be used extensively to compare different mea-
surement with varying signal levels.
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Figure 2.12 — Signal showing optical pumping. The vertical dashed line indi-
cates the repumper being turned on.



CHAPTER

3
LIGHT PROPAGATION IN
NANOFIBERS

In this chapter the propagation of light in sub-wavelength optical fibers
will be presented. The derivation of the equations presented in this
chapter is somewhat involved and will not be covered - the focus will
be on exploring the consequences of the solutions. Detailed derivations
can be found in sources such as [Béguin, 2015] and [Vetsch, 2010].

3.1 Modes of Propagation
A typical optical fiber consists of a silica core, surrounded by a sil-
ica cladding, shown in figure 3.1. Impurities are added to the core to
slightly increase the refractive index. θc

Light can be guided when
the angle of reflection is
larger than the critical an-
gle

θ > sin−1

(
n2

n1

)
= θc

Light propagating in a medium with higher refractive index than the
surroundings can totally internally reflect, given the angle of incidence
is larger than the so called critical angle. In the geometrical optics pic-
ture this can be seen as the limiting angle of the acceptance cone of the
waveguide. In the limit of small waveguides (a ≈ λ) the geometrical
picture is no longer valid and the full Maxwell’s equations have to be
employed,

~∇× ~H = ε(r)
∂ ~E

∂t
, ~∇ ·H = 0

~∇× ~E = −µ0
∂ ~H

∂t
, ~∇ · (ε(r) ~E) = 0

(3.1)
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n2
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a b
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Figure 3.1 — Illustration of a step-index optical fiber. The core of the fiber has
a refractive index of n1 and is surrounded by a cladding with refractive index
n2

where ~E is the electric field, ~H is the magnetic field, µ0 is the vacuum
permeability and ε(r) the permittivity of the medium, here a function of
the radial coordinate r. The wave equation can readily be derived from
Maxwell’s equations,0.0
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Figure 3.2 — Plot of the
unmodified(top) and modi-
fied(bottom) Bessel functions.
Note the log scale of the bot-
tom panel.

~∇2 ~E − µ0ε(r)
∂2 ~E

∂t2
= −~∇

[
~E · ~∇ε(r)
ε(r)

]
, (3.2)

with an equivalent differential equation for the magnetic field. For the
geometry of a fiber optic waveguide the problem decomposes into two
regions; inside the core (r < a) and inside the cladding (r > a). Inside
the core of the fiber, the solutions to equation 3.2 are described in terms
of Bessel functions of the first kind Jl, where l is the order of the Bessel
function. In the cladding of the fiber, the solutions are described in
terms of modified Bessel functions of the second kind Kl, see figure
3.2. The propagation modes in a waveguide are described by effective
propagation constants, β. Finding the allowed values of β amounts to
solving a transcendental equation,

J ′l (ha)

haJl(ha)
=− K ′l(qa)

qaKl(qa)

(
n2

1 − n2
2

2n2
1

)

±

√√√√(n2
1 − n2

2

2n2
1

)2
[(

K ′l(ha)

qaKl(qa)

)2

+

(
2lβk0n2

1

h2q2a2

)]
,

(3.3)

where a is the core radius, n1 and n2 the refractive index of the core and
cladding, respectively, Jl and Kl the unmodified and modified Bessel
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functions, respectively and where h and q are given by,

h =
√
k2

0n
2
1 − β2 (3.4)

q =
√
β2 − k2

0n
2
2. (3.5)

Here k0 = 2π
λ

is the vacuum propagation constant and 1/h, 1/q are the
decay lengths of the modes inside and outside of the core, respectively.
The different solutions describe different modes of propagation. We are
interested in finding the situation where only one mode is guided by
the fiber. From the solutions, a cut-off mode parameter can be found,

V ≡ 2πa

λ

√
n2

1 − n2
2 < 2.405, (3.6)

where V is the mode parameter, λ the wavelength and where the cutoff
is VC = 2.405. Obeying this inequality ensures that only one mode is
guided by the fiber. This fundamental mode is also known as HE11,
shorthand for hybrid electric - hybrid referring to the fact that there is a
non-vanishing longitudinal component of the field.
The HE11 mode has two polarizations, with the electric field outside the
core(r > a) given by,

E±z (r, φ) = CK1(qr)exp[±iφ] (3.7)

E±r (r, φ) = −C iβ
2q

[K2(qr)(1 + s) +K0(qr)(1− s)]exp[±iφ] (3.8)

E±φ (r, φ) = ±C β

2q
[K0(qr)(1− s)−K2(qr)(1 + s)]exp[±iφ], (3.9)

where E+(−) refers to the right-hand (left-hand) quasi-circular polariza-
tion, C is a constant proportional to the power and where

s =

[
1

(ha)2
+

1

(qa)2

] [
J ′1

haJ1(ha)
+

K ′1
qaK1(qa)

]
. (3.10)

From the two quasi-circular polarization modes, a quasi-linear polar-
ized mode can be constructed,

E↑(r, φ) =
E+(r, φ) + E−(r, φ)√

2
(3.11)

E→(r, φ) =
E+(r, φ)− E−(r, φ)√

2
. (3.12)
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The transverse components of the quasi-linear polarization are in phase
and behave like a linearly polarized mode. The longitudinal compo-
nent, Ez, is 90◦ out of phase with the transverse components leading to
an elliptical polarization parallel to the fiber axis. The longitudinal com-
ponent depends on the radial as well as azimuthal coordinate and thus
the ellipticity and helicity of the elliptical polarization varies around the
fiber. The magnitude of the longitudinal component is maximal in the
plane of the polarization and zero in the plane perpendicular to the po-
larization direction.

The electric field outside the core for the fundamental mode prop-
agates as an evanescent wave. Due to it being fiber guided there is
no diffraction of the evanescent field. The fast decay in addition to
the diffraction-less propagation are very desirable features for atomic
physics. In a standard optical fiber the evanescent field is fully con-
tained within the cladding. Therefore, to access this evanescent field
we, effectively, need to replace the cladding with free space. For a core-
air guided mode the numerical aperture will be close to one, NA =√
n2

1 − n2
2 ≈ 1, where n1 ≈ 1.5 and n2 = 1. Using equation 3.6 we

see, that the single mode condition can be fulfilled, at the appropriate
wavelengths (780, 852, 1060 nm) for a core-air interface if the radius of
the core is < 300nm.

500 nm

125 µm

A B

Figure 3.3 — Illustration of an optical nanofiber. An optical fiber with a diam-
eter of 125µm is gradually tapered (Region A) down to a diameter of 500nm.

Figure 3.3 depicts an illustration of an optical nanofiber. The stan-
dard 125µm single-mode fiber is tapered down to a waist section of
only 500 nm. At the waist the core becomes so thin that it can no longer
effectively guide the light and the light becomes cladding guided, with
the cladding now acting as the core and with free space acting as the
cladding. The fiber guided mode is allowed to be guided through the
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tapered region provided the taper angle is smaller than a certain thresh-
old, this is discussed in finer detail in chapter 5.
As the diameter of the fiber decreases the power of the evanescent field
increases.
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Figure 3.4 — Intensity distributions for different wavelengths. Left column
shows radial intensity distribution for x = 0 and y = 0. Right column shows
the transverse intensity distributions black circles indicate the fiber periphery.

3.2 Evanescent Field
For fiber diameters smaller than the wavelength of the guided light a
large proportion of the guided light propagates as an evanescent field.
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The intensity distribution is dependent on the direction of polarization,
leading to an azimuthally dependent intensity. Plotted in figure 3.4 are
the transverse intensities for three relevant wavelengths in our experi-
ment. The left column shows the radial decay of the field.

The decay length of the evanescent field depends on the wavelength
of the light - larger wavelengths have longer decay lengths. It is also
apparent that the intensity of the evanescent field is larger along the
axis of polarization. For a propagation mode as complicated as this, the
polarization pattern becomes highly non-trivial.

3.2.1 Polarization
The polarization pattern of the fundamental mode of a nanofiber is
somewhat complicated. The polarization pattern of the quasi-linear
polarization are plotted in figure 3.5. The transverse components are
nicely in phase and behave like a linear polarization. In figure 3.5 the
colormap refers to the ratio of the imaginary part of the longitudinal
field to the horizontal component. This gives us an indication of the el-
lipticity of the field. The ellipticity changes sign on the two sides of the
fiber and is maximal along the quasi-linear polarization direction. Com-
paring the polarization pattern to the intensities in figure 3.4 we see that
the region of highest intensity is also the region of maximum ellipticity.
As shown in chapter 2.2.1 the presence of circular polarizations give
rise to vector light shifts. These fictitious magnetic fields can be a sig-
nificant nuisance in the experiment due to the steep radial gradients of
the evanescent fields. The quasi-linearly polarized electric field is plot-
ted in figure 3.6 for different points in time. The longitudinal elliptical
polarization can be cancelled by counter-propagating light, polarized in
the same direction. The resulting polarization pattern is locally linear at
every point but with the polarization direction rotating along the axis
of the fiber see appendix A.
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Figure 3.5 — Plot of the polarization pattern of the evanescent field of a 500
nm fiber. Arrows indicate the transverse polarization direction, here horizon-
tal. The fiber cross-section is indicated by the grey circle. Colormap indicates
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CHAPTER

4
NANOFIBER ATOM TRAP

In chapter 2 we saw how an intensity gradient of far off-resonant light
leads to a dipole force, the strength of which depends on how steep the
gradient of the intensity is. In chapter 3 we found that the evanescent
field around an optical nanofiber has near exponential decay along with
diffraction-free propagation; suitable properties for generating strong
dipole forces.

In this chapter some of the considerations for building a nanofiber
trap are presented.

4.1 Trap Potential
Shown in chapter 2, the presence of a red detuned light field induces
a dipole force, pulling the atom towards the high intensity region. The
surface of the fiber also induces a short range Van der Waals force which
attracts atoms towards the surface of the fiber [Boustimi et al., 2002].
We want to keep the atoms from reaching the surface of the fiber since
this will lead to the atoms being ejected from the trap. We can create a
barrier towards the surface of the fiber by utilizing a blue detuned trap
field. The wavelengths chosen for the nanofiber trap are far detuned
from the D2 line, allowing us to disregard the hyperfine splitting of the
excited state manifold. Since the detuning is still at the same magnitude
as the fine structure splitting, the tensor shift will be determined by the
J quantum number. For the ground state of Cesium this is equal to
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1/2, cancelling the tensor shift of the ground state manifold. The vector
light shift can be cancelled by making sure that the local polarization is
linear. This is important as it ensures that the atoms feel the same dipole
force regardless of which ground state hyperfine level they are in.

Different trap schemes, using so called "magic" wavelengths, allow
for simultaneous cancellation of differential Stark shifts on both the
ground and excited state manifolds, [Lacrôute et al., 2012].

In chapter 3 we saw how the evanescent field around a nanofiber
has a near exponential decay and that this decay length depends on
the wavelength of the light. This property turns out to be critical for
establishing a dipole trap around a nanofiber.
As seen in equation 2.18, a far detuned field induces a dipole potential

Udip(r) =
~Ω2(r)

4∆
, (4.1)

where Ω(r) = 〈e|µ|g〉E(r)
~ is the Rabi frequency and ∆ is the detuning of

the field. This potential depends on the square of the Rabi frequency
and thus is linear in intensity. Modelling the evanescent field around
the nanofiber as a decaying exponential function we can write the po-
tential due to red- and blue detuned light as

U(x) = Be−xκb −Re−xκr , (4.2)

where B,R are the Stark shifts due to the blue- and red detuned fields,
respectively, and κb, κr the decay constant of the blue- and red detuned
fields, respectively. The existence of a local trap minimum is guaran-
teed if B > R and κb > κr. Since we are free to choose the power of the
trap fields the first condition is easily met. We know that larger wave-
lengths have longer decay lengths, therefore the second requirement is
also met.
The rotational asymmetry shown in figure 3.4 allows for azimuthal con-
finement of the atoms; by making the blue trap orthogonally polarized
w.r.t. the red trap we limit the azimuthal extent of the potential. Addi-
tionally two counter-propagating red beams are used, forming a stand-
ing wave. The standing wave modulates the potential along the axis of
the fiber, leading to trap-sites every half wavelength.

The trap potential is shown in figure 4.1 for a red detuned field at
1056 nm and a blue detuned at 783 nm. In the left panel we see the
azimuthal confinement, made possible by the orthogonally polarized
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Figure 4.1 — Plot of the trap potential around a 500 nm fiber. The potential is
formed using an attractive field at 1056 nm(red arrow, left panel) and a repul-
sive at 783 nm(blue arrow, left panel). The powers used are Pred = 2× 0.7 mW
and Pblue = 2 × 4 mW. Left panel shows the periodic nature of the standing
wave trap.

beams. The standing wave formed by the two red detuned beams re-
sults in a periodic potential in the axial direction, shown in the right
panel.

In the experimental implementation of the nanofiber trap we use
two counter propagating blue beams, detuned from each other by ∼
0.5 nm. Since this frequency difference is several orders of magnitude
higher than the trap dynamics the modulation of the trap will be aver-
aged out. This allows us to cancel the longitudinal circular polarization
of the evanescent field, eliminating vector light shifts from the blue trap
laser.
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Figure 4.2 — Potential along
the red trap polarization di-
rection. Powers are Pblue =
2 × 4 mW and Pred = 2 ×
0.7 mW. Note the anhar-
monicity of the potential.
Dashed lines indicate loca-
tion of potential minimum
and maximum, the horizon-
tal dotted line indicates the
potential minimum.

Figure 4.2 depicts the radial potential, along the polarization of the
red detuned trap field. Close to the fiber surface the Van der Waals force
dominates. The significant anharmonicity of the potential is an impor-
tant feature of the nanofiber trap and will be studied in more detail in
chapters 11 and 12.

4.1.1 Collisional Blockade Regime
The strong confinement of the atoms trapped around the nanofiber al-
lows us to operate in the collisional blockade regime, [Schlosser et al.,
2002]. In this regime no more than one atom may occupy each trap site,
due to atom-to-atom collisions becoming the dominant loss mechanism.
The verification that we in practice operate in the collisional blockade
regime is challenging, but it is generally assumed that nanofiber traps
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do operate in the collisional blockade regime, [Vetsch, 2010; Béguin,
2015].

4.1.2 The Lamb-Dicke regime
A major point of interest in the study of dipole traps is the manipulation
of the motional states. In chapter 2.3.4 the Lamb-Dicke parameter, η,
was introduced in the context of motional transitions. We found, that
the Lamb-Dicke parameter has to be sufficiently small for the resolution
of motional transitions, [Wineland et al., 1998]. We find that the Lamb-
Dicke parameter can be related to the recoil frequency of the trapped
atom

ωr
ωtrap

= η2.

This tells us that we need to have a trap frequency which is significantly
larger than the recoil frequency to minimize the likelihood of motional
state changing spontaneous scattering events. In chapter 7 and 9 we
will see that the trap frequency of a potential like the ones in figures
4.1 and 4.2 are ∼ 90 kHz, whereas the recoil frequency of the D2-line is
2 kHz.
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Experimental Work
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CHAPTER

5
NANOFIBER FABRICATION,
CHARACTERIZATION, AND
INSTALLATION

On the 5th of may 2019 our nanofiber Bertha was hit by a rogue piece
of dust. This meant that we had to take the fiber out and replace it with
a new nanofiber.

