
...

The Scalable Spatial Echo State Network
For Detection of Anomalous
Ocean Surface Topography

Master’s Thesis in Computational Physics

by Jacob Ungar Felding

August 13, 2021

Supervisor

Associate Professor James E. Avery

University of Copenhagen

Niels Bohr Institute

i

Acknowledgements

During the trying times of a pandemic, lockdowns and working from home, the people

that have helped and encouraged me during the creation of this thesis have my most

sincere appreciation.

My supervisor, Associate Professor James Avery, in particular has my gratitude for being

within reach, digitally, and ready to discuss all aspects of my work – literally day and

night – undeterred by any weekends or holidays. I have greatly enjoyed learning from

you, and sharing the occasional beer.

For listening to my complaints at trying times and for many joyful breaks I want to thank

the people of eScience at the Niels Bohr Institute, and my office mates throughout the

last year. In addition, Carl Johnsen has provided me with much guidance, and the com-

putational resources to perform my experiments; oftentimes at the cost of rendering his

machine unusable to himself. At eScience, Rasmus Munk has been forever helpful in

sorting out a multitude of technical issues for me, and discussing approaches to high per-

formance computing. David Marchant has provided a lot of pedagogical feedback and

stylistic tips for the writing of this thesis.

To Markus Jochum and the people of Team Ocean at NBI, I am grateful for the facilitation

of CESM simulation data used in this thesis (as has Avery).

The thing that I most look forward to after the final sprint of writing this thesis is spending

some time with my friends and family who have supported my personal journey in more

ways than can meaningfully be expressed on paper; I am deeply grateful to you all.

ii

Abstract

Global climate model simulations like the CESM can inform scientists, decision makers and the

public of the likely future climate of planet Earth. The Sixth Assessment Report of the IPCC,

for example, is the latest landmark evaluation of the scientific consensus wrt. climate change,

and many of its conclusions are drawn from analysis of climate model simulations.

While climate refers to long-term weather trends that can often be examined by statistical

measures, the simulations are necessarily much more fine grained, with time scales of days

rather than decades. The implication is that simulations are, to a large extent, unexplored; ripe

with information on the evolution of e.g. ocean currents that is deeply impactful to populations

in the near future at regional levels. While such analysis by oceanographers is possible, the im-

mensity of the simulation data prohibit manual evaluation at scale. It is clear that automatic

or semi-automatic methods of detecting anomalous ocean transitions are necessary.

In a step towards such anomaly detection, this thesis presents a machine learning method

for high-resolution spatio-temporal forecasting by feeding simulation data with no exogenous

information of the underlying physics – except for the tuning of a few hyperparameters.

The proposed method is a type of Recurrent Neural Network called an Echo State Network

(ESN) that is efficient to train, and effective at forecasting. The work builds on and extends

’Adaptive Anomaly Detection in Chaotic Time Series with a Spatially Aware Echo State Network’

(Heim and Avery 2019). Their spatial ESN (SESN) prototype showed great promise at spatio-

temporal prediction, but technical limitations inhibited exploration of oceans at grand scales

that is necessary for automatic analysis of ocean simulations.

The main contributions that make the SESN spatially scalable are (1) the construction of

high-dimensional reservoirs by avoiding diagonalization, limited only by memory, (2) the im-

plementation of an efficient spatially sensitive loss function with the introduction of robust

forward-backward transforms for regression, and (3) the implementation of dimensionality

reduction that stabilizes optimization and combats over-fitting.

The SSESN implementation and the spatial loss functions are made available as Python 3

packages at GitHub1,2.

As shown in the report, the SSESN provides forecasting on both climate model simula-

tions and simpler calibration systems. The thesis also exemplifies the SSESN’s application for

anomaly detection in ocean systems, whereas a robust and fully automated approach is left as

further work.

1SSESN Implementation: https://github.com/jfelding/esn/
2Image Euclidean Distance Functions: https://github.com/jfelding/IMED

https://github.com/jfelding/esn/
https://github.com/jfelding/IMED

NOTATION iii

Notation

Scalars, Vectors and Matrices

a A scalar

a A vector, or row-major vectorized matrix vec (A)

A A matrix

Indices

I chose to preserve the font when indexing multi-element structures regardless of whether

the result is a scalar or array:

ai ith scalar sample

ai Single (scalar) element of a vector a, or the ith vector sample from a vector

space ai ∈A

A(i,:) Vector from ith row of matrix A

A(i, j) Scalar element of matrix A found in its ith row and jth column

iv

Variables

X Input space with xt ∈ X

Y Output space with dt ∈ Y and yt ∈ Y

D Training set containing inputs and targets such that (xt ,dt) ∈ D ⊂ (X ×Y)

L2 Function space of the L2 norm, and all square-integrable functions

xt Input at time t – Dimension Ninput

yt Output at time t – Dimension Noutput

dt Target at time t

ht Hidden state vector at time t with dimension Nhidden

Ninput Dimensionality of input sequence at time t, flatted if larger than 1D.

Noutput Output dimensionality. In this report typically equal to Ninput

Nhidden Dimensionality of high-dimensional hidden state vector

Ntrain Number of harvested hidden states that are regressed upon

Ntrans Number of initial training set observations reserved for initialization of ht=0

Npred Number of free-running prediction steps, post-training

Wih Matrix representation of input maps, initial transform of inputs to the hid-
den state dimension (ih: input-to-hidden)

Whh The reservoir, a matrix representing a linear map w : Nhidden→
Nhidden (hh: hidden-to-hidden)

Who Readout matrix, optimized using multiple least squares (ho: hidden-to-
output)

H Hidden state matrix consisting of ’harvested’ states ht , with resulting di-
mensions (Ntrain × Nhidden)

`(yt ,dt) Loss Function applied to output and target

L̂ (h,D) Empirical loss of the selected hypothesis h on the entire training set D.

L (h) Expected loss, generalization error, or out-of-sample error using the loss met-
ric L (h) = E [`(h(x), d)]

d (· , ·) Euclidean distance following from discretization of the L2 norm

ABBREVIATIONS v

Abbreviations

BPTT Back-Propagation Through Time

CESM Community Earth System Model

CNN Convolutional Neural Network

CPU Central Processing Unit

CSR Compressed Sparse Row matrix format

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

ESN Echo State Network

ESP Echo State Property

FFT Fast Fourier Transform

GPU Graphics Processing Unit

IMED Image Euclidean Distance

iST Inverse Standardizing Transforms of the IMED. This thesis introduces robust
frequency representation approaches to the iST.

LSTM Long Short-Term Memory network

MA Moving Average

ML Machine Learning

MSE Mean Squared Error

PCA Principal Component Analysis

RNN Recurrent Neural Networks

SESN Spatial Echo State Network (Heim and Avery 2019)

SSESN Scalable SESN (this project)

SSH Sea Surface Height (CESM variable)

ST Standardizing Transform of the IMED

SVD Singular Value Decomposition

Contents

Notation . iii

Abbreviations . v

1 Introduction 1

1.1 Spatio-Temporal Learning . 2

1.2 Testing of the SSESN . 4

1.3 Predicting Dynamics of the Kuroshio, and Ocean Applications 5

1.4 Anomaly Detection . 7

1.5 Why Bother with High-Resolution Predictions? 9

1.6 Contributions and Reading Instructions . 10

I Background 11

2 Supervised Machine Learning and RNNs 13

2.1 Many Applications, Yet No Free Lunch . 14

2.2 Objectives of Supervised Machine Learning 14

2.2.1 Introduction . 14

2.2.2 Induction and the Task of Learning 15

2.2.3 Probabilistic Inference . 15

2.2.4 Hypothesis Selection and Assessment 16

2.2.5 Bias-Variance Tradeoff . 18

2.2.6 Probabilistic Inference for Sequential Models 18

2.3 Recurrent Neural Networks . 19

2.3.1 Unfolding the RNN . 20

2.3.2 Forward Propagation . 21

2.3.3 General RNN Expressiveness Comes at a Cost 22

2.3.4 Training an RNN Can Be Tricky . 22

vii

viii CONTENTS

2.3.5 ESN Training: Least Squares . 24

3 Echo State Network Dynamics 27

3.1 A Review of Echo State Networks . 28

3.2 Echo State Network Dynamics . 29

3.3 Input Mapping . 29

3.4 Reservoir Dynamics . 31

3.4.1 Eigenspectrum and Spectral Radius of the Reservoir 32

3.4.2 The Echo State Property . 32

3.4.3 Beyond the Echo State Property . 34

3.5 Challenges and Bottlenecks to Spatio-Temporal Learning 35

II Development of a Highly Scalable

Spatial Echo State Network 39

4 Scaling Up the Reservoir Matrix 41

4.1 Spectral Radius by Design . 42

4.1.1 Exploring Spectral Radii . 42

4.1.2 A Circular Law: The Eigenspectra of Sparse Fixed-Nnzpr Random

Reservoirs . 47

4.1.3 Practical Considerations . 49

5 Dimensionality Reduction 51

5.1 Dimensionality Reduction of H . 52

5.1.1 Principal Component Analysis . 53

5.1.2 Application of PCA in ESNs . 54

5.1.3 Impact of PCA on the ESN Dynamical System 56

6 A Spatially Sensitive Metric 57

6.1 You Get What You Ask For . 58

6.2 Reading Guidance . 59

6.3 The L2 Norm and Euclidean Distance . 59

6.4 The Image Euclidean Distance Metric (IMED) 62

6.4.1 The Standardizing Transform . 63

CONTENTS ix

6.4.2 A Naive Inverse Standardizing Transform 64

6.5 IMED by Kronecker Product Decomposition 64

6.6 Standardizing Transforms Using Frequency Representations 66

6.6.1 IMED by Fourier Transform . 66

6.6.2 IMED by Discrete Cosine Transform 71

6.7 Deconvolution And the Inverse Standardizing Transform for SESNs 71

6.7.1 An Ill-Conditioned Problem . 71

6.7.2 Naive Inverse Transforms . 72

6.7.3 The Wiener Filter . 75

6.7.4 A Simple Solution . 76

6.8 IMED Benchmarks . 80

III Application 83

7 Forecasting with the Scalable SESN 85

7.1 Reading Guidance . 86

7.2 The Unsolved Issue of Hyperparameter Optimization 86

7.2.1 Training, Validating, and Testing . 86

7.2.2 Essential Hyperparameters . 87

7.2.3 Optimization with Competing, Imperfect Error Measures 89

7.3 Synthetic Data: Predicting an Orb with Lissajous Curve Centre 90

7.3.1 Grid Search on a Spatially Smaller Problem 90

7.3.2 High-Dimensional Application: 500x500 Pixels 95

7.3.3 A 1500× 1500 Lissajous For the Front Page 98

7.4 Synthetic Data: Predicting an Orb with Mackey-Glass Centre 99

7.4.1 An Example of a Poor Choice of Hyperparameters 104

7.4.2 500× 500 Mackey-Glass Orb . 104

7.5 Shallow Water Simulation . 106

7.5.1 Input Scaling Dramatically Impacts ESN Expressiveness 107

7.6 Full-Resolution Ocean Predictions on the Kuroshio 111

7.7 The Agulhas Current . 119

7.8 Time Complexity Benchmarking (16 Core CPU) 120

7.8.1 Computational Considerations . 120

x CONTENTS

7.8.2 Hardware . 123

7.8.3 Setup, Hyperparameters and Problem Size 124

7.8.4 Benchmarks of Time Complexity of Spatial Dimensions (CPU) . . . 128

8 Anomaly Detection 133

8.1 Method of Detecting Anomalies from Prediction-Target Comparison 134

8.1.1 Online ESN Learning for Error Sequence Generation 136

8.1.2 Smoothing the Error Sequence using Moving Averages 136

8.2 Anomaly Score from Moving Averages of Error Sequence 137

8.3 Anomalies of the Kuroshio: A Proof of Concept 138

9 Conclusion and Outlook 141

9.1 Wrapping It Up . 142

9.2 Further Venues of Research . 143

9.2.1 An Imperfect Loss Function . 143

9.2.2 GPU Utilization . 144

9.2.3 A Closer Look at Spatial Input Maps 144

9.2.4 Automatic Hyperparameter Optimization from ESN Dynamics . . . 144

9.2.5 Distribution of Training using Online Learning 145

9.2.6 Applying More Variables in the SSESN 145

Bibiliography 147

Chapter 1

Introduction

This thesis develops a machine learning (ML) method to predict chaotic spatio-

temporal series governed by differential equations of physics. The project builds

on work by Niklas Heim and James Avery, and implements solutions to im-

prove and stabilize predictions. Most importantly, my work allows exploration

of datasets with much larger spatial dimensions than before. This was previ-

ously unfeasible due to both time and memory constraints.

With this accomplishment, realistic spatio-temporal predictions of chaotic sys-

tems, like ocean currents, are achievable and very fast even without exploiting

accelerators like GPUs.

As a use case in computational physics, I show that simple methods for anomaly

detection can be built on top of the ML-predictions to discover areas in the oceans

where large-scale topographical changes occur over different time scales, and in

a seemingly unpredictable manner.

1

2

1.1 Spatio-Temporal Learning

The main subject of this thesis is the development of a machine that produces spatio-

temporal predictions of high quality and with high spatial resolution. The task is to take

an image sequence as input, and make good estimates of what will happen after the

sequence has ended, for a number of frames. In this thesis the image sequences consid-

ered are governed by continuos differential equations describing e.g. the laws of physics.

When the sequence obeys such mathematical or physical constraints that difficult task

becomes feasible in principle. This thesis is limited to approximating dynamics of such

spatio-temporal series.

Learn Context

Simulation Context

"Training Set"

Simulation Targets

ML Predictions

t=
T

tr
ai

n

t=
T

tr
ai

n+
1

t=
T

tr
ai

n+
T

pr
ed

t=
1

Figure 1.1: The image sequence prediction task. The available sequence is split into
training and target subsets. The training set is available to accomplish the task using
supervised learning approaches. The target set is unseen by the learner, and may only
be used to evaluate the quality of the learner’s predictions (in a simple learning setting).
Note: For prediction of image sequences, the ’target’ for input of time t is the frame at
time t + 1.

1.1. SPATIO-TEMPORAL LEARNING 3

Gradient-Based and Reservoir Computing Approaches

It has recently become popular to apply so-called deep learning for video-frame prediction

(Oprea et al. 2020), which typically involves heavy gradient-based optimization methods

that necessitate GPU acceleration for high-dimensional time series like spatio-temporal

ones. I take another path laid out by the work of then-master’s student Niklas Heim and

our common master’s project supervisor, James Avery. Heim’s excellent thesis is available

on GitHub, see (Heim 2018). More recently and concisely their work was presented in

an article preprint, see (Heim and Avery 2019) with a major code revision available at

(Heim 2021).

Their work, contrary to the current zeitgeist, is based on the realization that recurrent

neural networks (RNNs) can be extremely hard to optimize due to time constraints, but

also wrt. prediction quality because they often fail. RNNs are the class of machine learn-

ing predictors most commonly applied for sequential prediction tasks; further described

in Chaper 2, with a more solid foundation available in (Hammer 2000).

The work of Heim and that of this thesis therefore utilize a specific type of RNN called echo

state network (ESN), which takes a reservoir computing approach to sequential modelling

for which optimization is very fast, but requires understanding of the RNN dynamics to

function properly.

The spatial ESN prototype implemented by Heim and Avery allows spatio-temporal pre-

diction within reasonable time for spatial dimension around 30x30 and is limited by

memory consumption around 120× 120 (See benchmarks in Sec. 7.8), but the resource

and time consumption scales poorly with the spatial resolution and makes predictions on

high-resolution data infeasible.

Conventional ESNs, which are not generally used for spatially correlated data, are also

described in Chapter 2, and the main contribution of my thesis (in most chapters) to the

prediction of image sequences is the development of such ESNs for very high-dimensional

data, and especially space and time correlated data for which I further develop a distance

metric function called the Image Euclidean Distance (IMED) that is more sensitive to cor-

relation along dimensions, and less sensitive to small pertubations, and white noise. This

work is described in Chapter 6.

As the aim of the thesis project is mainly the creation of an ESN for high-resolution input,

4 CHAPTER 1. INTRODUCTION

I refer to my particular ESN as a Scalable Spatial Echo State Network (SSESN).

1.2 Testing of the SSESN

While developing my SSESN method of image sequence prediction for high-resolution

sequences, it is important to ensure that the approach is capable of approximating spa-

tially coherent structures (often more so than minimizing an error measure, which can

be done in many ways).

The project therefore started by testing ideas for the SSESN on artificially created se-

quences of spatial ’orbs’ that move in either a deterministic or chaotic manner, as illus-

trated in Figure 1.2. These synthetic data are generated by (Heim and Avery 2019). The

individual pixels of a periodically moving orb (left) is relatively easy to predict, while an

orb whose path is governed by the Mackey-Glass equations is much harder to get right

and spatially coherent (see Sec. 7.4.1). Even if one allows the predicted trajectory to

deviate from the true path, and merely values qualitatively plausible predictions. At the

same time, the speed of the chaotic orb is faster, for an increased prediction challenge.

(a) Orb with periodic trajectory (b) Orb with Mackey-Glass
trajectory

Figure 1.2: Illustration of two different sequences of moving orbs with Gaussian spread.
During the sequences, orbs remain spatially cohesive. in (a), the orb takes a simpler,
periodic path. In (b), the orb takes a path governed by chaotic behaviour of Mackey-
Glass equations. Illustrations are from (Heim and Avery 2019) who also created the
synthetic data and figures that are shown with permission.

1.3. PREDICTING DYNAMICS OF THE KUROSHIO, AND OCEAN APPLICATIONS 5

1.3 Predicting Dynamics of the Kuroshio, and Ocean Applications

Of course, the artificial orbs are only used for testing and calibration purposes, and to

benchmark the SSESN on data of different dimensions, see Chapter 7.

Later, as the SSESN method of performing spatio-temporal prediction began showing

promise and feasible spatial scalability the application moved to data that are more in-

teresting physically.

With competent guidance from oceanographers and computational physicists at Team

Ocean led by Prof. Markus Jochum of the Niels Bohr Institute 1 the project applies sim-

ulation data of the Community Earth System Model (CESM) to the SSESN; continuing

the work of (Heim and Avery 2019). The simulations were performed by Team Ocean.

The University Corporation for Atmospheric Research provide their own introduction to

the CESM:

CESM is a fully-coupled, community, global climate model that provides state-

of-the-art computer simulations of the Earth’s past, present, and future cli-

mate states (UCAR 2021)

The CESM ocean simulations are thus a system for the numerical integration of differen-

tials equations that govern the oceans (and its interplay with the atmosphere). Unlike the

ML model that I develop it is deeply ’aware’ of the physics involved in ocean dynamics.

To such an extent that the model can reproduce some ocean phenomena that are known

to occur, but are not yet well-understood or predicted. An infamous example that Team

Ocean has directed our attention to is the state transition of the Kuroshio Current at

the coast of Japan.

Kuroshio: The Black Tide

The Kuroshio (kuro (黒): black + shio (潮): tide) is notorious for its bimodal and

sudden, lately more uncommon, transitions that have significant consequences to the

residents of Japan. In Figure 1.3 (from Sugimoto et al. 2021) the typical paths of the

flow are shown in each of its two states: the large meander (low sea level) and non-

large meander (high sea level) states. It has been in the low state since 2017, which can

be assigned blame for causing a local greenhouse effect and increasing temperatures that

1Team Ocean can be visited at: www.gfy.ku.dk/~nuterman/teamocean/index.html

www.gfy.ku.dk/~nuterman/teamocean/index.html

6 CHAPTER 1. INTRODUCTION

doubling the number of discomfort days experienced in the Kanto Region (Sugimoto et al.

2021). The transition also gives rise to relocations of marine life habitats and increased

snowfall with consequences for e.g. fishing and the economy.

Further description of the bimodality and tabulations of Kuroshio transitions in recent

history are available in Kawabe 1985.

Figure 1.3: The path typically taken by the Kuroshio current of Japan, in each state. Since
2017, Kuroshio has taken the LM path, the first transition since a shift in 2004-2005.
Figure heavily inspired by (Sugimoto et al. 2021). Map: ©OpenStreetMap contributors.

Team Ocean have allocated significant resources towards performing the CESM simula-

tions:

The computational costs of the 0.1° model made it difficult to integrate the

high resolution simulations closer to their equilibrium solution given our re-

sources. The total sum of 42 high resolution model years required more than

a year to complete on 4096 cores of the BlueGene supercomputer located in

Jülich, Germany, and exhausted our resources (Poulsen et al. 2018)

The simulation data include many variables such as sea surface height, temperature,

salinity and velocity in a number of sea depths, and is defined on a (0.1°) 3600x2400

spatial grid (a single grid cell, on the surface, is about 104 m× 104 m depending on the

latitude and longitude). In this thesis we only explore what can be achieved by applying

the SSESN to a single variable, the sea surface height (SSH), and prediction the future of

this variable, as illustrated in Fig. 1.1. There is definitely much further work to do!

https://www.openstreetmap.org/copyright

1.4. ANOMALY DETECTION 7

The Kuroshio transition is known to occur (though it is not easily predictable) as the shift

has implications for especially residents of Japan. Because it is known and reproducible in

simulations, it is a good starting point for achieving something much greater: Detecting

unknown transitions in the ocean, and predicting them with advance notice.

Team Ocean tells us that many such transitions likely occur that remain unknown to

mankind. The transitions may be similar to Kuroshio while others can take place at

different scales – of space and time.

1.4 Anomaly Detection

The greater purpose of detection anomalous transitions in ocean currents (first Kuroshio,

then elsewhere) is a major motivation for obtaining a scalable spatial ESN. Time con-

sumed on developing the latter has sadly limited the time for implementation of the

former to only a week. Nonetheless, anomaly detection by means of the SSESN requires

a slightly deeper description, which is mainly provided in Chapter 8. For now, I present

the approach in this thesis and its motivation.

What is an anomaly?

To detect an anomaly, one often defines what is normal to start out. That task requires

expertise in the domain in question (expertise that I admittedly do not have, as I have

no prior experience with geophysics).

In the context of ocean anomalies, or perhaps specified further as topographical transitions

of currents, one has to consider the complexity of oceans.

Ocean Turbulence

In accordance with the definition put out by Strogatz (Strogatz 2015, p. 331), oceans

current are chaotic (and therefore non-linear) systems:

• Small perturbations of the system can have significant influence in the short and

long term,

• The currents are aperiodic. While they have strong components of trend and sea-

sonality, many phenomena such as the behaviour of Kuroshio cannot be described

by the large scale components,

8 CHAPTER 1. INTRODUCTION

• Deviations arising from small changes in initial conditions arise despite the deter-

minism of the currents. Oceans are well-described in the realm of classical and

continuum mechanics.

• Turbulence exists at all scales of the ocean, and especially large-scale turbulence

like mesoscale eddies (10km-100km), the "ocean equivalents of storms" (Ferrari

2021), can significantly influence the dynamics of currents.

Simulation

ESN Prediction (ML)

Compare

Detection of Topographical Ocean Transitions
(Anomalies)

Figure 1.4: Outline of approach to detection of topographical transition in oceans using
ML predictions based on simulation output of the CESM model, and a comparison of the
simulation data itself. Details of the approach are visualized in Figure 8.1.

A Workaround to Definition Issues

The question arises therefore: How do we define normality for a vast, diverse dynamic

non-linear system? Is it possible to define normality in a way that applies to all large cur-

rents, and not just to specific currents or similar currents (Kuroshio, like the Gulf Stream,

is a western boundary current)?

1.5. WHY BOTHER WITH HIGH-RESOLUTION PREDICTIONS? 9

The approach of this project is to avoid defining normality from direct physical traits

of each system altogether. Instead, we try to approximate the dynamics of the system

with a good, but imperfect predictor, and define anomalies as those dynamics that

significantly deviate from the short-term estimates of the predictor. Anomalies, per

definition, are phenomena that are hard to predict from the previous dynamics (of the

training set).

The task is, therefore, to construct the predictor and the detector in a manner that allows

us to distinguish small-scale turbulence, numerical noise and the exponentially increas-

ing uncertainty inherent to chaotic systems from large scale transition of currents like

Kuroshio. The approach is illustrated in Figure 1.4.

1.5 Why Bother with High-Resolution Predictions?

The resolution limitations of the spatial ESN prior to this work limits what the predictor

can learn about a region from the contextual information around that region. Scaling up

the resolution at which predictions can take place, then, allows better predictions to be

made.

Further, the spatial ESN is to be applied for anomaly detection across the immense data

sets with many variables, large regions, and for many time steps. To search the vast sim-

ulated oceans (or real SSH data), it needs to be fast to be practically useful.

In future works, the spatial ESN should apply not only one variable, but several to opti-

mize predictions further. For that to be possible, the spatial ESN must also be optimized.

These are the drawbacks of the current stat of the SESN. In (Heim and Avery 2019) it was

necessary to downscale the system, or examine only small areas, to allow high-quality

prediction. The method showed promise, and was capable at detecting a known Kuroshio

simulation anomaly, but was not ready for any automatic exploration of ocean simulation

data.

The proposed methods of this thesis allow the short-term prediction of the CESM SSH

variable at grand scales, and possibly for the entire CESM map at once, with increased

memory.

Note, however, that the work in this thesis keeps a major contribution of Heim and Avery,

which is the replacement of a linear mapping of the spatial input to the hidden state space

– conventionally represented as a matrix – with efficient functions that provide spatially

10 CHAPTER 1. INTRODUCTION

sensitive representations of the input. These input maps remain in the SSESN.

1.6 Contributions and Reading Instructions

The contributions of this thesis to the field of anomaly detection, echo-state networks

and video-frame or image prediction are the following:

1. Allowing extremely high-dimensional ESN reservoirs to be constructed with ad-

justable dynamics by replacing diagonalization methods with an empirical eigen-

value circular law for certain sparse random matrices, see Chapter 4,

2. The implementation and further development of a simple, but spatially sensi-

tive loss function of general utility for volumes with any number of dimensions,

while reducing the influence of numerical noise in predictions, see Chapter 6, and

GitHub2,

3. Introduction of robust methods for the inverse transform inherent to the loss func-

tion for the application in regression as opposed to classification only, in Ch. 6.

4. The implementation of dimensionality reduction in the SSESN readout to allow op-

timization at scale with a lower number of covariates, and to stabilize predictions,

see Ch. 5. This leads to linear scalability as shown in Sec. 7.8.4,

5. The implementation of the SSESN itself in a simpler, optimized and extendible

version available at GitHub3,

Additionally, I include background material to the understanding of machine learning

theory, recurrent neural networks and conventional echo state networks in Chapters 2-3,

and demonstrate the capabilities of the SSESN in Chapter 7-8 while comparing spatial

scalabilities of the SSESN and SESN.

Supplementary material like animations and hyperparameter configurations are available

in a separate branch of the SSESN repository4.

I hope you enjoy the following chapters, and I welcome you to the world of spatial Echo

State Networks!

2IMED Repository: https://github.com/jfelding/IMED
3SSESN Repository: https://github.com/jfelding/esn
4Assets for the thesis: https://github.com/jfelding/esn/tree/thesis_assets

https://github.com/jfelding/IMED
https://github.com/jfelding/esn
https://github.com/jfelding/esn/tree/thesis_assets

Part I

Background

11

Chapter 2

Supervised Machine Learning
and RNNs

This section serves only as background information to the development of the

echo state network, and the information theory that underlies machine learning

methods. Machine learning is a wide field with a plethora of classifiers and

regressors or predictors. Machine Learning models obtain their functionality by

approximating underlying functions that are learnt inductively from examples

– the more, the better as long as sampling is i.i.d. This chapter will introduce

both the basic objectives and pitfalls of machine learning methods as well as

fundamentals of Echo-State Networks that this thesis will further develop for

spatio-temporal problems.

13

14

2.1 Many Applications, Yet No Free Lunch

Machine Learning (ML) – often more or less interchangeably referred to as statistical

learning, and deep learning – is now used in all realms of society where ’big data’ are

available. Financial institutions apply ML for risk analysis, advertisers target customers

with material they deem ’relevant’ to us, a digital assistant can recognize your voice and

respond appropriately, particle physicists at CERN can identify subatomic particles in jets

of quarks and gluons, and self-driving cars continue to confront our legislators with eth-

ical issues of the image recognition and robotics technology.

Indeed, as digitalization prevails over its analogue counterparts, machine learning is be-

coming increasingly widespread whether we like it or not.

While machine learning has triumphed at many tasks, no one algorithm trained on gen-

eral data will perform better than every other. That is, there is no one ’universal’ artificial

intelligence that can defeat all others at all tasks at once. This is known as the no free

lunch theorem (Goodfellow et al. 2016), and directs our attention to creating algorithm

that work well on problems with specific statistical characteristics.

2.2 Objectives of Supervised Machine Learning

2.2.1 Introduction

Supervised machine learning is the subset of learning methods that rely on a training set

of samples D = {(x1, d1), (x2, d2), . . . , (xN train, dN train)} in which an input example x i ∈ X
is paired with a true output di ∈ Y with X and Y being the sets of possible inputs and

outputs, respectively (Abu-Mostafa et al. 2012). The notation above does not imply that

x i, di are scalar, but that their properties are unspecified.

In classification problems, di is referred to as a label and is taken from a particular output

set inherent to the problem. In digit recognition, labels may be di ∈ {0,1, 2, . . . } whereas

another problem may have possible labels {’cat’, ’dog’, ’car’,. . . }.

In regression problems – the subject of this thesis – di is instead referred to as the target

of the input example x i, and the output set Y may be the space of real numbers R, or

indeed a higher-dimensional space like Rn.

The supervised machine learning algorithm seeks an approximation h of the unknown

2.2. OBJECTIVES OF SUPERVISED MACHINE LEARNING 15

target function f : X → Y where h is picked from a hypothesis set H that contains dif-

ferent possible mappings.

2.2.2 Induction and the Task of Learning

The training set D contains a finite number of samples of f , the unknown function map-

ping the input space to its output. This provides the learning algorithm with information

on f for the observations in the training set D, but no information as to its behaviour

outside D. Further, many possible examples of hypotheses h ∈ H may equally well ap-

proximate the samples of f in D, and in some cases classification may be flawless on D
(k-nearest neighbours with k = 1).

Learning, is not determining h such that D is approximated, even if perfectly. Instead, it

is the approximation of f outside of the sample D that is relevant to learning. Whether

learning is feasible, however, is determined by whether it is possible to determine h that

approximates f outside the training set, D.

