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1 Abstract

Magnetometry has many applications in wide range of fields ranging from medical
imaging[9] and diagnostics[10][8] to communication and defence[7]. Currently the
most sensitive magnetometers are SQUID’s (Superconducting quantum interference
devices) boasting sensitivities in the 4[fT/

√
Hz] range[3], though they do have sev-

eral downsides such as cost and their need for cryogenic cooling to maintain their
superconducting properties.
To overcome these limitations, we have investigated a magnetometer based on room-
temperature caesium vapor. We have successfully constructed and characterized a
3D-printed fiber-coupled magnetometer based on this room-temperature caesium
vapour cell.
We have found a sensitivity of 120[fT/

√
Hz] in the range of 5 − 100[Hz] and a

sensitivity of 74[fT/
√
Hz] at 150[kHz]. This put us a factor 30 off of the limitation

of quantum spin projection noise of 4[fT ] in the 5− 100[Hz] range.
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3 Introduction

There are many different interesting application for magnetometry, ranging from
the searching after oil and mineral deposits, biomedical applications, to finding sub-
merged submarines. One specific example from the bio-medical field is the potential
to use a magnetometer to measure a magnetocardiography (MCG) as an alternative
to a electrocardiogram (ECG). This may be useful as the MCG does not require
physical contact with the patient, which can enable non-invasive measurements of
the hearts of fetuses[10]. It may also enable the non-invasive measurement of nerve
signals[8]
One of the sensor types with a very good sensitivity is the SQUID (Superconduct-
ing quantum interference device) which can have a sensitivity in the 4[fT/

√
Hz]

range[3]. But the cost of SQUID’s and their need for cryogenic cooling motivates
the search for alternative sensor designs.
In this thesis we will explore such an alternative by construction and characterisation
of a miniaturized 3D-printed fiber-coupled room temperature vapor cell magnetome-
ter.

We will characterise the magnetometer’s performance in 3 different modes of
operation: A free induction decay mode (FID) which is a pulsed DC mode, the
RF sensitivity, and the continuous DC mode. The magnetometer is designed in the
hopes of improving the results in the continuous DC mode compared to what has
previously been achieved in our group [10][1]. We hope to achieve this through the
suppression of mechanical vibration by having all the optical components mounted
in the same rigid 3D printed shell. Even though we expect the sensor to show the
largest improvement in the DC regime, we still expect it to have the best sensitivity
in the radio frequency domain [17].
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4 Theory

4.1 Caesium

In the experiments we will be dealing with a vapor cell containing Caesium-133
isotopes, as it is the only stable isotope of caesium. The distribution of electrons in
the different atomic orbitals, also called the electron configuration, can be written
as:

1s22s22p63s23p64s23d104p65s24d105p66s1 (4.1)

The notation is composed of a series of element of the form nli where n is the princi-
pal quantum number which goes from 1 and up in increments of 1 and will indicate
the energy level of that orbital. The l indicates the orbital angular momentum of the
electrons in the shell, this quantity is also called the ”Azimuthal quantum number”.
The amount of angular momentum is indicated by a letter in order of {s, p, d, f, ...}
which corresponds to a total angular momentum of {0, 1, 2, 3, ...}. The i indicates
the number of atoms in the shell.
Another way of writing this is [Xe]6s1, which should be read as the electron configu-
ration is the same as in the noble gas Xenon, but with one more electron, called the
valence electron. All the dynamics we will be discussing is a result of the different
ways we can manipulate the valence electron.

4.1.1 Fine structure & spin-orbit interaction

The spin orbit coupling arises from the magnetic moments of the spin of the electron
interacting with the magnetic field that arises from the electron orbiting the nucleus.
In general the energy change of such an interaction can be written as

ĤSO = −µ̂ · B̂ (4.2)

In the case of the orbiting electron µ̂ ∝ Ŝ and B̂ ∝ L̂ where Ŝ is the spin angular
momentum and L̂ is the orbital angular momentum.

With all the factors we can write the spin-orbit correction as

∆ĤSO =
e2

2m2
e

1

r3
Ŝ · L̂ (4.3)

to simplify the solution of the problem we define a quantity which we call the total
angular momentum

Ĵ = Ŝ + L̂ (4.4)

Since Ŝ and L̂ commute we can rewrite Ŝ · L̂ as

Ŝ · L̂ =
1

2

(
Ĵ

2 − Ŝ2 − L̂2
)
. (4.5)

To calculate the energy correction from this interaction we will take the expecta-
tion value of Hamiltonian in equation 4.3, with the state expressed in the basis of
|n, l, j,mj〉

E
(1)
n,l,j,mJ

SO =
e2

2m2
c

〈n, l, j,mj|
1
2

(
Ĵ

2 − Ŝ2 − L̂2
)

r3
|n, l, j,mj〉 (4.6)
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We are allowed to use this form of first order non-degenerate perturbation theory

because Ŝ·L̂
r3

commutes with L̂
2
, the eigenoperator for l, Ĵ

2
, the eigenoperator for

j, and Ĵ z, the eigenoperator for mj. Knowing that the expectation values of our

operators are
〈
Ĵ

2
〉

= j(j + 1),
〈
L̂

2
〉

= l(l + 1), and
〈
Ŝ

2
〉

= s(s + 1). For more

details we will refer you to [4] and now state the result as

E
(1)
n,l,j,mJ

SO =

(
E

(0)
n

)2

me

n
[
j(j + 1)− l(l + 1)− 3

4

]
l(l + 1

2
)(l + 1)

(4.7)

So in the end we lift the degeneracy between levels which have parallel or anti-
parallel orbital angular momentum and spin angular momentum. For this to have
an effect we need both the orbital angular momentum and spin angular momentum
to be non-zero. The first state that meets this condition is electrons in the first
p-orbital. For the p-orbital we have {l = 1, s = 1

2
} which gives j = {1

2
, 3

2
}. These

two levels can be written with the term symbols 2P 1
2

and 2P 3
2

respectively.

4.1.2 Hyperfine structure

In the same ways as the fine structure, the hyperfine structure is also the result of
a coupling between two magnetic moment. For the hyperfine structure the coupling
is between the the electrons total angular momentum Ĵ and the nuclear magnetic
moment Î

ĤHFS = −µ̂ · B̂ ∝ Î · Ĵ (4.8)

The 2S 1
2

and 2P 1
2

states will split into 2 hyperfine levels as they have J = 1
2

F = |I − J |, ..., |I + J | = |7
2
− 1

2
|, |7

2
+

1

2
| = {4, 3} (4.9)

and the 2P 3
2

state will split into 4

F = |I − J |, ..., |I + J | = |7
2
− 3

2
|, .., |7

2
+

3

2
| = {2, 3, 4, 5} (4.10)

4.2 Quantized light

To start of our discussion of the quantum mechanical nature of light and later its
interaction with an atomic ensemble, we will start with the general expression for
the quantized electric field [1]

Ê =
∑
λ

√
~ωλ
2ε0V

(
âλeλe

ikλ·r + â†λeλe
−ikλ·r

)
(4.11)

where the sum over λ is the sum over all modes, that is all different propagation
directions and all different polarizations. eλ is a unit vector describing the light
polarization and as such it is a complex vector. kλ is the vector that indicates the

10



Figure 4.1: Energy level diagram for ceasium-133. This figure shows the relevant
levels S1/2, P1/2 and P3/2 (from bottom to top)

propagation direction. ωλ is the angular frequency of the light. â† and â are the
creation and annihilation operators respectively. V is the quantsization volume.
The annihilation and creation operators have the commutator relation[

âλ, â
†
λ′

]
= δλ,λ′ (4.12)

and we can define a number operator as

n̂λ = â†λâλ (4.13)

4.2.1 Stokes operators

Given that we will be working exclusively with polarised light, it makes sense to
define a set of quantities that describe how our light is polarized. Normally we have
three different basis sets of polarization, that being {x, y}, {+π

4
,−π

4
}, {σ+, σ−},

where we usually define the circular polarizations as

σ+ = −x− iy√
2

and σ− =
x+ iy√

2
, (4.14)

and we can define {+π
4
,−π

4
} as

+
π

4
=
x+ y√

2
and − π

4
=
x− y√

2
. (4.15)

Our first guess at defining such a quantity could be to simply take the mean between
the amount of one axis minus the amount on the other, as such:

Sx =
nx − ny

2
(4.16)
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if we were to write this on an operator form it would be

Ŝx =
n̂x − n̂y

2
=
â†xâx − â†yây

2
(4.17)

and what we have now just constructed is one of the three Stokes operators. We can
define the other two in a similar fashion and that gives

Ŝy =
n̂+π

4
− n̂−π

4

2
=
â†xây + â†yâx

2
(4.18)

Ŝz =
n̂σ+ − n̂σ−

2
=
â†xây − â†xây

2i
(4.19)

Instead of working in the {x, y} basis we may do as in equation 4.14 and define a
circular basis as

â+ = − âx − iây√
2

and â− =
âx + iây√

2
. (4.20)

We can now write two new operators in the circular basis

Ŝ+ = −Ŝx − iŜy and Ŝ− = Ŝx + iŜy. (4.21)

By using the commutator relation in equation 4.12 we can calculate the commutator
relations for the stokes operators[

Ŝj, Ŝk

]
= iεjklŜl and

[
Ŝz, Ŝ±

]
= ±Ŝ± (4.22)

These are the same commutator relations that we normally have for angular mo-
mentum operators.
As the indices on the stokes operator may indicate or the similarity in the math-
ematics to the standard treatment of a pure two level system, commonly used in
quantum information theory, one may get the inclination that we could construct
a sort of Bloch sphere of polarisation state. This is indeed something one can do
but when working with polarised light it is no longer called a Bloch sphere but a
Poincaré sphere, though the concept is quite similar.