The work of pulling a new fiber took place within a preexisting
pulling setup, which had been sitting unused since 2017. Because of
this we had to reestablish the setup and learn the procedures. This was
made possible, in part, due to the help of Jürgen Appel who graciously
took out time to help us get to know the setup early in the process.

The process of pulling, characterizing and installing our new nanofiber,
named Didrik, in our setup will be presented in this chapter.

5.1 Overview of fiber pulling setup
In this section a brief overview of the main components of the fiber
pulling rig will be given.
The fiber pulling takes place inside a flow box 1 to reduce the amount
of dust in the air. A simplified diagram of the pulling setup is pictured
in figure 5.1.

The setup consists of the linear stages, (1), which are used to clamp
and pull the fiber. To make the fiber malleable a hydrogen-oxygen flame
is produced by a nozzle (2), supplied by high-pressure flasks of hydro-
gen and oxygen (3). The flow of hydrogen and oxygen is regulated

1Shilling engineering: CleanProCel
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AND INSTALLATION
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Figure 5.1 — Simplified diagram of the pulling setup. The different numbered
sections are described in the text. Figure heavily inspired by [Pedersen, 2017].

using a set of gas flow regulators, (4). The fiber is derived from a spool
of Thorlabs 780HP single-mode fiber (5). Light at relevant wavelengths
(780, 852, 1056 nm) is coupled into the fiber (6) and monitored during
the pulling sequence using a homebuilt photodetector (7). A magnetic
base (8) allows for easy installation and removal of the fiber camera,
probe fiber and nanofiber tuning-fork holder. Laser pointers are posi-
tioned from the side and from the top of the stages, (9), to allow for
alignment of the stages.

5.1.1 Fiber cleaning and inspection
The unjacketed Thorlabs 780HP fiber comes equipped with a protective
layer of acrylate. This coating needs to be removed prior to pulling
as any remnant will produce soot on the surface of the fiber during
burning. The coating is stripped off using an oven stripper, which heats
up the coating allowing it to subsequently be scraped off using a pair of
blades. The fiber is finally wiped off with acetone or ethanol to remove
any remnants of the coating.

The fiber is imaged with a camera after stripping to ensure that the
coating has been fully removed. The camera is mounted on a mag-
netic plate (8) and the fiber is moved, using the stages, very slowly(∼
0.5 mm/s) underneath the camera. If any dirt is present the fiber is
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wiped off once again. It typically requires a handful of attempts before
the fiber is sufficiently clean to proceed with the pulling process.

Fibers meant to go into vacuum are typically discarded after two
or three unsuccessful cleanings as the wiping might introduce micro-
fractures in the fiber, which can reduce the survivability.

5.1.2 Stage alignment
To avoid asymmetry of the nanofiber we need to ensure that the pulling
stages are properly aligned. Misalignment of the stages can lead to un-
predictable nanofiber widths and can lead to the fiber breaking during
the pulling procedure.

Figure 5.2 — Illustration of the pulling stages. Left panel shows the stages
in profile. Right panel shows a top-down view of the fiber slots. the upper
stage can move independently of the lower stage. The pitch and yaw can be
adjusted for both stages. The right stage allows for both vertical and horizontal
adjustment.

The pulling stages are pictured in figure 5.2. The pulling stages,
made by Steinmeyer2, are two separate linear stages, stacked on top
of one-another. The top stage can move independently of the bottom
stage. Moving the bottom stage allows for translation of the entire
pulling setup. This is useful as it allows for linear movement of the
fiber which is important for inspection purposes as well as characteri-
zation. The stages are driven by servo motors with PID control for the
position and velocity3.

The right panel of figure 5.2 shows a top down view of the stages.
Both the top and bottom stage have yaw and pitch degrees of freedom.
The bottom stage additionally allows for XYZ-translation. The stages
have V-grooves for seating a stripped fiber. The fiber is then held in
place using a clamp and a rubberized magnet.

2PMT-160-150-DC05-R and PMT-160-050-DC38-R
3Galil DMC-2143
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The alignment of the stages can be carried out in two different ways.
The first is using the diffraction pattern of a green laser pointer. At the
two points (9) in figure 5.1, laser modules can be installed. The one from
above allows us to align the yaw of the stages, while the one from the
side allows for pitch alignment. The alignment is carried out by putting
a stripped fiber end into the fiber clamps. The fiber is then periodically
moved backwards and forwards. If the diffraction pattern created by
the fiber changes, the alignment can be adjusted to compensate. We use
a fiber end since using a full piece of fiber, bridging the gap between
the two stages, would result in the fiber being tensioned, which would
be released as the fiber elongates during pulling. To make the XYZ-
alignment we first place a stripped fiber across the two stages. We then
take a picture of the fiber at the top stage and move the bottom stage.
If the image at the bottom stage is shifted laterally or out of focus we
adjust this with the bottom stage. This is the method reported to be the
most effective in past incarnations[Pedersen, 2017]. However we found
that this method was not always reliable.

Figure 5.3 — Images of pulled fibers. Left panel shows badly aligned yaw of
the stages. The right panel shows good alignment of the stages. Note that
these images are not to scale with the horizontal direction compressed by a
factor of 40.

The second method for aligning fibers involves pulling a piece of
fiber, taking an image of the fiber, like the ones seen in figure 5.3, and
seeing if there is any misalignment. By adjusting the alignment, pulling
a fiber and then imaging we can gradually improve the alignment. While
this method is slow and cumbersome it is at times the best way to reli-
ably achieve proper alignment of the stages.
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5.1.3 The Flame
Fiber pulling relies on creating a small hot zone where the fused silica of
the fiber transitions and becomes fluid. The temperature at which this
occurs is above 1500◦K. In order to produce such a flame we use a 2 : 1
hydrogen-oxygen mixture, controlled by gas flow regulators4, (4). The
flame is sufficiently hot and its only biproduct is water, which evapo-
rates off of the fiber. A nozzle (2), custom made by the NBI mechanical
workshop, is used to produce the flame. The nozzle is mounted on rails
that allow it to be moved away from and towards the fiber. The flame
is ignited using the spark from a normal gas lighter.

In the past the nozzle performed inconsistently, with flashbacks into
the nozzle, leading to the extinction of the flame, or the flame simply not
being hot enough. This was typically accompanied by a high-pitched
tone emitted by the nozzle and a red glow of the tip of the nozzle.

We found that the inconsistencies of the nozzle could be ameliorated
by introducing a heatsink. A wingnut was cut and pressure fit over
the tip of the nozzle. This greatly improved the stability and after this
modification there were seldom any issues with the performance of the
flame.

5.1.4 Pulling procedure
The fibers used for pulling are single mode at wavelengths of 780 nm
and above. To ensure that no higher order modes are excited as the fiber
is tapered down to the desired radius of∼ 250 nm we need to make sure
that the tapering is adiabatic. This can be achieved if the taper angle is
much smaller than the limiting angle[Love et al., 1991],

Ω(z) = a
β01 − β02

2π
, (5.1)

where a is the fiber radius, β01 and β02 are the propagation constants for
the fundamental and first excited mode. The limiting angle for relevant
wavelengths is plotted in figure 5.4. The simplest way to ensure that
one stays below this limiting angle is by using a linear taper. We use a
linear taper with a taper angle of 2 mrad.
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Figure 5.4 — Limiting an-
gle for 780 nm, 852 nm and
1060 nm. Dashed line marks
the 2 mrad taper angle chosen
for fiber pulling.

The pulling algorithm makes use of small consecutive asymmetric
pulls, gradually building the linear taper. The pulling trajectory is pre-
programmed and was optimized by Freja T. Pedersen, [Pedersen, 2017].
During the pulling procedure the transmission is monitored using light

4Omega: FMA 5510-ST
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Figure 5.5 — Plot of nanofiber transmission during pulling. Left panel shows
a bad pull, where the fiber broke. Right panel shows a good pull with trans-
mission of∼ 99 %. Inset shows the periodic dips in signal halfway through the
pull.

at 852 nm. Figure 5.5 shows transmission data for two fiber pulls; one
where the fiber broke and one where it survived.

The periodic dips in signal between 25 mm and 30 mm pulling length
appear when the fiber diameter approaches the point where the limit-
ing angle is minimal. The dips occur synchronized with the turning
points of the pulling sequence which speaks for it being related to inter-
mediate large taper angles while the linear taper is being built. These
lead to the excitation of higher order modes which cause interference.
These dips subside however and transmissions of > 99 % are routinely
achieved.

5.1.5 Waist Measurement
The waist characterization is done using the method of higher order
mode beats, [Fatemi et al., 2017]. The guided modes of a fiber are gov-
erned by their respective propagation constants β. By sending light at
523 nm, which is below the single mode cutoff, through the nanofiber
we get excitation of higher order modes. The evanescent field can then
be picked up by a probe fiber with a diameter of a few µms by making
the two touch, figure 5.6. The probe signal is shown in figure 5.7.

532 nm

To PD

PF

NF

Figure 5.6 — Probe fiber
setup. A ∼ 1µm thick probe
fiber(PF) is pushed against
the nanofiber(NF), allowing
for evanescent coupling of
higher order modes.

The difference in propagation constant for different modes gives rise
to interference as the nanofiber is moved across the probe fiber. The beat
frequencies can be found using a Fourier transform, however in order
to preserve spatial information, i.e. position along the nanofiber, we use



5.1. OVERVIEW OF FIBER PULLING SETUP 43

5.0 7.5 10.0 12.5 15.0
Fiber axis [mm]

0

5

10

Tr
an

sm
is

si
on

[V
]

Figure 5.7 — Signal from probe fiber taken with a scanning speed of 0.1 mm/s.
The signal oscillations are used to determine the beat frequencies of the higher
order modes. As we scan along the axis of the fiber, the signal increases as
more light propagates as an evanescent field.

a technique known as the Gabor transform[Gabor, 1947], defined as

G(x) =

∫ ∞
−∞

T (x′)e−π(x′−x)2/ζ2e−iβx
′
dx′, (5.2)

where T (x′) is the transmission signal, x and ζ are the position and
width of the window and β is the spatial beat frequency. The Gabor
transform of the probe signal is plotted in figure 5.8. We see distinct
modes, which increase in beat frequency as the fiber diameter shrinks.

The fiber diameter is then determined by estimating the point where
the spatial beat frequencies intersect the theoretical.

While this method is "non-destructive" it does, however, risk trans-
ferring dust to the surface of the nanofiber. We can therefore not make
a waist measurement of the final fiber since this must be completely
dust-free. Over the course of several months we measured the waist
of pulled fibers and found that we could consistently get fibers with
diameters of ∼ 490 nm.
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Figure 5.8 — Gabor transform of the probe fiber signal. Left panel shows the
Gabor plot dashed lines represent the spatial beat frequencies of the nano sec-
tion. Right panel shows beat frequencies between different guided modes for
different fiber diameters. Vertical line shows the estimated diameter of the
nanofiber, ∼ 490 nm.

5.2 Fiber installation
The process of installing the nanofiber involves mounting the nanofiber
to a holder for the vacuum, pumping and baking the vacuum chamber
and splicing connectorized fiber ends to the nanofiber.

Due to slight differences in the mounting of the fiber, the alignment
of the nanofiber with respect to the center of the MOT ended up being
slightly off. Therefore realignment of the MOT was necessary. This will
also be covered briefly.

5.2.1 Fiber gluing
The nanofiber is glued onto a glass holder using UV glue, glue points
shown in figure 5.9. The glass holder is pressure fit onto a steel rod
which is attached to a CF-flange5 for the vacuum chamber. The CF-
flange has threaded feedthrough holes which allows for a fiber to be
coupled into the vacuum can. The fiber ends are passed through a
Teflon ferrule which is compressed by a Swagelok nut,[Abraham and
Cornell, 1998]. To avoid twisting the fiber ends a washer is placed in
between the ferrule and the Swagelok, figure 5.10.

5ConFlat
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Figure 5.9 — The glue points on the nanofiber holder. The green spots indicate
the glue points used to attach the nanofiber to the holder.

Figure 5.10 — Fiber
feedthrough using a Teflon
ferrule and Swagelok nut.

5.2.2 Pumping and baking
In order to efficiently trap atoms we require an ultra high vacuum,
roughly 10−9 mbar. The vacuum is established in three steps while
being monitored using an ion vacuum gauge6, plotted in figure 5.11.
The first step is using a turbo pump to bring the pressure down to
∼ 7 × 10−8 mbar. During this initial pump down we send high powers
of light(>20 mW) through the fiber, to make sure that it can withstand a
reasonable amount of power. While pumping down we monitor poten-
tial leaks. One of the main sources of leaks is the fiber feedthrough. The
Swagelok nut is gradually tightened to reduce leaks. It is, however, im-
portant to take care not to overtighten the Swagelok as this may affect
the fiber shape and transmission and can in the extreme case damage
the fiber. The vacuum chamber is then wrapped in heater wire, which
allows us to gradually increase the temperature of the vacuum cham-
ber. Since the chamber has been exposed to air, the inner surfaces will
have accumulated water vapor, which we can evaporate off. We heat
the vacuum chamber to roughly 100◦ Celsius. This temperature is cho-
sen such that we do not compromise the UV-glue used to mount the
nanofiber. After baking, the pressure is close to 10−8 mbar. The Cesium
dispensers are flashed by supplying them with roughly 4 A of current to
release any water or other grime, which might have accumulated while
exposed to air.

Finally our ion pump is turned on to bring the pressure down to
∼ 10−9 mbar. The nanofiber ends are then spliced onto connectorized
fibers, using a fusion splicer. We get estimated splicing transmissions
of > 99% and > 95% for the two fiber ends. The vacuum chamber is

6AML: PGC2 UHV Vacuum gauge
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Figure 5.11 — Pressure in the vacuum chamber during baking. The initial in-
crease in pressure is due to the increasing temperature. At roughly 25 hours
the Cesium dispensers are flashed on, briefly increasing the pressure substan-
tially. The final spike occurs when the ion pump is turned on.

then transported into the optical setup, where the ion pump continues
to run.

5.2.3 MOT alignment
In order to load the nanofiber trap we first need to gather atoms. This is
done using a magneto-optical trap. When installing the nanofiber into
the optical setup it is necessary to ensure that the position of the nano-
section of the fiber sits at the center of the MOT. The process of aligning
the MOT is iterative and somewhat time consuming. Each of the six
MOT beams have two angular degrees of freedom and can be trans-
lated in all direction. Three sets of compensation coils allow for can-
cellation of the Earths magnetic field as well as finetuning of the field
zero of the MOT coils. The initial optimization of the MOT is done by
looking at infrared cameras pointing at the fiber, sitting orthogonally
to each other, images are shown in figure 5.12. During the loading of
the nanofiber trap, the detuning of the cooler is increased and the mag-
netic field strength is ramped down. This means, that the equilibrium
position of the MOT will be subject to change, if the MOT beams and
magnetic center are not nicely aligned. We can adjust the field zero of
the magnetic field by moving the MOT coils or using the compensation
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Figure 5.12 — Images of the MOT overlapped with the nanofiber.

coils to fine tune the position. The MOT is aligned, such that it remains
stationary over the course of a sub-doppler cooling procedure.

Once the first atomic signal is acquired, we optimize the MOT w.r.t.
the detected signal through the nanofiber.





CHAPTER

6
EXPERIMENTAL SETUP AND
PROCEDURES

In this chapter a description of the experimental setup will be presented.
Our dispersive probing scheme along with the practical implementa-
tion will be presented. The different methods for coherent manipula-
tion of atomic states will also be presented with emphasis on a dipole
force-free Raman scheme. Finally, a typical experimental sequence will
be outlined.

