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Abstract

Climate simulation are very expensive computationally, which ironically have negative conse-
quences on carbon emissions and leads to global warming. Existing large-scale climate simulations
are generally run on archaic software stacks like C and Fotran and run on large cluster computers.
These implementations are great from a pure performance perspective, but other productivity met-
rics are also important like ease of use and development speed. Leveraging the high productivity
environment of Python to run high performance computing tasks trough the use of very efficient
accelerators, like graphical processing units, have proven to be a viable solution. Here we target a
hardware solution not widely used for HPC: Field Programmable Gate Arrays, as these have very
favorable power/performance ratios. Trationally FPGAs have been too unwieldy to program large
scale programs like climate simulations, but recent developments in high level synthesis have pro-
vided an avenue for the use of these types of chips. By exploiting the flexibility of FPGAs we aim
to build flexible system that can run deep pipelines of the compute tasks at hand. A FPGA specific
optimization, the use of alternative data encoding formats like fixed-point or posits is explored.
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1 Introduction

Performing climate simulations to gain a greater understanding of climate change[37] comes at great
energy costs[27]. While these are not a main driver of climate change if we are hoping to be advocating
for a greener future, we as climate scientists should also be doing our part. Reducing energy use will
allow more, and better, experiments to be run as computing cost is largely dependent on power use.
While for many years performance per Watt improvements was more-or-less given by the advance in
computer hardware, the apparent end of Moores law[40] and Dennard scaling[12] suggest we need to
find new ways to optimize our throughput while keeping energy use reasonable. This is a problem that
is not only relevant to climate physicists, but the world at large: Energy use of computing at cloud-
scale is a fast-growing sector[6][2], and an important contributor to climate change. In this thesis, we
will explore a method to drastically reduce the power, and the associated carbon footprint, of running
large-scale climate simulations.

To achieve this promise, we aim to provide a subset of Numpy[19], often used in small scale climate
and weather simulations, accelerated on a Field Programmable Gate Array (FPGA). Performance
per Watt in these devices is roughly an order of magnitude reduced while performance is comparable
or even improved in some cases[10]. A system like this will allow the migration of many expensive
climate related computations, everything from weather forecasting to ocean simulations, to lower power
systems.

FPGAs are re-configurable hardware chips. Implementing a system in hardware reduces the amount of
power needed to run a given computation. An example of a huge speed and power increase for a real
world computational problem is seen in cryptocurrency mining where a lot of mining today happens on
so called ASICs (Application Specific Integrated Circuits). AICSs are specialized hardware completing
one specific task, allowing them to be much more efficient, both in power and in computation speed,
than general purpose hardware like CPUs and GPUs. Performance is improved by scaling and designing
the chip to match the exact needs of the computation at interest. FPGAs provide a lot of the benefits
of ASICs but with an important feature namely that they are reprogrammable. A feature that greatly
improves the development cycle in designing hardware, as you can now iterate on your design without
fabricating silicon. This also allows FPGAs to be flexible to changing requirements. For example,
in the telecommunications[31] industry standards are constantly changing and hardware, such as low-
latency switches, needs to implement these changes. Importantly we also get the benefit that you can
actually buy FPGAs off-the-shelf while ASICs needs to be special purpose build for you application.

Traditionally FPGAs would be "programmed" at the so-called "register transfer level" (or RTL for
short), which means that you essentially control the buses and registers directly. A world very unfa-
miliar to the average software developer. To improve adoptability FPGA vendors like Xilinx and Intel
have created what is known as High Level Synthesis[9]. A system promising to allow you to write C
or C++ kernels to be executed on the FPGA, without worrying about FPGA or hardware details.
In practice, this is a custom compiler translating kernels to bitstreams that can be executed on the
FPGA chip. Developers with experience in writing high performance computing software targeting
CPU/GPU systems can now target these systems with better performance characteristics instead. Just
as writing high performance code has its quirks with regards to coding style, so does writing HLS, and
while performance can be extracted it is not trivial. These systems are starting to be adopted in various
high performance computing applications[43][42], but also in data center tasks by Microsoft[34]. You
can even rent one on Amazon AWS elastic compute[3]

Developing applications in these kinds of environments is still not easy. Testing and writing the software
is more cumbersome than compared to the very quick development cycles you can achieve in a stack like
Python + Numpy. It has even been shown that comparable performance can be achieved in this more
friendly environment. Veros[16] has shown that pure Python code can run at very competitive speeds
compared to traditional models written in e.g. Fotran or C. A feat achieved by using accelerators
to run the code without much end-user interaction required. This approach has multiple benefits.
Keeping your code base accessible and readable allows for way less bugs[39] to slip trough. Running
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and modifying the code becomes very easy. A property which is very attractive in teaching, and
research, environments as you can work on a "real" (as in not a toy) models.

In this thesis we aim to target a specific subset of the Veros model and accelerate it on FPGA hardware.
Specifically this part includes a high amount of slicing operations and strided operations on large
arrays. Furthermore we also include a large "global" operation involving the whole array. This is
a hard problem to accelerate and speedups gained here should be transferable to many "real world"
scenarios, and should scale to running the entire Veros model. The domain of problems that could
be solved with these techniques are quite large, ranging from astronomy to plasma models in nuclear
reactors, as Veros is at its core a fluid dynamics model.

To achieve this we build a modular system containing some basic arithmetic functions like adders
and multipliers, with some more intricate functions like a tri-diagonal matrix solver. Furthermore, we
implement broadcasting operations on all our functions.

We also investigate upon speedups available by using smaller bit-widths. For example, we have seen
that it is possible to run simple fluid dynamics simulations on 16 bit hardware[24]. On an FPGA
we can do even better. FPGAs are extremely flexible regarding bitwidths and can use any mix and
combination of these. We propose to start by building an emulator where we can freely vary bit widths
in the simulation. Trough experiments we can find the right set of fixed point variables that allows us
to run simulations at a satisfactory performance/accuracy trade-off.

Our approach does have some limitations: FPGAs are limited in size: How can we scale to multiple[36]
FPGAs? Can our kernels be optimized[10] further? Although promises are high, actually writing HLS
code is not like writing C/C++. You need to implement a very specific coding style to achieve good
performance[28], and even then you will almost certainly be beat by a custom hand written RTL
version. It is also possible that writing arithmetic kernels might not yield the performance we are
looking for, and to actually gain any appreciable speedup we would have to re-write the algorithm
from scratch. The possible upside, that we would be able to generalize to very many problems and to
the entirety of Veros, makes this a worthwhile endeavour.

2 Background

2.1 Veros

Veros[16] is a fast ocean simulator written in Python. The main trick employed in writing fast Python
code is that we can write vectorize operations and then accelerate these functions. Either on CPU by
multithreading or by offloading to external accelerators like GPUs. The result is a Python implemen-
tation written in the Numpy API which has comparable speed to C or Fortran implementations. To
scale simulations to very large sizes, which cannot fit into one machine due to memory requirements,
we employ a technique called ghost lines and use technologies like Message Passing Interace (MPI) to
distribute model state.

Exchanging the accelerator from a GPU to an FPGA does not matter when employing the techniques
allowing for distributing to multiple hardware accelerators. Often in fluid dynamics, calculations are
local in the sense that they require information only about the nearest neighbours. From a physical
standpoint, this makes a lot of sense: The important forces are local. In this simple case we can employ
a technique called ghost lines. Here we split up the model grid on and distribute to different machines,
but with an important trick: We add copies of data on the edges.
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Figure 1: Each proccess is responsible for a given area N ×N , we send data of shape (N +2)× (N +2)
so that each process has a local copy of all the data that it needs to do calculations. Then, after each
iteration, we exchange the so-called ghost lines with our neighboors only. This keeps intra-proccesses
communcation to a minimum.

We can now do our computations completely local. Then after finishing one iteration, we only need to
inform our neighbours about what happened on the so-called ghost lines. This keeps communications
to a minimum, and works fine for all explicit schemes, but in implicit schemes we can run into trouble.

2.1.1 Implicit vs Explicit time stepping scheme

When we a running fluid simulations we are interested in solving various differential equations. There
exists a myriad of different numerical schemes, but we will illustrate an important difference between
two classes, implicit and explicit schemes, which affects stability. If a scheme is unstable the solution
will grow in time and explode to infinity.

To illustrate, lets look at a common and simple explicit scheme the "Forward in time central in space"
(FTCS) scheme. We will take the heat equation as an example:

∂T

∂t
= α

∂2T

∂x2 (1)

We then take a finite difference approximation:

Tn+1
i − Tni

∆t
= α

Tni−1 − 2Tni + Tni+1

(∆x)2 (2)

Where the subscript i denotes spatial coordinates (in this case on a 1d grid), and the superscript
denotes timestep. We can rearrange this equation for Tn+1

i , which is then the state of the variable T
for the next timestep:

Tn+1
i = λ(Tni−1 + Tni+1) + (1− 2λ)Tni (3)

With λ = α∆t

(∆x)
2 . Here we neglected to analyse any errors due to the discretization.

If we had chosen another set of finite difference approximations, we could have arrived at a situation
where the solution for Tn+1

i depended on other Tn+1
i+1 , or other combinations of spatial variables. This

would lead to a system of equations we then needed to solve to get to our new system state. For
example, lets choose a backwards difference in time and a centered second order in space:

Tni − T
n−1
i

∆t
= α

Tni−1 − 2Tni + Tni+1

(∆x)2 (4)
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To make the idea a little clearer, by a trick of notation, make n→ n+ 1 and rearrange:

Tn+1
i (1 + 2λ)− λ(Tn+1

i−1 + Tn+1
i+1 ) = Tni (5)

This is a tri-diagonal system:

MTn+1 = Tn (6)

Tn+1 = M−1Tn (7)

Where the matrix M looks like (for circular boundary conditions):
1+2λ -λ 0 · · · -λ
-λ 1+2λ -λ · · · 0
...

. . . . . . . . .
...

0 0 -λ 1+2λ -λ
-λ 0 0 -λ 1+2λ

 (8)

By inverting this matrix, we need (in more realistic scenarios than this, imagine α varying in space
and time) information about the whole system. This is not great, but there are good reasons why
we do this. It turns out that this allows us to take much greater timesteps as implicit methods are
unconditionally stable.

