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Chapter 1

Introduction

Quantum mechanics allows for the creation of non-classical states with exotic be-
havior, for which superposition of distinct states and entanglement are the two most
prominent examples. The mobility of photons and their coherence, due to weak in-
teraction with the environment, make light the preferred carrier for the transmission
of such quantum states. It is therefore of fundamental interest to study how quan-
tum states of light can be manipulated and coupled to other physical systems. One
particular area of interest is in this connection the storage of quantum light states.
The most simple approach for this, storing a single photon in a single atom via ab-
sorption and then emitting a single photon, is not very effective because of the weak
optical coupling of a single atom. With the development of cavity quantum electron
dynamics the light-matter interactions have been somewhat improved by placing up
to a few atoms in high-finesse cavities. In 1999 Lene Hau et al. [1] then showed
in a seminal experiment that light effectively can be slowed down when traveling
through an atomic ensemble by collective quantum interference effects. This paved
the way for experiments based on atomic ensembles where light has been ”frozen”
and therefore a quantum memory for light has been created. Atomic ensembles
consisting of many atoms can interact much more strongly with optical light and
provide better storage for light via collective superposition states.

The study of quantum memories has the potential to answer some fundamental
questions about the nature of quantum mechanics, such as the time duration over
which quantum coherences can be maintained. Furthermore, quantum memories
have promising applications within quantum information, which connects quantum
mechanics with information science. In quantum information the equivalent to clas-
sical bits are qubits, which can be in one of two states or a superposition thereof.
A system with X qubits can therefore be in a superposition of 2X states and allow
for the parallel processing of an enormous number of states in a quantum computer.
Information encoded in qubits can also be transferred securely through public chan-
nels with quantum cryptography. In many areas of quantum information a quantum
memory, which can store and release qubits on-demand, is a key component for the
realization of important tasks. Because quantum error-correction can be applied to
released qubits, quantum memories do not have to be completely lossless. A high
efficiency is nevertheless required. At the very least, the efficiency has to be above
50 % in most quantum information applications, such that outgoing quantum states
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Figure 1.1: The Λ-type level structure of an optically controlled quantum memory,
which allows for Raman-transitions between the ground states |g〉 and |s〉 via the
excited state |e〉.

remain in the realm of the no-cloning theorem and error-correcting codes can be
used.

Although a lot of progress has been made within the recent decade, it has been
difficult to build efficient, scalable quantum memories with long storage times. For
a long time even the most efficient quantum memories had efficiencies below the
50 % threshold [2]. Only recently has a quantum memories with µs storage time
exceeded this threshold [3]. One source for losses are inhomogeneities within the
ensemble with regard to the light-matter interaction. This includes inhomogeneities
due to variations in the intensity of the optical light over the interaction region
and inhomogeneities due to differences within the ensemble such as inhomogeneous
broadening. Despite this is well-known, only one theoretical article has analyzed
the effect of inhomogeneities and only with regard to inhomogeneous broadening
[4]. In this thesis we will investigate further how inhomogeneities affect the storage
and retrieval efficiencies for quantum memories within a cavity. Moreover, we are
interested in finding the optimal storage and retrieval strategies for such systems.

In the remaining part of this chapter, a brief introduction into quantum light storage
is given. It has to be mentioned that a number of excellent review articles exist on
this topic [5, 6, 7].

1.1 Quantum memories

In optically controlled memories excitations are transferred to and from the atomic
ensemble via a Λ-shaped energy structure as seen in Figure 1.1. A strong optical
control field is necessary to initiate and maintain the interaction between the weak
signal field and the atomic medium. The individual atoms have a Λ-type level struc-
ture consisting of two ground states |g〉 and |s〉 and an excited state |e〉. Transitions
between the two ground states are dipole-forbidden and therefore both |g〉 and |s〉
are stable. However, by coupling the weak signal field to the |g〉 - |e〉 transition and
the control field to the |s〉 - |e〉 transition, it is possible to allow for transitions be-
tween the populated ground state |g〉 and the empty ground state |s〉 via the excited
state, a so-called Raman transition. Both light field are configured in such a way
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Figure 1.2: Electromagnetically induced transparency (EIT) as first observed by
Boller et al. in 1991 [10]. The transmission is shown as a function of the probe laser
detuning.

that they have the same detuning ∆ from the excited state, which is also referred to
as two-photon resonance. Under ideal conditions one optical excitation from signal
field is then transferred to one collective atomic spin excitation (also called spin
wave) during storage and vice versa during retrieval. The atomic excitation corre-
sponds in this case to one spin being flipped. However, it is unknown which atomic
spin in the ensemble has been flipped and a collective symmetric state is therefore
created. Assuming that all N atoms initially are in the ground state |g1, . . . , gN 〉
the storage procedure of the single photon state |1〉 corresponds to

|1〉 |g1, . . . , gN 〉 → |0〉
N∑
i=1

1√
N
eiωgszi/c |g1, . . . , si, . . . , gN 〉 (1.1)

where ωgs is the difference in frequency of the signal and control fields, zi the position
of the j’th atom and c the speed of light [8]. Both electromagnetically induced
transparency (EIT) and Raman-based protocols make use of optically controlled
memories. In fact, it has been shown in [9] that they for theoretical considerations
can be thought of special cases of a more general limit, where the excited state |e〉
can be adiabatically eliminated.

Protocols based on EIT use configurations with small detuning ∆ compared to the
linewidth of the excited state. In this regime the atomic medium becomes trans-
parent with respect to a narrow range of frequencies, i.e., the signal field is not
absorbed by the atomic ensemble and travels through the medium, if it fits into the
transparency window, see Figure 1.2. This effect is based on destructive quantum
interference between the control and signal fields and referred to as electromagnet-
ically induced transparency (EIT) [11, 12, 7]. Because of the narrow transparency
window the refractive index varies sharply with frequency close to resonance. A wave
packet is therefore propagating through the medium with a reduced group velocity.
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Lowering the intensity of the control beam does then decrease the group velocity
even further, such that the light pulse eventually is trapped inside the medium when
the control field is turned off completely. As the group velocity decreases, the trans-
parency window becomes also more narrow. The wave packet is however spatially
compressed at the same rate, such that it always fits inside the transparency window
if it does so initially. Furthermore the spatial compression ensures that the pulse
fits into the atomic medium.

Technically speaking it is wrong to suggest that the group velocity of the pulse
becomes zero and the pulse therefore is ”frozen” inside the ensemble. The quantum
state of the complete system is described by a so-called dark-state polariton [8, 13].
As the signal field enters the medium, it also creates atomic coherences in the |g〉
- |s〉 transition. When the control field has been switched off gradually, the shape
of the signal field has been transferred to low-energy atomic coherences and no
optical field is present [11]. Most of the energy and momentum has previously been
transferred into the control beam. Under ideal conditions the atomic coherences
are independent of the excited state and therefore called ”dark”. This eliminates
spontaneous emission from the excited state as a source for loss. Turning the control
field back on reverses the process, such that the shape of the atomic coherences is
transferred back to a quantum field with energy applied through the control field.

In protocols which use the Raman configuration, the two pulses have detunings far-
off resonance such that the detuning is much larger than the linewidth of the excited
state. For far-off resonant Raman transitions the excited state can be eliminated
and the three-level system is effectively reduced to a two-level system involving only
the ground states [14, 15, 16]. Again this reduces the sensitivity to spontaneous
emission of the excited state. Because the Raman condition can be fulfilled for a
wide range of frequencies, high-bandwidth storage of light is possible.

An alternative to optically controlled memories are memories based on the photon
echo technique. They rely on the inhomogeneous broadening of the medium, which
arises when the individual atoms in the ensemble have different detunings ∆i with
respect to the same optical field. A disadvantage of optically controlled memories is
that they are inefficient for the storage of multi-mode signals, whereas the inhomo-
geneous broadening in photon-echo memories makes them intrinsically multi-mode
[6]. The most simple protocol based on photon echo absorbs the signal field using
a two-level system without a control pulse. Because of the inhomogeneous broaden-
ing the atoms, which have absorbed a photon, precess at different frequencies. The
storage procedure of a single photon corresponds therefore to [17]

|1〉 |g1, . . . , gN 〉 → |0〉
N∑
i=1

1√
N
ei∆iteiωzi/c |g1, . . . , ei, . . . , gN 〉 (1.2)

where ω is the frequency of the signal field. These unaligned precession frequencies
prevent the ensemble from emitting optical excitations, because the atoms interfere
destructively. After some time T the atoms have accumulated a phase ei∆iT and a
pulse is applied, which reverses the detunings such that ∆i → −∆i. Subsequently
at time 2T the individual atoms have attained an additional phase e−i∆iT , which
cancels the previously accumulated phase between absorption and the application of
the pulse at time T . The polarizations of all atoms will therefore be equal, leading
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to the emission of the stored signal field at time 2T [7, 5]. To allow for longer storage
times and make the process truly on-demand a third intermediate level can be added
to the structure. After absorption of the signal field, a pulse transfers the excited
state population to the intermediate state, where the atomic precession effectively
is stopped. A second pulse can then be applied to initiate retrieval of the signal
field by returning the population to the excited state and reversing detuning, which
then, as before, leads to emission when the phases are aligned [6].

Generally the more efficient protocols for photon echo memories can be classified
as based on controlled reversible inhomogeneous broadening (CRIB) [18] or atmoic
frequency comb (AFC) protocols [17]. They differ in the initial distribution of de-
tunings ∆i, which for AFC is described by a periodic comb-like structure.

1.2 Implementations

Some of the most important early developments in the realization of quantum mem-
ories have been achieved with memories based on alkali metal vapour isotopes, since
they offer easily accessible optical transitions near infrared range at both cold and
hot temperatures. The first successful implementations of an EIT-memory for clas-
sical light in 2001 have been based on hot rubidium vapour cells and magnetically
trapped, cold cloud of sodium atoms with storage times of 0.2 ms and 0.9 ms [19, 20].
Storage of quantum light was demonstrated in 2004 with caesium vapour [21]. In
more recent experiments the storage times lie typically around 100 µs for hot gases
and around 1 s for cold gases confined in magneto-optical traps. With the additional
use of optical lattices it was possible to extend storage times to 16 s in 2013 [22]. A
main disadvantage of alkali vapour is the loss introduced by the motion of the atoms
which destroys coherences and removes atoms from the interaction area. Cooling to
µK temperatures in optical traps helps to increase the performance of alkali vapour
based quantum memories. Still, the resulting efficiencies and storage times make it
very challenging to realize practical tasks such as long-distance communication.

Quantum memories based on rare-earth-ion-doped crystals are more promising can-
didates for practical applications, because they do not suffer from atomic diffusion
and have a large optical density. This leads to better scalability and longer storage
times at cryogenic temperatures. In [23] a storage time of up to 1 min has been
achieved for classical light by applying the EIT storage protocol in Pr3+ ion doped
Y2SiO5 crystals (Pr3+ : Y2SiO5) with an efficiency of 0.4 %. Ground-state coher-
ences in Eu3+ : Y2SiO5 of six hours have been demonstrated in [24], but without
using the medium as a quantum memory. Solid state systems are affected by intrinsic
inhomogeneities such as inhomogeneous broadening. This can lead to losses in EIT
and Raman-based protocols, which are based on homogeneous optical transitions.
However, they are a useful resource in the application of CRIB and AFC protocols.
The multimode capacity of these protocols has been demonstrated in [25] and [17].
The efficiency can often be improved by placing the light-matter interface inside
an optical cavity, because it increases the optical depth. For rare-earth-ion-doped
crystal cavity enhancement has been demonstrated in [26].

Nitrogen vacancy centres in diamond have a stronger light coupling compared to
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rare-earth-ion-doped crystals and might therefore be better suited for large-scale fab-
ricational processes and optical on-chip implementation on nanometer scale. Parts
of the EIT-protocol and spin coherences have been demonstrated, but without im-
plementing a quantum memory [27]. Experiments for demonstrating optical storage
have until now only been proposed. Apart from the described implementations there
are also efforts to realize quantum light storage with molecules [28] and phononic
modes in pure diamond [29].

1.3 Applications

One of the most promising applications for quantum memories is the realization of
long-distance quantum communication. Photons losses prevent the transmission of
quantum information via optical fibers to be feasible for longer distances. These
photon losses can be overcome by the application of quantum repeaters, which rely
on the entanglement of multiple quantum memories. Quantum repeaters divide
the quantum channel into multiple segments, where each end node consists of a
quantum memories and is entangled with the other end node in the segment. After-
wards entanglement is created between neighboring segments through entanglement
swapping. Repeating this process several times can then lead to entanglement be-
tween the two end nodes of the entire quantum channel. Once entanglement has
been established over this long distance, quantum teleportation can be used to send
the quantum information to the other end without being affected by photon losses.
Quantum memories are necessary components of quantum repeaters, which have
to overcome photon losses, because several attempts may be needed to create en-
tanglement within one segment. The entanglement can be created by detecting a
photon in the middle of the segment, which has been emitted from one of the end
nodes and does not contain information about its path. As soon as a photon has
been detected in one segment, the entanglement has to be stored until entangle-
ment has been created in the neighboring segment and entanglement swapping can
be performed. Many experiments for quantum repeaters have implemented the so-
called DLCZ protocol, which is based on these steps and uses off-resonant Raman
quantum memories [30]. More efficient and complicated protocols are presented in
[31, 32]. Other important applications for quantum memories include the realiza-
tion of single-photon detectors and components essential for linear-optical quantum
computation [33].
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Chapter 2

Light-matter interaction

In this chapter we will write down the equations of motions for a Λ-type quan-
tum memory with inhomogeneities in a cavity and define the storage and retrieval
efficiencies, which can be used to asses the performance of a quantum memory.