6.1 Probing scheme
The small effective mode area of the evanescent field of the nanofiber
guided light allows us to operate within the strong coupling regime
[Balykin et al., 2004; Warken et al., 2007; Solano et al., 2017], with an
optical depth (OD) of about 2.4 % per atom, [Béguin, 2015]. The strong
coupling opens up the opportunity to work with a dispersive probing
scheme.

The probing scheme, implemented by J.-B. Béguin, [Béguin et al.,
2014], makes use of two symmetrical sidebands propagating through
the atomic ensemble. The carrier is locked close to the |F = 4〉 → |F ′ = 5〉
transition, with the sidebands placed at ±62.5 MHz, corresponding to
roughly 12Γ1. The carrier acts as a local oscillator(LO), with the two
sidebands propagating through the nanofiber, interacting with the atoms.
The absorption and dispersion around an atomic transition is plotted in

1Natural linewidths for the D2 line
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figure 6.1. We see that the sign of the refractive index changes on either
side of the transition. This means that the two sidebands acquire phase
shifts from the atoms of equal magnitude but opposite sign.

−12Γ −6Γ 0Γ 6Γ 12Γ

Figure 6.1 — Absorption and
dispersion. Dashed lines are
the lower sideband, carrier
and upper sideband.

The sidebands are overlapped with the LO on a photodetector. The
resulting beatnote can then be filtered, amplified and IQ-demodulated,
yielding signals where the in-phase and quadrature components are
proportional to

Sin(t) ∝ ELO
{
Ē cos(Φref) cos

(
∆Φ̄
)

+ ∆Ē sin(Φref) sin
(
∆Φ̄
)}

Sq(t) ∝ ELO
{
Ē cos(Φref) sin

(
∆Φ̄
)
−∆Ē sin(Φref) cos

(
∆Φ̄
)} (6.1)

Φ̄ =
Φ1 + Φ2

2
, ∆Φ̄ =

Φ2 − Φ1

2

Ē =
E1 + E2

2
, ∆Ē =

E2 − E1

2
Φref = ΦLO − Φ̄

(6.2)

where E1,2 and Φ1,2 are the field amplitude and phase shifts of the two
sidebands. By balancing the two sidebands, i.e. minimizing ∆Ē , we
only get the second term of the two equations in 6.1. By choosing an
appropriate LO phase, ΦLO, we can maximize the in-phase signal in
the absence of atoms. We note that for small ∆Φ̄ the in-phase signal
S in(t), is, to first order, only sensitive to changes in Ē . The other quadra-
ture Sq(t), on the other hand, is maximally sensitive to changes in ∆Φ̄.
The asymmetry of the atomic phase shift means that the differential
phase, ∆Φ̄, is sensitive to atomic phase shifts, while suppressing com-
mon mode phase shifts, such as elongation of the fiber. We can then
extract the atomic phase shift, ∆Φ̄, by the following,

∆Φ̄ = tan−1

(
Sq(t)

Sin(t)

)
. (6.3)

The quantity ∆Φ̄ is what is used to quantify the atomic population in
the experiments presented.

6.1.1 Practical implementation
A schematic of the practical implementation of the two color probe is
shown in figure 6.2. The probe sidebands are derived from an extended
cavity diode laser(ECDL) locked close to the |F = 4〉 → |F = 5′〉 tran-
sition. The light is split into the LO and sidebands using a polarizing
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beam splitter(PBS). The transmitted light is double-passed through an
acousto-optic modulator(AOM), with a modulation frequency of 62.5 MHz.
The 1st and -1st diffraction orders of the AOM are picked off and co-
propagated into the nanofiber.

Figure 6.3 shows the method for generating the sidebands; the in-
coming light is shifted by the AOM and retro-reflected by a concave
mirror, the 1st order is generated on the first pass and is unshifted beam
second pass, the -1st order is obtained by taking the 0th order on the
first pass and the -1st order on the second. The two co-propagating
sidebands are coupled into the nanofiber.
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/2 /2

PBS PBS

From laser

Figure 6.2 — Light derived from an ECDL is used to generate sidebands at 62.5
MHz using an AOM. The sidebands propagate through the atomic ensemble
and are detected using heterodyne detection.

The unshifted light is used as a local oscillator. One mirror of the
LO path has a piezoelectric crystal attached, allowing for stabilization
of the interferometer arm. The LO path length is locked during MOT
loading, when no atoms are present in the dipole trap, by maximizing
the in-phase signal. Using a PBS and a waveplate the sidebands and LO
can be overlapped and the power impinging on the detector adjusted
using a second set of PBS and waveplate.

(1,-1)

(1)

(0)

Figure 6.3 — Generation of
probe sidebands. The car-
rier light is passed through an
AOM. The 1st and 0th order
are retro-reflected picking up
a 0 and -1 shift respectively.
The (1,-1) co-propagate to the
nanofiber.

The probe polarization is parallel to the red trap laser. This means
that the polarization of the probe at the trap minimum is elliptical. The
probe will therefore optically pump the atoms into the outer mF levels.

This effect is apparent in figure 6.4; the initial transient is a result of
the increased interaction strength, due to larger Clebsch-Gordon coeffi-
cients, of the outermost mF levels. The initial transient is followed by
an exponential decay as a result of the heating of atoms in the trap.
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Figure 6.4 — A typical probing trace. The atoms are initially pumped into the
extreme mf levels by the probe, this leads to an increase in signal due to larger
Rabi frequencies. The signal subsequently decays due to heating of atoms.

6.2 Atomic transfer
Performing experiments on the trapped atoms requires coherent ma-
nipulation of the state of the atoms. We have two ways of doing co-
herent state transfers between the ground state hyperfine levels in our
experiment; microwave pulses and stimulated Raman transitions.

6.2.1 Microwave
The microwave pulses are controlled using a DDS (Direct Digital Syn-
thesizer) and allows for precision control of the microwave frequency.
The microwave frequency is stabilized using a GPS reference to disci-
pline a local crystal oscillator.

The microwave allows us to drive the hyperfine transitions directly,
however, since these are electric dipole forbidden the transition must be
driven using magnetic dipole transitions. These are inherently slower
than their electric counterpart, which means that high microwave pow-
ers are necessary to achieve moderate Rabi frequencies. In our case the
power of the microwave is on the order of 10 W leading to a Rabi fre-
quency of ∼ 40 kHz, shown in figure 6.5.
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Figure 6.5 — Microwave Rabi
oscillations. Rabi dashed line
is a cosine fit yielding a Rabi
frequency of 37.54(13) kHz.

We have two microwave horns at our disposal in the experimental
setup. One for linearly polarized pulses and one for circularly polarized



6.2. ATOMIC TRANSFER 53

pulses. Switching between the two microwave horns is cumbersome
and cannot be done during experimental sequences. The addition of a
relay would allow for fast switching between the two microwave horns.

The microwave wave-front is homogenous on the scale of the atoms.
This makes it ideal for driving transitions on the entire atomic ensem-
ble. The same homogeneity, however, also means that we cannot drive
motional transitions in the trap.

6.2.2 Raman laser
Aside from the microwave horn we can also transfer atoms between the
ground state hyperfine levels using Raman transitions. Raman tran-
sitions have the benefit of being two-step electrical dipole transitions
and therefore allow for significantly larger Rabi frequencies at lower
powers. Furthermore since the Raman light can be coupled through
our nanofiber, the spatial inhomogeneity of the Raman light allows for
coupling between motional states of the atoms, enabling the resolution
of motional sidebands. However, the same spatial inhomogeneity also
limits the transfer of atoms due to motional dephasing and for fast co-
herent transfer, more sophisticated pulsing schemes are required, [Øst-
feldt, 2017].

Δgs

Δgs

Δ

F=4

F=3

Fʹ

Figure 6.6 — A standard
lambda system. The car-
rier is detuned by ∆ form-
ing a virtual level. For the
lower ground state the two
Raman fields are red detuned
with respect to the excited
level, whereas for the up-
per ground state the carrier is
blue of the transition.

For a standard λ system, such as the one in figure 6.6, there is no way
to choose the field amplitudes and/or detunings to allow for the same
Stark shift of both ground state levels. The difference in Stark shift re-
sults in the level splitting changing. The Stark shift is dependent on the
intensity and as such large intensity gradients will lead to inhomoge-
neous broadening of the transition. The nature of the nanofiber guided
modes results in steep spatial intensity gradients and therefore strongly
affect the atoms. Since we are ultimately interested in driving motional
transitions and by that resolve the motional sidebands, we need to limit
the effects of inhomogeneous broadening.

The differential Stark shift can, however, be cancelled by using a
Raman scheme involving more than two fields.

6.2.2.1 Dipole force-free Raman scheme

The working principle of the dipole force-free Raman scheme is to have
a carrier with two symmetrical sidebands, enabling the cancellation of
differential light shifts, see figure 6.7. A detailed description of the
scheme can be found in [Østfeldt et al., 2017]. The take-home points
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are that such a Raman system allows for cancellation on the |F = 0〉 →
|F ′ = 0〉 transition if the carrier detuning w.r.t the excited state manifold
is approximately ∆hf

2
, where ∆hf is the hyperfine splitting of the ground

state, and if the sideband to carrier power ratio is ∼ 1.5. Using sepa-

Fʹ

F=4

F=3

Δhf

Δhf

2

Δhf

2

Figure 6.7 — Dipole force-free Raman scheme. Carrier, lower sideband and
upper sideband separated by approximately the hyperfine splitting, ∆hf. The
carrier is detuned from the F ′ manifold by ∆hf

2 .

rate lasers to implement this scheme would be cumbersome, which is
why the sidebands are derived from the carrier. An Electro Optic Mod-
ulator(EOM) is used to generate the sidebands. The EOM modulates
the phase of the light, generating sidebands at integer multiples of the
modulation frequency, where the modulation strength determines the
power in the sidebands. The practical implementation of the scheme

EOM

AOM @120MHz

PBS

Pol.

Pol.

From laser

To nanofiber

λ/2

λ/2

λ/2

Figure 6.8 — Light derived from an ECDL is used to generate sidebands at 62.5
MHz using an AOM. The sidebands propagate through the atomic ensemble
and are detected using heterodyne detection.
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is depicted in figure 6.8. Light derived from an ECDL is sent through
an AOM allowing for pulsing down to a ∼ 40 ns timescale. The light
is then propagated through a fiber-coupled EOM. The EOM is supplied
with an RF pulse, where the frequency, amplitude and phase can be con-
trolled on a 4 ns timescale using a DDS. The RF amplitude is typically
measured in terms of DDS units, i.e. the units set within the computer
controlled DDS board. A discussion on the practical cancellation of the
differential Stark shift is presented in chapter 8.

6.3 A run of the experiment
There are several lasers involved in running the experiment; all of which
are extended cavity diode lasers (ECDL). The repumper, cooler, probe,
and Raman laser are locked using OPLLs2, developed by [Appel et al.,
2010]. The repumper acts as a master to which the other lasers are
locked. The repumper is locked using saturated absorption spectroscopy
on the transition from F = 3 to the 3 × 2 cross-over in the excited state
manifold. The cooler, probe and Raman lasers are beatnote-locked to
the repumper signal. We have three trap lasers, none of which are
locked; one red detuned at 1064 nm and two blue detuned at 782.5
nm and 783 nm. The red trap laser is split into equal parts which are
counter-propagating through the nanofiber, figure 6.9. The two blue
trap lasers are propagating from either side, the counter propagation of
the two slightly detuned beams cancels the local circular polarization at
the trap minimum to limit the fictitious magnetic fields.

Blue 1
783 nm

Red
1064 nm

Blue 2
782.5 nm

Probe
852 nm

Raman
852 nm

Figure 6.9 — The nanofiber trap is formed by propagating trap light through
the fiber. Red trap light is counter propagated to form a standing wave. We
counter propagate two blue lasers with slightly different frequencies to cancel
fictitious magnetic fields.

2Optical phase locked loop
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Figure 6.10 — A typical experimental sequence. The MOT is loaded and sub-
sequently cooled using gray molasses. This is followed by loading into the
nanofiber trap. The experimental sequences take place briefly before the de-
tection in the measurement stage.

A typical experimental sequence is shown in figure 6.10. The Ce-
sium atoms are initially loaded in a magneto-optical trap. This brings
the atoms down to about the doppler temperature. This, however, is
not quite cold enough to efficiently load the nanofiber trap. We use this
opportunity to lock the detection interferometer, while no atoms are
present in the trap. Next step is to further cool the atoms. To do this a
subsequent sub-doppler cooling routine is employed. We use gray mo-
lasses, or blue Sisyphus cooling, to cool the atoms down to a theoretical
temperature on the order of tens of the recoil temperature. The actual
temperature reached during this sub-doppler stage is not of great im-
portance since we mainly focus on optimizing the cooling with respect
to dipole trap loading. The MOT loading takes approximately 3 sec-
onds while the sub-doppler cooling step takes roughly 40 ms. During
the sub-doppler cooling stage the quadrupole field for the MOT is grad-
ually reduced.
The atoms are at this stage cold enough to be efficiently loaded into the
nanofiber trap. After the loading we perform the desired state manip-
ulation. The probe is turned on, typically along with the repumper to
read out the atomic population after an experiment.



CHAPTER

7
NANOFIBER TRAP
PARAMETERS

In this chapter, some of the characterization measurements carried out
on the new fiber will be presented.

7.1 Trap heatmap
To optimize the trap we need to find the best trap power configuration.
This is done by scanning the trap powers and measuring the resulting
phase shift, seen in figure 7.1. We find the optimum to be roughly 4 mW
per blue and 1 mW per red. The theoretical optimum configuration is
∼ 0.8 mW per red for a total blue power of 8 mW. This puts us slightly
above the expected amount of red trap power. This has been the case
in all previous incarnations of the experiment [Béguin, 2015; Østfeldt,
2017; Hansen, 2018; Markussen, 2020]. The cause of this is not known,
but might be due to bad contrast of the red standing wave - if the red
trap polarizations are not nicely aligned the anti-nodes of the standing
wave will be weaker. It is also possible that the blue trap polarization
is not exactly orthogonal to the red trap polarization. This means that
there will be more blue power at the trap sites and thus more red power
is needed to balance the trap.

Increasing the overall trap power should, in principle, only lead to
a deeper trap and thus more atoms, however, we find that the signal
decreases when the power level crosses some threshold. We noted a
significant amount of macroscopic vibration of the nanofiber when ex-
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Figure 7.1 — Heatmap of maximum measured phase shift for different trap
power combinations. Maximum value measured is annotated in the figure.

ceeding ∼ 5 mW per blue beam. This might be an explanation as to the
decrease in signal.