To reason about this strong claim, we first introduce the concept of Von Neumann stability analysis[45].
Lets start by considering the stability of the heat equation we looked at before. We can write the
solution Tnj as a sum of Fourier components:

Tnj =
∑
k

ρnk e
ikj (9)

Note that the superscript on ρ should be understood as an exponentiation. We can think of ρ as an
operator that advances the solution to the next timestep, and we will refer to it as the amplification
factor. For a given scheme to be stale it is then required that the norm of this amplification factor to
be below unity:

|ρ| ≤ 1 (10)

Which should hold for the entirety of the space and time domain of our solution. By inserting (9) into
our finite difference equation, we can find conditions for numerical stability of our schemes. For the
explicit FTCS scheme (3) we get:

∑
k

ρn+1
k eijk = λ

(∑
k

ρnk e
ik(j−1) +

∑
k

ρnk e
ik(j+1)

)
+ (1− 2λ)

∑
k

ρnk e
ikj (11)

Because this should hold everywhere we can remove the summation and require the condition hold for
all k. We can also divide out a factor of eikj . This gives us:

ρn+1 = λ
(
ρn e−ik + ρn eik

)
+ (1− 2λ)ρn (12)

ρ = 2λ cos(k) + (1− 2λ) (13)

ρ = 2λ(cos(k)− 1) + 1 = −4λ sin2(k/2) + 1 (14)

Where we used a half-angle trigonometric identity in the last line. The worst case is that the sin2 term
will be unity and we are left with:

ρ = −4λ+ 1 (15)
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Any negative value for λ will result in ρ being larger than unity. We investigate when a postive value
of λ will result in the amplification factor being smaller than −1:

−4λ+ 1 ≥ −1 (16)
−4λ ≥ −2 (17)
λ ≤ 1/2 (18)

For this particular scheme we must choose λ, and in turn our time steps and grid size, to be between
zero and one half.

Doing the same exercise for the explicit scheme1 it will be evident that we have no requirements on λ.
Our solution will be stable with arbitrarily large timesteps.

2.1.2 Accelerating Veros — Profiling to find the slow bits

Currently Veros can be GPU accelerated trough various means. Using Bohrium[25] we can essentially
import bohrium as np and in-place replace Numpy functions with GPU accelerated versions. We can
do similar things with other acceleration backends like Tensorflow[30] and JAX[8]. Here we leverage
the enormous efforts that have been applied for accelerating machine learning into running ocean
simulations. To get a sense for the relative performance of different backends, Veros provides a series
of benchmarks to target[17].

In this thesis we are targeting the "hardest" benchmark containing an implicit scheme where we need
to solve a system of equation spanning the entire 3d grid. To arrive at this system of equations
we also have to perform many array operations to setup the system. All in all, this makes it a
balanced benchmark that should provide insight into how a given backend would perform at the tasks
of computing large-scale models.

To optimize any code, it is imperative that one performs profiling to see exactly where the "hot"
parts of the program are. To profile this particular program is not trivial due to the fact that the
regular Python profiling tool CProfile[35] does not register Numpy array operations, as no functions
gets called. A Numpy line of code like:

1 A[large_index_matrix] = large_value_matrix

Might likely be a slow part of you program, but in CProfile it will register all its run-time inside
the calling function leaving us no explicit information where our code becomes slow. As Python is
an interpreted language, we can do better and perform benchmarking line-by-line. Here the de-facto
standard tool is LineProfiler[22]. Running our target benchmark trough the profiler, we investigate
which parts of our algorithm is taking up most of our run-time:

1. The tri-diagonal matrix solver.

2. All other code. This mainly comprises of Numpy array operations.

This is still a subset of a full Veros simulation but should still provide some information about what
kinds of acceleration would be beneficial to implement.

1See apendix.
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Figure 2: We investigate which parts of the Turbolent kinetic energy benchamrk takes the most relative
runtime. Here we plot the ratio of time spent solving of a tri-diagonal system with LAPACK[5]. Plotted
is the benchmark performed on two machines: A laptop with a Intel i5-7200U processor and 16 GB
of ram, and the so-called Threadripper which includes a AMD Ryzen Threadripper 1950X 16-Core
processor and 128 GB of RAM. To make the benchmark somewhat comparable we run the code using
only one thread by specifying environment variables like OPENBLAS_NUM_THREADS=1, and enforce the
same BLAS backend.

This illustrates the point that it is important to accelerate the simple array operations.

2.2 Representing numbers on computers

Data storage in computers are fundamentally done in bits of ones and zeros. A given series of ones
and zeroes leaves many options for the choice of how to interpret the data. Most modern computer
hardware run on 64 bits which means that most operations in the processor is done on so-called words
which are 64 bits wide. A huge advantage to this is that modern programmers very seldomly have
to worry about implementation details when working with numbers in computers. 64 bits are large
enough that overflows, underflows and precision are not issues in day-to-day use. A disadvantage is
that they are twice as large as the 32 bit standard they superseded. Usually this is a worthwhile
trade-off as computer storage and memory has become very cheap[7].

High-performance computing comes with additional requirements. Often we do not worry so much
about the hardware footprint but the memory throughput. Lets take as an example the aforementioned
ghost-line setup. Here we wish to minimize communication latency as much as possible to keep the
machines working to their full potential, and not waiting around for synchronization. If the data is half
the size, the transfer speed is incrased. While this is somewhat of a trivial example, this is important
in many aspects of HPC. Smaller data structures fit more information into cache lines, for a given size
of a vector-computer you can compute on more numbers, etc.

Not having to worry about precision and overflow comes at a significant cost in HPC. Here we will
give a short introduction to various standard methods of storing numbers.
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2.2.1 Integers

As we are limited by storing zeros and ones in the computer, it naturally lends itself to a binary, or
base 2, representation. In this representation the 8 bit (or 1 byte) binary number will be stored as:

1001 1101 = 1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 (19)
= 128 + 0 + 0 + 16 + 8 + 4 + 0 + 1 = 157 (20)

We store 1001 1101 but it represent the decimal number 157. If we wanted to store a negative number,
we would interpret the binary data using a scheme called twos-complement:

1001 1101 = −1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 (21)
= −128 + 0 + 0 + 16 + 8 + 4 + 0 + 1 = −99 (22)

This scheme allows us to map memory to a given natural number as long as we have enough bits.

2.2.2 Fixed point representation

If we have some real number x, we can represent it in binary by introducing a "point" like the familiar
decimal point. For example, the decimal number 5.25 would be represented by:

101.01 (23)

To represent negative numbers, it turns out that using twos-complement preserves the regular arith-
metic operations. Lets introduce the notation Fp(sign, wordSize, fracBits). This is a signed
number type of wordSize bits in total of which fracBits are fractional. Lets write the numbers 8.25
and -4.5 in the fixed point variable Fp(1, 8, 2):

8.25 : 001000.01 = 23 + 2−2 (24)

−4.5 : 111011.10 = −25 + 24 + 23 + 21 + 20 + 2−1 (25)

We can then take the sum of these numbers like a regular sum:

001000.01 (26)
111011.10 (27)

1000011.11 = 000011.11 (truncated) = 3.75 (28)

Which was the expected result. Throwing away the overflow bit depends on which case (two negatives,
one negative of large magnitude and a negative etc) is being added, and you must implement logic
to handle this. To invert a number, we take the logical (NOT) of each bit and add the smallest
representable number to it:

5.0 = 000101.00 (29)

−5.0 = 111010.11 + 000000.01 = 111011.00 = −25 + 24 + 23 + 21 + 20 = −5 (30)

As should be obvious, when adding or subtracting we are not committing any arithmetic errors in the
sense that what is represented is calculated exactly. This is not true for multiplying and divisions.
Furthermore, we actually must introduce rounding in general to make this operation work. First,
a multiplication algorithm on binary integers works like the regular grade-school multiplication on
decimals, except that the times table for binary multiplication is extraordinarily simple. Lets illustrate
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with the decimals numbers 3.25 and 4.75.

000100.11× 000011.01 (31)
000011 01 (1× 000011.01) (32)

0000110 1 (1× 000011.01) (33)
00000000 (0× 000011.01) (34)

00000000 (0× 000011.01) (35)
00001101 (1× 000011.01) (36)

00000000 (0× 000011.01) (37)
00000000 (0× 000011.01) (38)

00000000 (0× 000011.01) (39)
00000001111.0111 (40)

As can be seen here, we get a number that is wider than our input numbers. This means that we
have to scale our results, if we wish to stay in the same variable type. In the simplest case, but
other rounding modes exists, we simply right shift until we have the desired amount of fractional bits.
This will truncate the number, and essentially always round down. Whatever method we choose, we
introduce an arithmetic error. This is different from errors originating from the precision of our variable
in encoding a given real number.

The trick to using fixed point in hardware is that we can reuse all the circuits for doing integer
arithmetic as the algorithms are all the same. The only difference is in how we interpret the resulting
bits when printing to screen.

2.2.3 Floating point numbers

To store real numbers we generally use a standard set by IEEE-754[21]. This standard defines the
floating point numbers for 32 and 64 bits word-sizes. A floating point number consist of some number
of bits:

Figure 3: Bit pattern of a 32-bit IEEE-754 floating point number.

These bits represents a decimal number according to the formula:

x = (−1)s · (1 + f) · 2e−b (41)

Where x is the decimal value of the number to represent, s is a sign bit (0 if positive, 1 if negative), e is
the exponential part, where the bits the make up this number are understood as an unsigned integer,
while b is a fixed bias used to effectively make the exponent a signed integer while saving us 1 bit
by building it into the standard. For the fractional part we do something similar: f is essentially a
fixed-point with no integer part, and the standard implements the implicit 1 bit. Lets take an example.
The IEEE float is defined as having 8 exponent bits, ne = 8. To properly offset that we get a bias of:
b = 2ne−1−1 = 28−1−1 = 127. Now lets decide on some values for our sign, fractional and exponential
part:

s = 0 (42)

f = 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + · · · = 0.25 (43)

e = 0 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 0 · 20 = 124 (44)
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These bits correspond to the decimal number:

x = (−1)0 · (1 + 0.25) · 2124−127 (45)

x = 1.25 · 2−3 = 0.15625 (46)

To do arithmetic on floating points we can essentially do integer arithmetic on their bit patterns. Lets
take a simple example and add the floating point number 0.15625 we just showed the bit pattern for,
to the floating point number 2, which will have the pattern:

s = 0 (47)

f = 0 · 2−1 + 0 · 2−1 + · · · = 0 (48)

e = 0 · 28 + 1 · 27 + · · · = 128 (49)

2 = (−0)1 · (1 + 0) · 2128−127 (50)

Our summation is then:

2 + 0.15625 = (1) · 21 + (1 + 0.25) · 2−3 (51)

Notice how it would be really convenient if the exponents where the same so that we could factor it
out. What we can do is right shift the number with the smaller exponent, throwing away the least
significant bits, while incriminating the exponent until we get a match:

x1 = 2 x2 = 0.15625 (shifted) (52)
f1 = 0000 0000 · · · = 0 f2 = 0001 0100 · · · = 0.078125 (53)

x1 = 1 · 21 x2 = 0.078125 · 21 (54)

When shifting, notice the implicit leading one, which we did not actually store but kept as a part of
the standard, now appears. This leaves us with adding the bits of the two fractional parts to get the
sum, as we have factored out the exponent. Here we must be careful to remember the implicit leading
bit on the binary pattern of x1, and which is now not present on x2, after shifting.