Ŝx

Ŝy

Ŝz
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In the case of a high intensity light beam with polarization in the x-direction, the
quantum nature of the â†x and âx may be disregarded and both can just be regarded
as a real number. In this case equation 4.17 to 4.19 can be written as

Sx ≈
N2
x − â†yây

2
≈ N2

x

2
(4.23)

Ŝy ≈ Nx

ây + â†y
2

(4.24)

Ŝz ≈ Nx
ây − ây

2i
(4.25)

If we now consider that the light polarization may be different at different positions
in time and/or space we will have to introduce spatial and temporal dependency in
our stokes operators. Doing this will modify our first commutator relation from 4.22
to [

Ŝj(z, t), Ŝk(z
′, t′)

]
= iδ(z − z′)εjklŜl(z, t) (4.26)
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4.3 Larmor precession

To calculate how the total angular momentum of an atom behaves in an applied
external magnetic field we start with a Hamiltonian very similar to the ones in
equation 4.2 and 4.8

ĤLarmor = −µ̂ · B̂ext. (4.27)

In this case the magnetic moment of the atoms will be µ̂ = γ~F̂ where γ is the

gyromagnetic ratio and F̂ =
[
F̂x, F̂y, F̂z

]
. If we work in the Heisenberg picture we

can use the Heisenberg equation to calculate the time evolution of an operator[13]

d

dt
Â(t) = i/~

[
Ĥ , Â(t)

]
. (4.28)

If we remember that the angular momentum operator in general has the same com-
mutator relation as the first equation in 4.22, we can calculate the equation of motion
for the total angular momentum of an atom in an external magnetic field:

d

dt
F̂ = −i/~

[
F̂ (ĤLarmor)− (ĤLarmor)F̂

]
(4.29)

= −iγ
[
F̂ (F̂ · B̂ext)− (F̂ · B̂ext)F̂

]
(4.30)

= γF̂ × B̂ext. (4.31)

From this we see that when subjected to an external magnetic field, the total spin
of the atom will precess around an axis defined by the direction of the said mag-
netic field. This precession will happen with a frequency of ωLarmor = γ|B|. This
frequency is called the Larmor frequency.

4.4 Zeeman splitting

When we apply an external magnetic field to our atomic ensemble it will give rise to
an interaction as described by equation 4.27. In the same way as the fine structure
and hyperfine structure did this will result in an energy level splitting. We can write
the Hamiltonian as[14]

Ĥzeeman = −µ̂atom · B̂ = gFµBBFx, (4.32)

where we define B as the external magnetic field, µB is the Bohr magneton and gF
is

gF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
. (4.33)

We may also identify the gyromagnetic ratio from earlier as:

γ = −gFµB
~

(4.34)
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By using first order time independent perturbation theory and expressing the atomic
state with the state vector |J, I, F,mF 〉, we get the first order energy splitting

E(1)
zeeman = ~ωLarmormf . (4.35)

If we were to apply a strong external magnetic field we would also need the second
order correction to the energy which has the form [14]

E(2)
zeeman ∝

16−m2
F

2
B2. (4.36)

A conceptual image of the energy level splitting resulting from the first order from
the zeeman effect can be seen in figure 4.2

Figure 4.2: Energy level diagram for the ground state 6s2S1/2 of caesium.

4.5 Interaction Hamiltonian

In this section we will explore the dynamics of our light-atom system. This will be
an abridged version of the derivations which can be found in [1] and [11].
To start with we will write the interaction Hamiltonian between the probe laser and
the atomic ensemble, which has been pump to the |f = 4,mf = 4〉 state.

Ĥinteraction =
−cΓ0λ

2
probe

16A∆π

∫ L

0

ρA
(
a0φ̂(z, t) + a1Ŝz(z, t)F̂z(z, t)

)
dz, (4.37)

where Γ0 is the natural linewidth which arises form the spontaneous decay of the
atoms in the exited state. ∆ is the detuning of the probe laser, c is the speed of light
in the vacuum, λprobe is the wavelength of the probe, ρ is the density of atoms in
vapor-cell, and L and A is the length and cross-section of the of the atomic ensemble
respectively. We assume that the probe-laser is far detuned from the 6S1/2, f = 4 −→
6P3/2 transition for the rest of the derivation. a0 and a1 are dimensionless parameter

and at large detuning they will have the values a0 = 4 and a1 = 1. Ŝz(z, t) and
F̂z(z, t) are the stokes operator and the operator for the total angular momentum
respectively. The stokes operator has the commutator relations describe in equation
4.26 and F̂z(z, t) has the commutator relation[

F̂j(z, t), F̂k(z
′, t′)

]
=
iδ(z − z′)εjkl

ρA
F̂l(z, t). (4.38)
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To find the dynamics of the system we will need to solve the equations of motion for
the system. It can be shown that the Heisenberg equation for the stokes operators
can be written as [11](

∂

∂t
+ c

∂

∂z

)
Ŝj(z, t) = −i

[
Ŝj(z, t), Ĥinteraction

]
. (4.39)

To simplify this expression further we will not include retardation terms i.e. let the
speed of light go to infinity and thereby ignoring the time derivative.

∂

∂t
Ŝj(z, t) = −i

[
Ŝj(z, t), Ĥinteraction

]
(4.40)

from this we get the equations of motion for the stokes operators

∂

∂t
Ŝx(z, t) = a1

Γ0λ
2
probeρ

16∆π
Ŝy(z, t)F̂z(z, t), (4.41)

∂

∂t
Ŝy(z, t) = a1

Γ0λ
2
probeρ

16∆π
Ŝx(z, t)F̂z(z, t), (4.42)

∂

∂t
Ŝx(z, t) = 0. (4.43)

Given that we are working with a vapor-cell of length L means that the atoms
are contained in a section of space which we define as z = [0, L]. Given this we
now define the stokes operators Ŝini (t) = cŜi(z = 0, t) and Ŝouti (t) = cŜi(z = L, t).
looking at the equations of motion we see that the solution for Ŝz is simply

Ŝinz (t) = Ŝoutz (t) (4.44)

For the two other stoke operators we have a set of first order coupled differential
equations which have the solutions

θF =
−a1Γ0λ

2
probeρL

32π∆
F̂z(z, t), (4.45)

ŜOutx (t) = Ŝinx (t)cos(2θF )− Ŝiny (t)sin(2θF ), (4.46)

ŜOuty (t) = Ŝiny (t)cos(2θF ) + Ŝinx (t)sin(2θF ), (4.47)

where θF is the Faraday angle. We can see from the equations that the polarization
components in the x- and y-direction will be rotated around the z-axis as it passes
through the atomic ensemble. The amount of rotation is dependent on several
factors. Some of these factors, such as π, 32, and Γ0, are beyond the control of us
as mere mortal physicists while others are within our grasp.
ρ is dependent on the amount of caesium in vapor form inside the cell and can
therefore be increased by increasing the temperature. L could be changed by using
a different cell design. ∆ and λprobe are dependent on the specific settings of the

probe laser and F̂z(z, t) is dependent on the atomic state. The consideration of
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maximizing F̂z(z, t) will inform our decisions on pumping scheme which will be
discussed in section 5.1. One change we may wish to make is the replacement of the
atomic spin operators with the ensemble spin operators. We define this as

∂

∂t
F̂x(z, t) = a1

Γ0λ
2
probeρ

16∆π
F̂y(z, t)Ŝz(z, t), (4.48)

∂

∂t
F̂y(z, t) = a1

Γ0λ
2
probeρ

16∆π
F̂x(z, t)Ŝz(z, t), (4.49)

∂

∂t
F̂z(z, t) = 0. (4.50)

Given that Ĵ is just a linear combination of commuting F̂ , we may replace F̂ with
Ĵ and get the equations of motion for the total spin. This is only one component of
the total equation of motion for the atomic spin and is the Faraday interaction.
Another effect on the atomic spin is the Zeeman effect as described in section 4.3,
where the Hamilton is defined in equation 4.27 and the contribution to the equation
of motion is in equation 4.31. The optical pumping as described in section 5.1 is
applied along the x-axis and will therefore move the atoms to a spin-state along the
x-axis. If we define the pumping-rate as R and J0 = 4Na then we can write the
equations of motion of the optical pumping as

∂

∂t
Ĵx(t) = R

(
J0 − Ĵx

)
, (4.51)

∂

∂t
Ĵy(t) = −RĴy, (4.52)

∂

∂t
Ĵx(t) = −RĴz. (4.53)

In our system there will of course also be effects that cause the spin components
to decay. We will define two different factors: The spin lifetime, T1, and the spin
decoherence time T2. as it is more convenient to define this in terms of rate then
times we define T1 = 1

Γ1
and T2 = 1

Γ2
. The decay will contribute to the equations of

motion with:
∂

∂t
Ĵx(t) = −Γ1Ĵx, (4.54)