Learning or inference, therefore, is closely related to the problem of induction. Famously

(Black Swan Theory 2021), Roman poet Juvenal in his works used the term ’black swan’ to

describe a presumed non-existence. Centuries later, Europeans indeed did discover them

in Australia, and the inductive reasoning that such creatures did not exist was proven

wrong, as documented in Fig. 2.1.

Statistical inference is faced with the same issue of whether outliers of data outside the

training set may exist that should drastically alter the hypothesis. It turns out, however,

that in a probabilistic sense, inductive inference can be made under certain conditions.

2.2.3 Probabilistic Inference

The reason public polling, for instance, works (within uncertainties and sources of error)

although the approach is inductive is that it is random sample of the population that on

average tends to agree with the characteristics of the population (an unbiased estimate,

under ideal conditions).

Mathematical theorems have been put forward in this spirit to bound the probability of

a random variables of a particular hypothesis h having a value in a specified interval.

These classic bounding methods include the Markov, Chebyshev and Hoeffding Inequali-

16 CHAPTER 2. SUPERVISED MACHINE LEARNING AND RNNS

ties. Under the assumption that D contains samples that are independent and identi-

cally distributed (i.i.d.) these inequalities prove that it becomes increasingly unlikely

that the random variable deviates a selected amount from the expected as the number of

random samples are increased. The key here is that the samples are i.i.d. for the bounds

to provably work, unlike samples of swans in medieval Europe, of course, with respect

to the global probability distribution of swans.

Figure 2.1: Black swans do exist! Machine learning uses inductive reasoning, but its
pitfalls are mitigated by probabilistic inference. Image credit: Kuiphuis 2018.

2.2.4 Hypothesis Selection and Assessment

Probabilistic inference mitigates the glaring issues of inductive reasoning with respect

to a specific hypothesis. Learning also involves selection of a certain hypothesis h ∈ H
over others. For this purpose, I introduce the notion of a loss function, a measure of how

wrong the prediction h(x i) is wrt. the target di. The empirical loss or in-sample error is:

L̂ (h,D) = 1
|D|

∑

x i ,di∈D

` (h (x i) , di) (2.1)

where the output of the hypothesis h is yi = h(x i), and `(h(x i), di) is a loss function e.g.

` (yi, di) = (yi − di)
2 to evaluate the deviations of the prediction and target.

The objective of machine learning is to minimize another measure known as the out-

of-sample error, generalization error or expected error on unseen data sampled from the

same distribution as the training set:

L (h) = E [`(h(x), d)] (2.2)

The quantity above can be estimated and bounded, but not observed. Low generalization

error implies successful inference of the learning algorithm on unseen data from the same

2.2. OBJECTIVES OF SUPERVISED MACHINE LEARNING 17

unknown distribution. This is what we want: Being able to predict d from x reliably

when new data is sampled.

The training error L̂ (h,D) is not an unbiased estimate of generalization error L (h). D
was used to teach the hypothesis, and h is therefore specifically adapted to minimize

L̂ (h,D), but if care is not taken, this may come at the expense of larger L (h). This is

known as over-fitting, and is a significant obstacle to machine learning. Increasing the

model complexity of h will often decrease the training error, but increase the generaliza-

tion error, as I will show in Section 2.2.5.

Say we have chosen two hypotheses h1 and h2 as candidates for the best predictor h∗.

The machine learning algorithm and optimization methods may provide relatively low

training errors. This does not tell us which hypothesis to pick as over-fitting may have

incurred, and certainly does not indicate the generalization performance. So, we decide

to bring in new data sampled from the same distribution. We call this set Dval the vali-

dation set, as evaluating the predictors’ errors on it can help us determine which is likely

the best option in terms of minimizing L (h). Crucially, Dval is not used for any training,

only validation of a number of hypotheses found using training.

So, we evaluate the validation error L̂ (h,Dval) of h1 and h2, and proceed with the one

that minimizes this error, and on average results in the lowest L(h) of the two.

Still, we have not answered how to estimate L (h). We once again may ask if L̂ (h,Dval)

of the best hypothesis is an unbiased estimate of L (h). With the approach described

above, the answer is it is not: By using Dval to select the best hypothesis out of more than

one such, we have biased L̂ (h∗,Dval) because the selected hypothesis h∗ depends on Dval.

The validation loss cannot be expected to lead to the same value of L(h).
If we do need to honestly tell our supervisor or employer what error they should expect

when they try out the selected hypothesis on their own data for prediction purposes, we

need to bring in even more new data Dtest, which we refer to as the test set. Finally, we

may evaluate the test error L̂ (h,Dtest), which is otherwise unused, and this test error is

an unbiased estimator of the generalization loss L (h).

It is a counter-intuitive point (Seldin 2021) that L̂ (h1,Dval) is an unbiased estimate of

L (h1) if we do not also evaluate L̂ (h2,Dval). And conversely. But as soon as we have

used Dval to pick the best hypothesis h∗, the estimate has become tainted!

18 CHAPTER 2. SUPERVISED MACHINE LEARNING AND RNNS

What we call the data sets is irrelevant. If we use Dtest to pick h∗ using L̂ (h∗,Dtest) (which

seems to be the case too often), this is no longer an unbiased estimate ofL (h∗) (and we

should refer to it as a validation set to avoid confusion).

2.2.5 Bias-Variance Tradeoff

I have stated without proof that increasing the model complexity may reduce the in-

sample error, but tends to increase the generalization error. This is deeply relevant to the

subject of this thesis, since a major change in the approach of this thesis is to restrict the

complexity using dimension reduction methods, see Section 5.1.

If we consider linear regression hypothesis hLS (x), which is applied in this thesis, one can

show that the expected generalization error can be decomposed (Hastie et al. 2017,

p. 223-224) into three terms. We assume that the target is d = f (x) + ε where ε is a

white noise term such that E [ε] = 0, Var(ε) = σ2
ε
, and f is the true unknown function

generating samples.

A model with p parameter will have the following decomposition of the generalization

error, where N is the number of samples.

1
N

N
∑

i=1

L (hLS(x i)) = σ
2
ε
+

1
N

N
∑

i=1

(f (x i)−E [hLS(x i)])
2 +

p
N
σ2
ε

(2.3)

And we see, directly, that the variance increases with the number of parameters p. We refer

to over-fitting as the case where variance is too high, and under-fitting as the case where

bias is (the second term). It is central to avoid either for a least squares fit to generalize

well to unseen data. The expression above, still, cannot be evaluated as the true function

f is unknown. We also see, that one can never expect to do better than the variance of

the targets, σ2
epsilon, the first term.

2.2.6 Probabilistic Inference for Sequential Models

The subject of this thesis is supervised learning for sequential, time-dependent models

(RNNs, ESNs). Every sample is therefore not independent and identically distributed,

and many results from information theory of supervised learning do not hold in this

case.

Instead, the i.i.d. condition must be considered for the time series themselves rather than

2.3. RECURRENT NEURAL NETWORKS 19

the individual observations that they consist of. Probabilistic induction, thus, holds in

these cases (Hammer 2000, p. 53). Besides this reference, I refer the interested reader

to (Cesa-Bianchi et al. 2009 (Print: 2006)). This thesis, however, is not on informational

theoretical research into such models, but their developments, and I will refrain from

delving further into these aspects.

2.3 Recurrent Neural Networks

Recurrent Neural Network (RNN) can refer to a number of predictors in machine learning

that have been widely used to model data with temporal dependencies (time series). The

class of predictors include Long Short-Term Memory (LSTM) and Echo State Networks, the

latter of which this thesis will extend for use on very high-dimensional time series, like

image sequence input. It is pertinent to introduce the broader class of RNNs such that

the benefits and drawbacks of ESNs may come to light.

Recurrent Neural Networks have as their basis an input-driven dynamical system that

recurrently refers to its earlier state. A very general description of such system is (Good-

fellow et al. 2016, p. 370):

ht = f (ht−1,xt;θhh) , (2.4)

such that ht stores the state of the system at time t; a function f of its previous state

ht−1, driving input xt at time t and some parameters θhh (hh: hidden-to-hidden). The

state, denoted with h due it being called the hidden state (hidden, in-between input and

output).

To produce predictions, a readout function g can be defined that extracts information

contained in the state ht and optionally the input xt directly to produce some output yt:

yt = g (ht ,xt;θho) , (2.5)

using another set of parameters θho (ho: hidden-to-output).

In most RNNs, the approach is to optimize the parameters included in θhh,θho in a

manner that provides good prediction output.

Crucially, this is not the case for ESNs in which θhh is more or less randomly initialized,

and only weights in θho are trained. We do, however, tame the randomness with certain

20 CHAPTER 2. SUPERVISED MACHINE LEARNING AND RNNS

properties that allow ESNs to learn better without the explicit optimization of hidden

parameters.

2.3.1 Unfolding the RNN

Who

(t−1)(t−1) ()t()t (+ 1)t(+ 1)t

(t−1)(t−1) ()t()t (+ 1)t(+ 1)t

(t−1)(t−1) ()t()t (+ 1)t(+ 1)t

(t−1)(t−1) ()t()t (+ 1)t(+ 1)t

(t−1)(t−1) ()t()t (+ 1)t(+ 1)t

h(). . .h(). . . h(). . .h(). . .

Unfold

Whh Whh

Wih

d

L

y

h

x

d

L

y

h

x

d

L

y

h

x

d

L

y

h

x

Who

Wiht

Whh

Who

Wih

Whh

Who

Wih

Whh

Figure 2.2: Unfolding the RNN graph. Completely inspired by Goodfellow et al. 2016,
p. 369, adapted to match notation used in this document. x is the input sequence, h the
hidden state, y the output after readout, d the target output, and L the empirical loss of
the output and target given some loss function.

A recurrent neural network applied to a finite-length data sequence defined by a recurrent

dynamical system like Eq. (2.4) can be regarded as a very deep feed-forward network.

Due to its recurrence, i.e. the dependency of ht on ht−1, the network can be unfolded by

replacing ht−1 with its recurrent definition ht−1 = f (ht−2,xt−1;θ) repeatedly. This way,

we see that the current hidden state ht of the system is a function of all previous input

(Goodfellow et al. 2016, pp. 370-371):

ht = ht(xt ,xt−1, ...,x1)

= f (ht−1,xt;θ) ,

where ht is a function of all previous input function at time t. Unfolding is illustrated

in Figure 2.2. This explains why recurrent neural networks are commonly used for time

series analysis: they have memory since the state contains selected information about

(potentially) all past input. The memory property of RNNs is not unlimited, of course, as

2.3. RECURRENT NEURAL NETWORKS 21

the state ht retains its dimension between time steps as opposed to expanding whenever

new information is made available by processing input xt .

Further, θhh is fixed (after possible optimization) for all time steps, which is a choice that

relies on the assumption of stationarity of the input time series, i.e. that it is independent

of the time index, t, while correlation between xt−1 and xt is of course to be expected. A

drawback is that θhh is difficult to optimize exactly because it contains parameters that

are shared across all time step. This step is avoided by ESNs by simply choosing only to

optimize output parameters θho.

2.3.2 Forward Propagation

A standard RNN, including the dynamical system and separate output or readout layer

is defined by the following equations that spell out explicitly a choice of the functions f

and g:

ht = σ (Wihxt +Whhht−1 + bh) (2.6)

yt =Whoht + bho (2.7)

Here, parameters described as θhh,θho are more concretely laid out in vector and matrix

form such that:

• σ(·) is a non-linear activation function, most often the hyperbolic tangent, tanh (·)

• Wih is a RNhidden×Ninput matrix that transforms (expands, most often) the input vector

at time t, xt to a vector with dimension Nhidden

• Whh ∈ RNhidden×Nhidden is the hidden-to-hidden matrix transform that of the last com-

puted hidden state ht−1 from which recurrent nets derive their name. I refer to it

as the reservoir matrix the context of echo state networks.

• Who is a RNoutput×Nhidden matrix that takes the current hidden state ht and produces

the desired output.

• bh and bho are vectors containing bias parameters.

Since Eqs. (2.6-2.7) are inherently separated, the dynamical system can run indepen-

dently of output generation. After training, however, some tasks require free-running

prediction where generated output is then used as input, i.e. yt → xt−1. This will be the

22 CHAPTER 2. SUPERVISED MACHINE LEARNING AND RNNS

approach for the applications (like anomaly detection) using the Spatial ESN presented

in this report.

2.3.3 General RNN Expressiveness Comes at a Cost

Recurrent neural networks - unlike their ESN variants - are what is called Turing complete

meaning that they can simulate all Turing machines (Siegelmann et al. 1995). Stated

popularly, any computable process can be computed by some finite RNN (and there exist

infinitely many RNNs to do so). But there is a catch!

The above is only true when the RNN is built using exact rational numbers, and not on

numbers represented by today’s computers that use floating point precision. The expres-

siveness is limited by the floating point precision in that such RNNs are no longer Turing

complete.

However, in another twist of events that limitation of expressiveness is also the only reason

RNNs are useful in practice. This is because Rice’s theorem will limit what can be computed

in practice for a Turing complete system.

I.e. there is a trade-off between expressiveness and practical approximation capability. Due

to the expressiveness of RNNs they are hard to train on real-world computers (impossible

to train in many cases given access to rational numbers). Echo state networks on the other

hand are less expressive (expressive enough for most practical problems), but that makes

it easier to find good solutions in practice, giving them an edge to RNNs in some cases, at

the very least if time is a factor. As such, the limited expressiveness of ESNs is therefore

often to its benefit.

2.3.4 Training an RNN Can Be Tricky

This section seeks to describe why general RNNs are not always the best choice, over

ESNs, despite their theoretically larger expressiveness. As such, it is also a motivation of

the choice of ESNs for hard spatio-temporal problems.

Gradient-Based Learning

The general RNN training paradigm is to optimize all parameters in Wih, Whh, Who, bh,

bho. This is no simple task as the parameters should be optimal at all time. The most

2.3. RECURRENT NEURAL NETWORKS 23

common approach is gradient-based learning applied to the entire unfolded network (see

Fig. 2.2). Put simply, gradient-based optimization updates parameters by taking a step

in the direction (in a parameter space) that decreases the mistakes of the model the most.

This is measured by the negated loss gradient with respect to trained parameters of the

model.

The ’loss landscape’ in which a set of parameters are a high-dimensional points has no

guarantee of convexity, so one can easily end up with parameters that are make up a

poor local minimum (high loss). A number of advanced gradient-based methods try to

combat this issue.

Gradient-based learning is further challenged in RNNs to optimize throughout all time

steps. The predominant approach for RNNs is Back-Propagation Through Time. It is help-

ful to have Figure 2.2 in mind when contemplating the gradient that must be computed

over and over.

Do note that echo state networks do not optimize any parameters of the dynamical sys-

tem (Eq. 2.6). That makes it possible to apply least squares with a guaranteed unique

solution for overdetermined problems.

Back-Propagation Through Time (BPTT)

Back-Propagation is a technique to calculate any gradient, and is almost always used

where gradient-based optimization is applied. Back-Propagation Through Time is simply

back-propagation applied to the unfolded graph, i.e. through all time steps of the RNN as

seen in Fig. 2.2. Back-Propagation relies on the chain rule of differentiation for functions

of functions (composite functions). Let x be a real number, y = g(x), z = f (y) then:

dz
d x
=

dz
d y

d y
d x

(2.8)

The BPTT approach allows the computation of gradients, but to evaluate the loss gradient

wrt. parameters to update parameters:

• the dynamical system must evolve for the duration of the training set, referred to

as an ’epoch’,

• all hidden states must be stored for BPTT evaluation,

• upon weight update the process is restarted from scratch

24 CHAPTER 2. SUPERVISED MACHINE LEARNING AND RNNS

Therefore, large training sets may take a very long time to train, and without guarantee

of landing in the global minimum loss.

Issues of Training RNNs with Gradient-Based Methods

Perhaps more significantly, the gradient-based learning itself is not trouble-free, and may

not lead to great predictive power even when trained for many epochs. Major issues

include that can be especially bad for RNNs due to their depth:

• Vanishing gradients: When training RNNs, gradients often become vanishingly

small, which prohibits gradient-based learning (extremely small parameter up-

dates, or ineffective ones). LSTMs are more well-behaved in this aspect, but still

hard to train well.

• Exploding gradients: In a related case, gradients can become very large, which

also makes it hard to find good minima.

• Bifurcations: Hidden state space bifurcations can emerge. In a dynamical systems

perspective on Eq. (2.6) as a fixed point equation, different parameters set dur-

ing training can produce wildly different outcomes. Even small numerical round-

ing errors can mean completely different results, and that makes it very hard for

gradient-based methods to optimize. When the system encounters a parameter set

where a bifurcation occurs, the system can behave very differently from the param-

eter set that was before the last update. As this happens often when training RNNs

they can be very unsuccessful even allowed a long time for training. For further

description and examples, I refer the interested reader to the appendix of (Heim

and Avery 2019).

2.3.5 ESN Training: Least Squares

Until now, I have not been clear enough in distinguishing between ESNs and more gen-

eral RNNs. This is because echo state networks are given by the same equations Eqs.

(2.6-2.7), but with a vastly different approach to training and optimization, that sep-

arate it from general RNNs.

ESNs will be described further in chapter 3, but since we are at the topic of optimization,

2.3. RECURRENT NEURAL NETWORKS 25

it seems pertinent to get into the approach of ESNs.

An Untrained Dynamical System, and Regularization

As I have stated, ESNs do not train the dynamical system (Eq. 2.6), but only the readout

of Eq. (2.7). This avoids the issues that I have briefly discussed with regards to training

RNNs, but also imply that the dynamical system of ESNs must be initialized more carefully

(see Chapter 3).

Since only the readout layer is trained, the readout matrix Who that transforms hidden

states ht to desirable outputs yt can be optimized using least squares. The optimization is

remarkably different to gradient-based methods!

To be specific, echo state networks take the states ht of the training set, and gathers

them in a matrix, H that I refer to as the hidden state matrix. This matrix can be used for

multiple least squares:

Who = (H
>H)−1H>D (2.9)

Here, D is the training targets, i.e. also vectors stacked in a matrix format.

Almost always, it is recommendable to not apply Eq. 2.9 when training RNNs – especially

in the underdetermined case that often occurs when the hidden dimension is large.

Instead, regularized methods such as ridge regression should be used (Lukoševičius 2012).

On that note, the ’spatial echo state network’ of (Heim and Avery 2019) used a least

squares method (spectral filtering) based on singular value decomposition (SVD) to achieve

a less ill-conditioned regression problem.

In addition, this thesis will also apply another type of regularization using PCA dimension

reduction on H. This has a number of benefits, and one of them is to make the regression

problem overdetermined. Another is that it impedes model complexity, which, as we have

seen in Section 2.2.5, leads to larger out-of-sample error.

26 CHAPTER 2. SUPERVISED MACHINE LEARNING AND RNNS

Benefits of Least Squares

The implications of the different approach to RNNs are many.

First of all, a unique solution can be found to overdetermined problems. For underdeter-

mined problems, reasonable solutions can often still be found using regularization. The

solutions are often high quality, as we do not end up in a local minimum or encounter

vanishing gradient problems, or state space bifurcations.

Further, optimization is fast. For the high-dimensional spatio-temporal problems, gen-

eral RNNs are really no alternative, as I will look at time series that have hundreds of

thousands of variables. While gradient-based machine learning is often carried out using

heavy GPUs, that has not been necessary when training ESNs in this thesis.

A combination of a CNN and LSTM know as CNN-LSTM is an interesting alternative

that has less parameters (like CNNs) and mitigates the vanishing gradient problem (like

LSTMs). However, optimization is still gradient-based. Due to time constraints, this

venue has not been explored further in this thesis.

ESNs Require Larger Hidden State Dimension

It is interesting to consider why an affine linear fit is effective for ESNs (we do fit the inter-

cept!). Of course, if the activation function was not there, the entire ESN would be linear,

and therefore collapsible to a network that is not deep (the same is true for general artifi-

cial neural networks). The activation function can also be considered a feature transform

where the hidden state variables are features. This is often used (with the ’kernel trick’)

to allow least squares to fit a linear function in another space, such that the result is a

non-linear fit, when transforming back to the original space.

However, there is also another reason why ESNs can be effectively trained using least

squares: we increase the dimension of the hidden state to gain in some expressive-

ness that we lost when deciding not to optimize the dynamical system (in comparison to

general RNNs). Therefore, the hidden state is often larger than the input sequence. This

provides the necessary memory capability of the untrained dynamical system. It also

provides a rich set of regressors in H that is used for the least squares fit.

Since larger hidden states are used for the already high-dimensional spatio-temporal se-

ries, the spatial ESN requires more memory to train and utilize than general RNNs. That

is a small price to pay for effective and efficient application, as we shall see...

Chapter 3

Echo State Network Dynamics

After the description of general RNNs and machine learning of the previous

chapter, we turn to familiarizing with the echo state network, specifically. The

state of the spatial ESN prior to the optimizations from this thesis is also de-

scribed in Sec. 3.5, as a warm-up to Part II in which the SESN is made scalable.

27

28

3.1 A Review of Echo State Networks

To summarize what has been described in Chapter 2 about RNNs and ESNs, I reproduce

below the two RNN/ESN Equations (2.6-2.7), where I choose specifically the activation

σ (·) = tanh (·) (applied to all vector elements), which is most well-understood in an ESN

context.

ht = tanh (Wihxt +Whhht−1 + bh) (3.1)

yt =Whoht + bo (3.2)

Recall that in an RNN context, the two are deeply intertwined, as all weights of Wih, Whh,

Who, bh, bout are optimized, whereas the same is only true in an ESN context for Who and

bout.

The first step to familiarizing oneself with ESNs, therefore, is to think of the two equations

as completely separate, with terminology as in Table 3.1

ESN Dynamical System

Eq. (3.1)

ESN Affine Linear Readout

Eq. (3.2)

• Develops hidden state ht recurrently
• Linear in the non-linear

hidden state covariates

• Driven by input xt

• Transforms hidden state

ht to output yt

• Dynamics according to properties

of Wih, Whh, xt ∈ X
• Who optimized on

H= [ht0
;ht0+1; ...] only once

• Driven by input xt • Supervised regression

• Non-Linear activation σ

Table 3.1: Unlike RNNs, it is better to think of ESN as two completely separate parts: A
dynamical system, and a linear readout. The dynamical system does not participate in
the readout (optimization) task, and is configured a priori. It produces the regressors ht

that the readout system takes as ’input’.

Note that the role of bh is to control the centring of the hidden state. In an ESN context,

it is not in general relevant to define a random initialization of bh, so it is often dropped.

In the table, I refer to the first of the two equations as a dynamical system, an input driven

one, in fact. Depending on the reader’s background, it may be helpful to realize that Eq.

3.2. ECHO STATE NETWORK DYNAMICS 29

(3.1) can be interpreted as the Euler discretization of the ordinary differential equation

(Lukoševičius 2012, p. 668):

∂ h(t)

∂ t
= tanh (Wihx(t) +Whhh(t))− h(t) (3.3)

3.2 Echo State Network Dynamics

With all weights of the ESN dynamical system chosen a priori, i.e. left unoptimized the

application of an ESN requires slightly more understanding of the dynamics that may

arise from a given pre-configuration of the dynamical system.

Of course, the (training) time series XNtrain
=
�

x0;x1; ...;xNtrain

�

has large impact (as it

should) on the dynamics of ht , but I proceed with no specific assumptions, except that it

is reasonably well-behaved numerically, e.g. does not give rise to the constant saturation

of the tanh (·) activation, which has range (−1; 1), and is not constantly the zero vector.

Sometimes, in the literature, the input-to-hidden matrix Wih and the hidden-to-hidden

matrix Whh are referred to, in combination, as the reservoir. I will make a distinction

between Wih as the input map/matrix and Whh as the reservoir. Both are fixed during the

evolution of the dynamical system.

3.3 Input Mapping

I refer to an input mapping as the operation of performing a linear transform

Wih : RNinput → RNhidden on the (flattened) input xt at time t. This occurs at every time step

of the ESN dynamical system when Wihxt is computed. In that case, the linear function

Wih is represented as a dense random matrix Wih.

Conventionally, Nhidden > Ninput is chosen, and this is referred to as an expansion of the

input into a higher-dimensional space. Another step of the dynamical system is the ap-

plication of tanh(·), providing a somewhat indirect non-linear expansion of the input

(scrambled together with previous hidden state Whhht−1).

Input expansion has several as listed in Table 3.2

30 CHAPTER 3. ECHO STATE NETWORK DYNAMICS

Table 3.2: A summary of the properties of mapping input to hidden state space.

Input Mapping

• Expand input from dim
�

Ninput

�

to dim (Nhidden)

• Linear transform in RNNs and ESNs

(activation σ (·) = tanh (·) applied later)

• High-dimensional hidden state ht

contains more information, allows memory retention

• Like ’kernel trick’ linearly inseparable

observations may be separable after non-linear expansion

• ESN mapping traditionally represented as dense matrix Wih

• Wih may be represented as function Win(xt) instead.

Approach of (Heim and Avery 2019).

The ingenuity of (Heim and Avery 2019) is to replace Wih by computationally more ef-

ficient, and non-random linear maps Wih(xt). These functions provide several types of

spatial information to the ESN dynamical system, like the image gradient, 2D convolu-

tions or low-frequency DCT coefficients. The simplest input map is the input itself —

perhaps rescaled using bilinear interpolation.

The different spatial representations of the input image are then flattened, and concate-

nated, defining the hidden state dimension, Nhidden.

The input maps are not the primary focus of this thesis, but they are applied in it. I fur-

ther describe the spatial input maps in Table 7.5 of Chapter 7.

As listed in Table 3.2, a major benefit of expanding input into a higher-dimensional space

in an ESN context is that a larger state ht simply allows more information about past

inputs to be stored than a smaller dimension Nhidden would.

The non-linear activation function allows richer states ht to be harvested, so that it is

possible to successfully construct a linear readout from ht to desired output yt .

3.4. RESERVOIR DYNAMICS 31

3.4 Reservoir Dynamics

The reservoir Whh is a real, square matrix with dimension Nhidden × Nhidden, and connects

the last hidden state ht−1 with the next, i.e. ht = σ(· · ·+Whhht−1). In Table 3.3, I provide

a brief summary of the purposes and properties of the reservoir.

Table 3.3: The role of the reservoir, Whh, in summary.

The Reservoir

• Create a memory of previous input

• Most important intrinsic property: ρ (Whh),

the spectral radius

• Connect hidden state elements to a number

of other elements

• A sparse matrix

Most importantly, in the table, the reservoir induces memory of previous inputs that is

necessary in a temporally correlated system to determine the next state. In principle

the larger the hidden state, the more information of previous input can be stored in the

hidden state. For complex problems, the larger the better, is a good rule of thumb (as

long as the readout is configured properly).

It is not uncommon for ’traditional ESNs’, i.e. non-spatial models, to have Nhidden ∼ 104

(Lukoševičius 2012), whereas this thesis will push the hidden state dimension to order

106 on reasonable hardware that was not configured for the sole purpose of running

ESNs, see Section 7.8.2.

If the reservoir is poorly preconfigured, however, the memory ability will not emerge in

the dynamical system. In ESN literature, the echo state property is the term describing

whether the dynamical system is applicable as a model for learning (should be thought of

as a necessary condition, not a sufficient one). Next, I build up the necessary terminology

to more clearly define the echo state property. I then discuss practical aspects. Most

importantly, the spectral radius.

32 CHAPTER 3. ECHO STATE NETWORK DYNAMICS

3.4.1 Eigenspectrum and Spectral Radius of the Reservoir

In ESNs, the properties of the square reservoir matrix Whh are of crucial importance to the

expressiveness and stability of the network, and the subject of much study. In particular,

the eigenvalues λi of the reservoirs are valuable for interpreting (or designing) the effects

of the linear transformation that the reservoir is. Its eigenvalues are solutions of the

eigenvalue equation:

Whhv= λv (3.4)

Where v is the eigenvector that corresponds to the eigenvalue λ (a scalar). That is, the

eigenvectors inform of us certain directions in which the intricate linear transform can be

understood simply as multiplication by a scalar.

Real eigenvalues therefore indicate how much stretching will occur in the direction of

the corresponding eigenvector. A complex eigenvalue λ = reiφ, on the other hand, can

be interpreted as rotation in the plane spanned by Re (v), Im (v) with an angle φ and a

radius r = |λ| (stretch). As the reservoir is real, the presence of a complex eigenvalue

λ guarantees the existence of another eigenpair with complex conjugate values {λ,v}

resulting in the same rotation.

The geometric interpretation of eigenvalues provides some intuition that they should not

be too extreme for a reservoir, to avoid unstable dynamics from e.g. signal amplification.

A lot of discussion around echo state network design therefore focuses on the spectral

radius of the reservoir. It poses and upper bound to the stretching effect of the linear

transform in any direction:

ρ (Whh) = max
1≤i≤Nhidden

|λi| (3.5)

3.4.2 The Echo State Property

A colloquial statement of the echo state property (ESP) is that:

The driving input xt at time t defines the dynamical system for some duration,

but cease to do so at a later (finite) time.

Loosely, this ensures that close sequential driving inputs are incorporated into the hidden

state until their replacement by other driving input at a later time, while echoing in the

system until then.

3.4. RESERVOIR DYNAMICS 33

For a more formal treatment, see (Yildiz et al. 2012).

It is a common misunderstanding in the ESN world that the ESP is guaranteed whenever

ρ (Whh) < 1, allowing a network with fading memory capabilities. On the contrary, the

ESP depends on the fixed parameters of Whh,Wih and driving input.

In fact, the criterion is only sufficient for the zero vector input, while in many other cases

ρ > 1 also satisfies the ESP.

Sufficient conditions for Whh to satisfy the ESP for all input include (Yildiz et al. 2012):

1. The maximum singular value of Whh is less than unity σmax(Whh) < 1, where sin-

gular values σ are the square roots of non-negative eigenvalues of W>
hhWhh.

2. Whh is diagonally Schur stable, implying the existence of a positive definite matrix

P such that W>
hhPWhh − P is negative definite.

While both conditions guarantee the satisfaction of the ESP, the conditions are not nec-

essary, and the first condition is especially restrictive and often leads to poor memory

capabilities.

In practice, ρ is tuned according to the problem at hand more or less manually, and can

have a significant influence on the prediction dynamics. Tuning it is done by creating a

random initialization of a reservoir W̃hh, determining its spectral radius ρ̃ by diagonal-

ization (using e.g. ARPACK); then rescaling the reservoir to Whh = [ρ/ρ̃] W̃hh to achieve

a spectral radius of ρ. This simple approach is allowed by the eigenvalue equation (3.4).

