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Preface

This master’s thesis presents the main results of the project concerning long-distance en-
tanglement distribution that I have worked on at the Theoretical Quantum Optics Group
at the Niels Bohr Institute. The project was carried out during the period September 2010
to August 2011.
The main objective of the project was to improve the performance of the hybrid repeater
in Ref. [13]. Two ways of how to do this was studied through analytical calculations and
numerical simulations.
The thesis is intended for master students of physics or readers with an equivalent back-
ground in science. Most of the concepts used are introduced in the thesis but the reader
is assumed to have a background of quantum mechanics. Experience with quantum optics
and quantum information theory would also be helpful.
Through my work with the project my theoretical knowledge of both quantum optics and
quantum information theory has been increased significantly. Furthermore I have learned
to perform numerical simulations in the program Matlab that I had little knowledge of
before. Working at the Theoretical Quantum Optics Group has also given me a chance
to follow some of the contemporary research in quantum optics and quantum information
theory, which has been very interesting.
First of all I would like to thank my supervisor Anders S. Sørensen for his substantial and
comprehensive help with the project. He has guided me in the correct directions during the
project and has helped me interpret the results obtained. The main ideas of the project
also belong to him. Furthermore I would like to thank Jonathan B. Brask for sharing his
work on the hybrid repeater with me and for helping me understand his results. All the
group members of the Theoretical Quantum Optics Group at NBI have also helped me
with fruitful discussions and technical details about Matlab.



English summary

This thesis is concerned with the distribution of entanglement over large distances. Pro-
tocols for long-distance entanglement distribution are called quantum repeaters. Quantum
repeaters are often divided into two groups: Repeaters in the discrete variable regime and
repeaters in the continuous variable regime. This thesis discusses a proposal of a hybrid
repeater, which combines the elements of the discrete and continuous variable regimes.
Jonathan B. Brask et al. suggested the hybrid repeater in Ref [13]

The first part of the thesis describes the fundamental elements of quantum optics and
quantum information theory needed to describe the hybrid repeater. The next part de-
scribes the hybrid repeater in detail and outlines the results of the performance of the
repeater. The results were taken from Ref. [13].
It is shown that changing two of the steps in the protocol might increase the rate of the
hybrid repeater. These changes are made in the final part of the thesis and result in an
altered hybrid repeater. A method for connecting single-mode cat states suggested by N.
Sanguard et al. is implemented in the altered hybrid repeater. The performance of the
altered hybrid repeater is simulated numerically in the program ”Matlab” and the optimal
rate of entanglement distribution is found.
The rate of the original hybrid repeater and the altered hybrid repeater is finally compared.
It is shown that the altered repeater do not perform significantly better than the original
repeater except at small distances (<500 km) since the entanglement swapping is not as
effective in the altered protocol as in the original protocol.
The effect of two-photon errors in the altered repeater is studied in a perturbative way.
It is shown by assuming sources of two-mode squeezed vacuum states to produce the re-
peater’s initial states that a source repetition rate of GHz is necessary in order to have an
acceptable rate of entanglement distribution.



Dansk resumé

Dette speciale omhandler, hvordan entanglement distributeres over store afstande. Pro-
tokoller for distribution af entanglement kaldes for kvanterepeatere. Kvanterepeatere er
ofte inddelt i to grupper: Diskret variabel protokoller og kontinuert variabel protokoller. I
dette speciale diskuteres et forslag til en hybridrepeater, der kombinerer elementerne fra de
diskrete og kontinuerte variabel protokoller. Hybridrepeateren er foresl̊aet af Jonathan B.
Brask m.fl. i Ref. [13]

Den første del af specialet beskriver de fundamentale elementer i kvanteoptik og kvante-
informationsteori, der er nødvendige for at kunne beskrive hybridrepeateren. I den næste
del af specialet gives en detaljeret beskrivelse af hybridrepeateren, og de resultater, der
præsenteres i artiklen omkring repeaterens ydeevne, gennemg̊as. Den sidste del af specialet
omhandler, hvordan der kan ændres p̊a opbygningen af hybridrepeateren for at forbedre
dens ydeevne. Der foresl̊as to ændringer som begge behandles og implementeres i en ændret
hybridrepeater. Det er nødvendigt at inddrage en metode til at skabe entanglement mellem
specielle kvantetilstande kaldet kat-tilstande. Denne metode er udviklet af N. Sanguard m.
fl. Den ændrede repeaterprotokol bliver simuleret numerisk i programmet ”Matlab” for at
bestemme dens optimale ydeevne.
Afslutningsvis sammenlignes den originale og den ændrede hybridrepeaters ydevner. Det
konkluderes, at den ændrede repeater ikke er væsentlig bedre end den originale undtagen
ved små afstande (<500 km), da metoden til at lave entanglement swapping ikke er lige
s̊a effektiv i den ændrede protokol som i den originale.
To-foton fejl i den ændrede repeater behandles pertubativt under antagelse af, at start-
tilstandene i repeateren er s̊akaldte squeezed vakuum-tilstande. Det vises, at det er nødvendigt
at kunne levere disse tilstande med en frekvens omkring GHz for, at den ændrede repeater
har en acceptabel ydeevne.
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Chapter 1

Introduction

Quantum information theory is a rather new area of physics in which it is studied how
quantum mechanics can form a basis of communication and information processing. So
far this has shown impressing results such as teleportation [1, 2], quantum key distribu-
tion [3, 4] and quantum computation [5]. Common to many of the techniques used in these
fields is that they are based on a peculiar phenomenon described by quantum mechanics
called entanglement. Entanglement can be illustrated by looking at a system consisting
of two particles, which are separated by a very large distance so that no signal can travel
between them during measurements. The particles are in other words completely isolated
from each other. The behavior of each particle is measured by two sets of scientists who
afterwards compare their results. If the particles are fully entangled the scientists will
find that their measurements were completely correlated - when one particle moved up the
other moved down or vice versa. This phenomenon seems counter intuitive since the par-
ticle’s behaviors are fully correlated even though the particles cannot communicate during
measurements.
Entanglement is an important part of teleportation and key distribution schemes where
information is sent between distant locations i.e. where two spatially separated parties
need to be correlated [1, 2, 4]. This has fostered the development of schemes of how to
distribute entanglement over a large distance, called quantum repeaters.

Entanglement is often created locally between two physical systems and the challenge
is to send one of the systems to a far away location. When the transmitted signal is a
quantum system which is not described within classical physics, the term quantum signal
is used. A classical signal is on the other hand a signal fully described within classical
physics. All communication channels add a certain amount of noise to the signal, which
in the case of a quantum signal alters the received state and destroys the entanglement it
contained. The quality of the signal will drop exponentially with the distance if nothing is
done to correct the noise.
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Dealing with a classical signal, the problem is solved by inserting repeater stations along
the distance to remove noise and amplify the signal. However this is not possible with a
quantum signal since the no-cloning theorem of quantum mechanics states that noiseless
amplification of a quantum signal is impossible [6, 7]. Instead the distance is divided into
smaller segments where entanglement can be created by direct transmission of a quantum
signal without significant noise being added to the signal. Afterwards the entanglement is
distributed using the process known as entanglement swapping to combine pairs of small,
entangled segments into larger entangled segments. This is possible by only sending a
classical signal between the segments, which can be amplified and purified. The process is
iterated until entanglement is created over the whole distance [8].

A quantum signal often consists of photons since this enables the use of optical commu-
nication fibers, which are very efficient. So far the suggested quantum repeaters basically
work within two regimes of quantum optics. Protocols like the DLCZ - protocol work in
the discrete variable regime in which information is encoded in the number of photons
contained in the signal [9]. Such protocols require very efficient photodetectors, which has
not been realized yet. Nevertheless there is extended research going on to improve the
methods of photodetection [10, 11, 12].
The other type of repeaters work in the continuous variable regime in which information
is encoded in the amplitude of the electromagnetic field associated with photons. These
repeaters use homodyne detection, which is already very efficient (∼99%). However noise
is not as easily discovered in this regime as in the discrete variable regime.
Recently Jonathan B. Brask et al. have suggested a hybrid quantum repeater protocol,
which combines the advantages of both the discrete and continuous variable regime. This
repeater is as efficient as the discrete variable regime protocols but it do not rely on very
efficient photodetectors. [13]

The main subject of this master’s thesis is the hybrid quantum repeater protocol. I
have studied some immediate steps to improve the performance of the originally proposed
protocol. The original protocol consists of three steps:

1. Creation of entanglement

2. Growing of cat states

3. Entanglement swapping

Chapter 4 describes the details of the protocol and shows that the first step of the
protocol is in the discrete variable regime while the last two are in the continuous variable
regime. I have interchanged step one and two of the original protocol. The motivation is
that the creation of entanglement is the time consuming part of the repeater since this is
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a non-local process. This means that a quantum signal has to be sent between two spa-
tially separated locations, which is time consuming due to the noise added in the channel.
In the original repeater scheme it is necessary to restore the entanglement each time the
subsequent growing of a cat state fails. First growing the cat states and afterwards create
entanglement is therefore expected to be faster since the growing of cat states is a local
and thereby fast process. I have implemented a method to create entanglement between
cat states suggested by N. Sangouard et al. in Ref. [14] in order to interchange step one
and two of the original protocol. Furthermore I have optimized the method used to grow
cat states in Ref. [13]

The new method of creating entanglement produces different states than in the original
protocol. A substantial part of my work has been to investigate the properties of these new
states and especially their behavior during entanglement swapping. I have implemented
the mathematical description of the physical operations in the program Matlab in order to
make numerical simulations of the behavior of the new states and the overall performance
of the altered repeater protocol. The goal has been to find the maximal rate at which
the altered repeater could distribute entanglement over a given distance and compare this
to the original repeater. It has been necessary to make a numerical optimization of the
repeater in order to find the maximal rate. To make the simulation as realistic as possible
the optimization included errors and imperfections of the repeater.