There is a clear trend in the heatmap, leading to an optimum ratio of
powers. This is expected since, if we consider the potential as described
in chapter 4, we can write this as,

U = Be−xκb −Re−xκr , (7.1)

where B is the power of the blue trap light, with decay constant κb, and
R is the power of the red trap light, with decay constant κr. If we think
of the optimum trap configuration we can think of the blue power as
being B = aR, where a is a ratio. We can therefore factor out the red
power,

U = R
(
aexκb − e−xκr

)
, (7.2)

and we see that this simply scales linearly with power.
An interesting feature is the asymmetry around the maximum; an

excess of red power leads to a steeper drop in signal. In this case the
potential barrier towards the fiber surface is lower and thus trapped
atoms are more likely to hit the fiber surface, heating them up and eject-
ing them from the trap. With an excess of blue trap light the potential
barrier towards the fiber is taller, but the trap is also shallower.
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7.2 Trap sloshing frequency
We now turn to the trap frequency. We can get an estimate of the radial
trap frequency by pulsing off the red detuned trap light. This leaves the
trap with only the repulsive part and thus gives the atoms a radial kick.
The resulting sloshing of the center of mass of the atomic ensemble can
then be measured to give an estimate of the radial trap frequency. The
red trap is turned off for 100 to 600 ns. The resulting probe signal is
modelled as a damped harmonic oscillation,

S(t) = Ae−t/T cos(2πft+ φ) + k, (7.3)

where A is the oscillation amplitude, T is the damping time, f is the
trap frequency, φ is the phase and k is an amplitude offset. The data is
fitted from t = 200µs, figure 7.2.
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Figure 7.2 — Measurement of trap sloshing frequency. Left panel shows traces
with the dashed line marking the pulse-off time at 200µs. Data is averaged
over 25 cycles. Right panel shows the fitted traces, shown with solid lines.
Trap frequencies are plotted in figure 7.3

The overall dip in signal is due to loss of atoms during the pulse
off, with longer pulse off times resulting in larger atom loss. We find
a trap frequency of ∼ 106 kHz, consistent with previous measurements
[Markussen, 2017; Andersen, 2018; Hansen, 2018; Østfeldt, 2017]. The
trap frequencies are plotted in figure 7.3. The trap configuration for
this measurement was done with slightly more trap power than what
is used in the rest of the thesis, with roughly 10 mW of total blue power
and 1.25 mW per red.
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Figure 7.3 — Trap frequencies
found in figure 7.2.
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7.3 Trap lifetime
Finally we would like to characterize the lifetime of our trap. To do so
the trap is loaded and after a variable delay the probe is turned on. The
points used, are the maximum phase shift acquired during the probing
intervals. The data is plotted in figure 7.4. The points are fitted with an
exponential decay,

S(t) = Ae−t/T + k, (7.4)

where A is the initial phase shift, T is the lifetime and k is an amplitude
offset.
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Figure 7.4 — Lifetime measurement of the trap. The probe is turned off after a
variable delay after trap loading. The solid line is an exponential fit, yielding
a lifetime in the trap of T = 14.3 ms

The fit yields a decay time of 14.3 ms. This is quite a bit less than the
24.4 ms observed in the our old nanofiber, [Østfeldt, 2017]. The reason
for this has yet to be determined, but certain observations made in the
experiment might point to an explanation. As mentioned in section 7.1
there is a significant amount of macroscopic vibration of the nanofiber,
when exceeding a power level of 10mW of blue power. These vibra-
tions might play a role, but given the fact that the vibrations are visible
on the fiber cameras it seems unlikely that they are fast enough to play
a role on an atomic scale.

What might also be contributing to the shorter lifetime is laser noise.
We observed a significant amount of trap laser noise. This will be cov-
ered in the next section 7.4.
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7.4 Noise
In the process of characterizing the nanofiber and optimizing the setup
we also investigated the torsional modes of the fiber. This lead to the
observation that two of the trap lasers were quite noisy. Only the mea-
surement of the noise was carried out, but no mitigation of the noise
was done.

7.4.1 Torsional modes
The vibrational modes of the fiber can have an impact on the trap life-
time, as heating of the atomic motion can lead to the expulsion of atoms
from the trap, [Hümmer et al., 2019]. To measure the vibrational modes
we place a polarizer at 45◦ w.r.t. the red trap polarization. The refractive
index of the fiber is modulated by the vibrations and thus translate into
a modulation of the polarization. This can then be measured on a pho-
todetector. It is instructive to understand where the torsional modes
of the fiber are since these vibrations may lead to heating if they are at
the wrong frequency. The spectra shown in figure 7.5 exhibit a large
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Figure 7.5 — Measurement of torsional modes of the nanofiber. The broadband
noise of the laser obscures most of the torsional spectrum, with the exception
of a peak at ∼ 270 kHz and ∼ 60 kHz.

amount of broadband noise at low frequencies. This was found to be
due to amplitude noise of the red trap laser, which will be discussed in
more detail in the next subsection.
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We do not have a more complete spectrum of the torsional modes
of the fiber, than what is shown in figure 7.5. This means that there
could possibly be torsional modes at frequencies close to the trap fre-
quency. We do however see peaks at ∼ 270 kHz and ∼ 60 kHz which
coincides with the measurements taken on the old fiber, [Østfeldt, 2017].
In [Østfeldt, 2017] torsional modes were found at 66 kHz and 270 kHz,
however there was no broadband laser noise as seen in figure 7.5.

7.4.2 Laser noise
We note that most of the broadband noise and peaks present in the tor-
sional mode spectrum are in fact due to noise on the trap lasers them-
selves. The broadband noise in figure 7.5 was due to a poorly optimized
AOM, which led to fluctuations in the coupling efficiency. We were able
to reduce the amount of noise after the AOM. However, we found that
there was still noise on the laser. We were able to trace down the noise
to the current controller for the laser module. The amplitude noise is
plotted in figure 7.6. We note that there is noise present on both the red
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Figure 7.6 — Amplitude noise of the trap lasers.

trap laser and one of the blue trap lasers. The noise is also of a simi-
lar character. The noise shows up when the current controller modules
have heated up. We concluded that the noise was simply due to degra-
dation of the electronic components of the current controllers.

We were, however, not able to get rid of the noise on the lasers.
We started investigating the noise on the lasers before we had our first
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signal and were somewhat concerned that this was keeping us from
trapping atoms. It turned out to not be the limiting factor and once
atomic signal was acquired we abandoned the search for the source of
the noise, but it remains a possible explanation for the low lifetime of
the trap.





CHAPTER

8
STARK SHIFT
CANCELLATION

In this chapter the efforts to balance differential Stark shifts, due to the
Raman laser, will be presented. In chapter 6.2.2.1 a dipole force-free
Raman scheme was presented. This scheme allows for cancellation of
differential Stark shifts on the clock transition by proper choice of side-
band to carrier ratio. As discussed in chapter 6.2.2.1 we can manipulate
the sideband to carrier ratio using a DDS pulse, with a power given in
DDS units. This is how we will refer to the modulation power through-
out this discussion.

Our main tool for balancing differential Stark shifts is the Ramsey
sequence, seen in figure 8.1. As shown in chapter 2, an atom in an
equal superposition under the effects of a detuning, will begin to pre-
cess around the equator of the Bloch sphere. The states position on the
equator affects the way the atom interacts with the light. Under the ef-
fects of a Stark shift the atom experiences a detuning from the hyperfine
transition, causing the atom to precess around the equator of the Bloch
sphere.

In practice this experiment is carried out by applying a resonant
microwave π/2 pulse to establish an equal superposition, then, after a
waiting time, applying a second π/2 pulse with variable phase to com-
plete the transfer. During the waiting time a Raman pulse is applied.
The Raman light drives the same transition as the microwave, which
means that directly using the Raman light would affect the populations
in the two hyperfine levels. What we would like is for the pulse to
preserve the population while still affecting the level spacing. In prac-
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Figure 8.1 — Timeline of the Raman Ramsey sequence, employed to cancel
differential Stark shifts. An initial microwave π/2 pulse is applied followed by
a Raman pulse. The Raman pulse consisting of a series of 4 ns pulses with the
phase flipping 180 degrees between subsequent pulses. A final π/2 pulse with
variable phase is applied to finish the transfer of atoms. The population in
|F = 4〉 is then read out by the probe. A repump pulse allows us to normalize
the signal if necessary.

tice this is achieved by applying a short Raman pulse, where the phase
of the pulse is modulated between 0◦ and 180◦ every 4 ns, see figure
8.2. This means that each subsequent 4 ns interval effectively undoes
the work of the previous and the population in the two levels stays the
same.
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Figure 8.2 — Bloch sphere
representation of the phase
flip Ramsey sequence. The
atoms are brought into an
equal superposition using a
microwave. A subsequent
Raman pulse is applied,
where the phase is toggled
between 0◦ and 180◦.

8.1 On the |mF = 0〉 → |mF = 0〉 transi-
tion

To cancel the differential Stark shift on the |mF = 0〉 → |mF = 0〉 tran-
sition we first have to prepare the atoms in the |F = 3,mf = 0〉 state.
This is done using the state preparation procedure presented in section
2.4. After the loading and state preparation, the atoms are put through
a Ramsey sequence, as shown in figure 8.1. Since we are driving the
|mF = 0〉 → |mF = 0〉 transition we use π polarized microwave pulses.
The resulting fringe is then fitted to the function,

S(φ) = A cos(φ+ φ0) + k, (8.1)
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Figure 8.3 — Raman Ramsey fringe on the |F = 0〉 → |F ′ = 0〉 transition with
different modulation indices. Left panel shows the phase shift, dashed line in-
dicates 180◦. Right panel shows fringe shifts as a function of RF power, dashed
line indicates dark fringe shift. Note that the fringe shift passes through zero,
allowing for cancellation of differential Stark shifts.

where φ is the phase of the second microwave pulse, φ0 is the fringe
shift, A is the amplitude and k is an offset. In the case of an unbalanced
Stark shift the fit will yield a non-zero φ0.
Shown in figure 8.3(left) is an example of Ramsey fringes on the |mF = 0〉 →
|mF = 0〉 transition. The fringes acquired in figure 8.3 are nicely re-
solved, with visibilities close to 1. The fringe shifts are plotted in the
right panel of figure 8.3. We see that we can choose an RF power such
that the differential Stark shift is cancelled.

8.2 Stretched Levels
Since we are ultimately interested in measuring Raman cooled spec-
tra, which occur on the extreme mF levels, we also have to make sure
that the Raman scheme works on the stretched transitions. The naïve
assumption that balancing the Stark shifts on the |0〉 → |0〉 transition
would also balance them on the stretched transition is unfortunately
wrong. Calculations on the differential Stark shift cancellation, with all
excited states included, are shown in appendix B.1. The consequence of
this is that we have to calibrate the Stark shift for each relevant transi-
tion. While doing this we discovered a possible serious systematic flaw
in the phase toggling method. This means that experimentally we have
to determine the appropriate RF power spectroscopically. More on this
later in the section.
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The initial idea was to use the same methodology as on the |mF = 0〉 →
|mF = 0〉 transition, i.e. using a Ramsey sequence with a non destruc-
tive Raman pulse, but using σ polarized microwave pulses instead of
π. In figure 8.4 a series of Ramsey fringes are plotted. These are nicely
resolved and it would seem that with a proper choice of RF power, one
could cancel the differential light shifts. In the case of figure 8.4 the
choice of RF power was 4700. But as it turns out this does not work.
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Figure 8.4 — Raman Ramsey fringe on the |F = 3,mF = −3〉 →
|F ′ = 4,mF’ = −4〉 transition. Good modulation RF power is 4700. Simi-
larly to the 00 case we can choose an RF power such that the fringe shift is
zero. This however turns out to not be sufficient, see figure 8.6.

Shown in figure 8.6 are a series of Raman spectra using the "good"
modulation index on the stretched transition, compared to a microwave
spectrum. It is apparent that the spectra are significantly shifted from
the microwave peak. Moreover the shift is dependent on the Raman
power. This is highly suggestive that there is in fact an unbalanced Stark
shift. Plotted in figure 8.5 are the shifts with respect to the microwave.5 10 15
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Figure 8.5 — Shifts of the Ra-
man spectra w.r.t. the mi-
crowave spectrum for differ-
ent Raman powers.

The Ramsey sequence using the phase-toggled Raman pulse does
not work as expected on the stretched transition. Upon further inspec-
tion it is a stroke of luck that the method even works on the |0〉 → |0〉
transition. If we think of the phase flips, occurring every 4 ns, this really
amounts to flipping the phase of the modulation tone sent to the EOM,
generating the Raman sidebands. We can write the complex electric
field as

E = E0 exp

[
i

(
ωoptt+ z sin

(
∆t+ Φ

(
t

Tflip

)))]
, (8.2)



8.2. STRETCHED LEVELS 69

−7120 −7100 −7080 −7060 −7040
Two photon detuning [kHz]

0.00

0.05

0.10

0.15

0.20

Ph
as

e
sh

if
t[

ra
d]

18.2 nW
11.9 nW
7.7 nW
5.2 nW
Microwave

Figure 8.6 — Microwave spectroscopy and Raman spectroscopy on the
stretched transition for different powers with the "good" modulation index of
4700. Note the change in the Raman spectra for different powers. Lines are
gaussian fits.

where ωopt is the carrier frequency, z is the modulation index, ∆ is the

sideband frequency and Φ
(

t
Tflip

)
is a rectangular wave with period Tflip.

The spectrum of this field is plotted, along with the signal without the
phase flips, in figure 8.7.
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Figure 8.7 — Spectrum of the
Raman light with and with-
out phase toggling. Carrier
and the two first sidebands
are shown.

We see that a whole forest of peaks appears and that these have a
significant amplitude, even far from the original sidebands. Seeing as
the carrier is detuned by ∼ 4.5 GHz w.r.t the excited state manifold,
any component close to 4.5 GHz will be close to resonance and result in
strong Stark shifts. It seems, as of writing, that the fact that the Raman-
Ramsey method with phase toggles works on the |0〉 → |0〉 transition
is a coincidence and that a slight change to the carrier detuning could
throw it off entirely.

In the end we opted for a less elegant, and less sensitive, method.
We first take a microwave spectrum as a reference. Then Raman spectra
are taken for different powers. If there is a power dependent shift of
the Raman spectra w.r.t the microwave spectrum, then we know that
there is an unbalanced Stark shift. The Raman modulation index is then
adjusted such that the shift is independent of the optical power.

Compared to the Ramsey method there are a number of downsides
to this approach. The spectrum requires many data points to properly
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Figure 8.8 — Example of Stark shift cancellation on the stretched transition.
The cancellation occurs with an RF power of 4200 DDS units. Note the change
in lineshape between the two figures.

establish the line position. Due to the effects of Stark shifts the line
shape and peak signal also depend on the modulation index, making it
challenging to properly resolve the transition. Additionally it is cum-
bersome to fit the data and in practice we simply eye-ball the appro-
priate modulation index. The Ramsey method has, in contrast, a very
simple expression to fit to the data and it is also not necessary to take
many data points to properly resolve a Ramsey fringe. The Ramsey
method also allows for very high sensitivity.

As seen in figure 8.8, the effects of unbalanced Stark shifts on the line
shape are quite dramatic. It is therefore paramount that the effects can
be minimized to improve the resolution of motional sidebands. A better
method for cancelling the differential Stark shifts would be a large im-
provement on the flexibility and precision of the experiment. One could
possibly run a Raman Ramsey sequence, but with a Raman pulse which
is detuned away from resonance instead of modulating the phase. Plac-
ing the two photon detuning at 500 kHz would lead to essentially no
transfer while allowing the Raman light to affect the shift of the energy
levels.

8.3 Trap Vector Light Shifts
On the subject of light shifts we also explored the effect of fictitious
magnetic fields due to the red trap. By purposefully unbalancing the
red trap powers we no longer nicely cancel the longitudinal elliptic po-
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larization of the nanofiber mode. Circular polarizations give rise to ficti-
tious magnetic fields. Given the fact that the helicity of the polarization
flips on the two sides of the fiber, the atoms on one side will experience a
different effective magnetic field than on the other. This effect can be di-
rectly measured by utilizing the longitudinal elliptic polarization of the
probe. Recall that the probing scheme used for this experiment takes
advantage of two symmetric probe sidebands to allow for cancellation
Stark shifts induced by the probe.

