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Abstract
Galaxy clusters are the most massive gravitationally bound structures
in the universe (typically containing hundreds of galaxies), and have
a great importance as cosmological probes of structure formation and
dark matter in the universe.

Most of the cosmological applications rely on accurate measure-
ments of cluster masses, which are hard to measure in observations.

One of the most used methods of mass measurements is based on
observations of the X-ray emitting gas that pervades clusters. Tradi-
tionally, the total mass distribution is determined using only the radial
density and temperature distributions of the intracluster medium under
the assumption of spherical symmetry and hydrostatic equilibrium.

Comparing the X-ray-determined masses with other independent
methods (such as gravitational lensing and numerical simulations) sug-
gests that masses are typically underestimated by about 10-20%. This
implies that substructure, dynamical effects (velocity anisotropies, bulk
motion, turbulence etc.) might be significant.

In this thesis, we will for the first time attempt to measure the veloc-
ity component of the clusters, by allowing a departure from hydrostatic
equilibrium (allowing radial and rotational motion). We will do this by
applying the Euler equation and the Jeans equation to X-ray data.
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Chapter 1

Introduction

1.1 Observational Evidence of Dark Matter
The need of dark matter has been known since 1933, when Fritz Zwicky applied the
virial theorem to the Coma cluster. After measuring the radial velocities of ∼30
cluster galaxies, he assumed that the Coma cluster was a spherically symmetric and
’mechanically stationary system’ (Zwicky, 1937 [27]) that obeyed

2〈T 〉 = −〈V 〉 ⇒ 2mgal
(
3σ2
r

)

2 = GmgalMtot(< r)
r

(1.1)

where mgal is the mass of a galaxy at radius r enclosing the total cluster mass
Mtot(< r) and the radial velocity dispersion, σr = 〈(vr − 〈vr〉)2〉1/2. An estimate of
the total cluster mass is

Mtot ∼
3rσ2
r

G
≈ 1015 M!

(
r

1.5 Mpc

)(
σr

1000 km/s

)2
(1.2)

Zwicky realised that the luminous galaxies could only contribute to ∼ 10% of the
total cluster mass, and the lack of observational evidence for any non-luminous
matter was the birth of the ’missing mass problem’. Proposed solutions followed
four broad categories: (i) the virial theorem is not valid for these systems, (ii)
other laws of physics (modified gravity models, such as MOND), (iii) non-luminous
baryonic matter (like MACHO’s) or (iv) non-baryonic dark matter.

Since then, the existence and nature of dark matter has been confirmed using a
whole smörgåsbord of observational techniques, spanning many scales of structure
size. The following sections will give a brief summary of how dark matter acts on
different scales.
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CHAPTER 1. INTRODUCTION

1.1.1 Cosmic Microwave Background
The existence of dark matter is seen at the largest scale possible - namely the size of
the whole universe. The Cosmic Microwave Background (CMB) and the pronounced
features of the CMB power spectrum are tightly related to the cosmological param-
eters, which are today measured with great precision.

If the matter content of the universe was purely baryonic, one would expect the
temperature fluctuations of the CMB to be of the order ∆T/T ∼ 10−3 to explain the
structures that we observe today (Hu, W. 1995 [12]). Temperature fluctuations of
this level were long sought for, and it was not until 1992 the Cosmic Background Ex-
plorer (COBE) finally observed the CMB to be a nearly perfect blackbody spectrum
of temperature T = 2.725 K with small temperature anisotropies ∆T/T ∼ 10−5.
This can only be accounted for by non-baryonic dark matter that does not inter-
act electromagnetically, allowing dark matter structures to form before decoupling
without leaving a direct imprint on the temperature.

The amount of dark matter has a significant effect on the CMB angular power
spectrum (left panel fig. 1.1). The interplay between dark matter and baryons in
the hot plasma changes the structure of the acoustic peaks. The best fit to the data
is the ΛCDM model, which has a baryonic fraction fb = Ωb/Ωm = 0.17.
We therefore know that there exists about five times more dark matter than baryonic
matter on the scale of the entire universe.

Figure 1.1. Left: The CMB temperature fluctuations observed over the full
sky by the Wilkinson Microwave Anisotropy Probe (WMAP). The average tem-
perature is 2.725 K. Red regions are warmer and blue regions are colder by
∼ 0.0002 degrees. Right: The angular power spectrum of the CMB describes
how much the temperature fluctuates on different angular scales. The highest
peak (angular size ∼ 1◦) is the first acoustic peak. (NASA/WMAP Science
Team, 2008 [10])

1.1.2 Large Scale Structure
Different cosmologies predict different large-scale structures for the universe. By
studying how mass is distributed in the universe and how structures evolve in time,

2



1.1. OBSERVATIONAL EVIDENCE OF DARK MATTER

we can understand even more about the nature of dark matter than what we have
already learned from the CMB.

For instance, Hot Dark Matter (HDM) (’hot’ refers to particles travelling with
relativistic velocities) would be able to stream out of the potential wells of overdense
regions in the early universe, dampening the formation of dense objects such as dark
matter halos (a speed of a few hundred km/s is sufficient to escape from a galaxy
halo, thereby erasing structure on that scale). In the HDM scenario, structure
formation would proceed ’top-down’, with the largest structures forming first, then
fragmenting into smaller structures like clusters or galaxies.

With Cold Dark Matter (CDM) (’cold’ refers to particles travelling with non-
relativistic velocities), structure formation would proceed ’bottom-up’ (hierarchi-
cally), by merging of smaller objects into larger objects (galaxies → groups →
clusters).

Spectroscopic redshift surveys like the 2-degree-Field Galaxy Redshift Survey
(2dFGRS), CfA2 and the Sloan Digital Sky Survey (SDSS) measure the spatial
distribution of galaxies, and how this distribution evolves with time. Fig. 1.2 shows
that the observed galaxy distribution of the universe is in good agreement with
mock galaxy distributions constructed using the Millennium Simulation of large-
scale structure based on ΛCDM cosmology.

Accordingly, we have strong reasons to believe in the ΛCDM paradigm, as it
puts further constraints on the nature of dark matter and how structure formation
proceeds.

Figure 1.2. Large-scale galaxy distribution in the universe obtained from sur-
veys (CfA2,2dFGRS,SDSS) (blue) compared with mock galaxy distribution
from the Millennium simulation (red). The Millennium Simulation shows that
ΛCDM cosmology reproduces the same web-like features (voids, filaments) as
observed in the real universe. (Springel et al., 2006 [25])
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CHAPTER 1. INTRODUCTION

1.1.3 Clusters of galaxies

Clusters of galaxies are the largest gravitationally bound structures in the universe
(∼ 1015 M! within 2 Mpc of their centers). They formed by gravitational col-
lapse around rare peaks of the primeval density field, on scales of the order ∼ 10
Mpc. Thus, the number density of galaxy clusters probes the cosmic evolution of
large-scale structure and provides an effective test of different cosmological models.
Because of the large collapse scale, the cluster gas fraction fgas = Mgas/Mtot is
expected to be close to the cosmic value Ωb/Ωm = 0.17 ± 0.01.

The mass distribution within clusters also provides information of cosmological use,
and can be measured through many complementary methods:

(i) The motions of individual galaxies can be used to trace the cluster potential.
Dynamical analysis using the virial theorem typically derive mass-to-light ratios,
Υ ( 200− 300 (M!/L!) (Sarazin 1986 [24]; Binney&Tremaine 2008 [1]). Assump-
tions on the dynamical state of the cluster have to be made, since this method is
sensitive for systematic uncertainties due to velocity anisotropies, substructure and
projection effects.

