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Abstract

Dust is a powerful proxy for studying formation of stars and interstellar molecules,
and its radiation contributes largely to cosmic infrared background (CIB) which
carry information about how early galaxies evolve. The considerable amount of
UV radiation produced by these young stars is hidden in the dust around galaxies,
thus studying properties of dust can help us reveal a more comprehensive picture
of star formation in the early universe. In this thesis, we use photometric
catalogues from ALMA Lensing Cluster Survey (ALCS) based on the data of
the Hubble Space Telescope (HST) and Spitzer, combining ALMA 1.2mm maps

to identify and study properties of dusty star-bursting candidates at z = 0 ~ 5.

We first directly match sources in optical/NIR catalogues with those in 1.2mm
catalogues, then we compare matched objects with color-color diagrams and
results of SED fitting to select dusty star-forming candidates. To derive dust
mass and total infrared luminosity, we use 1.2mm data to rescale modified black
body. Star formation rates are calculated based on UV and infrared luminosity
and compared to confirmed relationships in SFR-M, plane. The main results
are that for galaxies with notable far-infrared radiation, the combination of UV
and IR indicators can describe star formation activity of dusty candidates better
than SED fitting, and the UV J diagram can distinguish quiescent galaxies and

dusty galaxies with high accuracy.
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Introduction

1.1 Galaxy Evolution

After 0.3 Myr from the Big Bang, the cosmic electrons and protons combined
and became hydrogen. This procedure, so-called recombination, emitted the
radiation which people today call cosmic microwave background (CMB), it also
created an opaque and dark universe consisting of uniform neutral gas. The
dark age lasted for hundreds of millions years until the very first galaxies formed
in the dark matter halos and the energy they released ionized the universe. This
event is called reionization. After the evolution of billions of years, galaxies

exhibit different properties in different aspects.

1.1.1 Luminosity Function

A useful tool to characterize the statistical properties of the large universe is the
luminosity function. It provides a quantitative description of the number density

of galaxies as a function of their luminosity, which has the form of(Schechter,

1976)
i =0 (%) (7) -

where ¢* is the normalization density, L* is the characteristic luminosity above
which the number of galaxies declines rapidly, and « is the slope at the faint
end, i.e. low luminosity. The luminosity reflects the stellar content or the star
formation activities, while the number tells us the statistical information about
the universe, e.g. mean luminosity density. Due to the fact that only galaxies
that are bright enough can be observed, the luminosity function can be compared
to cosmological models and provide constraints on them. Since galaxies formed in
different environments can be affected by different mechanisms, it is meaningful
only if we consider one specific kind of object when calculating luminosity
function, i.e. spiral galaxies or dwarf galaxies. Besides this, luminosities at

different bands can reflect different properties, like ultraviolet (UV) luminosity
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revealing the distribution of unobscured star formation while information about

the dust-obscured star formation is hidden in the infrared luminosity.

1.1.2 Merging

Galaxy mergers are believed to be ubiquitous in the universe. These events can
dramatically alter the morphology and luminosity of galaxies. At the late stages
of the collision between two galaxies with similar masses, the perturbation of
the gravitational field is so large that the stars originally moving in order now
would leave their primitive orbits and start random motions, which is called
violent relazation (van Albada, 1982). If two spiral galaxies collide, the gas
reservoir at their spiral arms is compressed and shocked, resulting in vigorous
star formation in a very short time, i.e. a starburst. Galaxies are distorted and
stars originally reside in spiral arms are dragged into the central region. The
aftermath of this process is normally the elliptical galaxy. When the mass and
sizes of two merging galaxies differ enormously, these events are usually called
cannibalism (Tremaine et al., 1975; Hausman and Ostriker, 1978). In this case,
the smaller galaxies will be swallowed by the larger monsters, whose luminosity

and mass will not be affected remarkably.

1.1.3 Morphology

The morphology of galaxies is the most direct reflection of the diversity of
galaxies. Back in the early 20th century, Edwin Hubble invented the well-known
Hubble sequence, a morphological classification scheme of galaxies. The two most
distinct types in the scheme are elliptical galaxies and spiral galaxies, which are
characterized by two major components bulge and disk. Elliptical galaxies have
only bulges, containing mainly old stars and barely gas, with various ellipticities

defined by

EleX(l—S), (1.2)
where a is the major axis and b is the minor axis. The spiral galaxies consist of
both bulges and disks, with stars forming at the spiral arms, so their colors are
generally bluer than those of bulges. Disks maintain their structure by rotation,

while bulges maintain their equilibrium by the internal motions of stars.
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1.2 Main Sequence Galaxies

Observations in the local universe reveal the fact that stellar masses correlate
with star formation rate (SFR) tightly(Noeske et al., 2007; Daddi et al., 2007).

The relationship can be described by using the power law
V= 6M37 (13)

in which ¥ is the SFR and M, is the stellar mass. Previous work basically focuses
on three aspects of the relation: the slope, the scatter, and the normalization.
The slope of the relationship « is ranging between 0.6 and 1.2 (Speagle etal.,
2014), while the evolution of the slope can be expected at high-mass range
(Whitaker et al., 2014). The reason for this increase has not been well studied,
but Abramson etal., 2014 ( see also Lee etal., 2015, Schreiber etal., 2015)
suggests that the increase of quiescent bulge components can cause the fall of
SFR toward high mass end. Compared to the evolution of slope with respect to
mass, the slope does not vary remarkably across different redshift (Whitaker et al.,
2014). Secondly, This main sequence relationship exhibits an intrinsic scatter
of ~ 0.2 — 0.3 dex (Whitaker etal., 2012). The last aspect of characterizing
star formation sequence is the normalization 3, which is found to increase with
increasing redshift (Whitaker et al., 2014), from 10 My /yr~! at z = 0 to 100
Mg /yr~ at z = 3 (Pearson et al., 2018). This phenomenon reflects the overall
effect of cosmological gas accretion rates on all mass ranges (Whitaker etal.,
2014). This observed relation indicates that star formation histories are regular
and smoothly declining on mass-dependent timescales, rather than driven by

stochastic events like merger events or starbursts.