We will describe the system with a Λ-type level structure consisting of two ground
states |g〉 and |s〉 and an excited state |e1〉. Furthermore, we allow the ground
states to couple to several additional excited states |ej〉 as seen in Figure 2.1. This
is especially relevant for quantum memories based on NV-centers, where closely
spaced excited states have been observed to affect the performance [27]. The weak
signal field couples to the |g〉 - |ej〉 transitions with single-atom coupling constants

g
(i)
j and a classical control field is used to couple the |s〉 - |ej〉 transitions with

single-atom Rabi oscillations Ω
(i)
j . Both light field are configured in such a way that

they are in two-photon resonance with single-atom detunings ∆
(i)
j from the excited

states. By using single-atom parameters, we can account for inhomogeneities in
the quantum memory. The atomic ensemble is placed within a cavity in order to
increase the optical depth and therefore the coherent coupling between the incoming
light and the atoms. As we will find out, the cavity model only allows for storage
in one specific spin-wave mode for homogeneous Rabi oscillations and detunings.
This is in contrast to the free-space model, where the incoming light can be coupled
to different spin-wave modes. With inhomogeneous Rabi oscillations and detunings
included, several spin-wave modes will however also become available in the cavity
model. The system has for the homogeneous case with one excited level state been
studied in detail by Gorshkov et al. [9].

2.1 The Hamiltonian

First we define the electric-fields in order to find the full Hamiltonian of the system.
In our model we assume that the light fields are propagating along the z-axis. The
signal field inside the cavity is described by the vector operator

Ê1(z) = ε1

(
~ω1

2ε0V

)1/2 (
Êeiω1z/c + Ê†e−iω1z/c

)
(2.1)
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Figure 2.1: The level structure of an optically controlled quantum memory with
several excited states.

where Ê is the mode annihilation operator, ω1 is the mode frequency, ε1 is the
polarization unit vector, ε0 is the permittivity of free space, V is the quantization
volume for the field and c is the speed of light.

The classical control field with frequency ω2, polarization unit vector ε2 and ampli-
tude E2(t) is described by the electric-field vector

E2(z, t) = ε2E2(t) cos [ω2 (t− z/c)] . (2.2)

Because the Hilbert space of the system in the cavity can be decomposed into the
Hilbert spaces for all the single atoms and the electromagnetic field, the ground
state Hamiltonian consists of the sum of Hamiltonians for the individual atoms and
the signal field.

Ĥ0 = ~ω1Ê†Ê +

N∑
i=1

~ω(i)
g σ̂(i)

gg + ~ω(i)
s σ̂(i)

ss +
∑

j=e1...eN

~ω(i)
j σ̂

(i)
jj

 (2.3)

Here σ̂
(i)
µν = |µ〉i i〈ν| is the internal state operator of the ith atom between states

|µ〉 and |ν〉. We make use of the electric dipole approximation when defining the
interaction part of the Hamiltonian. In this approximation we assume the electrical
field to be spatially uniform. This is valid for optical frequencies with wavelength λ,
because λ� r0 where r0 is the bohr radius. Furthermore, we only have to keep the
dominant term in a multipole expansion. All terms other than the dipole term are
negligible in this case. In the presence of an electrical field Ê where the atom develops
an electric dipole moment d̂ the interaction Hamiltonian is then Ĥint = −d̂ · Ê. This
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translates in our model to:

Ĥint =−
N∑
i=1

d̂i ·
[
E2 (zi, t) + Ê1 (zi)

]
=− ~

N∑
i=1

∑
j=e1...eN

[
Ω

(i)
j (t)σ̂

(i)
js

(
eiω2(t−zi/c) + e−iω2(t−zi/c)

)
+g

(i)
j σ̂

(i)
jg

(
Êeiω1zi/c + Ê†e−iω1zi/c

)]
+ H.c. (2.4)

Here we have made use of the fact that the transition between the ground states is
dipole forbidden and therefore 〈e| (d̂i · ε1,2) |s〉 = 〈s| (d̂i · ε1,2) |e〉 = 0. Furthermore
we have assumed that the signal field only couples to the |g〉 - |ej〉 transitions and the
control field only to the |s〉 - |ej〉 transitions. In experiment this can be established by
using left-hand and right-hand polarized light. Therefore, we only had to introduce
the Rabi frequency of the classical field and the coupling constant between the atoms
and the signal field in the previous equation.

Ω(t)
(i)
j = i〈ej |(d̂i · ε2) |s〉i

E2(t)

2~
g

(i)
j = i〈ej |(d̂i · ε1) |g〉i

√
ω1

2~ε0V
(2.5)

The full Hamiltonian can be further simplified by going into a different frame of ref-
erence where a unitary transformation is applied such that the transformed Hamil-

tonian is ˆ̃H = i~ ˙̂
U †Û + Û †ĤÛ . In our case we do this by applying the unitary

transformation

Û = exp

−it∑
i

ω(i)
g σ̂(i)

gg + ω(i)
s σ̂(i)

ss +
∑
j

(
ω

(i)
j −∆

(i)
j /~

)
σ̂

(i)
jj

 . (2.6)

When applying the transformation Û †ĤÛ to the interaction part of the Hamiltonian
we get terms with the form

Ω
(i)
j (t)σ̂

(i)
js

(
eiω2(2t−zi/c) + eiω2zi/c

)
+ g

(i)
j σ̂

(i)
jg

(
Êeiω1zi/c + Ê†eiω1(2t−zi/c)

)
+ H.c.

In the so-called rotating wave approximation the terms with e±2iω1,2t are neglected.
Compared to the time of the optical-atomic interaction, those terms with the optical
frequency are varying very quickly and therefore average to zero. Furthermore we

redefine ˆ̃σ
(i)
js = σ̂

(i)
js e

iω2zi/c, ˆ̃σ
(i)
jg = σ̂

(i)
jg e

iω1zi/c and remove the tilde in the notation
from now on. Applying the full transformation for each atom gives then the effective
rotating frame Hamiltonian

ˆ̃H(i) =
∑

j=e1...eN

[
~∆

(i)
j σ̂

(i)
jj −

(
~Ω

(i)
j (t)σ̂

(i)
js + ~Êg(i)

j σ̂
(i)
jg + H.c.

)]
. (2.7)

The detuning with respect to the excited levels of each atom is here defined as

∆
(i)
j = ~ω(i)

j − ~ω(i)
g − ~ω1 = ~ω(i)

j − ~ω(i)
s − ~ω2. We therefore allow the model

to incorporate inhomogenoeus broadening. However, we neglect the difference in
detuning between the two optical transitions such that each atom is at two-photon
resonance. This is accurate if the two ground states are degenerate.
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2.2 Dynamics

In our model excitations from the incoming signal field Êin are transferred to the spin
wave mode, which is created through atomic transitions represented by the atomic

operator σ̂
(i)
gs . During retrieval the spin-wave is then retrieved onto the outgoing

quantum field Êout. We are therefore especially interested in the dynamics of those
operators and their relation.

The input-output relation of the qauntum field in the cavity with a cavity decay
rate of 2κ is [34]

Êout(t) =
√

2κÊ(t)− Êin(t). (2.8)

We know that the commutation relations between the atomic operators are [σ̂
(i)
µν , σ̂

(j)
αβ ] =

δij(δνασ̂
(i)
µβ − δµβσ̂

(i)
αν). This allows us to use Heisenberg’s equation of motion. We

also include decay for the atomic operators, which then requires the introduction of
Langevin noise operators F̂µν .

˙̂E =− κÊ + i

N∑
i=1

∑
j=e1...eN

g
(i)
j σ̂

(i)
gj +

√
2κÊin

˙̂σ
(i)
gj =−

(
γ + i∆

(i)
j

)
σ̂

(i)
gj + iΩ

(i)
j σ̂

(i)
gs + ig

(i)
j Ê

(
σ̂(i)
gg − σ̂

(i)
jj

)
+ F̂

(i)
gj

˙̂σ(i)
gs =− γs + i

∑
j=e1...eN

Ω
∗(i)
j σ̂

(i)
gj − iÊ

∑
j=e1...eN

g
(i)
j σ̂

(i)
js + F̂ (i)

gs (2.9)

Here we have introduced the decay rate γ of the optical coherences σ̂gj . Both
dephasing and radiative decay of the excited state γe can be included in the decay
rate γ such that γ = γe/2+γdeph. However, we will neglect the slow decay of the spin
wave and set γs = 0. A nonzero decay γs would simply introduce an exponential
decay [9]. Furthermore, in [35] it has been found that the spin wave decay can
lead to a decrease in efficiency for large optical depth. Another assumption we will
make is that all atoms are in the ground state |g〉 at all times and therefore assume

σ̂
(i)
gg ≈ 1 and σ̂

(i)
ss ≈ σ̂

(i)
ee ≈ σ̂

(i)
es ≈ 0. This simple reason for this is that we have a

very large number of atoms and most of them will remain in the ground state during
the interaction. It also follows from this assumption that all normally ordered noise
correlations are zero, meaning that the incoming noise is vacuum and that the noise
operators have no effect on the dynamics. Furthermore, having a cavity in the ”bad
cavity” limit where κ� g(i)

√
N allows us to adiabatically eliminate Ê . Using all of

those assumptions do then simplify the equations of motions to give

Êout =Êin + i

√
2

κ

N∑
i=1

∑
j=e1...eN

g
(i)
j σ̂

(i)
gj

˙̂σ
(i)
gj =−

(
γ + i∆

(i)
j

)
σ̂

(i)
gj −

g
(i)
j

κ

N∑
k=1

∑
l=e1...eN

g
(k)
l σ̂

(k)
gl + iΩ

(i)
j σ̂

(i)
gs + i

√
2

κ
g

(i)
j Êin

˙̂σ(i)
gs =i

∑
j=e1...eN

Ω
∗(i)
j σ̂

(i)
gj . (2.10)
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We can now find the relation between the incoming light and the spin wave for the
storage process and the relation between the spin wave and the outgoing light for
the retrieval process.

2.3 Process efficiency

Because we have introduced decay in our model, the retrieved state is not going to
be identical to the incoming state. In order to asses the performance of the quantum
memory it is therefore essential to find a figure of merit. All of the mappings we
consider can be characterized by the efficiency η, which is defined as the probability
to find a given initial excitation in the output mode after the interaction. In order
to quantify the number of stored excitations in the atomic system, we define the
annihilation operator for the collective spin-wave mode ŝ fulfilling the commutation
relation [ŝ(t), ŝ†(t)] = 1, which for the symmetric spin-wave mode would have the

form ŝ =
∑

i σ̂
(i)
gs /
√
N . The storage efficiency is then given by

ηs =
(number of stored excitations)

(number of incoming photons)
=

〈
ŝ†(T )ŝ(T )

〉∫ T
0 dt

〈
Ê†in(t)Ê†in(t)

〉 . (2.11)

Here the spin-wave operator ŝ(T ) is only going to depend on a linear combination

of Êin, ŝ(0) and {σ̂(i)
gj (0)}, because we in our model assume that the incoming noise

is vacuum. No excitations are present in the initial state, so ŝ(0) and {σ̂(i)
gj (0)} give

zero when applied to this state. Furthermore assuming that the signal field only
has excitations in one mode with annihilation operator â0 and envelope shape h0(t)
nonzero on [0, T ] such that Êin = h0(t)â0, we can treat the equations of motions as
complex number equations, if we only are interested in finding efficiencies. From
now on we are going to do this.

Compared to calculating the storage efficiency it is however more convenient to
calculate the efficiency of the retrieval process. For the purpose of calculating the
retrieval efficiency, we can similarly use the complex number representation, because
Êout only is going to depend on ŝ(Tr) when applied to the initial state. The retrieval
efficiency is in the complex number representation defined as follows

ηr =
(number of retrieved photons)

(number of stored excitations)
=

∫ ∞
Tr

dt|Eout(t)|2 (2.12)

for the initial condition |s(Tr)|2 = 1. Instead of having to find the sum over N
functions when calculating the storage efficiency, we here have an integral over a
single function.