(ii) Distortion of background galaxies by gravitational lensing offers a method
for measuring projected masses of clusters. Cluster cores are dense enough to pro-
duce strong gravitational lensing, creating multiple distorted images (arcs) of back-
ground galaxies. Further away from the core, weak gravitational lensing imprint a
tangential shear pattern of background galaxies. The lensing methods are free from
assumptions about the dynamical state of the cluster, but uncertainties in redshift
distribution of lensed background galaxies and projection effects complicate three-
dimensional mass distributions.

(iii) Measurements of the X-ray emissivity and temperature of the hot cluster gas
provide good estimates of the total mass distribution, traditionally done by using the
hydrostatic Euler equation, which implies certain assumptions about the dynamical
state of the cluster (to be discussed in glorious detail in following chapters). X-
ray measurements typically give gas fractions fgas ∼ 0.13. Mass estimates from
strong lensing (within r < 200 kpc of the cluster center) generally agree with X-
ray determined masses. On larger scales (r > 0.5Mpc), weak lensing, X-ray and
dynamical mass measurements show fair agreement (Allen et. al 2001). Comparing
X-ray observations with simulations of galaxy clusters shows that the hydrostatic
equilibrium method typically underestimates masses by ∼10-20%, indicating that
neglection of dynamical effects might be significant (Piffaretti&Valdarnini 2008 [22];
Nagai et al. 2007 [18]).

(iv) The thermal Sunyaev-Zeldovich (tSZ) effect arises as the CMB radiation
shines through the hot plasma in galaxy clusters. Inverse Compton scattering will
boost CMB photons to higher frequencies and distort the Planck blackbody spec-
trum. The tSZ effect typically yield fgas ∼ 0.12 (Laroque et al. 2006 [15])

The kinetic Sunyaev-Zeldovich (kSZ) effect is a second-order effect. Just as the
thermal motions of ICM electrons can up-scatter the CMB photons, bulk motion
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1.1. OBSERVATIONAL EVIDENCE OF DARK MATTER

(peculiar velocities in regard to the Hubble flow and/or turbulent motions) can
Doppler shift CMB photons and broaden metal emission lines. The kSZ effect offer
the most straight-forward method of measuring bulk motion within clusters, but is
currently far below limits of detectability. (Sunyaev et al. 2003 [26])

1.1.4 Galaxies
Galaxies are massive, gravitationally bound systems, with typical sizes of ∼ 10 kpc
and masses of ∼ 1012 M!. Galaxies, like our own, are made of different components;
a stellar disk, bulge, stellar halo, and a dark halo. A long standing problem has
been the ’flat rotation curves’, obtained by measuring the circular velocities (eq.
2.12) of stars in the disk, and motions of gas clumps in the bulge. Disentangling
the contributions from the different components to the total rotation curve of a
galaxy shows that there has to be a halo of dark matter, with a density distribution
ρdm ∝ r−2 to account for the flat rotation curves. Typically ∼ 50% of the total
mass is in the dark halo.

In the outskirts of our galaxy there are dwarf spheroidal (dSph) galaxies, which
are the smallest (∼ 300 pc) dark matter dominated stellar systems known in the
universe. They typically contain ∼ 400 stars, and through dynamical analysis of
the stellar motions their total masses are estimated ∼ 109 M! and mass-to-light
ratios up to Υ ( 500 (M!/L!) (Gilmore et al. 2007 [6]), which means that up to
90% of their total mass is in dark matter.

Figure 1.3. The measured flat rotation curve (solid line) of NGC 6503, can be
explained by different contributions from the luminous disk, bulge and a dark
halo (dashed lines). (Sofue & Rubin, 2001)
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CHAPTER 1. INTRODUCTION

1.2 Dark matter on all scales
In this brief introduction, we have seen evidence of dark matter from the full uni-
verse, over clusters and galaxies, down to the tiny dwarf spheroidal galaxies – span-
ning many orders of magnitude in structure size. We have also seen that many
different observational methods provide a consistent picture of the properties and
the amount of dark matter.
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Chapter 2

Theory

In this chapter we will acquire some tools that are useful when describing the dy-
namics of galaxy clusters.

We will introduce the fundamental equations, such as the Euler equations and
the Jeans equations, which relate the gas and dark matter dynamics to their grav-
itational potential. We will also describe some parametric models that we will use
in our further analysis.

2.1 Fluid mechanics
Galaxy clusters contain a hot, ionized gas fluid - the Intracluster Medium (ICM).
Some of the fundamental equations from Fluid mechanics enable us to relate X-ray
observed quantities like gas density and temperature to the gravitational, dynamical
and thermal pressure forces.

2.1.1 Continuity equation
The equation of continuity is a mass conservation equation, stating that the total
mass of the fluid is constant.

∂ρ

∂t
+∇ · (ρ−→v ) = 0 (2.1)

2.1.2 Euler’s equation
Newton’s law tells us how the velocity of a fluid element changes because of the
forces. The force F per unit volume acting on the fluid is (Landau&Lifshitz, 1959
[14])

F = ρ× (acceleration) = −∇P − ρ∇Φ + Fvisc + Fmagn (2.2)

The first term is the pressure force per unit volume and the second term is the
external potential force per unit volume. The third and fourth term are due to the
fact that a fluid can have internal friction (viscosity) or be conducting and thus be

7



CHAPTER 2. THEORY

subject to magnetic forces. We will ignore these last two terms for a while, and go
on describing an ideal fluid.

The acceleration is not just ∂−→v /∂t, which is the rate at which the velocity changes
at a fixed point in space - we need to know how the velocity changes for a particular
piece of fluid as it moves about in space.

d−→v
dr

= ∂
−→v
∂t

+ vx
∂−→v
∂x

+ vy
∂−→v
∂y

+ vz
∂−→v
∂z

= ∂
−→v
∂t

+ (−→v ·∇)−→v (2.3)

Now, we can put together Euler’s equation, which is a statement of momentum
conservation for an ideal fluid.

ρ
∂−→v
∂t

+ ρ (−→v ·∇)−→v = −∇P − ρ∇Φ (2.4)

In spherical coordinates, the radial component of eq. 2.4 looks like

∂vr
∂t

+ vr
∂vr
∂r

+ vθ
r

∂vr
∂θ

+ vφ
r sin θ

∂vr
∂φ
−
v2θ + v2φ
r

= − 1
ρ

∂P

∂r
− ∂Φ
∂r

(2.5)

In the case of hydrostatic equilibrium (HSE), −→v = 0, eq. 2.4 simplifies to

∇Φ = −1
ρ
∇P (2.6)

The hydrostatic Euler equation plays a major role when estimating cluster masses
from X-ray observations, by relating the total gravitational potential (l.h.s of eq.
2.6) to the density and pressure of the ICM (r.h.s of eq. 2.6). In chapter 3.4 we will
allow a departure from hydrostatic equilibrium, to measure the velocities inside the
cluster.

2.2 Jeans equations for spherical systems
There is a fundamental difference between how gas molecules in a box move about,
and how galaxies in a cluster (or stars in a galaxy, or dark matter particles in a
box) move about. Gas molecules are collisional, while cluster galaxies, stars in a
galaxy and dark matter particles are collisionless.