The probe, being polarized parallel to the red trap, will have oppo-
site helicity on the two sides of the fiber, figure 8.9. Given the fact that
the probe acts on the D2 line, a probe pulse will lead to optical pump-
ing. The two sides of the fiber will be pumped into opposite ends of the
Zeeman sub-levels. This will result in the ensemble of atoms being split
on the two sides. The split of the ensemble allows us to interrogate each
side of the fiber separately and in turn measure the fictitious magnetic
field. Given a bias magnetic field, the effective magnetic field on the
two sides of the fiber will be,

BBias

BFict BFict

Figure 8.9 — Fictitious mag-
netic field generation around
a nanofiber. Atoms are illus-
trated by the blue markers.
The polarization of the red
trap field is circular, with op-
posite helicity on either side
of the fiber, fictitious mag-
netic fields are indicated with
arrows pointing into and out
of the page. The 3 Gauss
bias magnetic field is indi-
cated with an arrow pointing
out of the page.

Beff = Bbias ±Bfict. (8.3)
we can then measure the effect using microwave spectroscopy. Using
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Figure 8.10 — Microwave spectrum with fictitious magnetic field induced by
red trap light. The powers PA and PB refer to the trap powers through side
A and B of the nanofiber, A being the propagation direction of the probe. The
green trace is the balanced power case. Blue and orange are unbalanced with
the majority of the power propagating from opposite directions.

an elliptically polarized microwave π-pulse we can drive the transitions
between the hyperfine levels.
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The spectrum is plotted in figure 8.10. The balanced situation is plot-
ted as a reference. In the two unbalanced cases we flip the direction
from which the majority of the power propagates. The imbalance used
is roughly 2.5 mW from one side and 5µW from the other. The (1 → 2)
and (−1 → −2) transitions are shifted asymmetrically around (0 → 0).
We also see that the transitions shift to the other side when the direc-
tion of propagation is reversed. From the (0 → 1) and (0 → −1) peaks
we can estimate the magnitude of the fictitious magnetic field. The esti-
mated fictitious magnetic field magnitude is (0.168 ± 0.002) Gauss and
(0.18± 0.015) Gauss for the two cases.



CHAPTER

9
RESOLVED SIDEBAND
SPECTROSCOPY

In this chapter the main experimental results of this thesis work will be
presented. One of the main goals was to measure the temperature after
degenerate Raman cooling, using the asymmetry of the motional side-
bands. The progress on implementing the cooling scheme with sub-
sequent Raman spectroscopy was halted by the existing fiber, Bertha,
breaking. The effectiveness of the cooling scheme on the new fiber,
Didrik, was not nearly as good, in terms of trap lifetimes, which po-
tentially has a dramatic impact on the results. In order to accommodate
the requirements for the cooling scheme and the spectroscopy a new
magnetic field controller was made, see [Markussen, 2020] for details.

We will start this chapter off by presenting and discussing resolved
sideband spectroscopy on the (0 → 0) transition. We will then move to
the stretched transition, (−3→ −4), where the spectra with and without
cooling will be presented. All of the data presented in this chapter have
been normalized to the total number of trapped atoms.

9.1 Raman spectroscopy on (0→ 0)

In previous work the focus has been on doing the sideband spectroscopy
on the (0→ 0) transition, [Østfeldt, 2017; Hansen, 2018]. Given that we
have a nice way of preparing the atoms into the |F = 3,mF = 0〉 state,
this is a good place to start to do sideband transfers.
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The atoms are loaded into the nanofiber trap and are subsequently
optically pumped into |F = 3,mF = 0〉 using the state preparation scheme
presented in section 2.4. A short probe measurement is carried out to
establish a signal reference in the absence of atoms. A subsequent Ra-
man pulse is then applied to bring the atoms from |F = 3〉 to |F = 4〉
where they can be detected by the probe.
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Figure 9.1 — Raman Rabi os-
cillations on the |mF = 0〉 →
|mF’ = 0〉 transition. The
dashed lines are damped os-
cillator fits. The signal de-
phases rapidly for higher Ra-
man pulse powers.

In order to do efficient transfers we need to know the appropriate
pulse duration. An example of Rabi oscillations using the Raman laser
is shown in figure 9.1. The oscillations are fitted to a damped oscillation

S(t) = A
(
1− cos(2πΩt+ φ)e−t/T

)
, (9.1)

where A is the oscillation amplitude, Ω the Rabi frequency, φ a phase
offset, T the decay time and Soff an offset. The Rabi frequencies acquired
in the fits are plotted in figure 9.2.
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Figure 9.2 — Raman Rabi fre-
quencies acquired from fits as
a function of optical power.

The Rabi oscillations highlight an important property of the Raman
transitions; the fast dephasing, which occurs due to the spatial inho-
mogeneity of the Raman light in addition to the thermal distribution
of atomic motional states. This is the main technical limitation of us-
ing the Raman laser for fast coherent transfers of atoms. An in-depth
discussion on a rapid adiabatic passage scheme to work around the in-
homogeneous coupling can be found in [Østfeldt, 2017].
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Figure 9.3 — Raman spectra on the |mF = 0〉 → |mF’ = 0〉 transition. The spec-
tra are generated using a Raman pulse power of 1.5 nW with a pulse duration
of 100µs. The two spectra are taken with different delay after the population
transfer. The transfer is normalized to the total number of atoms.
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Figure 9.3 shows resolved Raman sideband spectra on the (0 → 0)
transition. Two spectra are taken at different points in time; one right
after the state preparation, the other after an 8 ms delay. Both of the
spectra are normalized to the repumped signal to account for the differ-
ence in atom number. We can fit the carrier to a Rabi spectrum,

S(∆) =
A

1 + (∆−f0
Ω

)2
sin2

(
π
√

Ω2 + (∆− f0)2τ
)

(9.2)

where Ω is the Rabi frequency, f0 is the resonant frequency and τ is the
pulse duration. The carrier fit is plotted in figure 9.4, giving us Rabi
frequencies of ∼ 5 kHz.
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Figure 9.4 — Carrier transi-
tions from the spectra in fig-
ure 9.3. The data is fitted
with the function in eq. 9.2,
yielding Rabi frequencies of
5.63(5) kHz and 4.88(8) kHz.

The motional sidebands are very clearly resolved, sitting at a fre-
quency of roughly 90 kHz. The motional sidebands are plotted in figure
9.5. Here the asymmetry of the upper and lower sideband becomes very
apparent. The asymmetry suggests that the atomic ensemble is quite
cold. Moreover, we see that the lineshape of the sidebands is markedly
asymmetric, owing to the anharmonicity of the trap potential. In order
to estimate the temperature of the atoms, based on the spectra, we need
to quantify the sideband ratio. We fit the sidebands to a heuristic model,

SSB(∆) = A
e−(∆−µ)2/2σ2

1 + e−α(∆−µ)
(9.3)

where A is the amplitude, µ the mean, σ the standard deviation and α
is a skewness parameter.

Assuming a harmonic spectrum we can estimate the mean occupa-
tion number of the ensemble by calculating the ratio of the two side-
band areas, ISB [Leibfried et al., 2003]. The sideband ratio is defined
as,

rSB =
Ilsb

Iusb
=

n̄

n̄+ 1
(9.4)

where n̄ is the mean occupation number at temperature T , determined
by the Bose-Einstein distribution,

n̄ =
1

e
~ωSB
kBT − 1

(9.5)

where we define ωSB as the mean frequency of the sidebands. From this
we can find the temperature

T = −~ωSB

kB

1

ln(rSB)
. (9.6)
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Figure 9.5 — The motional sidebands fitted to the function 9.3. The dashed
lines indicate the mean frequency of the sidebands.

The integral of equation 9.3 is done numerically using a Monte-Carlo
simulation, which also allows for estimation of the uncertainty. This
is described in more detail in appendix C. This is also done to deter-
mine the mean frequency of the sidebands. The uncertainties quoted
in this chapter only take into account statistical error and thus do not
contain possible systematic errors in the estimates. We find tempera-
tures of 30.1(18)µK and 18.3(3)µK for the spectrum without and with
delay, respectively. This corresponds to sideband ratios of 0.87(3) and
0.80(6) with mean occupation numbers of 7(1.9) and 4(1.5). The fact
that the delayed spectrum has a lower temperature is contrary to what
we would have expected; as time passes, the atoms should be heated
by noise sources in the trap and thus the spectrum taken after a delay
should yield a larger temperature. Additionally, looking at the side-
band shape and position, it would seem that the sidebands without de-
lay skew towards higher frequencies than the delayed sidebands. Since
the trap potential gets shallower for increasing energy, the lowest mo-
tional states have the largest trap frequencies and thus this would point
to the temperature being lower. In chapter 11 we will see how this dis-
crepancy might be related to the increased sensitivity of the temperature
estimation for large sideband ratios.
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9.2 Raman spectroscopy on the stretched
levels

Having done Raman spectroscopy on the |0〉 → |0〉 transition we now
turn to the stretched transition, |−3〉 → |−4〉. This is a somewhat more
complicated procedure than the |0〉 → |0〉 transition. The pulse se-
quence is shown in figure 9.6.

After loading the dipole trap, the atoms are pumped out to the stretched
levels using the probe along with the repumper. The atoms are then
transferred to |F = 3,mF = −3〉 via a microwave pulse, not pictured.
The remaining atoms in the |F = 4〉 manifold are blown away using

Raman

Repump

Probe

Bias

Measurement

180 µs 50 ms

Raman 

Trap
loading

Bias field

40 ms 125 µs

field

ramp
Probe
pump transfer 

Figure 9.6 — After loading the trap the magnetic bias field is ramped up to
3 Gauss. The atoms are then pumped into |F = 4,mF = −4〉 using the probe
and repumper. A subsequent σ polarized microwave pulse brings the atoms
into |F = 3,mF = −3〉 followed by a MOT cooler pulse to blow away atoms
remaining in |F = 4〉. A Raman transfer pulse is then applied followed by
measurement with the probe. A repump pulse after a few ms allows for nor-
malization of the spectra.

a pulse from the MOT cooler. The atoms can then be transferred to
|F = 4,−4〉 using a Raman pulse. The probe is then turned on to mea-
sure the atoms, with the repumper turning on after a short delay to
allow for normalization to the total number of atoms.

-3

-4

-4 -3

F=3

F=4

Fʹ=2

Fʹ=3

Fʹ=4

Figure 9.7 — Transfers be-
tween the two stretched hy-
perfine levels. In order to
complete the transfer a σ−

polarized photon and a π po-
larized photon is necessary.

Figure 9.8 shows spectra on the stretched transition. The spectra are
taken with a Raman power of 21.4 nW, a significant increase compared
to the (0→ 0) transition (1.5 nW). This is due to the fact that in order to
drive transitions where ∆mF = ±1 we need both a σ- and a π-polarized
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photon, figure 9.7. Our Raman light is almost exclusively σ− polarized
and we therefore need more power to achieve Rabi frequencies, compa-
rable to those on |0〉 → |0〉. The power can be optimized by rotating the
polarization of the Raman laser, to introduce more linearly polarized
light, however this optimization was never carried out.

−7200 −7000
Two photon detuning [kHz]

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

tr
an

sf
er

[a
.u

.]

−7200 −7100 −7000 −6900
Two photon detuning [kHz]

5 ms delay
no delay

Figure 9.8 — Raman spectra on the stretched transition. The spectra are taken
with different delays, leading to a shift due to the magnetic field value gradu-
ally changing. Pulse duration of 125µs with a power of 21.7 nW.

The motional sidebands are resolved in figure 9.8, however, they are
not as clearly resolved as on the |0〉 → |0〉 transition. Additionally the
signal has a large offset, as shown in the left panel of figure 9.8. The
offset is accounted for by calculating the mean signal of the ten first
and last data points and then fitting a straight line (shown as dashed
lines in the left panel) to those points. This line is then subtracted from
the signal. The right panel shows the normalized phase shift with the
offset subtracted. The vertical dashed lines denote the delimiters for the
motional sidebands.

The motional sidebands, with fits, are plotted in figure 9.9. From
these fits we can extract a temperature, in the same way as in section
9.1. The temperatures we find are 13.9(5)µK for the delayed spectrum
and 12.3(3)µK for the other. This is lower than the temperatures found
on the (0 → 0) transition, despite there being no cooling mechanism in
use. The offset of the signal, figure 9.8(left), leads to some ambiguity
in the temperature, as an offset in the signal will affect the ratio of the
sidebands. The effect of a constant offset is to increase the temperature,
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Figure 9.9 — Lower(left) and upper(right) motional sideband of spectra on
the stretched transition taken at different times after optical pumping. Raman
power of 21.7 nW with a pulse duration of 125µs. The vertical lines mark the
mean frequency of the sidebands.

as the difference in sideband amplitude becomes less pronounced. On
the other hand a slope in the offset can lead to lower temperatures by
lifting the upper sideband more than the lower. Table 9.1 contains tem-

5 ms delay no delay

Unmodified 19.5(8)µK 17.6(4)µK
Constant 11.7(5)µK 9.9(3)µK
Slope 13.9(5)µK 12.3(3)µK

Table 9.1 — Temperatures on the stretched transition with different methods
for accounting for offsets.

peratures for the different methods of accounting for the signal offset.
We see almost a factor of two between the lowest and highest temper-
ature. This ambiguity highlights one of the major flaws in this method
for temperature estimation; a signal offset has an impact on the result-
ing temperature. For this reason it is nice to be able to reduce the offset
in the signal.

The source of the offsets seen in figure 9.8 seem to be a combination
of a couple of factors. The fact that we drive the (−3 → −4) transi-
tion means that we are having to use a σ− and a π polarized photon.
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Since our polarization state is naturally dominated by sigma polarized
light this means that the transfer will be quite inefficient. The neighbor-
ing transition, (−3 → −3), is much stronger however. This means that
we are power broadening the neighboring transition quite considerably
and thus this bleeds into the signal on the (−3→ −4) transition. We can
estimate the Raman Rabi frequency of the (−3 → −3) transition , since
we know the Rabi frequency of the (0 → 0) transition. For a power of
1.5 nW we get a Rabi frequency of roughly 5 kHz on the (0→ 0) transi-
tion. The (−3→ −3) transition is roughly 2/3 as strong, only accounting
for sigma- transitions. This means that with a power of 21.7 nW we are
effectively driving the (−3→ −3) transition with a Rabi frequency of 50
kHz. If we assume that the fast oscillations of the Rabi spectrum are
averaged out we can write the contribution of the neighboring level as

S =
Ω2

Ω2 + ∆2

1

2
(9.7)

This means that at a detuning of 1 MHz we would expect a transfer of
about 0.0012 which does not seem to account for the large offset in the
signal. The Raman transitions rely on the validity of the adiabatic elim-
ination of the excited state. As the intensity grows the transfer of atoms
into the excited state manifold increases. This then leads to broadband
noise. This, however, is also a small effect. Lastly there is the effect
of magnetic field fluctuations. Since we are working on the stretched
transition the sensitivity to magnetic fields is maximal. This of course
means that fluctuations of the bias field will lead to broadband noise.
The effects of the magnetic field will be discussed in more detail in the
next section.

9.2.1 Degenerate Raman cooling
Finally we want to see if we can measure the effects of cooling using
Raman spectroscopy. The cooling scheme employed in the following
discussion was presented in chapter 2, however a brief recap will be
given. By utilizing the fictitious magnetic field generated by the blue
trap lasers we can couple adjacent degenerate Zeeman states. If the
bias magnetic field is tuned correctly two adjacent Zeeman levels, with
different motional states |mF, n〉 and |m′F, n+ 1〉, become degenerate,
thereby allowing for the coupling via the fictitious magnetic field. By
pumping the atoms using a σ− polarized beam we can continually cy-
cle the atoms into lower motional levels. All the motional states can
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couple via the fictitious magnetic field to adjacent states except for the
motional ground state, effectively making it a dark state. This leads to
atoms accumulating in the lowest motional state, thereby cooling the
ensemble, [Meng et al., 2018; Markussen, 2020].