1.2.1 Dusty Galaxies

Dust plays important role in the star formation and the cycle of baryonic
materials. The dust is commonly believed to form from the ejecta released by

supernovae and is composed of metal formed during the evolution of stars with

a ratio of 30% ~ 50%. Thus the metallicity is related to the amount of dust.

The main compositions of the dust include silicate and carbon grains, as well as
polycyclic aromatic hydrocarbons (PAHs) (Draine and Li, 2007). The former
grains contribute to the extinction in the UV band while the PAH contributes

to variant emission lines at the mid-infrared wavelength. Thus a comprehensive

1.2 Main Sequence Galaxies

3
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understanding of dust requires multi-wavelength data.

Hydrogen is the most abundant element in the universe, and the different
forms of hydrogen can be tracked by different tracers, however among which
the molecular hydrogen (Hsy) is hard to directly be observed due to its lack of
dipole moment. Since dust is an important refuge for atomic hydrogen to form
molecular hydrogen, the content of dust can be a useful proxy for estimating
the amount of molecular hydrogen (Charnley et al., 1992).

Apart from acting as a proxy for studying interstellar hydrogen and stellar
metallicity, the dust itself plays an important role in star formation and galaxy
evolution. Omukai etal., 2005 found that the presence of dust cooling can
enhance cloud fragmentation and favor the formation of low-mass stars, therefore
altering the shape of initial mass function (IMF). For normal star-forming
galaxies, nuclear fusion converts gravitational energy into photospheric radiation
and emits strong ultraviolet (UV), which is the direct proxy for studying star
formation activities. But for dusty star-forming galaxies (DSFGs), even if they
have extremely high star formation rates (SFRs), due to the absorption of
UV radiation by the dust, the UV radiation cannot characterize the actual
star-forming activities. Thus studying the amount and properties of the dust in

galaxies can help us retrieve the actual SFRs.

1.3 Deducing Properties from SED

For those distant galaxies, resolving and studying their morphology and kinemat-
ics can be tricky and time-consuming. Measuring their flux at each wavelength
and fitting an integrated spectral energy distribution (SED) can quantitatively
tell us about the properties of galaxies in an efficient way. Methods of SED
fitting can generally be categorized as follows: (1) methods that directly compare
data and theoretical models Siebenmorgen and Kriigel, 2007; (2) methods that
combine templates based on empirical models in (1) and use Bayesian infer-
ence ((Carnall etal., 2021)). (3) direct modified blackbody fitting (far-infrared
only).

To derive the current stellar properties, there are two things we need to know,
or we should say assume, in advance. One of them is the initial mass function

(IMF), i.e. how stars are there in the initial state of galaxies. The other one
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is star formation history (SFH), which describes how and when galaxies form

stars during their lifetimes.

1.3.1 Initial Mass Function

The initial mass of a star may be the most crucial factor affecting how this star

will evolve in the future. Thus, knowing how many light and massive stars are

in galaxies lays down the guideline for how we model the evolution of galaxies.

(Salpeter, 1955) proposed the widely-adopted IMF: N (M)dM o M~*dM, where
a = 2.35, telling that there are more lighter star in galaxies which also contribute
more to the total mass. For the flat distribution with o = 1, all galaxies with
different mass form uniformly in logarithmic space. Recently Kroupa, 2001
and Chabrier, 2003 proposed that initial galaxies could have fewer low-mass
stars. However, the models above come from directly counting stars in the local
universe, which means that for the high 2 case things can become complicated,
especially for the low mass star because of cosmological dimming. People refer
to numerical models and simulations, like Hennebelle and Chabrier, 2008 and
Krumbholz et al., 2012.

1.3.2 Star Formation History

Assumptions should also be made about how galaxies form new stars, e.g. do
galaxies form new stars rapidly in a relatively short time, or continuously and

slowly throughout their lifetime? The methods used for estimating SFH can

basically be categorized into non-parametric methods and parametric methods.

While the former methods can offer more detail of galaxy evolution but require
more constraints and computational resources, parametric methods just assume
some analytical forms of SFR(¢). The major forms of SFH(#) include simple
constant SFH, which describes steady and uniform star formation, and the
7 model, where SFR = e¢~*7 (Schmidt, 1959). By selecting the time when
star-burst sets in (which changes the form of SFH to SFR(t) = t’¢~*/7) and
combining them linearly, people can use these models to describe global or
current properties like ages, stellar mass, and current SFR with small cost.
But when coming to the need of studying the detail of past star formation,

non-parametric SFH characterization can be more accurate.

1.3 Deducing Properties from SED

5
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1.3.8 Infrared Spectral Energy Distribution

SED is crucial for exploring properties of the dust, including infrared luminosity
Lir, grain sizes Tyust, and dust mass M., etc. The two major methods are
radiative transfer models (for example, (Siebenmorgen and Kriigel, 2007)) and
direct SED fitting by using modified blackbody models. The former can normally
provide more detail about properties of the dust. Unfortunately, unlike the
SED fitting at UV and optical wavelength where dozens of bands are available,
the fitting of infrared SED suffers from a dearth of far-infrared data due to the
limitation of resolution and absorption of atmosphere (thus limited ground-based
telescopes) and sometimes only several, even one data point available. Thus
it is important to assume values of dust emissivity spectral index § and dust

temperature Ty, carefully.