The Jeans equations are derived by considering a system of identical, collisionless
particles in six-dimensional phase-space d6w, where each point in phase-space is
described by w = (x,v). For the distribution function of particles in phase-space
f(w, t), under a smooth potential Φ(x, t), the collisionless Boltzmann equation is
the fundamental equation for the time evolution of the system

df

dt
= ∂f
∂t

+
6∑

α=1
ẇα
∂f

∂wα
= 0 (2.7)

8



2.3. SPHERICAL SYSTEMS

where ẇ = (ẋ, v̇) = (v,−∇Φ). Integrating the Boltzmann equation over velocities,
for a spherical, steady-state system (where 〈vr〉 = 0, σ2

r = 〈v2r 〉, ∂/∂t = 0) one can
write (Binney&Tremaine 1987 [1])

d(νv2r )
dr

+ ν
r

(
2v2r − v2θ − v2φ

)
= −ν dΦ

dr
(2.8)

where ν is number density of the collisionless particles, v2i is the second moment of
the i:th velocity component and Φ(r) is the gravitional potential.

One can define the velocity anisotropy parameter, β, to be

β ≡ 1−
v2θ + v2φ

2v2r
= 1−

σ2
θ + σ2

φ

2σ2
r

(2.9)

For purely circular orbits, σr = 0 and β = −∞, whereas for purely radial orbits,
σθ = σφ = 0 and β = 1. For isotropic motion, σr = σθ = σφ, (like gas in thermal
equilibrium) one must have β = 0.

In terms of the anisotropy parameter eq. (2.8) reads

d(νv2r )
dr

+ 2β
r
νv2r = −ν dΦ

dr
(2.10)

One would expect equations describing such different things as collisional fluids
and collisionless systems to look equally different, but the Jeans equation (eq. 2.8)
looks quite similar to the Euler equation (eq. 2.6) (if one substitute ν → ρgas and
νσ2
r → Pgas). We will in fact use this similarity to connect the Jeans equation with

the Euler equation, by making some well motivated assumptions.

2.3 Spherical systems
Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line.

(The Fractal Geometry of Nature, by Benoit Mandelbrot)

Clusters of galaxies are not perfect spheres, but in most cases it makes sense to
approximate them as spherical objects. Assuming sphericity, allows us to describe
their three dimensional mass, density and temperature distributions simply as ra-
dial profiles.
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CHAPTER 2. THEORY

2.3.1 Spherically symmetric matter distributions
The total gravitational potential at radius r generated by an arbitrary spherically
symmetric density distribution ρ(r′), may be considered to be the sum of the po-
tentials of spherical shells. By adding the contributions from shells with r′ < r and
with r′ > r we obtain

Φ(r) = −G
r

∫ r

0
dM(r′)−G

∫ ∞

r

dM(r′)
r′

= −4πG
[1
r

∫ r

0
r′2ρ(r′) dr′ +

∫ ∞

r
r′ρ(r′) dr′

]
(2.11)

Two other important properties of a spherical matter distribution are the circular
velocity and the escape velocity. The circular velocity is defined to be the speed of
a test particle in a circular orbit at radius r

v2c (r) = r|−→F | = rdΦ
dr

= GM(r)
r

(2.12)

A particle at r can escape from the gravitational potential only if its kinetic energy
1
2v

2 exceeds the value of the potential energy Φ(r)

ve(r) ≡
√

2|Φ(r)| (2.13)

2.4 Analytical models
We would of course like our analysis to be non-parametrical, relying as much as
possible on the actual data. But, calculating derivatives and integrals numerically
can be tricky, especially when given large error bars and few data points. Follow-
ing sections will briefly discuss some parametrized models that we will use in our
analysis.

2.4.1 Dark matter density models
Numerical simulations of the clustering of dark matter particles suggests that the
mass density of the dark halo can be approximated as power laws for small and
large radii, with a smooth transition at intermediate radii.

ρdm(r) = ρ0
xα(1 + x)β−α , x ≡ r/rs (2.14)

Some important cases that have been studied are

(α,β) =






(2, 4) for a Jaffe model
(1, 4) for a Hernquist model
(1, 3) for a NFW model

(2.15)
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2.4. ANALYTICAL MODELS

The mass interior to radius r can be integrated as

M(r) = 4πρ0r3s
∫ r/rs

0
dx

x2−α

(1 + x)β−α (2.16)

For integer values of (α,β) this integral can be evaluated to give

M(r) = 4πρ0r3s ×






r/rs
1+r/rs for a Jaffe model

(r/rs)2

2(1+r/rs)2 for a Hernquist model
ln(1 + r/rs)− r/rs

1+r/rs for a NFW model
(2.17)

It is well established that dark haloes are modelled well by the NFW model (Navarro,
Frenk&White 1996 [19]), although there are indications that the central slope can
be shallower than α = 1.

We fit our derived dark matter density profiles, ρdm(r) using the standard NFW
profile, fixing (α,β) = (1, 3), with rs and ρ0 being the free parameters. We also fit
a generalized NFW (gNFW) model, fixing β = 3, letting (0 < α < 2), rs and ρ0 be
free parameters. In a similar fashion, we fit the integrated mass NFW (MNFW) and
a generalized MNFW (gMNFW) to our derived dark matter mass profiles, Mdm(r),
for comparison.

2.4.2 Gas density models
The gas density profiles of X-ray clusters of galaxies are known to be approximated
by the empirical formula, the isothermal β-model (Cavaliere&Fusco-Femiano 1978
[3]; Rasia et al. 2004 [23])

ρgas(r) = ρgas,0
1

[
1 + (r/rc)2

] 3
2β

(2.18)

The observed gas density in the center of relaxed clusters usually has a power law-
type cusp, instead of a flat core like the traditional isothermal β-model. It is also
observed that the X-ray brightness profile often steepens at larger radii compared
to the isothermal β-model. Vikhlinin et al. (2006) [13] design an extended β-model

ρ2gas(r) = ρ2gas,0
(r/rc)−α

[
1 + (r/rc)2

]3β−α/2
1

[1 + (r/rs)γ ]ε/γ
(2.19)

where the additional parameter α allows for a cusp (or core if α = 0). The additional
terms describe a change of slope by ε at radius rs, and the parameter γ controls the
width of the transition region. We follow the suggestions by Vikhlinin et al. and
constrain γ = 3 and ε < 5, letting all other parameters be free when fitting.
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CHAPTER 2. THEORY

2.4.3 Temperature models
Vikhlinin et al. (2006) [13] also constructed an analytical expression of a 3D tem-
perature profile to model general features of the observed projected temperature
profiles. Their model consists of two terms:

T3D(r) = T0 × Tcool(r)× T (r) (2.20)

The first term, Tcool(r), is designed to model the temperature decline in the central
region affected by radiative cooling

Tcool(r) = (r/rcool)acool + (Tmin/T0)
(1 + r/rcool)acool

(2.21)

The second term, T (r), describes a temperature decline at large radii by a broken
power law profile with a transition region,

T (r) = (r/rt)−a
(1 + (r/rt)b)c/b

(2.22)

Since our innermost temperature data are usually at r ∼ 30 kpc, we will not include
the cooling term in our fitting procedures.

2.4.4 Velocity anisotropy models
Numerical simulations of collisionless dark matter particles show that for galaxy
clusters β has a nearly universal variation, increasing from ∼0 in the central re-
gions to ∼0.5 in the outer regions (Carlberg et al. 1997[2]; Cole&Lacey 1996 [4];
Hansen&Moore 2006 [7]).

A parametrized model that fits simulations well is given by

β(r) = βinner + (r/rs)2

1 + (r/rs)2 (βouter − βinner) (2.23)

Alternatively, Hansen & Moore (2006) [9] proposed a universal linear relation be-
tween the velocity anisotropy β and the logarithmic density slope γ for equilibrated
structures,

β(r) = 0.2(γ − 0.8) where γ ≡ −d ln ρ
d ln r (2.24)

which also fits numerical data fairly well. These relations will be of great use to our
analysis of the galaxy clusters later.
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2.5. TEMPERATURE OF DARK MATTER
The Diversity and Similarity of Cold Dark Matter Halos 9

side r(7)
conv, and only minor deviations may be seen at radii

beyond r(1)
conv.