∂

∂t
Ĵy(t) = −Γ2Ĵy, (4.55)

∂

∂t
Ĵx(t) = −Γ2Ĵz. (4.56)

If we combine all of these terms we get

∂

∂t
Ĵx(t) =

(
−Γ1Ĵx

)
decay

+
(
R
(
J0 − Ĵx

))
pump
−γ
(
ĴzBy − ĴyBz

)
zeeman

+
(
−aŜinz Ĵy

)
interaction

,

(4.57)
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∂

∂t
Ĵy(t) =

(
−Γ2Ĵy

)
decay

+
(
−RĴy

)
pump
−γ
(
ĴxBz − ĴzBx

)
zeeman

+
(
aŜinz Ĵx

)
interaction

,

(4.58)

∂

∂t
Ĵx(t) =

(
−Γ2Ĵz

)
decay

+
(
−RĴz

)
pump

− γ
(
ĴyBx − ĴxBy

)
zeeman

. (4.59)

where a =
−a1Γ0λ2probe

16π∆A
. Now that we have the general expression for the equations of

motion of the atomic spins and their effect on the light polarization we will move
on to a few specific cases that will be relevant for understanding our experimental
results.
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4.6 Atoms and external magnetic field

4.6.1 Zero field

We will no look at the case of zero magnetic field and assuming that we polarize
the probe beam along the x-axis. The chosen polarize mean that Ŝinz will only have
a non zero value because of noise. We assume this noise on Ŝinz is negligible. From
this we get the set of equations of motion

∂

∂t
Ĵx(t) = −Γ1Ĵx +R

(
J0 − Ĵx

)
, (4.60)

∂

∂t
Ĵy(t) = −Γ2Ĵy −RĴy, (4.61)

∂

∂t
Ĵx(t) = −Γ2Ĵz −RĴz. (4.62)

From these equations we see that the y- and z-component of the spin will just decay,
and the rate of this will be different whether we pump or not. As for the Ĵx we will
get into a steady state of

Ĵx =
RJ0

R + Γ1

. (4.63)

So for a well pumped ensemble defined by R >> Γ1 we will have that Ĵx ≈ J0. This
is a coherent spin state.

4.6.2 Constant arbitrary field

For the case of an arbitrary constant magnetic field we will have the equations of
motion:

∂

∂t
Ĵx(t) =

(
−Γ1Ĵx

)
+
(
R
(
J0 − Ĵx

))
− γ

(
ĴzBy − ĴyBz

)
, (4.64)

∂

∂t
Ĵy(t) =

(
−Γ2Ĵy

)
+
(
−RĴy

)
− γ

(
ĴxBz − ĴzBx

)
, (4.65)

∂

∂t
Ĵx(t) =

(
−Γ2Ĵz

)
+
(
−RĴz

)
− γ

(
ĴyBx − ĴxBy

)
. (4.66)

To solve this rather complicated set of equations we will make that approximation
that Γ1 = Γ2 which is equivalent to ignoring the depumping effect that elastic
collisions will have on the atoms. If we define the quantities |B|2 = B ·B which is
the magnitude of the magnetic field squared, Ĵ0

x = RJ0
R+Γ1

which is the steady state
solution for the spin component along x in the case of no magnetic field as shown in
equation4.63 and with the constant ∆B = R+Γ1

γ
we can write the solution as

Ĵx = Ĵ0
x

∆B2 +B2
x

|B|2 + ∆B2
, (4.67)

Ĵy = Ĵ0
x

BxBy −Bz∆B

|B|2 + ∆B2
, (4.68)
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Ĵz = Ĵ0
x

BxBz +By∆B

|B|2 + ∆B2
. (4.69)

Given that what we will read out from the atoms is related to the Ĵz component of
the the spin. If we assume that we do a slow scan over the value of Bz then we can
get a function in one variable, assuming the others are constant. We have to do a
very slow scan as the assumption to derive these equation are that Bx, By, Bz are all
constant. We see that in the case of Bx = 0 and By 6= 0 we will have a Lorentzian
shape resulting from the Bz scan. The orientation of the Lorentzian will depend on
the sign of By. A plot of this can be seen in figure 4.3

Figure 4.3: The expected atomic response as a function of Bz, for three cases of By.

If we were to do the same again, just with Bx 6= 0 and By = 0 we can see from
equation 4.69 that we will end up with a dispersive lineshape instead of a Lorentzian
one. Changing the sign of the non-zero field component will mirror the lineshape
around the x-axis in the plot.

4.6.3 Arbitrary time varying field along the y-axis

Without going into much detail, we get from [1] that for an arbitrary time varying
field in the y-direction the expectation value of the output stokes operator in the
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Figure 4.4: The expected atomic response as a function of Bz, for three cases of Bx.

y-polarization may be written as〈
Ŝouty

〉
(t) = −aSxγJx

∫ t

t′=−∞
By(t

′) (cos(ωLt)cos(ωLt
′) + sin(ωLt)sin(ωLt

′)) e−(R+Γ2)(t−t′)dt′

(4.70)

= −aSxγJx
∫ ∞

0

By(t
′τ) (cos(ωLτ)) e−(R+Γ2)τdτ ′ (4.71)

=

∫ ∞
0

By(t
′ − τ)κ(τ)dτ ′, (4.72)

where we define τ = t − t′ and κ(τ) = cos(ωLτ)e−(R+Γ2)τ . κ(τ) is what we call the
kernel or impulse response and we see that the magnetometer signal is the result
of a convolution between the kernel and the time varying magnetic signal. From
this we also see that the kernel will be dependent on the transverse field that the
magnetometer is subjected to given that it is dependent on the Larmor frequency
ωL. This also gives us the option of finding the strength of the transverse magnetic
field by either fitting to the kernel or looking at the Fourier transform to determine
ωL. The kernel will also be dependent on the laser powers as the exponential decay
depends on Γ2. So we will need to remeasure the kernel for each set of parameters
under which we wish to test the magnetometer.
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5 Experimental method

5.1 Pumping scheme

In the experiment we will use a laser to interact with the atom spin of the caesium
atoms present in our vapor-cell. We do this to gain information about the magnetic
field that permeates the vapor cell. To this end we would like to prepare our atomic
ensemble in a spin state where as many of the atoms as possible have the same spin.
To get the best result we would like to put the atoms into a state with a large value
of |mf | as this will interact the strongest with a given magnetic field. The state
should also be one with a reasonable lifetime so the atoms don’t decay immediately
when we stop pumping.
The two best candidates for this is the |f = 4,mf = 4〉 and |f = 4,mf = −4〉 as they
have a large mf and a long lifetime. We make the choice of using the |f = 4,mf = 4〉
state. Now that we have chosen a desired atomic state we need to transfer as many
atoms to this state as possible. To accomplish this we use optical pumping.
When we are doing optical pumping, we are limited in what transitions we can drive.
The factors limiting us are called the selection rules, and they arise from the fact
that we need to have both energy and momentum conservation, in our process. To
ensure that there is energy conservation we will need to match the wavelength of the
laser to the energy difference between the two levels in the transition. The energy of
a photon is E = ~ω where ~ is the Planck constant and ω is the angular frequency
of the photon.
From the conservation of momentum we can get a series of restriction on the differ-
ence between the quantum numbers of the two states we are transitioning between[4].

∆l = ±1 (5.1)

∆s = 0 (5.2)

∆j = 0,±1 (5.3)

∆f = 0,±1 (5.4)

∆mf = 0,±1 (5.5)

The allowed difference in the mf number is determined by the polarisation of the
light. σ+ drives a ∆mf = 1, σ− drives a ∆mf = −1, and linear polarisation drives
a ∆mf = 0.
Due to all these restrictions we will use two lasers which we call the pump and the
re-pump laser. The re-pump laser is locked on the F = 3 −→ F ′ = 2, 3 crossover
transition and have a right hand circular polarisation. This will make it resonant
with the D2 line between the 6s2S 1

2
, f = 3 state and the 6p2P 3

2
, f = 4 state.

The pump laser will have a wavelength of 852 [nm] and will also have a right
hand circular polarisation. This will make it resonant with the D1 line between
the 6s2S 1

2
, f = 4 state and the 6p2P 1

2
, f = 4 state.
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Figure 5.1: The energy level diagram of the valance electron of caesium-133 with
transitions driven by the pump and repump laser indicated. This figure shows levels
S1/2, P1/2 and P3/2 (from bottom to top)

As the spontaneous decay of the electron may happen along any of the allowed
transitions, this will result in the electron being shifted to the right in our energy
level diagram. This will continue until it decays into the |F = 4,mf = 4〉 in the
ground state. The pump does not drive it out of |F = 4,mf = 4〉 since there is no
|F = 4′,mf = 5′〉 state in the P1/2 manifold.
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5.2 Magnetometer layout and design

Throughout this project we will be dealing with a magnetometer that is built in a
3D-printed box consisting of two parts: A lower shell where all the components will
be mounted, and a lid. The lid will be put on as the last step of assembly to ensure
that none of the components are accidentally moved. The magnetometer layout is
designed by Michael Zugenmaier(Post.Doc) and is based on previous experiences
gathered Hans Chr. Stærkind(Ph.D) in his work with designing 3D printed optical
sensors for MRI measurements. The internal setup of the optical elements is based
on the setup used to get the measurements in [10]. The primary goal of this project is
to re-create the measurements of [10] with a 3D printed, miniaturized, fiber coupled
magnetometer.
A labeled picture can be seen in figure 5.2, and more pictures of the magnetometer
can be found in appendix B, and a diagram of the optical setup can be seen in figure
5.3. I will refer to these throughout the explanation of the setup.