Thus the work presented in this thesis consists of:

• Optimizing the method used to grow cat states in Ref. [13]

• Interchanging step one and two of the original hybrid repeater protocol by imple-
menting the method of entanglement creation suggested by N. Sanguard et al. in
Ref. [14]

• Implementing the mathematical model of the altered hybrid repeater in Matlab to
make numerical simulations of the performance of the repeater

• Investigating the properties of the new states generated in the altered protocol
through numerical simulation and analytical calculations

• An overall optimization of the altered repeater protocol including errors and imper-
fections in order to find the maximal rate of entanglement distribution over a given
distance.

The thesis outline is:

Chapter 1: (this chapter) Presents the main objectives and outlines the thesis.

Chapter 2: Provides the reader with the necessary background knowledge of quantum
optics and quantum mechanics.
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Chapter 3: Outlines the basic elements of quantum information theory focussing on the
elements used in quantum repeaters

Chapter 4: Describes the details of the hybrid repeater protocol suggested by Jonathan
B. Brask et al.

Chapter 5: Presents the changes made to the hybrid repeater protocol by Jonathan B.
Brask et al. and the resulting altered repeater protocol.

Chapter 6: Describes the optimization of the altered repeater protocol and presents the
results.

Chapter 7: Concludes on the work presented in chapter 5 and 6 and discusses further
improvements to the protocol as well as future work in the field.
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Chapter 2

Fundamentals

2.1 The quantized electromagnetic field

1The quantized description of the electromagnetic field is of great importance in most
quantum repeaters since the quantum signal often consists of photons. Light is often
thought of as electromagnetic waves propagating through space but in some cases, like the
photoelectric effect, light is considered to be small wave packets of energy called photons.
Mathematically these wave packets are described as energy eigenstates of a harmonic os-
cillator of unit mass. Following this approach, the Hamiltonian for the single mode electric
field in the case of no sources of radiation is

Ĥ =
1

2

�
p̂2 + ω2q̂2

�
. (2.1)

q̂ is the canonical position operator and p̂ is the canonical momentum operator. The
single mode electromagnetic field can be thought of as a radiation field confined to a one-
dimensional cavity. The single mode field is considered for simplicity but the results can
be generalized to a multimode field such as a radiation field in free space2. p̂ and q̂ are
hermitian operators and therefore correspond to observable quantities (position and mo-
mentum) but it is convenient to define two non-hermitian operators called the annihilation
(â) and the creation (â†) operators:

â = (2�ω)−1/2 (ωq̂ + ip̂) (2.2)

â† = (2�ω)−1/2 (ωq̂ − ip̂) . (2.3)

In terms of these operators the Hamiltonian is

Ĥ = �ω

�
â†â+

1

2

�
. (2.4)

1The literature for this chapter is found in [15, 16, 17]
2For a radiation field in free space the field is imagined to be confined to a cubic cavity.
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The eigenstates of the Hamiltonian are called Fock states and are denoted |n�. They have
energy En such that

Ĥ |n� = En |n� (2.5)

where

En = �ω

�
n+

1

2

�
, n = 0, 1, 2, . . . (2.6)

Eq. (2.6) shows that n is the number of energy quanta (�ω) contained in the state |n�,
which is equivalent to the number of photons. The set of all Fock states ({|n�}) is an
orthonormall basis of the Hilbert space3 of the Hamiltonian (2.4). It is a complete set,
which means that any state of the single mode electromagnetic field can be written as a
superposition of Fock states. Note that the vacuum (n = 0) has energy 1

2�ω.
The action of the annihilation operator on a state |n� is

â |n� =
√
n |n− 1� (2.7)

Thus this operator removes one photon from the state. The effect of the creation operator
is

â† |n� =
√
n+ 1 |n+ 1� , (2.8)

which is the creation of one photon.
Another important operator is the number operator n̂ = â†â. The expectation value of the
number operator is the average number of photons contained in the state e.g.

�n| n̂ |n� = n (2.9)

2.2 Quadratures

The single mode electromagnetic field can also be expressed in terms of the quadrature
operators

X̂1 =
1

2

�
â+ â†

�
(2.10)

X̂2 =
1

2i

�
â− â†

�
(2.11)

These operators are the analogues of the cosine and sine part of the classical electromagnetic
field and are associated with field amplitudes oscillating out of phase with each other by
90◦. They can be viewed as the dimensionless analogues of the position and momentum
operators of a harmonic oscillator4. The quadrature operators satisfy the commutation
relation �

X̂1, X̂2

�
=

i

2
(2.12)

3The vectors space in which the state vectors live are called the Hilbert space of the system
4The quadratures are also denoted the X̂ and P̂ quadratures where X̂ = X̂1 and P̂ = X̂2. In this thesis

both expressions are used interchangeable
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From Heisenberg’s uncertainty relation the uncertainty product of the operators, which
corresponds to the uncertainty product of the position and momentum, is

�
(∆X̂1)

2
��

(∆X̂2)
2
�
≥

1

16
(2.13)

This result yields one of differences between classical physics and quantum mechanics. In
classical physics it is possible to know both the precise position and the precise momentum,
which is not possible in quantum mechanics.
The vacuum (|0�) minimizes the uncertainty of the quadratures since

�
(∆X̂1)

2
�

vac
=

1

4
=

�
(∆X̂2)

2
�

vac
(2.14)

Another state with the same fluctuations is the coherent state, which is also known as the
displaced vacuum state.

2.3 Coherent states

Like the Fock states the set of coherent states {|α�} spans the entire Hilbert space of the

Hamiltonian (2.4) but it is not an orthogonal set since |�α�| α�|2 = e−|α�−α|2 �= 0. The
coherent states are eigenstates of the annihilation operator i.e.

â |α� = α |α� (2.15)

where α is a complex number. They can be written in terms of Fock states as

|α� = exp

�
−
1

2
|α|2

� ∞�

n=0

αn

√
n!

|n� . (2.16)

Another way of picturing the coherent states is as displaced vacuum states:

|α� = D̂(α) |0� (2.17)

where D̂(α) is the displacement operator defined as

D̂(α) = exp(αâ† − α∗â). (2.18)

It is illuminating to consider the action of the displacement operator on the vacuum state
in phase space. The phase space represents all possible states of a system. In classical
mechanics it often consists of all possible values for the momentum and position variables
and each possible state of the system corresponds to a unique point. However, a quantum
state is not a well-localized point in phase space since the momentum and position operators
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do not commute (see eq. 2.12). Nevertheless the phase space of the coherent states can be
defined from the expectation values of the quadrature operators:

�
X̂1

�

α
= Re(α),

�
X̂2

�

α
= Im(α). (2.19)

Thus the phase space of the coherent states is the complex α plane and the real and
imaginary part of α accounts for the position and momentum variables respectively. The
uncertainty in the quadratures is the same as for the vacuum:

�
(∆X̂1)

2
�

α
=

1

4
=

�
(∆X̂2)

2
�

α
. (2.20)

The phase space picture of the vacuum state and a coherent state α is seen in figure 2.1.

(a) Vacuum state (b) Coherent state

Figure 2.1: Phase space pictures of the vacuum state (a) and a coherent state α (b)

Figure 2.1 shows that a coherent state |α� is simply the vacuum state displaced by α
in phase space.
The average photon number contained in a coherent state can be found by taking the
expectation value of the number operator:

�α| n̂ |α� = |α|2 . (2.21)

Thus the average photon number in the state |α� is |α|2.

10



Eq. (2.20) shows that the coherent states minimizes the uncertainty product of the field
quadratures and furthermore the uncertainty in both field quadratures are equal. Never-
theless states exist in which the uncertainty in one of the quadratures is less that 1

4 . These
are called squeezed states.