Diagonalization is a computationally intensive operation, and the Arnoldi algorithm, a

version of which is applied by ARPACK, is O
�

kN 2 + k2N
�

in time complexity (Lee et al.

2009). Here, N is the matrix dimension, and k is the number of large eigenvalues to find

(one, for the spectral radius).

This thesis will show a way to get rid of the diagonalization in order to create much

larger hidden states, and reservoirs in conjunction.

The intuition behind the ESP as dependent on ρ is that the activation tanh(·) may be

increasingly saturated as time increases if the reservoir amplifies the previous state pro-

duced using non-zero input over and over. When the largest eigenvalue, in magnitude,

34 CHAPTER 3. ECHO STATE NETWORK DYNAMICS

is below 1, the input to the activation function is often contractive. On the other hand, a

small spectral radius will push the hidden state closer to the origin, where the behaviour

of tanh(·) is less non-linear. This will decrease the memory capacity, and is often a good

choice if the predictions only depend on near-history (Lukoševičius 2012).

It should be stressed that different reservoirs can have the same spectral radii, but dif-

ferent eigenspectra and performance. It is common to report ESN approximation perfor-

mance as an average over several trials.

3.4.3 Beyond the Echo State Property

Selecting the spectral radius and other hyperparameters of ESNs is in practice very hands

on, but the knowledge that a spectral radius around unity is a good starting point, is

useful information that is not as relevant for general RNN implementation.

Beyond the memory and spectral radius that I have mentioned, in Table 3.3, there is the

subject of sparsity, and the distribution of non-zero values in the reservoir.

A common approach (Lukoševičius 2012) is to pick non-zero values from the symmet-

ric uniform distribution, standard Gaussian, or (less commonly) from binary options i.e.

{−a, a}. The scaling, or endpoints, of the distribution is not significant when ρ is later

chosen by rescaling the matrix, as explained in Section 3.4.2. The first two options yield

often indistinguishable results for the same ρ, whereas the latter is less popular due to

lack of ’richness’ arising from the binary numbers.

Sparsity is not always a significant parameter, and often chosen to be 1% or 10%.

I generally encourage the reader to visualize the impact of the reservoir as that of its

eigenspectrum rather than in terms of the non-zero values themselves. The value at a

row and column (i, j), can, however, be thought of as a neuron connecting the j’th ele-

ment of ht−1 to the i’th element of ht . The number of non-zero values in each row of

Whh, then, is the number of connections, or neurons.

In this thesis, I explore the Gaussian and uniformly distributed values. The non-zero

3.5. CHALLENGES AND BOTTLENECKS TO SPATIO-TEMPORAL LEARNING 35

values will be placed uniformly in each row. Further, unconventionally, I explore a fixed

number of non-zero values per row. My particular approach is explained in Section 4.1.

3.5 Challenges and Bottlenecks to Spatio-Temporal Learning

The work of (Heim and Avery 2019) has shown that spatio-temporal prediction of chaotic

series is achievable with a special design of the ESN.

However, their work has also highlighted the challenges that the ESN design poses when

the prediction task is extremely high-dimensional. Each pixel in an input image at time t

makes up a dimension of the flattened input vector, xt .

When their spatial input maps are utilized, the input sized Ninput is expanded into an

Nhidden sized hidden state. This makes the prediction problem even more high-dimensional.

Most of the spatial input maps have the same number of ’pixels’ as the original image,

and when several maps are chosen, Nhidden may be a multiple of Ninput (see Table 7.5).

Next, I present the challenges that the high-dimensional covariates pose, and outline the

solutions that I will later present to achieve predictions for spatially high-dimensional

image frames.

Challenges to Construction of the Reservoir

The main challenge, as I have noted, wrt. the reservoir and spatial scalability of the ESN

is that the common approach of construction is:

1. Generate a real, random, sparse matrix W̃hh with some density, and non-zero values

picked from a zero-symmetric probability distribution.

2. Determine the eigenvalue with largest magnitude, ρ̃.

3. Scale W̃hh by ρ/ρ̃ to achieve final reservoir, Whh with desired spectral radius ρ

The second step requires the most computation for large reservoirs (Nhidden × Nhidden).

Since the random sparse matrix generally has complex eigenvalues, a simple method

like power iteration is not applicable for fast determination of ρ̃.

The approach of the scalable SESN, described in Chapter 4 will get rid of the second

and third steps entirely using a stochastic law for the eigenspectrum of a certain type of

36 CHAPTER 3. ECHO STATE NETWORK DYNAMICS

sparse matrix. That way, the variance of the probability distribution that I sample non-

zero values from will approximately determine the spectral radius with high probability,

especially for large reservoirs.

For ’small’ reservoirs with Nhidden < 5000 I advice caution, and best results are most prob-

ably achieved by computing ρ̃ with the Arnoldi method of ARPACK, for example.

Like (Lukoševičius 2012) I find that the sparsity of the reservoir is not a very significant

hyperparameter to the ESN approximation performance. I therefore continue with an

approach where the density of Whh is not fixed when Nhidden is increased. Instead, the

number of non-zero values in each row of Whh is.

This has benefits to both speed and memory consumption.

Challenges to the Spatial IMED Loss Function

Another originality of (Heim and Avery 2019) is the implementation of the Image Eu-

clidean Distance (IMED) as a loss function that is compatible with least squares optimiza-

tion. To my knowledge, it is the first time that the IMED has been applied for regression

problems, and not just classification. This requires both the implementation of a forward

transform and a backward transform related to the IMED, and denoted the (inverse)

standardizing transform (iST/ST).

The original implementation of the SESN, however, should be viewed as a demonstration

of IMED utility rather than a final version. Their implementation requires the storage of

an
�

NxNy × NxNy

�

matrix, and its full diagonalization. This is prohibitive to spatial scaling

with respect to both time and memory consumption. I therefore implement more recent,

but similar Fourier transform-based IMED metric that does not require diagonalization.

Further, I introduce its inverse transform for regression problems, and also implement a

version based on the discrete cosine transform with better boundary conditions for most

images.

For better approximation performance, the methods I implement also allow temporal

correlations to be considered in the loss metric, instead of just the spatial correlations in

single images. To my knowledge, that is also a new utilization.

3.5. CHALLENGES AND BOTTLENECKS TO SPATIO-TEMPORAL LEARNING 37

The implementation and improvements to the IMED metric are described in Chapter 6.

Challenges To Optimization (Readout)

The main challenges of performing multiple least squares in the SESN are listed in Table

3.4.

The fact that the number of trained parameters per input pixel is equal to the hidden

state dimension Nhidden entails several issues. When input is high-dimensional, and the

hidden state is a multiple of that (3-8× is common for the SESN) the output matrix Who

can be prohibitively large in memory, and take an increasing amount of time to optimize

using least squares. But that is not all: The sheer number of parameters can lead to over-

fitting, i.e. perfect approximation of the training set, but poor results when prediction

unseen data (the aim of supervised learning).

The spatial nature of the input maps is also a challenge to least squares, since it makes the

elements of ht highly correlated. This implies that weights of Who must depend on several

mutually dependent covariates, and leads to instability and sensitivity to the behaviour

of the dependent covariates.

Lastly, the number of features per regressor ht can vastly exceed the number of training

observations Ntrain, which makes the Gram matrix H>H un-invertible.

Table 3.4: Challenges posed by the high-dimensional Nhidden in the SESN by (Heim and
Avery 2019) wrt. optimization of Who

Linear Readout Matrix Who

Memory Footprint
Ninput × Nhidden elements,

i.e. Nhidden weights trained per input/output pixel

Time Consumption
SVD of N × N : O

�

N 3
�

(See “LAPACK Benchmark” 1999).

Least Squares using the SVD: O(N)

Impact on Learning

Many parameters: over-fitting likely.

Collinear Spatial Covariates: Unstable solution

Ill-Conditioned: Regressor H (Ntrain × Nhidden) has Nhidden� Ntrain

Part II

Development of a Highly Scalable

Spatial Echo State Network

39

Chapter 4

Scaling Up the Reservoir Matrix

The properties of an ESN are deeply dependent on the reservoir matrix Whh. In

this chapter contributions are made that allow the hidden state dimension to

scale from traditional values of up to 104, and well into order 106 by avoiding

any diagonalization to tune the spectral radius. This is a prerequiste for spatial

scalability of the SESN due to its input maps.

41

42

4.1 Spectral Radius by Design

I have stated in Section 3.4.1 that the spectral radius ρ of the reservoir matrix Whh ∈

RNhidden×Nhidden can be and is conventionally picked by rescaling the matrix. This approach,

however, requires that the spectral radius of the initially created reservoir first be de-

termined. The reservoirs that are applied in this thesis are sparse, and up to orders
�

106 × 106
�

. Therefore, determining the magnitude of the largest eigenvalue can be an

extremely time-consuming operation (see benchmarks in 7.8). ARPACK (Lehoucq et al.

1997) is a fast FORTRAN eigenvalue solver for very large and sparse matrices that is

conveniently wrapped in the SciPy Python package. The time consumption can vary

depending on factors like the size of the matrix, the number of non-zero elements, the

clustering of the eigenvalues, the desired precision and whether it is necessary to find

corresponding eigenvectors. Convergence is not guaranteed, and that scenario becomes

increasingly likely when Nhidden is substantially increased. Clearly, a workaround to diag-

onalization is required for spatial scalability of the spatial ESN.

4.1.1 Exploring Spectral Radii

During the initial exploration of the scalability of the spatial ESN (Heim and Avery 2019),

the effect of the sparsity, or density of non-zero values was investigated. The idea is that it

may not be necessary to fix the relative density (share of non-zero elements in the sparse

matrix) when increasing the problem size and Nhidden, but perhaps not the complexity

of the problem. The motivation for this line of thought is that each element in a row of

the reservoir, Whh, can be thought of as a connection between hidden states ht and ht+1.

As its dimension, Nhidden decreases the rows (and columns...) more connections are thus

made to the existing hidden state, perhaps reducing the need to also increase the average

number of non-zero elements per row (given by a fixed density).

Initially, this investigation was meant to see if computations could be spared by fixing the

number of non-zero elements per row, Nnzpr, when increasing Nhidden, thus increasing the

relative sparsity, and reducing (if incrementally) the workload from diagonalizing very

large matrices.

4.1. SPECTRAL RADIUS BY DESIGN 43

A Pattern in the Largest Eigenvalues

At the time, results indicated that the predictions were not greatly affected by this change

(a good thing!), but also revealed something more interesting: While the largest eigen-

value was almost always complex and its real and imaginary parts had vastly different val-

ues, its magnitude was approximately constant when varying Nhidden with fixed Nnzpr.

This seems like a remarkable stochastic relationship as the positions of the Nnzpr values

in each row were uniformly randomly distributed at each initialization; with the values

of the elements themselves uniformly distributed in the interval (−1; 1) prior to tuning

of ρ. The prospect of entirely dropping diagonalization to determine, and rescale the

spectral radius of the reservoir was of course enticing, and required further examination.

A first result can be seen in Fig. 4.1.

0 200 400 600 800 1000

Non-Zero Elements Per Row (nzpr)

5

10

15

ρ

ρ =
√
nzpr · var

Figure 4.1: Spectral radii of sparse 50000 × 50000 matrices with a certain number of
non-zero elements per row (nzpr); In black: 100 samples at each number of non-zero
elements are shown. In green: An estimate of the spectral radius, where var represents
the variance of the non-zero elements. As these were picked from a uniform distribution
(a; b) = (−1;1), they have variance var = 1

12(a− b)2 = 1/3.

From the raw observations (in black in the figure), it was clear that the spectral radius

approximately follows a power law on average. Using the probfit and iminuit (Dem-

binski et al. 2020) python packages often employed for non-linear fitting in the field of

High Energy Physics, It was determined that the relationship was similar to ρ = c ·pnzpr

with c ≈ 0.57. When later returning to the problem using a Gaussian distribution of non-

zero values, I discovered that c indeed represented the square root of the variance of

the distribution in both cases, as plotted in Figure 4.1. I have confirmed this fact for the

44 CHAPTER 4. SCALING UP THE RESERVOIR MATRIX

uniformly distributed case in other symmetric intervals than (−1;1) (as must be the case

given the eigenvalue equation).

The dependence of ρ on Nhidden – the dimension of the reservoir Whh – is of course crucial

to examine such that extrapolation may be utilized for determining the spectral radius of

much larger matrices for which it is utterly unfeasible to naively compute the magnitude

of the largest eigenvalue.

0 10000 20000 30000 40000 50000

M

5.8

5.9

6.0

6.1

ρ

Extrema

std

Mean ρ

Figure 4.2: Spectral radii of sparse M × M matrices with a 100 non-zero elements per
row (Nnzpr = 100); In black: 100 samples at each dimension are shown. In green:
Sample mean of the computed spectral radius. All non-zero elements drawn from
(a; b) = (−1; 1), i.e. variance var = 1

12(a − b)2 = 1/3. From the estimated relation-

ship from Figure 4.1 the expected value was ρ =
q

100
3 ≈ 5.77, but this plot shows that

the sample mean converges towards that value as the sparse matrix dimension is in-
creased. The scipy ARPACK wrapper was utilized, set to determine the eigenvalue with
the largest magnitude to a relative tolerance of 10−5.

In Figure 4.2 the dependence of the computed spectral radii on the dimension of the

sparse matrices is seen. From here, we see that there is indeed more structure than sim-

ply ρ = pnzpr · var. In fact, ARPACK finds that the spectral radii are slightly above

the aforementioned estimate, converging towards it as the reservoir dimensionality in-

creases.

To better visualize deviations from the crude estimate of ρ = pnzpr · var, I rescale

the observations by ρ̂ = ρ
p

nzpr · var in Figure 4.3(a) and fit a scaled power law

ρ̂ = 1+kM−l in that space with parameters k, l. It immediately appeared that k = l, so in

the interest of simplicity, I have reverted to fitting a single parameter, i.e. ρ̂ = 1+ kM−k.

For non-zero values drawn from the uniform distribution – as seen in the figure – the

4.1. SPECTRAL RADIUS BY DESIGN 45

obtained fit for ρ̂ = 1 + kM−k is k = 0.4098 ± 0.0003, while for the Gaussian distri-

bution, the same approach yields (observations not shown) kG = 0.4075 ± 0.0003. I

both cases, the sample standard deviation of the 100 observations was approximately

σU = 0.588M−0.588M and σG = 0.583M−0.583M for the uniform and Gaussian distribu-

tions, respectively. This error estimate is important in deciding a cut-off below which the

largest eigenvalue of reservoirs should be computed explicitly and above which ρ can

be estimated with high probability. The parameter fitted to the standard deviation is re-

markably close to 1− k, but it is currently not known, whether this curiosity is spurious

or not. Further, the standard deviation may not be a perfect descriptor for the slightly

asymmetric distributions of spectra radii.

0 10000 20000 30000 40000 50000

M

1.00

1.02

1.04

1.06

ρ
/
√
n
z
p
r
·v
a
r

Extrema

std

ρ̂ = 1 + 0.4089M−0.4089

Mean ρ

(a) Initial rescaling

0 10000 20000 30000 40000 50000

M

0.98

1.00

1.02

1.04
ρ
/
(√
n
z
p
r
·v
a
r
·[

1
+
k
M
−
k
])

Extrema

std fit

std

ρ̂ = 1

Mean ρ

(b) Second rescaling

Figure 4.3: In subfigure (a), observations seen in Fig. 4.2 are rescaled by the recipro-
cal of the crude model ρ = pnzpr · var to better visualize deviation from the model.
In that space, I fit a power law ρ̂ = 1 + kM−k to weighted observations that obtains
k = 0.4098± 0.0003 with χ2/do f = 145.17/99 (dof=degrees of freedom), or an esti-
mated fitting probability of p = 1.74× 10−3. Uncertainties are estimated as the sample
standard deviation (std) rescaled by 1/

p

Nobs by assumption of Gaussian errors. Strictly,
this assumption may be violated the distributions for each dimension value M seem
skewed. Uncertainty estimates affect the probability value.
In (b), a second rescaling by applying the obtained fit better displaying deviations from
the updated model. Fitting the standard deviation to a power law so as to estimate the
error on the spectral radii estimates (unweighted fit) provides σG = 0.588M−0.588. On
this scale, an outlier is seen at M = 1000. In this plot, ρ̂ = 1 is not a direct fit.

With the obtained fit for the uniformly distributed non-zero values, another rescaling is

shown using the new estimates ρ =pnzpr · var
�

1+ kM−k
�

in Fig. 4.3(b). At this scale,

an outlier is seen at the lowest dimension of M = 1000. From the plot, we see that

the maximum relative deviation from the modelled spectral radius of all 10000 samples

equally distributed among 100 values of M is below 4% at M = 1000. It converges as the

dimensionality is increased. The fitted standard deviation – or average deviation from

46 CHAPTER 4. SCALING UP THE RESERVOIR MATRIX

the mean – is also displayed in Subfigure (b).

It is pertinent, after the term-by-term modelling, to revisit the Nnzpr-dependency origi-

nally displayed in Figure 4.1 by again rescaling according to the updated model ρ =
p

nzpr · var
�

1+ kM−k
�

. The result is seen in Figure 4.4 in is seen to be describe well

the spectral radii as the number of non-zero values per row, nzpr, is varied.

0 200 400 600 800 1000

nzpr

0.998

1.000

1.002

1.004

1.006

1.008

ρ
/
[√
n
z
p
r
·v
a
r
·(

1
+
k
M
−
k
)] std

std fit

ρ̂ = 1

Mean ρ

Figure 4.4: Spectral radii of sparse 50000× 50000 matrices from Fig. 4.1, rescaled ac-
cording to the model ρ = pnzpr · var

�

1+ kM−k
�

with k = 0.4098 for non-zero values
sampled from the uniform [−1; 1] distribution (pictured). Also pictured, the fitted stan-
dard deviation from Fig. 4.3(b) at the particular instance dimension M = 50000; with
sample means superimposed. Of the 10000 samples pictured at M = 50000, the max-
imum deviation from the model is 0.8%, and the skewed nature of the spectral radii
distribution is more easily observed in this figure.

The exploration allows the empirical conclusion that the spectral radius for the random

sparse matrices that have a fixed number of non-zero elements per row, spread randomly

and uniformly in each row, with values of non-zero elements drawn from probability

distributions including – at a minimum – the uniform and Gaussian distributions, can be

predicted with high certainty as:

ρ =
p

nzpr · var
�

1+ kM−k
�

± sM−s (4.1)

Further, after implementing the approach in the spatial ESN, the expected dynamical

difference between ρ < 1 and ρ > 1 is found to remain – an indication that the method

works.

4.1. SPECTRAL RADIUS BY DESIGN 47

4.1.2 A Circular Law: The Eigenspectra of Sparse Fixed-Nnzpr

Random Reservoirs

From the initial observation that the magnitude of the largest eigenvalue of the random

matrices was approximately constant at fixed Nnzpr, while the real and imaginary parts

varied, a straightforward conclusion is that the maximum eigenvalue tends to lie in the

perimeter of a circle with radius

ρ =
q

Re (λmax)
2 + Im (λmax)

2 (4.2)

that contains all eigenvalues of the matrix. This can indeed be confirmed by plotting

the distribution of the real and imaginary parts of the largest eigenvalues of the random

matrices. However, it is even more interesting to discover that the eigenspectrum of these

random matrices have eigenvalues that are distributed homogeneously. As an example of

the complete eigenspectrum of a matrix of the type discussed, see Figure 4.5 in which a

dense 10000×10000 matrix is investigated using the rescaling of Eq. (4.1) (determined

using a LAPACK wrapper).

−1 0 1

Real part

−1.0

−0.5

0.0

0.5

1.0

Im
ag

p
ar

t

Eigenspectrum

0.0 0.2 0.4 0.6 0.8 1.0

Radius r

0

2000

4000

6000

8000

10000

N
u

m
b

er
of

E
ig

va
ls

w
it

h
in

ra
d

iu
s

r

|λ| < r

0.0 0.2 0.4 0.6 0.8 1.0

Magnitude of eigenvalues

0

100

200

300

F
re

q
u

en
cy

|λ|

Figure 4.5: Eigenvalues of a dense 10000x10000 matrix with Nnzpr = 25 non-zero ele-
ments per row picked from the unit Gaussian distribution, rescaled to the unit circle using
the estimate of ρ from Eq. (4.1). Left: Eigenvalues are completely contained within a
complex disk of radius r = ρ. Centre/Right: The number of eigenvalues within the disk
grows like r2 – like the area of the disk, and (right) with linearly growing magnitude
like the perimeter of a disk of radius r indicating that eigenvalues are distributed ho-
mogeneously within the disk. Note: For any complex eigenvalue λ+ = a + i b of a real
matrix there is another eigenvalue that is its complex conjugate λ− = a − i b, providing
symmetry about the imaginary axis. Eigenvalues of the dense matrix are computed using
numpy.linalg.eig with a LAPACK back-end (Anderson et al. 1999).

48 CHAPTER 4. SCALING UP THE RESERVOIR MATRIX

Theoretical Support

It is a remarkable fact that the stochastic orderliness and simplicity arises from a re-

markably random process. As I have since discovered, the behaviour is not completely

uncharted territory to mankind.

There is some theoretical support to the behaviour that is observed empirically in this

chapter. The circular law states that the eigenvalues of a (dense) random M ×M matrix

converge to uniform distribution within the complex disk of radius
p

M as M →∞ pro-

vided that its elements have zero mean and unit variance. The result has been extended

to general variance, yielding a radius of
p

var ·M (Tao et al. 2008).

This is similar to empirical findings of this chapter, but we found instead that a sparse ma-

trix, regardless of its dimensionality Nhidden × Nhidden, behaves similar to a dense random

M×M matrix provided that it has exactly Nnzpr = M non-zero elements placed uniformly

randomly in each row.

Observations are not collected in the dense limit, however, as it is of no interest to the

spatial ESN application of this thesis.

To my knowledge, these results are yet to be proven. It has been found in (Wood 2012),

however, that the standard circular law holds for random sparse matrices, too, when

each element is non-zero with probability p = 1/M1−α with 0 < α ≤ 1. This is of course

different from requiring a fixed number of non-zero elements in each row, which seems

to place the eigenvalues in a smaller disk as Nnzpr ≤ M .

Benefits of the Homogenous Disk of Eigenvalues

The uniform distribution of eigenvalues within the complex disk may be especially bene-

ficial when the matrix is used as a reservoir matrix Whh as in this thesis. In (Ozturk et al.

2007) authors argued that the entropy of the hidden states ht is a good indicator of the

network’s approximation performance.

They showed that an entropy measure was correlated with ESN predictive performance,

and that the entropy was maximized when the eigenspectrum was a complex disk, as in

Fig. 4.5, although a circular law was not applied for the study.

4.1. SPECTRAL RADIUS BY DESIGN 49

4.1.3 Practical Considerations

Equation (4.1) can vastly benefit the spatial, high-dimensional spatial ESN model, and

allow reservoirs that have dimensions orders of magnitude higher than in conventional

ESNs. For non-zero values drawn from (at least) the uniform or Gaussian distributions

it allows predicting the magnitude of the largest eigenvalue.

When ARPACK is used for to determine the eigenvalue that is largest in magnitude, the

computational complexity is at least O
�

M2
�

, and in general O
�

kM2 + k2M
�

when k

eigenvalues and corresponding eigenvectors are computed (Lee et al. 2009).

The simple method of power iteration to determine the dominating eigenvalue is only

O (M), and was indeed attempted to be implemented for this thesis prior to realizing

that asymmetric real matrices (that provide better reservoirs) almost always have com-

plex eigenvalues that never allow the power method to converge.

As an alternative to the highly time-consuming calculation of ρ, the spectral radius may

now be rescaled using Eq. (4.1) by element-wise multiplication with the generated reser-

voir. The SSESN at GitHub1, however, utilizes that the variance of the sampled non-zero

values can be adjusted at the time of initialization of the random matrix according to the

desired spectral radius, avoiding any rescaling for higher efficiency.

1Implementation of reservoir(): https://github.com/jfelding/esn/blob/master/esn_dev/
hidden.py

https://github.com/jfelding/esn/blob/master/esn_dev/hidden.py
https://github.com/jfelding/esn/blob/master/esn_dev/hidden.py

Chapter 5

Dimensionality Reduction

It is important to the memory capabilities of the ESN dynamical system to have

high-dimensional hidden states. However, when used directly as covariates, they

are both too correlated in the spatial ESN, and too many- This results in over-

fitting and a more unstable model.

At scale, it also becomes unfeasible to optimize hundreds of thousands of param-

eters for each pixel in the desired image output (see Sec. 7.8 for a Benchmark).

This chapter implements a dimensionality reduction layer using Principal Com-

ponent Analysis to solve these issues.

51

52

5.1 Dimensionality Reduction of H

As we have seen in Section 2.3.5, the standard ESN approach to training is to apply a

type of least squares. In the readout (Eq. 3.2) Wout is an optimized linear transformation

taking hidden state vectors ht ∈ RNhidden to the output vector yt ∈ RNoutput . In the spatial

ESN that can be reshaped to 2D, i.e. Noutput = Nd1×Nd2 for visualization. Therefore, Wout

is an Noutput × Nhidden matrix, implying that Nhidden parameters are trained for each pixel

in the output.

The approach presents multiple issues of for the high-dimensional spatial ESN both in

terms of prediction performance and computational performance, especially when higher

spatial resolution is applied.

It is also common (including in the SESN) sue not only ht as regressor, but to append to

the hidden state matrix H the original input at that time step xt . This of course leads to

even more parameters being trained.

Issue wrt. SESN Scalability

In Section 7.8 I show that this strategy become increasingly unfeasible wrt. time con-

sumption when the hidden state dimension is increased. It simply takes a longer and

longer time to optimize the amount of parameters (perhaps not a long time in compari-

son to gradient-based methods). This is the main motivation for this chapter in making

the SESN more scalable in spatial dimensions.

Issues wrt. Predictive Performance

Before presenting the proposed means of dimensionality reduction that restricts the num-

ber of trained parameters significantly, this section describes what other issues the high-

dimensionality may accompany.

• Collinearity: The spatial ESN has input that is highly spatially correlated. When

covariates are correlated, least squares can become unstable since the trained pa-

rameters also become mutually dependent, and not uniquely determinable. This

is an issue if the input is directly appended to H as described above. However,

collinearities can also emerge from the multiplication of the large random sparse

matrix Whh. In any case, it is best that covariates are decorrelated before applying

least squares.

5.1. DIMENSIONALITY REDUCTION OF H 53

• Underdetermination: When Nhidden is very large, and in the SESN setting often

Nhidden � Ntrain the optimization problem is underdetermined with no unique opti-

mal solution, but with an infinite number of solutions. Recall from Chapter 2 that

the aim of ML is not to over-fit the training set, but to fit unseen observation. Gener-

alization performance is not stable when the number of features is extremely high

(see also Sec. 2.2.5).

Alternative Approaches in Machine Learning

The issues of high dimensionality are common in image recognition problems. Convo-

lutional neural networks (CNNs) address the issue by performing convolution(s) on the

(transformed) images using kernels with fewer parameters than pixels of the input. Be-

sides providing translational invariance (objects may be recognized at any position in

the image), this can greatly reduce the number of trained parameters when compared

to fully-connected (dense) neural networks. The CNN strategy is not easily incorporated

into ESNs, however. Note that one type of input map is a convolution, however.

Another common strategy to avoid over-fitting is to use early stopping, which works by

monitoring the validation (out-of-sample) error as the model is iteratively trained, and

stop the training when the validation error reaches a minimum, instead of, say, the train-

ing (in-sample) error. Unfortunately, this strategy is not available with one-shot least

squares optimization – the major benefit of ESNs. The same can be said of dropout layers

in which neurons are deactivated at random during the training process to decrease the

reliance of the network on single parameters.

The approach in this work, instead, will be to apply Principal Component Analysis. This

strategy is also applied in ESNs by (Bianchi, Scardapane, et al. 2018). Their ESN is not

created for predicting image sequences, however.

5.1.1 Principal Component Analysis

Principal Component Analysis (Goodfellow et al. 2016, p. 143) is a linear method of di-

mensionality reduction that projects observations onto principal components, or orthogo-

nal directions of greatest variance in the dataset, and removing correlation of variables.

If the observations are stored in the m rows of the m× n data matrix X these directions

54 CHAPTER 5. DIMENSIONALITY REDUCTION

are equivalent to the eigenvectors of the corresponding covariance matrix:

KX X =
1

m− 1
X>X (5.1)

And as such, the transform matrix V> can be found using the eigendecomposition (in

practice, SVD is a more efficient approach):

X>X= VΛV> (5.2)

Where the columns of V contain the eigenvectors corresponding to the eigenvalues in

diagonal matrix Λ, sorted by magnitude. The PCA projection of data then is Z= V>X. To

achieve dimensionality reduction to only NPC principal components, V is truncated to the

m×NPC matrix Ṽ, by throwing away directions corresponding to the smallest eigenvalues,

and therefore the least variance according to Eq. (5.1). The projected data, then is simply

Z̃ = Ṽ>X. Orthogonality of the principal components follows from the symmetry of the

covariance matrix KX X .

5.1.2 Application of PCA in ESNs

A simple indicator of whether the PCA dimensionality reduction or — in SVD-terms —

the low-rank matrix approximation can be expected to be well-behaved is the spectrum

of eigenvalues λ of the covariance matrix KX X that can be translated to the share of ’ex-

plained variability’ that NPC principal components account for by normalizing and sum-

ming like so:

EV (NPC) =

�

m
∑

i=1

λi

�−1 NPC
∑

i=1

λi (5.3)

In that spirit, a real-world example is shown in Figure 5.1 produced from 10 random ESN

initializations fed with the same 2D Mackey-Glass sequence computed from the singular

values of hidden state matrices H.

5.1. DIMENSIONALITY REDUCTION OF H 55

0 100 200 300 400 500

Principal Component

0.4

0.6

0.8

1.0

E
x
p

la
in

ed
V

ar
ia

n
ce

(c
u

m
.)

Figure 5.1: Cumulative explained variance of the first 500 principal components of
hidden state matrices H for 30 × 30 2D Mackey-Glass orb training series with Ntrain =
2000, Nhidden = 13625. The plot shows 10 random initializations superimposed. On av-
erage, 500 of the 2000 principal components accounted for 99.768% of variance.