Interestingly, the slope of the Aq-A-1 profile at r = r(7)
conv

is exactly −1, and becomes shallower inward, so it is clear
that at least for this halo we are able to resolve a region
where the dark matter profile has become shallower than −1,
the asymptotic value of the NFW profile. Fig. 5 shows the
radial dependence of the logarithmic slope for all six level-
2 resolution halos and confirms the general applicability of
the Aq-A results: the measured slopes of all halos approach
−1 (and are certainly shallower than −1.5) at the innermost
resolved point.

Figs. 4 and 5 also make clear that there is no sign
that the profiles are approaching power-law behaviour near
the centre: they keep getting shallower to the innermost re-
solved radius. This behaviour is well captured by the Einasto
model, where the logarithmic slope is simply a power-law of
radius, d ln ρ/d ln r ∝ rα. Our results rule out recent claims
of cusps diverging as steeply as r−1.2 in typical ΛCDM ha-
los (Diemand et al., 2004, 2005, 2008), and agree with the
recent analysis presented by Stadel et al. (2008). The latter
argue, as we do here, for inner logarithmic slopes shallower
than −1.

3.3 The Asymptotic Inner Slope

The results presented above do not preclude the possibility
that a shallow power-law cusp may be present in the inner-
most regions which are still unresolved in our simulations. It
is therefore interesting to estimate the maximum value that
the slope of such a cusp may take. This is constrained, at
any radius, by the total enclosed mass and the local value
of the spherically averaged density: slopes steeper than γmax

require more mass than is available within that radius. This
constraint assumes only that the logarithmic slope is mono-
tonic with radius and that the halo is not hollow. It is then
straightforward to show that the maximum possible inner
asymptotic slope is γmax = 3(1 − ρ(r)/ρ̄(r)), where ρ̄(r) is
the mean density enclosed within r. Evaluated at the inner-
most radius where both local density and enclosed mass (or,
equivalently, circular velocity) have converged, this quan-
tity provides an important constraint on the density profile
at radii that remain unresolved even in our best simulations.

We show this parameter as a function of radius for our
Aq-A convergence series in Fig. 6. This figure shows that
γmax converges to better than 0.1 for r > r(7)

conv (the inner-
most point of the thick portion of the profiles). Our data for
Aq-A thus indicates that there is not enough mass in the
unresolved region to support a cusp steeper than r−0.9±0.1.
Fig. 7 shows that the results for Aq-A are not exceptional:
all our level-2 Aquarius halos suggest maximum possible
asymptotic slopes of about −1.

3.4 Velocity Dispersion Structure

Fig. 8 shows velocity dispersion and anisotropy profiles for
our Aq-A series and demonstrates that the excellent numer-
ical convergence of our simulations extends to their veloc-
ity dispersion structure. Besides numerical convergence, the
panels in this figure illustrate two important points. The
first concerns the shape of the velocity dispersion profiles

Figure 10. Local values of the logarithmic slope of the density
profile plotted versus velocity anisotropy. The relation proposed
by Hansen & Moore (2006) is shown as a dashed line. Because
the density profile steepens gradually from the centre outwards
whereas the velocity anisotropy is non-monotonic, no simple re-
lation between these two quantities is valid throughout the halos.
The Hansen & Moore formula approximates our results quite well
in the inner regions, but large deviations may be seen outside r−2,
particularly at the largest radii where our halos are approximately
isotropic but their density profiles are steepest. Open circles cor-

respond to r
(1)
conv < r < r−2, filled circles to r−2 < r < r200.

Colors are as in Fig. 3.

(left panel in Fig. 8), which is remarkably similar to that
of the r2ρ profiles shown in Fig. 1. This coincidence sug-
gests an intimate connection between density and velocity
dispersion, which we explore in more detail in Sec. 3.6. The
second point concerns the anisotropy profile, which is clearly
non-monotonic. It is nearly isotropic at the centre, becomes
radially anisotropic at intermediate radii, but the prevalence
of radial motions decreases again near the virial radius. As
shown in Fig. 9, these properties appear to be rather general,
since all six Aquarius halos have non-monotonic anisotropy
profiles and similar velocity dispersion profile shapes.

3.4.1 Self-similarity?

Fig. 9 also demonstrates a clear lack of self-similarity in the
structure of the simulated halos. We have chosen to empha-
size this by rescaling all profiles so as to match the peak of
the σ(r) curve, which occurs at r(σmax). This scaling demon-
strates that, as with the density profiles, the shape of the
σ(r) profiles differs subtly but significantly amongst halos.
We have checked that these differences in shape are not due
to bound subhalos; removing all the subhalos identified by
our SUBFIND algorithm and recalculating the dispersion
and anisotropy profiles results in only rather minor changes

The most striking case is again that of halo Aq-E-2 (blue

Figure 2.1. Local values of the logarithmic slope of the density profile
(dlnρ/dlnr) plotted versus velocity anisotropy β. The relation proposed by
Hansen & Moore (2006) [9] (dashed line) agrees well in the inner region (β → 0
implies motions become more isotropic), but with larger scatter for γ > 2.5
as structures have not equilibrated fully. Considering that (−∞ < β < 1), all
structures land in a quite narrow band in the γ−β plane. (Navarro et al. 2008
[20])

2.5 Temperature of Dark matter
Despite the apparent differences between a box with collisional gas particles and
an ensemble of collisionless dark matter particles, our ’substitution exercise’ in the
concluding section of chapter 2.2 showed that after replacing Pgas ∝ ρgasTgas with
ρdmσ2

r,dm, the Jeans and Euler equations look quite similar (with the exception of
β). In this section we will define an ’effective’ dark matter temperature that will
allow us to connect the Jeans and Euler equations.

The temperature of a baryonic gas is only well-defined when the gas is locally in
thermal equilibrium, which implies energy equipartition between the gas particles
achieved through collisions. Typically, the mean free paths of gas scattering are
shorter than the length scales of interest in clusters ( ∼1 Mpc) (Sarazin 1986 [24])

λe = λi ≈ 23 kpc
(
Tg

108 K

)2 ( ne
10−3 cm−3

)−1
(2.25)

In equilibrated regions, the radial and tangential velocity dispersions of gas molecules
are isotropic, which can be expressed as βgas = 0.
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Dark matter particles do not reach equilibrium through collisions, and numerical
simulations of collisionless dark matter particles show that typically βdm .= 0 (see
section 2.4.4). One can define an effective dark matter ’temperature’, by averaging
over the three directions of the velocity dispersion

Tdm
kB
µmp

≡ 1
3σ

2
dm = 1

3
(
σ2
r + 2σ2

t

)
= σ2
r

(
1− 2

3β
)

(2.26)

Since all particle species, at a given radius, in a relaxed and spherical gravitational
system have the same specific potential energy (the circular velocity of a test par-
ticle, v2c = GMtot(r)/r is independent of test particle mass), it is natural to assume
that they also have the same average specific kinetic energy (principle of equiparti-
tion). Since the average velocity is related to the thermal energy content, one can
formulate (Host et al. 2008 [11])

Tdm = κ(r)Tgas (2.27)

The κ−parameter is constant, as long as the impact of radiative cooling or other
non-gravitational effects are negligible. This temperature relation has been analysed
in simulations by Evrard et al. (2008), and they find that

κ<r200 ≡
kbTgas/µmp

σ2
dm

= 1.04± 0.06 (2.28)

Numerical simulations have convincingly shown that κ(r) = 1 to a good accuracy
(Host et al. 2008 [11]). The definition of an effective dark matter temperature (eq.
2.26) together with the temperature relation (eq. 2.27), will allow us to combine
the Euler equation and the Jeans equation.
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2.6 Considerations on the cluster dynamics
Since we have set out to measure the velocities inside clusters, it is good to get an
idea of what can be expected. In this section we will review some physical processes
that cause cluster motion, and results from hydrodynamical simulations of galaxy
clusters.