2.4 Squeezed states

For any two operators Â, B̂ satisfying the commutation relation [Â, B̂] = iĈ it is true that

�
(∆Â)2

��
(∆B̂)2

�
≥

1

4

���
�
Ĉ
����

2
. (2.22)

A state is squeezed if either

�
(∆Â)2

�
<

1

2

���
�
Ĉ
���� or

�
(∆B̂)2

�
<

1

2

���
�
Ĉ
���� . (2.23)

Many types of squeezing exist dependent on which operators the squeezing exists in. When
a state is quadrature squeezed either

�
(∆X̂1)

2
�
<

1

4
or

�
(∆X̂2)

2
�
<

1

4
. (2.24)

An important type of squeezed states is the squeezed vacuum state, |ξ�. Physically this
state can be generated by e.g. parametric down conversion using nonlinear processes in a
medium pumped by a strong coherent field [27]. Mathematically the state can be generated
by letting the squeeze operator, Ŝ(ξ) act on vacuum

|ξ� = Ŝ(ξ) |0� . (2.25)

The squeeze operator is defined as

Ŝ(ξ) = exp(
1

2
(ξ∗â2 − ξâ†2)) (2.26)

where ξ = reiθ. r is the squeeze parameter, which is a real, non-negative number and θ
is a phase between 0 and 2π. The annihilation and creation operators appear in pairs in
the squeeze operator, which means that photons are created and destroyed in pairs. In
that sense the squeezed vacuum state is a sort of coherent state of photon pairs. For the
squeezed vacuum state the uncertainties in the field quadratures are

�
(∆X̂1)

2
�

ξ
=

1

4
[cosh2(r) + sinh2(r)− 2sinh(r)coshr(r)cos(θ)] (2.27)

�
(∆X̂2)

2
�

ξ
=

1

4
[cosh2(r) + sinh2(r) + 2sinh(r)coshr(r)cos(θ)]. (2.28)
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For θ = 0 squeezing is obtained in X̂1:

�
(∆X̂1)

2
�
=

1

4
e−2r (2.29)

�
(∆X̂2)

2
�
=

1

4
e2r. (2.30)

Note that the uncertainty product still is 1
16 . For θ = π the squeezing is in the X̂2

quadrature. The phase space picture of the squeezed vacuum state with θ = 0 is shown in
figure 2.2.

Figure 2.2: Phase space picture of a squeezed coherent state. The squeezing is in the X̂1

quadrature

Squeezed states exhibit less noise in some parts of the light wave than others. This can
be used in technological applications such as detection of weak signals [19].

2.5 Wave functions

Another way to express a quantum state is with the wave function, which is a representation
of the state in the position space. The position space is spanned by the position eigenkets
|x�� satisfying the relation

x̂
��x�

�
= x�

��x�
�
. (2.31)

Since space is not considered to be discrete the position operator x̂ has a continuous
spectrum and a corresponding continuum of eigenkets. The set of position eigenkets is a
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complete set and any arbitrary state |φ� can be expanded as

|φ� =

∞�

−∞

dx |x� �x| φ� . (2.32)

The expansion coefficient �x| φ� is called the wave function of the state |φ� and is usually
denoted ψφ(x). From the wave function it is possible to find the probability distribution of
the position of the arbitrary particle described by the state. The probability distribution
as a function of x� is

Pψ(x) = |ψφ(x)|
2 = |�x| φ�|2 . (2.33)

The wave function is a nice way of visualizing a quantum state. As an example the wave
function of a Fock state |n� is

ψn(x) =

�
1

πλ2

�1/4 1
√
2nn!

Hn

�x
λ

�
e−x2/2λ2

(2.34)

where λ =
�
�/ω and Hn(ζ) are the Hermite polynomials. The wave functions for n = 1, 2

and 3 are seen in figure 2.3.

Figure 2.3: The wave functions of the first three Fock states above vacuum

13



A state can also be represented in momentum space instead of position space. The
wave function in momentum space, ϕφ(p) is obtained from the wave function in position
space by a Fourier transformation:

ϕφ(p) =
1

√
2π�

∞�

−∞

dx exp (−ipx/�)ψφ(x). (2.35)

2.6 Wigner functions

Section 2.5 showed that a state’s probability distribution could be obtained from its wave
function and with a Fourier transformation the corresponding probability distribution in
momentum space could be obtained. The Wigner function is a quasi-probability distribu-
tion over phase space from which the probability distribution for both the position and
the momentum can be obtained. The Wigner function is defined for an arbitrary density
operator. The general expression of the density operator is

ρ̂ =
�

i

pi |ψi� �ψi| . (2.36)

The density operator describes both pure and mixed states. A pure state is described by a
single vector |ψ� with corresponding wave function ψ(x). In this case the density operator
is

ρ̂ = |ψ� �ψ| . (2.37)

A single vector cannot describe a mixed state. Instead the mixed state has a certain
probability, pi to be in state |ψi�. Thus the density operator of a mixed state is of the from
(2.36). It follows that

0 ≤ pi ≤ 1,
�

i

pi = 1. (2.38)

The Wigner function of a state with density operator ρ̂ is

W (x, p) ≡
1

2π�

∞�

−∞

dx

�
x+

1

2
q

���� ρ̂
����x−

1

2
q

�
e−ipq/�. (2.39)

The vectors
��x±

1
2q
�
are eigenkets of the position operator. In the special case of a pure

state the Wigner function takes the form

W (x, p) ≡
1

2π�

∞�

−∞

dxψ∗
�
x+

1

2
q

�
ψ

�
x−

1

2
q

�
e−ipq/�. (2.40)
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The position probability distribution is obtained from the Wigner function by integrating
over momentum

Pψ(x) =

∞�

−∞

dpW (x, p) (2.41)

and in the same manner the momentum probability distribution is obtained by integrating
over position. It follows that

∞�

−∞

dp

∞�

−∞

dxW (x, p) = 1 (2.42)

The Wigner function is called a quasi -probability distribution because it can take negative
values. This is a property that a real probability distribution cannot have. The negativity
of the Wigner function is a fingerprint of the state being a quantum state since classical
states all have positive phase space probability distributions. The Wigner function of the
Fock state with n=1 and for a coherent state |α� is shown in figure 2.4a and 2.4b. Note
that the Wigner function of the coherent state is positive and consequently the coherent
state is referred to as a ”classical” quantum state.

2.7 Fidelity

The fidelity of two states or ”the state overlap” is a measure of how similar the states
are. This is useful when investigating the properties of an ”unknown” state since the
fidelity with states of known properties gives information about the ”unknown” state. The
definition of the fidelity, F between an arbitrary state with density operator ρ̂1 and a pure
state, |ψ� is

F (ρ̂,ψ) = Tr [ρ̂1 |ψ� �ψ|] = �ψ| ρ̂1 |ψ� . (2.43)

where Tr is the trace. The fidelity can be understood as the probability that a measurement
will have the same outcome for both states and it follows that 0 ≤ F ≤ 1. if F = 0 the
two states are orthogonal and if F = 1 the two states are equal.
The fidelity can be calculated from the Wigner functions of the states:

F = 2π

∞�

−∞

dx

∞�

−∞

dpW1(x, p)Wψ(x, p) (2.44)

where W1 is the Wigner function of the arbitrary state and Wψ is the Wigner function of
the pure state.
The concept of fidelity is very useful in quantum information theory to determine the
entanglement contained in an arbitrary state described by density matrix, ρ̂. For this
purpose the fidelity with a maximally entangled state is calculated (see section 3.2).
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(a) The Wigner function of the Fock state with n=1. Note that the Wigner
function have negative values and consequently is not a real probability
distribution

(b) The Wigner function of a coherent state with α = 2. The function is
everywhere positive like a real probability distribution.

Figure 2.4: Wigner functions of the Fock state with n=1 and a coherent state with α = 2.

16



Chapter 3

Quantum Information Theory

3.1 Qubits and computational basis

1An important element in classical information theory is bits. Bits are binary information
carriers that can take the values 1 or 0. The quantum mechanical analogue of the bit is the
qubit and is the corner stone of quantum information theory. A qubit is a quantum system
with only two possible states called a two level quantum system. There are many examples
of such quantum systems such as the spin states of spin-12 particles, two electronic states
of an atom or polarization states of photons. The notion of the qubit is independent of
which system is used for the implementation of it as long as the state vectors live in a two
dimensional Hilbert space. The basis of the Hilbert space is called the computational basis
and consists of the elements |1� and |0� 2. A great strength of the qubit is that it can be a
superposition of |1� and |0� while the classical bit is either 0 or 1. Thus an arbitrary qubit
state, |ψ� can be written as

|ψ� = a |0�+ b |1� (3.1)

where |a|2+ |b|2 = 1. This among other things enables faster computation algorithms than
in classical information theory.