1.0000 0000 (55)
.0001 0100 (56)

1.0001 0100 (57)

Here we arrive at our answer:

s = 0 (58)
f = 0001 0100 = 0.078125 (59)
e = 0100 0000 = 128 (60)

x = (0)s · (1 + 0.078125) · 21 = 2.15625 (61)

To perform multiplication we can essentially add the exponents and perform the same multiplication
we did for fixed-point on the fractional part. Some care must be taken to treat the hidden bit as we
did with addition.

An important thing to consider is that when we did addition with floating points we had to throw
away useful information when aligning the exponents. Throwing away information is what can lead to
effects such as catastrophic cancelation[11], where simple arithmetic leads to wildly wrong answers.

2.2.4 Posits

Posits can purportedly "beat floats at their own game"[15]. Posits provides a larger dynamic range than
equivalently sized floats while at the same to giving greater accuracy around unity. Downside to this
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is, that they are less accurate for very large numbers at the edges of their range. There exists tentative
developments of implementing posits in hardware[46][46], but also interesting simulation results in the
fluid-dynamics world[24].

A posit words looks like:

Figure 4: Bit pattern of a posit. Compared to the IEEE-754 float, we have an added regime bits
field. This field provides variable dynamic width and dynamic length of the fractional part. Illustration
taken from [24]

This represents a decimal number:

x = (−1)s · useedk · 2e · (1 + f) (62)

Again we can make a choice: How many exponent bits would we like? If we choose this number, and
the word size (eg. 32 or 64 bits), we get a well defined type. A keen reader will smell the familiarity
with the IEEE float. We still employ a fractional and an exponential part. But a new factor useedk

has been introduced. k can be read from the so-called regime bits following the rules that:

• The regime bits are the series of same-bits immediately following the sign bit

• If these bits are zeros: k = −nr but if they are ones, k = nr − 1.

The value of useed is defined to be 22ne where ne is the number of exponential bits. An example posit
can be shown:

Figure 5: Pi represented in a Posit(8, 1) (ie. 8 bits, 1 exponent bit) format. Sign bit is illustrated in
red, regime bits in orange ending regime bit in brown, exponent bit in blue and finally fractional bits
in black. Illustration from [24].

This format has wider range than floats while even improving accuracy while close to unity.[24]

2.3 Representing vectors and matrices on computers

Multiple possible abstractions can be made for keeping arrays of numbers in memory. We will mainly
discuss contiguous arrays, as this strategy will yield the most benefits in our application of running
climate simulations on FPGA hardware.

2.3.1 Striding

In computers, memory is fundamentally addressed linearly. You have an address space which maps
an integer to a position in memory, where you can put information. The standard way to implement
multi-dimensional arrays is to use a technique called striding. First, lets establish an indexing to make
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sense of multi-dimensional arrays. Here we can take the usual notation used in linear algebra:

A =

A00 A01 A02

A10 A11 A12

A20 A21 A22

 (63)

To make sense of this in a linear way, we could arrange the entries of the matrix like so:

A = [A00, A01, A02, A10, A11, A12, A20, A21, A22] (64)

The correspondence between elements of A and A is then:

Aij = A3·j+i (65)

In generel, the strides of A will be an array consisting of the numbers that will offset us into the correct
place in memory, if we increment the corresponding index by one:

Astride = [3, 1] (66)

This lets us store data of multiple dimensions in memory in a convenient way.

The way we selected the direction of our array was arbitrarily chosen: We could have selected the
columns to be the leading dimension and have a memory representation like:

A = [A00, A10, A20, A01, A11, A21, A02, A12, A22] (67)

This layout is known as column-major (the layout first presented is likewise referred to as row-major).
While this choice might seem innocuous, it can have performance implications. An effect caused by
the fact that reading from memory into the registers where the calculations is performed is generally
slow. To optimize this reading operations, you will want to read large chunks at a time. CPUs will
automatically make this optimization by fetching not just the data you are asking for, but also the
data in the immediate neighborhood which is referred to as a cache line[38]. To illustrate how dramatic
this effect can be, we can design a small program calculating a matrix-vector product, and analyze the
difference in run times:

Figure 6: Difference in run times is observed for a matrix-vector product c = Ab. Matrix A has
dimensions of 1024× 1024 and vector b a length of 1024. The difference in run time is associated only
with the exchange of the order in the nested for-loop calculating the product. Program is written in
C++ and compiled with g++ with standard flags, and run on a laptop on an Intel i-5 7200U processor.

Simply permuting the nested loop produced a significantly slower program.
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2.3.2 Broadcasting

When working with array data, it can be useful to perform the same operation on all the elements. For
example, let say we want to scale every entry in our array, or we want to divide every rows pairwise
with the elements from a vector. These kinds of operations can be conveniently written in terms of
broadcasting.

To broadcast an operation we imagine stretching it on empty, or singleton, axis. Ie.:

Oij = Aij ·Bi = Aij ·Bii (68)

Here we trivially promote the vector B to a matrix that allows it to be multiplied elementwise by A.
We can also imagine other situations: For example taking an outer product by forcing different indices:

Oij = Iij ·Ai ·Bj (69)

Where I is the identity. To determine if a broadcast is possible, we can write the dimensions of the
operands like so:

Shape of A: 9 4 1 5 (70)
Shape of B: 4 6 1 (71)
Shape of O: 9 4 6 5 (72)

First, we align arrays of different number of dimensions along their leading dimension. Then, for each
output the inputs must either be equal, or one of them has to be one. I.e:

Oi = max(Ai, Bi) iff(Ai == Bi ∨Ai == 1 ∨Bi == 1) (73)

If this is not satisfied the broadcasting operation is not well-defined and should fail.

2.3.3 Why is broadcasting useful?

In many cases in scientific computing the operations involved naturally lend themselves to broadcasting.
A great example of this is computing partial derivatives in an uneven grid, which is often used in the z
direction[45]. Imagine we have some field f(x, y, z) which we have computed on non-equidistant grid
points. To get an estimate for the partial derivative we would do something like:

∂f

∂z
=
f(x, y, z + ∆x)− f(x, y, z −∆z)

2∆z

Here ∆z is a essentially a 3d field, but the symmetries in the x and y directions makes it possible to
encode the information in a vector. Physically we can think of the partial derivative as the difference
between "slices" of the field. Thinking in this way lets us write the equation for the partial derivative
in a compact and easily readable way2:

1 dfdz = (f[:, :, 1:] - f[:, :, :-1]) / 2 / dz[:]

If this is Numpy code, we have many benefits. Firstly the code is very easy to debug If we miss an
index it is obvious compared to missing an index in a thrice-nested for loop. As an ugly demonstration,
here is comparable code written out, but with caveat: There has purposely been placed an indexing
error. Try to see how fast you can spot it.3

1 dfdz = zeros(x_dim , y_dim , z_dim -2)
2

3 for i in range(x_dim):
4 for j in range(y_dim):
5 for k in range(1, z_dim - 1):
6 dfdz[i, j, k] = (dfdz[i, j, k-1] - dfdz[i, j, k+1]) / 2 / dz[k]

2We assume that f is padded such that appropriate boundary conditions are applied when taking the finite difference.
3The k+1 and k-1 should be swapped. "Right" side should be postive, left side negative.
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Secondly the computations are offloaded to fast C code. This can be a huge benefit in writing high-
level Numpy code, but gaining the speed of low-level C. As a quick example, lets look at some code
computing the pairwise distance matrix between two arrays of 3d coordinates which is an operation
commonly used in astrophysics type simulations to calculate the gravitational force experience between
objects:

1 def aj_noloop(A, B):
2 B = np.reshape(B, (-1, 3, 1))
3 A = np.reshape(A, (-1, 3, 1))
4 aj = np.sqrt(np.sum((A.T - B)**2, axis =1))
5 return aj
6

7 def aj(A, B):
8 d = np.zeros(shape=(N, N))
9 for i in range(N):

10 for j in range(N):
11 d[j, i] = np.sqrt(np.sum((A[i] - B[j])**2))
12 return d

Running this code we see that for approximately 1000 objects, we get a two orders of mangitude faster
execution. Some clever broadcasting to essentially take an outer product gives us a massive speed boost.
This speedup is achieved solely by going to optimized C code, and not from any parallelism. There is
no free lunch here: Taking the outer products produced a huge amount of unnecessary computations,
costing us both memory and processing, but the raw speed up of doing C compared to Python gave
us a nice speed boost. If we scaled this to a very high number of objects, at some point we expect the
loop version to win, as this is running in O(n2) while the no loop vesion is running in O(n3). This
suggests that while we should generally employ a coding style with no loops when trying to implement
HPC code in Python so that our accelerators can take over, we should not loose our heads and be
careful about unnecessary computations.

2.3.4 Alternative methods

If we have really sparse arrays we can opt to keep the data in other formats. Different implementations
strategies exists, but boil down to keeping only non-zero entries along with some coordinate information
around. Keeping only the non-zero entries can save you very large amounts of RAM, as this this will
grow like Nd with d the dimensions of the array, while the non-zero entries of sparse matrices will
grow with a smaller exponent. This obviously entails different implementations of the operations on
the matrix.

Totally different methods for keeping arrays also exists which have obvious draw-backs for our purposes.
An example of this could be a linked list. A linked list is a data structure where we do not reference
elements by their indices, but instead keep a reference to the next element together with the data
contained. This allows us to easily find the next element, but since the data could be place in-principle
at a random memory address we will not get the benefits of caching and definitely not the benefits of
doing broadcasting. The upside to linked list are that you can easily add elements to the beginning
and ends, and that they do not need to be of a pre-defined size.