(a) (b)

Figure 5.2: (a) Picture of the magnetometer with labels (b) Closed magnetometer
as seen from above

In the magnetometer there are 6 fibers for in/out coupling. F1 is a multi-mode
fiber that out-couples 10% of the probe so that we can monitor the total power and
its stability. Later this was also used to power stabilise the probe - even though
it was not intended in the design, it worked quite well. F2 is the input coupling
for the probe laser, this fiber is a single mode polarisation maintaining fiber. F3
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is the input coupling for the pump and re-pump lasers. This fiber is also single
mode polarization maintaining. F4 and F5 are the two output for the balanced
detection. Both of these are multi-mode fibers. F6 is for monitoring the pump/
re-pump with 10% of the total power of these lasers’ output. Out of the 6 fibers in
the magnetometer, only 4 of the are strictly necessary for the basic functioning of
the magnetometer them being F2,F3,F4, and F5.

Figure 5.3: Optical diagram of the magnetometer.

All the fibers are connected to the magnetometer by pushing the end up against
a ”window”, applying index matching fluid, and clamping it down with the clamp
that is part of the nylon construction of the magnetometer, and a nylon screw. The
windows are coated with an anti reflective coating to prevent back-scattering. The
index matching fluid was added to prevent possible fiber modes to interfere with the
operation of the magnetometer.
In the path of both the probe and the pump/re-pump we have placed a polarizer,
even though the fibers we use to input the lasers are polarization maintaining. This
is done to ensure that we only have the correct linear polarization before the laser
interacts with other components and the atoms. In the idealised case these should
not be necessary, but there is no harm done by adding them, and the real world is
rarely an idealised case. Just before getting to the cell, the pump/re-pump passes
though a 90/10 beamsplitter, and a the 90% goes though a λ/4 wave-plate and into
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the atomic ensemble. The 10% of the power is output for monitoring. The λ/4 wave-
plate gives the pump/re-pump the right hand circular polarization that it needs to
work in the pumping scheme as defined in section 5.1. After the pump/re-pump
passes though the cell, it terminates at the magnetometer wall and should not have
any back reflections as it is made from nylon.
After the probe passes though the atomic ensemble it goes through a λ/2 waveplate
which will turn the linear polarisation by 45o. It is then incident on a polarising
beamsplitter with it’s polarisation axis along the y-axis. So in the case where the
atomic ensemble doesn’t change the polarisation of the probe, half of the light will
go down each arm to the fibers F4 and F5 and, assuming identical output coupling
efficiency, equal amounts of light will hit both of the photodiodes in the balanced
photo detector.
The lenses in each of the fiber arms have one of two purposes. For the input fibers
it is to collimate the laser beam after it exits the fiber as the laser beam coming out
of the fiber diverges. For the outputs the lens focuses the light so the most of it hits
the fiber core and is thereby coupled out of the magnetometer. The lenses are also
used for alignment of the laser-beams.

5.2.1 Magnetometer assembly

To construct the magnetometer, several different optical components need to be
placed and fixed in position inside the 3D-printed shell. After consulting with Hans
Chr. Stærkind, we were provided with his suggested process of assembly. As the two
magnetometers are only of similar but not identical designs, we made some modi-
fications to the process. We will now briefly go through the process of assembling
the magnetometer.
All the lenses in the magnetometer are identical. They are circular with a flat side
and a convex side and as such will fit not well into the rectangular slots in the mag-
netometer shell. The lenses are therefore mounted, by the use of glue, in rectangular
plastic lens-holders made for this purpose. Due to the, by quantum optics standards,
large manufacturing tolerance of 3D printed items, the lensholders are selected such
that they are slightly too large for the lens slots and are thereafter filled, by hand,
such that they are just able to be pushed into the slots. This ensures that the lenses
position can be adjusted if we deliberately push on them, but they will not move
once the magnetometer is closed, unless we use the alignment holes. The fibers are
simply clamped in place using the brace that is built into the shell, and tension is
applied by a nylon screw.
The rest of the components are fixed in place using epoxy. When inserting these
elements, a visible laser is sent through the fiber and into the magnetometer to help
the alignment of the elements. The elements are then inserted one by one starting
with the first in the beam-path, either probe or pump/repump, and then we work
our way forward though the beam-path. When all the elements have been inserted,
the magnetometer is closed, and final alignment of the lenses will be done. This
alignment is done by inserting rods in the small grooves that can be seen connecting
the side of the lens slots to the edges in figure 5.2a. Where there is no groove, the
diagonal slots in the lid are used, which can be seen in figure 5.2b. The two holes
next to the slots are mirrored on the bottom and are used to adjust the lenses posi-
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tion up or down after the magnetometer have been closed. For the fine alignment of
the lenses after the magnetometer have been closed a special tool was designed and
constructed. Pictures and technical scale drawings can be found in appendix A.

5.3 Calibrating magnetic field

In the experiments there are several different kinds of magnetic fields that we will
need to determine or cancel. To be able to do this we will do a short overview of
different methods to be able to cancel transverse magnetic field and determine the
size of induced RF fields and induced DC fields.

5.3.1 DC transverse field cancellation

As we saw in section 4.6.2 we can determine the transverse field by looking at the
line-shape of the atomic response as we scan over Bz. Of course in general the field
is going to be some combination of transverse x- and y-field, which will result in that
the lineshape we will see on the scope not being a ”pure” Lorentzian or dispersive
shape. The method that we settled on for canceling the field is that we simply pick
what seems to be the dominating component and then cancel that first. Let’s say
that the lineshape is mostly dispersive, then we will tune the current on our Bx coil
until we have a mostly Lorentzian shape. Then we go on to tune the By current
until we are either almost flat or the feature we see is either mostly Lorentzian again
or just a small residual. If it is Lorentzian we go back to tuning the Bx current. We
keep switching back and tuning the current until we have an almost flat line. We
would of course like for it to be completely flat, but we will most likely have a small
residual feature left that is neither Lorentzian nor dispersive. Looking at figure 5.4
we see a trace of badly calibrated Bx cancellation along with a good trace of the
well canceled field. In figure 5.5 we see the case of a badly canceled By field along
with the same, well canceled trace. We have in general found that it is necessary to
perform this cancellation every day before we start measuring, and also after every
time we degauss.

5.3.2 AC-RF field strength determination

To find the sensitivity of the magnetometer in the Radio frequency(RF) domain we
need to be able to apply an RF field of known magnitude. One way to estimate the
strength of the applied field is to use the physics of the AC Faraday effect. For the
full theoretical explanation please see [16]

The conceptual explanation is that if we have a macroscopic spin state that starts
off in the state being completely aligned along an applied B-field in the x-direction,
and we then also apply an RF magnetic field along the z-axis, then we may write
the Hamiltonian of the system as

Ĥ = ω0F̂x + AF̂zcos(ωdt), (5.6)

where the F̂i operator is the operator of the spin in the i direction, A = 2πγBrf is the
coupling Rabi frequency with field strength Brf , and the gyro-magnetic ration for

27



Figure 5.4: The atomic response for different values of Bx as a function over Bz.
The blue line is for a too large current on the Bx coil, orange is to little current and
the green trace is the value of Bx current that gives us the smallest feature.

caesium γ = 350[kHz
G

]. One may find the equations of motion for this system by going
to the Heisenberg picture and applying the Heisenberg equation to the three spin
operators {F̂x, F̂y, F̂z}. Solving this system for the initial conditions (Fx, Fy, Fz) =
(J, 0, 0) we get

Fx(t)

J
=
e−Γt

Ã2

[
cos

(
Ãt

2

)
A2 + 4∆2

]
, (5.7)

Fy(t)

J
=
Ae−Γt

Ã
sin

(
Ãt

2

)
, (5.8)

Fz(t)

J
=

4A∆e−Γt

Ã2
sin2

(
Ãt

4

)
. (5.9)

From this we can see that

Fy ∝ sin

(
At

2

)
, (5.10)

so if we measure Fz and find the time it takes to drive a π transition, then we can
calculate Brf by

BRF =
A

2πγ
=

1

tπγ
. (5.11)

Two plots at different BRF can be seen in figure 5.6.
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Figure 5.5: The atomic response for different values of By as a function over Bz.
The blue line is for a too large current on the By coil, orange is to little current and
the green trace is the value of By current that gives us the smallest feature.

(a) (b)

Figure 5.6: Plots of the atomic response to RF excitement. Both are taken at the
same Larmor frequency but with different RF field strength. (a) plot of the driven
transition with 20[Vpp] on the RF coil with a 1[kΩ] resistor in series. The time to
drive a π transition is 255 · 10−6[s]. (b) Plot of the driven transition with 15[Vpp]
on the RF coil with a 1[kΩ] resistor in series. The time to drive a π-transition is
334 · 10−6[s]

If we apply this procedure for several different RF drive voltages, then we get
a, hopefully linear, relationship that we can use to find the BRF field strength for
any given drive voltage. If there is no resonances in the circuit, then we would
expect that there is a linear relationship between the applied voltage and the RF-
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field strength because of Ohm’s law and the expected field generated from a pair of
Helmholtz coils [5].