Figure 2.2. X-ray images displaying ongoing cluster activity. Left: Violent
merger in the Bullet cluster, displaying shock fronts. Middle: Filamentary
substructure of cool gas in A1795. Right: Ripples (sound waves) and cavities
in the centre of the Perseus cluster, probably due to energy injection by a
central black hole. In this thesis we will only analyse clusters that appear
relaxed and spherical. (Credit: CHANDRA)

In ’bottom-up’ hierarchical structure formation, large structures are formed at late
times through subsequent merging of smaller objects. Clusters of galaxies being
the most massive objects, form last (which means now) and are thus dynamically
young, with typical time since last major merger ∼5 Gyr (about 20% of clusters
have had more recent mergers, or are undergoing one) (Peterson&Fabian 2006 [21]).

Galaxy clusters tend to be sitting at the ’junctions’ of the dark matter filaments
of the cosmic web, and rather than accreting material smoothly onto a ’uniform
sphere’ (like in the spherical collapse model), accretion processes are expected to
be lumpy, filamentary and non-spherical.

While pure dark matter simulations give insights about the non-trivial clustering
of dark matter structures, inclusion of gas physics in numerical simulations increases
the level of complexity further more. Hydrodynamical simulations typically include
radiative cooling, (artificial) viscosity, star formation recipies, metal enrichment,
magnetohydrodynamics (MHD), feedback from Active Galactic Nuclei (AGN), etc.
All these physical effects are very complicated, and it is therefore hard to fully trust
the gas simulations.

In following sections we will take a look at the gas velocities as seen in simulations
by Fang et al. (2008) [5] and by Sunyaev, Norman&Bryan (2003) [26], to get an
approximate idea of the velocity flows.
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Figure 2.3. Schematic picture of plausible motions inside a galaxy cluster.
Arrows indicate; radial in-fall at large radii (A), radial outflow at large radii
(B), radial in-fall at small radii (C), radial outflow at small radii (D), turbu-
lent/tangential motions (E) and rotational/tangential motion (F).

2.6.1 Radial motion

(A) & (B): Infall at large radii, due to constant bombardment of minor mergers,
is very probable in hierarchical clustering. These infalling structures generate vor-
ticity, seen as turbulent eddies (E) with sizes ∼ 100-400 kpc, and velocities vt ∼
300-500 km/s, throughout clusters. Lumps falling in with super-sonic velocities
(sound speed in ICM ∼ 1000 km/s) will cause the surrounding gas to be shock-
heated (Sunyaev et al. 2003).

(C) & (D): A long standing problem is the ’cooling-flow problem’. In dense cluster
centers (r ∼ few tens of kpc), the radiative cooling time of a plasma, tcool ∼ 5× 108

years, always exceeds the gravitational dynamical time, which is expected to lead
to a slow, subsonic inflow towards the center (making the core even denser and
cool even faster) (Peterson&Fabian 2006 [21]). This effect might be compensated
by energy injection from AGN, which offers an explanation to why clusters do not
suffer from overcooling. Simulations of supersonic narrow jets produced by AGN,
show that the hypothesised cooling flows can be heated and transported outwards
(B) creating cavities in the ICM (similar to what is observed in the Perseus cluster,
left panel of fig. 2.2) (Omma et al. 2003).
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2.6.2 Tangential motion
(E): Simulations by Fang et al. (2008) show that infalling material can maintain
small scale turbulence (eddies of size ∼20-150 kpc, with velocities ∼25-60% of virial
velocity), which is damped by viscous heating.
(F): Ordered rotational motion within the central few hundred kpc is seen in sim-
ulations by Fang et al. (2008) and Sunyaev et. al. (2003), with typical velocities
vt ∼ 300-600 km/s. These motions are likely induced by off-axis mergers. In the
classic cooling flow model, gas rotation is also expected, due to mass and angular
momentum conservation.

In conclusion, these numerical simulations show that very complicated velocity pat-
terns may appear, and that we may expect radial variations in both the tangential
and radial velocity components.

2 Fang et al.

FIG. 1.— Top panel: mock Chandra X-ray flux maps of CL7 from x projection (left), y projection (middle), and z projection (right). Bottom panel: slice of the
velocity field in the center of cluster CL7, y! z plane (left), x! z plane (middle), x! y plane (right). The bottom color bar is for the velocity field, and in units of

km s!1. Each box has a size of 1h!1× 1h!1 Mpc2.

the outskirts of clusters, it becomes increasingly tangential at
smaller radii, especially for the most relaxed systems (Rasia,
Tormen, & Moscardini 2004; Lau et al. 2008, in preparation);
Recently Lau et al. (2008) have shown the ICM velocity dis-
persion becomes increasingly tangentially anisotropic as one
moves inward from r500, such that for their relaxed clusters
the anisotropy parameter falls to β ≈ !0.3 near 0.2r500. These
authors consider the non-thermal pressure support of this ran-
dom turbulent motion (both radial and tangential) on esti-
mates of M500 assuming hydrostatic equilibrium. However,
rotational support of the gas, and its observable signatures, is
not addressed.
In this paper, we show that for the relaxed clusters studied

by Lau et al. (2008; Nagai et al. 2007) support of the ICM
from rotational and streaming motions is comparable to the
support from the random turbulent pressure out to ≈ 0.8r500.
While the overall magnitude of the rotational motion (∼ a
few hundred km s!1) is not large enough to be detected di-
rectly through Doppler shifts of emission lines in X-ray spec-
tra, even with the most advanced X-ray telescopes we have
today (e.g., Sunyaev et al. 2003; Inogamov & Sunyaev 2003;
Schuecker et al. 2004;Brüggen et al. 2005; Pawl et al. 2005;
Chepurnov& Lazarian 2006; but see Dupke & Bregman 2006
for a recent mmeasurement), simulated clusters with large-
scale rotation are significantly flat, and this translates to ob-
servable large ellipticities of the X-ray isophotes. By com-

paring the ellipticities of the X-ray isophotes of the relaxed
simulated clusters to those of nine observed clusters, we show
that the observed clusters are, on average, much rounder and
have a distinctly different radial variation in ellipticity. This
demonstrates the utility of X-ray ellipticity profiles as a con-
straint for future cosmological cluster simulations.
This paper is organized as follows. In §2 we study the im-

portance of ICM rotation in the 16 simulated clusters of Lau
et al. (2008; Nagai et al. 2007), focusing our discussion using
the examples of one relaxed and one disturbed cluster. In §3
we present ellipticity profiles of nine clusters obtained from
X-ray observations with Chandra and ROSAT and compare
them to the simulated clusters. The last section is devoted to
summary and discussion.