Early on in the process of implementing the cooling scheme it be-
came apparent that in order to do both cooling and Raman spectroscopy
we needed to be able to switch the bias magnetic field fast, since the
good bias field for cooling was not suitable for resolved sideband spec-
troscopy. In the past, the MOT compensation coils had provided the
bias field, however they were found to be too slow. For this reason a
magnetic field controller was developed. The details of this magnetic
field controller can be found in [Markussen, 2020].

The optimum bias field for cooling was found to be roughly 0.51
Gauss, see appendix C. The σ− polarized pump is supplied by the probe
laser. As shown in chapter 3, the helicity of the evanescent field flips on
the two sides of the fiber resulting in cooling of atomic motion on one
side and heating on the other. The experimental timeline for the degen-

Raman

Repump

Probe

Bias

Measurement

7.6 ms 50 ms

Raman 

Trap
loading

Bias field

40 ms 125 µs

field

ramp Cooling transfer 

Figure 9.10 — Sequence for degenerate Raman cooling scheme with Raman
sideband spectroscopy. The atoms are loaded into the nanofiber trap, the mag-
netic bias field is subsequently ramped to the cooling value of 0.51 Gauss. The
probe and repumper are turned on for 7.6 ms to pump and cool the atoms.
The magnetic field is subsequently increased to 3 Gauss to allow for resolved
sideband spectroscopy. The Raman laser is pulsed and the population in
|F = 4,mF = −4〉 is read out by the probe.

erate Raman cooling followed by Raman spectroscopy is outlined in fig-
ure 9.10. After loading the trap the magnetic field is ramped up to the
good cooling value of 0.51 Gauss. At this value a probe pulse is applied
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for 7.6 ms. This pulse facilitates the cooling and pumps the atoms into
the |F = 4,mF = −4〉 level. After the probe pulse a microwave saving
pulse brings the atoms into |F = 3,mF = −3〉. This pulse is followed by
a MOT cooler pulse which blows away any atoms remaining in |F = 4〉.
The magnetic field is then ramped to 3 Gauss, allowing for better reso-
lution of the motional sidebands. We then probe the ensemble, followed
by a repump pulse to allow for normalization.
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Figure 9.11 — Raman spectra taken after degenerate Raman cooling. Both
spectra are taken with a 125µs pulse duration and a power of 24.5 nW. The
spectra are taken with two different bias magnetic fields; the good cooling field
at 0.51 G and the suboptimal field at 0.98 G. Left panel shows the raw phase
shift. Right panel shows the normalized phase shift with subtracted offset. The
vertical lines in the right panel mark the delimiters for the motional sidebands.

Plotted in 9.11 are Raman spectra of atoms with the optimum bias
value of 0.51 Gauss and with a sub-optimum value of 0.98 Gauss, for
comparison. The left panel of figure 9.11 shows the raw spectra with-
out normalization to the repumped signal. The right panel shows the
normalized signal with a sloped offset subtracted. The first thing to note
in the left panel is the drastic increase in signal from the bad bias field
to the good. This shows that the cooling scheme has an effect on the
lifetime in the trap and that a significant amount of atoms stick around
after cooling. We can however also see that the line shape of the spec-
trum changes quite dramatically when we normalize to the repumped
values. This tells us that there are significant variations in total number
of atoms. The data is taken sequentially, i.e. the detuning is stepped
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Figure 9.12 — Lower(left) and upper(right) motional sideband of Raman spec-
tra, with and without degenerate Raman cooling. Only the cooled spectrum
has an included fit. Vertical dashed lines mark the mean frequency of the side-
band.

linearly, with four measurements per data point. If the variations in the
loading was simply noisy, one would expect this to average out over
time, however it seems that something is drifting quite dramatically.
Drifts in the Raman transfer would manifest itself in the normalized
spectra, however we see the same basic line shape in both cases. It
would seem that the total number of atoms is drifting. This could be
due to the actual loading of the nanofiber trap, however this seems un-
likely. What seems more likely is that the magnetic field is somehow
drifting over time. A drifting magnetic field would change the effi-
ciency with which we can transfer atoms into mF = −3 after pumping,
thereby lowering the number of atoms.

The motional sidebands from the spectra, figure 9.11, are plotted
in figure 9.12, with fits using equation 9.3. The sideband asymme-
try is quite clear in the cooled spectrum, whereas the uncooled spec-
trum has a much less pronounced asymmetry. Only the cooled side-
bands are fitted, since the uncooled data is too noisy to allow for rea-
sonable fits. Based on visual inspection it seems quite clear, that the
cooled spectrum has a larger asymmetry than the uncooled spectrum
and therefore also a lower temperature. As with the measurements of
the uncooled stretched transition spectra there is a sizeable offset in the
data, which, depending on the method, can be accounted for, leading
to widely varying temperature estimates. Different temperature esti-
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With cooling

Unmodified 20(1.8)µK
Constant 7.7(8)µK
Slope 10.6(7)µK

Table 9.2 — Temperatures on the stretched transition with different methods
for accounting for offsets.

mates for the cooled spectrum are given in table 9.2. These tempera-
tures are lower than the ones found in table 9.1 for both the constant
offset and the sloped offset. The temperatures also lie outside the error
bars of table 9.1. These measurements indicate that the cooling scheme
actually manages to cool down the atomic ensemble. We observed sig-
nificantly better cooling on the old nanofiber, [Markussen, 2020], than
on the new fiber, which gives us a lot of room for improvement of the
cooling scheme implementation.

We saw in chapter 8 that we had to calibrate the Raman sideband ra-
tio for the stretched transition. Calculations on the cancellation, shown
in appendix B.1, showed that the optimum configuration of carrier de-
tuning and modulation index is different on the stretched transition
compared to the (0 → 0) transition. At the ∼ 4.7 GHz detuning we
might be exerting a slight common mode Stark shift on the atoms. This
will almost certainly project the thermal state of the atoms into a higher
temperature state. Looking at the spectra taken on the stretched tran-
sition, compared to the (0 → 0) transition we also see slightly lower
sideband frequencies, which can possibly be attributed to the modifica-
tion of the potential due to the common mode Stark shift of the Raman
laser.

Summary

We have used Raman transitions to resolve motional sidebands on both
the (0 → 0) transition and on the stretched transition. We have em-
ployed a novel cooling scheme known as degenerate Raman cooling
and have measured that the scheme is able to cool the atomic motion.
We have found that offsets in the spectroscopic signal result in large
modifications of the resulting temperature estimation, highlighting one
of the major drawbacks of the method. We also observed broadening of
the sidebands on the stretched transition, which magnetic field instabil-
ity can possibly explain.
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Using the (−3→ −4) transition leads to off resonant excitation of the
neighboring transition, due to the unfavorable polarization content of
the light. Doing the sideband spectroscopy on the (−3 → −3) transi-
tion would allow for larger Rabi frequencies at lower optical powers,
possibly improving the resolution of the sidebands.

Having used the harmonic approximation of the sideband spectrum
to estimate the temperature, we would now like to gain some insight
into the validity of this approximation. In the next part we will simu-
late the trap potential and gain a deeper understanding of the trapped
atoms.
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CHAPTER

10
SIMULATING A
MULTILEVEL SYSTEM

In chapter 9 we found that we can resolve the motional sidebands of
atoms trapped near the surface of a nanofiber. By using the ratio of the
two sidebands areas we could estimate the temperature of the atomic
ensemble. While taking the ratio of sidebands is a valid strategy for the
harmonic potential, it is somewhat more complicated in the anharmonic
potential. In order to evaluate the validity of the temperature estimation
method we need to treat the actual trap potential.

In this chapter the Hamiltonian governing motional transitions will
be derived along with the equations of motion, enabling the simulation
of spectra.

10.1 The Lamb-Dicke Hamiltonian
An introduction to the coupling of motional levels was presented in
chapter 2. In this chapter a more comprehensive treatment will be given,
following the treatment given in [Gerry and Knight, 2005].
To begin, let us consider the case of a two-level atom in a harmonic
trap potential interacting with monochromatic light. In this case the
full Hamiltonian will be given by

H = ~ω0σ3 + ~ν
(
aa† +

1

2

)
+

~Ω

2

(
σ+e

−i(ωLt−kLx) + c.c
)

(10.1)

The first two terms are the atomic energy, where ω0 is the transition
frequency for the internal atomic state, σ3 = |e〉〈e| is the excited state

89
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population, ν is the motional frequency and a, a† are the annihilation
and creation operators of the trap potential. The last term describes the
interaction between light and the trapped atom, with Ω as the Rabi fre-
quency, σ+(−) the atomic raising(lowering) operator and ωL and kL as
the laser frequency and wavenumber. In the standard treatment of the
two-level atom we neglect the spatial phase contribution, but if the light
has a spatial decay, which is significant on the scale of the atomic mo-
tion, then this can be represented by an imaginary wavenumber. This
allows us to rewrite the interaction term in equation 10.1,

HI =
~Ω

2

(
σ+e

−iωLte−kLx + c.c
)
. (10.2)

The strong confinement of atoms in the trap results in discretization of
the atomic motion. We can therefore write the position variable x as an
operator,

x̂ =

√
~

2νM
(a+ a†) (10.3)

where M is the atomic mass and a(†) is the annihilation(creation) oper-
ator for motional excitations. We can define a quantity,

η ≡ kL

√
~

2νM
, (10.4)

known as the Lamb-Dicke parameter. In the limit of small η the expo-
nential decay in equation 10.2 can be Taylor expanded to first order. In
the interaction picture the interaction Hamiltonian then becomes

HI =
~Ω

2

(
σ+

(
ei∆t − η

(
aei(∆+ν)t + a†ei(∆−ν)t

))
+ c.c.

)
, (10.5)

where ∆ = ωL−ω0 is the detuning with respect to the atomic transition.
The matrix elements between the states of a harmonic potential with
the annihilation and creation operators are

〈n|a|n+ 1〉 =
√
n

〈n+ 1|a†|n〉 =
√
n+ 1

which allows us to write up the Hamiltonian for an atom in the nth
motional state,

HI =
~Ω

2

(
σ+

(
ei∆t − η

(√
nei(∆+ν)t +

√
n+ 1ei(∆−ν)t

))
+ c.c.

)
. (10.6)
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This can of course be expressed for a general potential as

HI =
~Ω

2

(
σ+

(
ei∆t − Ωn,n−1e

i(∆+νn,n−1)t − Ωn,n+1e
i(∆−νn,n+1)t + c.c.

))
(10.7)

where Ωn,n′ is the transition matrix element between motional state n
and n′ and νn,n′ is the transition frequency.

We can then write a Hamiltonian with n motional levels as a 2n× 2n
block matrix,

HI =


0 A

A† 0

 (10.8)

where we have sorted our states such that the upper left block of zeros
corresponds to all the ground state motional levels and the lower right
block corresponds to all the excited state motional levels. They are set
to zero since we assume that motional transitions may only occur along
with a change of the internal state of the atom. The matrix A is given
by

A =
~Ω

2


ei∆t −Ω̃0,1(t)

−Ω̃1,0(t) ei∆t
. . .

. . . . . . −Ω̃n−1,n(t)

−Ω̃n,n−1(t) ei∆t

 , (10.9)

where Ω̃n,n′(t) is now defined as Ωn,n′e
i(∆±νn,n′ ) with νn,n′ being the tran-

sition frequency between n and n′. The main diagonal of A corresponds
to carrier transitions and thus are independent of motional level in this
approximation. The upper diagonal are elements that increase the mo-
tional quantum number and the lower diagonal are elements that lower
the motional quantum number.

The validity of this Hamiltonian rides on the assumption that we
can Taylor expand the exponential decay of the field to only first order.
However, if the field decay is sufficiently fast, this is no longer a good
approximation. In that case higher order terms of the expansion have
to be taken into account. This will, for the harmonic potential lead to a
second order term,

〈n| η2
(
a+ a†

)2 |n′〉 = 〈n| η2
(
a2 + a†

2

+ 2aa† − 1
)
|n′〉 (10.10)
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From this we see two things; one is the fact that higher order transfers
are possible, i.e. two phonon increase of motional energy. The other
is the fact that the carrier transitions will be affected by the motional
state of the atom. This means that the Rabi frequency of the carrier
will depend on the temperature of the ensemble. And there will, in
principle, be even higher order terms.

10.2 The Von Neumann Equation
The states interacting with the light can be expressed using the density
matrix, defined as

ρ =
∑

pj |ψj〉 〈ψj| , (10.11)

The time evolution of the density matrix in the interaction picture is
governed by the Von Neumann equation[Steck, 2008],

ρ̇I = − 1

i~
[HI , ρI ] , (10.12)

where ρI is the density matrix in the interaction picture. This differential
equation allows us to calculate the effect of the interaction on the atomic
population. We can solve this differential equation with fourth order
Runge-Kutta integration using the SciPy.integrate python library,
[Dormand and Prince, 1980].
To solve the time evolution we need an initial state of the system ρI(0).
In order to include the effects of a finite temperature on the ensemble
we need to setup the initial state in a thermal distribution,

ρI,n,n(0) =
e
− ~ωn
kBT∑

n=0 e
− ~ωn
kBT

(10.13)

where ρI,n,n(0) is the nth diagonal entry of the initial density matrix,
kB is the Boltzmann constant, T is the temperature and ωn is the fre-
quency of the nth motional level. The initial state should, in principle,
be determined by the Bose-Einstein distribution, but we are far from the
condensation temperature, so the Boltzmann factor is sufficient.
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10.3 Generalizing to anharmonic poten-
tials

To generalize the model to an arbitrary potential we need to find the in-
dividual Rabi frequencies for the transitions between the different mo-
tional levels. This can be expressed as

Ωn,n′ =

∫ ∞
−∞

ψnI(x)ψn′dx, (10.14)

where ψn,(n′) are the wavefunctions of the trapping potential and I(x) =
I0u(x) is the intensity1 with u(x) as the mode profile. We see that in the
case of a constant mode, i.e. no spatial dependence, the only non-zero
terms are where n = n′. These coefficients between motional states are
commonly known as the Franck-Condon factors. Factoring out I0 from
eq. 10.14 we get a purely geometric quantity describing the transition
strength.

We can then write the interaction as the elementwise product of two
matrices,

A = Ω� δ (10.15)

where
Ωn,n′ =

~Ω

2
〈n|u |n′〉

are the elements of the matrix Ω, given by the overlaps of the wave-
functions with the driving mode, and where

δn,n′ = exp (i (∆ + ωn − ωn′) t)

are the elements of the time dependence matrix, given by the energy
level spacing.

The matrix A contains all of the possible transitions between mo-
tional states, with the associated time dependence. Evaluating this ma-
trix requires the wavefunctions with their respective energies. There-
fore, to carry out the full simulation, we have to find wavefunctions of
the trap potential.