I =
V

R
, (5.12)

B =

(
4

5

)3/2
µ0NI

r
, (5.13)

where V is the applied voltage, R is the resistance, N is the number of windings in
the Helmholtz coils, r is the radius of the Helmholtz coils, and µ0 is the vacuum
permeability. In figure 5.7 we see the magnetic field calculated from the estimated

Figure 5.7: The relation between the input RF voltage and the estimated BRF field
strength with a straight line fit. f(x) = 5.62 · 10−8x+ 2.69 · 10−9

tπ time in relation the the drive voltage applied to the RF coil. By visual inspection
the relationship seem quite linear with very little error. If one wanted to reduce the
error even further, one may realise that the main source of error in this estimation
method comes from deciding on the exact place of the minimum, such as the ones
indicated with the orange lines in figure 5.7. This error does not change whether we
are finding the tπ time or the tN ·π time. We can therefore drive the atomic ensemble
for a few more cycles and make the error go down with 1

N
, though the total tN ·π

should be much smaller than the t2 of the system.

5.3.3 DC field strength determination

The field strength found in the previous section was for a RF field. We also need
a method to find the field strength of a DC field. There are several ways in which
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we can do this, but all of them will estimate the Larmor frequency and then use
equation 6.2 to determine the field strength. The first method we could employ is to
simply us the RF coil to excite the atoms with broadband noise. If we then measure
the atomic response and look at the Fourier transform, we should find a peak at the
Larmor frequency.
If we input a sine wave on the RF coil instead of broadband noise, we will only excite
the atoms if the frequency of the sine wave is close to the Larmor frequency. The
largest response will be when ωRF = ωLarmor. So by simply observing the response
on the scope, we can find the frequency that gives the largest amplitude response.
The last method is to use the kernel as found in the theory section: κ(τ) =
cos(ωLτ)e−(R+Γ2)τ . With this we can either do a fit to find ωL or a Fourier transform.
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6 Results

We will now have a look at how we can use the magnetometer to measure the strength
of a magnetic field. We will have a look at three different modes of operation: Free
induction decay(FID), RF , and continuous DC. The FID magnetometer technique
is measuring the bias field in the DC/low frequency domain. But first we will
determine the coherence time of the vapor-cell while it is inside our magnetometer
to ensure that it is working as expected.

6.1 T2

To determine the coherence time of the collective atomic spin-state in our vapor-cell,
we measure the decay of the projection of the collective spin on the axis of the probe
light propagation direction. We do this by first applying the pumping scheme as
described in section 5.1. When we have reached a state where most atoms are in the
F = 4,mF = 4 state, we apply a sinusoidal RF excitation that is perpendicular to
the optical plane. The frequency of the excitation is equal to the Larmor frequency
of the atoms at the given bias field.
This RF excitation will cause the atomic spin to start precessing around the axis
defined by the magnetic bias field. In this case the bias field is along the axis of
the magnetic shield, which is the x-direction. Once we have a sufficiently large
projection, which usually only takes a few oscillations of the on resonance RF field,
the RF field is turned off, and the decay of the atomic spin state can be observed
through the far detuned and linearly polarized probing of the probe laser, as its
polarization is changed by the Faraday rotation caused by the atoms as described
in section 4.5. The pump laser is also turned off to eliminate the R term in the
exponential decay as seen in section 4.5.
After we have measured the signal, as can be seen in figure 6.1a, we fit it with the
function similar to the one defined in eq. 6.1. One change to the function is that
k = 0 as we AC couple the scope for this measurement, and we therefore will not
have an offset. As we can see in figure 6.1b, our fit(orange) is in good agreement with
the data(blue). From the fit we extract the decay-time, T2 = 17[ms]. As described
in section 4.5, T2 = 1

Γ2
.

This is in good accordance with the data collected on the vapor-cell before inserting
it into the magnetometer, where the T2 was measured to be around ≈ 20[ms] for
very low laser powers. Given that we have about the same performance of the
vapor cell in the magnetometer as we did in the test before inserting it into the
magnetometer, we conclude that the magnetometer is working as intended in regards
to the spin coherence, and we will therefore proceed to test the sensor’s performance
as a magnetometer.
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(a) (b)

Figure 6.1: (a) Decay of the atomic spin. (b) zoom-in on the decay of the atomic
spin. The blue is the data, and the orange is the fit. the T2 is approximately 17 ms

6.2 Free induction decay(FID) magnetometer

Taking inspiration from the paper by D. Hunter et. al. [6], we used the free induction
decay of the atomic spin to determine the magnetic field. Contrary to the other
modes of operation discussed in this thesis, this is a pulsed method, where each
pulse can be split into three phases. The three phases can be seen on figure 6.2b.
Before the measurement starts, the pumping scheme from section 5.1 is applied to
prepare the atomic state. After the atoms are well pumped into the |F = 4,mF = 4〉
manifold, we apply a few oscillations of RF excitation at the Larmor frequency. This
is the phase indicated with a 1 in the top of fig6.2b. After this, the pump laser is
blocked and the RF excitation is stopped. The free induction decay is observed with
the probe for a time significantly longer than 1/fLarmor, as we need to fit a sine
wave to this later. This is the phase indicated with a 2 and the red bar in figure
6.2b. In phase 3 the pump is unblocked and the atoms are again pumped into the
|F = 4,mF = 4〉 manifold, whereafter the process starts over again. In figure 6.2 we
can clearly see the difference in decay rate between having the pump laser on or off.
This measurement is repeated back to back. A cutout of a data-trace can be seen
in fig 6.2a. What we end up with is a trace that contains 160 pulses in 1 second.
From the data we select the 160 regions of free induction decay with no pump and
fit the function we defined in equation 6.1.

g(t) = A · cos (2π · f · t+ φ) e(−1/T2)t + k, (6.1)

where A is the amplitude, f is the frequency in [Hz], φ is the phase, T2 is the
coherence time, and k is an offset as the input to the balanced photo-diode may not
be perfectly balanced in all cases.
We will now test the magnetometers performance at a few different frequencies in
this mode of operation. This was both intended as a means to compensate for
possible peaks in the noise and to ensure that we have a wideband magnetometer.
As it turns out, only one of the tested frequencies was working as intended in the
end.
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6.2.1 FID at 5.3 kHz & 25 kHz Larmor frequency

Looking at figure 6.2a, we see three and a bit of the consecutive pulses. We
can clearly see the three phases, RF-excitation, no-pump decay, and pumping to
F = 4,mF = 4, as described in section 6.2. In figure 6.2b we see the start selec-
tion of the fitted portion marked by the orange star. The end of the fit selection is
marked by the green star. As the only quantity in the fit that we are interested in
at the moment is the frequency in the FID phase (phase 2), the end of the selection
is deliberately a bit short so that we do not get any of the of the pumping phase
included in our fit. We exclude phase three from the fit because the Larmor Fre-
quency will will be shifted due to the Stark shift caused by the pump and repump.
Looking at figure 6.3a, we see that the fit (orange) is in good agreement with the
data (blue). This is the case for all the fits of the free induction decay we make in
this section.

One data file is in total one second long and contains 160 individual FID’s which
are evenly spaced in time. Each of these are fitted, and the fitted Larmor frequencies
are shown in figure 6.3b. It is clear to see that the Larmor frequency is not stable,
but what we see are not random fluctuations either, as there is a clear pattern.
Given the very poor stability of the Larmor frequency, it does not make sense to
continue with the data-analysis of this data file to find the noise floor. The reason
for this pattern in the Larmor frequency is not known with complete certainty, but
it is highly suspected that it is the result of the current-supply not being able to
provide a stable current at the given setting. This is suspected for 2 reasons:

1. Looking at the data in 6.3b, it seem that the Larmor frequency is always ”aim-
ing” at a value in the range of 5345 Hz but keeps overshooting and correcting.

2. This pattern disappeared when we increased the current that the power-supply
had to output, confirming that the problem has something to do with the power
supply.

The strange feature is still somewhat present when the current is increased such
that we have a Larmor frequency of ≈ 25[kHz], but it goes away when the Larmor
frequency is ≈ 51[kHz], and we will therefore shift our focus to the ≈ 51[kHz] case.

6.2.2 FID at 51 kHz

We will go through the same process with the 51[kHz] Larmor frequency data as
we did with the 5.3[kHz] Larmor frequency data. Looking at figure B.2a, we again
see the three phases which are present in all the individual pulses: Excitation,
free induction decay (with no pump), and pumping, which is technically still free
induction decay but now with the pump added, which will increase the decay rate.
The extra pattern that seems to be in the data is most likely an artefact of the
sampling rate of the scope and the Larmor frequency.
Looking at figure 6.4a, we see the fit of the decaying sine-wave (orange) overlaid on
the data (blue). We see that the decay seem slightly more linear than exponential,
but as stated before, we are in the end only interested in extracting the Larmor
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(a)

(b)

Figure 6.2: (a) Pulse-train at a repetition rate of 160 Hz and a Larmor frequency of
approx. 5.3 kHz. (b) Zoom-in on a single drive-decay-pump cycle.

frequency. If we look at figure 6.4b, we see that the fit has good agreement with the
data in terms of frequency and decay over the shown range.