1.4 Photometry

Photometry is one of the most useful technique of studying flux and related
properties at different wavelengths, especially for those unresolved objects which
we can only study "blindly" and quantitatively. Compared to spectroscopy, it
has advantages of time-saving and being able to deduce variant properties. In
this section we will introduce same basic concepts of photometry and methods

used for photometry.

1.4.1 Band and Flux

Imaging is usually carried out at different bands. A band can be characterized
by effective temperature \.g and bandwidth A\, which includes the smallest
wavelength and largest wavelength. Normally the received flux density cannot
completely reflect the intrinsic flux density of a source, because response of a
CCD varies at different wavelengths, which can be characterized by wavelength-
dependent function T'(\). Assuming the intrinsic flux density of a source is

Fint (M), the received flux density of a band can be written as

o Ja Fn T ()N

fProyan Y
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in which a and b are the lower limit and the upper limit of the band. which

represents the central wavelength of a band.

1.5 Photometric System

To collect information of a source in different wavelength, people need to define
a set of bands and bandpasses, which is called photometric system.An early and
commonly used photometric system is the Johnson-Morgan or U BV RI system,
which covers NIR to optical wavelength.Information of U BV RI system is listed
in 1.1. Another popular system originates from the famous Sloan Digital Sky
Survey (SDSS) which has similar coverage as UBV RI system. Compared to
UBYV RI system, it has more narrow bandwidths and advantage of getting rid

of sky emission.

Filter | Aeg(nm) | AX(nm)
U 360 50
B 430 72
\Y 550 86
R 650 133
I 820 150
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Figure 1.1: Left: Coverages of different bands in UBV RI system (Johnson and
Morgan, 1953). Right: coverages of bands in SDSS system.
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1.6 Magnitude System

To express the brightness of celestial objects, astronomers define stellar magni-

tude as

/
fo

in which f is the flux density of observed objects, mgy and f, are magnitude

m —mgy = —2.5logy (1.5)

and flux density of the reference object, i.e. zero point. This shorthand allows
comparing brightness of different sources in a convenient way. For historical
reason people choose magnitudes of different bands of Vega as zero points, and
magnitudes of every optical bands of Vega are zero. The reason was that Vega
was bright enough to be observed, and it had relatively constant magnitudes.
But as the observation moves to longer and longer wavelengths and the variation
in magnitudes of Vega over years, it turns out that Vega is no more the best
choice for calibration. Thus people develop a monochromatic magnitude system,

which defines a theoretical zero point for all bands, having the form of
m = —2.5log,of +8.9 (f in unit of Jy) (1.6)

This is the AB magnitude system, which we will use in the rest of this thesis. This

system helps avoid confusion and inconsistency in astronomical photometry.

1.6.1 Profile-fitting Photometry

The images obtained by telescopes are the convolution of the real images with
the point spread function (PSF) of telescopes. PSF basically describes how
telescopes respond to a point source. Well-behaved PSFs can generally be

described by functions, such as the Gaussian function

2

G(r) oce_(ﬁ>, (1.7)

in which a is the standard deviation, and r is the distance from the center of
sources, or a Moffat function (Moffat, 1969):

My = 221 (1 + (5)2) _6, (1.8)

T2 o
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in which & = FWHM/(2 x v/21/ — 1), and 8 = 4.765. Normally the Gaussian
PSF is a good assumption for the central region of an object, but when coming
to the extended wing of it, the Gaussian function is not accurate enough, then
we need the Moffat function to get the correct profile. Given the prior shape of
PSF, the next step is to match the PSF with the 2-D images and produce the
residual map, and maybe repeat the step above iteratively. For a crowded field
of sky with many galaxies, multiple PSF-fitting for variant sources can extract
information mare accurately. The cost is a large amount of computational

resources and time.

1.6.2 Aperture Photometry

Aperture photometry is a method that does not make any assumptions about
the shape of the object, but just directly measures all the flux within a defined
aperture. The shapes of apertures can be circles, squares, and ellipses. To
remove the sky background, one can also define an annulus (in terms of circle
aperture), measure median flux in this area, and subtract it from the flux of the

object. This procedure can be expressed as
F = sum(A) — median(B) * npiz(A), (1.9)

in which A represents the area of the object and B represents the area of the
annulus. After background subtraction and estimation of the noise, one can

obtain the uncertainty of measured flux.

The advantages of aperture photometry are that it does not require prior
knowledge of the shapes of objects so it is computationally cheaper than the
fitting method, and aperture photometry can work for those extremely faint
objects which people cannot even see them neither can we assume proper
functions to fit their profiles. But in contrast to PSF-fitting photometry, aperture
photometry cannot be applied in crowded fields well due to severe overlapping
of sources, and it does not include the effect of instrument response to the real

signal either, which can introduce large error sometimes.

1.6 Magnitude System
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Column Pixels

N B B B B B B

Row Pixels

Figure 1.2: Schematic of aperture photometry and noise subtraction (Howell, 2006).

1.7 Goals of This Work

We want to explore the optical properties of ALMA-detected sources in the
ALCS survey by exploiting the exquisite ALMA-+HST+Spitzer data and the
gravitational lensing effect. By selection, we’re excluding the dustiest, most
star-forming galaxies for which the optical emission is totally absorbed by dust.
We want to see what kind of galaxies ALMA picks and if we can reconstruct and
push the known trends (main sequence in the M, vs SFR relation, Mgus /M,
ratio, optical Ay vs Mgy, etc.) to lower luminosities or higher redshifts given

the gravitational lensing effect.

Chapter 1 Introduction



Data

This chapter gives a brief overview of ALCS data used in this thesis, including
optical and near-infrared photometry from the Hubble Space Telescope (HST)
and the Spitzer Telescope, as well as far-infrared map from the Atacama Large

Millimeter Array (ALMA).