One of the main fields in quantum information theory is quantum computation, where
the construction of gates enables computational algorithms. In classical information the-
ory the gates are logic operations such as the AND/OR gate, which works on bits. In
quantum computation the gates are linear, unitary transformations working on qubits.
Details about the construction of quantum gates will not be reviewed in this thesis but it
is important to know the difference between local and non-local qubit operations. Non-
local operations act on two or more qubits and cannot be factored into local operations

1The literature for this chapter is found in [18, 20]. The chapter is also build on course material from
the course ”Quantum Information Theory” at NBI, Copenhagen

2The computational basis should not be confused with the Fock states |1� and |0�.
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while local operations only works on single qubits.

A very important phenomenon in quantum information theory is entanglement. When
a person sends a message to another person the sender and receiver get correlated in the
sense that information has been shared between them. In quantum mechanics this corre-
lation can be of a stronger kind than in classical physics. This is called entanglement.

3.2 Entanglement

Entanglement is a property of multipartite systems. A multipartite system consists of two
or more subsystems, which can be thought of as different modes or degrees of freedom
of the multipartite system. A system of two atoms would e.g. be a multipartite system
with two subsystems, each describing one atom. Another example is a multipartite system
consisting of the electronic states and the vibrational modes of a single atom.
Each subsystem is described in its own Hilbert space. The Hilbert space of the multipartite
system is the tensor product of the Hilbert spaces of the subsystems. The Hilbert space,
H of a multipartite system with n subsystems is

H = H1 ⊗H2 ⊗ . . .⊗Hn (3.2)

where H1 . . .Hn are the Hilbert spaces of the subsystems. This means that

dim (H) = dim (H1) · dim (H2) · . . . · dim (Hn) (3.3)

i.e. the dimension of H is the product of the dimensions of the subsystems. Entangle-
ment is easiest described in a joint system of two subsystems called a bipartite system.
The subsystems are denoted A and B and the state |ψ�AB is a state of the joint system.
Entanglement is defined as:

Entanglement 1 The state |ψ�AB is entangled if it cannot be written as a product of
states of the subsystems i.e.

|ψAB� �= |ψA� ⊗ |ψB� (3.4)

An entangled state is called a non-separable state. A state that can be written as |ψAB� =
|ψA� ⊗ |ψB� is a separable state3.

Only entanglement of bipartite systems are considered in this thesis but entanglement
is, as mentioned, a general property of multipartite systems. The general definition of
entanglement is

3The definition of entanglement in (3.4) refers to a pure state |ψ�AB . For a mixed state the state vectors
are replaced with density operators.
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Entanglement 2 A multipartite state with density operator, ρ is entangled or non-separable
if

ρ �=
�

i

piρ
i
1 ⊗ . . .⊗ ρin (3.5)

where ρ1 . . . ρn are states of the subsystems 1 to n

Examples of entangled states in a bipartite system with two-dimensional subsystems A

and B are the Bell states. The orthonormal basis of the subsystems is denoted {|0� , |1�}.
The Bell states are

��Ψ+
�
=

1
√
2
(|01�AB + |10�AB)

��Ψ−� =
1
√
2
(|10�AB − |01�AB)

��Φ+
�
=

1
√
2
(|11�AB + |00�AB)

��Φ+
�
=

1
√
2
(|00�AB − |11�AB) . (3.6)

The system could be the spin states of two atoms where the spin either points up |1�
or down |0�. Now the spin orientation of system A is measured. Mathematically this is
described by acting with the operator

Ŝ = λ0 |0�AA �0|⊗ IB + λ1 |1�AA �1|⊗ IB, {λ0,λ1} ∈ R (3.7)

on the state. λ0 and λ1 are eigenvalues of Ŝ and are the possible measurement outcomes.4

If the system is in state |Ψ+� a measurement with outcome λ0 will leave the system in the
state

λ0 |0�AA

�
0
�� Ψ+

�
=

λ0
√
2
|01�AB (3.8)

while a measurement yielding λ1 will leave the system in the state

λ1 |1�AA

�
1
�� Ψ+

�
=

λ1
√
2
|10�AB . (3.9)

Thus the measurement outcome of system A determines any subsequent measurement out-
come of system B. If two groups of scientists measured each their system the measurement
outcomes would be completely correlated. Every time group A measured spin down, group
B measured spin up and vice versa. From this example it is not clear that entanglement
can be a stronger correlation than classical correlations. The real test of this is the CHSH
inequality, which is an inequality that holds for classical correlations. This inequality can
be broken with quantum variables, which then are thought to contain stronger correlations
than classical variables. [23]

The states in eq. (3.6) are called maximally entangled states. A maximally entangled

4The identity operator IB means that system B is not changed
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state has complete correlation between the subsystems. It is not easy to tell how entangled
an arbitrary state is without making a correlation experiment since it is hard to find a
unique measure of entanglement. Nonetheless a unique measure of entanglement exists
in a bipartite pure system. To define this it is necessary to look at the reduced density
operators of the bipartite system.
Suppose that the bipartite system is in state |Ψ�AB with the corresponding density matrix
ρ̂AB = |Ψ� �Ψ|AB. System A and B are described by their reduced density matrices

ρ̂A = TrB[ρ̂AB] =
�

i

B �i| ρ̂AB |i�B , ρ̂B = TrA[ρ̂AB] =
�

i

A �i| ρ̂AB |i�A . (3.10)

TrA,B is the partial trace over A,B. The measure of entanglement is the entropy of one of
the reduced density matrices. The entropy is the von Neumann entropy

S(ρ̂) = −Tr[ρ̂log(ρ̂)] = −

�

i

λilog(λi) (3.11)

where {λi} are the eigenvalues of ρ̂. It is the quantum pendant to the classical entropy
and describes how much information the state ρ̂ contains. The bigger the entropy, the
less information is contained in the state. For a pure bipartite system this is a measure
of entanglement since the bigger the entropy of the reduced density matrix is, the more
entangled the state is. This can be understood as if the entropy of the reduced density is
large the subsystems cannot be described individually but need to be described collectively
- they are entangled. Schrödinger described this as:

”Thus one disposes provisionally (until the entanglement is resolved by actual
observation) of only a common description of the two in that space of higher
dimension. This is the reason that knowledge of the individual systems can
decline to the scantiest, even to zero, while that of the combined system remains
continually maximal. Best possible knowledge of a whole does not include best
possible knowledge of its parts”5

For a bipartite system with two-dimensional subsystems the base number for the log-
arithm in the definition of the entropy is two. A maximally entangled state ρ̂AB has
S(ρ̂A) = 1 = S(ρ̂B), while a product state has S(ρ̂A) = 0 = S(ρ̂B).

The entropy of the reduced density matrix cannot be used as a measure of entanglement
when the bipartite system is in a mixed state. Therefore the fidelity with a maximally
entangled state has been used as a measure of entanglement in this thesis when dealing
with a mixed state. The bigger the fidelity is, the bigger the entanglement is. It is of course
necessary to have an idea about which maximally entangled state to calculate the fidelity
with.

5Original text in german is found in [21]. The english translation appears in [22, p. 167]
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3.3 Teleportation

Entanglement assisted teleportation is an important element of quantum information theory
and one of the corner stones in quantum repeaters (see section 3.5). Charles H. Benett et
al. showed that a quantum state could be teleportet through an entangled state by means
of local operations and classical communication. The general teleportation scheme can be
seen in Appendix A but it is more instructive to look at the original scheme proposed by
Charles H. Bennett et al. in Ref. [2].
Consider two persons named ”Alice” and ”Bob” who shares the Bell state

��Ψ−�
AB

=
1
√
2
(|1�A |0�B − |0�A |1�B) (3.12)

Alice also has a unknown state |φ�C = a |1�C + b |0�C that she wants to teleport to Bob
(note that a2 + b2 = 1). Thus the complete state of the system is

|Ψ�ABC = |φ�C
��Ψ−�

AB
=

a
√
2
(|1�A |0�B |1�C − |0�A |1�B |1�C) +

b
√
2
(|1�A |0�B |0�C − |0�A |1�B |0�C). (3.13)

Now Alice performs a joint measurement of the von Neumann type on her two sys-
tems A and C.6 She can do this in the Bell operator basis consisting of the states
{|Ψ±�AC , |Φ±�AC} (see eq. (3.6) in section 3.2). To find the possible outcomes of such a
measurement the state |Ψ�ABC is written in the Bell basis as

|Ψ�ABC =
1

2

���Ψ−�
AC

(−a |1�B − b |0�B) +
��Ψ+

�
AC

(−a |1�B + b |0�B)
�
+

1

2

���Φ−�
AC

(a |0�B + b |1�B) +
��Φ+

�
AC

(a |0�B − b |1�B)
�
. (3.14)

Eq.(3.14) shows that the probability of each measurement outcome is 1
4 . After the mea-

surement the state in Bobs system will be one of the four states

− |φ�B ,−σz |φ�B ,σx |φ�B ,−iσy |φ�B (3.15)

corresponding to Alice’s four possible measurement outcomes. σx,y,z are the Pauli matrices
defined as:

σx =

�
0 1
1 0

�
,σy =

�
0 −i
i 0

�
,σz =

�
1 0
0 −1

�
(3.16)

The Pauli matrices satisfy that σ2
x = σ2

y = σ2
z = 1, which means that Bob can get the

original state |φ� if he can implement the Pauli matrices on his system. All he needs to

6A measurement of the von Neumann type means that Alice acts with a projection operator that project
onto a basis of the joint system
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know is the measurement outcome of Alice’s measurement so that he knows, which Pauli
matrix he should apply.
The only information that has to travel between Alice and Bob is the measurement outcome
of Alice’s measurement, which is classical information. This is why it is called teleportation.