In figure B.2a we see that the three phases of the pulse behave the same at a
Larmor frequency of 51[kHz] as it did at a Larmor frequency of 5.3[kHz].
We see in figure B.2b that we now have a Larmor frequency that only varies by
around ±0.5[Hz]. The systematic nature of the variation also seems to be gone, so
we can continue the data analysis with at this frequency to find the noise floor.
From the 160 fitted Larmor frequencies we can calculate the strength of the bias
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(a) (b)

Figure 6.3: (a) Fit to the spin decay. (b) The 160 frequencies found by fitting to
the pulses. As we can see the frequency is not stable.

(a) (b)

Figure 6.4: (a) Fit to the spin decay for a Larmor freq. of 50 kHz. (b) Zoom-in on
50 kHz fit.

magnetic field with the relation:

ω = γB, (6.2)

where γ is the gyromagnetic ratio. for caesium this is γ = 3.5[Hz/nT ].
Once we have found the strength of the magnetic field, we calculate the power

spectral density (PSD) of the fitted Larmor frequencies. The PSD can be defined
as

power =

∫ ∞
0

PSDdν, (6.3)

so calculating the PSD will give you a function over how much power your signal
has within each frequency slice dν. Given that we need a signal-to-noise ratio over
1 for detection, we may calculate the PSD of the signal, which will give us the noise
floor of the sensitivity in this mode of operation and under the given conditions of
magnetic shielding, power-supply used, laser powers, etc. Taking the square root of
this will give the Root Spectral Density (RSD), which will give us the noise floor in
terms of [T/

√
Hz]. Given that our data file is one second long and that we have 160

pulses within this second, we are limited by the Nyquist–Shannon sampling theorem
to a maximum frequency in the RSD of 80[Hz]. The length of the data file gives us
a frequency spacing of 1[Hz].
In figure 6.6 and 6.7 we see the calculated noise floor for different amplitudes of the
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(a)

(b)

Figure 6.5: (a) Fit to the spin decay. (b) The 160 frequencies found by fitting to
the pulses. As we can see the frequency is not stable.

driving RF excitation. There is no observable difference between the noise floors at
the different drive frequencies above the uncertainty. We can also see that the noise
floor for the range of 20[Hz] and above is between 16[pT ] (green line) and 3[pT ]
(orange line), which are the two noise floors found in [6] and are therefore our point
of comparison to evaluate the performance of our magnetometer. There is a general
trend towards a lower noise value in all the traces as we go to higher frequencies in
the RSD.
The advantage of this method is that we do not need to accurately cancel transverse
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magnetic fields to get good performance at low frequencies, which is required in the
magnetometer mode described in section 6.4. The method will work as long as at
least a few cycles of the Larmor precession are contained in the FID, which is deter-
mined by the desired sampling rate and the Larmor frequency. It is also assumed
that the magnetic field variations are so slow that the frequency is stable over the
course of a single FID phase.

(a) (b)

Figure 6.6: (a) Sensitivity as a function of frequency with 1VPP RF excitation. (b)
Sensitivity as a function of frequency with 2VPP RF excitation.

(a) (b)

Figure 6.7: (a) Sensitivity as a function of frequency with 3VPP RF excitation. (b)
Sensitivity as a function of frequency with 4VPP RF excitation.

If we were to try and improve these results, a natural first step would be to get a
more stable power supply so that we have the freedom to test for both low and high
Larmor frequencies. The choice of the relatively low sampling-rate, which gives the
low maximum frequency of 80[Hz], was made with the intention of having a bet-
ter comparison of sensitivity between the different Larmor frequencies. Although
we are using a different type of cell compared to [6] (they have a 1.5 mm thick
micro-fabricated vapor cell with nitrogen buffer gas), it should still be a reasonable
comparison as we are both aiming for the same thing which is a miniaturized mag-
netometer.
We will now move on to determining the magnetometer’s sensitivity in the Radio
frequency(RF) regime.
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6.3 RF sensitivity

To fully characterise the magnetometer, we will need to know its sensitivity in the
Radio Frequency domain as well as the sensitivity in the DC domain. We are inter-
ested in the magnetometer’s RF performance as there are other experiments in the
lab[9] that work in the RF regime. Getting these measurements out of the realm
of academic interest and into the realm of real-world application would involve the
construction of a sensor that could possibly have a similar layout to ours.
To measure in the RF domain we will need to increase the bias-field such that we
have a Larmor-frequency at around 150[kHz]. The reason for this frequency is that
it was the highest we could go with the power supply that was available, and given
that we had limited time, and the primary purpose of the project was to get a good
DC sensitivity, we did not want to spend a lot of resources and time pushing the
Larmor frequency higher.
To calculate the sensitivity limit in the RF regime, we first measure the response of
the system when we perturb it with an external magnetic field at a known ampli-
tude. We know the field strength from the method discussed in section 5.3.2. The
measurement with the calibrated perturbation is the blue line in figure 6.8. We also
measure the atomic response with no RF-field applied. This is the green line in
figure 6.8.
We can use this to calculate the minimum applied field that would be measurable
when applied to the magnetometer. We do this by calculating the field strength of
the applied field that would result in a signal to noise ratio(SNR) of 1.

SNR =
PSDRFon(ω = ωLarmor)

PSDRFoff (ω = ωLarmor),
(6.4)

sensitivity =
rf amp

SNR(ω = ωLarmor).
(6.5)

From this we get that the sensitivity in the case shown in figure 6.8 is 74[ft]. Two
reasonable questions at this point could be: How does the sensitivity depend on the
probe power, and why are there no error bars in figure 6.8?
To answer the last question first, what we see in figure 6.8 is not a single shot
measurement but rather the average of 100 measurements, and we know that the
error on the mean scales as[2]

σmean(f) =
σSTD(f)√

N,
(6.6)

where σmean(f) is the error on the mean value at a given frequency, σSTD(f) is the
standard deviation at the given frequency, and N is the number of measurements.
N is not frequency dependent. Given this and the fact that when taking the data,
we could not observe any difference between the trace with 100 and 110 averages,
we may neglect the errors bars. Also, as the data is saved as an averaged PSD, we
do not have a way to reconstruct the error bars.

This is of course only true if we assume Gaussian error. Gaussian noise is usually
a good assumption when dealing with classical noise. Given that the expected
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quantum noise for this experiment is in the range of 4[fT ] [10], it is not unreasonable
to say that we are still dominated by classical noise contributions.
The average is not taken of the raw traces but rather of their Fourier transformations.
If we were to take the average of the raw traces instead, we would need to have a
signal that is phase stable in between traces in order to detect it. By averaging after,
we avoid this complication.

Figure 6.8: High frequency sensitivity 74 fT.

There are many factors affecting the sensitivity we could explore. Some of the
options are:

• The laser power of the probe, pump or re-pump.

• The cell temperature.

• The probe detuning.

• The Larmor frequency.

The one we have decided to do a quantitative test of is the dependence of the
sensitivity on the probe power. As we explained in the theory section, the probe
should be far enough detuned that it will not have a major effect on the coherence
of the atomic spin state, but it will have some depumping effect that will increase
with the laser power.
To test the dependence of the sensitivity on the probe power we will conduct the
same evaluation as before for 7 different powers. The resulting sensitivities can be
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seen in figure 6.9. We see that as we increase the power we get a better sensitivity,
but the best sensitivity of 74[fT/

√
Hz] is obtained at 300[mV ]. The sensitivity at

432[mV ] is only slightly worse than at 82[fT/
√
Hz].

Figure 6.9: The RF sensitivity of the magnetometer as a function of the probe power.

If we were to compare this to previous results, we then see that in [1], for an ap-
plied version of a RF sensitivity measurement (eddy current imaging), the estimated
sensitivity was 21[fT/

√
Hz]. If we wanted to take a measurement that would be

directly comparable to this, we would of course have to repeat their eddy current
imaging method with our sensor, but it should be a reasonable benchmark. If we
want to attempt to reach a comparable sensitivity, then the first step would be to
increase the the Larmor frequency to the same range of 0.5− 1.99[MHz] and then
optimize from there. Now that we have obtained a reasonably good sensitivity in
the RF regime, we will move on and evaluate the magnetometer’s performance in a
continuous DC measurement.
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6.4 DC Sensitivity

One of the ideas that prompted this project of constructing a 3D printed magne-
tometer was the hope that fixing all the optical elements inside a small rigid box
would help minimize the effects of mechanical vibrations on the sensitivity at low
frequencies. To test this, we will recreate the measurements from [10] and compare.
We have also constructed a different power-supply to avoid using the same as in the
FID measurements with its one unstable output as we now need 3 stable outputs
for transverse field cancellation.