At the same time, including only eigenvectors corresponding to the largest eigenvalues

of the covariance matrix reduced the condition number of the dimensionality reduced H̃

over the original H by more than a factor 200 in every instance from around cond(H)∼

4× 104 to cond
�

H̃
�

∼ 2× 200.

Selecting NPC, the number of principal components to use, is not simply a matter of

examining explained variance, however. In order to have the benefits of combating over-

fitting and the curse of dimensionality, I find that comparing the training MSE (from

a small subset of states) to the MSE for unseen data is useful in determining whether

to include more or less principal components. When training error is extremely small

(effectively null) and out-of-sample MSE is not, it often helps to reduce the number of

components to optimize the out-of-sample error - the true aim of a machine learning

model. NPC becomes the number of optimized parameters per pixel. It is sensible to pick

NPC ∈ (0; min [Nhidden, Ntrain]) at which the eigenvalues/variance can be non-zero. One

should also remember to fit an intercept, i.e. append a value of e.g. 1 to the dimension

reduced hidden states, h̃t .

56 CHAPTER 5. DIMENSIONALITY REDUCTION

5.1.3 Impact of PCA on the ESN Dynamical System

It should be stressed that H is the matrix consisting of harvested hidden states, each

Nhidden-dimensional. The PCA layer comes after the dynamical system has been running,

driven by the entirety of the dataset. The dynamical system (Eq. 3.1) is therefore indiffer-

ent to the use of PCA in a readout layer (Eq. 3.2) and prediction-time setting. Therefore

the memory capabilities of the dynamical system are not affected.

After training, however, predictions are made from the linear readout layer on the re-

duced state h̃t

h̃t = V>
�

ht −
1

Nhidden

Nhidden
∑

i=1

H(:,i)

�

(5.4)

yt =Wouth̃t (5.5)

Where 1
Nhidden

∑Nhidden

i=1 H(:,i) is the mean vector of hidden variables in the training states, a

pre-processing step of PCA.

At this point, for free-running predictions, Eq. (3.1) dictates that the prediction, yt is

fed back to the network as input xt+1. Only in that case, PCA will directly affects the

dynamical system. However, only the quality of the prediction is of significance to the

stability of the ESN in free-running prediction mode. Which, apparently, PCA can improve

dramatically by resolving issues related to high-dimensional ESNs, as discussed.

A benchmark is also available of the newly implemented SSESN with and without a PCA

layer in Sec. 7.8.

Chapter 6

A Spatially Sensitive Metric

Supervised machine learning methods apply optimization to minimize their mis-

takes or loss. The loss metric is therefore one of the most crucial choices in ML

applications. In this thesis, I explore image sequences, and that calls for a metric

that has spatial or spatio-temporal sensitivity while maintaining computational

efficiency. Such a method exists, the IMED.

Here, I describe and implement the IMED, and develop an efficient extension

with more natural boundary effects for the use case, while extending the method

to n-dimensional volumes.

Most importantly, I implement the method as forward and backward transforms

that are robust, which allow the use of the method for p problems. Robustness

was generally ensured with prior implementations.

The method also reduces the SSESN’s dependency on image noise, which is cru-

cial for long-term stability of free-running predictions (see E.g. Section 7.5).

57

58

6.1 You Get What You Ask For

In business management they speak of Key Performance Indicators (KPI). These are mea-

sures – qualitative or (often) quantitative – that managers tend to choose as indicators,

and therefore goals, of the team or business that is managed.

For example, a company might want their marketing department to make as many calls

to potential new clients as possible in order to acquire streams of revenue. The true aim,

of course, is profit. But an indirect KPI might be the number of calls made by the market-

ing team. Such a KPI might have unintended consequences as good employees who want

to keep their jobs will try to maximize the KPI. He or she will make as many calls a day

as possible, and might rush through them at the risk of alienating potential customers,

or might make calls to clients for whom the service or product is entirely irrelevant. The

KPI, therefore, may be accomplished, but the ultimate objective of increasing profit is per-

haps harmed. In short, you get what you ask for.

By analogy, KPIs of business management is not unlike the loss functions of machine learn-

ing. Minimizing loss is all that concerns our optimization tools, and that makes the loss

function perhaps the most important design choice of a machine learning model.

Especially for spatial prediction, some type of spatial sensitivity of the metric may be

needed to learn spatial features. It should also retain efficiency, and, in the context

of Echo State Networks, remain a discretization of an L2 inner product such that least

squares regression (as well as Principal Component Analysis, Support Vector Machines

and Linear Discriminant Analysis) may be used for one-step optimization of the readout.

At a deeper level, the question, really, is what is a good prediction? The answer: One that

resembles the target, of course! Trying to define resemblance, however is not easy, and my

own ’Socratic monologue’ seems to come up short.

In lack of loss functions with perfect perceptiveness of spatial features, we must resort

to qualitative assessment of the predictions that have minimized some error measure.

Which is all we can ask of machine learning methods: For the machine, a ’good’ predic-

tion is defined only as one where trained parameters minimize the loss function.

In this chapter, I present the current state of the metric called IMED and extend it to

temporally sensitivity that guides machines to produce predictions that are more to our

qualitative liking. It can also be used for comparison when determining anomalies, so it

has multiple separate applications in this thesis.

6.2. READING GUIDANCE 59

6.2 Reading Guidance

In this chapter I describe several methods of implementing the IMED:

1. A naive (original) method using a very large matrix, in Sec. 6.4.

2. A version with tensor decomposition, in Sec. 6.5

3. Faster versions using convolution performed using Fourier transforms or the DCT

(new!) in 6.6.1

The first two sections serve more as background, and can be skipped, as the SSESN of

this thesis utilizes the frequency methods.

The most important contribution of this chapter, besides the implementation in a python

package at GitHub1, is a method for a robust inverse transforms that allow the use of

IMED for regression problems even as the Gaussian parameter σ is increased. The IMED

is traditionally only used for classification problems; see Section 6.7.

Besides robust inverse transforms, the motivation for this chapter is to implement effi-

cient versions of the IMED. I benchmark the different versions for one, two and three

dimensional volumes in Section 6.8.

6.3 The L2 Norm and Euclidean Distance

The space of square-integrable functions, L2 is the natural space in which to discuss least

squares optimization that ESNs apply (see Section 2.3.5). In the continuos case, least

squares minimizes the (squared) L2 norm of the difference between training predictions

and targets:

〈 f − g, f − g〉=
∫

Ω

(f (x)− g(x))∗ (f (x)− g(x)) d x (6.1)

where f and g can in this context be considered training predictions and targets, i.e.

continuos functions that generate the images. Ω are rectangular regions that make up

the rectangular continuos images. While the continuos description is useful in explaining

the IMED, do note that in the discrete case the norm is the square Euclidean. For n-

dimensional vectors it is:

d2 (x,y) = ‖x− y‖2
2 = (x1 − y1)

2 + (x2 − y2)
2 + . . .+ (xn − yn)

2 (6.2)

1IMED package https://github.com/jfelding/IMED

https://github.com/jfelding/IMED

60 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

In optimization the square, above, is often used instead due to its smooth and differen-

tiable parabolic as opposed to conic shape, see Figure 6.1.

x

−5.0
−2.5

0.0
2.5

5.0

y

−5.0−2.5 0.0 2.5 5.0

z

2

4

6

8

x

−5.0
−2.5

0.0
2.5

5.0

y

−5.0−2.5 0.0 2.5 5.0

z

20

40

60

Figure 6.1: The squared Euclidean distance of Eq. (6.2) makes up a smooth paraboloid
(right), whereas taking the square root (left) yields a cone that is not differentiable in
the origin. The square retains its minimum (right)

In this text, I will implicitly refer to 2D images as X and its row-major flattened vector

version as x. Without further definitions, I will also allow myself to use the straightfor-

ward notation d (X,Y) = d (x,y).

The discrete square norm computed using d2 is a loss functions that clearly does not

take spatial and temporal dependencies into account in images or sequences of images.

Conceptually, its pixel-wise nature makes optimization approaches focus on the largest

pixel-to-pixel deviations instead of taking into account any spatial or spatio-temporal

pattern that may be of much greater importance to the learning task. If one considers

the image X to be a version of Y in which every pixel is displaced by just one to the

right, a good spatial metric should recognize that the two versions are similar, but the

Euclidean does not, as it does not consider any pixel relations as demonstrated in Figure

6.2 where the right column images are displaced versions of the right column images.

We now move on to the Image Euclidean Distance; one that is more spatially sensitive.

6.3. THE L2 NORM AND EUCLIDEAN DISTANCE 61

0 1 2 3 4 5 6 7 8 9 1011121314
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(a) Original image

0 1 2 3 4 5 6 7 8 9 1011121314
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Image displaced one up, one right

0 1 2 3 4 5 6 7 8 9 1011121314
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(c) Transformed image, σ = 1

0 1 2 3 4 5 6 7 8 9 1011121314
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(d) Transformed displaced image, σ = 1

0 1 2 3 4 5 6 7 8 9 1011121314
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(e) Transformed Image, σ = 2

0 1 2 3 4 5 6 7 8 9 1011121314
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(f) Transformed displaced image, σ = 2

Figure 6.2: 15 × 15 2D images. Top row: originals created with binary pixel values
of either 0 (in black) or 1 (in white). Right column shows the same image as to the
left, but with white pixels displaced by one to the right, and one up. In the middle and
bottom rows the top row images have been transformed using the linear convolution
standardizing transform (Eq. 6.7) inherent to the IMED; with different values of the
Gaussian parameter σ. The IMED is equivalent to performing the transform of both
images, and taking the L2 pixel-wise distance. It is less sensitive to small displacements.
All images shown in greyscale with values in [0; 1]. Distances between left and right
images, from top to bottom rows:
48 (original d2), 7.0 (σ = 1), 1.0 (σ = 2). It is, however, general that higher σ lowers
the values of the metric.

62 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

6.4 The Image Euclidean Distance Metric (IMED)

In (Liwei Wang et al. 2005) L. Wang, Y. Zhang and J. Feng introduced the Image Euclidean

Distance (IMED). They proposed applying a continuous, monotonically decreasing and

positive definite function f to weigh the pixel-distance

f (|Pi − Pj|) (6.3)

to take into account dependencies of neighbouring pixels. The article considered only

spatial pixel-distances, but extends to n-dimensional images, though this was not imple-

mented. A natural choice for f , they found, was the Gaussian

f (i, j) = 1
2πσ2 exp

�

− (x i−x j)2+(yi−y j)2

2σ2

�

where (x i, yi) are coordinates of the pixel indexed

by i such that x i ∈ {0,1, ..., M − 1} and yi ∈ {0, 1..., N − 1}. When G is a matrix whose

(i, j)th element is f (i, j), i.e.:

G(i, j) =
1

2πσ2
exp

�

−
(x i − x j)2 + (yi − y j)2

2σ2

�

(6.4)

then the squared IMED — which is unscrupulously referred to it as the IMED for brevity

— is defined as:

d2
I M ED (X,Y) = (y− x)>G (y− x) (6.5)

The authors list three main advantages over the Euclidean distance.

• Sensitivity to small perturbations (as demonstrated in Fig. 6.2)

• Simplicity over other spatial similarity measures

• L2 compatibility allowing direct utility in existing image recognition methods

The authors focus only on application in classification methods, whereas this project will

use the IMED as loss function for a regression problem, which has required work on

robust deconvolution methods, as we shall see in Section 6.7.

IMED in the SESN and an Inverse Transform

The naive version of the IMED was implemented in the SESN of Niklas Heim and James

Avery (Heim and Avery 2019; Heim 2021), and it is one of the computational limitations

6.4. THE IMAGE EUCLIDEAN DISTANCE METRIC (IMED) 63

for high-dimensional spatial applications that was left as future work to replace by more

efficient versions.

The inverse transform that they used requires determining determining G−1 (also an

N M×N M matrix), which can be done using the eigendecomposition of G. This operation

is O
�

(N M)3
�

for the symmetric matrix.

6.4.1 The Standardizing Transform

IMED authors noted that, equivalently to (6.5), each image (prediction and target in the

regression case) can be transformed by the unique square root G1/2 for which:

G=
�

G1/2
�>

G1/2 = G1/2G1/2 (6.6)

Using this factorization, the discrete IMED can be rewritten

d2
I M ED (X,Y) =

�

(y− x)>G1/2
� �

G1/2 (y− x)
�

=
�

�

G1/2y−G1/2x
�>���

G1/2y−G1/2x
��

= (yST − xST)
> (yST − xST)

(6.7)

such that the IMED is simply the pixel-wise Euclidean distance of transformed images,

with ST subscripts referring to:

xST ≡ G1/2x (6.8)

which authors named the standardizing transform (ST).

The standardizing transform, then, can be incorporated in supervised or unsupervised

algorithms as a preprocessing step to input and/or targets to obtain the IMED without

changing any loss functions directly. There is a but, however, as determining G1/2 (also)

requires eigendecomposition of G. The unique positive square-root of a positive-definite

matrix like G can be found by its eigendecomposition (the decomposition of G has to be

computed only once):

G= UΛU>

G1/2 = UΛ1/2U>
(6.9)

Where the columns of U are eigenvectors of G with corresponding eigenvalues along the

diagonal of Λ. Λ1/2 is its (unique) positive root, i.e. Λ =
�

Λ1/2
�>
Λ1/2 = Λ1/2Λ1/2 that is

simply found by taking the element-wise square root of Λ, since it is a diagonal matrix.

64 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

6.4.2 A Naive Inverse Standardizing Transform

The inverse transform, needed for predictions in real-space using IMED as a loss function,

requires the inverse operation, which I shall denote the inverse standardizing transform

(iST):

x= G−1/2xST (6.10)

Where G−1/2 can be determined by the eigendecomposition of G in the same fashion.

Implementation

In the IMED python 3 package, the naive IMED described above is available as a forward

and backwards standardizing transform. Please see the GitHub code2 for the function

ST_fullMat(). It is the work by Niklas Heim and James Avery and Jacob Felding (a few

fixes).

6.5 IMED by Kronecker Product Decomposition

The G matrix with (N M)2 elements can be decomposed as a Kronecker product. This

was noted by IMED authors (Liwei Wang et al. 2005), and developed in (B. Sun et al.

2008). Kronecker product decomposition implies:

G= G x̂ ⊗G ŷ (6.11)

using N 2 and M2 matrices G x̂ ,G ŷ respectively . Each is real and symmetric, depending

only on the respective subscript coordinate of pixels, i.e.

G x̂ =
1

p
2πσ2

exp

�

−
(x i − x j)2

2σ2

�

(6.12)

G ŷ =
1

p
2πσ2

exp

�

−
(yi − y j)2

2σ2

�

(6.13)

The separability of G comes about from the product rule for exponents:

G(i, j) =
1

p
2πσ2

exp

�

−
(x i − x j)2

2σ2

�

1
p

2πσ2
exp

�

−
(yi − y j)2

2σ2

�

(6.14)

= g(x i − x j)g(yi − y j) = (G x̂ ⊗G ŷ)(i, j) (6.15)

2Implementation of the naive IMED https://github.com/jfelding/IMED/blob/master/IMED/
spatial_ST.py

https://github.com/jfelding/IMED/blob/master/IMED/spatial_ST.py
https://github.com/jfelding/IMED/blob/master/IMED/spatial_ST.py

6.5. IMED BY KRONECKER PRODUCT DECOMPOSITION 65

Two diagonalizations are now required to obtain the ST, but on matrices sized only M×M

and N × N instead of a single one, sized (MN ×MN).

G1/2 = G1/2
x̂ ⊗G1/2

ŷ =
�

UxΛ
1/2
x U>x

�

⊗
�

UyΛ
1/2
y U>y

�

(6.16)

To avoid constructing the memory-consuming G1/2 the so-called vec trick is applied such

that the standardizing transform is:

XST = G1/2
x̂ XG1/2

ŷ (6.17)

To be clear, the vectorization trick is the following observation. A matrix equation:

AXB= C (6.18)

can be rewritten as:

�

A⊗B>
�

x= AXB (6.19)

As before, the inverse standardizing transform can be obtained by computing G−1/2
x̂ ,

G−1/2
ŷ .

Extensibility to n Dimensions, and Edge Effects

Kronecker separation largely solves the computational issues of the original IMED method

that was applied in (Heim 2021). While it is not implemented, Kronecker decomposition

shows that the method is extendible to n dimensions. The standardizing transforms also

both yield certain edge effects (it is identical to convolution with zero-padding at bor-

ders). Other types of convolution than this ’linear convolution’ (i.e. periodic/symmetric

conv.) provides other edge effects.

Time Complexity

For the implementation as part of a spatial echo state network, the IMED should be very

efficient, and a robust method for inverse standardizing transform must also be created.

Currently, the matrix methods are not robust, since they rely on discrete diagonalization

that does not give precise results (like slightly negative eigenvalues that cannot exist).

The time complexities are:

• Naive (initial) method: O
�

(MN)3
�

in 2D, O
�

(MN T)3
�

if 3D, and so on,

66 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

• The Kronecker decomposition method is: O
�

M3
�

+O
�

N 3
�

+O
�

T 3
�

+ . . .

• Convolution using Fourier Transform is another way to implement the IMED (Bing

Sun et al. 2015) is O (M log M) +O (N log N) +O (T log T) + . . .

Therefore, I now turn to implementing and extending frequency representation methods

for the IMED.

Implementation

For the implementation of Kronecker Decomposition IMED, see GitHub code3 with the

function ST_sepMat().

6.6 Standardizing Transforms Using Frequency Representations

In (Bing Sun et al. 2015) authors showed that the standardizing transform is a convo-

lution operation that can be performed using frequency representations (Fourier trans-

form). This provides better scalability and – for the purpose of this thesis – avoids diag-

onalization that is not robust enough in practice for the inverse transform necessary for

regression problems (see Sec. 6.7).

6.6.1 IMED by Fourier Transform

The standardizing transform is in fact a convolution operation. By using the convolution

theorem for Fourier transformations, one can see that, in the continuous case, it allows us

to obtain the standardizing transform by taking the square root of the Fourier transform

of a Gaussian, which is itself another Gaussian. First, I introduce the Fourier transform

and that of the Gaussian.

The Fourier Transform

There are many slightly different conventions related to the forward and backward (in-

verse) Fourier transforms, including the use of different signs, normalization constant

and frequency k or angular frequency ω= 2πk Here, I simply chose:

H(k) = F (h(x)) (k) =
∫ ∞

−∞
h(x)e2πikx dx (6.20)

3Implementation of Kronecker IMED: https://github.com/jfelding/IMED/blob/master/IMED/
spatial_ST.py

https://github.com/jfelding/IMED/blob/master/IMED/spatial_ST.py
https://github.com/jfelding/IMED/blob/master/IMED/spatial_ST.py

6.6. STANDARDIZING TRANSFORMS USING FREQUENCY REPRESENTATIONS 67

such that the inverse transform is:

h(x) = F−1 (H(k)) =

∫ ∞

−∞
H(k)e−2πikx dk (6.21)

The Fourier Transform of a Gaussian is Another Gaussian

The Gaussian has the special property that its Fourier transform is another Gaussian

function with a spread that is inversely proportional to the original Gaussian. The mean-

zero Gaussian is defined:

g(x) =
1

p
2πσ2

exp
�

−
x2

2σ2

�

(6.22)

Its Fourier transform is:

F (g(x)) (k) = exp
�

−2π2σ2k2
�

(6.23)

Or in terms of angular frequency, F (g(x)) (ω) = exp
�

−σ2ω2/2
�

. Not only is Eq. 6.23

another Gaussian, but notably the Fourier transform is real.

The square root of the Fourier Gaussian that is relevant to the IMED is:

Æ

F (g(x)) (k) =
�

exp
�

−2π2σ2k2
��1/2

= exp
�

−π2σ2k2
�

(6.24)

or in terms of angular frequency,
p

F (g(x)) (ω) = exp
�

−σ2ω2/4
�

.

ST by Convolution in Fourier Space

Returning to carrying out convolution in Fourier space, the convolution theorem states

that it is accomplished using element-wise multiplication of transforms in Fourier space:

f ∗ h= F−1 (F(f) ·F(h)) (6.25)

Treating the one-dimensional case for simplicity, we can recreate the IMED as the inner

product 〈z, g(x) ∗ z〉 when z is the image difference z = y − d. Convolution is defined:

(g ∗ z)(x) =

∫ ∞

−∞
dx ′g(x − x ′)z(x ′) =

1
p

2πσ2

∫ ∞

−∞
dx ′ exp

�

−
1
2
(x − x ′)2

σ2

�

z(x ′)

(6.26)

Then, the one-dimensional IMED is the inner product:

〈z, g ∗ z〉=
∫ ∞

−∞
dx z∗(x)(g ∗ z)(x) =

∫ ∞

−∞
dxz∗(x)

∫ ∞

−∞
dx ′ g(x − x ′)z(x ′) (6.27)

68 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

We now exploit the fundamental property of the Fourier transform that it is unitary on

L2, such that the inner product is conserved, i.e.:

〈z, g ∗ z〉= 〈F (z) ,F (g ∗ z)〉=
∫ ∞

−∞
dk (F (z))∗F (g ∗ z) =

∫ ∞

−∞
dk (F (z))∗F (g)F (z)

(6.28)

Therefore, the squared IMED can be calculated by determining the Fourier transforms of

the image difference z and the kernel g, multiplying the transforms element-wise; then

summing all elements.

Using F (g) defined in Eq. (6.23), the standardizing transform can be implemented in

Fourier space by taking the square root, noting that F (g) (k) is real and non-negative:

〈z, g ∗ z〉= 〈F (z) ,F (g ∗ z)〉=
∫ ∞

−∞
dk
�

F (z)
Æ

F (g)
�∗ �Æ

F (g)F (z)
�

(6.29)

In complete analogy to Eq. (6.7). The straightforward separation in Fourier space is

not allowed in the real-space version of Eq. (6.27) as
p

g(x − x ′) cannot be removed

from the rightmost integral w.r.t. x ′. But in Fourier space, this allows rewriting the

standardizing transform:

ZST = vec−1
�

G1/2z
�

= F−1
�

F (Z) ·
Ç

F
�

gx y

�

�

(6.30)

where gx y is a multidimensional version of the Gaussian.

Discrete Case and Practical Considerations

The continuos Frequency Gaussian can be sampled for the practical, discrete case. This

largely avoids numerical issues as seen in Figure 6.3. The image or data Z is discrete

and finite, and can be transformed using the fast Fourier transform (FFT), an efficient

implementation of the discrete Fourier transform (DFT), whose forward and backwards

transforms are shown below, respectively:

Hk =
N−1
∑

n=0

hn exp
�

2πikn
N

�

=
N−1
∑

n=0

hn

�

cos
�

2πkn
N

�

+ i sin
�

2πkn
N

��

(6.31)

hn =
1
N

N−1
∑

k=0

Hk exp
�

−
2πikn

N

�

=
1
N

N−1
∑

k=0

Hk

�

cos
�

2πkn
N

�

− i sin
�

2πkn
N

��

(6.32)

Here, n is an index to the real space signal hn with n ∈ {0, 1, ..., N − 1}.

When the convolution theorem is applied using discrete Fourier transforms, the N -periodicity

6.6. STANDARDIZING TRANSFORMS USING FREQUENCY REPRESENTATIONS 69

of the discrete transform implies that convolution is periodic, and it is known as circular

convolution. This is not the case for continuos and non-finite transforms, as the period

will be infinite.

Up to a normalization constant, the DFT is identical to the Fourier Series coefficients of

an N -periodic function. The FFT of a signal or an image that violates this assumption

can therefore exhibit edge effects that occurs due to the discontinuity between the first

and last point in the signal. To avoid the discontinuity, one can extend the signal with

the mirror signal, so that it becomes 2N -periodic.

This is identical to performing a discrete cosine transform (DCT), producing symmet-

ric convolution whose edge effects are often more natural for image applications includ-

ing in a regression problem context. In Section 6.6.2 the IMED is therefore extended to

DCT representations.

Frequency Representation of the IMED Filter

In Eq. (6.24) I have derived the analytical frequency filter, which is preferable to applica-

tion of the DFT. To illustrate the differences, I plot in Figure 6.3 the real-space Gaussian,

its analytical and discrete transforms. We now see that the filter will be a Gaussian that

narrows as σ is increased, the opposite of the real space Gaussian. Further, the DFT of

the Gaussian kernel is complex (real and imaginary parts shown separately), which is not

a property of the true transform. The analytical filter is already normalized to unity, but

this is not the case for the DFT, so some care must be taken if that is applied. The analyt-

ical transform is superior, however, and is what is used in the provided IMED software.

It is unknown whether authors of e.g. (Bing Sun et al. 2015) have applied the DFT or

analytically sampled filter.

70 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

−10 −5 0 5 10

x

−10

−5

0

5

10

y

−10 −5 0 5 10

x
y

−10 −5 0 5 10

x

y

−2 0 2

kx

−2

−1

0

1

2

k
y

−2 0 2

kx

k
y

−2 0 2

kx
k
y

−2 0 2

kx

−2

−1

0

1

2

k
y

−2 0 2

kx

k
y

−2 0 2

kx

k
y

−2 0 2

kx

−2

−1

0

1

2

k
y

−2 0 2

kx

k
y

−2 0 2

kx

k
y

σ = 0.5
g(x, y)

σ = 0.5
F (g)

σ = 0.5
Re[FFT(g)]

σ = 0.5
Im[FFT(g)]

σ = 1
g(x, y)

σ = 1
F (g)

σ = 1
Re[FFT(g)]

σ = 1
Im[FFT(g)]

σ = 1.5
g(x, y)

σ = 1.5
F (g)

σ = 1.5
Re[FFT(g)]

σ = 1.5
Im[FFT(g)]

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.00

0.11

0.22

0.33

0.44

0.55

0.66

0.77

0.88

0.99

0

10

20

30

40

50

60

70

80

90

−4.8

−3.6

−2.4

−1.2

0.0

1.2

2.4

3.6

4.8

Figure 6.3: Two-dimensional Gaussians. From top row and down: real space Gaussian,
corresponding analytical Fourier transformed Gaussian, discrete Fourier transformed
Gaussian (real part), discrete Fourier transformed Gaussian (imaginary part); for dif-
ferent values of σ, as shown. Imaginary part is a property of the numerical method, not
of the Fourier Gaussian. Every transform has unique color scale. DFT algorithm used
is scipy.fft2. In the case of a Gaussian frequency filter, it is both more efficient and
accurate to sample directly from the analytical transform. If the DFT version is used as
frequency filter, it should be normalized to unity, and I would personally disregard the
imaginary part.

6.7. DECONVOLUTION AND THE INVERSE STANDARDIZING TRANSFORM FOR
SESNS 71

6.6.2 IMED by Discrete Cosine Transform

Continuos Cosine Transform

The cosine transform, in the continuos case is related to the Fourier transform by Euler’s

formula, and for a real function h is the real part of the Fourier transform, keeping only

cosine functions as basis:

H c(k) = Fc (h(x)) (k) =

∫ ∞

−∞
h(x) cos (2πkx)dx (6.33)

And the transform is even. The Gaussian of Eq. (6.22) is also even, so the cosine transform

of the Gaussian is identical to its Fourier counterpart, as in Eq. (6.23).

Discrete Cosine Transform, Type I

Whereas the Discrete Fourier Transform is equal, up to a normalization constant, to the

Fourier series coefficients for an N-periodic signal, the discrete cosine transform type

I (DCT-I) H c
k of a signal hn is identical to the DFT of a symmetrically extended signal

truncated by two points given the definition:

H c
k = h0 + (−1)khN−1 + 2

N−2
∑

n=1

cos
�

πkn
N − 1

�

(6.34)

With the definition in Eq. (6.34), the DCT-I is its own inverse.

A benefit of the DCT over the DFT is that it only samples positive frequencies, increasing

the resolution. This is due to the evenness of the cosine, i.e. cos(−x) = cos(x). The

Fourier transform of a real signal instead exhibits conjugate symmetry such that negative-

frequency terms are the complex conjugates of their positive counterparts, i.e. H−k = H∗k,

and half the samples of the DFT are thus spent on these negative-frequency terms.

6.7 Deconvolution And the Inverse Standardizing Transform for SESNs

6.7.1 An Ill-Conditioned Problem

As I have stated, in regression problems like in spatial ESNs the IMED can be applied

as a pre-processing and post-processing step such that regression is carried out in the

standardized-transform space, but the inverse transform is used to ’restore’ the predic-

tions to the original space. Since the standardizing transform is convolution, the inverse

72 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

transform is deconvolution. In the presence of any noise this is an ill-conditioned prob-

lem, and with frequency methods the noise will be catastrophically amplified, as we shall

see.

In this section I therefore also develop a simple, but surprisingly robust method for the

inverse transform, which exploits that the frequency filter is controllable (unlike the point-

spread function for e.g. cameras).

6.7.2 Naive Inverse Transforms

In Fig. 6.4, I show the 3D volume that I will use throughout this section to demonstrate

the deconvolution performance of frequency and matrix implementations of the inverse

standardizing transform.

0 4 8 12 16 20 24 28
0

4

8

12

16

20

24

28

(a) The dataset used to estimate
deconvolution restoration errors is a
3D volume in which the ’L2’ text
(value 1) is sliding horizontally and
jumping vertically (arrows for
illustration only)

(b) Slices of the 3D simulated dataset in which
the ’L2’ text slides across the 2D image over time
(first horizontally, then vertically). Only every
second sample is shown. Created using PyVista.

Figure 6.4: Illustrations of the Dataset for ST and iST restoration errors. I refer to the
volume as the tensor χwith dimensions (T, Nx , Ny) = (36,30, 30). The 36 images are very
discontinuous (only binary values 0 and 1), and Gibbs effects can therefore be expected
from the frequency methods.

Naive Spatial-Only Restoration

In Figure 6.5 I show the performance of the naive inverse transforms on a spatially trans-

formed volume (in Fig. 6.4). I refer to restoration error as the pixel-wise mean squared

error between the original volume χ and restored volume ST−1 (ST (χ)). For the sake of

6.7. DECONVOLUTION AND THE INVERSE STANDARDIZING TRANSFORM FOR
SESNS 73

comparison, I also show a ’baseline’ restoration error, which is the MSE of χ and to ST (χ).

All at different values of σ (spatial only).