2. NON-THERMAL GAS MOTION IN THE SIMULATED CLUSTERS

2.1. Simulation Data

We use a set of 16 high-resolution, cosmological hydrody-
namic simulations of cluster-sized systems in a flat ΛCDM
model: Ωm = 0.3,ΩΛ = 0.7,Ωb = 0.043 and σ8 = 0.9 (the power
spectrum normalization at 8h!1 Mpc scale). These cluster-
sized simulations include collisionless dynamics of dark mat-
ter, star and intracluster gas. They also include several critical
physical processes such as radiative cooling, star formation
and metal enrichment (CSF simulation). For comparison we
also analyze one adiabatic cluster simulation, i.e., no radiative

Figure 2.4. Top panel: Mock X-ray flux maps of a simulated cluster from x,y
and z projection. Bottom panel: slices of the velocity field in the center of the
simulated cluster in the y-z, x-z and x-y planes. The bottom color bar is for
the velocity field, in units of km/s. Each box has a size of 1 h−1× 1 h−1 Mpc2.
(Fang et al. 2008 [5])
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Chapter 3

X-ray Observations of Clusters

3.1 Physics of the Intracluster Medium
Clusters have total masses of about 1014 to 1015 M!, with a total gas fraction of
∼16% (where about 13% is in the ICM and about 3% in the cluster galaxies). The
remaining 84% of the mass is in dark matter.
Gas densities vary from ∼ 10−3 − 10−1cm−3 in cluster centres. (Peterson&Fabian
2006 [21]; Sarazin 1986 [24])

The Intracluster Medium (ICM) is a nearly fully ionized plasma due to the high
temperatures ∼ 107-108 K (∼1-10 keV) created by the deep gravitational potential.
This means that light elements like hydrogen and helium are fully stripped of their
electrons, and heavier elements retain only a few of their electrons.

When free electrons are accelerated in the coulomb field of an ion, huge amounts of
thermal bremsstrahlung emission are produced, making galaxy clusters among the
most X-ray luminous objects known to man.

The power per energy per volume emitted through bremstrahlung is approximately

d2P

dV dE
≈ 10−11nenHT

− 1
2

e e
− E
kBTe cm−3 s−1 (3.1)

where ne is the electron density, nH is the hydrogen density, E is the photon energy
and Te is the electron temperature. The total power per volume radiated is

dP

dV
≈ 10−27nenHT

1
2
e ergs cm−3 s−1 (3.2)

Due to the low ICM densities, the plasma can be treated as optically-thin, which
means that radiation almost completely escapes without interaction with the plasma.
This allows us to measure quantities like gas density and temperature at various
positions in the cluster, through X-ray spectroscopy and imaging.
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Figure 3.1. Left: Deprojected observed radial profile of gas density (solid
black line) within 1σ error (red solid lines) of A1689. The extended β-model
(eq. 2.19) offers a better fit (dashed blue line) than the cored isothermal β-
model (green dashed line). Right: Deprojected observed radial profile of gas
temperature (black crosses) and corresponding 1σ error bars of A1689. The
green dashed line shows the temperature fitted by eq. 2.20 and the black
dashed line is a 3-point spline interpolation. Vertical lines mark the innermost
and outermost radii of observations.

3.2 X-ray analysis

X-ray observations provide us with two-dimensional projected gas density and tem-
perature of the ICM. These can be de-projected (see Morandi et. al (2007)[17] or
appendix A for a simpler method) to deduce the three-dimensional radial profiles
of gas density, ρg(r), and gas temperature, Tg(r).

For relaxed and spherically symmetric galaxy clusters, one can use the Euler equa-
tion (eq. 2.4) to relate the total mass of gravitating matter at a given radius to the
radial dependence of gas temperature and density. This is usually done under the
assumption of hydrostatic equilibrium (eq. 2.6),

GMtot(r)
r2

= − 1
ρg

∂Pg
∂r

(3.3)
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where ρg(r) is the gas density and Pg(r) is the gas pressure.
It is assumed that the total gas pressure is represented by the thermal pressure,

Pg = Pthermal = nekBTg = ρgkBTg
µmp

(3.4)

wheremp is the proton mass, µmp is the mean mass per particle (we adopt µ = 0.61).
Combining eq. 3.3 and eq. 3.4 allows us to write

v2c (r) = GMtot(< r)
r

= −kBTg
µmp

(
d ln ρg
d ln r + d lnTg

d ln r

)
(3.5)

Throughout the analysis, all uncertainties are calculated using a Monte Carlo tech-
nique, whereby the deprojected gas temperature and density data are perturbed
10000 times assuming Gaussian uncertainties.

To obtain the total mass profileMtot(r), we calculate the logarithmic derivatives
in eq. 3.5 using 3-point Lagrangian interpolation (with linear interpolation for the
endpoints). The result is shown in left panel of fig. 3.2.

Most analyses have required the derived total mass profile Mtot(r) to be mono-
tonically increasing, since otherwise you would end up with an ’unphysical’ negative
density. In our analysis, we do not want to restrict our selves to that assumption,
because a dip in the reconstructed mass profile indicates loss of hydrostatic equilib-
rium. Ignoring velocity terms in the full Euler equation (eq. 2.4) can lead both to
over- and underestimation of the hydrostatic (HS) reconstructed mass. Remember;
these are the velocities that we want to measure.

From the total mass profile, Mtot(r), we can obtain ρtot(r) in two ways

ρtot(r) =
{ ∆Mtot

∆Vshell (a)
1

4πr2
dMtot
dr (b)

(3.6)

The intuitive approach (eq. 3.6.a), is to calculate ρtot(r) simply as the total mass
inside the i:th spherical shell, ∆Mtot,i = (Mbin,i+1 −Mbin,i), divided by the volume
of shell i, ∆Vshell = 4π

3 (r3bin,i+1− r3bin,i). We use linear interpolation to calculate the
total mass at the bin edges.

One can also obtain ρtot(r) by numerical differentiation ofMtot(r) (eq. 3.6.b), us-
ing a 3-point Lagrangian interpolation (with linear interpolation for the endpoints).
It is helpful to restrict Mtot(r = 0) = 0. Both methods perform equally well, with
the numerical differentiation-method yielding slightly smaller error bars.
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Figure 3.2. Hydrostatic (HS) analysis of A1689. Left: Total mass profile,
Mtot(r), calculated assuming hydrostatic equilibrium (eq. 3.5) (black line with
crosses) with 1σ errorbars. Gas mass profile (black dashed line) shown for
comparison. Right: Total mass density obtained using eq. 3.6.a (black crosses)
and eq. 3.6.b (red squares) and corresponding 1σ errorbars.

The dark matter mass and density profiles are now easily obtained either byMdm(r) =
Mtot(r)− 4π

∫
ρg(r)r2dr or by ρdm = ρtot − ρg.

Figure 3.3. Hydrostatic (HS) analysis of A1689. Left: Dark matter mass
profile Mdm(r) (black crosses) with 1σ uncertainties. Gas mass profile (black
dashed line) shown for comparison. Right: Dark matter density profile ρdm
(black crosses) with 1σ uncertainties. Solid green and blue lines show fitted
NFW and gNFW models.
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3.3. CALCULATING THE RADIAL VELOCITY DISPERSION

As seen in fig. 3.3, the NFW model fits the calculated dark matter density well.
The only exception in this specific case, is the generalized integrated mass NFW
model (gMNFW, blue dashed line) with fitted inner slope α = 1.4.

3.3 Calculating the radial velocity dispersion

To make the connection with the dark matter, we must consider the Jeans equation
(Binney&Tremaine, 1987 [1]), which relates the dark matter density and velocity
dispersions with the total gravitating mass;

v2c (r) = GMtot(< r)
r

= −σ2
r

(
d ln ρdm
d ln r + d ln σ2

r

d ln r + 2β
)

(3.7)

The total mass Mtot(r) is obtained from the hydrostatic Euler equation, the dark
matter density is easily obtained through ρdm = ρtot − ρg. But, the Jeans equation
is not closed, in the sense that σ2

r and β cannot both be determined from Mtot(r)
and ρdm. In the following sections we will step by step see how to get around this
by making some further assumptions.

3.3.1 β = constant

The most direct approach to calculate the radial velocity dispersion is to regard the
Jeans equation (eq. 3.7) as a first-order differential equation for ρdmσ2

r , assuming a
constant value or a functional form for β.