2.4 FPGA details

FPGAs promises to compute at a lower power footprint than competing technologies. As is, FPGA
hardware is more expensive than comparable CPU/GPU processors, but recent approaches like Amazon
F1[3][36] instances and an increased focus on usability with HLS might make them a new target
for silicon manufacturers[4], and in the future be produced at a more attractive price point. From
a practical standpoint, the advent of datacenter cards like the Xilinx Alveo family[47] is also very
promising. This approach makes targeting FPGAs feel like running code on regular cluster computers.
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2.4.1 Computational model on an FPGA

On an FPGA we have abandoned the Von Neumann architecture and are running directly on (re-
configurable) hardware circuits. This gives us the advantage that we can move registers closer to the
computation, and we can create deep pipelines of operations than can process data in a staggered
manner.

Figure 7: We can build pipelines to efficiently execute code. In this trivial example we can imagine
being limited by a bus allowing us to read every clock cycle: To maximize our throughput, we need
to saturate this bus. In the FPGA we can build systems (circuits) that does the required operations
and then stream our data trough them.

FPGAs do not have cache misses, network packets, context switching etc. This means that a program
executing in n cycles will always execute in n cycles. Coupling this feature with the potential for very
low latency makes FPGAs an attractive choice for early-stage data processing coupled to high data
throughput sensors. In this project we hope to leverage the pipelines and the data locality features of
the FPGA to move the data needed for a given computation quickly trough the hardware.

FPGAs can come equipped with regular memory as we know it from our computers, which have some
benefits. Implementing the RAM in the reconfigurable part of the chip costs a lot of area, in the sense
that storing one bit of information reliably costs more than one transistor. As a result, if we want lots
of memory we need very large chips. This is not feasible: Due to fabrication limitations the FPGAs
will have random errors in their silicon. The rate (per area) of these random errors essentially limits
the size of the average chip to be proportional to 1/err rate, as chips with errors needs to be discarded.
The downsides of implementing the RAM separately is that it will be slower and further away from
the parts of the FPGA doing the computation.

2.4.2 HLS vs RTL

Traditionally we would develop FPGAs like we would ASICs and everything would be implemented in
RTL. When writing RTL code we are using an abstraction to specify the shape of the hardware. This
amounts to controlling the clock and then applying transformations on our registers. Registers are
analogues to variables, in the sense that they contain data. This production flow is not very suitable
for programmers, who does usually not have a deep understanding of the specifics of the underlying
hardware. Furthermore it is not very productive to write larger applications, if we need to manage
every register "by hand". The difficulties does pay off as RTL will generally win in terms of performance
when compared to HLS implementations. We have also experience other issues related to tooling. For
example, when working with HLS on some systems, only a fraction of the available bandwidth could
be utilized. It has been shown that the abstraction of going to HLS reduced the number of lines of
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code by a factor of 10 compared to equivalent RTL code[44]. This makes HLS manageable in larger
systems where RTL, implementation details notwithstanding, becomes too complex.

HLS allows more traditional software development work-flows targeting FPGAs[9]. Generally we work
on three levels of developments and abstraction, with approximately exponentially increasing compile
times:

1. software emulation (order of seocnds)

2. hardware emulation (order of minutes)

3. hardware (order of hours)

The first software emulation layer allows us to write unit tests for whatever application we wish to
accelerate. This gives us confidence that we have written a functionally correct program. By writing
our HLS code in a language like C, we are able to run it on our regular hardware. The second layer
allows us to optimize the program for the FPGA as the hardware emulation is cycle accurate, although
with some caveats[51], the main one being that the memory model is approximate. This means that
performance estimates can be off, especially if we are close to saturating the bandwidth of our memory.
The third layer allows us to actually produce a working binary, referred to as a bitstream, to run on
the FPGA hardware.

2.4.3 HLS coding style

Getting performance out of an FPGA turns to be not a simple feat. Simply running existing code
or naively porting to C++ will not grant performance[28]. We abandon the way of thinking adopted
from programming accelerators in general, where we distribute our kernel to many instances of our
kernel each responsible for subset of the program. Instead we write one kernel and optimize that with
various pragmas. For example, imagine we have some vector of 1024 elements that we want to apply
some function compute to. In the regular GPU accelerator we would writing something that roughly
corresponds to:

1 host code:
2 broadcast -to-kernels(data , N)
3 retrieve -from -kernels(result , N)

With:

1 kernel code:
2 k = which_kernel_am_i ()
3 for (i = k * 1024/N, i < (k + 1) * 1024/N, i++):
4 result[i] = compute(data[i])

Where each kernel is responsible for some amount of the computation. Instead when targeting an
FPGA we get:

1 host code:
2 send -to-kernel(data)
3 retrieve -from -kernel(result)

With a loop like:

1 kernel code:
2 for (i = 0, i < 1024, i++):
3 #pragma unroll factor = N
4 result[i] = compute(data[i])

The difference is, we only enqueue 1 kernel in the FPGA example, but N kernels in the GPU example.
On the FPGA we get concurrency by specifying a pragma which tells our compiler that we want to
copy the loop N times. In principle this is enough. But the tricky part is that we need to recognize
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that we will run into performance issues due to limited read capabilities from our memory. Instead
we need to deploy other tricks, like copying the memory first into local memory, and then spreading
these to different physical memory blocks. Employing an array_partition pragma allows us to create
the right type of memory structure, and our kernel code ends up looking like:

1 kernel code:
2 #pragma array_partition local -data factor = N
3 local -data[]
4 read -data(data , local -data)
5

6 for (i = 0, i < 1024, i++):
7 #pragma unroll factor = N
8 result[i] = compute(local -data[i])

As is evident, we are not saved from writing memory optimized code if we want performance on our
FPGA accelerator.

Another important pragma to know is dataflow.

Figure 8: When using dataflow pragma the compiler will analyze your code and allow paralell execution.
This parrallezation can be limited by data dependencies. This sometimes means re-writing your code
to limit loop-carried dependencies if possible.

Using this pragma we can get overlapping execution of multiple functions. An almost trivial example
could be a loop like:

1 for (i, 1024) {
2 read(data[i], local_data[i])
3 compute(local_data[i], result[i])
4 write(out[i], result[i]
5 }

Here write depends on compute which depends on read. The dataflow optimized version is able to
finish more iterations in less cycles. It should be noted that dataflow is similar to pipelining, but on a
task level.
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3 Accelerating on an FPGA — strategies

It is not obvious which way to perform the acceleration of Veros on an FPGA. It would be favourable
to have an extendable system that can generalize to accelerate the entirety of Veros, and other simu-
lations that can be written from the same powerful building blocks of Numpy array operations with
broadcasting. Ideally this should not require an FPGA expert to setup, but could should be an some-
what automatic system akin to the way we can accelerate Veros on GPUs by swapping in a backend
which understands the Numpy API.

In this chapter we will discuss various avenues of achieving this task.

3.1 Leveraging AI-on-FPGA

AI is a huge area of research and has seen many interesting ways to speedup the costly training
and inference operations. At Google, they have built special purpose TPU[14], and for GPUs we
are seeing different number encoding such as 16 bit floats[32]. But in the FPGA space we have also
seen developments in this area[49]. Mostly this research have been focused on running inference on
FPGAs. Here we leverage the fixed (and low) latency features coupled with good parallelism and
power characteristics to build robust inference systems. These features become especially important in
embedded devices needing to process high bandwidth data. In this class of devices, power requirements
are often an important feature. Examples could be in drones[26] or in self-driving cars[18].

For our purposes it could be interesting to repurpose these performance optimized kernels performing
neural net inference to do fluid dynamics, just like we could do for the computation backends of Veros.
The problem set is not as unlike as a first glance might suggest. Common for inference in AI and fluid
dynamics is the multi-dimensional arrays being operated on, while the operations performed are also
mostly elementary arithmetic operations.

As it turns out, the available tools are not useful for our use case. The tools allows you to compile spe-
cific machine learning models to FPGA. These models come with important limitations. For example,
you are not allowed to have any if statements in your code. The models also need to be pre-compiled
by your machine learning framework, eg. PyTorch[33], before being processed by the FPGA tools, and
we do not have access to any lower level functions that we could re-use.

Machine learning algorithms in general do not need slicing operations, which we rely on extensively
in Veros. While it is possible to cast an arithmetic operation with a slicing operation to be a matrix
product, this approach would be more suitable on TPU, and would require major rewrites of core Veros
logic[1]. This approach proved to be a dead end.

3.2 Refactoring into HLS

3.2.1 Arithemtic kernels

We can imitate Numpy and write kernels responsible for adding, multiplying etc. This lends itself
to translate Numpy code quite nicely, and it should even by possible to write a transpiler converting
Numpy code to an intermediate target of HLS code and host code, which can then be compiled to
target FPGA hardware. The class of problems we can solve is also large as the method should scale
to all programs that can be written with broadcasting operations.

In an extreme case, we might even be able to build a Numpy translation layer that can run directly
on the FPGA. While this might seem like a good idea, we argue that this will result in the FPGA
essentially being converted into a (probably worse) GPU.

Writig arithemtic kernels, we need to work very hard to gain any appreciable speed-ups, as this problem
is embarrassingly parallel. GPUs are essentially special purpose hardware made to solve this exact
problem.
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To stand a fighting chance, it is obvious that we need to keep the calculations local and exploit the
pipeline capabilities of the FPGA to gain any appreciable speed ups.

The simplest way to implement this strategy would be to:

1. Write the necessary kernels

2. Create a host program calling the kernels

In this naive implementation the control flow of the code is handled by a host, which in principle could
be the Python code. Here we would transfer data to and from the FPGA often and the kernels would
not be able to talk to each other and produce pipelines. Most likely this will not result in a faster
program.

It is possible to have kernels stream data between them, which might be a solution to this problem.
Doing this requires writing a configuration file, which is essentially a call graph of the program, that
is supplied in the compile stage of hardware synthesis. This seems like a promising strategy, but it is
not clear how current FPGAs scale to operating on large amounts of kernels[50].

3.2.2 One single kernel

We can imagine going line-by-line in the Veros code and converting the operations into their equivalent
nested loops in a HLS translation. Then, making sure we treat any loop carried dependencies and apply
the proper pragmas, we should end up at a working FPGA implementation. Copying all this code by
hand introduces many, many opportunities for bugs besides being very tedious to do. Furthermore, the
fact the we need to carefully apply pragmas and manage memory to gain any real speedup prevents
us from making any automated translation efforts.