It can therefore be very useful to apply the so-called time-reversal argument, which
allows us to focus the analysis on the retrieval process. According to the time-
reversal argument, the efficiency for storing the time reverse of the output field
Ein(t) = E∗out(Tout − t), with Ω∗(Tout − t), the time reverse of the retrieval control
filed, into the spin wave s∗(T ) is equal to the retrieval efficiency from s(T ). However,
we have to make sure that we store into the spin-wave mode we also later want to
retrieve from. But more on this in chapter 5, where storage followed by retrieval is
analyzed.
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2.4 Inhomogenous coupling constant g(i)

In this section we are going to find an analytical solution of the retrieval efficiency
for an ensemble of atoms with different coupling constants g(i) but identical Rabi
oscillation Ω. Furthermore we are going to consider a Λ energy level scheme with
only one excited level and without inhomogeneous broadening (same detuning ∆ for
all atoms). During the retrieval process there is no incoming quantum field Êin = 0,
the equations of motion are therefore as follows:

Eout =i

√
2

κ

N∑
i=1

g(i)σ(i)
ge

σ̇(i)
ge =− (γ + i∆)σ(i)

ge −
g(i)

κ

N∑
j=1

g(j)σ(j)
ge + iΩσ(i)

gs

σ̇(i)
gs =iΩ∗σ(i)

ge (2.13)

The structure of the set of equations allows us to reduce the number of equations
by introducing two new collective variables.

p =

∑
i g

(i)σ
(i)
ge√∑

i

∣∣g(i)
∣∣2 s =

∑
i g

(i)σ
(i)
gs√∑

i

∣∣g(i)
∣∣2 (2.14)

In operator representation they would act as annihilation operators and fulfill the
commutation relation [ŝ, ŝ†] = 1 and [p̂, p̂†] = 1. Because we can describe the
spin wave s with this single collective variable, only this specific collective mode is
accessible. For homogeneous g(i) it would therefore only be possible to couple to the

symmetric mode (s =
∑

i σ
(i)
gs /
√
N for real g), where all excitations are distributed

evenly among the atoms. But also for inhomogeneous g(i) it is only possible to couple
to the mode in Eq. (2.14). The differential equations can then with the introduction
of these new variables be reduced to the more simple set of equations:

Eout =i

√
2γC̃p

ṗ =−
[
γ
(

1 + C̃
)

+ i∆
]
p+ iΩs

ṡ =iΩ∗p (2.15)

Here we also have defined the cooperativity parameter C̃ =
∑

i g
(i)2

/(κγ). This
shows the collective enhancement, which can be archived by using a large ensemble.
A large number of atoms N increases the effective coupling constant (

√
Ng for

homogeneous g(i)), while not leading to any additional decay γ due to dephasing
and spontaneous emission. From the set of equations we can then derive the relation
d/dt(|p|2 + |s|2) = −2γ(1 + C̃)|p|2 and finally get a result for the retrieval efficiency

ηr =
C̃

1 + C̃

[
|s(Tr)|2 + |p(Tr)|2 − |s(∞)|2 − |p(∞)|2

]
(2.16)

which is reduced to ηr = C̃/(1 + C̃) for the boundary conditions |s(Tr)|2 = 1
and p(Tr) = p(∞) = s(∞) = 0. This result shows that the retrieval efficiency is
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independent of both the detuning ∆ and the shape of the control beam Ω. Moreover,
inhomogeneities in the distribution of the coupling constant g(i) do not lead to any
additional decoherence, since C̃ is a simple sum over the values for each atom. As
we will see in the next chapters, this is not the case for inhomogeneities in {Ω(i)} or
{∆(i)}.
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Chapter 3

Model with inhomogeneities

We will now introduce two more general ways to calculate the retrieval efficiency,
where we can account for inhomogeneities in the system. First, we present a simple
approach to calculating the efficiency numerically for all various distributions of
{g(i)}, {Ω(i)} and {∆(i)}. The second approach will allow us to derive a symbolic
expression for the efficiency if the distributions {g(i)}, {Ω(i)} and {∆(i)} have well-
defined moments. In both cases we have to find a solution to the full set of equations
of motion in Eq. (2.10), which treated as complex number equations in matrix form
can be written as:

Eout = Ein + i

√
2

κ
gTp

ṗ = −Γp + Ωs + i

√
2

κ
Eing

ṡ = −Ω∗p (3.1)

Here, we have defined the vectors and matrices such that they include the elements
for all N atoms and transitions between all ground states and excited states.

sT =
(
σ

(1)
ge1 . . . σ

(N)
ge1 σ

(1)
ge2 . . . σ

(N)
ge2 . . . σ

(1)
geN . . . σ

(N)
geN

)
gT =

(
g

(1)
e1 . . . g

(N)
e1 g

(1)
e2 . . . g

(N)
e2 . . . g

(1)
eN . . . g

(N)
eN

)
Ω = diag

(
Ω

(1)
e1 . . . Ω

(N)
e1 Ω

(1)
e2 . . . Ω

(N)
e2 . . . Ω

(1)
eN . . . Ω

(N)
eN

)
∆ = diag

(
∆

(1)
e1 . . . ∆

(N)
e1 ∆

(1)
e2 . . . ∆

(N)
e2 . . . ∆

(1)
eN . . . ∆

(N)
eN

)
Γ = ∆̃ +

1

κ
ggT ∆̃ = γI + i∆ (3.2)

Let us now take a look at the retrieval process, where there is no incoming light
Ein = 0. In order to determine the relation between the spin wave and the outgoing
light, the differential equations become sufficiently simple when the polarization p
is adiabatically eliminated, where we assume ṗ = 0. This approximation is valid for
a smooth input pulse with a sufficiently long duration and a smooth and sufficiently
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weak retrieval control pulse [9]. This simplifies the system to

Eout =v†s

ṡ =−As (3.3)

where we have defined

v† = −
√

2

κ
gTΓ−1Ω and A = Ω∗Γ−1Ω. (3.4)

The so-called Sherman-Morrison formula can be used to find the inverse of the matrix
Γ.

Γ−1 = ∆̃−1 − ∆̃−1ggT ∆̃−1

κ+ gT ∆̃−1g
(3.5)

We note that the inverse is symmetric but not hermitian.

The adiabatic approximation is also very useful during storage, where we are inter-
ested in the map from the incoming light to the spin wave. From Eq. (3.1) we see
that the equation which relates Ein and v in the adiabatic approximation is

ṡ = −As− Einw with w = i

√
2

κ
Ω†Γ−1g. (3.6)

3.1 Time dependence of control beam

The adiabatic approximation in the equations of motions leading to Eq. (3.3) makes
it useful to formulate the equations of motions independent of the time-varying
amplitude of the control beam Ω(t). Because all atoms in the cavity are interacting
with the same control beam, we can separate the time dependent part from the time
independent part in Ω such that Ω(t) = Ω(t)ξ. Introducing

h(t, t′) =

∫ t′

t
|Ω(t′′)|2dt′′ (3.7)

together with the rescaled variable Ẽout(h(Tr, t)) = Eout(t)/Ω(t) allows us to make a
change of variables t→ h(Tr, t) in Eq. (3.3) such that

Ẽout (h (Tr, t)) =v†s (h (Tr, t))

ds (h (Tr, t))

dh(Tr, t)
=− ξ†Γ−1ξs (h (Tr, t)) . (3.8)

The spin wave and the rescaled outgoing field are then the matrix exponentials

s (h (Tr, t)) = exp
[
−ξ†Γ−1ξh (Tr, t)

]
s (h (−∞, Tr)) (3.9)

Ẽout (h (Tr, t)) =−
√

2

κ
gTΓ−1ξ exp

[
−ξ†Γ−1ξh (Tr, t)

]
s (h (−∞, Tr)) . (3.10)
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Consequently the retrieval efficiency ηr can then be written as an integral over the
new variable h(Tr, t) such that

ηr =

∫ h(Tr,∞)

0
|Ẽout (h (Tr, t)) |2dh(Tr, t)

=
2

κ

∫ h(Tr,∞)

0

∣∣∣gTΓ−1ξ exp
[
−ξ†Γ−1ξh (Tr, t)

]
s (h (−∞, Tr))

∣∣∣2 dh(Tr, t) (3.11)

and showing that the retrieval efficiency in the adiabatic approximation is indepen-
dent of the control beam shape Ω(t) during retrieval.

During storage we can show that the stored spin wave s (h (−∞, Tr)) is independent
of the time varying control beam amplitude if the ingoing field is rescaled in the
same fashion as the outgoing field Ẽin(h(−∞, t)) = Ein(t)/Ω(t). Making the change
of variables t→ h(−∞, t) in Eq. (3.6) leads to

ds (h (−∞, t))
dh(−∞, t)

= ξ†Γ−1ξs (h (−∞, t)) + i

√
2

κ
Ẽin (h (−∞, t)) ξ†Γ−1g. (3.12)

After storage of the quantum field has been completed at time T the spin wave in
terms of the rescaled variable Ẽin is given by

s (h (−∞, T )) =−
√

2

κ

∫ h(−∞,T )

0
dh (−∞, t)

× exp
[
−ξ†Γ−1ξ (h (−∞, T )− h (−∞, t))

]
ξ†Γ−1gẼin (h (−∞, t)) .

(3.13)

These results show that there is a one-to-one correspondence between the rescaled
light field and the spin wave, meaning between Ẽin and s (h (−∞, T )) during stor-
age and between s (h (−∞, Tr)) and Ẽout during retrieval, for systems with fixed
distributions {g(i)}, {Ω(i)} and {∆(i)}. We can see that Ẽin always is independent
of a specific control beam shape Ω(t). If we for example have found Ẽin max from
a combination Ω(t)max, Einmax which stores on the spin wave from which we can
retrieve with the maximum retrieval efficiency, we can always get the same result
for a different E ′in if a different control beam is used Ω′(t) = Ω1(t)E ′in(t)/Einmax(t).
This is very useful in our calculations, because we in Eq. (3.1) just can assume Ω
to be time independent, calculate relevant quantities and subsequently perform a
rescaling

Ein(t)→ Ein(t)

Ω(t)
and Eout(t)→

Eout(t)

Ω(t)
(3.14)

to generalize the result for all Ein and Eout.

3.2 Numerical solution for retrieval

In this section we will show how to numerically calculate the retrieval efficiency when
inhomogeneities are included in the model and how to find the maximum retrieval
efficiency. This method can be used for any distribution of {g(i)}, {Ω(i)} and {∆(i)}.
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We start with Eq. (3.3), which describes the dynamics of the spin wave. As we
have shown in the previous section, we can assume the Rabi oscillations in Ω to be
time-independent such that the spin wave is the matrix exponential s = e−Ats(0).
The outgoing field is then of the simple form Eout(t) = v†e−Ats(0) when retrieval
starts at Tr = 0. Furthermore, we take the absolute square and integrate to find the
retrieval efficiency

ηr =

∫ ∞
0

dt s†(0)e−A
†tvv†e−Ats(0). (3.15)

The integral is then solved by making the Ansatz

M(t) =

∫ t

0
dt′ e−A

†t′vv†e−At
′

= e−A
†tC†vv†Ce−At (3.16)

such that we have to determine C or hermitian B = C†vv†C. Differentiating both
the left-hand side and the right-hand side of the previous equation results then in

Ṁ(t) = e−A
†tvv†e−At = −e−A†tA†Be−At − e−A†tBAe−At. (3.17)

When we exclude the exponential functions, we see that the problem is reduced to
solving the so-called Sylvester equation

−A†B−BA = vv† (3.18)

for B, because both A and v are specified by the parameters of the quantum memory.
There exist numerous numeric algorithms to solve the Sylvester equation. Not sur-
prisingly, numerical solutions become increasingly difficult for increasing N . When
we have found B, we can find the retrieval efficiency through

ηr = s†(0)[M(t)]∞0 s(0) = s†(0) (−B) s(0). (3.19)

We note that the maximum eigenvalue of −B corresponds to the maximum retrieval
efficiency. This can be shown by using the variational principle. The hermitian
matrix −B has the decomposition

−B =
∑
i

λiuiu
†
i (3.20)

with eigenvalues λi and orthonormal eigenvectors uk. For a spin wave expanded as
s(0) =

∑
i αiui the retrieval efficiency has the upper bound

ηr =
∑
i

λi|αi|2 ≤ λmax

∑
i

|αi|2 = λmax (3.21)

because we assume that s(0)†s(0) =
∑

i |αi|2 = 1 when calculating the retrieval
efficiency. Furthermore we know that the maximum retrieval efficiency is attained
for the spin wave s = umax where umax is the eigenvector with the corresponding
eigenvalue λmax.

In Figure 3.1 we have calculated the maximum retrieval efficiency for three different
continuous distribution, a Gaussian, a Lorentzian and a Uniform distribution with
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Figure 3.1: Maximum retrieval efficiency as a function of the scale divided by mean
value of (G) Gaussian, (L) Lorentzian and (U) uniform distributions for {Ω(i)}. For
the Gaussian profile the standard deviation σΩ and for the Lorentzian profile the
half width at half maximum y is used as scale. The scale of the uniform profile is
w/3.5 ≈ σΩ. In (a) we retrieve from a system with C = 1 and in (b) from a system
with C = 4.

the following probability density functions:

fG(Ω) =
1

2πσΩ
exp

(
−(Ω− µΩ)2

2σ2
Ω

)
(3.22)

fL(Ω) =
1

π

y

(Ω− µΩ)2 + y2
(3.23)

fU (Ω) =

{
1
w for µΩ − w

2 ≤ Ω ≤ µΩ + w
2

0 otherwise
(3.24)

We draw the random samples {Ω(i)} from these continuous distributions, while keep-
ing {g(i)} and {∆(i)} homogeneous. The size of the atomic ensemble has been set
to N = 200 in the calculations. The solid lines represent the retrieval efficiency for
a random sample. Because the size of the atomic ensemble N = 200 is relatively
small in these calculations, there are variations in the retrieval efficiency for different
random samples drawn from the same distribution. When the retrieval efficiency is
calculated for a different scale factor of the distribution, a new random sample has
to be drawn, which leads to fluctuations. This is a result of the quenched disorder
of the system, which a system exhibits when some defining parameters are random
variables and they do not change with time. The system does therefore not evolve
toward some kind of expected state during retrieval for different random samples
drawn from the same distribution, making it more difficult to analyze its behavior.
In order to calculate a non-fluctuating average of the retrieval efficiency, the average
has to be taken with respect to a very large number of calculations. However, this
can already be very time consuming for small samples with N = 200. Instead of
calculating averages, we therefore have included the retrieval efficiency for an ”ideal”
sample (dotted line). The maximum value of this sample is set equal to the average
maximum value of a random sample, the second-highest value of this sample is set
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equal to the average second highest value of a random sample and so on. It does
then have many of the same properties as the continuous distribution.