It is interesting to see in the restoration MSE that frequency methods are extremely well-

behaved at small values of σ, but that the restoration MSE explodes as it is increased. In

frequency space, σ has the inverse interpretation of a Gaussian spread in real space (See

Figure 6.3). Therefore, it is reasonable that frequency methods are very well-behaved

when 0≤ σ ≤ 1 where the frequency Gaussian (Eq. 6.24) widens, and more frequencies

in the transformed volume F (ST (χ)) are divided by larger values. This is opposed to

when σ > 1 and the frequency Gaussian very quickly drops towards zero, amplifying

numerical noise by extreme amounts.

We see that the inverse matrix methods are more well-behaved, achieving about 10−2

restoration MSE somewhat independently of σ. The matrix methods are convolutions in

real space, and as such they are more well-behaved when σ ≥ 1. When 0 < σ < 1 the

normalization constant of the Gaussian that includes σ−1 makes the Gaussian as a whole

increase dramatically, also amplifying noise. In the baseline restoration MSE we see this

effect for the matrix methods.

0 1 2 3 4 5

Spatial σ

10−21

10−4

1013

1030

1047

1064

R
es

to
ra

ti
on

M
S

E

DCT

FFT

DCT via FFT

Matrix methods

(a) Restoration MSE computed using original
volume and ST−1 (ST (χ)).

0 1 2 3 4 5

Spatial σ

10−5

10−4

10−3

10−2

10−1

B
as

el
in

e
R

es
to

ra
ti

on
M

S
E

DCT

FFT

DCT via FFT

Matrix methods

(b) As a baseline measure, I here apply no iST
to view the effect of the forward ST on the
volume. In a prediction setting, it is still
necessary to restore images to the original
space to ensure the quality of predictions.

Figure 6.5: Restoration errors based on spatial-only standardizing transforms of a 3D
volume illustrated seen in Fig. 6.4. Restoration errors are MSE of original volume and
transformed volume. A method to avoid noise amplification is needed for the inverse
transform of frequency methods.

Even for the well behaved case of the matrix methods, at σ = 5 a restoration MSE of

2.5×10−2 is achieved, but the results are not at all sufficient in a prediction setting. Fig.

74 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

6.6a shows what the restored sample looks like, compared to the standardizing transform

baseline in Fig. 6.6b.

0 10 20
0

5

10

15

20

25

0.00

0.05

0.10

0.15

0.20

(a) ’Restored’ version of the first slice of the
volume after spatial standardizing transform
followed by inverse transform.

0 10 20
0

5

10

15

20

25

0.00

0.05

0.10

0.15

0.20

(b) Baseline. First slice of the volume after
spatial standardizing transform.

Figure 6.6: While matrix methods achieve better results in the naive spatial ST restoration
process with restoration MSE 2.5× 10−2, at σ = 5 the results, as seen in (a) are hardly
sufficient for most applications. The original text ’L2’ is illegible.

Naive Temporal-Only Restoration

As the matrix methods are two-dimensional in nature, they are not applied in this section

and when discussing spatio-temporal restoration.

In Figure 6.7a I show the restoration performance of frequency methods for the temporal

standardizing and inverse standardizing transforms, and in Fig. 6.7b.

0 1 2 3 4 5

Temporal σt

10−27

10−18

10−9

100

109

1018

R
es

to
ra

ti
on

M
S

E

DCT

FFT

DCT via FFT

(a) Temporal restoration MSE computed using
original volume and ST−1 (ST (χ)).

0 1 2 3 4 5

Temporal σt

10−5

10−4

10−3

10−2

B
a
se

li
n

e
R

es
to

ra
ti

o
n

M
S

E

DCT

FFT

DCT via FFT

(b) Baseline measure as in Fig. 6.5b, only its
temporal version.

Figure 6.7: Restoration errors based on temporal-only standardizing transforms of a 3D
volume illustrated seen in Fig. 6.4, i.e σt > 0, σ = 0. Matrix methods not included due
to 2D nature.

6.7. DECONVOLUTION AND THE INVERSE STANDARDIZING TRANSFORM FOR
SESNS 75

Again, I provide an example of the restoration at σt = 5 in Fig. 6.8a along with the stan-

dardizing transform itself in Fig. 6.8b. Clearly, the frequency restorations continue to

cause major restoration issues, although to a smaller degree than the spatial-only trans-

forms. I attribute this difference to the higher dimensionality of the spatial as opposed

to temporal transforms.

0 10 20
0

5

10

15

20

25

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5
×109

(a) ’Restored’ version of the 15th slice of the
volume after temporal standardizing transform
followed by inverse transform.

0 10 20
0

5

10

15

20

25

0.0

0.1

0.2

0.3

(b) Baseline. 15th slice of the volume after
temporal standardizing transform.

Figure 6.8: Example of restoration of temporal standardizing transform (σt = 5) us-
ing DCT method. The naive deconvolution approach is clearly not sustainable as σt is
increased.

The Trouble with Inverse Filtering

The minimum decreases exponentially with σ, of course, and the divisions involved in

inverse filtering become smaller and smaller.

6.7.3 The Wiener Filter

A well-known, simple method for noisy deconvolution is the Wiener filter. It should

be considered, as it is not overly computationally intensive in comparison to iterative

restoration methods that are more commonly used today.

As we have seen, noisy deconvolution must be handled with care for the Gaussian filter

that rapidly approaches nullity. The Wiener filter is:

Y (k) =
H∗(k)

|H(k)|2 + NSR(k)
(6.35)

76 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

Where H is the original filter (the frequency representation of the Gaussian) and NSR is

the frequency representation of the noise-to-signal ratio. White noise, for instance, has

a flat power spectrum of simply σ2
N , whereas red noise leads to

S0

ω2
where ω are angular

frequencies. In both cases, a constant must be estimated.

It is seemingly paradoxical that the signal one is trying to estimate by inverse filtering

must be known in advance. We find, however, that an average power spectrum of the

training set can be somewhat successfully applied when the spatio-temporal data is suf-

ficiently continuous. Results are far from perfect, however, exhibiting artefacts that are

known to occur with Wiener deconvolution.

The need to estimate the signal power spectrum also prohibit long-term prediction in

an ESN prediction context, since the power spectrum of the prediction set targets deviate

more and more from that of the training set, as time goes on.

The noise amplification is largely dependent on the inverse filter. When σ > 1 the fre-

quency representation of the Gaussian will be narrower (in k) than in real-space (in x).

Therefore, it quickly tends towards zero, and during inverse filtering by division any noise

is amplified; sometimes by hundreds of orders of magnitudes.

6.7.4 A Simple Solution

Wiener deconvolution is an imperfect method that does not suffice in a free-running

prediction setting. A simple approach, then, is to solve the extreme noise amplification

inherent to inverse filtering by avoiding division by near-zero values. By comparing

Table 6.1 and e.g. Figure 6.5a, we see that even at σ = 2 at which point the filter has a

minimum of ∼ 10−7, inverse filtering works remarkably well. Therefore, adding a small

constant as in Eq. (6.36) to both the filter and the inverse filter (in ST (·) and ST−1 (·)),

we find that the worst noise amplification issues of deconvolution may be mitigated.

g̃(k) =
Æ

F (g) (k) + ε, ε > 0 (6.36)

It is pertinent to stop and ask at this point what ramifications a small constant may have

on the IMED: Of course, the distance measure may be altered slightly (recall that only

6.7. DECONVOLUTION AND THE INVERSE STANDARDIZING TRANSFORM FOR
SESNS 77

the forward ST (·) is necessary for distance evaluation), but IMED authors in (Liwei Wang

et al. 2005) required only that the filtering function f must be (1) dependent of the pixel-

distance, (2) that it be monotonically increasing as the pixel-distance increases, and (3)

that the function must be applicable independently of the image dimensions. Adding a

small constant, say ε, therefore violates no assumptions for the distance not to be an

IMED. In frequency space, adding a small constant implies extending the convolution

support increases, making each pixel in the ST-transformed image depend slightly more

on distant neighbours. Note however, that the Gaussian is not much different, as it is

always non-zero. Adding a constant simply makes the Gaussian approach ε rather than

zero as k →∞ (or at certain k 6= 0 with increasing σ). Still, adding a small ε makes

the frequency Gaussian of Eq. (6.24) have values larger than 1 at k = 0, and therefore

slightly amplifies the frequency (this is at the frequency that is already most emphasized

by the Gaussian kernel). An alternative to avoid this is to use:

g̃(k) =

p

F (g) (k) + ε
1+ ε

, ε > 0 (6.37)

Which has the effect of preserving the maximum at the expense of slightly increasing

all other values of the original frequency Gaussian such that higher frequencies enter

slightly more in the convolution, but lower frequencies are not altered by as much as in

the no-normalization approach of Eq. (6.36). In Table 6.1 I have stated the effects of ε

along with normalization on the minimally sampled value of the frequency Gaussian for

different values of σ. We see that only the tails at higher values of σ are affected.

σ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ε= 0 100 10−1 10−2 10−3 10−5 10−7 10−10 10−14 10−18

ε= 10−10 100 10−1 10−2 10−3 10−5 10−7 10−10 10−10 10−10

ε= 10−5 100 10−1 10−2 10−3 10−5 10−5 10−5 10−6 10−6

Table 6.1: Effect of Eq. (6.37) (ε and normalization) with non-zero ε on minimum of
Gaussian filter with different σ and ε. Found by evaluating

�p

F (g) (k) + ε
�

/(1+ ε)
using Wolfram|Alpha. Trivially, the other approach with no normalization (Eq. 6.36)
simply changes minima below ε to ε in this order-of-magnitude overview.

In Fig. 6.9 I further visualize the difference between the two approaches by looking at the

impact on the entire spectrum at the relatively high value of σ = 4. The normalization

implies that only the tails of the frequency Gaussian are impacted. As such, the vast effect

www.wolframalpha.com

78 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

of the convolution is preserved, as the low-frequency amplitudes are largely unaffected.

This implies that the normalization method is satisfies several criteria:

• Very small amplitudes at tail of the Gaussian are increased to counter noise ampli-

fication inherent to the inverse standardizing transform in frequency space

• The forward standardizing transform is largely unaffected since the low-frequency

amplitudes are changed relatively little

• No frequency amplification is possible, since the filter has values of at most one.

• Normalization is more forgiving to the end-user, since the (ab)use of high values

of ε still largely preserves the transform as intended.

While the simple addition approach (Eq. 6.36) also achieves the first bullet, it lacks

the benefit of the remainder. For this reason, we continue the exploration using the

small-ε approach with normalization as in Eq. (6.37).

Angular Frequency ω

ω

ω

ω

ω

Figure 6.9: Two approaches to adding a small constant ε to mitigate extreme noise am-
plification of deconvolution. The plot shows the difference of the Fourier space Gaussian
p

F(g(k)) to each of the two methods in Eq. (6.36) and Eq. (6.37). The normalized
approach prevents amplification at k = 0, and only has a significant impact on the tails
of distribution to counter division by near-zero inherent to inverse filtering.

Simulation Results

First, let’s see how the catastrophic inverse transform of Fig. 6.8a does now that ε-ST and

ε-iST is performed with ε= 10−5. The result for the forward and backwards transform is

6.7. DECONVOLUTION AND THE INVERSE STANDARDIZING TRANSFORM FOR
SESNS 79

displaced in Fig. 6.10. Mitigating noise amplification by the addition of a small constant

is remarkably effective.

0 10 20
0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

(a) ε-restored version of the 15th slice of the
volume after temporal standardizing transform
followed by inverse transform

0 10 20
0

5

10

15

20

25

0.0

0.1

0.2

0.3

(b) Baseline. 15th slice of the volume after
temporal ε-ST.

Figure 6.10: Example of ε-restoration of temporal standardizing transform (σt = 5,
σ = 0, ε = 10−5) using DCT method. Compare to Fig. 6.8. The difference a small
constant can make to restoration is dramatic. The forward-transformed version (b) is
not visibly affected by ε (compare to Fig. 6.8b). Original volume slice not pictured, as it
looks identical to (a). Restoration MSE of the volume ST−1 (ST (χ)) from which one slice
is displayed here, is 1.2× 10−24.

The visual restoration from Fig. 6.10a to 6.10a is impressive at the relatively high value

of σt = 5, but for a more quantitative summary, see Figure 6.11 in which σ = σt = 5

and ε is varied to dampen numerical noise as necessary. For completeness, I display even

the case of ε ∼ 1 (the maximum of the frequency Gaussian), although this is not the

intended use of the small constant.

In conclusion, the ε-ST has the attributes that we like in a deconvolution method in that

it is fast, effective, simple, easily adjusted if needed, and does not require estimation of

the signal or its Fourier transform. It can therefore be implemented in the spatial ESN

without issue. If in doubt when using the method for regression problems, I recommend

setting the relatively high value of ε= 1× 10−2.

80 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

10−9 10−7 10−5 10−3 10−1

ε

10−26

10−17

10−8

101

1010

1019
R

es
to

ra
ti

o
n

M
S

E
σ
,σ
t

=
5

DCT

FFT

DCT via FFT

(a) Restoration MSE as a function of ε.

10−9 10−7 10−5 10−3 10−1

ε

0.016

0.018

0.020

0.022

0.024

0.026

B
as

el
in

e
R

es
to

ra
ti

on
M

S
E

σ
,σ
t

=
5

DCT

FFT

DCT via FFT

(b) MSE between forward ST and original
volume

Figure 6.11: With σ = σt = 5, Successful spatio-temporal restoration is achieved when
a small constant ε is added to the frequency filter as in Eq. (6.37). With ε = 0, we
previously had MSE ∼ 10120, but now achieve e.g. MSE = 5.1 × 10−6 using ε = 10−5

and the DCT-based method. In (b) we now see the baseline MSE decreasing as ε is
increased to very large values approaching 1. Such use is not intended, but due to the
normalization in Eq. (6.37), the ε-ST is still sensible. Here, ε has the affect of lifting
the tails of the frequency Gaussian, but still retains its maximum. Had normalization not
been used, every frequency would be amplified at ε= 1.

6.8 IMED Benchmarks

The background for this chapter was that the naive IMED prototype implemented in the

SESN ((Heim and Avery 2019)) was slow, memory-inefficient and with no robust inverse

method for higher values of σ.

In this section I show that the frequency methods are indeed faster. I do so with exclu-

sive access to nodes of the ’MODI’ cluster of the UNICPH High Performance Computing

Center. The cluster has 8 nodes with identical specifications. Since the SSESN is not

(yet?) implemented with distributed computing in mind, I use only a single node. It has

specifications4:

CPU AMD EPYC 7501, 2 x 32 cores at 2Gz

Memory 256GB Memory

For measuring runtimes at different resolution, and number of dimensions, I allow my

implementations to utilize the multi-core processors when they can. This can benefit

4For more on MODI, see the MODI user guide: https://erda.dk/public/MODI-user-guide.pdf#
section.3

https://erda.dk/public/MODI-user-guide.pdf#section.3
https://erda.dk/public/MODI-user-guide.pdf#section.3

6.8. IMED BENCHMARKS 81

especially the higher-dimensional frequency methods.

In general, I rescale arbitrary data in 1D, 2D and 3D such that the volumes contain up to

108 elements, and I apply forward standardizing transforms.

2D Case (’An Image’)

Since the prototype implementation of the SESN was only for use on 2D images, we

start by observing the difference in performance of the original matrix method, and the

Kronecker decomposed version (fullMat and sepMat) in Fig. 6.12. It is clear that the

sepMat method is dwarfed by the naive implementation (a good thing).

0 10000 20000 30000

Problem Size (N ×N)

0

200

400

600

800

1000

2
D

R
u

n
ti

m
e

[s
]

sepMat

fullMat

Figure 6.12: Matrix implementations of the IMED. fullMat is the originally proposed
transform, sepMat is Kronecker decomposed version. Due to time constraints, only two
points are sampled for each average. All CPU cores of the MODI node can be utilized for
real-world applicability. Note that problem size is ’small’ in comparison due to limits of
time and memory consumption.

The frequency methods, of course, are even faster than the sepMat method, especially

when larger than 1D which allows the implementation to utilize more cores in parallel.

In Figure 6.13a we compare the sepMat method to frequency implementations. Note the

much larger problem size that is possible with these methods. Here, it is the frequency

methods that are dwarfed. For this reason, I show frequency methods only to the right, in

Fig. 6.13b. As expected, they scale better; the IMED journey has been successful!

82 CHAPTER 6. A SPATIALLY SENSITIVE METRIC

0.0 0.2 0.4 0.6 0.8 1.0

Problem Size (N ×N) ×108

0

100

200

300

2
D

R
u

n
ti

m
e

[s
]

DCT

DCT by FFT

FFT

sepMat

(a) Non-naive IMEDs

0.0 0.2 0.4 0.6 0.8 1.0

Problem Size (N ×N) ×108

0

1

2

3

4

2
D

R
u

n
ti

m
e

[s
]

DCT

DCT by FFT

FFT

(b) Frequency IMEDs

Figure 6.13: Benchmarks on MODI node for the non-naive methods on 2D volumes.
All averages are of 5 observations. All CPU cores, when possible, are utilized in this
benchmarks for real-world applicability.

1D and 3D Case

The frequency IMEDs are purposefully constructed so that they are applicable to any

number of dimensions. In Figure 6.14, I show their runtimes. What may be surprising is

that the 1D case is much slower than the 3D case when the volumes have approximately

the same number of elements. This is because higher dimensions allow the implementa-

tion to utilize multi-core CPUs.

It is also a general point that the frequency methods are faster for some problem sizes

than others, explaining very large ’jumps’. An easy optimization that will be applied in

the future is to zero-pad structures to only run transforms for fast sizes.

0.0 0.2 0.4 0.6 0.8 1.0

Problem Size (N) ×108

0

25

50

75

100

125

150

1
D

R
u

n
ti

m
e

[s
]

DCT

DCT by FFT

FFT

(a) 1D Transform

0.0 0.2 0.4 0.6 0.8 1.0

Problem Size (N ×N ×N) ×108

0

2

4

6

3
D

R
u

n
ti

m
e

[s
]

DCT

DCT by FFT

FFT

(b) 3D Transforms

Figure 6.14: Runtimes in 1D and 3D, only implemented for frequency methods. All points
are averages of five observations.

Part III

Application

83

Chapter 7

Forecasting with the Scalable
SESN

This chapter collects experiments with the SSESN and SESN in the broadest

sense. The selection of important hyper parameters is discussed in a prediction

setting, and how they can be determined. The SSESN is pushed to its limits

with respect to spatial scalability, while exemplifying their predictive perfor-

mance and stability. This is achieved on the synthetic orb data shown in Sec.

1.2 along with a classic shallow water simulation that the SSESN can learn to

predict without knowledge of the underlying physics.

These synthetic situations warm up to the deployment of the SSESN on the much

more complex ocean system (CESM simulations), which the SSESN can make

qualitatively plausible predictions of in high spatial resolution – in a few min-

utes.

Lastly, benchmarks are also provided that show the fruits of the labour of this

thesis project.

85

86

7.1 Reading Guidance

Many different SSESN/SESN experiments are presented in this chapter.

In Section 7.2 I discuss the issue of hyperparameter optimization, and why their auto-

matic tuning are not yet reliably producing for high-quality spatial predictions.

In Sections 7.3-7.7 I showcase the prediction capabilities of the SSESN on a number of

spatio-temporal systems, including two very different areas of the ocean.

In Section 7.8, I compare the time complexities of the ’old’ SESN, and the ’new’ SSESN

by timing at increasingly large problem sizes on fixed hardware setup (spatial scaling).

Here, I also get into many considerations of CPU versus GPU utilization.

7.2 The Unsolved Issue of Hyperparameter Optimization

7.2.1 Training, Validating, and Testing

An almost obvious approach to tune important hyper parameters of the SSESN is a type of

grid search on reasonable hyperparameter combinations. This can be achieved by training

the ESN on a ’training’ set, and evaluating predictions with that particular hyperparam-

eter configuration on a temporally subsequent ’validation’ dataset.

Validation implies that the best hyperparameters may be chosen by comparing prediction

errors on the validation set, and choosing the configuration that minimizes it. The val-

idation error, however, is then not an unbiased estimate of generalization performance

(on new data).

Even so, several approaches are possible:

For ocean data, for example, a training and validation area of the world may be used

to select hyperparameters for searching in other areas of the world, and the test set can

then be considered the application of the model to other parts of the world. Even then,

different areas will be less predictable than others, and the dynamics can vary.

Another approach than a spatial division, since the ESN model is sequential in nature, is

to use a temporal subset of data (of the same spatial area) for training, validation, and

testing respectively. That way, parameters may be tuned better to the problem, but at the

expense of ’wasting’ data for validation if temporal observations are limited. Of course,

the readout matrix of the ESN will have to be refitted on that validation data in order to

7.2. THE UNSOLVED ISSUE OF HYPERPARAMETER OPTIMIZATION 87

produce test-time predictions.

Comparing the test-time predictions to the test-time targets will provide a less biased

estimate of generalization (out-of-sample) error. If the data were non-sequential and in-

dependent and identically distributed, the testing error would in fact be unbiased with

deviations from the testing error expected to deviate less when the test set has more ob-

servations. If the former approach, i.e. spatial subdivision of a spatio-temporal series,

samples can be considered less dependent, although the ocean system, for example, is of

course deeply connected.

With these considerations in mind, I will list the hyperparameters that are worth opti-

mizing.

7.2.2 Essential Hyperparameters

From my own experience, as well as literature on tricks of the trade e.g. (Lukoševičius

2012), the parameters of Table 7.1 are most influential to the final prediction quality, and

therefore candidates for a relatively limited grid search. In the table I describe examples

of reasonable setting for each.

It is common to select hyperparameters on smaller problems, and it is my experience

that this does hold for spatio-temporal series that are up or downscaled within reason.

Therefore, a more exhaustive grid search can often be performed on spatially smaller

versions of the problem that are faster to compute.

88 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

Hyperparameter Description Reasonable Settings

Spectral Radius,

ρ (Whh)

Scales non-linearity of tanh (·),

Memory capacity,

Max. amplification of ht

0.8, 1.0, 1.5, 2.0

Input Scaling, κ
Factor to scale input mapping,

non-linearity of tanh (·)

�

10−3; 101
�

Principal Components,

NPC

Effectively, the number trained

weights per image pixel at time t.

300, 500, 1000 or

min (Ntrain, Nhidden)

as H ∈ RNtrain×Nhidden

Spatial and Temporal

IMED settings σt ,σx y

When resolution is increased,

but spatial/temporal distances

are equal, σx y ,σt should be

conserved in units of distance.

σ = 0 implies that Euclidean

distance is used as

opposed to IMED.

Depends on distance

unit. In pixel units,

σx y ∈ (0;10) is often

reasonable.

σt should be low

due to temp. edge

effects.

Input Map specs;

including dimension

Nhidden

Different input maps

as explained in Table 7.5.

Note: SESN often needs more

input maps to perform well,

and on smaller spatial problems.

Dimension reduction of SSESN

may explain this change.

Combination of

bilinear rescaling,

convolutions,

gradient,

DCT with

(Nk1, Nk2) = (20, 20)

Table 7.1: Hyperparameters that are essential to successful prediction using the SSESN.
An example of an often non-essential parameter is the sparsity of Whh — in my own
experience and that of (Lukoševičius 2012).

7.2. THE UNSOLVED ISSUE OF HYPERPARAMETER OPTIMIZATION 89

7.2.3 Optimization with Competing, Imperfect Error Measures

In Chapter 6 I implemented the standardizing transform and its inverse with more ef-

ficient frequency implementations, and the more natural boundary effects of the DCT

implementation, especially.

I admit, however, that the simplicity of the IMED/ST (along with the standard Euclidean)

does not provide a perfect spatial similarity measure that is perfect for optimizing pre-

dictions of chaotic systems.

What this means is that minimizing the IMED, or rather, the MSE-IMED (squared error

averaged over space and prediction times) does not necessarily provide the best qualita-

tive prediction. For instance, if the hyperparameters in Table 7.1 are not tuned properly, a

decently low IMED-MSE of predictions can often be obtained with a ’still’ prediction that

has frozen in time.

This is a major obstacle to automatic hyperparameter optimization, as the result of hy-

perparameter selection must often be judged qualitatively. Luckily, I find that different

random initializations of the reservoir, Whh, does not tend to lead to the shift between

frozen or dynamic predictions, whereas tuning of e.g. ρ (Whh) can. This implies that qual-

itatively probable predictions of ocean systems, for example, are possible, though they

must often be judged qualitatively due to their immense complexity, and the intrinsic

property of chaotic systems being unpredictable despite the determinism of the system.

The difficulties of quantitatively comparing predictions do not end there, however. There

is no universally perfect IMED-configuration, i.e. withσx y ,σt fixed, and these parameters

change the loss function itself. For instance, higher σ tends to blur out both predictions

and targets, and will often yield a lower IMED-MSE than with lower σ; not due to higher

quality after iST has been applied, but due to excessive blurring.

One option is to vary σ parameters in a grid search setting, but compare predictions

and targets after the inverse transform using the standard Euclidean MSE (over time and

space).

Alternatively, a fixed IMED can be applied as a post-processing step in order to compare

all predictions and targets in the same way across hyperparameters. As discussed, nei-

ther is a perfect, and I proceed with comparing the Euclidean MSE such that IMED is

90 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

only applied internally in the ESN to optimize the spatial coherence of predictions, and

approximately minimize the Euclidean distance in the original space (after iST).

Note that the original-space comparison of prediction and targets does not necessarily

need to be an L2 metric, which is, on the other hand, necessary when least squares is

applied internally in the ESN.

7.3 Synthetic Data: Predicting an Orb with Lissajous Curve Centre

In this section, I show SSESN prediction examples on the orb with a periodic path seen

in a subfigure of Fig. 1.2. To be specific, the periodic orb, implemented by (Heim and

Avery 2019) has its centres over time in a Lissajous curve, see e.g. the Wikipedia article

(Lissajous Curve 2021) for a brief introduction.

7.3.1 Grid Search on a Spatially Smaller Problem

In accordance with the approach described in Section 7.2, I perform a more exhaustive

grid search on a spatially smaller version of the synthetic data, and a less exhaustive grid

search on spatially larger (and more computationally intensive) problems from a subset

of the hyperparameters that worked best on the smaller problem.

The ’exhaustive’ grid search is performed on a 49× 49 spatial problem. The training set

consists of 1200 temporal samples of which the first 200 are used for construction of the

first ’reliable’ ht that is initialized from ht=0 = 0 (Ntrans = 200). Therefore Ntrain = 1000.

The ’validation set’ used to compare prediction errors is another Npred = 100 steps that

directly proceed the training set.

The hyperparameter grid is described in Table 7.2.

Note: This section does not seek to provide unbiased generalization performance esti-

mates, but to provide the reader with example output.

7.3. SYNTHETIC DATA: PREDICTING AN ORB WITH LISSAJOUS CURVE CENTRE 91

Hyperparameter
Small Problem

Hyperparameter Grid
Spectral Radius,
ρ (Whh)

ρ (Whh) ∈ {0.8,1.0, 1.5,2.0}

Input Scaling, κ

κ ∈ {1,1.5, 2}
Note that input scaling applies to input maps of
image input at any time t, after the volumes have been
scaled such that the training input volume has maximum value 1
and minimum -1.

Principal Components,
NPC

NPC ∈ {300,500, 1000}
1000 is the maximum sensible PCA-dimension as
H has minimal dimension Ntrain = 1000

Spatial and Temporal
IMED settings σt ,σx y

Temporal σt = 0, but σx y ∈ {0,1, 2.5,5}
in artificial, but consistent units when resolution is varied.
σ = 0 implies no ST-convolution.

Input Map specs;
including dimension
Nhidden

Always the following input maps, but
with different uniform scaling κ:
• Bilinear Rescaling to 1/2 size in each dimension.
• 5× 5 Convolution with random kernel
• 9× 9 Convolution with random kernel
• Image Gradient
• DCT with (20× 20) lowest frequency bins

Spatial Dimensions
(for grid search only)

49× 49

Table 7.2: Selected Grid search values for hyperparameter optimization through grid
search for the Lissajous orb prediction problem. And later, in Section 7.4, for the chaotic
Mackey-Glass orb. Lowest Euclidean MSE (over space and time) in the original, non-
IMED, space is chosen as an admittedly imperfect measure of prediction quality. IMED
is still utilized internally in the ESN, except when σ = 0. The models that obtain low-
est prediction MSE are manually evaluated to make sure that predictions are spatially
coherent, and e.g. not a ’frozen’ prediction that happened to minimize MSE, as can some-
times happen.

Grid Search Results

Running the 49 × 49 Lissajous problem, excluding creation of the artificial data, takes

approximately 9 seconds on the 16 core CPU-only configuration described in Section

7.8.2. This is an estimate without guarantee of exclusivity on the CPU usage by the script

in question.

92 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

After hyperparameter optimization on the 49×49 Lissajous orb problem, the lowest Eu-

clidean MSEs was obtained using the different configurations listed in Table 7.3. Clearly,

the in-between value of ρ ≈ 1.5 produced good results, and NPC = 500 principal com-

ponents was a good model complexity trade-off. Further, σx y = {2.5,5} produced good

results in terms of Euclidean MSE, and so did input scaling κ ∈ {1.5, 2.0}. I proceed with

these four configuration options when increasing the Lissajous problem size.

In the table, please note the hyperlinks to prediction animations with comparison to un-

seen targets, in all model instances. Further, I show a subset of prediction frames in

Figure 7.1. Crucially, the predictions show a coherent orb, which is more important than

a low-MSE score (optimally, both are true).

The Lissajous predictions are qualitatively good. However, the simple periodic Lissajous

task is actually one where the SESN without PCA ’regularization’ can outperform the

SSESN (on small problems). This is because over-fitting is not an issue for the periodic

signal, as long as the validation sequence is also entirely contained in the training set.

The SSESN predictions, however, exhibit less over-fitting in general, which is valuable

for more complex problems.

7.3. SYNTHETIC DATA: PREDICTING AN ORB WITH LISSAJOUS CURVE CENTRE 93

Euclidean Validation MSE
Over Space and 100 Predictions

(Ascending Order)

Lissajous
Hyperparameter Combination

3.60× 10−5, see GitHub1

ρ ≈ 1.5
κ= 2
NPC = 500
σx y = 5 arb. units (2.45 in pixel units)

4.21× 10−5, see GitHub2

ρ ≈ 1.5
κ= 1.5
NPC = 500
σx y = 5 arb. units (2.45 in pixel units)

5.15× 10−5, see GitHub3

ρ ≈ 1.5
κ= 1.5
NPC = 500
σx y = 2.5 arb. units (1.225 in pixel units)

7.83× 10−5, see GitHub4

ρ ≈ 1.5
κ= 1.0
NPC = 500
σx y = 2.5 arb. units (1.225 in pixel units)

1.11× 10−4, see GitHub5

ρ ≈ 1.5
κ= 1.5
NPC = 300
σx y = 0 arb. units (0 in pixel units)

Table 7.3: A subset of ’best’ performing configurations of the Lissajous Hyperparameter
Grid Search in terms of Euclidean MSE (for comparison across internally used IMED
settings). The Lissajous prediction problem is not a challenge, and many configuration
lead to good result (that are all spatially coherent when inspected).

1Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/lissajous_

blob_dim49/esn011/comparison.mp4?raw=True
2Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/lissajous_

blob_dim49/esn010/comparison.mp4?raw=True
3Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/lissajous_

blob_dim49/esn009/comparison.mp4?raw=True
4Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/lissajous_

blob_dim49/esn008/comparison.mp4?raw=True
5Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/lissajous_

blob_dim49/esn007/comparison.mp4?raw=True

https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn011/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn010/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn009/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn008/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn007/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn011/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn011/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn010/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn010/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn009/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn009/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn008/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn008/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn007/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn007/comparison.mp4?raw=True

94 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

0

10

20

30

40

t = 8 t = 16 t = 24

0

10

20

30

40

t = 32 t = 40 t = 48

0

10

20

30

40

t = 56 t = 64 t = 72

0

10

20

30

40

t = 80 t = 88 t = 96

0.0 0.2 0.4 0.6 0.8 1.0

[Arbitrary Units]

Figure 7.1: A subset of prediction frames of the 49 × 49 Lissajous orb problem, with
the lowest MSE-model of Table 7.3. Crucially, the orb remains coherent throughout the
predictions. Full animation with comparison to target sequence is available at GitHub.

https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim49/esn011/comparison.mp4?raw=True

7.3. SYNTHETIC DATA: PREDICTING AN ORB WITH LISSAJOUS CURVE CENTRE 95

0

10

20

30

40

t = 8 t = 48

0

10

20

30

40

t = 88 t = 96

0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 0.00200

[Arbitrary Units]2

Figure 7.2: Spatial Mean Squared Errors from an interesting subset of frames from Figure
7.1. Note that their colour scales are not identical. Comparison of predictions and unseen
target frames.

7.3.2 High-Dimensional Application: 500x500 Pixels

With the four optimal configurations for the 49×49 Lissajous problem, I proceed to high-

resolution version of the Lissajous orb prediction problem.

In the interest of brevity, I present only a (500× 500) pixel version, run on the same

parameters as that of the smaller problem version. While the input itself has Ninput =

250, 000 individual pixels, which would make up quite a large hidden space, and much

higher than in traditional ESN applications, the input maps used, described in Table 7.2

imply that the hidden dimension of the problems are slightly more than four times larger

than the input dimension. This is quite excessive for such a simple prediction problem.

In fact, successful higher-dimensional predictions can even be achieved on subsampled

(rescaled) versions of the raw input by calling the Bilinear Rescaling input map only.

96 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

Running this model, which has more than 100x the number of pixels as the smaller-

version problem, takes approximately 471.7s, or about 8 minutes.

While this could be much faster with reasonable prediction quality if a smaller hidden

state were used, I try only to be consistent in this section, and to provide the reader with

output examples.

The best runs of the 500× 500 resolution Lissajous sequence had the configuration:

ρ ≈ 1.5, κ= 1.5, NPC = 500, σx y = 2.5 arb. units (12.5 in pixel units).

These models produced MSEs (over space and time) of order 10−5 with the best run

achieving 4.25× 10−5. The MSE may also be determined as a time series by averaging

spatial errors only. The result is visible in Figure 7.3, which however displays what I

refer to as the IMED-MSE, i.e. the MSE over time with the IMED metric of the particular

model.

0 20 40 60 80 100
Prediction Time Step

0.00000

0.00005

0.00010

0.00015

IM
ED

-M
SE

Figure 7.3: In the standardizing transform space, the MSE is determined, yielding an
IMED metric MSE, or ’IMED-MSE’. While errors remain low, we see an increase at the
end of the arbitrarily chosen length of 100 prediction frames. Qualitatively, the error
towards the end is not easily visible in the prediction frames, see Figure 7.4. That is
one issue of using the Euclidean MSE: A small displacement of the orb can significantly
increase the MSE, although the orb is coherent and qualitatively satisfactory.

Like for the smaller problem size, I also show prediction frames of the 500×500 problem

in Figure 7.4. A full animation comparison is available at GitHub6.
6https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim500/esn002/

comparison.mp4?raw=True

https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim500/esn002/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim500/esn002/comparison.mp4?raw=True

7.3. SYNTHETIC DATA: PREDICTING AN ORB WITH LISSAJOUS CURVE CENTRE 97

0

100

200

300

400

t = 8 t = 16 t = 24

0

100

200

300

400

t = 32 t = 40 t = 48

0

100

200

300

400

t = 56 t = 64 t = 72

0

100

200

300

400

t = 80 t = 88 t = 96

0.0 0.2 0.4 0.6 0.8 1.0

[Arbitrary Units]

Figure 7.4: Prediction time frames of the 500×500 Lissajous orb problem. Full animation
with comparison to target sequence is available at GitHub.

https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim500/esn002/comparison.mp4?raw=True

98 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

7.3.3 A 1500× 1500 Lissajous For the Front Page

As I have stated in the previous section without evidence, it is easy to go to higher spa-

tial dimensions by reducing the hidden state dimension, at least for the simple Lissajous

problem. In this section, I briefly will show that a 1500× 1500 prediction is achievable

in a shorter time than the 500 × 500 problem of the previous section. This is possible

when utilize a smaller hidden state, with simpler input mappings. 1500× 1500 is about

92% of 1080p resolution, and with nine times
�

32
�

as many pixels as the 5002 problem.

’ Without further ado, I choose from experience and intuition the hyperparameters

ρ = 1.5, NPC = 1000, σ = 0, κ= 1.5.

I use the bilinear rescaling input map alone, and downscale the 1500× 1500 images to

100× 100 for a hidden state of Nhidden = 105.

The runtime for this setup, excluding data generation, is 214.2 seconds, and the MSE is

1.33 × 10−8 (do note that more zero-valued background pixels do influence the average).

The MSE plot (no IMED, as σ = 0) is displayed in Figure 7.5, and a target-prediction

comparison is once again available at GitHub.

0 20 40 60 80 100
Prediction Time Step

0.0

0.5

1.0

1.5

M
S
E

1e 7

Figure 7.5: MSE over time for the 1500× 1500 Lissajous orb problem, produced with a
hidden state dimension of only Nhidden = 105. Full animation with comparison to target
sequence is available at GitHub.

For brevity, I present in the report only the last prediction frame in with 1500 × 1500

pixels. Behold the high-resolution glory of the Lissajous orb in Figure 7.6.

https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim1500/esn001/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/lissajous_blob_dim1500/esn001/comparison.mp4?raw=True

7.4. SYNTHETIC DATA: PREDICTING AN ORB WITH MACKEY-GLASS CENTRE 99

0 500 1000
0

250

500

750

1000

1250

Figure 7.6: The 100th prediction frame of the 1500× 1500 Lissajous orb prediction.
And the front page of this thesis!

7.4 Synthetic Data: Predicting an Orb with Mackey-Glass Centre

In this section, I keep studying predictions of the synthetic orbs, but for a more complex

prediction problem that is also visualized in Figure 1.2. The problem, here, is an orb

with a centre determined by chaotic Mackey-Glass equations with parameter τ= 17 that

governs the volatility of the system, see e.g. (Mackey-Glass Equations 2021) for a brief

introduction.

Testing the SSESN on this problems brings us closer to prediction on chaotic ocean cur-

rents, and helped the analysis of what the implementation that I have made does. Before

the application of the PCA dimension reduction, I typically experienced over-fitting, i.e.

a machine precision level training, but with the orb quickly falling apart with no spatial

coherence. Especially for a non-periodic orbit like the sequence used in this section, I once

again will stress that MSE is not all. For chaotic systems, it is much more important to

have qualitatively probable predictions rather than a low-MSE predictions that have less

spatial coherence or freeze over time. This is, of course, because a small change in initial

100 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

conditions can propagate to produce a much different outcome later on in chaotic systems.

I proceed with the approach of the Lissajous orb experiment, with the same grid search

on the smaller 49×49 pixel problem. That is, the search space is described in Table 7.2.

The results of the optimization on the grid search on the smaller problem is shown in

Table 7.4, with a subset of different best-performing models in terms of MSE over space

and time. It is quite clear, that ρ ≈ 1.5 is the better parameter, and that NPC = 1000 is a

good choice, too. For σx y I will try both {2.5, 5}, and κ ∈ {1.5, 2.}. It is interested, but

not unexpected, that the Mackey-Glass orb problem performs better with more trained

parameters per pixel (NPC = 1000) than the simple Lissajous problem did (NPC = 500).

However, the optimum may be somewhere in-between for stronger regularization to pre-

vent over-fitting – a major challenge for a non-periodic system where the validation set

is not approximately equal to a sequence in the training set.

Since the Mackey-Glass orb is more chaotic, it is now sensible to assume that the ap-

proximately one order of magnitude larger MSE value, compared to Lissajous, is caused

mainly by the prediction of the position of the chaotic orb to no longer be perfect. I visual-

ize, therefore, the frame-to-frame differences in Figure 7.8 of the predictions and unseen

targets.

A video comparison of prediction and target is available at GitHub7.

Lastly, I also show the IMED-MSE over time of the minimal MSE model in Figure 7.7.

7https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn017/
comparison.mp4?raw=true

https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn017/comparison.mp4?raw=true
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn017/comparison.mp4?raw=true

7.4. SYNTHETIC DATA: PREDICTING AN ORB WITH MACKEY-GLASS CENTRE 101

0 20 40 60 80 100
Prediction Time Step

0.000

0.001

0.002

0.003

0.004

IM
ED

-M
SE

Figure 7.7: IMED-MSE over time for the best-case Mackey-Glass orb in a 49× 49 grid.
While the orb qualitatively remains on path of the unseen target, the IMED-MSE seems to
trend towards increasing values over time. This is generally expected as the predictions
are free-running so that early missteps propagate to later frames as well.

102 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

Euclidean Validation MSE
Over Space and 100 Predictions

(Ascending Order)

Mackey-Glass
Hyperparameter Combination

4.20× 10−4, see GitHub8

ρ ≈ 1.5
κ= 2
NPC = 1000
σx y = 2.5 arb. units (1.225 in pixel units)

4.41× 10−4, see GitHub9

ρ ≈ 1.5
κ= 2
NPC = 1000
σx y = 5 arb. units (2.45 in pixel units)

4.80× 10−4, see GitHub10

ρ ≈ 1.5
κ= 1.5
NPC = 1000
σx y = 5 arb. units (2.45 in pixel units)

8.33× 10−4, see GitHub11

ρ ≈ 1.5
κ= 2
NPC = 500
σx y = 1.0 arb. units (0.49 in pixel units)

9.40× 10−4, see GitHub12

ρ ≈ 1.5
κ= 2
NPC = 1000
σx y = 0 arb. units (0 in pixel units)

Table 7.4: A subset of ’best’ performing configurations of the Mackey-Glass Hyperparam-
eter Grid Search in terms of Euclidean MSE (for comparison across internally used IMED
settings). The complexity of the Mackey-Glass orb problem is significantly greater than
the Lissajous orb problem, since it is more erratic, and not periodic.

8Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_

dim49/esn017/comparison.mp4?raw=True
9Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_

dim49/esn016/comparison.mp4?raw=True
10Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_

dim49/esn015/comparison.mp4?raw=True
11Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_

dim49/esn014/comparison.mp4?raw=True
12Validation Set Video: https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_

dim49/esn013/comparison.mp4?raw=True

https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn017/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn016/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn015/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn014/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn013/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn017/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn017/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn016/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn016/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn015/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn015/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn014/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn014/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn013/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/chaos_blob_dim49/esn013/comparison.mp4?raw=True

7.4. SYNTHETIC DATA: PREDICTING AN ORB WITH MACKEY-GLASS CENTRE 103

Figure 7.8: Frame-to-frame comparisons for the optimized 49 × 49 Mackey-Glass Orb.
Due to chaotic behaviour, the alignment of the predictions and targets orbs are no longer
as good as for the Lissajous orb.

104 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

7.4.1 An Example of a Poor Choice of Hyperparameters

During the hyperparameter search many poor predictions were made! This is important

to stress, and it underscores the importance of understanding, or at least tuning, the

behaviour of the ESN dynamical system, and applying regularization through the number

of trained weights through NPC. The showcasing of ’best-case’ results should not leave

the reader with the impression that nothing can go wrong.

The spectral radius, especially, is an easy way to render the approximation performance

of an ESN instance useless. This is true when it is set too high or too low.

To display this, I have selected one of the first hyperparameter combinations on the search

grid, with settings ρ ≈ 0.8, NPC = 300,κ= 1,σx y = 0.

10 20 30 40

10

20

30

40

Target at t =12

10 20 30 40

Prediction at t =12

−0.25

0.00

0.25

0.50

0.75

Figure 7.9: The purpose of this section is to showcase just how wrong predictions can
be, when the selected subset of hyperparameters are off. In this particular case,
ρ ≈ 0.8, NPC = 300,κ = 1,σx y = 0. It is widespread in ESN research to consistently use
ρ ≤ 1 because this is thought to satisfy the Echo State Property more often, see Section
3.4.2. But not trying out higher spectral radii can also significantly impair learning. In
fact, there is no general ρ < 1 ESP requirement, but only for the trivial case of zero-
inputs, which rids the ESN system of its designation as input-driven.

I have also made available an animation comparing the predictions and targets at GitHub13

along with more specific hyperparameters and settings, data and an illustration of MSE

over time.

7.4.2 500× 500 Mackey-Glass Orb

I have found, generally, that predicting the Mackey-Glass sequence requires a higher

number of trained parameters – set indirectly using NPC – than the Lissajous sequence

13https://github.com/jfelding/esn/tree/thesis_assets/chaos_blob_dim49/esn002

https://github.com/jfelding/esn/tree/thesis_assets/chaos_blob_dim49/esn002

7.4. SYNTHETIC DATA: PREDICTING AN ORB WITH MACKEY-GLASS CENTRE 105

did. Therefore, proceed with a narrower grid search on the higher-resolution version of

the Mackey-Glass sequence, with ρ ≈ 1.5, NPC = 1000,σx y ∈ {2.5, 5},κ ∈ {1.5, 2}.

All 500 × 500 Mackey-Glass models initialized with these parameters had qualitatively

good results.

Mean-Squared Error

2

Figure 7.10: The 500 × 500 chaotic Mackey-Glass orb remains structurally coherent
throughout predictions. In the first frame, at prediction time t = 32 the prediction is
all but perfect, as the spatial MSE is small. Later, at time t = 96 two artefacts are seen.
In fact, one has positive (absolute) error, and one has negative error. This implies, that
although the predicted orb is coherent, its position is shifted in comparison to the unseen
targets. For a chaotic system where small deviations can have large effects later on, this is
all that one can hope for. Unfortunately the loss measure is still imperfect for recognizing
that fact. This is especially relevant for the more complex ocean simulations.

106 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

7.5 Shallow Water Simulation

A classic example of a physical system modelled by simple partial differential equations

is the Shallow Water Model (Shallow Water Equations 2021), and can be considered an

extremely simplified ocean model.

In this section I (again) demonstrate the capabilities of the SSESN as a spatio-temporal

integrator. I provide the SSESN with a training set that contains solutions to a 2D shal-

low water model over time. I here demonstrate the ability of the SSESN to make accurate

predictions of the future sequence for a significant number of time steps.

This classic, simple model starts with a droplet dropping in the midst of a walled ’aquar-

ium’. This creates waves that reflect back and forth in the aquarium due to gravitational

forces. An animation of the training set, animation of the predictions, hyperparameter

settings, and simulation code by James Avery can be found at GitHub14. Additionally, I

show a frame-by-frame comparison of unseen targets and predictions in Figure 7.13.

We see that the SSESN is quite successful at predicting the evolution of the shallow water

model. Eventually, the dynamics blur out, but even then the dynamics seem to capture

the shapes of the targets.

To make accurate predictions, it was crucial to use a large enough σx y such that the SS-

ESN did not base its predictions on overly noisy covariates. σx y = 3 (pixel units) was

found to be a good level in-between overly noisy, and overly blurry. κ had a large influ-

ence and was successful at low values - in this case at κ = 1× 10−3 and ρ ≈ 1 worked

best, avoiding amplification issues present at ρ > 1 for longer-term stability of predic-

tions. I also used NPC = 1000 and a low temporal σt = 0.2 that did not seem to have

significant influence on the predictions.

To me, it is impressive that spatio-temporal dynamics can be approximated without know-

ing the equations that govern the system. While the shallow water model is simple, this

demonstrates the utility in computational physics where unknown equations may govern

measurements. The SSESN allows predicting the future of a spatio-temporal system in

spite of that fact, although it does not directly lead to interpretable solutions. That is, I

14Shallow Water Model Materials: https://github.com/jfelding/esn/tree/thesis_assets/
shallow_water

https://github.com/jfelding/esn/tree/thesis_assets/shallow_water
https://github.com/jfelding/esn/tree/thesis_assets/shallow_water
https://github.com/jfelding/esn/tree/thesis_assets/shallow_water

7.5. SHALLOW WATER SIMULATION 107

could not tell you the equations that govern the shallow water model by inspecting the

SSESN (this is left as an exercise to the reader!).

7.5.1 Input Scaling Dramatically Impacts ESN Expressiveness

In this case, κ dramatically impacted the approximation capabilities, with values of order

100 leading to poor prediction performance. While this is certainly a surprise to me, it is

not hard to imagine why that might sometimes be the case:

When the training data (in this thesis always scaled from (−1;1)) is used to drive the

system using Eq. 3.1 the non-linear activation function tanh(·) can saturate quickly.

Saturation refers to the case where many or all outputs of the element-wise activation

are close to the endpoints of the range of the function. For tanh(·) the range is (−1;1).

At the end points of the inputs before input mapping, we see that |tanh(±1)| ≈ 0.762,

and at ±π the activation is approximately saturated |tanh (±π)| ≈ 0.9963. Above these

values in magnitude every output becomes similar to ±1, and information about the input

is lost. Please refer to Fig. 7.11 for an illustration of the saturation.

Beyond saturation κ can also be thought of as modifying (along with ρ) the non-linearity

of the ESN dynamical system, and therefore the transformation of the regressors. In

Figure 7.11 one can imagine that close to the origin, a straight line can approximate the

activation function well, while at larger magnitudes, the input bends more non-linearly

(the straight line does not approximate this part well).

108 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

−2π −π 0 π 2π

x

−1.0

−0.5

0.0

0.5

1.0

ta
n

h
(x

)

0.0

0.2

0.4

0.6

0.8

1.0

ta
n

h
′ (
x

)
=

1
/

co
sh

2
(x

)

Figure 7.11: The Activation function tanh(x) and its derivative, to illustrate the change
as a function of the input.

Prior to my observation that small values of κ may sometimes benefit predictions, I did

inspect the outputs of each input map, and I implemented further normalization of input

maps to make the output of input mapping more reasonable (lower) in magnitude given

the standard (−1; 1) scaling of training data. I also implemented a simple warning if

However, not all input maps guarantee a reasonable scaling, and some of them are based

on random distributions, complicating matters.

Admittedly, the tuning of the SSESN (and ESNs in general) should be companied by plots

of the hidden state to make sure that the states are not overly saturated (if only a few out

variables are saturated — out of thousands according to Nhidden it is not an issue).

7.5. SHALLOW WATER SIMULATION 109

0 10000 20000 30000 40000 50000

Hidden State Element Index

−1.0

−0.5

0.0

0.5

1.0

H
id

d
en

S
ta

te
E

le
m

en
t

High MSE Model

Low MSE Model

Figure 7.12: The last training set hidden state of two SSESN models that approximate
the shallow water sequence. The model that has poor performance, and high MSE, is
more saturated that the one that performs better, in this case. Saturation implies the loss
of information, as the original input becomes indistinguishable, and uninteresting when
applied as regressors. The four slight ’jumps’ that are visible in the figure are different
input maps that are applied

This particular dataset could be approximated so well that automatic hyperparameter op-

timized functioned properly, with MSEs low enough to correlate well with a qualitative

evaluation, as one can see for yourself in Figure 7.13. The starting point of the predic-

tions, t0, is at 573.5s or at time step 3700.

110 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

Targets
t = t0 + 1 steps

Predictions
t = t0 + 1 steps

t = t0 + 100 steps t = t0 + 100 steps

t = t0 + 200 steps t = t0 + 200 steps

t = t0 + 600 steps t = t0 + 600 steps

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Figure 7.13: Sea surface height [m] in a 125×100 shallow water model. Each time step
integrates the system forward by 0.155s. Hyperparameters: ρ ≈ 1, σx y = 3, σt = 0.2,
NPC = 1000, κ= 0.001.

7.6. FULL-RESOLUTION OCEAN PREDICTIONS ON THE KUROSHIO 111

7.6 Full-Resolution Ocean Predictions on the Kuroshio

As I have alluded to in Section 7.2, I do not generally obtain better Ocean SSH predic-

tions by applying automatic hyperparameter optimization. I will emphasize once again,

that in a chaotic system, it is my conviction that predictions that qualitatively capture the

dynamics are preferable to predictions that minimize simple error measures but fail

to capture the dynamics by ’opting’ for on-average-okay predictions that do not develop

in time like the ocean. For truly chaotic systems, it is an impossibility to perfectly pre-

dict its future as even numerical precision limits the representation of initial conditions.

Therefore that should not be one’s aim. Predicting a likely scenario in the near-future,

or getting large-scale features correct over longer time scales is an achievement in itself.

By a weather forecasting analogy, a more bold, if somewhat incorrect, prediction is also

often preferable: That it ’will rain tomorrow in cities A, B and C’ is more useful than a

prediction of: ’across the country, it will not, on average, rain tomorrow’. Even if the first

prediction failed to predict that precipitation actually did occur in, say, cities B, C , D, and

not A.

To obtain dynamically plausible predictions, I turn to the rather tedious task of manually

tuning the hyperparameters to get qualitatively good results – an approach that is admit-

tedly more art than science. I suspect that geophysicists of Team Ocean of the Niels Bohr

Institute would be able to provide better evaluations of the models than I could.

I do so on the Kuroshio and Kuroshio extension CESM simulation data discussed in Sec-

tion 1.3. After a day’s worth of manual inspection of hyperparameter configurations and

prediction animations, I find that:

• The predictions of the current is very sensitive to spectral radius ρ, input scaling

κ, number of trained parameters (set using NPC). σx y also changes the dynamics

of the predictions. The effects of the hyperparameters are of course intertwined.

• ρ ≈ 1 produces more interesting dynamics than even slightly above or below that

number. I use ρ ≈ 0.98 to stay below ρ = 1 with high probability.

• A conservative input scaling of κ= 0.5 produces more interesting dynamics

112 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

• σx y = 0.1◦ produced more interesting results than both σx y = 0 or values higher

than 0.1◦.

• Above NPC ∼ 350 the SSESN seems to be over-fitting, approximating the training

set well, but generalizing somewhat poorly.

• Utilizing the bilinear resampling input map only gives good results with original

resolution (no resizing). Adding the gradient and (20,20) DCT maps also provides

good results, but it is difficult to manually evaluate whether it is better with cer-

tainty.

• With other parameters ’slow’ dynamics are obtained, that often provide lower MSE:

While they do not exhibit very likely dynamics, they may be useful to anomaly

detection as they give on average better approximation of the stream, and since

anomaly detection should most likely be based on the comparison of CESM simu-

lations and SSESN predictions in the short-term rather than prediction months or

years ahead of the training set.

To give the reader a sense of the differences that emerge from hyperparameter tuning, I

show on the next pages several figures, each with a different configuration. I show both

short-term and long-term predictions, the latter of which of course cannot generally be

accurate. The figures all show the same image sequence, but with different predictions,

and all plotted on the same color scale for the sake of comparison.

A First Try

First, in Figure 7.17 I have chosen hyperparameters naively from the intuition gained

from the Mackey-Glass orb hyperparameter optimization, and I choose a training set

with the same number of observations to better compare the two (I use the same dataset

onwards). The chosen parameters are: ρ ≈ 2, NPC = 800, κ= 1.5, σx y = 0.5◦ These pa-

rameters provide very uninteresting predictions, qualitatively. From the onset, predictions

are blurred out, with very little change from frame-to-frame, although it is not completely

frozen.

7.6. FULL-RESOLUTION OCEAN PREDICTIONS ON THE KUROSHIO 113

This model had runtime 267.2s and MSE over 450 days and all space of 145cm2. An

animation is available atGitHub15

After Many Tries

Next, I show the best predictions, qualitatively, that I find to have more interesting dy-

namics, and continue to do so for the entire prediction period, set somewhat arbitrarily

to 450 days in this instance. These are seen in Figure 7.18 and are the result of man-

ually evaluating at 130 hyperparameter configurations in the long and short term. The

parameters are drastically changed: ρ ≈ 0.98, NPC = 350, κ = 0.5, σx y = 0.1◦. At no

point does this system cease to develop dynamically over time.

This model had runtime 196.8s and MSE over 450 days and all space of 163cm2. An

animation is available at GitHub16

Hyperparameter Sensitivity

Finally, to illustrate the sensitivity to the parameters, I show in Figure 7.19 prediction for

which I have changed the parameters to NPC = 500 and σx y = 0.3◦. At first, the system is

remarkably similar to the former, but the dynamics slow down over time to almost freeze.

Compare the last frames to the former model. This model had runtime 236.9s and MSE

over 450 days and all space of 126cm2. An animation is available at GitHub17

Spatial Mean Squared Errors

For the hand-tuned model, i.e. that seen in Figure 7.18, it is interesting to see which

areas the SSESN gets right and wrong, and how quickly large errors occur. In Figure

7.16 we see that errors are generally very small in the first predictions, and as expected

deviate more and more over time. However, not all parts of the area around Japan is

error-prone. Instead, prediction errors occur at the SSH front of the Kuroshio and its

extension that is most dynamic. Due to the dynamics of both the target and prediction,

15Animation: https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn131_

verybad/comparison.mp4‘raw=True
16Animation: https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn130_

tuned/comparison.mp4?raw=True
17Animation: https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn132_

goodshortterm/comparison.mp4?raw=True

https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn131_verybad/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn130_tuned/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn132_goodshortterm/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn131_verybad/comparison.mp4`raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn131_verybad/comparison.mp4`raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn130_tuned/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn130_tuned/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn132_goodshortterm/comparison.mp4?raw=True
https://github.com/jfelding/esn/blob/thesis_assets/kuro_fullres/esn132_goodshortterm/comparison.mp4?raw=True

114 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

the errors also oscillate after the initial error drift. Errors do not necessarily increase in

magnitude after that point, but oscillate and eventually reach some kind of equilibrium

error.

In addition to the qualitative evaluation of all SSESN instances, it is always relevant to

evaluate whether the hidden states are overly saturated, as also visualized in Section

7.5.1. Like in that section, I display in Figure 7.15 the last hidden state based on train-

ing observations for the ’best’ and ’worst’ Kuroshio models from Figures 7.18 and 7.17,

respectively. We see that saturation indeed does play a role for the model that poorly

approximates the Kuroshio dynamics, while the better model does not overly saturate the

tanh(·) activation.

0 20 40 60 80 100 120 140
Prediction Time Step

0.000

0.005

0.010

0.015

IM
ED

-M
SE

Figure 7.14: IMED-MSE over time for the hand-tuned model to predict the Kuroshio
current, averaged over spatial dimensions. An initial error drift is always seen. Time
resolution: 3 days. Parameters of the model: ρ ≈ 0.98, NPC = 350, κ= 0.5, σx y = 0.1◦

0 50000 100000 150000 200000 250000 300000 350000

Hidden State Element Index

−1.0

−0.5

0.0

0.5

1.0

H
id

d
en

S
ta

te
E

le
m

en
t Bad Model

Good Model

Figure 7.15: The ’bad Kuroshio model’ in Figure 7.17 has saturated hidden states. Here,
the last hidden state produced using training set data is shown.

7.6. FULL-RESOLUTION OCEAN PREDICTIONS ON THE KUROSHIO 115

0

50

100

150

200

250

t = t0 + 9 days t = t0 + 27 days t = t0 + 45 days

0

50

100

150

200

250

t = t0 + 63 days t = t0 + 81 days t = t0 + 99 days

0

50

100

150

200

250

t = t0 + 117 days t = t0 + 135 days t = t0 + 153 days

0

50

100

150

200

250

t = t0 + 171 days t = t0 + 189 days t = t0 + 207 days

0 2000 4000 6000 8000 10000 12000 14000 16000

SSH2 [cm2]

Figure 7.16: Prediction/Target MSEs for the Model seen in Fig. 7.18 with parameters
ρ ≈ 0.98, NPC = 350, κ= 0.5, σx y = 0.1◦.

116 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

Figure 7.17: An initial configuration gives uninteresting dynamics:
ρ ≈ 2, NPC = 800, κ= 1.5, σx y = 0.5◦

7.6. FULL-RESOLUTION OCEAN PREDICTIONS ON THE KUROSHIO 117

Figure 7.18: After manual tuning from 130 model outcomes, more interesting dynamics
develop: ρ ≈ 0.98, NPC = 350, κ= 0.5, σx y = 0.1◦

118 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

Figure 7.19: Changing a few parameters from Fig. 7.18 slightly gives a similar outcome
at first, but dynamics freeze over time in this case: ρ ≈ 0.98, NPC = 500, κ = 0.5,
σxy = 0.3◦.

7.7. THE AGULHAS CURRENT 119

Targets
t = t0 + 18 days

Predictions
t = t0 + 18 days

t = t0 + 33 days t = t0 + 33 days

t = t0 + 63 days t = t0 + 63 days

t = t0 + 93 days t = t0 + 93 days

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

Rescaled SSH

Figure 7.20: Predictions of the Agulhas Current with ρ ≈ 1, NPC = 800, σx y = 0.2◦,
σt = 0.6days.

7.7 The Agulhas Current

A quite different ocean system from the Kuroshio is the Agulhas at the coast of South

Africa. It is the strongest current in the world, which leads to other dynamics than the

Kuroshio. Therefore, it is interesting to see if the SSESN is capable of learning the dy-

120 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

namics in a qualitatively plausible manner.