In the case β = constant, one finds the integrating factor to be e2
∫
drβ/r =

r2β , so the solution can be written in closed form. The solution that satisfies the
boundary condition limr→∞ v2r = 0 is

σ2
r (r) = 1

r2βρdm(r)

∫ ∞

r
r′2βρdm(r′)GM(< r′)

r′2
dr′ (3.8)

Hansen&Piffaretti (2007) [8] do a completely non-parametric analysis of two relaxed
clusters. By calculating σ2

r as in eq. 3.8, using constant values of β ∼ 0.3 −
0.6 (which are in good agreement with numerical simulations), they show that
the reconstructed dark matter temperature Tdm (defined in eq. 2.26) is in good
agreement with the gas temperature in the outer regions of the clusters. This
supports that the temperature relation Tdm = κTg (discussed in section 2.5) is
indeed valid.
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Figure 3.4. Dark matter radial velocity dispersion σ2
r , calculated using eq. 3.8

for constant values of β = 0 (black solid line) and β = −0.2, 0.2, 0.4, 0.6 (dotted
black lines) using a fitted NFW profile. Shown for comparison is the scaled gas
temperature, kBTg/µmp (red line). This indicates that β is indeed non-zero,
in agreement with numerical simulations.

3.3.2 β = β(r)
Host et al. (2008) [11] present a method to calculate both the radial velocity disper-
sion and the velocity anisotropy, based on the definition of dark matter temperature
(eq. 2.26) and the temperature relation (eq. 2.27)

Tdm = κTg ⇒ 2βσ2
r = 3σ2

r − 3κkBTg
µmp

(3.9)

By equating the hydrostatic Euler equation (eq. 3.5) and the Jeans equation (eq.
3.7), β(r) can be eliminated using eq. (3.9)

σ2
r

(
d ln ρdm
d ln r + d ln σ2

r

d ln r + 3
)

= kBTg
µmp

(
d ln ρg
d ln r + d lnTg

d ln r + 3κ
)

(3.10)

After finding the integrating factor, we can calculate the radial velocity dispersion
using only observables:

σ2
r (r) = 1

ρdm(r)r3
∫ r

0
ρdm(r′)r′2

(
3κkBTg
µmp

− GM(< r′)
r′

)

dr′ (3.11)

Now, β(r) can be recovered in two ways - either through the Temperature relation
(TR) or the Jeans equation (JE)

βTR(r) = 3
2

(

1− κ kBTg
µmpσ2

r

)

(3.12)
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βJE(r) = −1
2

(
d ln ρdmσ2

r

d ln r + GMtot
rσ2
r

)

(3.13)

Performing this analysis, we recover the radial variation of β using both methods.
The result is shown in fig. 3.5) and we find excellent agreement with Host et al.
(2008).

Figure 3.5. Inferred velocity anisotropy parameter, recovered using the Tem-
perature Relation (eq. 3.12) (red crosses), or using the Jeans Relation (eq.
3.13). Shown is also the analytical model for β(r) (eq. 2.23) (solid black line)
and the β-γ-relation (Hansen&Moore, 2006) (eq. 2.24) using calculated dark
matter density (dashed black line) or a fitted NFW profile (dotted black line)

3.4 Inferring the velocity component
We have so far assumed that gas velocities can be ignored, in order to use the
traditional hydrostatic equilibrium. We will now allow for the velocity terms that
appear in the Euler equation (eq. 2.4) to be non-zero. After ignoring terms that
include the time deriviative ∂/∂t and angular derivatives ∂/∂θ, ∂/∂φ of vr, we can
write

vr
∂vr
∂r
− v

2
t

r
= −1
ρ

∂

∂r

(
ρgkBTg
µmp

)

− GMtot
r2

(3.14)

To make the connection with the Jeans equation, we will use the temperature rela-
tion, Tdm = κTg , and an analytical expression for the velocity anisotropy parameter,
β(r), that varies from ∼ 0.1 at small radii to ∼ 0.5 at large radii. As discussed in
section 2.5 and 2.4.4, both these assumptions are in excellent agreement with nu-
merical simulations.
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The radial velocity dipersion is then completely determined, σ2
r = σ2

r (κ, Tg,β),

σ2
r (r) = kB

µmp
Tdm(r) 1

1− 2
3β(r)

≡ kB
µmp
κ(r)Tg(r)fβ(r) (3.15)

Combining the Euler equation (eq. 3.14) with the Jeans equation (eq. 3.7) leaves
us with

rvr
∂vr
∂r
− v2t = σ2

r

(
d ln ρdm
d ln r + d ln σ2

r

d ln r + 2β
)

− kBTg
µmp

(
d ln ρg
d ln r + d lnTg

d ln r

)
(3.16)

= kBTg
µmp

[

κfβ

(
d ln ρdm
d ln r + d ln κTgfβ

d ln r + 2β
)
−
(
d ln ρg
d ln r + d lnTg

d ln r

)]

= kBTg
µmp

[

κfβ
d ln(ρdm/ρg)
d ln r︸ ︷︷ ︸

Term 1

+ (κfβ − 1)
(
d ln ρgTg
d ln r

)

︸ ︷︷ ︸
Term 2

+κfβ
(
d ln κfβ
d ln r + 2β

)

︸ ︷︷ ︸
Term 3

]

On the left hand side of eq. 3.16 are the radial and tangential velocity terms that
we are trying to measure (hereafter referred to as the ’velocity component’), which
other authors assuming hydrostatic equilibrium explicitly put to zero.

The right hand side of eq. 3.16 contains X-ray observables (gas density ρg and
temperature Tg), the dark matter density ρdm, the κ-parameter and the velocity
anisotropy parameter β(r).

Figure 3.6. Both panels show the r.h.s of eq. 3.16 divided into terms 1,2
and 3. The solid lines show the radial behaviour of the different terms, based
on observed ρg(r), Tg(r), calculated ρdm(r) and assumed β(r). Dashed lines
show the behaviour of the corresponding fitted profiles. Left: β(r) is the an-
alytical model described in eq. 2.23. Right: β(r) is described through the
Hansen&Moore-relation (eq. 2.24)
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3.4. INFERRING THE VELOCITY COMPONENT

Dividing the r.h.s of eq. 3.16 into three terms lets us study it in greater detail.
The first term (black lines in fig. 3.6) includes the logarithmic derivative of the

fraction of dark matter and gas density, ρdm/ρg. We use the dark matter density
obtained through the ordinary hydrostatic analysis as a first approximation. Due to
small local fluctuations in the derived dark matter density, and the fact that we are
restricted to relatively few data points, even larger fluctuations are induced when
calculating the derivative.

The second term (green lines in fig. 3.6) is again the hydrostatic Euler equation,
but here multiplied by the factor (κfβ − 1).

The third term (red lines in fig. 3.6) arises only from the assumed κ = 1 and
β(r). The left panel of fig. 3.6 shows the analysis made using the analytical model
in eq. 2.23 with βinner = 0.1 and βouter = 0.5. This is to compare with the right
panel of fig. 3.6, where β(r) is determined through the β − γ−relation in eq. 2.24.

Figure 3.7. Velocity component (l.h.s of eq. 3.16) of A1689. Black solid lines
show the inferred velocity component calculated without use of any parametric
models. Dashed lines show the inferred velocity component using only fitted
profiles. Performing the analysis with β(r) defined as in eq. 2.23 (left panel)
yields slightly different velocities than with β(r) defined through eq. 2.24 (right
panel).

3.4.1 Tangential motion
The velocity component (l.h.s of eq. 3.16) consists of two terms, one tangential and
one radial. We first consider the tangential.