3.4 Entanglement swapping

Entanglement swapping is a generalized form of teleportation using entangled input states.
The idea is to teleport one of the subsystems of an entangled state. Imagine that Alice
shares an maximally entangled state |Ψ−� with Clare and that David shares the same state
with Bob: ��Ψ−�

AC
⊗
��Ψ−�

DB
(3.17)

Now the teleportation protocol is applied and David and Clare perform a joint measurement
on their systems. Afterwards having been told the measurement outcome of the joint
measurement Bob and Alice can obtain the state |Ψ−�AB by local operations. It is quite
remarkably that it is possible to create entanglement between Alice and Bob’s systems
though they may never have seen each other. Furthermore it is possible without sending
any quantum signal between Alice and Bob.
This procedure is iterated to distribute entanglement over larger distances. A schematic
view of this is seen in figure 3.1.

Figure 3.1: Schematic overview of entanglement swapping. In the first swap level the four
entangled pairs are connected pairwise and swapped. The subsequent entangled pairs are
then connected and swapped in the second swap level to distribute entanglement over the
whole distance

Entanglement swapping is the basic idea in quantum repeaters. The purpose of a quan-
tum repeater is to distribute entanglement, which is hard using direct quantum signaling if
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the distance is large7. Entanglement swapping makes it possible to distribute entanglement
using classical signals.

3.5 Quantum repeater

A drawback of using quantum systems is that they are vulnerable to noise because it is
hard to remove noise in a quantum signal. Classical signals are also subject to noise but
there exist various methods of removing noise in a classical signal because it is possible to
copy a classical signal in order to amplify it or do error correction.

Most of our daily communication is transmitted in optical fibers or sent as free space
propagation. Both of these channels contain noise, which leads to decoherence and loss
of the signal. In classical signaling stations are created along the communication channel
where the signal is amplified and the noise removed. These stations are called repeater
stations.
The same procedure is not applicable in quantum signaling because the no-cloning theorem
states that noiseless amplification of a quantum signal is impossible. This has a drastic
impact on the communication rate of quantum signaling. A typical telecommunication
optical fiber has losses of about 0.2 dB/km for optical wavelengths around 1.5 µm. This
means that after 150 km only 0.1% of the signal is transmitted if there is no amplification.
After 1000 km only 10−18% is transmitted.
The time needed to transmit a quantum signal can be illustrated by considering the task
of transmitting a quantum signal consisting of one photon over a distance of 1000 km. For
a source repetition rate of 10 GHz meaning that 1010 photons are produced every second it
would take about 300 years to transmit just one photon! It is clear that direct transmission
of a quantum signal is not the best way to sent information over a large distance. Instead
quantum repeaters can be used.
The general quantum repeater consists of two steps:

1. Divide the total distance L over which entanglement should be created into smaller
segments of length L0 = L

2n where it is possible to create entanglement by direct
transmission of a quantum signal between two neighboring stations 8. The segments
of length L0 between neighboring stations are called the elementary links of the
repeater. It is important that the entanglement in these is created in a heralded way!

2. Connect the elementary links pairwise and perform entanglement swapping. This
procedure is repeated n times until entanglement is created over the total distance L

The creation of entanglement in the elementary links should to be done in a heralded way
because it is necessary to know if a link contains entanglement before it is swapped with

7This is due to the noise problem (see section 3.5)
8There will be 2n+1 stations covering the distance L (see figure 3.1)
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another link. This brings forward the need of quantum memories in quantum repeaters.

Quantum memories are basically any type of system where a quantum signal can be
stored for an amount of time. A lot of research is put into finding efficient quantum
memories and various systems have been proposed such as crystals, atomic ensembles and
quantum dots [24, 33, 25]. The reason for this is that the performance of quantum repeaters
drop drastically without quantum memories. Without quantum memories the entangle-
ment has to be created simultaneously in all elementary links and all later swaps would
also have to work simultaneously in each level. In most repeater schemes the swapping is
probabilistic meaning that it has some probability to work. Consequently the condition
that all swaps work simultaneously in every level dramatically decreases the performance
of the repeater. With quantum memories the signal can be kept until entanglement is
created the neighboring segment and a swap can be made. A quantum memory is in a
sense a system that convert flying qubits into stationary qubits and vice versa. A flying
qubit can move (e.g. photons) while the stationary qubit is spatially fixed. Investigating
the performance of a given quantum repeater scheme it is common to assume that efficient
quantum memories exist. This is also an assumption of this thesis.

3.5.1 Rate of repeaters

Quantum repeaters are compared at the rate of which entanglement is distributed over
a given distance. This rate depends on the probabilities for successful generation of the
initial states, entanglement creation and entanglement swapping. It is common to assume
that all local operations in a quantum repeater take negligible time compared to the time
it takes to send a signal between to neighboring stations, which is denoted τ0 = L0/c where
c is the speed of light and L0 is the distance between the stations. Then 1/τ0 is the source
repetition rate of the repeater meaning that τ0 is the waiting time at the elementary level
of the repeater. Let P0 denote the probability of a successful entanglement creation. The
time it takes to create entanglement in one elementary link is

τ = τ0
1

P0
(3.18)

The time it takes to establish entanglement in two neighboring elementary links is

τ = τ0
3− 2P0

(2− P0)P0
= τ0ν0 (3.19)

where ν0 is the average number of tries needed for two independent binomial events each
with probability P0 to both succeed [26]9. If P0 � 1 it is seen that ν0 ≈

3
2P0

.

9This formula assumes that the signal can be kept e.g. in a quantum memory.
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Let Pn denote the probability of a successful swap at the n’th level (n ≥ 1). The time it
takes to perform n levels of swapping will be

τ = τ0
3f2f3 . . . fn
2P0P1 . . . Pn

(3.20)

where the factors f2 . . . fn take into account that entanglement has to be created in two
neighboring links at level i− 1 in order to swap at the i’th level. These factors obey that
1 ≤ fi ≤ 2 [29]. It is shown in Ref. [26, p. 24] that all fi ≈

3
2 if Pi <

1
2 . Within these

assumptions the rate of a repeater with quantum memories is

rn =

�
2

3

�n+1

P0P1 . . . Pn (3.21)

where n is the number of swap levels. Note that this rate is far higher than in the case
of no quantum memories. In that case the time needed to establish entanglement in two
neighboring links would be proportional to P−2

i instead of 3
2Pi

.
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Chapter 4

A Hybrid Repeater

1The main part of this thesis is based on the hybrid repeater protocol suggested by Jonathan
B. Brask et al. in Ref. [13]. Many of the elements in the altered hybrid repeater protocol
presented in chapter 5 are found in the original protocol and therefore the hybrid repeater
by Jonathan B. Brask et al. is treated in some detail.

4.1 Creation of entanglement

The first step of the hybrid repeater protocol is to create entanglement in the elementary
links of the repeater. This is obtained in a heralded way using two sources of two-mode
squeezed vacuum states and relies on SPD (Single Photon Detection), which is in the
discrete variable regime. The setup is seen in figure 4.1.

Figure 4.1: The setup for generation of entanglement in the elementary links. The stars
are the sources of two-mode squeezed vacuum states and the black circles are quantum
memories.