6.4.1 Reconstruction of the magnetic signal

The output we get from our magnetometer when using it to measure DC or near
DC signals is the result of a convolution between the kernel of the magnetometer
and the input signal. It can be expressed by the following:

h(t) = c · (f ∗ κ)(t) := c ·
∫ ∞
−∞

f(τ)κ(t− τ) dτ. (6.7)

As the convolution operation is commutative, it does not matter if we set f or κ to be
kernel or input signal. We choose to use κ for the kernel and f for the input. What
we want to find in the end is a general expression to retrieve f(t), given κ(t) and h(t).
First we need to figure out a method by which we can determine κ(t), the kernel,
also called impulse response. We do this by inputting a ”delta function”(impulse) as
f(t). By doing this we get:

h(t) = c ·
∫ ∞
−∞

δ(τ)κ(t− τ) dτ = κ(t). (6.8)

Note that this kernel is only valid for the exact set of conditions it was obtained
under, laserpowers, and Bx,By,Bz. We decided to use a square wave of height 3[V ]
and width 100[µs] to mimic a delta function in accordance with [10]. This is the
reason that delta function was put in quotations earlier, as it is not possible to
generate a true delta function.
So now for a given measurement we have h(t), the measured signal, and κ(t) the
kernel. Now we just need an operation that is the reverse of a convolution, which
is called a deconvolution. First we note that the convolution theorem states that a
convolution in the Fourier-domain is just a multiplication:

F (f ∗ κ)(t) = c · f(ν) · κ(ν), (6.9)

so as long as none of the frequency components of κ(ν) are zero, we can write
f(t) as:

F−1

(
F (h(t))

F (κ(t))

)
= c · f(t). (6.10)

To find c, the factor converting from volt on the output of the photo detector to
magnetic field, we input a calibrated signal with a known frequency and amplitude
in magnetic field and measure the output. We know the induced magnetic field
by the method discussed in section 5.3.3. We use a 100 Hz sine-wave for this. The
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result of this can be seen in fig 6.10a, where the red line is the input signal to the RF
coil, and the blue line is the magnetometer output from the balanced photo diode.
Looking at fig 6.10b, we see the result of deconvoluting the input with a kernel
similar to the one that can be seen in fig 6.13a. Both the Fourier transform of the
kernel and measured signal was truncated at 2000[Hz] to eliminate high frequency
noise. We are not concerned about losing information at higher frequencies as we
are measuring the the DC or very low frequency domain. Looking at figure 6.10b,
we see that the reconstructed signal fits well with the input, but there is a small
bump after the end of the sin-wave in the reconstructed signal. We will come back
to this small overshoot in the end of the deconvoluted signal in section 6.5.

(a)

(b)

Figure 6.10: (a) Red: Input signal on the RF coil. Blue: Atomic response as
measured on the balanced output. (b) Blue: Input signal Red: Deconvoluted signal.
Note the small bump at the end of the oscillation.
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The c factor is determined by the ratio between the amplitude of the input signal
and the amplitude of the output signal. This ensures that the deconvoluted signal
has the correct amplitude in magnetic field units. The result can be seen in figure
6.10b. This factor should not be frequency dependent as the frequency response of
the sensor should be contained in the kernel.
We now have all the tools to reconstruct an arbitrary input signal: The kernel,
The normalization factor, and the mathematical operation for the deconvolution.
We can now find the noise floor of the sensor by measuring a trace of the noise,
deconvoluting it and thereafter calculating the RSD. This is again assuming that
we can’t measure any signal with a SNR under 1. We do the same with a trace of
the electrical noise from the balanced detector. This is to check how much of our
total noise is due to the photo-detector. The noise trace is taken with the RF coils
disconnected and terminated but all the lasers on. The e-noise trace is taken by
blocking the probe laser, but not blocking the pump/re-pump laser, but still saving
the output of the balanced detector.
The normal noise floor and e-noise floor can be seen in figure 6.11. The shaded area
around the trace indicates 1 standard deviation, at a given frequency, as calculated
from the RSD of 10 individual traces. The line is the mean of the 10 traces.
We indicate the STD on the mean because if we were to use the magnetometer to
measure an unknown low frequency signal, e.g a magneto cardiogram of a beating
heart[10], we would have to use the magnetometer in single shot operation.
We see that in general, the noise floor seem to be slightly above 100[fT ] in the range

Figure 6.11: Comparison of the electrical noise RSD (Root spectral density) and the
measured noise RSD.
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between 10[Hz] and 100[Hz], but there are lots of noise peaks that are suspected
to not be inherent to the magnetometer, and they should therefore be able to be
eliminated. We also see that the e-noise is in general only one order of magnitude
or less below the noise floor, so if the noise floor is improved, then changing the
detector to a better one might make sense so that our total noise is not dominated
by the e-noise.

What we can also see in both the e-noise trace and the normal noise is that we
have peaks at 50[Hz], 100[Hz],150[Hz]... and so on. Given the amount of electrical
equipment in the lab it is no surprise that we have some noise at 50 [Hz] and
multiples thereof, but that they are also so prominent in the e-noise trace could be
problematic. However, the range we are most interested in is the 10[Hz] to 100[Hz],
so the noisepeaks at 100[Hz] and above may be a challenge for the future.
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6.5 Kernel

As promised in section 6.4.1, we will now return to the problem of the small bump
in the reconstructed 100[Hz] signal. As explained in section 6.4.1, the normalization
constant c should not be dependent on frequency, so if we input a different frequency
sine-wave than 100[Hz], we should still have the same ratio between the amplitude
of the input and deconvoluted signal. If we have calculated c correctly, it should be
1. As a difference in amplitude between 100 [Hz] and 10 [Hz] could be observed on
the scope prior to deconvolution, it seemed like a reasonable thing to test, as the
kernel might take care of this apparent frequency dependence of the normalization
constant. Looking at the ratio between the reconstructed amplitude and the input
amplitude in figure 6.14, we see that the 100[µs] kernel we have been using so far
shows a very significant frequency dependence of the normalization constant.

The normalisation constant is calculated as shown in figure 6.12. In the upper

Figure 6.12: Fit to the deconvoluted signal and calculation of the deviation.

part of the plot we see our fit of a sine wave to the deconvoluted signal. To ensure
that the fit is acceptable, we look at the residual from the fit which is plotted in the
lower part of 6.12. If the deviation came from there being secondary oscillations that
match with the primary such that maximum was overestimated and the minimum
was underestimated, we would spot it in the residual, given that we only fit with
a single sine-wave. The residual is normalised with the amplitude of the fitted sine
wave. What we see on the y-axis of the lower plot is a histogram of the residual to
check what kind of statistical distribution our deviation from the sine comes from. It
seems mostly Gaussian, though with a small secondary peak. The two vertical bars
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indicate the found minimum and maximum. The factor shown in 6.14 is calculated
by taking the range of the inputted sine wave and dividing it by the range of the
deconvoluted sine wave.

The suspected reason for the deviation in the c factor is that the the impulse
used, width 100[µs] and height 3[V ], is not a good enough approximation of a delta-
function to give us the the true kernel of the system. To test this, we decided to try
and input impulses of a few different widths ({40, 100, 200, 400}[µs]) and collect a
series of different frequencies of sine-waves to deconvolute with these kernels. The
kernels of impulse width of 200[µs] and above simply distorts the sine-wave so much
that it does not make sense to talk about the ratio of the amplitudes anymore.
In figure 6.13 we see the difference between a kernel from a 100[µs] width impulse and
a 40[µs] width impulse. Just by visual inspection, the one obtained from the 40[µs]
width impulse seems close to being an exponential decay. Looking at deconvoluted
sines in figure 6.14, we see that using the 40[µs] width impulse kernel makes the
overshoot go away, and in figure 6.15 we see that the deviation in ratio between the
deconvoluted amplitude and the input amplitude has been reduced by almost 2

3
.

(a) (b)

Figure 6.13: (a) 100 microseconds kernel. (b) 40 microseconds kernel

(a) (b)

Figure 6.14: (a) 100 Hz deconvoluted with the 100 microseconds kernel. (b) 100 Hz
deconvoluted with the 40 microseconds kernel. Note that the bump is now gone.

We clearly see that we should change from using a 100[µs] wide impulse to a
40[µs] wide one as it not only gives a behavior of the normalisation constant much
closer to what we would expect from the theory, but it also makes the deconvoluted
signal fit better with the known input. The reason for not going lower in width is
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Figure 6.15: Normalisation factor as a function of frequency.

that the function generator we use does not allow for this, and we don’t have one
that is better, in this respect, readily available.
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6.6 Long-term stability measurement

In the same way we tested the sensitivity’s dependence on power in section 6.3,
we would have liked to find the optimal setting for the probe power in for the DC
sensitivity. The probe power used so far is approximately the same as in the RF-
case. The trace in 6.16 is a raw trace of the balanced detector output over the
course of approximately 8 minuets. This is taken at around 3 times the probe power
used previously. It is clear to see that there is a lot of variance in the value. Given
that the probe is power stabilised and that the balanced output crosses zero several
times, we can exclude this being a problem arising from the probe only. Given the
large range of values, it is not possible to extract any usable noise-trace, as it will
have digitization error arising from the necessary scope-settings to capture the entire
range of values. This should also not be the result of fiber oscillations, as the fibers
were left undisturbed for several minutes to let any mechanical vibrations decay. As
the measurement was taken at around 3 am, it is not the result of others people’s
activities in the lab. The measurement was also taken with the lights off to ensure
that no stray external light could effect the measurement.

Figure 6.16: Long trace of the balanced output at a very high probe power.
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6.7 Noise analysis

The noise floor of the magnetometer will have several contribution. Some of these,
such as spin projection noise, are the result of quantum mechanical effect and are as
such inherent in the system as we have chosen to explore it. Given that the quantum
spin-projection noise for our caesium ensemble is estimated to be 4[fT ][10], there
should still be room for improvement through elimination of classical noise sources.
Inspired by [12], we choose to do an analysis of the expected impact the amplitude
noise of the pump laser has before we decide to invest the time and resources to
perform power stabilisation of the pump laser.