The fact that there is no hope to have an automatic conversion from Numpy to this target also means
that we would have to maintain two separate implementations of Veros and all other projects using
FPGAs to accelerate their code. To make matters worse, this implementation would require substantial
domain knowledge as writing HLS code is not as simple as writing C++.

3.2.3 Single kernel, arithmetic functions

A middle ground between one-kernel and multi kernel is to implement one work kernel and then define
multiple functions that implements our operations.

Morally this should be similar to having kernels stream between them, as function calls should be
instantiating the creation of a hardware block in the final design of the FPGA.

The downsides to this is that we have lesser control over the kernels. This will also affect our ability
to swap kernels for hand-written RTL versions.

3.3 Refactoring into RTL

Writing huge programs in general is hard to manage. An increase in code size by and order of magnitude
by switching from python to C++ seems not unreasonable, and on top of this, we have seen a 10x
"penalty" in number of lines of code in going from HLS to RTL. By simply counting the lines in any
.py file in a Veros installation we get a very rough feeling for the complexity of the codebase:

numpy C++ RTL
Approx # LOC 19441 200 000 2 000 000

Table 1: Rough sense of scale between implementations of veros.

Now consider the inevitable bugs introduced by writing this massive amount of code means that the
complexity of the program makes it almost impossible for a single person to write in a year. Bugs are
extra tricky to catch in this type of application. It is generally difficult to verify the correctness of
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PDE solvers as the solution is not known. Unless something is obviously wrong with the output, there
might be hidden bugs in the code making the result less accurate than it potentially could be. These
bugs could be very innocuous indexing errors, like using the non-updated element in a finite difference
calculation etc., which are very hard to catch.

This solution also suffers from maintainability problems, but to an even greater extend than the HLS
version. In this case we need actual hardware experts to write our code.

While there are considerable downsides implementing the code in RTL will generally result in faster and
more efficient execution. It could be worthwhile to target the most expensive operation and produce
hand-written and highly optimized kernels to handle these workloads.

3.4 Chosen strategy

Due to practical concerns we can quickly reject the RTL approach. Managing such a huge project
is not viable. Our chosen approach is to demote the arithmetic kernels to be functions, which are
similarly translated to hardware and placed by the HLS tools. By writing one kernel that controls the
compute flow, but delegates to arithmetic functions, we hope that by employing a dataflow pragma
we can optimize the code to run as a deep pipeline.

Roughly this would correspond to a host code iniatating a work kernel which then calls functions:

1 host code:
2 Transfer_to_work_kernel(model_state)
3 retrieve_from_work_kernel(updated_model_state)
4

5 kernel code:
6 u, v, w, ... rest_of_state = unpack_state(model_state)
7

8 du = sub(u[..., 1:], u[..., :-1])
9 du = div(du , dx)

10 ...
11 out = pack_state(u, v, w, ...)

We think this provides the optimal solution to our goals. Creating an automated system is still
theoretically possible by analysing Python code. The resulting HLS code should be somewhat readable
by anyone with programming experience by delegating to arithmetic functions.

All of this is achieved while still having a reasonable technical backing: The functions should be
synthesis to hardware, and we can optimize these functions just as we could kernels.

4 Implementing striding and broadcasting on an FPGA

The choice of where to manage calculation flow has implications in the viable options for calculating
strides in our array operations. We give an overview of the strategies we have examined, and then
argue for our choice coupled with our above choice of using one work kernel delegating to functions
using task-level parallelism.

4.1 Handlining broadcasting on an FPGA

We have written a series of kernels: abs4d, add4d, gt4d (greater than), mult4d, and so on, for each
operation needed. We have chosen to only implement one "size" (in terms of dimensions) of each type
of kernel. A smaller dimensional kernel can be emulated in a larger dimensional one by padding with
singleton dimensions. Doing this, we can can reuse the hardware and the functions to be more general.

FPGAs excel in doing specific tasks while CPUs are great at doing generalized tasks, so this might
seem like we are throwing away possible speed-ups by reusing parts of the hardware. We argue that any
possible speedup gains by doing dimensional specific optimizations would be negligible as the smaller
dimensional arrays would require less operations by the nature of being smaller slices of the bigger
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arrays. This arguments should hold for the specific case of fluid dynamics, but in general as lower
dimensional arrays can just scale to huge sizes.

Another way we can mitigate this problem is by shifting all the calculations over to the leading indices
and then perform our pipelined optimizations on these parts of the loop. If we need to, we can still
unroll the large chunks to achieve parallelization when we are working on very large arrays.

To actually compute the results of our operations we will for each kernel loop once over each output
that needs to be computed. This is implemented in C as a nested for loop to be optimized (unrolling,
pipelining etc) by the HLS tools. For each input/output we will calculate the relevant linear index as:

ind = linear offset +
∑
i

∑
j

∑
k

∑
l

(i+ offseti) · stridei + (j + offsetj) · stridej+ (74)

(k + offsetk) · stridek + (l + offsetl) · stridel

Where stridei refers to the stride associated with the i’th dimension. Furthermore the offset is relative
to the current output index, but the linear offset is relative to the start of the array.

The bounds on these sums will vary depending on which operation is being performed, but the strategy
is to only touch each output index exactly once, and to only touch the output indices that we are
actually interested in computing. For trivial cases the ranges are essentially the shape of the output
array, but for more niche cases, eg. filling the first row of a matrix, they will not be trivial.

To exemplify how we calculate the strides and offsets we need for a given situation, we will work trough
an example. In numpy notation we want to calculate the following:

1 O = np.zeros(shape =(10, 10))
2 A = np.random.standard_normal(size =(10, 10, 5))
3 B = np.random.standard_normal(size =(8,))
4

5 O[1:-3, 2:-2] = A[0:6, 4:, 2] + B[:-2, np.newaxis]

Here some pretty obscure indexing choices are taken to highlight the nuances in selecting the strides.

We have chosen to implement a slightly different notation than numpy where we use a simpler slice
object. A couple of freedoms have been taken from you, and the rules are that:

1. You are only allowed to select ranges,

2. You are only allowed to specify the endpoints of these ranges by a negative number.

3. You can only select contiguous arrays.

Under these requirements the above numpy example would correspond to:

1 O[1:-3, 2:-2] = np.squeeze(A[0:-4, 4:None , 2:3] + B[0:-2, np.newaxis ])

We had to introduce some hacks. Namely that because we selected a range instead of an index in
the last dimension of A, we need to then squeeze the singleton dimension on the result for it to fit
in O. Furthermore Python slice objects does not like the value of -0 that would logically fit with our
requirements to use negative only numbers for endpoints of ranges, and we have to resort to a None
value.

It turns out that for our calculations we can compute each arguments strides separately as long as the
operation actually can be broadcasted. For each output element, we do not care about any relationship
between the input, we just need their value. For each argument to a function we then calculate the
strides.

First, we compute the "View Shapes" of one of the input objects and the output object. By view
shapes, we mean the shapes that are defined by the requested index into the array. View shape is
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easily computed by the range and negative-only endpoints:

view_shape_Ai = A_shapei + A_end_offseti −A_start_offseti (75)

For array A this is:

view_shape_A = {6, 6, 1} (76)

Next we compute the stride as if it were given by the actual shape of the array. For A that would be:

A_stride = {50, 5, 1} (77)

To do this calculation we start by setting the leading stride to a zero. Then, going backwards trough
the shape we multiply our largest known stride by the corresponding dimension:

1 def stride_from_shape(shape):
2 shape_len = len(shape) // how many dimensions are we calulating stride for?
3 stride = [0] * shape_len // initalize as zeros.
4 stride[shape_len - 1] = 1 // set leading stride to a 1
5

6 for i in range(shape_len - 2, -1, -1):
7 stride[i] = stride[i + 1] * shape[i + 1] // going backwards , fill the stride
8

9 return stride

Now, sometimes the naive stride needs to be mutated. For example, the stride for array B will naively
be computed as {1, 1}, as the newaxis will correspond to a dimension of 1. But to achieve the expected
broadcasting we need to change the stride to be {1, 0}. To solve this problem we set any strides to
zero which corresponds to a view shape of 1.

Following this approach allows us to mimic np.newaxis by inserting empty dimensions of size one,
but also fixes issues where we selected an index from an array. Due to the restrictions in our range
object selecting an indexing amounted to selecting a range with length one. But this will also produce
a view_shape of one in the given axis.

Then we will need to collect any linear offsets. These are offsets from dimensions we are not looping
over. In our example, we have "selected" (used a range with length 1) index 2 in the third dimensions
of A. We need to take this offset into account by collecting it from every place in our view shape with
a dimension of size 1.

Now, we need to do something very similar to the offsets, as with did the strides. Every time there is
a view shape with a one it it, we put this to offset to zero, as the offsetting is handled by the linear
offset.

4.2 Implementation strategies

There exists different specific ways we could implement the algorithm to run broadcasting. We will
discuss different options, and choose one that balances ease of implementation with following the design
goals of having a system that can be extendable, while still being able to run fast

4.2.1 Striding in host

Calculating the strides in the host and transferring them together with the data to the FPGA makes
the most sense if we use a host controlled flow. A choice that would result in reducing the complexity
of the HLS code, as we could then "trust" the computed strides and offsets and neglect bound checking
in the kernel.

It is also possible to do the necessary stride calculations on the host, even tough we are following the
work kernel pattern. By pre-compute all the strides on the host, transferring them, and then picking
them out of FPGA memory when they are needed.
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4.2.2 Striding on the FPGA

Alternatively we could implement the algorithm in HLS and have it run on the FPGA. This means we
either transfer the ranges we wish to operate on together with the data, or if we are using a work kernel
framework, we simple build the stride object and send that to the function responsible for computing
the operation.

Adding extra computations to the FPGA will induce an overhead. But compared to the amount of
operations involved in computing the results of the operations this is negligible, as the involved math
is relatively simple and on very small arrays.

Doing the striding on the FPGA has the downside that we are additional new complex logic to the
FPGA, which we prefer to keep small and compact to easier reason about run times and possible speed
ups.

The algorithm for computing the strides is itself complicated slightly by the fact that we need to work
with arrays of fixed sizes which we need to accommodate.

4.2.3 Choosing a striding strategy — pros and cons

Ideally we would calculate striding information on the host, as this simplifies the kernel code to be only
"close-to-metal" operations. The FPGA only does the heavy calculations that we need, not fidgeting
around with indices.