1The literature for this chapter is found in [13] and [26, p. 77-92]
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The two sources of two-mode squeezed vacuum states can be realized using parametric
down conversion where a strong coherent signal is sent through a nonlinear medium that
creates or destroys photons in pairs [27]. The output from one of the sources is

|out� = Ŝ(ξ) |00� . (4.1)

Ŝ(ξ) is the two-mode squeeze operator

Ŝ(ξ) = exp
�
ξ∗âb̂− ξâ†b̂†

�
(4.2)

where ξ = reiθ and â, b̂ are operators of the two modes.
Like the one-mode squeeze operator the two-mode squeeze operator creates and destroys
photons in pairs, but with the difference that the photons are created in different modes.
The state (4.1) can be written in the form

|out� =
1

coshr

∞�

n=0

(tanhr)n

n!
(â†b̂†) |00� (4.3)

assuming θ = 0. For weak squeezing the state essentially is

|00�+
√
p |11�+O(p) (4.4)

where p is the probability to create a pair of excitations andO(p) denotes contributions from
multiple excitations. From each source one of the output modes is read into a quantum
memory and the other is sent to a balanced beam splitter positioned between the two
sources. The output from the beam splitter is measured and following a single SPD click
the two modes in the quantum memories are projected to a Bell state of the form

1
√
2
(|01�± |10�) . (4.5)

where the sign depends on which detector clicked. However, the probability of a single
SPD click even though more than two photons were generated by the sources exists. A
single SPD click would occur if one of the photons were lost in the fiber on its way to the
beam splitter. Therefore the type of state generated is not a perfect Bell state but

1
√
2
(|01�± |10�) +O(

√
p). (4.6)

The extra term O(p) accounts for contributions from multiple excitations, which is small
when the pair production probability p is small. This means that better Bell states are
produced for small values of p but the rate at which these states are produced will also be
small.
The rate at which entanglement is created in the elementary links depends on the pair
production probability p and the efficiency of the detectors. In Ref. [13] detector efficiencies
of 50% are assumed, which means that there is a 50% chance that the detectors detect a
photon hitting them.
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4.2 Growing of cat states

The goal of the hybrid repeater is to distribute entanglement in the form of states resem-
bling

|γ(θ,α)� =
1�

M+
α (θ)

�
eiθ |α� |α�+ e−iθ

|−α� |−α�
�

(4.7)

where M+
α (θ) = 2(1+ cos(2θ)e−4|α|2). Such states are called Schrödinger cat states named

after the cat paradox by Schrödinger. The entanglement is stored in the field operators,
which is in the continuous variable regime2.
The next step of the repeater is to grow the Bell-like states from the first step into states
resembling (4.7). This is realized by means of balanced beam splitters and homodyne
detection (see figure 4.23).

Figure 4.2: The growing of cat states. This is performed locally on each of the input modes
in the bell state. The figure shows two iterations of the procedure.

The process is performed on each mode of the Bell-like states but can be explained
with one-mode inputs. In the one-mode case the input state of the first beam splitter is
two one-photon states, |1� |1�, which has the wave function

ψ0(x, y) = ψ�
0(x)ψ

�
0(y) =

√
2π− 1

4xe−
1
2x

2
·
√
2π− 1

4 ye−
1
2y

2
(4.8)

The balanced beam splitter reflects and transmits the input signal in a 50:50 ratio. This
transforms the state (4.8) into

ψ1(x, y) = ψ�
0

�
1
√
2
(x+ y)

�
ψ�
0

�
1
√
2
(x− y)

�
. (4.9)

The X̂ quadrature of one of the output modes e.g. mode y is measured and the mea-
surement outcome is y0. Provided that y0 lies in a interval [−∆,∆] around zero the other

2The entanglement of the state in eq. 4.7 depends on both θ and α but for α > 2 the state is a maximally
entangled state more or less independent of the phase θ

3This figure was taken from [26, p. 83]
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output mode is kept. Ideally y0 = 0 but conditioning on this would result in a probability
of success of zero. In the ideal case where y0 = 0 the other output mode is

ψ1(x) = Γ

�
5

2

�− 1
2

x2e−
1
2x

2
. (4.10)

The state (4.10) resembles that of a squeezed one-mode cat state

Ŝ(2)
��ξ+(α)

�
= Ŝ(2)

1�
N+

α

(|α�+ |−α�) (4.11)

where Ŝ(p) denotes squeezing in the X̂ quadrature by a factor of p and N+
α = 2(1+e−2|α|2).

For α =
�
5/2 the fidelity of (4.10) and the squeezed one-mode cat state is 98%. The

process can be iterated to grow better cat states. After m iterations the output is

ψm = Γ

�
2 +

1

2

�− 1
2

x2
m
e−

1
2x

2
(4.12)

For m = 2 the fidelity with a squeezed one-mode cat state

Ŝ(2)
��ξ+(µm)

�
= Ŝ(2)

1�
N+

µm

(|µm�+ |−µm�) (4.13)

where µm =
�

2m + 1/2, exceeds 99%.

The procedure works with an arbitrary number of modes in the input states. In the
repeater the relevant number of modes in the input is two and then the squeezing is a non-
local effect. Using the Bell-like states as input states the output state after m iterations
resembles the state

Ŝ+(2)
���γ(0, µm/

√
2)
�

ab
. (4.14)

where a and b are the two spatially separated modes and Ŝ+(2) is non-local squeezing by
a factor of two in the quadrature X̂+ = (X̂a + X̂b)/

√
2 [26, p. 82]

The rate at which the squeezed cat states are grown depends on the choice of the
acceptance interval [−∆,∆]. When increasing ∆ the probability of a successful growing
procedure is increased. However, the fidelity of the output state and a squeezed cat state
decreases when ∆ is increased. This behavior is seen in figure 4.3.

The rate is calculated within the same approximations leading to eq.(3.21) and is in
units of the source repetition rate. Thus the rate, ri of growing a cat state of i’th iterations
is

ri =

�
3

2

�i−1

P1P2 . . . Pi (4.15)

where Pi is the probability of a successful growing at iteration i.
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Figure 4.3: The fidelity of the output state and a squeezed one-mode cat state as a function
of the rate for m = 1, 2 and 3. The rate is measured in units of the source repetition rate.
m is the number of iterations
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4.3 Entanglement swapping

It is illustrative to start by looking at the swap procedure using ideal two-mode cat states as
inputs. This is the limit where the two previous steps in the repeater are done perfectly and
squeezing in the cat states is neglected. The swap procedure is illustrated in figure 4.4a4.

Figure 4.4: a) Simple entanglement swapping using a 50:50 beam splitter and homodyne
detection. A success is conditioned on an X̂ measurement close to zero. b) Swapping
using auxiliary cat states, which are inserted before the X̂ measurement to obtain near-
deterministic swapping

Two modes - one from each two-mode cat state - are connected on a 50:50 beam splitter.
Afterwards the X̂ quadrature of one of the output modes and the P̂ quadrature of the other
output mode are measured. The input state of the beam splitter is

|γ(0,α)�12 |γ(0,α)�34 =
1

M+
α (0)

(|α,α�12 + |−α,−α�12) (|α,α�34 + |−α,−α�34) . (4.16)

It is assumed that α ∈ R since this is true for the squeezed cat states generated in the
second step of the repeater. A 50:50 beam splitter transforms an arbitrary coherent state
input |α1� |α2� into a product of coherent states with amplitudes of (α1 ± α2)/

√
2. It is

assumed that mode 2 and 3 are combined on the beam splitter. The output modes are
called p and x, which refers to the measurements performed on these modes. The beam

4This figure was taken from [26, p. 83]
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splitter brings the input state into the unnormalized state
�
|α,α�14

���
√
2α

�

p
+ |−α,−α�14

���−
√
2α

�

p

�
|0�x +

�
|α,−α�14

���
√
2α

�

x
+ |−α,α�14

���−
√
2α

�

x

�
|0�p . (4.17)

Now the P̂ quadrature is measured. The momentum space wave function of an arbitrary
coherent state |α� is

�p| α� =
1

π1/4
e−

1
2p

2−i
√
2αp+iαIm(α). (4.18)

Thus after a P̂ measurement with outcome p0 the state (4.17) is
�
|α,α�14 e

−i2αp0 + |−α,−α�14 e
i2αp0

�
|0�x +�

|α,−α�14 |
√
2α�x + |−α,α�14 |−

√
2α�x

�
. (4.19)

If α is large enough
�
0
�� √2α

�
=

�
0
�� −

√
2α

�
≈ 0. Thus if the X̂ measurement has an

outcome close to zero the state (4.19) after the measurement is

|α,α� e−2iαp0 + |−α,−α� e2iαp0 =
��γ�(θ0,α)

�
(4.20)

where θ0 = −2αp0. This state is a two-mode cat state with a phase of θ0 and therefore the
swap has been a success. Given that |0� and

��±
√
2α

�
are orthogonal, the probability of an

X̂ measurement that projects the state (4.19) into (4.20) is 1/2 since the norm of the first
and last bracket in eq.(4.19) is both 2. Note that an X̂ measurement yielding one of the
states

��±
√
2α

�
will bring the output state into a product state since

�
−
√
2α

�� √2α
�
≈ 0.

The probability of a successful swap is bounded by 1
2 , which is reached for large α values.

The requirement that the X̂ measurement is close to zero means that it is necessary to
choose an acceptance interval [−δ, δ] around zero in which the contribution from the states��±

√
2α

�
is negligible. The probability of a successful swap is less than 1

2 for small values
of α since a non-negligible part of the |0� state distribution will lie outside the acceptance
interval. For small values of α, a large δ will give a high success probability but a low
fidelity between the output state and a two-mode cat state. Likewise a small δ will reduce
the probability of a successful swap but increase the fidelity.