I show here the first attempt at forecasting the Agulhas with parametersρ ≈ 1, NPC = 800,

σx y = 0.2◦, and σt = 0.6days. At that point κ was set to 1, but it had a slightly different

interpretation prior to some additional work on normalization of input maps.

The 500× 300 frames at different time points (the series are 3-day means) are seen in

Figure 7.20.

7.8 Time Complexity Benchmarking (16 Core CPU)

This section will explore the runtime, and scaling, of the Scalable Spatial Echo State Net-

work versus the Spatial Echo State Network of (Heim and Avery 2019). The section does

not directly describe the memory complexity of the ESNs, which is also a major selling-

point for the SSESN. This is mainly due to the difficulties in profiling jax programs that

the SESN applied.

However, for both the SESN and SSESN I run on a machine used exclusively by the script

and run until memory has lapsed, which can be seen as an indirect gauge of memory con-

sumption.

Before getting to the benchmark results, I will describe the setup, and considerations

behind it.

7.8.1 Computational Considerations

The Prospect of GPU Acceleration

Today, it is a common assumption that deep learning is carried out on GPU. This is espe-

cially true for the heavy gradient-based optimization methods.

Recurrent neural networks are not embarrassingly parallel, however, as the evolution of

the hidden state ht is an inherently sequential one. This is in contrast to e.g. pattern

recognition learning on images using convolutional neural networks where the process-

ing (convolution, mainly) of the images in a (mini-)batch can in principle be completely

parallelized, only hampered by a sequential gradient update after, say, each completion

7.8. TIME COMPLEXITY BENCHMARKING (16 CORE CPU) 121

of an epoch, the entirety of the training set.

The ESN and SSESN operations that can be reasonably carried out on a GPU are:

1. Matrix-vector products of the dynamical system

2. Least squares optimization of the readout matrix

3. Principal component analysis for dimension reduction of hidden states

First (1.), the GPU may be used for evaluating matrix products in parallel. This is true

for RNNs, too, but they typically apply a lower-dimensional hidden state where reservoir

parameters are, however, optimized. The sequential data transfer of the hidden state

from SSD to dedicated graphics memory will lower the achievable speed-up, however.

(2.) With a linear ESN readout, least squares optimization is also distributable, as it con-

sists of vector-vector and matrix-vector products in its most basic form. For the SSESN,

dimension reduction is necessary for the matrix of harvested training states, H → Hr ,

when the hidden state is very high-dimensional, or with a large number of training ob-

servations. This is due to the relatively limited dedicated GPU memory.

(3.) PCA can be thought of as mainly requiring diagonalization of the Gram Matrix —

in the ESN case H>H — but it is more efficient to an SVD algorithm with another ap-

proach (though still iterative), typically involving a QR decomposition. It is possible to

parallelize PCA algorithms, and python implementations include:

• h2o4gpu.solvers.pca.PCAH2O (H2O.ai 2021), using a GPU-accelerated truncated

singular value decomposition,

• skcuda.linalg.PCA (scikit-cuda 2021) using an iterative Gram-Schmidt orthogo-

nalization algorithm, ’GS-PCA’, introduced by (Andrecut 2009).

It is my, admittedly superficial, understanding that both implementations currently re-

quire the data matrix H to be transferred to the dedicated GPU memory before compu-

tations begin, which can be prohibitive.

Note that the aim of PCA for dimension reduction is an (Nhidden × Nr) matrix to acquire

the map H→ Hr , where Nr is the number of dimensions to keep, limited from above by

the minimal dimension of H.

The memory consumption of the PCA transform matrix may also be prohibitive if partial

122 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

results are not iteratively transferred from GPU to main memory.

For future reference, perhaps to a new master student, I will also recommend the use of

the library cupy/cupyx for drop-in replacement functions of NumPy and SciPy. The (old)

SESN is based on JAX, whose current state have methods that are not always optimized

for multi-core CPU usage out of the box. JAX allows implementations with just in time

(JIT) compilation, but such implementations are not always feasible with the current

state of JAX (beyond working with primitives).

Memory, and Why CPUs Are Generally Preferable

The current state of the SSESN implementation (see my GitHub) is built for CPU usage.

Beyond the prospect of limited speed-up on GPU the main reason is that reservoir com-

puting is memory intensive. Increased memory consumption over RNNs is the price ESNs

pay for not optimizing the elements of the hidden-to-hidden matrix Whh (ESN reservoir).

To increase performance, and memory capabilities, ESNs instead employ a larger hidden

dimension, and of course we select the spectral radius of the reservoir to induce stability.

However, the discussion of applying accelerators is not extremely necessary for the SS-

ESN, as we shall see. This is because the ESN optimization strategy is a single least

squares optimization step, and is much faster than comparable gradient-based methods

for optimizing RNNs, even if RNNs have much lower hidden dimensionality.

The main consideration for the SSESN is memory. Generally, it is advisable to increase

the hidden dimension when the dimension of (spatial) input is increased, which comes

at a cost. This allows the dynamical system to increase its memory of previous states. I

again encourage the reader imagine ESNs as two completely separate parts:

(i) the dynamical system, and (ii) the readout (prediction generator).

For a number of reasons, as explained in Chapter 5, I introduce PCA in the readout part

only, which allows the dynamical system to take advantage of high-dimensional hid-

den states, while ensuring stability and extremely fast training of the readout layer. It

does, however, introduce a relatively large PCA transformation matrix with dimensions

(Nhidden × Nr) where Nr is the number of dimension to keep, and that matrix must be kept

in memory throughout the optimization and prediction setting.

7.8. TIME COMPLEXITY BENCHMARKING (16 CORE CPU) 123

The SSESN has many memory optimizations over the ESN:

• The frequency space implementation of the IMED does not require storing an
�

NxNy × NxNy

�

matrix, where Nx, Ny are dimensions of the spatial inputs (images).

• No unused hidden states are stored unnecessarily in the transient or prediction

state of the ESN.

• We allow representing data structures with lower precision than float64 using a

single dtype parameter, while this is not recommended due to numerical instability

• PCA makes the linear output matrix Who much smaller, (Ntrain × Nr) instead of

(Ntrain × Nhidden) (later in this section I apply Nhidden ∼ 4× 106, so the issue is real),

but another (Nhidden × Nr) where Nr PCA transformation matrix is required, so the

optimization is mostly one of time complexity wrt. optimization.

Either way, for high-resolution spatial inputs, a lot of memory can be consumed. Espe-

cially if the selected input maps (thoroughly discussed in Heim and Avery 2019) produce

a hidden dimension that is a multiple of the high-dimensional (flattened) input. I find,

however, that the SSESN with PCA dimension reduction is less sensitive to the number

of spatial input maps: PCA finds another correlation than the differential operator inter-

pretation of Who in the SESN.

To allow large memory consumption without excessive data transfers from main memory

and to GPU, the ESN is primarily designed for CPU use, and I proceed with a CPU-only

benchmark.

7.8.2 Hardware

The main specifications of the machine used to benchmark are the following.

CPU AMD Ryzen Threadripper 1950X (16 cores, 3.4 GHz)

GPU Nvidia GeForce RTX 2080Ti, 11GB GDDR6
(Not used for computations in this benchmark)

Memory 128GB DDR4 2933MHz (quad channel)

Storage 2x Samsung 970 EVO Plus NVMe M.2 2TB SSD (on Raid 0)

124 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

For the SSESN, the memory capacity is especially important, as it effectively limits the

problem size that can be computed.

The machine is running Ubuntu 20.04.2 LTS (GNU/Linux 5.8.0-59-generic x86_64)

and uses OpenBLAS as NumPy back-end. On the AMD CPU there are minor speed-ups to

cash in on by replacing OpenBLAS with the AMD BLIS18 BLAS back-end as well as the

libflame19 library, which is not utilized for simplicity of this benchmark.

According to benchmarks on the hardware by PhD student Carl Johnsen about a 5%

speed-up is realistic with sparse (CSR) reservoir-dense vector products that I have imple-

mented in the SSESN, when dimensions are 1× 106.

7.8.3 Setup, Hyperparameters and Problem Size

The scripts that compute the benchmark of SESN/SSESN are available at GitHub20 for

inspection.

Input Series

As spatio-temporal inputs, the orb-like synthetic data is used, as seen in Sec. 1.2. This

artificial data allows spatial rescaling to probe spatial scalability of the SESN/SSESN im-

plementations in terms of time complexity. The benchmarking is not a parallelization

benchmark i.e. strong or weak scaling. My SSESN implementation takes advantage of

multi-core CPUs when possible, so to me, it is most interesting to take full advantage,

and see what spatial scaling is feasible, especially limited by memory.

Problem Size and SESN Input Maps

This raises the question what is the problem size? It is natural for the end-user to see

the spatio-temporal input as the problem size, i.e. the dimensions of the input volume.

However, for the ESN, it is more natural to see the problem size as the chosen hidden

18https://developer.amd.com/amd-aocl/blas-library/
19https://github.com/flame/libflame
20Benchmarking scripts:

https://github.com/jfelding/esn/tree/thesis_assets/scripts/benchmarks

https://developer.amd.com/amd-aocl/blas-library/
https://github.com/flame/libflame
https://github.com/jfelding/esn/tree/thesis_assets/scripts/benchmarks

7.8. TIME COMPLEXITY BENCHMARKING (16 CORE CPU) 125

dimension, since the most time consuming operations are carried out in the space of the

hidden states.

For the SESN introduced by (Heim and Avery 2019), the concept of input maps is in-

troduced to the world of ESNs. The traditional ESN approach to transforming Ninput-

dimensional input at time t to the hidden space, is the application of a dense random

matrix Wih, which necessarily has dimensions
�

Nhidden × Ninput

�

.

The ingenuity of the SESN is to replace Wih with with linear maps (functions) that pro-

vide spatial information to the hidden state, while being computationally more efficient

than matrix-vector multiplication with a very large dense matrix Wih.

By the linearity of the input maps, they could be represented in matrix form (true as long

as the input transform is real-to-real).

Table 7.5: Input Maps of (Heim and Avery 2019) used by the SESN and SSESN in gen-
eral.
SSESN has further improvements to scaling of outputs wrt. activation function tanh(·).
Factor: Scaling factor of map output to tune non-linearity of tanh(·) (more linear be-
haviour closer to the origin)
Kernel Type: "random" uses discrete convolution kernel shaped (x , y) with random
(−1; 1) entries. "gauss" uses normal distribution.

Map Description Output Shape Additional Arguments

Random Projection:

Traditional ESN Wih

Mat.-Vec. Product

Any Integer Factor

Spatial Convolution Flattened Input Image

Factor,

Kernel Shape: (x,y)

Kernel Type: ("random"/"gauss")

2D Image Gradient Flattened Input Image Factor

Discrete Cosine Transform:

Low Frequency Amplitudes

Nk1 × Nk2,

at least (2× 2)

Factor,

Shape: (Nk1, Nk2), number of

sampled frequencies

of each dimension;

ascending order

Bilinear Resampling:

Up or Down
Any integer Factor

126 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

The properties of the input maps are summarized in Table 7.5.

Returning to the question of problem size, then, the table shows approximate dimensions

of the input mappings, and we see that convolution, random projection and gradient each

transform the input image to a flatted vector of the same size, whereas ’random weights’,

’discrete cosine transform’ and ’bilinear resampling’ can be adjusted to ones liking. When

several maps are applied, as recommended in (Heim and Avery 2019), the flattened out-

puts are all concatenated to a single vector that defines the dimension of the hidden

state.

For the particular input map configuration that I use, see instead Table 7.6. Here, we see

that the total hidden dimension is Nhidden = 4Ninput + 3725.

My approach, then, is to create square spatial inputs N1D × N1D starting from N1D = 20,

providing Nhidden0 = 4925 and increasing N1D until memory is full on the hardware, as

described.

When showing timing results in diagrams, I have hidden dimension on the first axis, and

one may simply compute Ninput = Nhidden/4−3725 to see the ’spatial problem size’, if need

be. The hidden dimension is relatively small compared to the suggestions of (Heim and

Avery 2019), which is more of an issue for the SESN than the SSESN due to PCA.

On the SSESN, I have taken additional steps to make the input maps well-behaved by

ensuring that rescaling much beyond the range of the element-wise activation function,

tanh (·) when factor=1.

Hyperparameters and Configuration

The interested reader can study the other hyperparameters used for the benchmarks in

Table 7.6. One may notice that not all settings are identical. This is due to the vast differ-

ences of the SESN and SSESN prediction stabilities. The spectral radius is often increased

above 1 for the SESN with no stability guarantees for the hidden state evolution, whereas

the SSESN often thrives with a spectral radius around 1.

Additionally, different versions of the IMED (loss function) transformations are used. The

SESN applied the original IMED implementation, which requires diagonalization and

storing a large matrix, as described in Chapter 6. With my frequency implementations,

7.8. TIME COMPLEXITY BENCHMARKING (16 CORE CPU) 127

this is no longer an issue. For reference, in my tests of the SESN, the IMED transforma-

tions took roughly the same amount of time as the least squares optimization itself. In

my results, I include IMED transformation in the ’optimization’ category.

Input Map Configuration

Map Type Dimension

Bilinear Sampling: Ninput

DCT: (15× 15)

Gradient 2Ninput

Random (3x3) Convolution Ninput

Random Projection

(Traditional ESN Map)
3500

Total Hidden Dimension Nhidden: 4Ninput + 15× 15+ 3500

Contrasting Parameters SSESN SESN

Spectral Radii, ρ (Whh): 1.3 2.0

Trainable Parameters

per input pixel:

500

(499 PCs)
Nhidden

IMED Method: FFT Matrix

Shared Parameters

Time Steps

Transient Set: 100 Training Set: 500 Predictions: 100

IMED Settings: Spatial IMED σ = 2 ε= 10−2

Random Non-Zero Elements

in all rows of Whh :
10

Data Structures &

input data type:
float64

Table 7.6: Hyperparameters of the Benchmark. For details on the input maps, see (Heim
and Avery 2019)

Repetition, and Extreme Outliers

I find that it is not generally necessary to rerun the SESN/SSESN many times to get ac-

curate wall time benchmark. I.e., cache warming does not have a major impact. For the

128 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

SESN, however, diagonalization is utilized two times: (i) when building the reservoir and

rescaling to acquire specified ρ. This is sparse matrix diagonalization, performed using

ARPACK, as discussed previously. Second (ii) the Matrix IMED implementation requires

diagonalization of a dense matrix, performed using LAPACK.

The sparse eigenvalue decomposition (ii) starts from a random vector initialization, and

convergence is not guaranteed, and not consistent when repeated. Slight differences in

the end result are to be expected, too. For this reason alone, I use 3 timings per problem

size. A few times, the sparse diagonalization did not converge at all, which happens in-

creasingly when the problem size is increased. One might argue that such timings should

count as infinite, but that would not make nice plots. The SESN timings are therefore

’optimistic’, as outliers with extremely high timings are excluded (perhaps the only op-

tion, as the program never completes).

The SSESN does away with diagonalization, and differences over the 3 repetitions are

minimal (a low number of per mille).

With the setup completely laid out for the reader, we proceed to empirical timing results

on the described hardware.

7.8.4 Benchmarks of Time Complexity of Spatial Dimensions (CPU)

Finally, timing results may be viewed. Recall that I choose to run the SESN and SSESN

with increasingly large problem sizes, until memory consumption exceeds the hardware

configuration. With that in mind, Figure 7.21 (left) shows the total runtime of the ESNs

from start to finish — training to prediction. Here, the SESN was limited by memory

consumption at hidden state dimension above approximately Nhidden > 60000 or input

120× 120. The SSESN was not, but I show them on the same scale for clarity.

I show the SSESN running both with and without the PCA dimension reduction layer for

a perhaps more ’fair’ comparison. The SSESN+PCA model uses a fixed number of features

independent of the problem size, which the SESN does not. The PCA layer, however, does

not only increase computational efficiency, but also often the prediction performance, as

has been discussed in Section 5.1. The SSESN without PCA was limited by memory at

Nhidden = 243825 corresponding to spatial input 245×245. Going forward, I refer to the

"SSESN+PCA" model as "SSESN" unless I explicitly state otherwise.

7.8. TIME COMPLEXITY BENCHMARKING (16 CORE CPU) 129

Obviously, the SSESNs are much faster than the SESN, with their time consumptions

peaking at 25s and 27s compared to 754s of the SESN, a 30x speed-up at the same

problem size. The SESN displays super-linear time complexity (not preferable) due to di-

agonalization (LAPACK: O
�

N 3
hidden

�

), and least squares O
�

N 2
hidden

�

with Nhidden number

of trained parameters per input pixel (compared to 500 per pixel for the SSESN). The

SSESN is obviously faster, but the time complexity is not clear from this plot.

10000 20000 30000 40000 50000 60000

Dimension of Hidden State

0

200

400

600

800

T
ot

a
l

W
a
ll

T
im

e
[s

]

25s

754sSESN

SSESN+PCA

SSESN

104 105 106

Dimension of Hidden State

100

101

102

103

T
ot

al
W

a
ll

T
im

e
[s

]

SESN

SSESN+PCA

SSESN

Figure 7.21: Runtime from start to finish of the ESNs as a function of hidden state di-
mension, the best descriptor of the RNN/ESN problem size. The SESN requires two
diagonalizations of (increasingly) large matrices, whereas the SSESN does not, giving
linear time complexity, as seen in Fig. 7.22 In this figure, the hidden state dimension
was increased until the SESN needed more memory consumption than available on the
system. Largest spatial input size was 120× 120 pixels. I show two versions of the SS-
ESN. One where the number of covariates is fixed using the PCA layer. And, for better
comparison, one without PCA that has fits the same number of covariates of the SESN,
although this is not generally beneficial to prediction performance.

It is, however, clear from Figure 7.22, that the SSESN exhibits linear time complexity wrt.

the hidden dimension, a major improvement over the SESN. With the time consumption

split in categories, we see that evolution of the hidden state (for initial transient evo-

lution and harvesting prior to optimization) are very clearly linear in the hidden state

dimension. Optimization has some quirks. This is due to the operations included in the

overall ’optimization’ category. The distinctions are clear from Table 7.7.

130 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

Table 7.7: ’Optimization’ category of wall time plots (in orange)

SESN SSESN

•
Least Squares on
hidden state covariates

•
IMED (matrix) transform
contained in least squares

•
Unsupervised training
of PCA transform

•
Least Squares on dimension
reduced hidden states

•
IMED (frequency) transforms
on input/output sequence

The ’quirks’, then, are a product of the frequency IMED method (here, FFT is chosen).

FFT methods are quite optimized, and for certain problem sizes (the frequency IMEDs

are applied to input and target data, not hidden states). When the transformed axis has

length of a power of two, for instance, it is faster. In the future, the IMED implementations

should be extended with a method that resizes the transformed axis according to the next

fast FFT length.

The only part of the SSESN that is not faster than the SESN is the prediction phase, be-

cause the PCA transformation requires each hidden state at prediction time t to be dimen-

sion reduced by matrix multiplication. The difference is more than outweighed by the

optimization time savings (and prediction quality improvement) caused by utility of PCA.

7.8. TIME COMPLEXITY BENCHMARKING (16 CORE CPU) 131

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Dimension of Hidden State ×106

0

250

500

750

1000

1250

1500
W

a
ll

T
im

e
[s

]
Predict

Optimize

Evolve Hidden State

Build Reservoir

SESN

Figure 7.22: SSESN runtime at hidden state dimension (in millions) that was increased
until execution was limited by its memory consumption on the system. While the SESN
ran out of memory around Nhidden ∼ 6×104, the SSESN keeps going until Nhidden ∼ 4×106,
a drastic increase. Total SESN runtimes are plotted for comparison. The SSESN exhibits
linear time complexity across the range of problem sizes. Largest spatial input size was
990× 990 pixels, compared to the 120× 120 achievable for the SESN. Nhidden is a better
problem size indicator, however, as larger spatial predictions are achievable with the
SSESN using fewer or lower dimensional input maps.

Finally, in Figure 7.23, I use a logarithmic first axis to compare the SESN and SSESN

runtimes. This way, we may also see what processes are taking up most time for the SESN

(shown with hatched area). Optimization (least squares, and IMED) is clearly taking up

most of the time when pushing the SESN to its Nhidden limit of 6×106. In my later tests, I

find that the IMED and least squares steps took approximately the same amount of time,

with IMED taking the lead at higher dimensions due to its diagonalization requirement

for the matrix implementation.

It is interesting to see that the time consumed by the SESN at its limits corresponds to a

∼ 33-fold increase of the problem size for the SSESN. Note: The logarithmic plot should

not be used for judging the time complexity, which is why I use the previous figures for

those considerations.

132 CHAPTER 7. FORECASTING WITH THE SCALABLE SESN

104 105 106

Dimension of Hidden State

0

250

500

750

1000

1250

1500
W

a
ll

T
im

e
[s

]

60k 2m

4m
Predict

Optimize

Evolve Hidden State

Build Reservoir

SESN

SSESN+PCA

Figure 7.23: With a logarithmic first axis it is easier to compare the processes that take
up time in the SESN and SSESN while noting that the runtime of the SESN at its
Nhidden ∼ 6× 104 limit is comparable to the SSESN at Nhidden ∼ 2× 106.
Clearly, the optimization of the SESN dominates the wall time as the spatial dimensions
are increased. This is no surprise, as the IMED method is prohibitively expensive in both
time and memory, while the least squares approach (without a PCA step) train Nhidden

weights per input pixel, compared to a fixed number of weights per pixel for the SSESN
with PCA.

Chapter 8

Anomaly Detection

Anomaly detection in chaotic time series, or image sequences, is not easy. But

this chapter will demonstrate that anomalies in ocean surface topography can be

pinpointed in time and space by recasting the hard anomaly detection problem

as a prediction problem. One that the SSESN can handle.

This avoids the problem of defining normality in every ocean current of the world

let alone its dependence on large-scale ocean and climate trends. The adaptivity

of machine learning predictions, and the spatial scalability of the SSESN allows

the global exploration of such ocean anomalies.

133

134

8.1 Method of Detecting Anomalies from Prediction-Target Comparison

Recall Figure 1.4 in which I alluded to the approach of anomaly detection taken by this

thesis. The approach is not an original idea of mine, but the approach of (Heim and Avery

2019) who in turn apply the work of (Ahmad et al. 2017) in combination with their SESN.

To rid ourselves of hard definition problems of describing normality over time and space

in e.g. oceans, we recast the anomaly detection problem as a prediction problem that

provides an error sequence E(t) based on the comparison of predictions and targets.

I utilize climate model simulations to create machine learning (SSESN) predictions of the

future outcome of the Sea Surface Height variable, and I then compare the simulations –

prediction targets – to the predictions to achieve an error measure.

An attempt to visualize the entire anomaly detection procedure on the Kuroshio current

SSH data is seen in Figure 8.1.

Moving Averages of the Prediction-Target Error Sequence

With an error measure describing how well the future climate simulations sequence is

approximated by the SSESN predictions on the short term, moving averages on the er-

ror sequence can be utilized to construct an normality score sequence, N (t). The latter

is the insight of (Ahmad et al. 2017) while the application to ML predictions is work of

(Heim and Avery 2019).

The normality score sequence will have range (0,1(with 1 being considered completely

normal, and values very close to zero considered anomalous. (Ahmad et al. 2017) rec-

ommend a general anomaly threshold (a significance level) of E = 10−5 to trigger a

binary anomaly classification at a particular time in the normality score sequence when

N (t)< E .

8.1. METHOD OF DETECTING ANOMALIES FROM PREDICTION-TARGET
COMPARISON 135

Figure 8.1: Anomaly detection procedure.

136 CHAPTER 8. ANOMALY DETECTION

8.1.1 Online ESN Learning for Error Sequence Generation

Obviously, we expect predictions on chaotic oceans to deviate more and more from the

simulation targets over time, and as such, we cannot robustly find anomalies years ahead

of time (with the training set endpoint determining the starting point of predictions t =

t0). Instead, we take an online learning approach. The step-by-step construction of the

error sequence using online learning (retraining once new information is made available)

is seen in Table 8.1. Again, please compare to Figure 8.1 which seeks to illustrate the

process.

Procedure for Online Learning Predictions and Error Sequence Generation

1. Initialize the hidden state and evolve through transient period from time step
t = 0 to t = Ntrans, e.g. Ntrans = 200

2. Set t ′ = 1

3. Train SSESN on Ntrain observations from time t = Ntrans+t ′ to t = Ntrans+t ′+Ntrain

4. Make free-running predictions from t = t0 + t ′ until t = t0 + t ′ + Npred with
t0 = Ntrain + Ntrans

5. Determine error (a single scalar) of the short-term predictions of Tpred time steps
by comparing with targets. Save this space-time integrated error in error se-
quence at time t = t0 + t ′, i.e. E(t = t0 + t ′)

6. Set t ′ = t ′ + 1 and go to 3 until t ′ = Ttarget − Npred

Variables
t: Time step t0: End time of ’training set’ t ′: Iterator

Ttarget: End of target seq. Ntrans: Initial Transient Length Ntrain: Training Set Length
Npred: Short-Term Prediction Length

Table 8.1: ’Online’ learning is used for the SSESN to generate the error sequence. That
sequence will later be processed to acquire a normality score.

8.1.2 Smoothing the Error Sequence using Moving Averages

A moving average takes into account a number of recent observations in order to smooth

a volatile time series, and is often used in financial analytics. I refer to µτ =MAτ[E(t)]

as the value of the smoothed error sequence created by averaging the E(τ) and the τ−1

8.2. ANOMALY SCORE FROM MOVING AVERAGES OF ERROR SEQUENCE 137

prior observations, i.e.

µτ(t) =MAτ[E(t)] =
1
τ

τ−1
∑

i=0

E(t − i) (8.1)

The idea, then, is to make two moving averages on the error sequence E(t). One, very

smooth, with a large window size τ1, and another τ2 � τ1 that changes more rapidly,

and may even go as low as 1, meaning that it is no moving average at all. These settings

depend on how volatile the series is. The smaller parameter τ2 should not smooth out

major errors, while τ1 should. The idea is, that there should be a significant difference

between the two, when something unpredictable happens.

Along with τ1,τ2 an important setting is Npred, i.e. the number of time steps that are

predicted ahead at each time t. When the system is very chaotic, like the ocean, it needs

to be quite small so that turbulence does not dominate the error sequence.

Note that Npred influences the error values themselves (long-term predictions will give

larger errors sums!). On the other hand, it only changes the length of the error sequence

by cutting off at the last Npred points of the prediction dataset which ends at Ttarget.

Note that the first time point of the MA-sequences must be t = t0 +max (τ1,τ2) where

τ1 is the size of the largest MA-window.

In order to speak of normality, we also determine the sliding window variance σ2
τ1

:

στ1
(t) =

1
τ1 − 1

τ1−1
∑

i=0

�

E(t − i)−µτ1
(t)
�2

(8.2)

At this point, we have acquired an (integrated) error sequence E(t), and moving averages

of it: µτ1
=MAτ1[E(t)] and µτ2

=MAτ2[E(t)], and for the largest-window moving aver-

age, the sliding variance sequence στ1
(t)We are therefore ready to construct a normality

score by comparing the MAs.

8.2 Anomaly Score from Moving Averages of Error Sequence

Authors of (Ahmad et al. 2017) suggest the following anomaly score sequence:

A(t) = 1−Q

�

µτ1
(t)−µτ2

(t)

στ1
(t)

�

(8.3)

138 CHAPTER 8. ANOMALY DETECTION

Which is nicely normalized from (0,1) and can be interpreted as an anomaly probability.

Here, the Q-function is the Gaussian tail distribution function and can be expressed using

the Gaussian error function erf(·):

Q(x) =
1
2
−

1
2

erf
�

x
p

2

�

=
1
2

erfc
�

x
p

2

�

(8.4)

The Q-function has the interpretation that it expresses the probability Q(x) = Pr(X > x)

for a Gaussian random variable Y with mean µ, variance σ2 such that X =
Y −µ

σ
and

x =
y −µ

σ
, see (Q-Function 2021).

As mentioned, the anomaly score can then be thresholded using the suggested E = 10−5

(or another fitting significance level) for a binary normal/abnormal classification.

In the particular application of comparing predictions and targets, as in (Heim and Avery

2019), they made a small correction to the anomaly score:

A(t) = 1− 2Q

�

max
�

0,µτ1
(t)−µτ2

(t)
�

στ1
(t)

�

(8.5)

The idea is that when µτ1
< µτ2

the prediction error is larger than normally. We are

not interested in the case µτ1
> µτ2

where the prediction error is smaller than usual, as

we consider that normal, which explains the utility of max(·). An additional factor of 2

allows the probability interpretation since now x > 0 for Q(x), with 2Q(x > 0) having

range (0,1).

With online learning predictions in hand, this allows us to determine anomalies in ocean

systems by means of comparing SSESN predictions to simulation targets.

8.3 Anomalies of the Kuroshio: A Proof of Concept

With the method of (Heim and Avery 2019) described, anomaly detection with the SS-

ESN is ready to be showcased. The exact same data is applied here for demonstration

purpose – only this time on a larger spatial area: on the ’full-resolution’ CESM Kuroshio

Current and the Kuroshio Extension, that we have encountered in Section 7.6. The data

8.3. ANOMALIES OF THE KUROSHIO: A PROOF OF CONCEPT 139

are CESM three-day-means resampled to 5-day-means such that a year is defined as ex-

actly 365/5= 73 days.

To make online-learning predictions, I use the following hyperparameters:

• Ntrain = 780 (in units of 5 days)

• Ntrans = 350 (in units of 5 days)

• Npred = 30 (in units of 5 days)

•
�

σt ,σx ,σy

�

= (1 day, 2◦, 2◦)

• NPC = 150

• ρ = 1.0

• Input maps: Bilinear resampling (10%×10%), random convolution, gradient, and

random weights (traditional Wih resulting in 10000 elements in h).

I apply a cyclic buffer in that the ’training set’ contains the same number of samples

throughout such that conditions are the same at each round of predictions. That implies

that the oldest training sample is removed once a new sample is made available (in the

online learning approach). To speed up training (refitting Who at each step) the same

PCA transformation is applied throughout, as the transformation is not expected to sig-

nificantly differ as training progresses.

In Figure 8.2 I display the error sequence across simulation days in the prediction set

(after the initial training period) along with moving average determined from the error

sequence. These functions will be the basis for anomaly detection. To utilize the IMED,

the samples (targets and predictions) are data saved from the SSESN internals. That is,

the standardizing transform is applied to the volume, the training set is then rescaled

to the interval (−1;1) (and prediction set accordingly), and predictions are made after

these transforms. This provides a means of universal error measure that does not depend

on the units of SSH (cm) or other variables that may be explored.