Both approaches has added code complexity. Pre-computing means we need to manage a list of strides
to use at the correct operation all while transferring and unpacking correctly on the FPGA. On the
flipside, performing striding calculations on the FPGA requires us to implement the striding algorithm
in a somewhat more cumbersome environment.

We have opted to implement calculating strides on the FPGA when we need them. This choice was
made as we argue that calculating the strides involves doing additional simple integer math on tiny
arrays, and should not effect runtime significantly. The upside is that we can easier debug the program
when the tools inevitably gives us problems by re-writing the kernel only and not have to worry about
host code changes.

5 Optimizing for hardware using fixed point operations

As discussed in section 2.2 it would be beneficial to run simulations in a reduced precision environment.
Here we want to leverage the fact that FPGAs are extremely flexible with regards to bit widths
compared to the hardware we are used to in CPUs and GPUs.

It is needed to consider what errors, in terms of precision loss in the solution to our differential
equations, we get by reducing the bits on our operands. To do this, we built an emulator where we
can run our algorithm trough, to test the response to reduced precision schemes.

5.1 Introdocution to fixed point algorithms

There have been various pushes to convert GPUs to operate on reduced precision floating points[32],
which have interesting applications for machine learning. Other projects[24][41] aim to run fluid dy-
namics in a reduced precision environment.

In FPGAs we can do even better than converting doubles to single precision, as we do not have any
hardware limitations regarding the composition of word sizes. By freely mixing between 64, 50, n and
32 bit numbers, we can theoretically squeeze out performance by choosing an optimal set of variables.

Converting a given algorithm into fixed point operations is not trivial. By converting to fixed point we
introduce a defined error, max size and minimum size representable. We need to select the minimal
viable size, for our numbers to go trough the calculations while keeping the error tolerable and without
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triggering any over or under flows. Lets explore an example to illustrate the ways our choices affects
our algorithm. We want to calculate the mean of two numbers x0 and x1 both between 0 and 15:

y = (x0 + x1)/2 (78)

To actually do this calculation, we need to store the intermediate result x0 + x1. In pseudo code this
looks like:

1 tmp = x_0 + x_1
2 y = tmp / 2

Writing it this way, we need our temp variable to be a minimum of 5 integer bits to contain the dynamic
range of the sum. Instead we could have written it like:

1 tmp1 = x_0 / 2 # we need only 3 integer bits here!
2 tmp2 = x_1 / 2
3 y = tmp1 + tmp

This required another operation but it allowed us to keep everything expressable in smaller variables.
It turns out that this rearrangement does not result in the same outputs due to rounding errors. This
can be seen as in the second example, we are throwing out information by dividing twice, while in the
first example we only do it once. While these re-arrangement type transformations could also be an
avenue for speed-ups, we neglect to analyze this type type of transformation in this discussion.

In the above example it was quite obvious what sizes we needed to contain the dynamic range of our
problem without overflow. And in the same vein, we could easily have gotten constraints on the amount
of fractional bits needed to match a given error tolerance. If we had a really complicated algorithm
it quickly becomes a hard problem. In principle every operation in our code could be optimized to a
minimum bit size. Also note that we needed an exact implementation to reason authoritatively about
the precision, as the same mathematical expression resulted in different behaviour when implemented.
To gain any confidence in our analysis we therefor opt to use emulation.

Existing simulators are quite simple[13], which does not lend them to easily be used for our purposes
of emulating somewhat complicated array operations. To remedy this, we implement a subclass for
the Numpy array the can handle doing fixed-point operations on arrays.

Veros also have another complication regarding fixed-point math: We have stability concerns regarding
the numerical integration schemes used. If our system is already stable, in a Von Neumann[45] sense,
then the errors should be dampened in time, and as long as we uphold our stability conditions we
should be in an equivalent situation as had we been calculating in doubles. While this is true, we do
know that fixed-point have different characteristics than doubles. As we have shown, addition is exact
and multiplication has errors. These are differences, which coupled with non-linearity in the system
at-large gives some concern regarding stability and accuracy.

To gain confidence in our choice of word sizes for our fixed point variables, we instead opt to simulate
the system.

5.2 Fixed point emulation

To make this emulation as pain free as possible, we opt to repurpose the framework which our problem
is already stated in. By subclassing a Numpy array to add functionality to turn any inputs into a given
fixed point representation, we can (almost4) transparently emulate our existing code.

Furthermore, as the calculations are done in Numpy, they are performed in fast C code. This is relevant
as we would like to see some scaling behaviour of our systems before we are confident that our selected
fixed-point variables will work at real simulation scale.

4Some subtelty is required when assigning the result of a calculation to a Fixed objct. In some edge-cases we need to
make sure we assign into the object A[...] = B and not A = B, if B needs to be converted to the Fixed type.
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There is a strong limitation on this procedure, which is that the integers that are being operated on
are fixed to be at-most 64 bits as of a hard limitation in the inner workings of Numpy. To overcome
this, we can instead opt to work with regular Python integers which are protected from overflowing.
The obvious downside to this is that we lose the fast execution speed of our emulator. We still get to
keep the productivity benefits of being able to run and implement our algorithm in Numpy, and run
emulation transparently.

The not-so-obvious downside to this hack is that internally Numpy requires unknown objects, like the
inbuilt Python integer class, to have special methods implemented for each ufunc. Therefor we also
need to extend the inbuilt integer class of Python to include methods which are expected by Numpy.

Putting these two classes together we arrive at a point where we can emulate Veros benchmarks in a
fixed point environment. It turns out, that the dynamic range of the problem are quite large and even
64 bit integers are often too small to effectively capture the problems without either:

1. Over/ under flowing

2. Division by zero

The over/underflows are relatively straight forward: the bits available are not sufficient to represent
the numbers. The division by zero issues arise from the fact that if we wish to divide some number
with some number ε where ε < 2−fb with fb the number of fractional bits, we will get ε represented as
a zero.

To alleviate these problems without resorting to huge fixed point variables, it might be possible to use
mixed precision. Some parts of the code run in some collection of fixed type variable, others parts run
in regular floating point. Another solution is to add additional meta-data to the fixed-point variable
like offsets and scale.

It should be stressed that these considerations was found by experimenting randomly generated data
in the unit interval. Real world data is distributed wildly different and especially will be much more
correlated on short scales. This will have important effects when calculating derivatives. The fact that
our variables are scaled to the unit interval could trivially be done to real-world data by a scale-factor
to work in unitless dimensions.

5.2.1 Implemtation

Our basic strategy revolves around extending the powerful Numpy array object. In Numpy, array
operations are performed trough what is known as Universal Functions (ufunc). We wish to high jack
these functions, and perform our calculations on what is, to Numpy, integers contained in arrays. To
us, these integers represent some real number according to some meta-data specifying the fixed-type
variable, which we attach to the array. We will use the available hooks to always make sure that we
do the necessary pre-processing to convert any "foregin" elements in our calculation to the required
fixed-point type.

Because do not want to deal with overflows in intermediate results we can actually contain regular
Python integers as the objects inside the underlying Numpy array. While this saves us from writing a
big-integer implementation, it turns out that we also need to subclass the python integer and monkey
patch various methods. Numpy expects the object contained in the array to have special methods
needed for their ufuncs like sqrt.

Subclassing Numpy arrays is described in the Numpy manual[19]. There is some additional boilerplate
code required compared to run of the mill subclassing. Numpy expects to call some specific dunder5

functions on our objects. When creating a new object of our class, Numpy will call __new__ on our
object, and then run it trough __array_finalize__. In these methods, we can attach the necessary
meta data to our object, and do the necessary conversion from input to fixed point type. The final

5Dunder (double underscore) methods are functions like __add__ which implements operator overload in Python.
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result is an object of the Fixed type which contains a Numpy view filled with Python integers and has
attached meta-data about its fixed point properties.

Now we need to write a __array_ufunc__ method which handles computing ufuncs when our array
is involved. Here we make sure to check any arguments for their class, and cast to the Fixed type
if necessary. The actual result of the calculation is done trough the usual Numpy machinery, and we
take a Fixed view of the resulting data.

5.2.2 Emulation results

We can simulate running a smaller, but still significant, part of the target benchmark in fixed-point
arithmetic. Here, we set up a non-trivial implicit method to solve for derivatives on a 3d grid. This
is achieved by first doing arithmetic operations on our arrays in the fixed type to find the inputs to
our diagonals. We then convert our internal representation to their equivalent floating point and solve
the resulting tri-diagonal system with lapack trough scipy. We choose 18 bit integer part as that have
been verified experimentally to not result in overflow for this particular seed of randomly generated
input data.

Figure 9: RMSE of the fixed point implementation in the sample benchmark compared to a reference
double implementation.

The fact that we have an exponentially decreasing error is not surprising as increasing the bits in the
fractional part increases the precision by 2−nfrac for each individual number. It is significant that the
error does not seem to accumulate after doing various arithmetic operations on the numbers.

6 Implementing hardware kernels

Available to us is various methods of transferring data into the FPGA:

1. Go trough main memory

2. Kernel to kernel streaming

3. Host to kernel streaming

These are roughly ordered in terms of complexity to implement.
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In this project we have chosen to implement scheme one. We have tried to different kinds of implemen-
tation. The simplest version possible where we transfer the data associated with just a single operation
and wait for the answer. In this version, the host controls execution flow of the code. And a less naive
version where we start by transferring all the data we need, and then control the entire calculation
from the FPGA. In this version, we create functions which does the job of our arithmetic kernels.

Controlling the flow of execution on the FPGA is going to look like a kernel-to-kernel implementation,
but we avoid uncertainty in the tools ability to handle very large number of kernels[50]. The downside
to having the arithmetic operations be implemented in HLS functions instead of kernels is that it would
be more difficult to swap kernels for highly optimized RTL versions. This is manifested in the fact
that while function arguments are synthesized to RTL as streams, we do not control the properties of
these interfaces, like we do with kernels.

Doing host to kernel streaming is not implemented. To do this, we need a QDMA shell which is
an experimental feature only currently available in high-end Alveo U280 boards[48]. Even then, the
features we are looking to exploit in the FPGA are the deep pipelines. Being able to interact directly
with our accelerator from the host is convenient if we need to take control of our computation to e.g
respond to an outside signal with very low latency. This is not relevant for our use case, as we are
worried about throughput not latency.