2.1 Atacama Large Millimeter Array

The Atacama Large Millimeter Array (ALMA) is an interferometric telescope
with 66 antennae located on the plateau in the Atacama Desert. It covers
wavelengths from 300 ym to 3.6 mm. The long baselines between antennae
provide superior resolution with which we can observe and study the weakest
signals from cold clouds and dust in the early universe. To make sure these
antennae synchronize well with each other, signals are transmitted to the

correlator and combined there.

2.2 ALMA Lensing Cluster Survey

The very first galaxies in the universe are ones of the most attractive objects
since they carry information from the early universe. Given the large distances
between the earth and early galaxies, we cannot directly see the light from
those earliest and faintest galaxies with a normal approach. Thanks to the
gravitational fields of massive clusters, the light from the distant background

galaxies can be magnified and detected by our telescopes. Inspired by this

feature, the ALMA Lensing Cluster Survey (ALCS, 1D:2018.1.00035.L; P.I.

Kohno, K.;Kohno, 2019) was proposed to map 88 arcmin? sky to a depth of 0.08
mJy, with a duration of 95.5h. The region includes 33 well-studied clusters from
the Cluster Lensing And Supernova Survey with Hubble (CLASH, Postman et al.,
2012), the Hubble Frontier Fields (HFF, Lotz etal., 2017), and the Reionization

11
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Lensing Cluster Survey (RELICS, Coe etal., 2019). ALCS detected more than
100 sources with S/N >5 (lensing corrected) at 1.15 mm. The catalogue of
ALMA 1.15 mm is from Fujimoto et al. (2022, in preparation).

2.2.1 HST and IRAC Data

The ALCS collaboration has recently built photometric catalogues (V. Koko-
rev, G. Brammer et al., in preparation) which were built by using SExtractor
(Bertin and Arnouts, 1996) and grizli(Brammer, 2019). The former is a
pipeline for image pre-processing and the latter is for background estima-
tion and source detection using aperture photometry mentioned in Section
1.6.2. The parameters of SExtractor for source detection are defined as fol-
low: BACK _ FILTTERSIZE = 4arcsec, BACK FILTER = 3, FILTER =,
CLEAN =Y, DEBLEND CONT = 0.001, DEBLEND NTHRESH = 32,
MINAREA =9, THRESHOLD = 1.0 to maximize the detection of faint ob-
jects on the master detection image created from all available ACS/WFC and
WEFC3/IR filters.

Bands of HST used in our job include F105W, F125W, F127M, F139M, F140W,
F153M, F160W, F275WU, F435W, F606 W, F814W. Bands of Spitzer include
IRAC 3.6/4.5 um.

2.2.2 SED fitting with EAZY

To derive photometric redshift and properties of galaxies, V. Kokorev, G. Bram-
mer et al., (in preparation) use EAZY (Brammer et al., 2008) for SED fitting.
EAZY is based on a representative library of SED templates with variant ages,
mass-to-light ratios, and SFHs. By comparing observed data points and SED
generated from combinations of templates, EAZY finds out the best one with
minimized 2. After this, the U, V, and J bands used for color-color diagrams,
as well as NUV flux, are directly extracted from fixed SEDs.
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Methods

This section introduces the methods used for matching counterparts of ALMA-

detected objects in ALCS catalogs and obtaining their properties.

3.1 Counterpart Matching

To study properties of ALMA-detected objects from UV and infrared wave-
lengths, we use coordinates of ALCS catalogs and coordinates of ALMA catalogs
for matching and only match ALMA-detected sources with S/N> 4. We set the

threshold of separation as 3 arc seconds.

3.2 UV .J Diagram

The two-colors diagram can be used as a simple tool for probing galaxy evolution.
Williams et al., 2009 presented the UVJ diagram which can differentiate quiescent
galaxies and star-forming galaxies. The U — V' colors sample the Balmer /4000
break. They also illustrated that the border between these two types of galaxies
can evolve with time. We adopt definitions of borders from Whitaker et al.,

2011. The diagonal selections are expressed as:

(U=V)>088x (V—J)+0.69 [z <0.5]

(3.1)
(U—=V)>08x (V—J)+0.59 [z > 0.5],

while cuts on U — V and V' — J are expressed as

(U—-V)>13,(V—-J)<16[0.0<z<1.5]
U-V)>13,(V-J)<15[l.5<2z<2.0] (3.2)
U-V)>12,(V—-J)<14]2.0<z<3.5]

13
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in which U, V', and J are corresponding rest-frame color magnitudes of U, V|

and J bands. In terms of the quiescent galaxies and dusty star-bursting galaxies
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Figure 3.1: Rest frame UVJ diagrams as function of redshift, color-coded by specific
star formation rates (sSFR), from Williams et al., 2009. From the figure
we can clearly see two types of galaxies populating two distinct regions of
maps.

we want to distinguish, they have SEDs with the respective features, as Fig. 3.2
shows. The SED at the left has an excess of near-infrared components compared
to the quiescent galaxy, reflecting the existence of a large amount of dust. From
their SEDs we have the following relationship:

(V—=1J)

= (V= J) (3.3)

dusty quiescent

This difference in the color index can be seen in Fig. 3.3, where dusty star-

forming galaxies occupy the upper-right region.
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Figure 3.2: Upper: SED of a dusty galaxy and probability distribution function(pdf)
of redshift. Bottom: SED of a quiescent galaxy and pdf(z). Based on
the inferred redshift from pdf(z) at right, the redshifted wavelengths of
rest-frame U, V, and J band are labeled in SEDs.
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Figure 3.3: UVJ diagrams at 1.0 < z < 2.5, from Suess et al., 2021. Points are colored
by sSFR(left) and Ay (right). The size of circles is proportional to the
number of galaxies at that position. We can see from the left figure that
the sSFR decreases slightly when going to the upper-right corner, while it
decreases dramatically when entering the quiescent region. Ay increases
largely when moving along the track of star-forming galaxies.