1The intensity is used here since we are driving Raman transitions





CHAPTER

11
ONE DIMENSIONAL
SIMULATION

In the previous chapter we saw how a two-level atom with motional
levels can be simulated. We also formulated the general expression for
the Hamiltonian of an arbitrary trap potential and driving field. To gain
an insight into the behavior of the trapped atoms in the specific case of
a nanofiber trap potential we have to do a number of things,

• Find the wavefunctions of the trap potential,

• find the overlap of wavefunctions, given a specific mode profile,

• and calculate the time evolution of a thermal state for different
frequencies

We will begin by deriving the numerical method for solving the one di-
mensional Schrödinger equation, we will then explore the consequences
of the solutions and simulate Raman spectra. The Raman spectra will
then be compared to the temperature estimation method used in chap-
ter 9.

11.1 Finite difference method in 1d
The method for calculating the wavefunctions in one dimension is known
as finite difference method. It makes use of a homogeneous spatial grid
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to define the spatial derivatives. To find the wavefunctions of the po-
tential we have to solve the time independent Schrödinger equation,

HΨ = EΨ (11.1)

where E are the energies of the Hamiltonian. The Hamiltonian consists
of a kinetic and potential contribution

H = − ~2

2m

∂2

∂x2
+ U(x). (11.2)

We can write this as

H = − ∂2

∂x2
+

2mkB

~2
U(x), (11.3)

where kB is the Boltzmann constant and m is the mass of Cesium. This
ensures that the potential, given in Kelvin has the proper units. On a
discrete grid the partial derivative can be written as a difference equa-
tion,

∂2Ψ(x)

∂x2
=

Ψ(x− δ)− 2Ψ(x) + Ψ(x+ δ)

δ2
, (11.4)

with δ as the grid spacing. This operator can be written in terms of an
n×n matrix, where n is the number of grid points. The potential can be
written as an n× n diagonal matrix, giving us the Hamiltonian,

H =
−1

δ2


−2 1

1 −2
. . .

. . . . . .

+
2mkB
~2


U(x0)

U(x1)
. . .

U(xn)


(11.5)

where U(xn) = U(x0 + nδ) is the potential at the nth point on the grid.
Finding the wavefunctions and the eigenenergies is simply a matter of
solving this eigenvalue problem.

11.2 Wavefunctions in one dimension
With the tools developed in the previous section we can solve the one
dimensional radial trap potential. Some of the wavefunctions of a trap
potential with trap powers of PBlue = 8 mW and PRed = 2 × 0.72 mW
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are plotted in figure 11.2. To improve visibility we plot every fifth wave
function, with the wavefunctions vertically spaced by their respective
energies. The anharmonicity of the trapping potential leads to the en-
ergy spacing becoming smaller for larger motional energies. The ener-
gies are plotted in figure 11.1.
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Figure 11.1 — The energies of
the one dimensional trap po-
tential. Dashed line indicates
the top of the potential.

We note that as we approach the top of the potential the transition
frequencies approach zero. This is due to the fact that the potential
asymptotically reaches zero and therefore the motional states become
continuous. With a power of Pblue = 8 mW and PRed = 2× 0.72 mW we
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Figure 11.2 — Every fifth wave function of the radial trap potential at Pblue =
2×4mW, spaced by the respective energies in MHz. Fundamental frequency of
81 kHz. The scale of the wavefunctions has been adjusted to improve legibility.

get a transition frequency of the lowest transition of 81 kHz. The tran-
sition frequency for the ground state for a number of powers is plotted
in figure 11.3. This shows that increasing the trap power results in a
deeper trap with larger trap frequencies. 5 10 15
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Figure 11.3 — Trap frequency
and depth as a function of
Pblue.

The wavefunctions in figure 11.2 tell us that for increasing motional
energy the position of the atoms moves away from the surface of the
fiber. The expectation value of the radial distance, 〈n| r |n〉, is plotted in
figure 11.4.

We can also find the wavefunctions in the axial and azimuthal de-
grees of freedom. These are plotted in figure 11.5. We note that these
spectra are far more harmonic than the radial potential. We find the
ground state transition frequencies to be 65 kHz and 134 kHz for the
azimuthal and axial potential, respectively.
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Figure 11.4 — Expectation value of the radial distance as a function of energy.
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Figure 11.5 — The azimuthal and axial potential with wavefunctions. Every
fifth wavefunction is plotted and spaced by the respective energy. The ground
state trap frequencies are 65 kHz and 134 kHz for the azimuthal and axial po-
tential, respectively.

11.2.1 Franck-Condon factors
Having found the wavefunctions we can now calculate the Franck-Condon
factors, presented in chapter 10.3. The Franck-Condon factors are cal-
culated in the discrete case in the following way,

Ωn,n′ =
~Ω

2
Ψn · (Ψn′ � u). (11.6)

Here u is the mode profile as a vector and � is the Hadamard product,
i.e. the element-wise multiplication of two matrices. The Rabi frequen-
cies for Raman transitions are given by products of electric fields and
therefore we will use the intensity profile as the mode in the calculations
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Figure 11.6 — The overlaps of the one dimensional wavefunctions with an
exponential mode profile, 〈n|u |n′〉. The color bar is logarithmic.

of the Franck-Condon factors. There is some degree of choice when it
comes to normalizing the mode profile. Our choice is made such that
the element | 〈0|u |0〉 | = 1.

To facilitate a coupling there needs to be a significant gradient of the
intensity. This eliminates the axial part of the potential, since the Ra-
man light propagates as a running wave and thus has no decay along
the fiber. The azimuthal part of the Raman light is symmetric around
the trap minimum, which means that only transitions between states
of equal parity are allowed. This will, for the lowest energy levels, be
two phonon transitions, which have smaller Franck-Condon factors, i.e.
∝ η2. This leaves us with the radial part of the potential. Since we have
an exponential decay this allows for coupling between the motional
states. The full Franck-Condon matrix is shown in figure 11.6. Note
that the color bar is logarithmic to allow for the resolution of smaller
structures within the matrix. We note that the Rabi frequency of the car-
rier goes down as the motional energy goes up. This can be explained
by the expectation value of the radial distance as seen in figure 11.4.
As the motional energy increases, the atoms see less of the light and
therefore have a weaker interaction. We also see that highly excited
motional states can more easily couple to other states. This shows that
approximating the interaction as linear is not actually viable in the real
potential.
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11.3 Simulating Raman spectra
We now have the necessary prerequisites to calculate the Raman spec-
trum of an atomic ensemble at any sufficiently low temperature. Since
we know the energies of the motional states we can calculate the tran-
sition frequency between every state, shown in figure 11.7.
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Figure 11.7 — Transition fre-
quencies between all mo-
tional states of the one di-
mensional radial potential.

A spectrum at 20 µK is plotted in figure 11.8. The asymmetry of the
sidebands is clearly pronounced, with a slight asymmetry of the ampli-
tudes. We can estimate the temperature, the same way as presented in
chapter 9, i.e. fit the motional sidebands to a skewed gaussian, equation
9.3, then calculate the area and the mean frequency of the sidebands.
These are then put into

T = −~ωsb
kB

1

ln(rsb)
(11.7)

to find the temperature. The sidebands with fits are plotted in figure
11.9. From the fit we find a temperature of 22µK compared to the actual
value of 20µK. We can do the same procedure for a series of spectra,
ranging in temperate from 4µK to 50µK.
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Figure 11.8 — Simulation of Raman spectrum at 20µK using 72 motional states
and a ground state Rabi frequency of 5 kHz. Dashed lines indicate motional
sidebands.
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Figure 11.9 — Sidebands from figure 11.8 fitted to a skewed gaussian, equation
9.3. Vertical dashed lines denote the mean sideband frequency.
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Figure 11.10 — Simulated
spectrum at 100 nK

The temperatures as a function of sideband ratio are plotted along
with the true temperatures in figure 11.11. It is clear that determin-
ing the temperature using this method is mostly accurate when used in
low temperature regimes. When the sideband ratio becomes larger than
0.8 the temperature races off and small noise contributions will lead to
large changes in temperature, which may be the explanation for the be-
havior seen in chapter 9 on the (0→ 0) transition. We can, however, see
that in the low temperature domain the estimated temperatures follow
the actual temperatures. From these calculations we see that the es-
timation method systematically overestimates the temperature. Using
the sideband ratio as a measure for the temperature becomes somewhat
problematic at very low temperatures. This is due to the fact that the
lower motional sideband gets so small that noise can begin to impact
the temperature estimate. An example of a 100 nK spectrum is plotted
in figure 11.10. At very low temperatures it is therefore only possible to
give an upper bound on the temperature.
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Figure 11.11 — Estimated temperature as a function of sideband ratio(left) and
sideband frequency(right). The actual temperature is also plotted for reference.

0.00 0.25 0.50
Pulse duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

[a
.u

.]

10 µK 20 µK

Figure 11.12 — Carrier Rabi
oscillations at 10µK and
20µK with a ground state
Rabi frequency of 5 kHz.
The contrast of the oscil-
lations goes down as the
temperature increases.

From these simulations we can also see the effect of the carrier Rabi
frequency at different temperatures, figure 11.12. In chapter 9 we saw
how the Rabi oscillations from the Raman interactions decayed over
time. This decay can be attributed to the interference of different carrier
Rabi frequencies. The distribution of motional energy will change the
spectrum of the carrier transition and thus lead to a temperature depen-
dent decay of the Rabi oscillations. This model also allows for revival
of Rabi oscillations, plotted in figure 11.13. Whether this can reason-
ably be measured in the real experiment is debatable since the interac-
tion with the Raman light will lead to occasional spontaneous emission.
Additionally since the Lamb-Dicke parameter for our trap is not zero,
there will be a finite amount of scattering leading to a change of the
motional state. However, the timescale on which the revival of the Rabi
oscillations occur is not unreasonable and therefore would be testable
in our experimental setup. The revival of Rabi oscillations in addi-
tion to the state dependent Rabi frequency is reminiscent of the Jaynes-
Cummings model in cavity quantum electro dynamics. The ability to
drive motional states at different Rabi frequencies opens up the oppor-
tunity to make non-trivial states of the atomic ensemble. For instance
one can create entanglement between motional and internal states. In
the discussion of the temperature estimation of the experimental data
we found that an offset in the signal would result in a large change in
the estimated temperature. The possible origins of the signal offsets
were discussed, however we also find a similar effect occurring in the
simulations of the motional spectra. Figure 11.14 shows a simulation at
60 µK. The scale has been exaggerated to highlight the signal pedestal
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Figure 11.13 — Revival of Rabi oscillations. The simulation is done at 20µK,
with a ground state Rabi frequency of 10 kHz. We note that the Rabi oscilla-
tions decay initially, but revive after ∼ 6 ms.

on which the sidebands and carrier sit. As seen in the Franck-Condon
matrix the Rabi frequencies between states increases for large n. In the
case of a high temperature ensemble, atoms will be inhabiting high en-
ergy motional levels and therefore higher order transitions are made
possible. This can now happen over a long range of frequencies leading
to a broadband signal increase.

−200 −150 −100 −50 0 50 100 150 200
Detuning [kHz]

0.00

0.05

Tr
an

sf
er

[a
.u

.] 60 µK
6 µK

Figure 11.14 — Signal offset of a spectrum simulated at 60µK compared to
a spectrum at 6µK. A significant broadband noise pedestal appears as the
temperature of the atomic ensemble is raised.





CHAPTER

12
TWO DIMENSIONAL
SIMULATION

In the previous section we treated the trap potential in the one dimen-
sional case. Due to the non-separability of the potential we cannot ex-
pect to fully understand the motional states by only considering one
dimension. We therefore extend our treatment to two dimensions. This
chapter details the efforts towards doing Raman spectrum simulations
of the two dimensional trap potential. The scaling of the problem, how-
ever, proved to be a significant obstacle. The work, nonetheless, paves
the way towards more realistic simulations of the physical system.

12.1 Finite difference method in 2d
The method for finding the wavefunctions in two dimensions is essen-
tially the same as the one dimensional case. The resulting wavefunc-
tions of this problem are two dimensional and thus are described by
a 2d matrix. In order to apply the methods of eigenvalue analysis we
need to flatten the wavefunctions into single column vectors. This in
turn means that for wavefunctions on an N × N grid of points, the
Hamiltonian has size N2 ×N2. This scaling means that one has to con-
sider the computational costs.

We will now derive the form of the 2d finite difference Hamiltonian.
Just like in the previous section we need to formulate a discrete second
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derivative. In the 2d case the time independent Schrödinger equation is

EΨ(x, y) =

[
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ U(x, y)

]
Ψ(x, y). (12.1)

As with the one dimensional case the kinetic part can be discretized via
the following difference equation(

∂2

∂x2
+

∂2

∂y2

)
Ψ(x, y) =

Ψ(x, y − δy)− 2Ψ(x, y) + Ψ(x, y + δy)

δ2
y

+
Ψ(x+ δx, y)− 2Ψ(x, y) + Ψ(x− δx, y)

δ2
x

(12.2)

where δx,y are the grid spacings in the x and y directions. We can write
this in terms of a matrix

∇2 =



−2Dxy 1/δ2
x 1/δ2

y

1/δ2
x

. . . . . . . . .

. . .

1/δ2
y

. . .


(12.3)

where
Dxy =

1

δ2
x

+
1

δ2
y

.

We can define the two dimensional potential as a diagonal matrix,

U(x, y) =


U(x0, y0)

. . .
U(xn, y0)

. . .
U(xn, yn)

 (12.4)

where U(xn, yn′) = U(x0 + nδx, y0 + n′δy) is the potential at the (n, n′)th
point on the grid. The full Hamiltonian will thus be,

H = −∇2 +
2mkB

~2
U(x, y). (12.5)

As previously stated, this problem scales as ∼ n4 and therefore is
quite computationally taxing. To reduce computation times and mem-
ory requirements we make use of sparse matrices. Using the SciPy
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sparse library we can define the Hamiltonian in a much more economic
way, [Virtanen et al., 2020]. Since the Hamiltonian is Hermitian we can
further speed up the computation using SciPy.eigsh. This function
returns n eigenvectors in order of eigenvalue.

12.2 Two dimensional wavefunctions
Using the equations derived in the previous section we can find the
wavefunctions of the two dimensional potential. We focus on the trans-
verse potential, i.e. the potential at a fixed axial coordinate. The first six
wavefunctions in terms of energy are plotted in figure 12.1. The green
and blue contour lines indicate equipotential lines of the trapping po-
tential, with trapping powers of Pblue = 8 mW and Pred = 2 × 0.7 mW.
The low energy wavefunctions are very reminiscent of wavefunctions
of the harmonic potential. We can assign a number of radial and az-
imuthal excitations to the wavefunctions. From this we find that the
ground state transition frequency is 113 kHz for the first radial transi-
tion and 88 kHz for the first azimuthal transition. We note that this trap
frequency is higher for both degrees of freedom than the one dimen-
sional potentials.
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Figure 12.1 — Plot of the first six wavefunctions in order of energy. Contour
lines show the trap potential. Blue and red colors indicate the sign of the
wave function. The wavefunctions can be assigned a number of radial and
azimuthal excitations shown as (nr, na). x = 0 indicates the surface of the
nanofiber.

The non-separability of the potential becomes apparent when look-
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Figure 12.2 — The 170th wave function in order of energy. The wavefunction
exhibits the break down of the radial and azimuthal separation. X = 0 indi-
cates the surface of the nanofiber.

ing at highly excited states of the potential. The 170th wavefunction
is plotted in figure 12.2. It is clear that one cannot assign a reasonable
number of radial and azimuthal excitations. We are, so to say, mixing
the motional degrees of freedom more at larger motional energies.
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Figure 12.3 — Eigenenergies
of the first 1400 wavefunc-
tions of the two dimensional
trap potential. The edge of
the potential at 0 K is indi-
cated by a dashed line.