6.1 Go trough main memory

To implement this approach we must specify which "port" of our FPGA is paired with what input
in our kernels in a configuration file. We have some limitations: each memory bank supports 15
ports, and the FPGAs we are targeting have 4 memory banks, for a total of 60 ports of input/output.
Furthermore, we also have some low-latency/low-troughput ports we can use for control variables like
strides and offsets. In practical terms, we write our kernel function signature like:

1 extern "C" void add4d(
2 double* A,
3 double* B,
4 double* out ,
5 int* broadcasting_information)
6 {
7 ...
8 }

For the majority of our kernels, we then need 3 ports: one for each input, and one for the output. We
can then map each I/O in a configuration file like so:

1 sp=add4d_1.broadcasting_information:PLRAM [0]
2 sp=add4d_1.A:DDR[0]
3 sp=add4d_1.B:DDR[1]
4 sp=add4d_1.out:DDR [2]

Scalar arguments does not need to be mapped, as these can be passed directly to the kernel without
further adjustment needed in host or kernel code. Note also that we are using a different RAM block
for each data array specificed by the number in the bracket. This means we can transfer data from A
and B concurrently.

After this setup, we can invoke the kernel from our host code via an OpenCL[23] call.

6.2 Kernel to kernel streaming

We can implement kernel to kernel streaming, that is, data "flows" trough the calculation hardware
without touching the slow main memory of the FPGA. To achieve this we must do a number of things:

1. Setup our host code OpenCL calls

2. Modify our kernel arguments to be streaming types
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3. Supply a config file describing the connections during the linking stage of compiling our hardware

Obviously this puts some limits to our capabilities of accelerating "on-the-fly", as we need to re-link
our program on every change. A process that takes on the order of hours. If we imagine a workflow of
writing Numpy code and wishing to accelerate on an FPGA, we coin the new term NIT (Not In Time)
compilation. While somewhat tounge-in-cheek, this system would still be valuable.

While step 1 and 2 are straightforward to implement step 3 has some additional worrisome features.
As we are essentially routing the connections between kernels, we can not reuse kernels in a hardware
sense. We must create a new adder kernel for each addition needed in our program. This process
will eventually eat all the available space on the FPGA. Additionally we have limits on the amount of
ports we can connect memory to. It is not clear[50] if we can bypass this limitation with the streaming
arguments, or if this is a hard limitation.

6.3 Optimizing hardware kernels

Optimizing the kernels to run fast is an important step in accelerating Veros at large. Making individual
kernels run fast on an FPGA, compared to similar hardware like GPUs or even CPUs, is not a trivial
case. We are fighting against very optimized operations that have been studied for many years. CPUs
are already very good at implementing vector operations, and GPUs are tailor made to exploit the
inherent parallelism in the problem. Essentially we are fighting a losing battle by re-implementing
what has already been implemented very efficiently in existing hardware.

We do have a few tricks up our sleeve: FPGAs can build custom pipelines to more efficiently carry out
the needed calculations, which are not that trivial. Running a two-input one-output arithmetic kernel
in four dimensions, we need to perform for each element in our array:

1 A_ind = (i + A_offset [0])*A_stride [0] + (j + A_offset [1])*A_stride [1] + (k +
A_offset [2])*A_stride [2] + (l + A_offset [3])*A_stride [3] + A_lin_offset

2 B_ind = (i + B_offset [0])*B_stride [0] + (j + B_offset [1])*B_stride [1] + (k +
B_offset [2])*B_stride [2] + (l + B_offset [3])*B_stride [3] + B_lin_offset

3 O_ind = i*out_stride [0] + j*out_stride [1] + k*out_stride [2] + l*out_stride [3] +
out_lin_offset

In total we need to do:

• 10 additions (caused by offsets into the current index, 5 for each input. One on each index + a
general offset)

• 12 multiplications (Multiply by strides to get linear index. Four for each input/output)

• 1 arithmetic operation to calculate the result.

For each element. In an optimized kernel all these pointer arithmetic operations should all execute in
approximately one clock cycle (depending if we can meet timing), as there is no dependencies between
the data. Alternatively we could reduce the number of operations needed by saving the results of the
slow-moving strides between loop iterations.

The naive implementation sketched above will be labeled baseline so we can compare various imple-
mentations against it.

6.3.1 Pipelining the loop

Because we are doing very simple operations with no loop carried dependencies arithmetic operation
kernels should be almost trivial to pipeline. We do have one problem tough: We do not know our loop
bounds at compile time, as we will execute the kernel multiple times. To get our data to execute in a
tight pipeline, we will need to both read and write from the same array in the same clock cycle. As
arrays get implemented in hardware with one port, it is generally not possible, and the way to get
around this limitation is to partition the array to create smaller memory structures which can then
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be read and written to individually. We can not partition our arrays as we do not know their size. It
should be possible to circumvent this limitation by writing buffers which can then be partitioned.

In effect we do not expect simply applying a pipeline to the loop to have any significant speed-ups.

6.3.2 Loop Tiling

Our goal is to process our array in blocks of known size. Doing this, we can avoid the problems we faced
in pipelining the loop. Loop tiling is achieved by creating local memory and copying data into these
local buffers. An important reason is that we are accessing main memory less often for an increase in
throughput by requesting more data in each transaction. Potentially the tools should automatically
detect this optimization if we "just" write a tiled loop, but leave no room compiler magic, we will
implement the inputs as arrays of 512 bit words as recommended by Xilinx[50].

This allows us to process our arrays in blocks of 8 doubles at a time. The downside is that we also need
to make sure our data fits on a 512 bit boundary and handle edge cases. Another important problem
is that as we wish to use broadcasted operations, we can run into the case where we need to select
from not contiguous indices. In this case, packing the data into larger tiles actually works against us
if we are only interested in a single piece of information inside the block.

[0, 0] [0, 1] [0, 2] [0, 3] ...A

   out

B

512 bits

Figure 10: Demonstration of why we need to do something smart, when selecting which data to send
to FPGA.

Furthermore we have another complication: We need to interpret the binary data inside a 512-bit word
as 8 doubles. An operation that seems simple enough, but in most day-to-day programming situations
we do not mess around with the specifics bits our or variables, as this would quickly lead to very
unexpected results. For this reason these operations are very rare6, and the C/C++ standards does
not provide strong guarantees towards their behaviour. The tools we would need are reinterpret_cast
in C++ or something like double x = * ( double * ) &y if we wanted to interpret the bits of y as
a double. we opted to use an open source implementation by Falcon[10]7 computing to do these very
low-level bit operations, as this is a known-good implementation for interfacing with the Xilinx FPGAs.

6.4 Results

We measure run times for the discussed implementations and compare to a reference Numpy imple-
mentation running on a laptop computer.

6A famous example of this type of bit hacking is seen in the 1/sqrt(x) approximation used in old computer games[29]
7In this paper, and in the code shared on Github, the authors attribute the code to an open source release by Falcon

Computing[52]. Nowhere else can we find references to this implementation. The company itself is hard to find good
references on, but apparently Xilinx has acquired them. It also appears that the CEO of Falcon computing is the author
of the paper.
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Figure 11: Run times for various implementations of a vector adder kernel. FPGA benchmarks are
run on an U250 Xilinx Alveo board. Kernels are implemented in HLS. Numpy benchmark is run on
my laptop which includes an Intel i5-7200U processor.

Here we see that the FPGA implementation is significantly slower than the reference Numpy implemen-
tation even tough we are running on much cheaper hardware. We notice that the tiled implementation
is a slight improvement over the others. To get a better sense for this relationship, we plot the speedups
compared to the baseline reference. Here we neglect to plot the speedup of Numpy as this would make
the plot unreadable, but the speedups measured here is roughly 100x compared to the FPGA baseline.
We also produced a naive C implementation compiled with -O0 (turning off a lot of optimizations) in
gcc. The performance of this optimized code was roughly half of Numpys execution speed giving an
approximate 50 times speedup over the FPGA solution.

Figure 12: Speedups for various implementations of a vector adder kernel. FPGA benchmarks are run
on an U250 Xilinx Alveo board. Kernels are implemented in HLS. Speedups for the reference Numpy
implementation is roughly 100x.

We see that for large arrays the overhead induced by unpacking the 512 tiled words are offset by the
increase in throughput. The trend does seem to flatten out, which suggests that we can not beat the
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Figure 13: Analysis by the hardware emulation tool. These are suggested run times by the hardware
emulation stage of the tools.

laptop by going to even larger scales. It should also be noted that the speedup achieved is very modest
at around 15%, which does suggest that there could be further optimizations which have not been
found, as optimizations on the order of thousands have been seen in the literature[28][10]. These kinds
of speedups have been achieved on more complicated tasks, which might have a larger optimization
space. It is important to stress that this benchmark was a "best-case" for the tiled implementation, as
we performed the benchmark on a trivial operation without any broadcasting handling of edge cases.

Looking at results from hardware emulation, we see that we are spending most our of clock cycles
reading and writing: It seems that we can initiate the functions every clock cycle, and since the total
runtime is 156 cycles for computing 8 doubles operating at approximately 240Mhz we expect to have
a throughput of:

r = 8 · 240Mhz
156 cycles

≈ 1.2 · 107 ops
second

(79)

In practice, we achieved around half that:

rexp =
5123 ops
23 second

≈ 5.8 · 106 ops
second

(80)

This corresponds to a rough bandwidth of:

b = 5.8 · 106 · 2 · 8 bytes ≈ 100MBs (81)

A bandwidth on the order of hundreds of megabytes per second is very slow compared to the inter-
faces we are running on, which have a combined read-write bandwidth of 77 GB/s according to the
specifications[47]. An obvious solution to this speed problem is to unroll some of the loops to run in
parallel until we can saturate our bandwidth. This comes at the cost of area in our FPGA which we
will need to tune, when we are implementing many kernels.

6.5 Unrolling the loop

We try to unroll one of the loops to hopefully get closer to saturating the bandwidth of the FPGA. A
rough order of magnitude calculation for the bandwidth on each channel gives:

77GB/s/4/2
50 50 MB/s

≈ 200 (82)

That is, if we have around 200 copies of the loop, we should be close to saturating the bandwidth.