4.4 Near-deterministic swapping

It is shown in Ref. [13] that near-deterministic swapping can be obtained using aux-
iliary cat states. To do this, additional beam splitters are inserted between the first
beam splitter output and the X̂ measurement. A one-mode cat state

��ξ+(2j/2α)
�

=
1�

N+

2j/2α

���2j/2α
�
+
��2j/2α

��
is injected at the j’th beam splitter (see figure 4.4b).
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For simplicity the details of inserting a single auxiliary cat state is described to show how
this increases the probability of a successful swap. The starting state is (4.19), which is
after the first beam splitter and the subsequent P̂ measurement. After mixing with a
one-mode cat state

��ξ+(
√
2α)

�
the state is

��γ�(θ0,α)
�
14

�
|α�p |α�x + |−α�p |−α�x

�
+ |α,−α�14

�
|2α�p |0�x + |0�p |2α�x

�

+ |−α,α�14

�
|0�p |−2α�+ |−2α�p |0�x

�
. (4.21)

After the second P̂ measurement the state becomes
��γ�(θ0,α)

�
14

�
e−i

√
2αp1 |α�x + ei

√
2αp1 |−α�x

�
+

�
e−23/2αp1 |α,−α�14 + e2

3/2αp1 |−α,α�14

�
|0�x +

|α,−α�14 |2α�x + |−α,α�14 |−2α�x . (4.22)

Up to a local phase shift the state |γ̃�(θ1,α)� = eθ1 |α,−α�14 + eθ1 |−α,α�14 is equal to
|γ�(θ1,α)� and therefore is also a desirable output state of the swap. Letting θ1 = −23/2αp1
and ν =

√
2αp1 the state (4.22) is

��γ�(θ0,α)
�
14

�
eiν |α�x + e−iν

|−α�x
�
+
��γ̃�(θ1,α)

�
14
|0�x +

|α,−α�14 |2α�x + |−α,α�14 |−2α�x . (4.23)

Assuming that α is large enough for |0� and |α� to be orthogonal an X̂ measurement falling
in the distributions of either |0� or |±α� will be a successful swap5. The probability of this
to happen is 3/4.
The procedure can be generalized to using k auxiliary cat states. The probability of a
successful swap will scale as

1− 2−k−1 (4.24)

assuming that all states remain distinguishable [13]. This means that α must scale with
k as α ∼ 2k/2 to keep the fidelity with a perfect two-mode cat state above some arbitrary
threshold. Thus to obtain near-deterministic swapping it is necessary to generate very
large cat states, which is hard to do. Therefore the overall performance of the repeater is
not necessarily improved by the use of auxiliary cat states.

4.5 Swapping with approximate squeezed two-mode cat states

6 The states generated in the second step of the hybrid repeater protocol are well approx-
imated by the squeezed two-mode cat state in eg. (4.14). The wave function of this state

5This implies that also |α� and |2α� are orthogonal
6The formulas in this section is taken from [26, p. 116-118]
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is
ψ0m(xa, xb) = N−1/2

0,m e−
1
4 (xa−xb)2

�
e−

1
2 (xa+xb−µm)2 + e−

1
2 (xa+xb+µm)2

�
(4.25)

where N0,m = 2−1/2π(1+e−µ2
m) and µm =

�
2m + 1/2. Assuming that all X̂ measurements

yield zero and performing n swap levels with this state gives the output state

ψnm(xa, xb) = N−1/2
nm e−i(φa,nxa+φb,nxb)e−
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8 (xa−xb)2 ×�

e−
1
kn
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where kn = 2
√
2coth(2narccoth(1/

√
2)) and {φa,n,φb,n,φn} depend on the outcome of the

P̂ measurements in all swap levels. Using that φa,0 = φb,0 = φ0 = 0 they can be found
recursively from the relations
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�
+ φ�
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The parameters φa,n and φb,n can be cancelled by local operations since they correspond

to displacements in phase space along the quadratures P̂a and P̂b. Neglecting the term
containing these parameters in eq. (4.26) and using that kn converges in a fast way to 2

√
2

the output state is

|φtarget�ab = Ŝa(
√
2)Ŝb(

√
2)

���γ(φn, 2
−5/4µm)

�

ab
(4.30)

This state is the target state of the hybrid repeater in Ref. [13]. It is a two-mode cat state
with local squeezing.

4.6 Performance

To study the performance of the hybrid repeater all of the three steps described i.e. entan-
glement generation, growing of cat states and entanglement swapping have to be collected.
They are collected in a nested way such that the entanglement swapping lies on top of the
growing of cat states, which lies on top of entanglement creation in the elementary links.
The parameters that have an influence on the performance are:

- p: A small value of p reduces the contributions from higher excitations in the input
states of the entanglement creation but also decreases the rate of the procedure.
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Figure 4.5: The optimal rate of the hybrid repeater resulting from the optimization. The
figure also shows the optimal values of m and n on the axis to the right.

- ∆: A large value of ∆ increases the rate of the growing procedure but decreases the
fidelity of the output state with a squeezed cat state.

- m: The more iterations (m) performed, the higher the fidelity of the output state
with a squeezed cat state is. However, the rate of the growing procedure will decrease
with m.

- δ: For small values of α the fidelity with the target state after swapping is increased
as δ is decreased. Nevertheless the probability of a successful swap is also decreased
when δ is decreased.

- n: The number of swap levels n determines the classical communication time in the
elementary links and the loss in the fibers connecting the stations.

The optimization of the repeater is made in Ref. [13] by making a grid of values for∆,m, δ, n
and treat p perturbatively. The rate of the total repeater is calculated using the expression
in eq. (3.21) where the source repetition rate is c/L0 and a lower bound of 90% on the
output fidelity with the target state (4.30) is assumed i.e.

F = |�ψtarget| ˆρout |ψtarget�|
2
≥ 0.9 (4.31)

The result of the optimization is seen in figure 4.57.
Figure 4.5 shows that the hybrid repeater manages to distribute states with a fidelity

≥ 0.9 over a distance of 1000 km at a rate of 0.1 pairs pr. min. This is a quite good result

7The plot was provided by Jonathan B. Brask and is also found in Ref. [13]
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compared to other repeater schemes that either use highly efficient SPD’s or complicated
swap procedures [9, 14].
Nonetheless there are some elements in the hybrid repeater scheme suggested by Jonathan
B. Brask et al. that could be altered to increase the performance. This has lead to the
development of an altered hybrid repeater, which is described in the next chapter.
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Chapter 5

The Altered Hybrid Repeater

The repeater protocol suggested by Jonathan B. Brask et al. consists of the tree steps
described in chapter 4. These steps are

1. Creation of entanglement

2. Growing of cat states

3. Entanglement swapping

The rate of each of the individual steps determines the overall rate of the repeater. If step
two or three of the repeater fails, the previous steps are repeated1. This means that every
time step two or three fails it is necessary to reestablish entanglement in the elementary
links. The source repetition rate of step one is L0/c since the creation of entanglement is
a non-local process. The time needed to perform local operations is negligible compared
to L0/c.
Therefore it is desirable to create entanglement later in the repeater protocol so that it
does not have to be repeated as many times. This is the main idea of the altered hybrid
repeater protocol presented in this thesis. The altered hybrid repeater protocol consists of
the same three steps as the original but in a different order:

1. Growing of cat states

2. Creation of entanglement

3. Entanglement swapping

The time consuming process of entanglement creation is now step two in the repeater pro-
tocol and therefore only has to be repeated when the entanglement swapping fails. The
procedure of growing cat states is almost the same as in the original repeater except that

1The term ”fails” means that you get an X̂ measurement outside your acceptance intervals (∆ and δ)
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one-mode squeezed cat states are grown and not two-mode squeezed cat states. Further-
more the procedure of choosing the acceptance interval [−∆,∆] is changed. In the original
repeater the acceptance interval is fixed to the same value for every iteration. Nonetheless
a higher rate might be obtained by increasing the acceptance interval after each iteration.
The creation of entanglement cannot be made in the same way as in the original repeater
but the general idea is similar. A method suggested by N. Sanguard et al. in Ref. [14] to
connect one-mode cat states into entangled two-mode cat states is used to create entan-
glement in the elementary links of the altered repeater. Using SPD this method is in the
discrete variable regime.
The procedure of entanglement swapping is the same as in the original repeater since the
entangled states of the altered repeater are similar to the entangled states of the original
scheme.

5.1 Growing of cat states

The procedure of growing cat states in the altered repeater is described in section 4.2 since
it is similar to the procedure of the original repeater. Nevertheless it is interesting to con-
sider how the wave function of the output state behaves as a function of the number of
iterations. This is shown in figure 5.1.
Figure 5.1 shows how the right and left top becomes more separated as the number of
iterations increases. When two of these states are combined on a beam splitter to make
the next iteration the subsequent measurement of the X̂ quadrature will determine how
the states were combined.
Suppose that the X̂ measurement is performed in the output in which the tops in the wave
functions of the input states are added2. If the two tops to the right are combined the
outcome of the X̂ measurement will have a positive value. If the two tops to the left are
combined the measurement outcome will have a negative value. These two possibilities are
not desirable since the wave function of the corresponding output state essentially will be
a top around zero. However, if a top to the right is combined with a top to the left or
vice versa the outcome of the X̂ measurement will in both cases be a value in the vicinity
of zero and the output state will be the desired approximate cat state. This behavior is
illustrated in figure 5.2.