3.2 UV J Diagram
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3.3 Infrared SED Rescaling

To estimate physical properties from far-infrared data, we use SED modeling to
generate infrared SED of dusty candidates. We adopt a Modified Black body

curve to carry out rescaling, which can be expressed as

2%h (1 o e—’T(I/)) 7/3
T2 ikt _1

S,(T) (3.4)
in which the optical depth is given by 7(v) = (#/v°)°. In the optically thin case,

the term 1 — e™™) can be approximated as /%, thus the whole MBB becomes

38

SV(T) X ehl//kT . 1a

(3.5)
where T is the temperature of the dust in our case, and [ is the effective dust
emissivity index. Given the only available ALMA data point, we decide to
assume a single-T" MBB and sample the two parameters of MBB, T" and S,
from their respective normal distributions. To account for the evolution of
dust temperature with respect to the redshift, We adopt the relationship from
Schreiber et al., 2018:

TMS [K] = (32.9 £ 2.4) + (4.60 £ 0.35) x (2 — 2), (3.6)

which describes the evolution dust temperature of main-sequence galaxies, and
we assume a normal distribution of § with a peak at 1.8 and a standard deviation
of 0.2. Then we sample from these two ranges of parameters 1000 times, inserted
them into the MBB, and rescaled the generated SEDs so that they pass through
observed data points. For each rescaled SED, we calculate the dust mass by

using
Ly,

47”11/81/ (Tdust ) 7

where L, is luminosity at observed A = 2000um, x, is the mass absorption

Mdust =

(3.7)

coefficient of dust adopting g of 1.3 cm? gr=! at Ay = 450um (Li and Draine,
2001). Also for rescaled SED we calculate the infrared luminosity by integrating
the SED from 8 to 1000um:

v(1000pm)
Lig = / LMBBay, (3.8)

(8um) Y
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After the modelling, now we have distributions of SEDs, Mgy, and Lig. We
adopt the 50th percentiles of Mg, and Lir as representative values, 16th and
84th percentiles as lower and upper bounds of our confidence intervals for every

galaxies.

3.4 SFR from UV and Infrared Radiation

The most direct way of obtaining star formation rates (SFRs) is by counting
the number of stars of a specific age(Kennicutt and Evans, 2012). However, due
to the limitation of instruments, this method can only be applied to the local
galaxies. Since those young massive stars will emit strong UV photospheric flux,
the UV continuum can directly trace the star-formation activity in the period of
10-200 Myr. But the biggest disadvantage of UV indicator is that it is normally
obscured and absorbed by the interstellar medium, like dust, therefore the UV
flux cannot directly reflect actual SFR. Luckily if we know the intrinsic color
index of the galaxies (Ha/HS, for example), it can be used to estimate the dust
attenuation and correct for the actual SFR. But the calibration is based on UV
luminosity only, which can be negligible in high dust-obscured regions. In this
case, the method above may underestimate the SFR. Since the dust absorbs
the UV flux and re-emits it in the form of infrared radiation, there is another
approach combining UV and infrared luminosity. One of the calibrations we
adopt is from Whitaker et al., 2014:

SFR [Meyr™'] =1.09 x 107" (Lig + 2.2Lyv) [Lo] , (3.9)

where Lir is the total infrared (8-1000um) luminosity, and Lyy is the UV
(1216-3000) luminosity. The Lyy can be expressed as Lyy = 1.5vL, 250

3.4 SFR from UV and Infrared Radiation
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Analysis and Results

In this chapter we display our results of analysis and discuss physical processes
and possible explanations behind them. M,, SFRgazy, flux density used for

SED rescaling, and calculations of SFR are all corrected for magnification.

4.1 Rest-frame UV J Diagrams

As mentioned in Section 3.2, the UV J diagram(Williams etal., 2009) can
distinguish quiescent galaxies and star-forming galaxies. From these figures we
found that the UV J diagrams exhibit two evolutionary tracks, one is diagonal
and it extends from small to large V' — J while the other one populates a region
with large U — V but small V — J. For one U — V value, the dusty star-forming
galaxies tend to have larger V — J than quiescent galaxies, as shown in Fig.
3.2. So the diagonal track represents star-forming galaxies with different dust
content and the upper-left clump represents quiescent galaxies lacking infrared
components. This pattern helps break the degeneracy between red quiescent
galaxies and red star-forming galaxies. We also notice that the young galaxies,
known as blue cloud, always stand out in the density plots(bottom-left corner)
down to z ~ 0.5 where dusty star-forming galaxies overtake. This trend agrees
well with SFRgazy — M, planes discussed in Section 4.2.1, in which most galaxies
have mass < 10°M, implying their relatively young ages compared to the
typical mass of DFSGs ~ 10" M, (Dye etal., 2008). This phenomenon can
be explained by the stellar mass function, which is defined in a similar way as
the luminosity function mentioned in Section 1.1.1. For those ALMA-detected
objects, we can see that they roughly follow the same diagonal track of star-
forming galaxies until z ~ 0.5, except for several outliers cross the border and
are classified as quiescent galaxies, which we will discuss in the following part.
For 0 < z < 0.5, basically all ALMA-detected sources appear to be either
young star-forming galaxies or quiescent galaxies, residing in lensing clusters.
Given that the high-density environment in clusters commonly contributes to
the quenching of galaxies (Gunn and Gott, 1972; Balogh and Morris, 2000),
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plus the low Ay of quiescent galaxies and medium Ay of star-forming galaxies
at 0 < z < 0.5 in Fig. 4.2, these low-redshift ALMA-detected objects are likely

mismatched and less dusty galaxies.