In compiling this code we have chosen to unroll 32 times which should give plenty of speedup while not
pushing the hardware to its absolute limits. To land on the 32 times unroll figure we must consider the



Joachim Kønigslieb
Speciale

Page 34 of 42
20/05/2021

maximum transaction size of the AXI-4 interface[hlsmanual] of 4KB. As our words are a package of
8 doubles totaling 64 bytes, an unroll factor of 64 would land us at exactly the limit of the maximum
transaction size. The reason for then choosing 32 was that we did not consider the fact that the
interfaces for our inputs was actually connected to two separate RAM blocks 6.1.

We notice that the area information given by the tool does not correspond to around 32 times more
area used as expected. A warning is also given:

Figure 14: Warning thrown by Vitis HLS hardware emulation. We get 32 copies of the warning as we
tried to unroll this loop 32 times. The loop bounds are in-principle not known at compile time as we
wish to make the system dynamic for different sizes, but also to reuse to kernel for multiple operations
throughout the computation.

It seems that the tool has trouble unrolling the loop as it does not know its bounds. While this is
sensible if we tried to completely unroll the loop, as we would then need to know how many copies to
create, we should be able to unroll by a factor of N [hlsmanual].

Running the test on real hardware we do see an improved run time, but not an ideal-case 32 times
speedup:

Figure 15: Run time and speedup of the 32-times unrolled version of the tiled benchmark. We see that
we get an approximate 3.8 times speedup compared to the naive baseline implementation.

Even tough this is a speedup compared to the tiled version, it is still slow compared to much inferior
hardware. The fact that we did not see a speed up matching the unrolling factor suggests that the
design is stalling. By changing nothing in the compute part of our kernel it is likely happening in
relation to the reading and writing from the memory ports.

This could be caused by the compiler not recognizing that it is possible to do larger transactions when
requesting memory to the kernel. Writing this part more explicitly is possible, by requesting all 4KB of
data and then delegating this to an unrolled loop that calls the compute function. What this amounts
to is essentially to create a larger tiling wrapping the smaller tiling.
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7 Running the full benchmark

7.1 Emulation

We could without any major issues8 write kernels and host code that was functionally correct as per
testing in software emulation. The correctness was verified by examining sums of the arrays (and at
various sizes) after going trough the computations which strongly suggests the correctness.

Hardware emulation proved to be more troublesome. While the kernels individually could be run in
hardware emulation mode and providing valuable information about the produced hardware, when
combining all kernels into one binary, we ran into trouble. We could successfully compile the binary,
but running hardware emulation produced random segfaults. The nature of these segfaults were hard
to debug and related to standard low-level libraries like libcc and pthread. To make matters worse,
they got thrown at different places in the code on each rerun.

The hardware emulation works by producing some kernel binary which is then ran on a simulator.
The core mechanism for running this simulator is that Vitis will write-to-disk a simulate.sh which is
then executed by the run-time libraries when executing code with the XCL_EMULATION_MODe=hw_emu
environment variable. This shell script also modifies the PATH variable to point to the shared versions
of the aforementioned libraries. It turns out that Xilinx distributes (multiple) copies of these libraries
in their packaging of Vitis, but no combination we tried yielded any results in fixing the segfaults.

It turns out, that even tough software emulation did not work, compiling, and running, on hardware
did.

7.2 Hardware — Control flow on host

We first try to run the simplest version of the benchmark where the execution is controlled in the host.
This requires a lot of memory transfer and large overheads.

When interacting with the FPGA, we would like to have aligned our memory to specific memory
address offsets. If the requested memory is not aligned to a page, the run-time will automatically
copy the memory to a new place in memory where the alignment is fixed. This will obviously slow the
program down as we are now doing unnecessary reads and writes.

8Minor issues ranged from finding that the tri-diagonal solver supplied in Vitis solver library is broken for all inputs
not sized as a power of two, to magic environment variables before compilation will run.



Joachim Kønigslieb
Speciale

Page 36 of 42
20/05/2021

Figure 16: Running with and without page alignment shows a speedup. These are timed with the unix
command time. Here a very small experiment is run with a grid size of approx. 800 elements. Run times
compared to a laptop with an Intel i5-7200U processor running the reference Numpy implementation
is in the order of 10 000 times slower.

7.3 Hardware — Control flow on FPGA

This version could not compile. The error messages were not helpful. Even tough we are not able to
run the full benchmark, we can try to test the idea. We build a (much) smaller and less complicated
system that still utilizes multiple kernels and test to see if the runtime is significantly faster for the
combination of them, than if ran individually.

8 Discussion and conclusions

To have a general system that can accelerate large scale climate simulations, like Veros, on FPGA is
not realised in this work. In section 6.3 we have developed the necessary kernels and broadcasting
framework for accelerating mostly any Numpy functions to run on an FPGA, but this system does
not stand on its own. Currently the code is mostly still manually transcribed. This transcription
amounts to rewriting every arithmetic operation. Either in host code calls or in a kernel using pre-
supplied functions. While slightly annoying there is also the problem of manually having to manage
temporary memory in cases where temporary results are not explicitly stored in the original Numpy
implementation. This means a person transcribing a Numpy line like:

1 A = (B[0:1] + B[:-1]) + C[:] * 2

Must make choices of where to keep one of the intermediate results.

It might seem like an obvious idea to call the host code from a transparent layer build ontop of the
Numpy arrays somewhat like we build the fixed-point emulator. But this is also problematic, as this
locks you into doing only run-time optimized calls. Essentially forever locking you into the version
where the host controls the execution flow. While this is fine in principle, we have then demoted
our FPGA to be essentially a GPU. A solution which is not very wise, as GPUs are already a very
optimized ASIC build to solve essentially the problem of working on arrays. It should be possible to
construct a transpiler that takes Numpy code and produces a kernel which makes calls to our HLS
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functions and automatically writes the program saving the user some time. The worthwhileness of this
effort depends strongly on the expected reward: How much faster, or cheaper (in terms of power used)
can we run or code on FPGAs?

Benchmarking simple kernels in section 6.4 operating on arrays we saw expected disappointing result
for the naive implementations. This is very much in-line with known results from the literature[28][10].
Many transformations to the code are needed to gain performance. In our case we have an somewhat
more difficult task of optimizing embarrassingly (simple and) parallel problems which are tailor made
to run fast on GPUs. Another exacerbating fact is that we have a lot of variation in our loop bounds
which the tools do not like.

Using fixed point, or other representations, does seem to provide some benefits in theory. Lots of work
would need to go into emulation to figure out the optimal word sizes. Achieving a speedup trough this
avenue would further complicate any efforts to build a general way to accelerate Numpy codes, as you
would now have an extra layer in you analysis of the code and what the hardware would correspond
to. This problem could potentially be solved by posits, but this is not inherently an FPGA specific
solution, as silicon manufactures could easily start building posit-capable hardware if the demand
was large enough. FPGAs would be an obvious avenue for proof-of-concept hardware implementation
of this new number format in large scale experiments. And if successful, FPGA manufactures could
implement hard logic blocks akin to the floating processing units we are starting to see implemented[20].

The naive version of the benchmark proved to be extremely slow, but does prove that it is possible
in-principle as shown in section 7. The improved version disappointingly did not compile, but produces
functionally correct results in software emulation. Here we are fighting a losing battle with the tools,
as we can never quite get the information we need. A problem shared in all stages of the project.
Here we would really like to test if we could gain any benefits out of the deep pipelining ability of the
FPGA.

Alternatively one could write the program "by-hand" in HLS. Here we would not write functions
handling arithmetic but rewrite the program using explicit loops. This approach have other downsides
besides the inherent difficulty of writing optimized HLS code. It requires manual transcription of large
code bases and also requires maintaining two separate code bases. While this solution might provide
larger performance increases it fails by design in any practical scientific setting.

9 Further work

9.1 More general accelerator

Going from what has been shown here to a more general acceleration platform should be possible.
Parsing Numpy code to produce either host code calling the FPGA or producing a work kernel should
not be too difficult. We imagine the process being:

• Parse Numpy algorithm into correct order of operations.

• Extract strides from the range objects

• Produce equivalent code. (HLS code + host code to call it)

• Compile

• Run

This process can obviously not be run "in-time" as the compilation stage is very long.

For this to be worthwhile we must gain some benefits of running on an FPGA compared to running
on CPU or GPU. Accelerating on GPU has some clear workflow improvements in a lot of computing
areas, where you want to experiment with large amounts of data in a quick development cycle. FPGAs
obviously fail in this regard, as the compile time introduces a huge computational cost which have to
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be paid up-front. It seems then that the Numpy-HLS transpiler must then produce good results to be
worth the investment, compared to running on GPU.

9.2 Running fixed-point hardware

FPGA hardware gives you the very unique opportunity to execute variable width fixed-point code
fast. To actually figure out the width of each variable is not trivial as your algorithm grows to any
considerable size.

To remedy this, we can run emulations of the system. Here we can select a unique fixed point repre-
sentation for each operation. Writing this as an equation we can

Vfxp(Si, w1, w2, w3, ..., wn) ≈ Si+1 = Vdouble(Si) (83)

Where V is one timestep of Veros, wi is a fixed-point variable (bit width, num. fixed, num. exp,
scaling, offsets etc) and Si is the Veros state variable for a given time step. We now want to minimize
the difference between the reference and fixed point version, but also weighting the total bit-length of
our fixed-point variables wi. The simplest cost function looks something like:

C = α · |Vfxp − Vdouble|+ β ·
∑
i

wibitlength (84)

The choice of minimizing the bit-length is made as this seems to be the most direct measure of
performance. Smaller bit-lengths means higher throughput and faster calculations.

We should now be able to minimize this cost function trough standard means like gradient descent.

An obvious problem to this approach is that we inherently cannot scale this to any real-world size
because of the emulation needed to calculate Vfxp. Here we must rely on the selected variables gener-
alizing and not suffering from any numeric defects at large scale.
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A Stability of implicit scheme

We wish to show that the FDE

Tn+1
j (1 + 2λ)− λ

(
Tn+1
j−1 + Tn+1

j+1

)
= Tni (85)

is unconditionally stable. Inserting the usual Fourier assumption on the solution and demanding this
holds for all wavenumbers we arrive at:

ρn+1(1 + 2λ)− λ(ρn+1 e−ik + ρn+1 eik) = ρn (86)
ρ(1 + 2λ)− λρ2 cos(k) = 1 (87)

1

1 + 2λ− 2λρ cos(k)
= ρ (88)

1

1 + 4λ sin2(k/2)
= ρ (89)

Where we used the identity that 1− cos(k) = sin2(k/2). As the denominator is always positive ρ will
always be smaller than one which means that the stability is unconditional.
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