The results in Figure 3.1 show that the retrieval efficiency decreases when the distri-
butions broaden. When comparing the results in (a) and (b) we see that the retrieval
efficiency decreases more rapidly in (b), where the system has the higher maximum
retrieval efficiency. Moreover, we see that the retrieval efficiency has very similar de-
pendence on the standard deviation for the Gaussian and the Uniform distributions
in both (a) and (b). The scale of the uniform distribution is varied as w/3.5 ≈ σΩ,
which approximately is equal to the standard deviation of the uniform distribution.
However, it is not possible to adjust the scale of the Lorentzian profile such that
the curve fits the other distributions. While the maximal retrieval efficiency for
small broadening seems to have a second order dependence for the Gaussian and
Uniform distributions, it seems to have a first order dependence for the Lorentzian
distribution. We do therefore conclude that systems with Lorentzian inhomogeneity
profiles have a qualitative different behavior with regard to the maximal retrieval
efficiency than systems with Gaussian and uniform inhomogeneity profiles. In the
next chapter we are going to focus on distributions with well-defined moments, such
as Gaussian and uniform distributions, when trying to find a symbolic expression
for the retrieval efficiency.
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Chapter 4

Optimization of retrieval

In order to obtain general results of the conditions in which efficient retrieval with
the quantum memory is possible, it is desirable to find an symbolic expression of the
retrieval efficiency. Generally it is very difficult to diagonalize the matrix A in Eq.
(3.3) which gives the outgoing field Eout(t) = v†e−Ats(0) and we therefore have to
rely on approximate techniques. In this chapter, we present a method which allows
us to write the retrieval efficiency as a series expansion, where the terms depend
on the moments of the different distributions. For this method to be suitable, it is
therefore a requirement that all moments are well defined. After having introduced
the method, we look specifically at the retrieval efficiency for Gaussian distributions
of {g(i)}, {Ω(i)} and {∆(i)}, where we can expand Eout(t) as a series with respect
to the standard deviation of the different distributions. In order to simplify the
calculations we will look separately at inhomogeneities with {g(i)} and {Ω(i)} and
inhomogeneous broadening. Furthermore we characterize the spin wave which allows
for maximum retrieval, because this allows us to draw conclusions about how the
conditions for optimal retrieval also are valid for optimizing the whole process of
both storage and retrieval.

4.1 Model

4.1.1 Krylov subspace and Arnoldi iteration

The matrix exponential function v†e−At can be expanded as power series, generating
terms with v†,v†A,v†A2 and so on. All these terms are linearly independent when
inhomogeneities in {Ω(i)} or {∆(i)} are included in the model and we can therefore
create the so-called n’th order Krylov subspace [36, 37]

Kn = span
{
v,Av,A2v, . . . ,An−1v

}
. (4.1)

Our aim is now to build an orthonormal basis with n vectors {e0, e1, . . . , en−1} from
this subspace such that we can approximate the matrix exponential Eout(t) up to
terms which depend on v†An−1. We can find the orthonormal basis with the help
of an so-called Arnoldi iteration, which basically amounts to applying the Gram-
Schmidt orthogonalization to the Krylov subspace. According to the iteration, the
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first normalized basis vector is simply

e†0 = v†/
√

v†v (4.2)

Afterwards we orthogonalize Ae0 against e0 in order to find the next basis vector.

u†1 = e†0A− e†0Ae0e
†
0 (4.3)

e†1 =
u†1√
u†1u1

=
e†0A

(
1− e0e

†
0

)
[
e†0A

(
1− e0e

†
0

)(
1− e0e

†
0

)
A†e0

]1/2
(4.4)

This iteration is continued in the same manner until the n’th normalized basis vector
is found.

u†n−1 = e†n−2A−
n−2∑
i=0

e†n−2Aeie
†
i e†n−1 =

u†n−1√
u†n−1un−1

(4.5)

Having created an orthonormal basis, we see that the outgoing field can be written
in terms of the spin-wave mode s0(t) = e†0s(t) such that

Eout(t) =
√

v†vs0(t) and ηr = v†v

∫ ∞
Tr

|s0(t)|2dt. (4.6)

Without inhomogeneities in {Ω(i)} or {∆(i)} the spin-wave can be described by one
collective mode s0(t) leading to an retrieval efficiency of ηr = C/(1+C) as described
previously. However, with small inhomogeneities included in the system other modes
couple to this mode, leading to a variation in the result.

Now the task is to find a solution to s0(t) by transforming the differential equation

ṡ = −As from Eq. (3.3) with the orthonormal basis. Multiplying with e†0 on both

sides of the differential equation results in the derivative ṡ0 = −e†0As such that

when inserting 1− e0e
†
0 + e0e

†
0 we have

ṡ0 = −e†0A
(

1− e0e
†
0

)
s− e†0Ae0e

†
0s. (4.7)

The first term is only nonzero when inhomogeneities in
{

Ω(i)
}

or
{

∆(i)
}

are included
in the model (where e0 ∝ g and A ∝ aI − gg† with a being a constant) and it
depends on the coupling of the symmetric mode to a second mode, while the second
term gives the zeroth order contribution to the retrieval efficiency we determined
previously. Defining the second mode as s1(t) = e†1s(t) allows us to redefine Eq.
(4.7) in terms of the two modes and their coupling.

ṡ0 = −k01s1 − k00s0 (4.8)

Here, the constants are simply k00 = e†0Ae0 and k01 = e†0Ae1. We note that the
coefficient k01 corresponds to the denominator in Eq. (4.4) and therefore always is
real. This method can now in principle be continued endlessly, because there exist
an infinite number of spin-wave modes. The derivative of the next mode is found to
be

ṡ1 = −e†1A
(

1− e0e
†
0 − e1e

†
1

)
s− e†1Ae0e

†
0s− e†1Ae1e

†
1s

= −k12s2 − k10s0 − k11s1. (4.9)
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Again the first term couples to a higher order spin wave mode. The constants are
given by k12 = e†1Ae2 and k11 = e†1Ae1. The derivative of the n’th mode is then
accordingly

ṡn = −e†nA

(
1−

n∑
i=0

ene
†
n

)
s−

n∑
i=0

e†nAeie
†
i

= −e†n+1Aeis−
n∑
i=0

knisi (4.10)

where kni = e†nAei. Because
∑n

i=0 ene
†
n → I for n → ∞, we expect the firts term

kn,n+1sn+1 to become smaller with increasing n. If Km is the Krylov subspace which
spans a large part of the entire space and Kn is a Krylov subspace which spans a
smaller part of the entire space, we have now transformed the differential equation
ṡ = −As into a system with a lower Hessenberg matrix.

ṡ0

ṡ1

...

ṡn
...
ṡm


= −



k00 k01 0 . . . 0
k10 k11 k12 0 . . .

k22 k23
. . .

...
...

...
. . . 0

...

kn−1,n
. . .

kn0 kn1 kn2 . . . kn,n
. . . 0

...
...

...
. . . km−1,m

km0 km1 km2 . . . kmm





s0

s1

...

sn
...
sm


(4.11)

When the term kn,n+1sn+1 is sufficiently small, it is no longer necessary to work in a
basis which includes m basis vectors and we can reduce the system to the subspace
Kn. 

ṡ0

ṡ1

...

ṡn


= −



k00 k01 0 . . . 0
k10 k11 k12 0 . . .

k22 k23
. . .

...
...

...
. . . 0

kn−1,n

kn0 kn1 kn2 . . . kn,n





s0

s1

...

sn


(4.12)

This is equal to Qnṡ = QnAQ†nQns with Qn = (e0 e1 . . . en), where the system is
projected orthogonally onto the subspace Kn. We can now find s0(t) in the reduced
subspace Kn and use Eq. (4.6) to calculate the retrieval efficiency.

4.1.2 Retrieval efficiency for K2 subspace

We will now try to derive the retrieval efficiency for the most simple subspace which
includes contributions of the inhomogeneities in

{
Ω(i)

}
and

{
∆(i)

}
. The differential

equation is in this case reduced to(
ṡ0

ṡ1

)
= −

(
k00 k01

k10 k11

)(
s0

s1

)
. (4.13)
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If the inhomogeneities are denotes as deviations from the mean value such that
Ω(i) = 〈Ω〉+δΩ(i) and ∆(i) = 〈∆〉+δ∆(i), the subspace K2 includes all second-order

contributions of the inhomogeneities,
∑

i δΩ
(i)2

,
∑

i δ∆
(i)2

and so on. For small in-
homogeneities it is often sufficient to only include these lowest order contributions
to the retrieval efficiency and therefore sufficient to project the system onto K2. In
order to find the lowest order contribution of the inhomogeneities to the retrieval
efficiency, we have to find out how the coefficient matrix is related to the different
distributions. This relation is determined by the moments of the different distribu-
tions with known g, Ω and ∆. Assuming g and Ω to be real for simplicity, we will
use the following notation for the sum

〈
gkΩl|∆̃|−m∆̃−n

〉
=

1

N

N∑
i=1

∑
j=e1...eN

g
(i)
j

k
Ω

(i)
j

l∣∣∣γ + i∆
(i)
j

∣∣∣m (γ + i∆
(i)
j

)n (4.14)

which depends on the moments of the different samples. Already previously in Eq.
(3.4), we have found v and A in terms of the elements of the different distributions.

v† = −a
√

2

κ
gT ∆̃−1Ω A = Ω∆̃−1Ω− Ω∆̃−1ggT ∆̃−1Ω

κ+N
〈
g2∆̃−1

〉 (4.15)

Here we have defined the prefactor

a =
κ

κ+N
〈
g2∆̃−1

〉 . (4.16)

This allows us then to find the first two basis vectors from the Arnoldi iteration in
terms of the elements of the distributions using Eq. (4.2) and (4.4).

e†0 =
a

|a|
gT ∆̃−1Ω√

N
〈
g2Ω2|∆̃|−2

〉 (4.17)

e†1 =
a

|a|

〈
g2Ω2|∆̃|−2

〉
gT
(
∆̃−1

)2
Ω3 −

〈
g2Ω4|∆̃|−2∆̃−1

〉
gT ∆̃−1Ω

√
N

(〈
g2Ω2|∆̃|−2

〉2 〈
g2Ω6|∆̃|−4

〉
−
〈
g2Ω2|∆̃|−2

〉 ∣∣∣〈g2Ω4|∆̃|−2∆̃−1
〉∣∣∣2)1/2

(4.18)

It is a little bit more convenient to have a definition of the basis vectors which does
not include the prefactor a/|a|. We therefore absorb the prefactor into the definition
of Eout(t), which forces us to redefine in Eq. (4.6) how the outgoing field is related

to the mode s0(t) = e†0s(t) such that

Eout(t) =
a

|a|
√

v†vs0(t). (4.19)
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The first two orthonormal basis vectors in the Arnoldi iteration are then

e†0 =
gT ∆̃−1Ω√

N
〈
g2Ω2|∆̃|−2

〉 (4.20)

e†1 =

〈
g2Ω2|∆̃|−2

〉
gT
(
∆̃−1

)2
Ω3 −

〈
g2Ω4|∆̃|−2∆̃−1

〉
gT ∆̃−1Ω

√
N

(〈
g2Ω2|∆̃|−2

〉2 〈
g2Ω6|∆̃|−4

〉
−
〈
g2Ω2|∆̃|−2

〉 ∣∣∣〈g2Ω4|∆̃|−2∆̃−1
〉∣∣∣2)1/2

.

(4.21)

For the purpose of calculating retrieval efficiencies this definition does not change
anything. Because we integrate over the absolute square of the outgoing field when
finding the retrieval efficiency, the prefactor disappears ηr =

∫∞
Tr
|Eout(t)|2dt =

v†v
∫∞
Tr
|s0(t)|2dt.