If contributions come only from the tangential velocity term (−v2t ), the negative
deviations in fig. 3.7 would correspond to tangential velocities vt up to ∼ 800 km/s.

In some sense, the tangential velocity term, acts like a proper ’non-thermal pres-
sure’ because of the minus-sign and the square. Neglecting such velocities in the
hydrostatic analysis means the reconstructed mass is underestimated.
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CHAPTER 3. X-RAY OBSERVATIONS OF CLUSTERS

Figure 3.8. Considering only tangential motion for A1689. Inferred tangen-
tial velocities from non-parametric analysis (solid lines), and from parametric
analysis (dashed lines). Left: β(r) from eq. 2.23 Right: β(r) from eq. 2.24.

3.4.2 Radial motion
The radial velocity term (rvr ∂vr∂r ) also contributes to deviations in fig. 3.7, given
that ∂vr/∂r is sufficiently large.

Interestingly, due to the possibility of vr and ∂vr/∂r having different signs, radial
motion could contribute to both negative and/or positive deviations in fig. 3.7.

Figure 3.9. The radial velocity term can make both negative and positive
contributions to the velocity component. Because of the ’sign degeneracy’ it is
not possible to distinguish between infall (vr < 0) and outflow (vr > 0).

Both decelerating outflow and accelerating infall would make negative contributions
in fig. 3.7, similar to the tangential velocity component.
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3.5. CONCLUSION AND FUTURE IMPROVEMENTS

The only way of getting a positive deviation in fig. 3.7, is either through decel-
erating infall or accelerating outflow. Radial motion could in that case act like a
negative ’non-thermal pressure’! If such radial motions are neglected in the hydro-
static analysis, the reconstructed mass would be overestimated.

Unfortunately, because of the ’sign degeneracy’, there is no way to distinguish
between accelerating infall or decelerating outflow (or between decelerating infall
and accelerating outflow either), which of course is a weak point.
Bearing this in mind, one can still attempt to solve

vr
∂vr
∂r

= f(r)
r
⇒
∫
vrdvr = v

2
r

2 + C =
∫
f(r)
r
dr (3.17)

Figure 3.10. The case with radial motion only for A1689. The inferred radial
velocities are calculated through eq. 3.17 using the fitted profiles. Because
of the ’sign degeneracy’ there is no way to distinguish between radial infall
(dashed line) or outflow (solid line). Left: β(r) from eq. 2.23 Right: β(r) from
eq. 2.24.

3.5 Conclusion and future improvements
We have attempted to derive the velocities inside clusters, using only X-ray obser-
vations – something that has not been considered before. We did this by connecting
the Euler equation with the Jeans equation, through some well considered assump-
tions on the velocity anisotropy β(r) and on the temperature of the dark matter.

We find tentative indication that there is significant gas motion in the galaxy
cluster, with velocities up to ∼500-1000 km/s. These velocities are most likely
unreasonably large (numerical simulations usually indicate velocities of the order
few hundred km/s).
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CHAPTER 3. X-RAY OBSERVATIONS OF CLUSTERS

One important future improvement of the present analysis is to make it iterative.
The problem is that the dark matter density profile is found under the assumption
of hydrostatic equilibrium (zero velocity). One should take the inferred velocities
and include them in the full Euler equation, while analysing the dark matter mass
profile. Our first primitive attempts to do this (not described in the thesis) did not
converge.
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Appendix A

Geometrical Deprojection

Figure A.1. 2D Projection of a 3D balloon

One can perform a non-parametric deprojection of the observed 2D density and
temperature profiles, with an ’onion peeling’ approach, similar to McLaughlin (1999)
[16], under the assumption of spherical symmetry.

The projected density and temperature, ρ2Di and T 2D
i , are observed in N con-

centric annular regions on the sky, where Ri and Ri+1 are the inner and outer radii
of the i:th annulus.

The volume common to a spherical shell, ri ≤ r ≤ ri+1, and a cylindrical ring,
Ri ≤ R ≤ Ri+1, is

Vij =





4π
3

[(
r2i+1 −R2

j

) 3
2 −
(
r2i+1 −R2

j+1
) 3

2 −
(
r2i −R2

j

) 3
2 +
(
r2i −R2

j+1
) 3

2
]

(i ≥ j)
0 (i < j)

(A.1)
Any term in parentheses that evaluates as negative is set to zero. An obvious choice
of shell radii is, ri = Ri.

31



APPENDIX A. GEOMETRICAL DEPROJECTION

Figure A.2. Illustration of geometrical deprojection algorithm. Radii r0, r1, r2
are three-dimensional quantities, and define spherical shells. Radii R0, R1, R2
are projected quantities referring to cylindrical shells aligned along the line of
sight (McLaughlin 1999 [16]).

To deproject the density, one can simply assume that the density of the outermost
shell equals that of the outermost annulus, ρ3DN = ρ2DN (hoping that the X-ray
emission is negligible outside of the outermost annulus). Then, density of shell
i = N − 1 can be calculated, and one can proceed in an iterative manner, from the
outside in (”peeling the onion”).

ρ3Di Vi,i = ρ2Di
4π
3

[(
r2N −R2

i

) 3
2 −
(
r2N −R2

i+1
)3/2]

−
N∑

j=i+1
ρ3Dj Vj,i (A.2)

The observed projected temperature T 2D
i from annulus Ri ≤ R ≤ Ri+1 can be

regarded as a superposition of the temperature of shell i and contributions from
obscuring shells, weighted by wi,j = (ρ3Dj )2Vi,j . Again we assume T 3D

N = T 2D
N , and

proceed peeling inwards.

wi,iT
3D
i = T 2D

i

N∑

j=i+1
wi,j −

N∑

j=i+1
wi,jT

3D
j (A.3)
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Appendix B

Navier-Stokes equation

The Navier-Stoker equation enforces momentum conservation for a fluid with inter-
nal friction (viscosity) . This equation relates the momentum of the fluid (left hand
side) to the gravitational compression (first term on the right hand side), the ther-
mal pressure gradients, and viscous forces (last terms). In Cartesian coordinates it
can be written as

ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)

+ ρ ∂Φ
∂xi

=

− ∂P
∂xi

+ ∂

∂xj
η

(
∂vi
∂xj

+ ∂vj
∂xi
− 2

3δij
∂vk
∂vk

)

+ ∂

∂xi

(
ζ
∂vk
∂vk

)
(B.1)

where η > 0 and ζ > 0 are the first and second coefficients of viscosity. In spherical
coordinates, and ν = η/ρ, the radial part of eq. B.1 reads

∂vr
∂t

+ vr
∂vr
∂r

+ vθ
r

∂vr
∂θ

+ vφ
r sin θ

∂vr
∂φ
−
v2θ + v2φ
r

+ ∂Φ
∂r

=

−1
ρ

∂P

∂r
+ ν
[

1
r2
∂

∂r

(
r2
∂vr
∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂vr
∂θ

)
+ 1
r2 sin2 θ

∂2vr
∂φ2

]

(B.2)

We will neglect the additional terms introduced in the Navier-Stokes equation in
our analysis, since the second derivatives of the radial velocity and the viscosity
coefficient of the hot, low density plasma are likey to be very small (Sarazin 1986
[24]).
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Appendix C

Selection of analysed clusters

C.1 RXJ1347.5

Figure C.1.
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APPENDIX C. SELECTION OF ANALYSED CLUSTERS

Figure C.2.

Figure C.3.

C.2 A1914

Figure C.4.
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C.3. A2218

Figure C.5.

Figure C.6.

C.3 A2218
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APPENDIX C. SELECTION OF ANALYSED CLUSTERS

Figure C.7.

Figure C.8.

Figure C.9.
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