The first 1400 energies are plotted in figure 12.3. If we, for the mo-
ment, imagine a two dimensional harmonic potential, with degenerate
trap frequencies, then we can divide out n excitations in n+ 1 different
ways. This means that for an energy E(n) in one dimension we need n2

states in two dimensions to reach the same energy level. The spectrum
seen in figure 12.3 shows that with 1400 states we do not reach the top of
the potential. This happens to be an important fact for the simulations
of Raman spectra. This will be discussed in more detail in the section
12.3.

Figure 12.4 shows the expectation value of the radial distance from
the fiber surface. Like the one dimensional case the distance increases
with increasing energy. The distances shown are calculated from the
first 400 wavefunctions.
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Figure 12.4 — The expectation value of the radial coordinate for the two di-
mensional potential as a function of energy. First 700 wavefunctions are dis-
played.

12.2.1 Franck-Condon factors
In the same manner as the one dimensional treatment, we find the tran-
sition matrix elements between all of the wavefunctions. We can once
again argue for why the transverse plane of the fiber makes for the most
interesting physics by considering the lack of decay in the axial degree
of freedom. In order to calculate the Franck-Condon factors we need to
know the intensity distribution of the evanescent field.
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Figure 12.5 — Contour plot of
the transverse intensity dis-
tribution of the Raman light.

The Raman mode is plotted in figure 12.5. The mode of the Raman
light has a near exponential decay radially and a sinusoidal dependence
in the azimuthal degree of freedom. To calculate the Franck-Condon
factors in two dimensions, we first calculate the mode of the Raman in-
tensity. We then loop over all of the wavefunctions, summing over the
elementwise multiplication of the states. The resulting Franck-Condon
factors are plotted in figure 12.6. We see the same sort of behavior as
in the one dimensional case; states with larger energy can couple to
more levels. Unlike the one dimensional case, where the states are nat-
urally in a nice order, we get a different kind of sorting of the wavefunc-
tions in 2d. This leads to a different structure of the transition elements.
This should, however, make no difference for the applicability of this
method.
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Figure 12.6 — Franck-Condon coefficients of the two dimensional trap poten-
tial. Note the logarithmic color bar.

12.3 Simulating Raman spectra
With the Franck-Condon factors we can calculate the Raman spectrum.
It is noteworthy, that we cannot cover the full spectrum of motional
states with the computational resources that we have at our disposal.
This means that we can only simulate spectra at low temperatures. Fig-
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Figure 12.7 — The Boltzmann factor for the motional states at temperatures
between 2µK and 32µK. The state energy is plotted as a dashed line.

ure 12.7 shows the Boltzmann factors for a series of temperatures as a
function of the eigenenergies found in figure 12.3. From the 1400 states
we can try to approximate how many states are necessary to represent
the ensemble at a given temperature. We define the ratio of population
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Figure 12.8 — Ratio of the partition functions of different numbers of states to
the partition function of 1400 states.

in the following way,

RN,N ′(T ) =

∑N
n=0 e

−~ωn
kBT∑N ′

n=0 e
−~ωn
kBT

(12.6)

where N ′ is the total number of states available and where ωn is the
frequency of the nth energy level. In this case the maximum number of
states available is 1400. The ratios for different temperatures are plotted
in figure 12.8.

As expected, low temperature ensembles can be nicely represented
with only a few states. However we already see a large discrepancy at
temperatures close to 10µK. We can simulate a spectrum at 1µK, shown
in figure 12.9, using 200 and 400 states. This should, based on the cal-
culations of figure 12.8, lead to more or less identical spectra. However,
the spectrum using 400 states exhibits some new features, which do not
show up in the other spectrum. One would expect that including more
states would simply make the simulation more accurate, however these
features are nowhere to be seen in the experimental data and they do
not show up in the 1d simulations.

The origin of these erroneous peaks could be several different things.
Since these peaks show up for systems of a larger number of states it
is possible that somehow the calculation of the matrix elements of the
Franck-Condon matrix are wrong. As we increase the energy, we also
increase the extent of the wavefunctions. This, in principle, means that
one has to extend the domain on which the wavefunctions are calcu-
lated. This also means that to ensure accurate Franck-Condon factors
one has to use a large potential domain and a large number of points,
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Figure 12.9 — Spectra simulated at 1µK using 200 and 400 states, with a
ground state Rabi frequency of 5 kHz and a pulse duration of 100µs. Note
the additional peak in the spectrum using 400 states.

seeing as when the domain increases in size, the grid density decreases.
A large discrepancy in the Franck-Condon factors would manifest itself
in the matrix in figure 12.6, however, we do not see such behavior. The
wavefunctions used to calculate the Franck-Condon factors are simu-
lated on a 500× 500 grid with x and y coordinates ranging from 0 to 1.5
µm in x and -1.7 to 1.7 µm in y. This should be plenty large to represent
wavefunctions at the appropriate energies.

What seems like a more probable source of the error is numerical
instability. Working with 400 states means that the Hamiltonian is an
800 × 800 matrix. On top of this, the elements of the Hamiltonian have
widely varying time dependences as seen in figure 12.10. This is re-
lated to the so called stiffness of the system of equations, [Shampine
and Gear, 1979]. The stability of a stiff system of equations is highly de-
pendent on the size of the time step used in the integration. In our treat-
ment we use a 4th order Runge-Kutta integration method. This method
is not built to handle stiff ordinary differential equations. Therefore this
could be the origin of the large error in the integration, when using
many wavefunctions.
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Figure 12.10 — Transition fre-
quencies between each of the
first 600 motional states of the
2D trap potential.

Despite these obstacles, the work on the 2d simulations lays the
groundwork for more in-depth simulations of the trapping potential.
Optimizing the code for larger systems of stiff equations will allow us
to better simulate the spectra. Furthermore, the numerical results found
in this fully quantum method could be compared with classical ensem-
ble calculations, such as in [Markussen et al., 2020]. This could give us
some insight into the intersection of the classical point particle trajecto-
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ries and the wavefunction approach.
Since we know that the potential is non-separable, it is of course also

worth investigating the three dimensional potential. As we have seen,
going from one dimension to two, the transition frequencies are affected
by the other degrees of freedom. There is of course no reason why this
should not also be the case in three dimensions. Extending the model to
three dimensions is, in abstract terms, a simple procedure, however, the
computational requirements are much higher and therefore it is beyond
the scope of this work.





CHAPTER

13
CONCLUSION

This brings us to the conclusion of this thesis, where the key results will
be summarized and a few comments on future paths for the experiment
will be given.

In the first part of the thesis we developed some of the key physi-
cal concepts for understanding the physics of our experiment. We saw
how a two-level atom interacts with light and were able to extend the
treatment to multi-level atoms. The interaction of the atoms with far
detuned light led to a dipole force, which could be leveraged to trap
neutral atoms. We saw how the evanescent field of a sub-wavelength
optical fiber could be used to trap Cesium atoms in a potential well.

In the second part we successfully pulled, characterized, and in-
stalled a new nanofiber into the experimental setup. The experimen-
tal setup was presented, along with the two-color heterodyne detection
setup and the dipole force-free Raman scheme. The trap parameters
were investigated to find the optimum trap configuration for maximal
loading. We found that there was noise, which is yet to be mitigated.
We also showed that the dipole force-free Raman scheme could be cali-
brated to cancel differential Stark shifts, however, we also discovered a
significant systematic flaw in the experimental procedure for cancelling
the Stark shifts, requiring a different approach on the stretched transi-
tion. Finally we used Raman transitions to resolve the motional side-
bands of the trap potential. This allowed for the measurement of the
temperature based on the sideband asymmetry. We applied a novel
cooling scheme, taking advantage of the fictitious field generated by
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the blue trap light. We saw how systematic errors had a significant im-
pact on the temperature estimation and presented different methods of
accounting for the aforementioned errors.

In the last part of the thesis, we delved into simulating the motional
states of the trap potential to gain an insight into the merits of the tem-
perature estimation method. We first developed the necessary theoret-
ical background for simulating multi-level systems and finding wave-
functions of arbitrary potentials numerically. The wavefunctions of the
one dimensional radial trap potential were found and subsequent sim-
ulations of the Raman spectra were carried out. We saw agreement be-
tween our temperature estimation method and the temperature used in
the simulations. We also saw the emergence of temperature dependent
effects on the carrier transitions. The model was extended to treat the
two dimensional trapping potential, with the wavefunctions exhibiting
properties characteristic of a non-separable potential. We did, however,
find that technical limitations kept us from fully simulating the two di-
mensional potential. Despite this, the treatment of the two dimensional
potential paves the way towards increasingly deep understanding of
the motional states of the trapping potential.

While we were able to estimate the temperature of the atomic en-
semble, certain practical limitations still limit the confidence with which
we can quote a temperature. An immediate improvement to the ther-
mometry of the cooled atoms would be to run the spectroscopy on the
(−3 → −3) transition as opposed to the (−3 → −4) transition. An in-
vestigation into the effects of magnetic field fluctuations would also be
prudent. We also found that the efficacy of the cooling was worse on
the new fiber, compared to the old fiber, the reason for which has yet
to be determined. Investigation into the possible heating mechanisms
might allow us to better cool the atoms and in the process see more
pronounced effects in the Raman spectra.

Further extending the simulations will give us a deeper insight into
the motional states. We have seen from the simulations that revival of
Rabi oscillations happens on a timescale of a few ms. This is within the
realm of testability and would also be an interesting measurement to
carry out.



APPENDIX

A
ELECTRIC FIELD OF A
STANDING WAVE

A.1 Electric field of standing wave
Forming a standing wave with the quasi-linear nanofiber modes we can
write the complex electric field as,

Ẽr(t, r, φ, z) = Er(t, r, φ, z)
(
e−iβz + eiβz

)
(A.1)

Ẽφ(t, r, φ, z) = Eφ(t, r, φ, z)
(
e−iβz + eiβz

)
Ẽz(t, r, φ, z) = Ez(t, r, φ, z)

(
e−iβz + ei(βz+π)

)
,

where β is the propagation constant. The electric field at different points
in time is plotted in figure A.1. We see that the evolution of the electric
field does not change the orientation of the field, leading to the cancel-
lation of the longitudinal circular polarization of the running wave.
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Figure A.1 — Electric field of the standing wave generated by counter prop-
agating quasi-linear polarization modes. Arrows indicate the direction of the
electric field. The green bar indicates the nanofiber. The orientation of the
field stays the same over time, however the local polarization depends on the
position.



APPENDIX

B
STARK SHIFT
CANCELLATION
SUPPLEMENTARY

B.1 Cancellation on (0 → 0) vs (−3 →
−4)

The calculation of the differential Stark shift calculation follows the treat-
ment given in [Østfeldt, 2017]. In the far detuned carrier case we can
write the Stark shift of the level |F,mF 〉 as

∆E
(F,mF )
ls = C

∑
F ′,mF ′ ,SB

(
A(mF−mF ′ ) ISB|CmFmF ′

FF ′ |2
(∆carr + ωSB) + ∆

mF ,mF ′
FF ′

)
(B.1)

where we sum over the sidebands SB with intensity ISB and sideband
frequency ωSB, and the full excited state manifold F ′, mF ′ . For each
excited level we find the Clebsch-Gordan coefficient CmFmF ′

FF ′ between
the ground state and each excited level. The A(mF−mF ′ ) variable ac-
counts for the amount of each polarization component of the light, with
mF − mF ′ = ±1 being σ±-polarization and mF − mF ′ = 0 being π po-
larization. C is simply a conversion factor to ensure proper units. The
variable ∆carr is the carrier detuning of the Raman light. The variable
∆
mFmF ′
FF ′ is the shift of the excited state w.r.t. the center of the upper man-

ifold, taking into account the shift of the ground state level. This will be
a function of the applied magnetic field,

∆
mFmF ′
FF ′ = ∆F ′ +mFµBgFB +mF ′µBgF ′B + ∆hfsδF,3 (B.2)
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Figure B.1 — Differential Stark shifts on the |F = 3,mF = 0〉 →
|F = 4,mF = 0〉 and |F = 3,mF = −4〉 → |F = 4,mF = −4〉 transitions.
Dashed lines indicate parameters for balanced common-mode Stark shift.

where µB is the Bohr magneton, gF is the Landé g-factor of the hyperfine
level, B is the applied magnetic field and where we have introduced
the last term to account for the difference between the F = 4 and F = 3
levels. The first term is the detuning of the level F ′ w.r.t. the center of
the excited state manifold in the absence of a magnetic field.

The Raman sidebands used in the dipole force-free Raman scheme
are generated using phase modulation. The phase modulation can be
written as

E(t) = E0e
iωt

[
J0(z) +

∞∑
n=1

Jn(z)
(
einωSBt + (−1)ne−inωSBt

)]
(B.3)

where Jn is the nth order Bessel function of the first kind and where
z is the modulation index. Changing the modulation index affects the
relative amplitudes of the generated sidebands and as such lead to dif-
ferent Stark shift contributions. By scanning the carrier detuning and
the modulation index we can map out the parameter space to find the
combination which leads to zero differential Stark shift, defined as

∆Ediff = ∆E
(3,−3)
ls −∆E

(4,−4)
ls (B.4)

for the −3→ −4 transition.
Figure B.1 shows the differential Stark shifts between levels (0→ 0)

and (−3→ −4) with an applied magnetic field of 3 Gauss using the first
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five Raman sidebands. We see that for a carrier detuning of ∼ 4.7 GHz
on the (0→ 0) transition we find an optimum modulation index of 1.6,
however, on the (−3 → −4) transition this is no longer the optimum;
the optimum modulation index is shifted upwards slightly. This is also
consistent with our measurements.
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C
RAMAN SPECTROSCOPY
SUPPLEMENTARY

C.1 Error propagation for temperature
estimation

To find the error of the temperature estimates we first have to error
propagate the formula for calculating the temperature. The tempera-
ture is given by

T = −~ωSB
kB

1

ln(rSB)
(C.1)

where ωSB is the mean sideband frequency and rSB is the sideband ra-
tio. Using the law of error propagation, [Barlow, 1991], the uncertainty
of T is given by,

δT =
~
kB

√(
1

ln(rSB)

)2

δ2
ωSB

+

(
ωSB
rSB

)2

δ2
rSB

. (C.2)

The sidebands are fitted with the function

SSB(∆) = A
e−(∆−µ)2/2σ2

1 + e−α(∆−µ)
(C.3)

since this function has no simple expression for the integral and mean
frequency we have to calculate these quantities numerically. The uncer-
tainty in the frequency and area can be calculated from the standard de-
viation of the numerical results. To calculate the two quantities we take
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Figure C.1 — Monte Carlo simulations of the sideband area and sideband fre-
quency for degenerate Raman cooled spectra. 2000 iterations used.

a random set of fit parameters, lying within the range of uncertainty
from the fit, we then compute the quantities. Afterwards the means
and standard deviations give us the necessary information to calculate
the error in the temperature estimate. Figure C.1 shows histograms of
the Monte Carlo simulation of the sidebands in section 9.2.1.

C.2 Bias magnetic field for cooling
The determination of the optimum bias magnetic field is carried out by
varying the current sent to the MOT coils, generating the bias field. By
stepping the magnetic field we can find the appropriate value, i.e. the
magnetic field for which the largest fraction of the atoms are left in the
trap after a certain amount of time. Measurements of the optimum bias
field are shown in figure C.2.
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Figure C.2 — Fraction of atoms in the trap after different time intervals using
different bias magnetic fields. Note the peaks at ∼ 0.5 Gauss.
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