Having defined the first two basis vectors allows us now to find the first four coeffi-
cients in terms of the moments through kij = e†iAej .

k00 =

〈
g2Ω4|∆̃|−2∆̃−1

〉
〈
g2Ω2|∆̃|−2

〉 −
N
〈
g2Ω2∆̃−2

〉
κ+N

〈
g2∆̃−1

〉

k01 =


〈
g2Ω6|∆̃|−4

〉
〈
g2Ω2|∆̃|−2

〉 −
∣∣∣〈g2Ω4|∆̃|−2∆̃−1

〉∣∣∣2〈
g2Ω2|∆̃|−2

〉2


1/2

(4.22)

k10 =

(〈
g2Ω2|∆̃|−2

〉3 〈
g2Ω6|∆̃|−4

〉
−
〈
g2Ω2|∆̃|−2

〉2 ∣∣∣〈g2Ω4|∆̃|−2∆̃−1
〉∣∣∣2)−1/2

×
[〈
g2Ω2|∆̃|−2

〉〈
g2Ω6|∆̃|−2∆̃−2

〉
−
〈
g2Ω4|∆̃|−2∆̃−1

〉2

+N

〈
g2Ω4|∆̃|−2∆̃−1

〉〈
g2Ω2|∆̃|−2

〉〈
g2Ω2∆̃−2

〉
−
〈
g2Ω2|∆̃|−2

〉2 〈
g2Ω4∆̃−3

〉
κ+N

〈
g2∆̃−1

〉


(4.23)

k11 =

(〈
g2Ω2|∆̃|−2

〉2 〈
g2Ω6|∆̃|−4

〉
−
〈
g2Ω2|∆̃|−2

〉 ∣∣∣〈g2Ω4|∆̃|−2∆̃−1
〉∣∣∣2)−1

×
[〈
g2Ω2|∆̃|−2

〉2 〈
g2Ω8|∆̃|−4∆̃−1

〉
−
〈
g2Ω2|∆̃|−2

〉〈
g2Ω4|∆̃|−2∆̃∗−1

〉〈
g2Ω6|∆̃|−2∆̃−2

〉
−
〈
g2Ω2|∆̃|−2

〉〈
g2Ω4|∆̃|−2∆̃−1

〉〈
g2Ω6|∆̃|−4

〉
+
∣∣∣〈g2Ω4|∆̃|−2∆̃−1

〉∣∣∣2 〈g2Ω4|∆̃|−2∆̃−1
〉]

(4.24)

As mentioned before, this approach only works if the moments are well-defined,
which for example is not the case for Lorentzian distributions. Furthermore, the
inner product v†v includes second-order inhomogeneities, which affect the retrieval
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efficiency.

v†v =
2Nκ

〈
g2Ω2|∆̃|−2

〉
(
κ+N

〈
g2|∆̃|−1

〉)2 (4.25)

It is now possible to find a general solution of the retrieval efficiency ηr in K2,
depending on the different moments and the initial spin wave modes s1(0) and
s2(0).

The time dependence of the spin-wave modes can be found by integrating the dif-
ferential equations in Eq. (4.13).

s0(t) = e−k00ts0(0)− k01

∫ t

0
e−k00(t−t′)s1(t′)dt′

s1(t) = e−k11ts1(0)− k01

∫ t

0
e−k11(t−t′)s0(t′)dt′ (4.26)

Because we expect the contribution from s1(t) to be lower order compared to the
first term in s0(t), which gives the zeroth order contribution, the differential equation
can be solved iteratively:

s0(t) =e−k00ts0(0)− k01s1(0)

∫ t

0
dt′e−k00(t−t′)e−k11t′

+ k01k10s0(0)

∫ t

0

∫ t′

0
dt′dt′′e−k00(t−t′)e−k11(t′−t′′)e−k00t′′ + . . . (4.27)

Plugging this equation into ηr = v†v
∫∞
Tr
|s0(t)|2dt and calculating the integrals does

then give the retrieval efficiency

ηr =v†v

{
|s0(0)|2

2Rek00
− 2Re

[
k01

k11 − k00
s1(0)s∗0(0)

(
1

2Rek00
− 1

k11 + k∗00

)]
+2Re

[
k01k10|s0(0)|2

(k00 − k11)2

(
k11 − k00

4 (Rek00)2 −
1

2Rek00
+

1

k11 + k∗00

)]}
+ . . . (4.28)

where we only have included the dominant term. Let us now denote the order of
the inhomogeneities by λ, meaning that Ω(i) = 〈Ω〉 + δΩ(i)λ, ∆(i) = 〈∆〉 + δ∆(i)λ
and g(i) = 〈g〉 + δg(i)λ. We assume now that

∑
i δΩ

(i) = 0,
∑

i δ∆
(i) = 0 and∑

i δg
(i) = 0, which is true when 〈Ω〉, 〈∆〉 and 〈g〉 denote the sample average values.

The elements of the coefficient matrix and v†v can then be expanded as series in
terms of λ such that

k00 = k
(0)
00 + k

(2)
00 λ

2 +O(λ3) (4.29)

k01 = k
(1)
01 λ+O(λ2) (4.30)

k10 = k
(1)
10 λ+O(λ2) (4.31)

k11 = k
(0)
11 +O(λ) (4.32)

v†v = a(0) + a(2)λ2 +O(λ3) (4.33)

where k
(1)
00 = k

(0)
01 = k

(0)
10 = a(1) = 0 because of this assumption. Note that k01 and

k10 includes a first order contribution, which is a sample standard deviation (for
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example

√∑
i δΩ

(i)2
). If we furthermore assume that the spin wave modes at the

time Tr = 0 of initial retrieval have the following series expansions

s0(0) =s
(0)
0 + s

(2)
0 λ2 +O(λ3) (4.34)

s1(0) =s
(1)
1 λ+O(λ2) (4.35)

which are valid because s1(0) only can couple to s0(0) to first order, we can find an
expression for the retrieval efficiency, that is accurate up to second order in λ. For
this we expand Eq. (4.28) by inserting the series expansions such that we find

ηr =
a(0)|s(0)

0 |2

2Rek
(0)
00

+
a(2)|s(0)

0 |2 − a(0)|s(1)
1 |2

2Rek
(0)
00

λ2 − a(0)|s(0)
0 |2Rek

(2)
00

2
(

Rek
(0)
00

)2 λ2

− a(0)

Rek
(0)
00

Re

s(0)
0

∗
s

(1)
1

k
(1)
01

(
k

(0)
00

∗
+ k

(0)
11 − 2Rek

(0)
00

)
(
k

(0)
00

∗
+ k

(0)
11

)(
k

(0)
11 − k

(0)
00

)
λ2

+ 2a(0)
∣∣∣s(0)

0

∣∣∣2 Re

 k
(1)
01 k

(1)
10(

k
(0)
11 − k

(0)
00

)2

 1

k
(0)
00

∗
+ k

(0)
11

+
k

(0)
11 − k

(0)
00

4
(

Rek
(0)
00

)2 −
1

2Rek
(0)
00


λ2

+O
(
λ3
)
. (4.36)

Here, the first term is the zeroth order contribution, which we already previously
have determined to be equal to C/(1 + C).

4.1.3 Optimal retrieval for K2 subspace

For a given system, the retrieval efficiency can be maximized by retrieving from the
right spin wave. We can obtain the optimal retrieval efficiency by maximizing Eq.
(4.36) with respect to the initial spin wave modes. Because the number of stored
excitations has been set equal to unity s†(0)s(0) = 1, the initial spin wave modes
are subject to the condition∑

i

|si(0)|2 = |s(0)
0 |

2 + 2Re
[
s

(0)
0 s

(2)
0

]
λ2 + |s(0)

1 |
2λ2 +O

(
λ4
)

= 1. (4.37)

When performing the expansion we assume that the other modes only contribute to
higher order, si(0) = 0+O(λ2) for i ≥ 2, because the second order terms in s†(0)s(0)
have to be accurate in the subspace K2. The condition can then only be fulfilled for

any λ when |s(0)
0 |2 = 1 and 2Re[s

(0)
0 s

(2)
0 ] = −|s(1)

1 |2. The series expansion as a whole
is optimized by first maximizing the zeroth order term, then maximizing the second
order term and so on. Because the condition has to be fulfilled for the zeroth order
term, the retrieval efficiency is optimized by maximizing the second order term. We

can then set s
(0)
0 = 1, which simplifies the second condition to 2Re[s

(2)
0 ] = −|s(1)

1 |2,

meaning that we only have to maximize with respect to s
(1)
1 . The lowest order
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contribution of the optimal spin wave to retrieve from besides s
(0)
0 = 1 is given by

Res
(1)
1 =− Re

k(1)
01

(
k

(0)
00

∗
+ k

(0)
11 − 2Rek

(0)
00

)
(
k

(0)
00

∗
+ k

(0)
11

)(
k

(0)
11 − k

(0)
00

)


Ims
(1)
1 = Im

k(1)
01

(
k

(0)
00

∗
+ k

(0)
11 − 2Rek

(0)
00

)
(
k

(0)
00

∗
+ k

(0)
11

)(
k

(0)
11 − k

(0)
00

)
 . (4.38)

In some cases the optimal spin wave is therefore going to have a nonzero imaginary
part. This is important to note, because when applying the time-reversal argument,
we assume that we store the light mode in S(0) and retrieve from S(0)∗. For a spin
wave with nonzero imaginary part, the control pulse then has to be adjusted such
that we in the model store and retrieve from the same spin wave. Inserting this
optimal spin wave into Eq. (4.36) gives us the maximal retrieval efficiency, which is
found to be

ηr =
a(0)

2Rek
(0)
00

+
a(2)

2Rek
(0)
00

λ2 − a(0)Rek
(2)
00

2
(

Rek
(0)
00

)2λ
2

+
a(0)

2Rek
(0)
00

∣∣∣∣∣∣
k

(1)
01

(
k

(0)
00

∗
+ k

(0)
11 − 2Rek

(0)
00

)
(
k

(0)
00

∗
+ k

(0)
11

)(
k

(0)
11 − k

(0)
00

)
∣∣∣∣∣∣
2

λ2

+ 2a(0)Re

 k
(1)
01 k

(1)
10(

k
(0)
11 − k

(0)
00

)2

 1

k
(0)
00

∗
+ k

(0)
11

+
k

(0)
11 − k

(0)
00

4
(

Rek
(0)
00

)2 −
1

2Rek
(0)
00


λ2

+O
(
λ4
)
. (4.39)

It can now be shown that the zeroth order term indeed is equal to C/(1+C). In order
to get a better sense of the second order term, we can look at specific distributions
for {g(i)}, {Ω(i)} and {∆(i)}.

4.2 Inhomogenous Rabi oscillations Ω(i) and coupling
constants g(i)

In this section, we will look specifically at the efficiencies for media, which has inho-
mogeneities with Gaussian distributions of {Ω(i)} and {g(i)}, but is homogeneously
broadened. We limit our calculations to the case where the Λ energy scheme only
consists of one excited state. Two different ways to store the incoming quantum
field are going to be considered. First, we look at retrieval from a symmetric spin
wave mode. This is especially relevant for systems involving storage and retrieval
with optical microwaves. Another option, more useful to most other systems, is to
retrieve from the spin wave resulting in the highest retrieval efficiency. However, as
we will show, this requires making retrieval from a complex spin wave for an off-
resonance control beam, which can complicate the application of the time reversal
argument for the whole storage-retrieval process.
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Inhomogeneous Rabi oscillations and coupling constants can exist in both atomic-
vapour and solid-state quantum memories. For both types it is often the case that
the interaction strength between the light field and the medium varies in the in-
teraction region. Furthermore, the imperfections in solid-state media lead to inho-
mogeneous Rabi oscillations and coupling constants. However, this is typically also
accompanied by inhomogeneous broadening.

4.2.1 Retrieval efficiency for K2 subspace

If we look specifically at media with only one excited state and inhomogeneities in
{Ω(i)} and {g(i)}, it allows us to use the general formulation in the last section and
make some additional simplifications. The values for {Ω(i)} and {g(i)} correspond
to a sample drawn from the continuous, Gaussian population. We are interested
in finding the expectation value of the retrieval efficiency 〈ηr〉realization, which is the
average for many observations of the retrieval efficiency ηr, which depends on a
single sample.

The continuous variable probability density function for Gaussian populations of
{Ω(i)} and {g(i)} with correlations between them taken into account is

f(Ω, g) =
1

2πσΩσg
√

1− ρ2
exp

{
− 1

2 (1− ρ2)

×

[
(Ω− µΩ)2

σ2
Ω

+
(g − µg)2

σ2
g

− 2ρ (Ω− µΩ) (g − µg)
σΩσg

]}
(4.40)

where µΩ, µg are the population mean values and σΩ, σg are the population standard
deviations. Furthermore, we here have introduced the Pearson product-moment
correlation coefficient defined by

ρ = cov(Ω, g)/(σΩσg). (4.41)

The correlation coefficient has the maximum value ρ = 1 for total linear correlation
between {Ω(i)} and {g(i)} and the minimum value ρ = −1 for total negative linear
correlation. At ρ = 0 there are no correlations between the two distributions.

In the limit where the ensemble consist of a very large number of atoms, the variance

of the sample variances Var
(∑

i δΩ
(i)2
)

, Var
(∑

i δg
(i)2
)

is going to zero [38]. This

means that the sample variance for each sample in this limit is going to be equal to
the expectation value of the sample variance

∑
i

δΩ(i)2 →

〈∑
i

δΩ(i)2

〉
realization

and
∑
i

δg(i)2 →

〈∑
i

δg(i)2

〉
realization

for very large N . Because only the dependence of higher order raw moments on the
variance contributes to second order in λ, we are also going to make the assumption
that all sample raw moments are going to be equal to expectation value of the sample
raw moments.

〈Ωagb〉 →
〈
〈Ωagb〉

〉
realization
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Because the expectation value of the sample raw moments is equal to the population
raw moments, it is thus possible to use the population probability density function
to calculate all the necessary moments when deriving the retrieval efficiency.

〈Ωagb〉 =
1

N

N∑
i=1

Ω(i)g(i) ≈
〈
〈Ωagb〉

〉
realization

=

∫ ∞
−∞

Ωagbf(Ω, g)dΩdg

for N � 1 (4.42)

Furthermore we assume that the exponential tail of the density function is negligible
for negative values, since negative Ω(i) and g(i) do not exist. To fully account for
quenched disorder away from this limit, where the samples are relatively small, we
would have to calculate

〈ηr〉realization =

∫
ηr

(
{Ω(i)}, {g(i)}

)∏
i

f(Ωi, gi)dΩidgi. (4.43)

Many experiments do however operate with very large ensembles such as quantum
memories based on NV-centres.