4.1.1 UV .J Contamination

Even though UV J diagram is an efficient and powerful approach to distinguishing
quiescent galaxies and star-forming galaxies, it can introduce misclassification
for galaxies. By plotting rest-frame UV J diagrams, we also want to explore how
reliable the results from this method are. So we checked SEDs of those ALMA-
detected objects that are classified as quiescent. Some of them are very close
to the border and thus misclassified partly due to the uncertainty of the UV .J
border, some are because of the large error in SED, thus we finally settle down on
2 really misclassified quiescent galaxies out of 20 quiescent galaxies, which SEDs
are showed in Fig. 4.3. Just like the typical SED of dusty star-forming galaxies
in Fig. 3.2, the existence of dust can be inferred from the notable infrared
excess. This small contamination rate(= Number of misclassified quiescent
galaxies/Total number of detected quiescent galaxies, ~ 10%) proves that the

UV J diagram can distinguish quiescent and dusty galaxies efficiently.

4.2 Main Sequence of ALCS

As mentioned in the Section 1.2.1, a large amount of message about star-
formation activities is swallowed by the dust, so that SFR of galaxies possessing
vigorous star formation can be underestimated. Thus, by comparing SFRs
of these star-bursting galaxies to those of the main sequence, we can see how

efficiently dusty candidates can form stars.

421 SFRpazy — M,

Figure 4.4 shows SFR — M, planes of all HST-detected galaxies. The density
plots show all HST-detected objects, while colored points represent ALMA-
detected sources. It seems like in every redshift bin the SFR exhibits a tight
and clear correlation with stellar mass, having small and uniform dispersion.

This could not be considered physical because there should be star-bursting

Chapter 4 Analysis and Results
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Figure 4.1: UV J diagrams of all galaxies in different redshift bins.
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The density

plots in the background show non-ALMA-detected galaxies and the color
represents the number density, while points with different colors show
ALMA-detected objects. Red solid lines are from Whitaker et al., 2012.
ALMA-detected galaxies are color-coded according to their positions
respect to clusters: blue points are galaxies in the foreground, orange
points are galaxies within clusters, and red points are galaxies behind the
clusters.

4.2 Main Sequence of ALCS
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Figure 4.2: UV J diagrams of all galaxies in different redshift bins. The density

plots in the background show non-ALMA-detected galaxies and the color
represents the number density, while points with different color show
ALMA-detected objects. Red solid lines are from Whitaker et al., 2012.
ALMA-detected galaxies are color-coded according to their dust extinction
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Figure 4.3: SEDs of misclassified quiescent galaxies, Upper:SMACSJ0723.3-7327-1D61.

Bottom: MACSJ0553.4-3342-1D249

galaxies and post-bursting galaxies residing above and under the main sequence.

Especially for high-redshift bins, there are only upper bounds (where galaxies
are being piled) in density plots, indicating that SFRs of star-bursting galaxies
in the early universe are "suppressed" by EAZY, while at 0 < z < 1.5 lower
bounds appear which agrees with the event that galaxies being quenched, but
EAZY cannot reflect their low SFRs. The distinct upper and lower bounds of
density plots are possibly due to the limits of models in SED fitting. For those
ALMA-detected objects, we can also see that most of them have mass > 101°M,
meaning that they are very likely DSFGs. However they only have SFRs close
to or lower than the main sequence, which does not meet our expectation that
dusty candidates will experience starburst and exhibit an excess of SFR, thus
the SFRs of DSFGs are likely underestimated by EAZY.

4.2.2 SFRgazy VS. SFRIIR—FU\/

To investigate how different SFR indicators can affect SFRs with different dust
content, we compared SFRs from EAZY (SFRsgazy) and SFRs calculated from
both UV and infrared luminosity (SFRsyviir). From Figure 4.5 we can see that
a considerable amount of galaxies have elevated SFRsyvy g compared to those
deduced from SED fitting. We can also see the trend that galaxies with larger

elevated SFRyv1r tend to have larger Lig/Lyy, and those galaxies with similar

4.2 Main Sequence of ALCS
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detected galaxies and the color represents the number density, while points
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etal., 2015. ALMA-detected galaxies are color-coded according to their
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Chapter 4 Analysis and Results

1200

1000

800

600

400

200

300

250

200

150

100

50



SFRsgazy and SFRsyv,ir behave the other way. This trend indicates that the
reduced UV radiation (that is converted into infrared radiation by dust) can
lead to the underestimation of SFR from EAZY, and adding infrared luminosity
can alleviate this issue. The assumption of SFH models used in EAZY may
lead to the underestimation of SFR, if the starburst event happened far back
from now and thus the print of star formation has faded away. On the other
hand, assuming a constant SFH can better describe star formation activities in
a relatively recent epoch(0 to 100 Myr backward at most, Kennicutt and Evans,

2012), for the conversion we introduce in Section 3.4.