140 CHAPTER 8. ANOMALY DETECTION

4000 4250 4500 4750 5000 5250 5500 5750

Simulation Days

−4

−2

0

2
E

rr
o
r

Error Sequence

MA50

MA5

σm,m = 50

Figure 8.2: The error sequence and moving averages applied for determining a normality
score as a function of the simulation days.

As described, these time series enter into the anomaly or normality score. In Figure

8.3 the normality score found on the entire Kuroshio area is displayed. The simulation

anomaly is known to occur around simulation day 5500, as also displayed in (Heim and

Avery 2019).

4250 4500 4750 5000 5250 5500 5750

Simulation Days

10−6

10−4

10−2

100

N
or

m
al

it
y

S
co

re

Σt(MA50,MA5)

Significance Level

Figure 8.3: Normality scores based on Fig. 8.2 displaying the detection of two significant
anomalies

The SSESN recovers the known anomaly detected in (Heim and Avery 2019) as it should,

and also finds something anomalous about three years prior. From this visualization, it

is not possible to pinpoint the area that is found to be anomalous. For this purpose, the

anomaly detection system can work on subsets of the simulation/prediction series, and

the approach can be repeated across the Kuroshio map.

With very little time allowed for the work in this chapter, further analysis is left as future

work.

Chapter 9

Conclusion and Outlook

141

142

9.1 Wrapping It Up

This project has sought to identify and eliminate all major bottlenecks in terms of memory

and time consumption of the Scalable Echo State Network of (Heim and Avery 2019)

without compromising its approximation capabilities. The development work, described

in Part II of the thesis, can be summed up in three main contributions:

1. The further development and implementation of efficient spatially sensitive trans-

formations and metrics;

2. A method to avoid diagonalization of the reservoir matrix Whh to allow them to

scale beyond traditional dimensions;

3. A dimension reduction layer to stabilize and optimize training using information

from the high-dimensional hidden state.

In Part III of the thesis, I demonstrated the improvements by applying the Scalable Spa-

tial echo state network to the same domains as (Heim and Avery 2019) and (Heim 2018)

did, and more. That is, I used synthetic training data to familiarize myself with the SS-

ESN, and I was able to apply the insights to CESM climate model simulation data to make

qualitatively plausible predictions in a chaotic ocean system, specifically the Kuroshio cur-

rent, the Kuroshio Extension and the Agulhas current, flowing along the southern coast

of Japan and South Africa, respectively. The SSESN allows training and forecasting the

future of individual grid points (pixels) for such systems in a matter of minutes while

taking contextual information into account (the benefit of high-resolution). In doing so,

the project has allowed scaling up the echo state network dynamical system to dimen-

sions that are orders of magnitude larger than traditional ESNs while delivering the highly

efficient optimization that is intrinsic to the reservoir computing approach of ESNs.

In Chapter 8, I demonstrated the utility of the SSESN in an online learning setting to

pinpoint a known Kuroshio ocean surface topographic transition that last took place in

2017, and affects the climate of Japan to this day.

Despite many applications left to explore using the tools developed in this thesis, the the-

sis project has come to an end. Perhaps the most obvious application is the combination

of the SSESN with the anomaly detection system that can be applied on other parts of the

world to discover similar anomalous behaviour, allowing the exploration of real oceans

9.2. FURTHER VENUES OF RESEARCH 143

through simulation data, or the prediction of Kuroshio anomalies with forewarning. Since

the CESM sea surface height variable is observable by satellite and available from NASA

at e.g. (Zlotnicki et al. 2019), SSESN predictions and anomaly detection can be made on

real measurements, and almost in real-time, as NASA frequently updates the datasets.

While some applications are straightforward at this point, and others are easily reachable

everything is not perfectly finished! The next sections will discuss a number of problems

that are regrettably left as future work.

9.2 Further Venues of Research

9.2.1 An Imperfect Loss Function

The Necessity of Manual Hyperparameter Optimization

What perhaps bugs me the most is that, despite my implementation and development of

the Image Euclidean Distance, it is not a perfect spatial measure. We see this especially

with the complexity of predicting the ocean system where automatic hyperparameter opti-

mization is not feasible. This is true for systems that are not almost perfectly approximated

by the SSESN. By its nature, the chaos inherent to the ocean system does not allow per-

fect long-term approximation. When automatic grid search is tried, error measures often

prefer predictions that freeze over time, or are qualitatively wrong.

That leaves only automatic hyperparameter optimization on the short-term, which does

not guarantee the long-term behaviour. Therefore, much manual inspection has to be

done, as I have tediously experienced first-hand.

Note: The loss function applied in the ESN (that has to be compliant with demands of

least squares) need not necessarily be the same as the one that evaluates quality of pre-

dictions. For instance, it is probably not hard to detect when dynamics freeze.

One option is to apply perceptual similarity measures arising from pre-trained deep neural

networks used in image classification problems. However, it remains to be seen whether

these metrics can easily be used on input that is unlike what they are trained on ImageNet1

1ImageNet Database: https://www.image-net.org/

144 CHAPTER 9. CONCLUSION AND OUTLOOK

RGB camera images (Zhang et al. 2018).

9.2.2 GPU Utilization

As noted in Chapter 7, GPU utilization is straight-forward with mostly a few drop-in

libraries (I have successfully cut about half of the runtime this way, but with an earlier

code revision). However, memory is the most important thing to spatio-temporal ESN

applications, and this often limits the use of GPUs. The sequential nature of ESNs also

limit the gains that can be expected. Still, it can be useful in the context searching through

the vast (simulated) oceans for which speed is of essence. Recently, marketed GPUs have

gained dedicated memory, which is helpful to the ESN venture.

9.2.3 A Closer Look at Spatial Input Maps

The SESN of (Heim and Avery 2019) has introduced input mapping through functions

rather than explicit matrix multiplication that is traditional to ESNs. This is great for

efficiency!

Since the application of PCA, the readout matrix Whh has a less spatial interpretation than

previously. In particular, it should be investigated whether the information of the spatial

input maps can be made denser without compromising prediction quality.

Options include:

• Dimension reduction of the input maps (or raw input) by means of PCA.

• Interpolation on the spatial input maps to reduce dimensions.

• The point above can be combined with a staggered-grid approach such that differ-

ent input maps do not perform interpolation by ’removing’ the same points.

9.2.4 Automatic Hyperparameter Optimization from ESN Dynamics

A very interesting perspective on ESNs is found in (Bianchi, Livi, et al. 2018) where

recurrence analysis is applied to ESNs. By means of analysing the dynamics of the ESN,

the authors find that an edge of stability at which approximation power is particularly

effective, can be determined by gradually adjusting hyperparameters. The fast runtime

of the SSESN would allow such an approach in many circumstances.

9.2. FURTHER VENUES OF RESEARCH 145

9.2.5 Distribution of Training using Online Learning

If the SSESN is used for anomaly detection on many, or very large systems, training can

take a long time. This is because the online learning setting requires the constant re-

fitting of Who when new information is made available. Time consumption also depends

strongly on the number of short-term predictions that must be made. For the Kuroshio

system, predictions 1-year ahead of each time step t in the ’validation set’ could still be

accomplished in a matter of a few hours. This is without additional methods to incre-

mentally update the least squares estimate, but with re-fitting at every step.

If necessary, this task is distributable to several machines, as the re-fitting of Who is inde-

pendent of the predictions made at time t, depending only on the available training and

target datasets.

9.2.6 Applying More Variables in the SSESN

The CESM model is one example of a system that has many more variables than the single

SSH variable that this project has applied. The Team Ocean simulations contain about

90GB of information for a single time step (3-day-mean). The benefits of applying more

available variables is obvious, and sometimes necessary to have enough information to

provide accurate predictions of complex systems.

The extension of the spatial ESN to more variables should be straightforward, as it was

designed that way by (Heim and Avery 2019).

More variables, of course, exponentially increase the size of hidden states. For small

systems, this is certainly feasible. Otherwise, this change must be combined with more

’dense’ input mapping, as suggested in Section 9.2.3.

Indeed, there are many interesting routes to take from this point on. I personally can’t

wait to see what the future holds for spatial echo state networks!

Bibiliography

[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. “Leaning from

Data : A Short Course”. In: Leaning From Data - A Short Course. California: AML-

book.com, 2012. ISBN: 978-1-60049-006-4.

[2] Subutai Ahmad et al. “Unsupervised Real-Time Anomaly Detection for Streaming

Data”. In: Neurocomputing. Online Real-Time Learning Strategies for Data Streams

262 (Nov. 1, 2017), pp. 134–147. ISSN: 0925-2312. DOI: 10.1016/j.neucom.

2017.04.070. URL: https://www.sciencedirect.com/science/article/pii/

S0925231217309864 (visited on 08/09/2021).

[3] E. Anderson et al. LAPACK Users’ Guide. 3rd ed. PA: Society for Industrial and

Applied Mathematics, 1999. ISBN: 0-89871-447-8. URL: https://www.netlib.

org/lapack/lug/ (visited on 04/20/2021).

[4] M. Andrecut. “Parallel GPU Implementation of Iterative PCA Algorithms”. In: Jour-

nal of Computational Biology 16.11 (Nov. 1, 2009), pp. 1593–1599. DOI: 10.1089/

cmb.2008.0221. URL: https://www.liebertpub.com/doi/10.1089/cmb.2008.

0221 (visited on 07/27/2021).

[5] Filippo Maria Bianchi, Lorenzo Livi, and Cesare Alippi. “Investigating Echo-State

Networks Dynamics by Means of Recurrence Analysis”. In: IEEE Transactions on

Neural Networks and Learning Systems 29.2 (Feb. 2018), pp. 427–439. ISSN: 2162-

2388. DOI: 10.1109/TNNLS.2016.2630802.

[6] Filippo Maria Bianchi, Simone Scardapane, et al. Bidirectional Deep-Readout Echo

State Networks. Feb. 13, 2018. arXiv: 1711.06509 [cs]. URL: http://arxiv.org/

abs/1711.06509 (visited on 10/20/2020).

[7] Black Swan Theory. In: Wikipedia. May 7, 2021. URL: https://en.wikipedia.

org/w/index.php?title=Black_swan_theory&oldid=1021886041 (visited on

07/06/2021).

147

https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1016/j.neucom.2017.04.070
https://www.sciencedirect.com/science/article/pii/S0925231217309864
https://www.sciencedirect.com/science/article/pii/S0925231217309864
https://www.netlib.org/lapack/lug/
https://www.netlib.org/lapack/lug/
https://doi.org/10.1089/cmb.2008.0221
https://doi.org/10.1089/cmb.2008.0221
https://www.liebertpub.com/doi/10.1089/cmb.2008.0221
https://www.liebertpub.com/doi/10.1089/cmb.2008.0221
https://doi.org/10.1109/TNNLS.2016.2630802
https://arxiv.org/abs/1711.06509
http://arxiv.org/abs/1711.06509
http://arxiv.org/abs/1711.06509
https://en.wikipedia.org/w/index.php?title=Black_swan_theory&oldid=1021886041
https://en.wikipedia.org/w/index.php?title=Black_swan_theory&oldid=1021886041

148 BIBILIOGRAPHY

[8] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cam-

bridge University Press, 2009 (Print: 2006). ISBN: 978-0-511-54692-1. URL: https:

//doi.org/10.1017/CBO9780511546921 (visited on 07/07/2021).

[9] Hans Dembinski and Piti Ongmongkolkul et al. “Scikit-Hep/Iminuit”. In: (Dec.

2020). DOI: 10.5281/zenodo.4310361. URL: https://doi.org/10.5281/

zenodo.4310361.

[10] Raffaele Ferrari. Ocean Turbulence. URL: http://ferrari.mit.edu/research/

ocean-dynamics/ocean-turbulence/ (visited on 07/24/2021).

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. 1st ed. MIT

Press, 2016. ISBN: 978-0-262-03561-3.

[12] H2O.ai. H2o4gpu.Solvers.Pca — H2O4GPU 0.3.2 Documentation. Version 0.3.2.

URL: https://docs.h2o.ai/h2o4gpu/latest-stable/h2o4gpu-py-docs/

html/_modules/h2o4gpu/solvers/pca.html#PCA (visited on 07/27/2021).

[13] Barbara Hammer. Learning with Recurrent Neural Networks. Lecture Notes in Con-

trol and Information Sciences 253. London ; New York: Springer, 2000. 148 pp.

ISBN: 978-1-85233-343-0. URL: https://link.springer.com/content/pdf/

10.1007%2FBFb0110016.pdf.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning - Data Mining, Inference, and Prediction. 2nd ed. Springer Series in Statis-

tics. Springer Science, Jan. 2017. URL: https://web.stanford.edu/~hastie/

ElemStatLearn/printings/ESLII_print12_toc.pdf.

[15] Niklas Heim. “Automated Anomaly Detection in Chaotic Time Series”. Master’s

thesis. Copenhagen: Niels Bohr Institute, University of Copenhagen, Sept. 4, 2018.

URL: https://github.com/nmheim/thesis (visited on 07/23/2021).

[16] Niklas Heim. Nmheim/Esn: Echo State Networks in JAX! Jan. 27, 2021. URL: https:

//github.com/nmheim/esn (visited on 06/24/2021).

[17] Niklas Heim and James E. Avery. Adaptive Anomaly Detection in Chaotic Time Series

with a Spatially Aware Echo State Network. Sept. 2, 2019. arXiv: 1909.01709 [cs,

stat]. URL: http://arxiv.org/abs/1909.01709 (visited on 10/01/2020).

https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.5281/zenodo.4310361
https://doi.org/10.5281/zenodo.4310361
https://doi.org/10.5281/zenodo.4310361
http://ferrari.mit.edu/research/ocean-dynamics/ocean-turbulence/
http://ferrari.mit.edu/research/ocean-dynamics/ocean-turbulence/
https://docs.h2o.ai/h2o4gpu/latest-stable/h2o4gpu-py-docs/html/_modules/h2o4gpu/solvers/pca.html#PCA
https://docs.h2o.ai/h2o4gpu/latest-stable/h2o4gpu-py-docs/html/_modules/h2o4gpu/solvers/pca.html#PCA
https://link.springer.com/content/pdf/10.1007%2FBFb0110016.pdf
https://link.springer.com/content/pdf/10.1007%2FBFb0110016.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
https://github.com/nmheim/thesis
https://github.com/nmheim/esn
https://github.com/nmheim/esn
https://arxiv.org/abs/1909.01709
https://arxiv.org/abs/1909.01709
http://arxiv.org/abs/1909.01709

BIBILIOGRAPHY 149

[18] Masaki Kawabe. “Sea Level Variations at the Izu Islands and Typical Stable Paths of

the Kuroshio”. In: Journal of the Oceanographical Society of Japan 41.5 (Nov. 1985),

pp. 307–326. ISSN: 0029-8131, 1573-868X. DOI: 10 . 1007 / BF02109238. URL:

http://link.springer.com/10.1007/BF02109238 (visited on 07/24/2021).

[19] Cindy Kuiphuis. Black Swan Photograph. Dec. 23, 2018. URL: https://commons.

wikimedia.org/wiki/File:Zwarte_zwaan_black_swan.jpg (visited on 07/06/2021).

[20] “LAPACK Benchmark”. In: LAPACK Users’ Guide. In collab. with E. Anderson et al.

3rd ed. Aug. 22, 1999. URL: https://www.netlib.org/lapack/lug/node71.

html (visited on 08/02/2021).

[21] Jongwon Lee et al. “From O(k2N) to O(N): A Fast Complex-Valued Eigenvalue

Solver for Large-Scale on-Chip Interconnect Analysis”. In: 2009 IEEE MTT-S Inter-

national Microwave Symposium Digest. 2009 IEEE MTT-S International Microwave

Symposium Digest. June 2009, pp. 181–184. DOI: 10.1109/MWSYM.2009.5165662.

[22] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large

Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Oct. 8, 1997.

URL: https://www.caam.rice.edu/software/ARPACK/UG/ug.html (visited on

04/15/2021).

[23] Lissajous Curve. In: Wikipedia. June 10, 2021. URL: https://en.wikipedia.

org/w/index.php?title=Lissajous_curve&oldid=1027858127 (visited on

08/04/2021).

[24] Liwei Wang, Yan Zhang, and Jufu Feng. “On the Euclidean Distance of Images”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 27.8 (Aug. 2005),

pp. 1334–1339. ISSN: 1939-3539. DOI: 10.1109/TPAMI.2005.165.

[25] Mantas Lukoševičius. “A Practical Guide to Applying Echo State Networks”. In:

Neural Networks: Tricks of the Trade. Ed. by Grégoire Montavon, Geneviève B. Orr,

and Klaus-Robert Müller. Vol. 7700. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 659–686. ISBN: 978-3-642-35288-

1 978-3-642-35289-8. DOI: 10.1007/978-3-642-35289-8_36. URL: http://

link.springer.com/10.1007/978-3-642-35289-8_36 (visited on 07/29/2021).

https://doi.org/10.1007/BF02109238
http://link.springer.com/10.1007/BF02109238
https://commons.wikimedia.org/wiki/File:Zwarte_zwaan_black_swan.jpg
https://commons.wikimedia.org/wiki/File:Zwarte_zwaan_black_swan.jpg
https://www.netlib.org/lapack/lug/node71.html
https://www.netlib.org/lapack/lug/node71.html
https://doi.org/10.1109/MWSYM.2009.5165662
https://www.caam.rice.edu/software/ARPACK/UG/ug.html
https://en.wikipedia.org/w/index.php?title=Lissajous_curve&oldid=1027858127
https://en.wikipedia.org/w/index.php?title=Lissajous_curve&oldid=1027858127
https://doi.org/10.1109/TPAMI.2005.165
https://doi.org/10.1007/978-3-642-35289-8_36
http://link.springer.com/10.1007/978-3-642-35289-8_36
http://link.springer.com/10.1007/978-3-642-35289-8_36

150 BIBILIOGRAPHY

[26] Mackey-Glass Equations. In: Wikipedia. July 6, 2021. URL: https://en.wikipedia.

org/w/index.php?title=Mackey-Glass_equations&oldid=1032294316 (vis-

ited on 08/05/2021).

[27] Sergiu Oprea et al. “A Review on Deep Learning Techniques for Video Prediction”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence (Apr. 14, 2020).

arXiv: 2004.05214. URL: https://doi.ieeecomputersociety.org/10.1109/

TPAMI.2020.3045007 (visited on 10/01/2020).

[28] Mustafa C. Ozturk, Dongming Xu, and José C. Príncipe. “Analysis and Design of

Echo State Networks”. In: Neural Computation 19.1 (Jan. 2007), pp. 111–138.

ISSN: 0899-7667, 1530-888X. DOI: 10.1162/neco.2007.19.1.111. URL: https:

//direct.mit.edu/neco/article/19/1/111-138/7142 (visited on 04/14/2021).

[29] Mads B. Poulsen, Markus Jochum, and Roman Nuterman. “Parameterized and Re-

solved Southern Ocean Eddy Compensation”. In: Ocean Modelling 124 (Apr. 1,

2018), pp. 1–15. ISSN: 1463-5003. DOI: 10.1016/j.ocemod.2018.01.008. URL:

https://www.sciencedirect.com/science/article/pii/S1463500318300258

(visited on 07/24/2021).

[30] Q-Function. In: Wikipedia. May 23, 2021. URL: https://en.wikipedia.org/w/

index.php?title=Q-function&oldid=1024742403 (visited on 08/09/2021).

[31] scikit-cuda. Skcuda.Linalg.PCA — Scikit-Cuda 0.5.2 Documentation. Version 0.5.2.

URL: https://scikit-cuda.readthedocs.io/en/latest/generated/skcuda.

linalg.PCA.html (visited on 07/27/2021).

[32] Yevgeny Seldin. Machine Learning Lecture Notes. Mar. 25, 2021. URL: https://

drive.google.com/open?id=1FYkrlmtNM5LJM5bydWy7uolSC7zVeW5y.

[33] Shallow Water Equations. In: Wikipedia. May 12, 2021. URL: https://en.wikipedia.

org/w/index.php?title=Shallow_water_equations&oldid=1022755772 (vis-

ited on 08/09/2021).

[34] H. T. Siegelmann and E. D. Sontag. “On the Computational Power of Neural Nets”.

In: Journal of Computer and System Sciences 50.1 (Feb. 1, 1995), pp. 132–150.

ISSN: 0022-0000. DOI: 10.1006/jcss.1995.1013. URL: https://www.sciencedirect.

com/science/article/pii/S0022000085710136 (visited on 06/21/2021).

https://en.wikipedia.org/w/index.php?title=Mackey-Glass_equations&oldid=1032294316
https://en.wikipedia.org/w/index.php?title=Mackey-Glass_equations&oldid=1032294316
https://arxiv.org/abs/2004.05214
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3045007
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3045007
https://doi.org/10.1162/neco.2007.19.1.111
https://direct.mit.edu/neco/article/19/1/111-138/7142
https://direct.mit.edu/neco/article/19/1/111-138/7142
https://doi.org/10.1016/j.ocemod.2018.01.008
https://www.sciencedirect.com/science/article/pii/S1463500318300258
https://en.wikipedia.org/w/index.php?title=Q-function&oldid=1024742403
https://en.wikipedia.org/w/index.php?title=Q-function&oldid=1024742403
https://scikit-cuda.readthedocs.io/en/latest/generated/skcuda.linalg.PCA.html
https://scikit-cuda.readthedocs.io/en/latest/generated/skcuda.linalg.PCA.html
https://drive.google.com/open?id=1FYkrlmtNM5LJM5bydWy7uolSC7zVeW5y
https://drive.google.com/open?id=1FYkrlmtNM5LJM5bydWy7uolSC7zVeW5y
https://en.wikipedia.org/w/index.php?title=Shallow_water_equations&oldid=1022755772
https://en.wikipedia.org/w/index.php?title=Shallow_water_equations&oldid=1022755772
https://doi.org/10.1006/jcss.1995.1013
https://www.sciencedirect.com/science/article/pii/S0022000085710136
https://www.sciencedirect.com/science/article/pii/S0022000085710136

BIBILIOGRAPHY 151

[35] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics,

Biology, Chemistry, and Engineering. Second edition. FL, USA: CRC Press, 2015.

513 pp. ISBN: 978-0-8133-4910-7.

[36] Shusaku Sugimoto, Bo Qiu, and Niklas Schneider. “Local Atmospheric Response

to the Kuroshio Large Meander Path in Summer and Its Remote Influence on the

Climate of Japan”. In: Journal of Climate 34.9 (May 1, 2021), pp. 3571–3589.

ISSN: 0894-8755, 1520-0442. DOI: 10.1175/JCLI-D-20-0387.1. URL: https://

journals.ametsoc.org/view/journals/clim/34/9/JCLI-D-20-0387.1.xml

(visited on 07/24/2021).

[37] B. Sun and J. Feng. “A Fast Algorithm for Image Euclidean Distance”. In: 2008

Chinese Conference on Pattern Recognition. 2008 Chinese Conference on Pattern

Recognition. Oct. 2008, pp. 1–5. DOI: 10.1109/CCPR.2008.32.

[38] Bing Sun, Jufu Feng, and Guoping Wang. “On the Translation-Invariance of Image

Distance Metric”. In: Applied Informatics 2.1 (Nov. 25, 2015), p. 11. ISSN: 2196-

0089. DOI: 10.1186/s40535-015-0014-6. URL: https://doi.org/10.1186/

s40535-015-0014-6 (visited on 10/29/2020).

[39] Terence Tao and Van Vu. Random Matrices: The Circular Law. Feb. 28, 2008. arXiv:

0708.2895 [math]. URL: http://arxiv.org/abs/0708.2895 (visited on 04/20/2021).

[40] UCAR. Community Earth System Model - CESM®. URL: http://www.cesm.ucar.

edu (visited on 07/23/2021).

[41] Philip Matchett Wood. “Universality and the Circular Law for Sparse Random Ma-

trices”. In: The Annals of Applied Probability 22.3 (June 1, 2012). ISSN: 1050-5164.

DOI: 10.1214/11-AAP789. arXiv: 1010.1726. URL: http://arxiv.org/abs/

1010.1726 (visited on 04/20/2021).

[42] Izzet B. Yildiz, Herbert Jaeger, and Stefan J. Kiebel. “Re-Visiting the Echo State

Property”. In: Neural Networks 35 (Nov. 2012), pp. 1–9. ISSN: 08936080. DOI:

10.1016/j.neunet.2012.07.005. URL: https://linkinghub.elsevier.com/

retrieve/pii/S0893608012001852 (visited on 09/28/2020).

[43] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a Per-

ceptual Metric”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-

https://doi.org/10.1175/JCLI-D-20-0387.1
https://journals.ametsoc.org/view/journals/clim/34/9/JCLI-D-20-0387.1.xml
https://journals.ametsoc.org/view/journals/clim/34/9/JCLI-D-20-0387.1.xml
https://doi.org/10.1109/CCPR.2008.32
https://doi.org/10.1186/s40535-015-0014-6
https://doi.org/10.1186/s40535-015-0014-6
https://doi.org/10.1186/s40535-015-0014-6
https://arxiv.org/abs/0708.2895
http://arxiv.org/abs/0708.2895
http://www.cesm.ucar.edu
http://www.cesm.ucar.edu
https://doi.org/10.1214/11-AAP789
https://arxiv.org/abs/1010.1726
http://arxiv.org/abs/1010.1726
http://arxiv.org/abs/1010.1726
https://doi.org/10.1016/j.neunet.2012.07.005
https://linkinghub.elsevier.com/retrieve/pii/S0893608012001852
https://linkinghub.elsevier.com/retrieve/pii/S0893608012001852

152 BIBILIOGRAPHY

nition (CVPR). Salt Lake City, UT: IEEE, June 2018, pp. 586–595. ISBN: 978-1-

5386-6420-9. DOI: 10.1109/CVPR.2018.00068. URL: https://ieeexplore.

ieee.org/document/8578166/ (visited on 10/13/2020).

[44] Victor Zlotnicki, Zheng Qu, and Joshua Willis. SEA SURFACE HEIGHT ALT GRIDS

L4 2SATS 5DAY 6THDEG V JPL1609. Ver. 1812. PO.DAAC, CA, USA. 2019. URL:

https://doi.org/10.5067/SLREF-CDRV2 (visited on 08/09/2021).

https://doi.org/10.1109/CVPR.2018.00068
https://ieeexplore.ieee.org/document/8578166/
https://ieeexplore.ieee.org/document/8578166/
https://doi.org/10.5067/SLREF-CDRV2

	Notation
	Abbreviations
	Introduction
	Spatio-Temporal Learning
	Testing of the SSESN
	Predicting Dynamics of the Kuroshio, and Ocean Applications
	Anomaly Detection
	Why Bother with High-Resolution Predictions?
	Contributions and Reading Instructions

	Background
	Supervised Machine Learning and RNNs
	Many Applications, Yet No Free Lunch
	Objectives of Supervised Machine Learning
	Introduction
	Induction and the Task of Learning
	Probabilistic Inference
	Hypothesis Selection and Assessment
	Bias-Variance Tradeoff
	Probabilistic Inference for Sequential Models

	Recurrent Neural Networks
	Unfolding the RNN
	Forward Propagation
	General RNN Expressiveness Comes at a Cost
	Training an RNN Can Be Tricky
	ESN Training: Least Squares

	Echo State Network Dynamics
	A Review of Echo State Networks
	Echo State Network Dynamics
	Input Mapping
	Reservoir Dynamics
	Eigenspectrum and Spectral Radius of the Reservoir
	The Echo State Property
	Beyond the Echo State Property

	Challenges and Bottlenecks to Spatio-Temporal Learning

	Development of a Highly Scalable Spatial Echo State Network
	Scaling Up the Reservoir Matrix
	Spectral Radius by Design
	Exploring Spectral Radii
	A Circular Law: The Eigenspectra of Sparse Fixed-Nnzpr Random Reservoirs
	Practical Considerations

	Dimensionality Reduction
	Dimensionality Reduction of H
	Principal Component Analysis
	Application of PCA in ESNs
	Impact of PCA on the ESN Dynamical System

	A Spatially Sensitive Metric
	You Get What You Ask For
	Reading Guidance
	The L2 Norm and Euclidean Distance
	The Image Euclidean Distance Metric (IMED)
	The Standardizing Transform
	A Naive Inverse Standardizing Transform

	IMED by Kronecker Product Decomposition
	Standardizing Transforms Using Frequency Representations
	IMED by Fourier Transform
	IMED by Discrete Cosine Transform

	Deconvolution And the Inverse Standardizing Transform for SESNs
	An Ill-Conditioned Problem
	Naive Inverse Transforms
	The Wiener Filter
	A Simple Solution

	IMED Benchmarks

	Application
	Forecasting with the Scalable SESN
	Reading Guidance
	The Unsolved Issue of Hyperparameter Optimization
	Training, Validating, and Testing
	Essential Hyperparameters
	Optimization with Competing, Imperfect Error Measures

	Synthetic Data: Predicting an Orb with Lissajous Curve Centre
	Grid Search on a Spatially Smaller Problem
	High-Dimensional Application: 500x500 Pixels
	A 15001500 Lissajous For the Front Page

	Synthetic Data: Predicting an Orb with Mackey-Glass Centre
	An Example of a Poor Choice of Hyperparameters
	500500 Mackey-Glass Orb

	Shallow Water Simulation
	Input Scaling Dramatically Impacts ESN Expressiveness

	Full-Resolution Ocean Predictions on the Kuroshio
	The Agulhas Current
	Time Complexity Benchmarking (16 Core CPU)
	Computational Considerations
	Hardware
	Setup, Hyperparameters and Problem Size
	Benchmarks of Time Complexity of Spatial Dimensions (CPU)

	Anomaly Detection
	Method of Detecting Anomalies from Prediction-Target Comparison
	Online ESN Learning for Error Sequence Generation
	Smoothing the Error Sequence using Moving Averages

	Anomaly Score from Moving Averages of Error Sequence
	Anomalies of the Kuroshio: A Proof of Concept

	Conclusion and Outlook
	Wrapping It Up
	Further Venues of Research
	An Imperfect Loss Function
	GPU Utilization
	A Closer Look at Spatial Input Maps
	Automatic Hyperparameter Optimization from ESN Dynamics
	Distribution of Training using Online Learning
	Applying More Variables in the SSESN

	black Bibiliography