In this approximation, we can expand the coefficient matrix and the retrieval ef-
ficiency in terms of the standard deviations σΩ and σg, such that we can use the
results of the last section. However, because we assume {∆(i)} to be homogeneous
it is possible to define more simple basis vectors compared to the more general case
in Eq. (4.20) and (4.21). We will therefore redefine a in Eq. (4.16) such that we
now use

Eout(t) =
a

|a|
√

v†vs0(t) with a =
κ

κ (γ + i∆) +N 〈g2〉
. (4.44)

The first basis vector is then simply

e†0 =
gTΩ√
N 〈g2Ω2〉

. (4.45)

It is in general more convenient to define a real basis e0 and e1, among other things
because a complex spin wave s(t) would transform to complex modes s0(t), s1(t)
and a real spin wave would transform to real modes. Looking back at Eq. (4.8) we
see that the basis vector e1 is defined through

e†0A
(

1− e0e
†
0

)
= k01e

†
1 and e†1e1 = 1. (4.46)

In the more general case we defined k01 to be real with complex e1. However, for
homogeneous {∆(i)} we can define a real vector e1 and absorb the complex part into
k01. The real second basis vector is then

e†1 =

〈
g2Ω2

〉
gTΩ3 −

〈
g2Ω4

〉
gTΩ

√
N
(
〈g2Ω2〉2 〈g2Ω6〉 − 〈g2Ω2〉 〈g2Ω4〉2

)1/2
. (4.47)

Having found the first two basis vectors and defined the moments allows us to expand
the elements of the coefficient matrix kij = e†iAej in terms of the standard deviation
such that

kij = k
(0)
ij +k

(2)
ij λ

2 +O
(
λ4
)

= k
(00)
ij +k

(11)
ij σgσΩ +k

(20)
ij σ2

g +k
(02)
ij σ2

Ω +O
(
λ4
)
. (4.48)
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The series expansions of the elements of the coefficient matrix needed to calculate
the efficiency up to second order in λ are:

k00 =
1

γ + i∆

(〈
g2Ω4

〉
〈g2Ω2〉

−
N
〈
g2Ω2

〉
κ (γ + i∆) +N 〈g2〉

)

=
µ2

Ω

γ

1

1 + i∆
γ + C

+
4µΩ

µgγ

1

1 + i∆
γ + C

ρσgσΩ −
Nµ2

Ω

γ2κ

1(
1 + i∆

γ + C
)2σ

2
g

+

(
5

γ

1

1 + i∆
γ

− 1

γ

1

1 + i∆
γ

C

1 + i∆
γ + C

)
σ2

Ω +O
(
λ4
)

(4.49)

k01 =k10 =
1

γ + i∆

(〈
g2Ω6

〉
〈g2Ω2〉

−
〈
g2Ω4

〉2

〈g2Ω2〉2

)1/2

=
2µΩ

γ + i∆
σΩ +O

(
λ3
)

(4.50)

k11 =
1

γ + i∆

〈
g2Ω2

〉2 〈
g2Ω8

〉
− 2

〈
g2Ω2

〉 〈
g2Ω4

〉 〈
g2Ω6

〉
+
〈
g2Ω4

〉3

〈g2Ω2〉2 〈g2Ω6〉 − 〈g2Ω2〉 〈g2Ω4〉2

=
µ2

Ω

γ + i∆
+O

(
λ2
)

(4.51)

Here k00 and k11 are just a simplification of the more general case in the previous
section. However, because we have defined a real e1, the definition of k01 and k10

is slightly different. The elements in the coefficient matrix define the time depen-
dence of the outgoing quantum field Eout(t) = a

|a|

√
v†vs0(t) such that we now can

approximate the mode s0(t). In order to determine the right normalization we also
find

v†v =
2N
〈
g2Ω2

〉
κ (γ2 + ∆2)

∣∣∣∣ κ (γ + i∆)

κ (γ + i∆) +N 〈g2〉

∣∣∣∣2
=

2µ2
gµ

2
Ω

γ

C

(1 + C)2 + ∆2

γ2

+
8µgµΩ

γ

C

(1 + C)2 + ∆2

γ2

ρσgσΩ

+
2Nµ2

Ω

γ2κ

1 + ∆2

γ2 −
N2µ2

g

κ2γ2[
(1 + C)2 + ∆2

γ2

]2σ
2
g +

2µ2
g

γ

C

(1 + C)2 + ∆2

γ2

σ2
Ω +O

(
λ4
)
. (4.52)

Besides from v†v and the coefficient matrix, the retrieval efficiency only depends on
the initial spin wave before readout.

4.2.2 Retrieval from symmetric spin wave

We will now look at retrieval from a spin wave where all excitations are stored
evenly among all atoms. This symmetric spin wave is real and has the form s(0) =
{1, 1, . . . , 1}/

√
N . As shown in section 2.4, retrieval from the symmetric spin wave

leads to the maximal retrieval efficiency for systems with homogeneous {g(i)}, {Ω(i)}
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and {∆(i)}. Storage and retrieval from this type of spin wave is relevant for ex-
periments, where microwave photons are coupled to the atomic ensemble [39, 40].
Because of the large wavelength, the light does in this case not interact very strongly
with the inhomogeneities and mainly couples to the symmetric mode.

The retrieval efficiency can be found from the general formula in Eq. (4.36) for
any type of initial spin wave. In order to use the equation, we have to find how
the individual atomic excitations are transformed into the collective modes s0(0) =

e†0s(0) and s1(0) = e†1s(0). Using the previously defined basis vectors, we get that
the spin wave transforms into the modes

s0(0) =1− 1

2

σ2
g

µ2
g

− 1

2

σ2
Ω

µ2
Ω

− ρσg
µg

σΩ

µΩ
+O

(
λ4
)

(4.53)

s1(0) =− ρσg
µg
− σΩ

µΩ
+O

(
λ3
)
. (4.54)

The retrieval efficiency from Eq. (4.36) is then

ηr =
C

1 + C
− C

1 + C

[
1 +

∆2

γ2

4

(1 + C) (2 + C)

]
σ2

Ω

µ2
Ω

− C2

(1 + C)2

σ2
g

µ2
g

+
2C2ρ

(1 + C) (2 + C)

σΩ

µΩ

σg
µg

+O
(
λ4
)
. (4.55)

In Figure 4.39 the symbolic solution for the retrieval efficiency is plotted as a function
of standard deviation for various parameters together with the numerical solutions,
as described in section 3.2. The data points of the numerical solution are averages
of ten calculations with random picks for a sample of N = 200 atoms. When we
compare the symbolic solution with the numerical solution, we observe that there
is agreement to second order, even for this relatively small ensemble. However,
higher order terms not accounted for in the symbolic solution become significant
for high standard deviation in (a) and (b). The results in the figure show that
inhomogeneities in the ensemble tend to decrease the retrieval efficiency. In (a)
higher correlations between

{
Ω(i)

}
and

{
g(i)
}

lead to a higher retrieval efficiency
and in (b) lower detuning lead to a higher retrieval efficiency. Changing γ in (c)
and changing κ in (d) lead to very similar results, because both these variations
mainly change the value of C = Nµ2

g/(κγ). We note, that all of these important
observations can be made by solely analyzing the symbolic solution up to second
order.

4.2.3 Optimal retrieval

Retrieval from the symmetric spin wave leads only to the maximal retrieval efficiency
for a homogeneous ensemble. For light below microwave wavelength it is therefore
more relevant to map to a spin wave with higher efficiency. By using Eq. (4.39) we
can find the maximal retrieval efficiency when retrieving from a different spin wave

ηr =
C

1 + C
− 4C

1 + C

[
1 + C

(2 + C)2 +
∆2

γ2

1

(1 + C) (2 + C)2

]
σ2

Ω

µ2
Ω

+
C

(1 + C)2

σ2
g

µ2
g

+O
(
λ4
)
.

(4.56)
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Figure 4.1: Retrieval efficiency ηr as a function of σ/µ = σΩ/µΩ = σg/µg for retrieval
from the symmetric spin wave mode. The numerical (solid) and the approximate
symbolic (dotted) solutions are in good agreement up to second order in σ/µ. In
order to smooth out variation in the numerical solutions, the data points of the
numerical solution are averages of ten calculations with N = 200 random samples
drawn from a Gaussian distribution. The following values, except when other values
are displayed beside the lines, have been used in the calculations: ρ = 0.99, ∆ = 1,
γ = 10, κ = 20, µg = 1, µΩ = 10. Therefore C = 1 in (a) and (b) and is varied in
(c) and (d).
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We note that the equation is independent of the correlation coefficient ρ up to second
order in σΩ and σg. The second order term would therefore remain unchanged, if we
would assume that the moments could be separated such that

〈
Ωagb

〉
= 〈Ωa〉

〈
gb
〉
,

which is the case for no correlations ρ = 0. This means that the terms independent
of σ2

Ω are in agreement with the result in section 2.4 and Eq. (2.16). Introducing new
collective variables for homogeneous {Ω(i)} allowed us here to solve the dynamics

accurately with ηr = C̃/(1+C̃) and C̃ =
∑

i g
(i)2

/(κγ). The second order expansion
in σg of C̃/(1 + C̃) is then C/[(1 + C)2µg] as in Eq. (4.56).

In Figure 4.39 the symbolic solution for the retrieval efficiency is plotted together
with the numerical solution. Compared to retrieval from the symmetric mode we
obtain higher efficiencies, but apart from that, the behavior is very similar. The
symbolic solution is in agreement with the numerical solution up to second order
and inhomogeneities in

{
Ω(i)

}
still lead to a decrease in efficiency. Correlations

ρ affect the efficiency to higher order as seen in (a) with correlated distributions
being most efficient. In (c) and (d) we see that higher C leads to a higher retrieval
efficiency. A very important result is that using a laser with small detuning is more
efficient than using large detuning. Again this is the same observation as for the
symmetric mode. This is in contrast to other work [41], were it has been suggested
that working in the far-detuned regime is preferable.

In order to find the spin wave from which retrieval is most efficient, we use Eq.
(4.38) to calculate the first order term of the initial mode s1(0). Because k01 =
k10 = 2µΩ/(γ + i∆)σΩ +O(λ3) only has a first order expansion in σΩ, implies that
the optimal mode s1(0) only has a first order expansion in σΩ when applying Eq.
(4.38).

s
(1)
1 (0)λ = −2

1 + C

2 + C

σΩ

µΩ
− i∆

γ

2

2 + C

σΩ

µΩ
. (4.57)

When deriving Eq. (4.38) we already have assumed that s
(0)
0 = 1 and 2Re[s2

0] =

−|s(1)
1 |2. All other spin wave modes are higher order. The outcome for s

(1)
1 is

consistent with the results in section 2.4, where we only looked at inhomogeneities
in {g(i)}. For σΩ = 0 the optimal spin wave mode to retrieve from is s0(0) = 1 with

all other initial modes being zero. Since si(0) = e†is(0) this means that the optimal
spin wave is s(0) = e0, where e0 is as defined in Eq. (4.45) with no inhomogeneities
in {Ω(i)}. Looking back at Eq. (2.14), this is indeed corresponds to using the
collective variable for s in section 2.4.

Furthermore we notice that the spin wave onto which we have to store in order
the achieve the highest possible retrieval efficiency has an imaginary part, when the
control beam is off-resonance. Because the mode s1(0) has an imaginary part, we
also know that the initial spin wave s(0) has an imaginary part. This means that we
have to be careful about applying the time-reverse argument for experiments with
off-resonant control beam. Simply applying the time-reverse argument would mean
that we would assume that we retrieve from s, but are actually storing the light in
s∗ (see chapter 5).
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Figure 4.2: Retrieval efficiency ηr as a function of σ/µ = σΩ/µΩ = σg/µg for retrieval
from the optimal spin wave mode. The numerical (solid) and the approximate
symbolic (dotted) solutions are in good agreement up to second order in σ/µ. In
order to smooth out variation in the numerical solutions, the data points of the
numerical solution are averages of ten calculations with N = 200 random samples
drawn from a Gaussian distribution. The following values, except when other values
are displayed beside the lines, have been used in the calculations: ρ = 0.99, ∆ = 1,
γ = 10, κ = 20, µg = 1, µΩ = 10. Therefore C = 1 in (a) and (b) and is varied in
(c) and (d).

37



4.3 Inhomogeneous broadening

We will now look specifically at how the maximum retrieval efficiency is related to
inhomogeneous broadened media with a Gaussian population distribution of {∆(i)},
but homogeneous Rabi oscillations {Ω(i)} and coupling constant {g(i)}. Again we
restrict the model to the case where the Λ energy scheme only has one excited level.
Furthermore the initial spin wave which facilitates maximal retrieval is analyzed.