4.2.3 SFRUV+IR — M,

To test how well the rescaling of infrared SED can probe hidden star formation,
we compare SFRyv.r to main-sequence galaxies defined by relationships from

Schreiber et al., 2015 for five redshift bins at 0 < z < 5. When compared with

SFR.
SFRus *

From Fig. 4.6, we can see that combining UV and infrared luminosity can in

main sequence, DSFGs are often considered to have large burstiness, i.e.

general lift SFRs of most galaxies up to the level of the main sequence, even
above it, compared to SFRgazy shown in Fig.4.4. Since all ALMA-detected
sources in this work have counterparts in optical/near-infrared data, while
those more dusty galaxies might only get dropout and thus be missed, thus
our galaxies sample normal star-forming galaxies with small to a large amount
of dust, but missing those dustiest star-bursting galaxies, as illustrated in Fig
4.7 (Whitaker etal., 2012). Galaxies at higher z are particularly affected by
this selection effect, which can be inferred from the bins of 2 < z < 3.5 where
there are about 1/3 dusty candidates below the main sequence compared to
other redshift bins having 1/4 or less, however this need to be validated by
more samples. Another trend is that the relatively low redshift galaxies in each
bin(except for 0 < z < 0.5) tend to reside below the sequence. We considered
this to be related to our assumption of T}, rising with redshift, and according
to Eq. 3.5, the increasing Ty, can elevate Lig significantly, thus the SFRyv g
more or less is connected with redshift. Besides this, the Ty.(2) we adopt
(Eq. 3.6) is derived based on the main sequence galaxies (Schreiber et al., 2018),

which means that it likely biases our Ligr towards lower values.

4.2 Main Sequence of ALCS
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Figure 4.7: Cartoon of how star-forming galaxies with different dust content and SFR
populate SFR-M, plane from Whitaker etal., 2012. The colorful arrow
indicates the evolutionary track of galaxies at the main sequence(~ 80%)
with different amounts of dust. A small fraction of extremely dusty
galaxies(~ 7%) and dust-free quiescent galaxies reside above and below
the main sequence respectively. The rarity of dustiest galaxies can also
bias our samples toward normal star-forming galaxies.

4.3 LIR/LUV_ M*

The infrared excess IRX = % probes the amount of star-formation activities
hidden behind the dust, and thus the amount of dust in galaxies combined with
the tight correlation between IRX and UV continuum slope 5 (Takeuchi et al.,
2012). At first, it is shown in Reddy et al., 2006 that IRX varies as a function
of M,. According to Bouwens etal., 2016, if the dust temperature increases
with redshift, then there is little variation of IRX — M, up to z ~ 6, so we
adopt the relationship logig IRX = log;,(M,) —9.17 in Bouwens et al., 2016 as
reference for all redshift bins. Like in previous parts, we notice that in Fig. 4.8
there are some outliers with low Ay at 0 < z < 0.5 having large IRX. This is
probably due to ALMA sources mismatched with quiescent galaxies and their
low Lyvy lead to the skyrocketing. At 1.5 < z < 3.5, we can see that galaxies
with Ay > 1.5 roughly follow the relationship, except for some outliers. By
checking their IDs and comparing them with Figure 4.2, we found that most
of these outliers either have large errors in U — V and V' — J (which means
large errors in SEDs, thus possibly large errors of Ay/), or appear as unobscured

galaxies in UV J.
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4.4 Evolution of My, /M,

We also test different characterizations of dust. First we explore the relationship
between Ay and Mgus. As Fig. 4.9 shows, we cannot see any clear trend in each
redshift bin. We also explore the evolution of Mg,s/M, with respect to M,, as
shown in Fig. 4.10. We found anti-correlation between Mgy /M, in all redshift
bins, which can be the evidence of the dust cycle in galaxies: M, evolves with
time, while the dust mass declines due to the destruction by shock or radiation
from supernovae(Schneider et al., 2004; Silvia et al., 2010), or merging into the
stellar mass(Donevski et al., 2020).

We adopt the fitted relationship between Mg,s/M, and M, from Magdis et al.,
2012 as the main sequence ratio, assuming Mgyas/Maust = 100. From Figures 4.10
we can see that except for samples at 0 < z < 0.5, the evolution of My, /M, in
all redshift bins has a similar slope as the reference relationship from Magdis
etal., 2012. The median values of Mg /M, are displayed at the upper-right
corners, which agree well with the range 0.001 ~ 0.01 of main-sequence galaxies
(Béthermin etal., 2015). At redshift 0.5 < 2.5, Mgausi/M, of our samples, in
general, agree well with, even exceed the main sequence ratio, while at higher
redshift some galaxies start to fall below the main sequence ratio. Theoreti-
cally, the dust mass will be better constrained if the data point is closer to
the Rayleigh-Jeans tail (thus better for galaxies at low redshift, see Section
3.3), but according to the result of Schreiber etal., 2018, the monochromatic
1.2 mm measurement of Mg, can obtain results with error better than 0.2
dex regardless of redshift. Thus we consider this partly be the consequence
of our selection, as mentioned in 4.2.3, that we include ALMA sources only
with optical counterparts, which means that only galaxies having a limited
amount of dust and sufficient amount of optical radiation can be selected in
our samples. Thus our samples are biased towards those less dusty galaxies,
especially at higher redshift, as mentioned in Section 4.2.3. Another explanation
is that as mentioned in Section 3.3, we adopt the single MBB curve and flux
density at the Rayleigh-Jeans tail to probe the dust mass, which assumes single
dust temperature and only represents the colder component of the stellar dust
(Casey etal., 2014). For those galaxies with hierarchical dust and temperature

distribution, this assumption can underestimate the total dust mass.
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Figure 4.9: Ay — M. color-coded by position. Blue points are galaxies in the
foreground, orange points are galaxies within clusters, and red points are

galaxies behind the clusters.
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4.5 Magnification and Depth

In this section we want to discuss how deep ALCS can go and how magnification
helps us explore those faintest objects. We group p(Lig) into 5 redshift bins
from z = 0 to z = 5 with an interval of 1. and we don’t take galaxies at z > 5 int
account, given the small number of samples at high redshift. We also indicate
wu(Lir) and Lig of the faintest objects with arrows. It is worthy of note that at
0.5 < z < 1 some galaxies residing in clusters have p > 1 (overlapping points in
Fig. 4.11). This could be due to the difference in methods used to determine
positions of galaxies, since V. Kokorev, G. Brammer et al. (in preparation) use
Za — 0.1 < 2z, < zgq + 0.1 to make the judgment, while our assumption adds
errors of zpnet, which can be more inclusive. For galaxies with redshift close to
the ones of clusters, i.e. they are likely within cluster, photometry can be a
bit tricky because the high density of galaxies in the cluster makes it hard to
accurately determine flux in apertures, which can introduce large error for SED
fitting and deduction of z,net. Thus, using only 2zpnet may be more reliable for
galaxies close to or within clusters.