6.7.1 Pump amplitude noise

To reduce the noise we see in the spectrum, we will look at how large of an impact
the amplitude noise of the pump has on the overall noise. The reason to do this
is twofold: Firstly we have observed by looking at the output power of the pump
in the pump/re-pump monitor that the power will fluctuate somewhat over time.
The second reason is that the setting of the pump in general seems to have a large
impact on the performance of the magnetometer.

To figure out the impact that pump amplitude noise has on the overall noise, we
induce amplitude noise at one specific frequency - in our case it was at 90 Hz. We
induce the amplitude noise by varying the voltage on an acousto-optic modulator
(AOM), thereby changing the amount of light that is scattered into the different
modes of the AOM.
This peak is then detected in the PSD of the pump monitor, let’s call it PSDmodulated

pump .

(a) (b)

Figure 6.17: (a) Pump monitor and balanced output with the pump modulation at
90 Hz. (b) Pump monitor and balanced output without the pump modulation at 90
Hz.

We can not assume that the entire noise at the specific frequency is the induced noise,
only the noise above normal level. We therefore also collect a noise spectrum of the
pump without the induced noise. We call this PSDnormal

pump .
If we take the difference between these two PSD’s at the modulation frequency, we
will know how much of it is due to the modulation.

Now that we have determined the modulation in the pump laser, we need to find
the the impact this has on the balanced output. To do this, we follow the exact
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same procedure: Measure the PSD of the magnetometer while not inducing any
pump amplitude modulation, PSDnormal

balanced,
and measure the PSD of the balanced output with the pump modulation, PSDmodulated

balanced .
With all this we will now construct the function

scale factor(f) =
PSDmodulated

balanced − PSDnormal
balanced

PSDmodulated
pump − PSDnormal

pump

. (6.11)

If we evaluate this function at the modulation frequency of 90 Hz, we will get a factor
which we can use to translate between power in the pump spectrum and power in
the balanced output spectrum. If we also assume that we have a flat frequency
response of the balanced output to pump amplitude modulations, then this factor
will be the general conversion factor and not just for the 90 Hz. We find a scaling
factor of 13.4.

(a) (b)

Figure 6.18: (a) Balanced output and scaled pump noise. (b) Pump monitor PSD
and detector e-noise PSD.

Looking at figure 6.18b, we see that the noise on the pump is, for the most
part, not above the electrical noise of the detector. If we continue anyway with this
method, we see in figure 6.18a that the scaled noise is, for the most part, one to two
orders of magnitude below the total noise on the balanced output.
If we were to draw a conclusion on this, it would be that noise on the pump will have
some impact on the total noise floor as can clearly be seen from the induced peak
in 6.17a, but the impact of the observed pump noise on the total noise floor will be
negligible at the current level. This is in good accordance with [14], where they did
not quantify the impact of amplitude noise from the pump on the total noise level,
but they power-stabilized the pump and saw no quantifiable drop in noise.

6.8 After noise elimination

Some potential noise sources were eliminated or suppressed without doing a thorough
analysis of the expected impact as in section6.7.1. Some of these changes made to
reduce the noise are:

• Two end caps were added to the shield.

• The probe laser was power stabilised.
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• Some noise sources were turned off in the lab. This was primarily power
supplys to other equipment.

• The new measurement was performed late at night to reduce the impact of
human activity in the lab.

• Polarizer before pump/re-pump fiber to reduce polarization noise.

Given the length of the shield of around 1 [m], we didn’t think that the end caps
should be strictly necessary, but since we had an unused set of end caps in the lab,
we decided to add them. When we switched our measurement time to late in the
evening or night, we got the chance to turn off some equipment in the lab without
interfering with other experiments. We also observed that the pressure change from
opening the door to the lab would induce mechanical oscillations in the fibers. By
measuring late at night, no-one would be opening the door during measurements.
Looking at figure 6.19, we see that although our changes do not seem to have reduced
the noise floor below around 120 [fT], most of the peaks in the range between 3 [Hz]
and 100[Hz] are now gone, apart from the noise-peak at 9 [Hz]. The source of the 9
[Hz] and 3 [Hz] noise are not know, but it is suspected to be a piece of equipment
used by several other experiments (a cryostat). This can not be turned off without
causing serious disruption to the other experiments.

Figure 6.19: Lower noise floor after optimization.
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6.9 Canceling transverse fields

Given that we are working from the assumption that a residual magnetic field of
zero would give us the best sensitivity, we decided to test the impact of a poorly
canceled magnetic field. The way we decided to check this was to calculate what the
sensitivity of the magnetometer would be if there was no input on the cancellation
coils. This will of-course result in a non-zero Larmor frequency given by the residual
magnetic field of the shield.

6.9.1 No transverse field cancellation

Apart from the fact that we do not need to find the optimal settings for the transverse
field cancellations which is controlled by three DAC’s (Digital to analog converters),
given that they are disconnected, the process will be identical to the one we usually
have. First we need to collect a kernel for the given settings. Looking at figure
6.20(a), we see the kernel when we apply no cancellation field. As expected it is no
longer an exponential decay.
To determine the Larmor frequency of the system, we can look the the Fourier trans-
form of the kernel. Looking at figure 6.20(b), we can read off a Larmor frequency
of approximately ≈ 140[Hz], so we do well and truly have bad DAC values in this
case of no input.

(a) (b)

Figure 6.20: (a) Bad DAC kernel. (b) FFT of bad DAC kernel(blue) and an at-
tempted Lorentzian fit (orange).

Even though the DAC value, and thereby the Larmor frequency, is not near the
optimum, we still input the 100[Hz] sine wave and see if we can reconstruct the
input from the measured sensor output. Looking at 6.21(a), we see that the output
of the magnetometer still gives a large output (in volt) and that during the ”drive”
of the input signal, the magnetometer response follows the signal quite well. After
the drive ends there are some secondary oscillations that we do not see in the ”well
canceled” signal.
Looking at figure 6.21(b), we see that the deconvoluted signal is reasonably well
reconstructed apart from a slight overshoot. It may seem like there is also an over-
correction after the overshoot, but this is mostly due to the fact that the zero-
point for the left and right y-axes doesn’t line up perfectly. If we now compare
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(a) (b)

Figure 6.21: (a) 100 Hz signal at bad DAC values. (b) Deconvoluted 100 Hz at bad
DAC values.

the measurement in figure 6.20 to the expected signal, we see that it is in good
agreement with the theoretical prediction of what the kernel should be for arbitrary
fields in the y-direction.

κ(t) = aSxγJxcos(ΩLτ)e−(R+Γ2)τ (6.12)

If we take a noise trace without canceling the transverse field and calculate the
noise floor, we get the result shown in figure 6.22. We see that we have worse
sensitivity in the low frequencies, but this is to be expected when we look at the
frequency response in figure 6.20b. What was reported in [1] was that they saw
more noise at multiples of 50[Hz] when they did not do proper transverse field
cancellation. This is not something that we observe.

Figure 6.22: Noisefloor with poor cancellation of transverse fields
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7 Conclusion

In this project we have achieved the goal of making a fiber-coupled vapor-cell mag-
netometer. We have seen that the magnetometer preforms well in several different
modes of operation. In the pulsed DC mode we got a sensitivity below 16[pT/

√
Hz]

above 12[Hz]. This is approximately on par with the sensitivity achieved in [6].
In the RF mode we achieved a sensitivity of 74[fT/

√
Hz] at a Larmor frequency

of ≈ 150[kHz]. From [10] we get that the expected quantum spin-projection noise
limit is 4[fT/

√
Hz], meaning that we have reached a sensitivity where we can as-

cribe around 5 percent of the total observed noise to be quantum noise. Finally we
have also achieved a noise floor of around 120[Ft

√
Hz] in the frequency range of

5[Hz] − 100[Hz] for the continuous operation mode with well canceled transverse
fields. This is approximately 30 times higher than the quantum projection noise
limit. It is also approximately a factor 2 better than the sensitivity of 250[ft/

√
Hz]

reported in [1]. In [10] they also report a noise floor of 120[fT/
√
Hz], but in the

frequency range of 100−500[Hz]. From this we can conclude that we have achieved
a better sensitivity in the low frequency range than the previous experiments from
our lab. As this was one of the goals of the project, we may consider this a success.

As further work we would suggest that the magnetometer could be used in a gra-
diometer type setup[15] where it is placed close to another caesium vapor cell with
a well pumped atomic ensemble. If the two cells are placed very closely together,
we can assume that the ambient fields on both are equal. This allows for the rejec-
tion of common-mode noise from the surrounding environment and could therefore
potentially push the sensitivity even lower. Another logical next step would be to
apply the sensor to measure a quantity of interest and thereby show that the sensor
works in a practical application.
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A Alignment tool pictures and drawing

(a) (b)

Figure A.1: (a) Outside view of the lower part of the alignment tool (b) Inside view
of the lower part of the alignment tool

(a) (b)

Figure A.2: (a) Side view of the lower part of the alignment tool (b) Outside view
of the top part of the alignment tool
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B Magnetometer pictures

(a) (b)

Figure B.1: (a) Outside view of bottom of the magnetometer(b) Inside view of both
parts of the magnetometer

(a) (b)

Figure B.2: (a) Side view of the magnetometer when assembled (b) Outside view of
the top of the magnetometer
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