In order to determine the maximal retrieval efficiency from the definition in section
4.1.2, we have find the series expansion of the elements k00, k10, k01, k11 of the coeffi-
cient matrix and the series expansion of v†v. Contrary to the derivations in section
4.2 we cannot define real orthonormal basis vectors of the coefficient matrix, because
the imaginary part of v depends on the inhomogeneous distribution. Therefore, we
find the first two basis vectors directly from Eq. (4.20) and Eq. (4.21), where we
just assume

{
Ω(i)

}
and

{
g(i)
}

to be homogeneous and real.

e†0 =
1T ∆̃−1√
N
〈
|∆̃|−2

〉 (4.58)

e†1 =

〈
|∆̃|−2

〉
1T
(
∆̃−1

)2
−
〈
|∆̃|−2∆̃−1

〉
1T ∆̃−1

√
N

(〈
|∆̃|−2

〉2 〈
|∆̃|−4

〉
−
〈
|∆̃|−2

〉 ∣∣∣〈|∆̃|−2∆̃−1
〉∣∣∣2)1/2

(4.59)

1T =
(
1 1 1 . . . 1

)
(4.60)

Again we calculate the moments of the discrete sample distribution by using the
probability density function of a continuous Gaussian distribution, which we can
assume to be valid for very large N .

〈∆̃−a〉 =
1

N

N∑
i=1

1

γ + i∆(i)
≈
〈
〈∆̃−a〉

〉
realization

=

∫ ∞
−∞

1

(γ + i∆)a
f(∆)d∆

for N � 1 (4.61)

In this equation denotes f(∆) the probability density function of a Gaussian distri-
bution with mean µ∆ and standard deviation σ∆.

f(∆) =
1

2πσ∆
exp

(
−(∆− µ∆)2

2σ2
∆

)
(4.62)

Having described how the moments are calculated and defined the first two basis
vectors allows us to find the expansion of the coefficient matrix directly from the
more general definitions in Eq. (4.22) - (4.24) or through kij = e†iAej . Furthermore
we find the series expansion of v†v.
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k00 =Ω2


〈
|∆̃|−2∆̃−1

〉
〈
|∆̃|−2

〉 −
N
〈
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〉
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〈

∆̃−1
〉


=
Ω2

γ

1

1 + C + iµ∆
γ
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Ω2
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C − 1 + C2 + 2iµ∆
γ + 3iC µ∆
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∆
γ2(

1 +
µ2

∆
γ2

)(
1 + iµ∆
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)(
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γ
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2
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(
σ4
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(4.63)

k01 =Ω2


〈
|∆̃|−4

〉
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|∆̃|−2
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〉2
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γ2

1(
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µ2
∆
γ2
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(
σ3

∆
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(4.64)

k10 =Ω2
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|∆̃|−2

〉3 〈
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〉
−
〈
|∆̃|−2
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−1 + C + iµ∆
γ(
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)2 (
1 + C + iµ∆
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σ3

∆

)
(4.65)

k11 =Ω2
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〉2 〈
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〉
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〈
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(4.66)

v†v =
2Ω2

γ

C
〈
|∆̃|−2

〉
∣∣∣ 1
γ + C

〈
∆̃−1

〉∣∣∣2
=

2C2Ω

γ3

1(
1 +

µ2
∆
γ2

) [
(1 + C)2 +

µ2
∆
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− 4C2Ω
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2 + 3C + 2C2
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∆
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∆
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∆
γ2

)3 [
(1 + C)2 +
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∆
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(4.67)
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The different terms of the series expansion can then be used to calculate the optimal
retrieval efficiency by using Eq. (4.39)

ηr =
C

1 + C
− C

(2 + 3C + C2)2

σ2
∆

γ2
+O

(
σ4

∆

)
. (4.68)

Clearly, the result shows that inhomogeneous broadening leads to a decrease in the
optimal retrieval efficiency. A very important result is that the retrieval efficiency in
this case is independent of the mean detuning and only depends on the standard de-
viation. Both observations are affirmed in Fig. 4.3, where we compare the symbolic
solution with the numerical solution. The behavior in (a) suggest that the maximal
retrieval efficiency even is independent of mean detuning to higher order in σ∆. An
identical conclusion has been reached by Gorshkov et al. in [4], where retrieval from
inhomogeneously broadened medium in free space has been analyzed. In both (b)
and (c) the behavior is similar to the corresponding figure in the last section. A
high retrieval efficiency is obtained for a high cooperativity parameter C.

Having determined the different terms of the series expansions allows us also to find
the spin wave which facilitates maximal retrieval by using Eq. (4.38).

s
(1)
1 (0)λ =

−1− µ2
∆
γ2 − C + iµ∆

γ C

(2 + C)
(

1 +
µ2

∆
γ2

) σ∆

γ
(4.69)

In contrast to the previous section, we cannot deduce directly from the shape of
the equation if the spin wave is real or complex, because we have used complex
basis vectors in the derivation. Therefore, we need to go back at how the spin wave
modes have been defined. It is not possible to find the exact spin wave s from a
finite number of modes {si(t)} and thus not possible to find the real and imaginary
part of s. However, because the basis is complex we expect the initial spin wave to
be complex for all average detuning.

Because quantum memories with inhomogeneous broadening typically also have in-
homogeneous Rabi oscillations and coupling constants, it would be relevant to take
all these types of inhomogeneities into account when calculating the retrieval effi-
ciency. This requires new calculations if second order correlations between any of
these inhomogeneities affect the maximal retrieval efficiency and they have to be
included. When it is not necessary to include these correlations in the model, we
can simply try to add the results in Eq. (4.68) and Eq. (4.56).
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Figure 4.3: Retrieval efficiency ηr as a function of σ∆ for retrieval from the optimal
spin wave mode. The numerical (solid) and the approximate symbolic (dotted)
solutions are in good agreement up to second order in σ∆. In order to smooth out
variation in the numerical solutions, the data points of the numerical solution are
averages of ten calculations with N = 200 random samples drawn from a Gaussian
distribution. The following values, except when other values are displayed beside
the lines, have been used in the calculations: µ∆ = 1, γ = 10, κ = 20, g = 1, Ω = 10.
Therefore C = 1 in (a) and is varied in (b) and (c).
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Chapter 5

Optimization of storage and
retrieval

The strategy for optimizing the retrieval process with regard to the retrieval effi-
ciency is not necessarily the best strategy for optimizing the retrieval process with
regard to the total efficiency taking both storage and retrieval into account. When
optimizing with respect to the retrieval efficiency, we could find the optimal spin
wave to retrieve from. However, in the case where we look at the whole process, we
need to balance the feasibility of the stored spin wave for efficient retrieval with the
feasibility for efficient storage. In this chapter, we first analyze under which condi-
tions the strategy for optimizing the retrieval efficiency can be applied for optimizing
the total storage-retrieval efficiency. Furthermore we find a numerical method for
calculating the maximum storage-retrieval efficiency, before looking specifically at
systems with inhomogeneous coupling canstants and Rabi oscillations and systems
with inhomogeneous broadening.

In the previous sections we have tried to analyze the retrieval process and developed
methods to calculate the retrieval efficiency. These methods can in general not be
applied to calculate the storage efficiency, which makes it more difficult to analyze
the storage process. In some cases it is however possible to use a strategy where
an optimal storage efficiency is obtained, which is identical to the optimal retrieval
efficiency. Furthermore the time-reversal argument can be used to find the storage
efficiency with the knowledge of the retrieval process. Once it has become more
clear how the retrieval process is connected to storage process, it is possible to find
optimal strategies for the total process.

5.1 Conditions for optimizing both storage and retrieval

We have previously determined the spin waves, which allow for optimal retrieval.
Ideally we are able store the incoming light field with the maximal retrieval efficiency
into one of these optimal spin waves, before then being able to perform retrieval with
the maximal efficiency. Because both storage and retrieval has been optimized, it
is certain that this strategy gives the maximal total efficiency. In the following, we
determine the conditions for when this is possible.
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For simplicity of notation we are going to use the Schrödinger picture to formalize
the mappings during storage and retrieval. The subspace A of the Hilbert space
H contains the spin wave modes and the subspace B contains the photon modes.
During storage the linear map M transforms the incoming light field |E in〉 ∈ B
to the stored spin wave |s〉 ∈ A. Similarly during retrieval the linear map M′†

transforms the stored spin wave |s〉 ∈ A to the outgoing light field |Eout〉 ∈ B.
These transformations are then denoted as

|s〉 = M |E in〉 and |Eout〉 = M′† |s〉 . (5.1)

Because the maps are linear, it is according to fundamental mathematical theorems
possible to use the singular-value decomposition to decompose them such that

M =
∑
k

√
λ

(k)
s

∣∣∣s(k)
s

〉〈
E(k)
s

∣∣∣ and M′ =
∑
k

√
λ

(k)
r

∣∣∣s(k)
r

〉〈
E(k)
r

∣∣∣ (5.2)

where

√
λ

(k)
s ,

√
λ

(k)
r are the singular values and |s(k)

s 〉, |s(k)
r 〉 ∈ A and |E(k)

s 〉, |E(k)
r 〉 ∈

B are respectively the orthonormal left-singular and right-singular vectors. The
storage and retrieval efficiencies are then in terms of the maps defined as:

ηs =
〈s| s〉
〈E in| E in〉

=
〈E in|M†M |Ein〉
〈E in| E in〉

=
∑
k

λ(k)
s

∣∣∣〈E(k)
s

∣∣∣ E in

〉∣∣∣2
〈E in| E in〉

(5.3)

ηr =
〈Eout| Eout〉
〈s| s〉

=
〈s|M′M′† |s〉
〈s| s〉

=
∑
k

λ(k)
r

∣∣∣〈s
(k)
r

∣∣∣ s
〉∣∣∣2

〈s| s〉
(5.4)

This shows that the efficiencies are determined by the eigenvalues and the overlap
of the incoming state with the eigenvectors of the hermitian matrices M†M and
M′M′†. Because of the variational principle we know that the maximum eigenvalue
of these matrices corresponds to maximum efficiency during storage and retrieval
such that

ηmax
s = max

{
λ(k)
s

}
and ηmax

r = max
{
λ(k)
r

}
.

Furthermore the maximum efficiency is obtained for the incoming state which is
equal to the eigenvector with the associated maximum eigenvalue max{λ(k)} = λ(m),
meaning

ηs = ηmax
s for |E in〉 =

∣∣∣E(m)
s

〉
and ηr = ηmax

r for |s〉 =
∣∣∣s(m)
r

〉
.

Because the matrices M†M and MM† have identical eigenvalues, we can conclude
that the same maximum efficiency is obtained during storage and retrieval ηmax

s =
ηmax
r for M = M′. Moreover, we can deduce that we in this case store the light field

into the optimal spin wave, which subsequently allows for retrieval with maximal
efficiency.

M
∣∣∣E(m)

s

〉
∝
∣∣∣s(m)
s

〉
=
∣∣∣s(m)
r

〉
(5.5)

This means that the total retrieval is equal to ηt = ηmax
s ηmax

r for |E in〉 = |E(m)
s 〉 and

we therefore have maximized the whole process.
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Now we have to determine what the condition M = M′ corresponds to and when
it can be fulfilled. Using the formalism of the previous chapters, the linear maps
between quantum field and spin wave can also be expressed as

s(T ) =

∫ T

−∞
m(∆s, T − t)Ein(t)dt (5.6)

Eout(t) =m′(∆r, t− T )†s(T ) (5.7)

where we from the dynamics in Eq. (3.3) and Eq. (3.6) for constant Rabi oscillations
find that

m(∆s, T − t) =e−A(T−t)w = −
√

2

κ
exp

[
−Ω†Γ−1Ω (T − t)

]
Ω†Γ−1g (5.8)

m′(∆r, T − t) =e−A
†(T−t)v = −

√
2

κ
exp

[
−Ω†

(
Γ−1

)†
Ω (T − t)

]
Ω†
(
Γ−1

)†
g.

(5.9)

The condition M = M′ in the Schrödinger picture corresponds in this formalism
to requiring m(∆s, T − t) = m′(∆r, T − t). This condition is in general not ful-
filled, because Γ−1 is not hermitian. However, for systems without inhomogeneous
broadening and uniform detuning ∆ = ∆I we know from Eq. (3.5) that

Γ−1 = ∆̃−1 − ∆̃−1ggT ∆̃−1

κ+ gT ∆̃−1g
=

1

γ + i∆

(
I− ggT

κ (γ + i∆) + gTg

)
. (5.10)

Now we see that in this case the condition m(∆s, T − t) = m′(∆r, T − t) can
be fulfilled when opposite detuning is used during storage and retrieval such that
∆s = −∆r. This means that it is possible to maximize both the storage and the
retrieval efficiency and that ηmax

t = ηmax
s ηmax

r .

This is however not possible when we account for inhomogeneous broadening. The
condition m(∆s, T − t) = m′(∆r, T − t) would be fulfilled for ∆s = −∆r, but this
cannot be realized physically. During storage we define ∆s = ∆s+∆atoms and during
retrieval ∆r = ∆r + ∆atoms, where ∆atoms contains the inhomogeneities embedded
into the ensemble and ∆s, ∆r denotes the uniform detunings which can be adjusted
by using different light fields. Clearly, the condition ∆s = −∆r cannot be fulfilled
by adjusting the uniform detunings ∆s and ∆r. This means that it is not sufficient
for a medium with inhomogeneous broadening to optimize retrieval for itself and
storage for itself, when we want to maximize the total efficiency. Furthermore we
have to find a different argument which can be used to find the storage efficiency with
the analysis of the retrieval process. It is here, where the time-reversal argument
becomes very useful.