By calculating the mean magnification factor (u) in each redshift bin, we know
that the cluster lensing can roughly elevate observed flux by a factor of ~ 3 — 5.
To obtain images with this enhanced quality, the observation of time should
increase from ¢ to p? - ¢, which is a huge cost of exposure time. From the depth
of the 90% completeness (black points) of u(Lir) we can see that it generally
climb up with z, proving the effect of cosmological dimming. But there is still a
discrepancy between our detection limits of Lig and results from Wang et al.,
2021, since the p might alter the trend as well and the number of samples is not

large enough.

4.6 Comments on Measurements of Dust
Mass and Infrared Luminosity

In this work we use flux at Rayleigh-Jeans tail of SED to calculate Mg, while
using the integration of the whole SED to determine Lig. Thus, the 1.2 mm
data we use should be able to constraint My, better than Lig. Schreiber et al.,
2018 explore the accuracy of monochromatic measurements (i,e, having only one

far-infrared data point) of Lig. They found that Lig is better determined when

4.5 Magnification and Depth
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the data point probes rest-frame wavelength near the peak of SED. For objects
at z ~ 0 and z ~ 5 in Schreiber et al., 2018, deducing Lig from single 1.1 mm
flux introduces error of Lir 0.3 dex and 0.2 dex respectively, while for Mg, the
error is ~ 0.1 dex for all redshift. Thus they conclude that for a single ALMA
data point, the calculated Lig is very likely underestimated. In fact, according
to their result based on mock data, for the band 6 (1.2 mm) of ALMA, L
can be measured with an error better than 0.2 dex only when z > 5.7, which
is a blank in our samples. These results can partly account for our result in
Section 4.2.3 that Some dusty galaxies with Ay > 1.5 merely reside in the main

sequence, after including infrared luminosity.

4.7 Matched Counterparts Catalogue

The final catalogue (Table 4.1) contains photometric redshift, S/N of H band,
and the other stellar properties deduced from UV /optical SED fitting from
V. Kokorev, G. Brammer et al. (in preparation), plus Mg.s and L from the
infrared rescaled SED. Missing My, and Ligr due to negative 1.2 mm flux or
Zphot, and missing SNRpigow due to missing flux and error of H band are set as

blankness.

4.7 Matched Counterparts Catalogue
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Perspectives

In this thesis, we primitively want to focus on the study of dusty galaxies, yet
not all of our sources turn out to be one of them. To confirm which are really
dusty galaxies, the cross-check of SEDs and the UV J diagram can be carried
out. Also, as mentioned in previous sections, H-dropout, even infrared-dropout
ALMA-detected sources will be of large interest because they are potential
extremely dusty galaxies.

Besides, given the potential coupling between Lig and Mg, it is hard to
measure SFE= SFR/Mg,s by assuming Mgas/Maust. Thus, we hope that cooling
line maps, i.e. [CII] 158 um or molecular lines, i.e. low-J CO lines, can be used

for calculating M,,s independently and comparing with SFRir and Mqust.
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Conclusion

In this thesis, we have presented spatially matched results of UV /optical coun-
terparts of ALCS-detected sources and studied their properties. Our major

results are as follows:

e For our samples, the UV J diagram can distinguish quiescent galaxies and
star-forming galaxies with an accuracy of ~ 90%. Most ALMA-detected
objects have UV /optical counterparts in the main sequence, according to
UV J diagrams.

e For our dusty star-forming galaxies, we use infrared luminosity deduced
from rescaled SEDs based on ALMA 1.2 mm flux density and UV luminos-
ity based on NUV flux from UV /optical SED fitting to compute SFRyv y1r.
We find that indicators based on UV and infrared luminosity can better
describe SFRs of them which generally fall in the main sequence, while
SFRs deduced from EAZY are likely underestimated, due to the limits of

models.

e We use flux density at Rayleigh-Jeans tail of rescaled SEDs to deduce
Mgyt of galaxies. For our dusty star-forming galaxies at z > 0.5, the
IRX-M, agrees with the relationship from Bouwens et al., 2016 well, which
has the form of logo(IRX) o log,o(M,).

e For our dusty star-forming galaxies at z > 0.5, the slope of Mgy /M, is
consistent with the result from Magdis et al., 2012, which has the form
of Myysi/M, o< M7%5. The outliers under the main sequence at high
redshift are likely due to our strategies of modified black body. The
median values of My,s /M, agree with mean ratios of My, /M, for main

sequence galaxies from Béthermin et al., 2015, ranging from 0.001 ~ 0.01.

e For our dusty star-forming galaxies, the cluster lensing can magnify the

flux by a factor of 3 ~ 5 in average, meaning that the time of exposure is
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reduced to 1/25 ~ 1/9 of the time needed without lensing. Thus cluster
lensing is a powerful and efficient tool for us to probe the faintest galaxies

in the universe.

Due to the selection effect of choosing ALMA sources with optical counterparts,
our samples are probing normal star-forming galaxies with a moderate amount
of dust. To improve the completeness of dusty candidates, selection based on

photometry at longer wavelengths is needed.
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