5.2 Time-reversal argument

The time-reversal argument allows us to find the optimal strategy for the storage
process from retrieval. It has been proven in detail in [42] and we will here describe
the essence of the argument. In order to illustrate the argument, we stay in the
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Schrödinger picture for simplicity. During retrieval the transformation from the
spin wave |s〉 ∈ A to the outgoing light field |Eout〉 ∈ B can be described with
the unitary evolution operator Û(T, 0), where retrieval starts at t = 0 and ends at
t = T . The retrieval efficiency is then given by ηr = |P̂BÛ(T, 0) |s〉 |2, where P̂B
is the projection operator on the subspace B of the photon modes. Instead of the
retrieval efficiency we are however going to make use of the overlap efficiency of a
state |a〉 ∈ A with a state |b〉 ∈ B.

η = |〈b|Û(T, 0)|a〉|2 = |〈a|Û−1(T, 0)|b〉|2 (5.11)

For the states |a〉 = |s〉 and |b〉 = |Eout〉 this overlap efficiency is equal to the retrieval
efficiency. Because the right hand side of the equation describes the overlap efficiency
for the storage process, the storage efficiency is then equal to the retrieval efficiency.
For this to be useful, we have to figure out how Û−1(T, 0) can be realized physically.
In Appendix C of [42] it has been shown that the inversion can be described with
the time inversion operator τ̂ such that

Û−1(T, 0) = τ̂ Û(T, 0)τ̂ . (5.12)

Applying the time reverse operator to the spin wave state gives the complex conju-
gate such that τ |s〉 corresponds to s∗, while applying it to the light field gives the
time reverse such that τ̂ |Eout〉 corresponds to E∗out(T − t). This means that we can
store E∗out(T − t) into s∗ with the storage overlap efficiency equal to the retrieval
efficiency for s into Eout.

If the maximal retrieval efficiency ηmax
r is obtained for retrieving smax into Emax

out (t),
we know I. that it is not possible to achieve a higher storage efficiency than the
maximal retrieval efficiency such that ηmax

s = ηmax
r . If it would be possible to get a

higher storage efficiency ηs > ηmax
r for storing some state E ′in into s′, we could apply

the time reversal argument and retrieve from s′ with a higher retrieval efficiency
than the maximal retrieval efficiency, which obviously is a contradiction. II. we
have found that the maximal storage efficiency ηmax

s is obtained for storage from
(Emax

out (T − t))∗ into (smax)∗.

The fact that we can retrieve with ηmax
r from smax, but only store into (smax)∗ with

ηmax
s makes it more complicated to optimize the whole process of storage followed by

retrieval. For real smax it is possible to obtain ηt = ηmax
s ηmax

r . However, for complex
smax we have that ηr[(s

max)∗] < ηmax
r and it is therefore not possible to obtain the

total efficiency ηt = ηmax
s ηmax

r . Furthermore we cannot conclude that storage into
smax with subsequent retrieval from smax optimizes the total efficiency. If we denote
the storage efficiency for storage into the spin wave s by ηs(s) the total efficiency is
given by

ηt(s) = ηs(s)ηr(s) = ηr(s
∗)ηr(s) (5.13)

where the time reversal argument has been used to write ηs in terms of ηr. The task
is therefore to optimize ηr(s

∗)ηr(s) with respect to s in order to find the maximal
total efficiency.
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5.3 Numerical solution for storage followed by retrieval

In this section we present a numerical method, which calculates the maximal total
efficiency of storage followed by retrieval for a medium with any distribution of
{g(i)}, {Ω(i)} and {∆(i)}. When the input mode Ein(t) is normalized according to∫ Tr
−∞ |Ein(t)|2 = 1, the total efficiency of storage followed by retrieval is given by

ηtot =
(number of retrieved photons)

(number of incoming photons)
=

∫ ∞
Tr

dt|Eout(t)|2. (5.14)

For time-independent Rabi oscillations in Ω the dynamics of the spin wave during
storage and the output mode during retrieval, which immediately follows the storage
process, are through Eq. (3.3) and Eq. (3.6) given by:

s(Tr) =

∫ Tr

−∞
dt e−A(Tr−t)wEin(t) (5.15)

Eout(t) =v†e−A(t−Tr)s(Tr) =

∫ Tr

−∞
dt′ v†e−AteAt

′
wEin(t′) (5.16)

According to the fundamental dynamics of the quantum memory, the vector w is

defined slightly different than v = −
√

2/κΩ†
(
Γ−1

)†
g

w = −
√

2

κ
Ω†Γ−1g. (5.17)

This is similar to the definitions in Eq. (5.8) and Eq. (5.9). The total efficiency
when setting Tr = 0 is then

ηtot =

∫ 0

−∞

∫ 0

−∞
E∗in(t′′)w†eA

†t′′
∫ ∞

0
e−A

†tvv†e−Atdt eAt
′
wEin(t′)dt′dt′′

=

∫ 0

−∞

∫ 0

−∞
E∗in(t′′)w†eA

†t′′ (−B) eAt
′
wEin(t′)dt′dt′′ (5.18)

In order to calculate the integral over t, the same procedure as described in section
3.2 can be used, where B is determined using the Sylvester equation. The maximal
total efficiency can be found by discretizing the time domain into Nt steps.

ηtot =

tmax∑
t′=tmin

tmax∑
t′′=tmin

E∗in(t′′)M(t′, t′′)Ein(t′)

(
tmax − tmin

Nt

)2

=

∑tmax
t′=tmin

∑tmax
t′′=tmin

E∗in(t′′)M(t′, t′′) tmax−tmin
Nt

Ein(t′)∑tmax
t=tmin

|Ein (t) |2
(5.19)

Here we have defined the matrix elements in the discretized time domain as

M(t′, t′′) = −w†eA
†t′′BeAt

′
w. (5.20)

From this definition, the corresponding matrix M with a basis in the discretized
time domain can be created. According to the variational principle the maximum
total efficiency is the maximum eigenvalue of M multiplied by (tmax − tmin)/Nt.
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Figure 5.1: Maximal total efficiency ηmax
t (dotted lines) and maximal retrieval ef-

ficiency squared (ηmax
r )2 (dashed lines) as a function of σ/µ = σΩ/µΩ = σg/µg for

different detuning. The dashed and dotted lines overlap in (b). In order to smooth
out variation in the numerical solutions, the data points of the numerical solution
are averages of 20 calculations with N = 150 random samples drawn from a Gaus-
sian distribution. The following values have been used in the calculations: γ = 10,
κ = 15, g = 1, Ω = 10. In (a) the same detuning is used during storage and retrieval
and in (b) the detuning is inverted after storage.

5.4 Inhomogenous Rabi oscillations Ω(i) and coupling
constant g(i)

In this section, we will look at the maximal total efficiency for media, which has
inhomogeneities with Gaussian distributions of {Ω(i)} and {g(i)}, but is homoge-
neously broadened. Furthermore we will examine how the maximal total efficiency
is related to the maximal retrieval efficiency, which has been analyzed in the previ-
ous chapter. We limit our calculations to the case where the Λ energy scheme only
consists of one excited state.

In Figure 5.1 we have calculated the maximal total efficiency numerically and com-
pared it with the numerical solution for the maximal retrieval efficiency. First, in
(a), we have looked at the case where detuning remains unchanged during storage
and retrieval ∆s = ∆r. For ∆ = 0 the maximal total efficiency is equal to the
square of the maximal retrieval efficiency ηt = η2

r . With increasing detuning the
solutions for ηmax

t and (ηmax
r )2 do however deviate more and more from each other

for specific σ/µ = σΩ/µΩ = σg/µg with ηmax
t having lower efficiencies. Furthermore

the deviations increase at a specific nonzero detuning ∆ with increasing standard
deviations. In (b) the solutions for ηmax

t and (ηmax
r )2 overlap. This is also what we

would have expected from the analysis in section 5.1.

The result in (a) for ∆s = ∆r that maximal total retrieval equals to ηt = η2
r for

zero detuning, but not for nonzero detuning, is also consistent with the time reversal
argument, when we analyze the optimal spin wave which allows for retrieval with
ηmax
r . According to Eq. (4.57) the spin wave is real for zero detuning, but complex
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Figure 5.2: Maximal total efficiency ηmax
t (dotted lines) and maximal retrieval effi-

ciency squared (ηmax
r )2 (dashed lines) as a function of σ∆ for different mean detuning.

In order to smooth out variation in the numerical solutions, the data points of the
numerical solution are averages of 100 calculations with N = 150 random samples
drawn from a Gaussian distribution. The following values have been used in the
calculations: ρ = 0, γ = 10, κ = 15, µg = 1, µΩ = 10.

for nonzero detuning. From time reversal we know that the total efficiency is ηt(s) =
ηr(s

∗)ηr(s). Since ηr is not invariant under complex conjugation of the spin wave,
we would expect deviations of ηt(s) from ηr(s)2 for nonzero detuning.

The optimal strategy for storage followed by retrieval is therefore to be on-resonance.
When this is not possible, the detunings should be inverted after storage.

5.5 Inhomogeneous broadening

We will now look at the maximum total efficiency for inhomogeneous broadened
media with a Gaussian distribution of {∆(i)}, but homogeneous Rabi oscillations
{Ω(i)} and coupling constant {g(i)}. Again we restrict the model to the case where
the Λ energy scheme only has one excited level.

The numerical results for ηmax
t have been compared with the numerical results for

(ηmax
r )2 in Figure 5.2 for equal detuning during storage and retrieval ∆s = ∆r. In

contrast to medium without inhomogeneous broadening, the two different efficien-
cies also deviate for zero detuning µ∆. This means that there also is no overlap
between ηmax

t and (ηmax
r )2 for ∆s = −∆r. Furthermore, the results suggest that

both efficiencies are completely independent of the average detuning. Again the
deviations between ηmax

t and (ηmax
r )2 increase with increasing standard deviation.

With respect to the time-reversal argument, these results suggest that the initial
spin wave is complex.

We can conclude that the optimal strategy for storage followed by retrieval is inde-
pendent of the average detuning for systems with inhomogeneous broadening.
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Chapter 6

Conclusion and outlook

6.1 Conclusion

In this thesis, we have investigated how inhomogeneities affect the efficiency of Λ-
type quantum memories within a cavity. For systems with inhomogeneities in the
coupling constants, but homogeneous Rabi oscillations and without inhomogeneous
broadening, we found that the retrieval efficiency does not decrease. In this case
only a single spin wave mode is accessible and can be coupled to the incoming and
outgoing light fields. On the other hand, for inhomogeneous Rabi oscillations and
otherwise homogeneous parameters, we found that the retrieval efficiency did de-
crease. This has been observed through numerical calculations for random samples
from several different continuous distributions. Not all distributions did however
have the same efficiency dependence on the distribution width. While the depen-
dence for Gaussian and Uniform distributions was second order, it was qualitatively
different for Lorentzian distributions.

Subsequently, we focused on developing a symbolic method for calculating the re-
trieval efficiency perturbatively, which also can be applied to systems with inhomo-
geneous Rabi oscillations and inhomogeneous broadening and is valid for population
distributions with well-defined moments. In contrast to memories with inhomo-
geneities only in the coupling constant, several spin wave modes become accessible,
making the derivation more complicated. By comparison with numerical calcula-
tions, we found that the method is accurate to second order for Gaussian inhomo-
geneities. While the maximal retrieval efficiency was independent of the applied
detuning for inhomogeneously broadened media, a higher maximal retrieval effi-
ciency was derived for on-resonant quantum memories with inhomogeneous Rabi
oscillations and coupling constants.

In order to find the optimal strategy for storage followed by retrieval, the quantum
field has to be coupled to a spin wave mode, which allows for both efficient storage
and retrieval. When the applied detuning is reversed after storage, the same spin
wave mode, which allows for optimal storage, allows also for optimal retrieval. This
is however not true for inhomogeneously broadened media, leading to a smaller max-
imal storage-retrieval efficiency when compared with the squared maximal retrieval
efficiency. Moreover, just as the maximal retrieval efficiency was independent of ap-
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plied detuning, the same was true for the maximal storage-retrieval efficiency. The
optimal strategy is therefore independent of applied detuning for quantum memories
with inhomogeneous broadening. For systems with inhomogeneous Rabi oscillations
and coupling constant the optimal strategy is to apply on-resonant optical fields.

6.2 Outlook

This thesis provides the basis for several topics, which could be investigated further.
The maximal storage-retrieval efficiency has only been calculated numerically and it
would therefore be useful to develop the symbolic method further such that it also
can be used to analyze the full process. Because the symbolic method in this thesis
only can be applied directly to the retrieval efficiency, the time-reversal argument
could be a very useful tool to expand the method. The formalism for deriving
ηr(s) already exist. It would therefore only have to be applied for ηr(s

∗)ηr(s) and
optimized with respect to s. First order terms that vanish in 〈ηr(s)〉 might however
become second order in 〈ηr(s∗)ηr(s)〉, so one has to make sure to derive a formula
for 〈ηr(s∗)ηr(s)〉 and not 〈ηr(s∗)〉 〈ηr(s)〉.
Secondly, quantum memories with inhomogeneous broadening and inhomogeneities
in Rabi oscillations and coupling constants could be analyzed including the effect
of correlations between the different inhomogeneities. Both the numerical and the
symbolic methods developed in this thesis can directly be applied to this problem.
Lastly, specific physical systems, such as NV-centers with several excited states,
could be considered.
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