In the original repeater protocol by Jonathan B. Brask et al. the acceptance interval
of the X̂ measurement was fixed for all iterations. This is not the optimal way of growing
the cat states. A small acceptance interval is needed because there is a probability that
an X̂ measurement close to zero comes from a combination of two right or two left tops,
which gives the wrong output state. The closer the tops are to each other in the input
states the smaller acceptance interval is needed. When iterating the growing process the

2A similar argument exists if the X̂ measurement is performed in the other output
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Figure 5.1: Wavefunction of the optimal output state for m=1,2,3 and 4. The expression of
the wave function of the states can be seen in eq. (4.12). The tops become more separated
as m increases

tops become more separated and a bigger acceptance interval can be chosen, which will
result in a higher probability for a successful growing. The possibility of choosing different
acceptance intervals for every iteration is included in the altered repeater protocol and an
optimization in the choice of ∆ has been made.

5.1.1 Optimizing acceptance intervals

In the optimization of the acceptance intervals the physical states are described by their
Wigner functions, which makes it possible to calculate an average fidelity of the output
states. Sources of perfect one-photon states are assumed to provide the input states. The
Wigner function of a one-photon state is

W0(x, p) =
1

π

�
1− x2 − p2

�
e−(x2+p2). (5.1)
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Figure 5.2: The input states have two tops that combine to yield 3 different tops in
the probability distribution of the output where the X̂ quadrature is measured. An X̂
measurement that falls in the top around 0 will produce an approximately squeezed cat
state.

When two of such states are combined on a 50:50 beam splitter it gives the state
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√
2
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1
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2
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�
W0

�
1
√
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1
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(p− p�)

�
. (5.2)

The unnormalized average output after measuring x� ∈ [−∆,∆] is
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. (5.3)
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The normalization constant of the state (5.3) is the inverse of the probability of measuring
x� ∈ [−∆,∆]. To see how the Wigner function changes after each iteration, it is an
advantage to write the input Wigner function as

Wm(x, p) =
2m+1�

i=0

2m+1�

j=0

wijx
ipje−(x2+p2). (5.4)

The one-photon input state can be written is this form with m=0 and

w =




−

1
π 0 2

π
0 0 0
2
π 0 0



 . (5.5)

Two of these states are combined on the 50:50 beam splitter. The combined state is
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This can be written as
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where smin = max(0, k − i), smax = min(i�, k), tmin = max(0, l − j) and tmax = min(j�, l)
The unnormalized average output after measuring x� ∈ [−∆,∆] is

Wm+1(x, p) =
2m+2�

k=0

2m+2�

l=0

w̃klx
kple−(x2+p2). (5.8)

The matrix elements w̃kl is
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where

µii�
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Λ(ε,λ) =

�
0 if λ < 0,λ odd,� ε
−ε x

λe−x2
dx if λ even.

(5.11)

From eq. (5.8) it is seen that the Wigner function of the output state after m iterations
will be of the form (5.4). The matrix elements wij depend on the choice of acceptance
interval in each iteration.

The fidelity of the output Wigner function and a squeezed one-mode cat state of the form
(4.13) is calculated on a grid of different acceptance intervals in order to find the optimal
rate of the growing procedure. The grid is subject to the constraint that ∆m+1 ≥ ∆m.
The program Matlab is used for the calculation and the code is described in Appendix D.
The calculation is restricted to m ≤ 3 iterations due to runtime reasons3. The result of
the calculation is seen in figure 5.3.

Figure 5.3 shows that a higher rate is obtained by choosing a larger acceptance inter-
val after each iteration. However the rate is not significantly increased, which is evident
from table 5.1 where an output fidelity of 0.9 was assumed.

m rate for diff. ∆ rate for fixed ∆
2 0.1423 0.1378
3 0.04104 0.03791

Table 5.1: Gain by choosing different acceptance intervals. The rate is in units of the
source repetition rate. An output fidelity of 0.9 with a squeezed one-mode cat state was
assumed.

From the optimization it is difficult to conclude anything about the general behavior for
m ≥ 4 iterations. Nevertheless it seems likely that the fractional difference in the rate for
fixed and different ∆ will grow for larger values of m because for every iteration the two
tops in the input states become more separated. For very large m the two tops will be
so far from each other that neither the fidelity nor the rate will be affected by choosing a
larger acceptance interval.

In the optimization the fidelity was calculated with a squeezed cat state of the form (4.13).
In the next step of the altered repeater protocol the one-mode states are connected to form

3The runtime refers to the runtime of the calculation.
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(a) Optimization for m=2

(b) Optimization for m=3

Figure 5.3: Result of the optimization for m=2 and m=3. The fidelity is with a squeezed
cat state of the form (4.13) and the rate in units of the source repetition rate was calculated
using the approximation in eq.(4.15). The optimal curve for different acceptance intervals
is the edge of the blue grid and the red curve is the result for fixed ∆ in every iteration.
The rate at which the input states to the growing procedure can be provided is the source
repetition rate.
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entangled two-mode states. The two-mode states generated do not look like two-mode cat
states unless m is relatively high (see section 5.2). Therefore it is interesting to also calcu-
late the fidelity with a state of the form (4.12) in the optimization. The optimal curves of
the output fidelity as a function of the rate are seen in figure 5.4.

Figure 5.4: The fidelity with state (4.12) vs. the rate in units of the source repetition
rate for m=1,2 and 3 iterations. The curves result from a optimization in the choice of
acceptance intervals.

Note that the fidelity with state (4.12) is not increased by performing more iterations.
However, the number of iterations has an effect on the subsequent steps of the repeater.

5.1.2 Two-photon components

So far sources of perfect one-photon states were assumed to produce the initial states. This
is not a realistic assumption since all systems used as one-photon sources today have a non-
vanishing probability of emitting two photons. Accordingly the input states provided for
the growing of cat states will contain some two-photon component. This component can
be made small at the cost of the rate at which the states are produced.
A two-photon component will lower the fidelity of the output state with the desired target
state - this being an approximately squeezed cat state or the state in eq.(4.12). To simulate
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Figure 5.5: The effect of having a two-photon contribution of 1% in the input states. The
fidelity is with a squeezed one-mode cat state of the form (4.13). The empty markers are
calculated with a pure one-photon input and the filled markers are calculated with a 1%
two-photon contribution.

the effect of two-photon contributions the input Wigner function is

W (x, p) = (1− p)W1(x, p) + pW2 (5.12)

where W1,2 are the Wigner functions of a one-photon state and a two-photon state respec-
tively. p is the percentage contribution from the two-photon state. The effect of having a
1% two-photon contribution is shown in figure 5.5.

The next steps of the altered repeater protocol are treated without two-photon errors
i.e. for p → 0. This will give an idea about how well the altered repeater performs in the
ideal limit where all input states are perfect single-photon states. The effect of two-photon
errors is further discussed in section 6.2 where the full repeater is simulated.

5.2 Connection of one-mode states

The second step of the altered hybrid repeater protocol is to create entanglement in the
elementary links. This is obtained by connecting the one-mode states generated in step one
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Figure 5.6: Setup for connecting one-mode cat states. The black dots are quantum memo-
ries where the modes a, b are stored. The modes a�� and b�� are combined on a 50:50 beam
splitter halfway between location A and B. The reflection and transmission of the first two
beam splitters are described by the parameter r.

of the protocol using a method suggested by N. Sanguard et al. in Ref. [14]. Instead of the
approximately squeezed one-mode cat states generated in the repeater perfect one-mode
cat states are assumed in Ref. [14].

The method is first described where perfect one-mode cat states are assumed as input
states. The setup is shown in figure 5.6. The input state at location A (and B) is a
one-mode cat state ��ξ−(α)

�
=

1�
N−

α

(|α� − |−α�) (5.13)

where N−
α = 2(1− e−2|α|2).

The state is sent to an asymmetric beam splitter with low reflection4. The transmitted
part of the state is stored in a quantum memory and the reflected part is sent to a 50:50
beam splitter halfway between location A and B. The two signals - one coming from loca-
tion A and one from location B - are combined on a balanced beam splitter and the two
output states are measured with photodetectors. Ideally only one of the detectors ’clicks’

4In the article this is a beam splitter with low transmission but outcome is the same
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corresponding to the measurement of one photon. This will project the modes in the quan-
tum memories into an entangled two-mode cat state. The method operates in the discrete
variable regime since it relies on single photon detection. Nonetheless the entanglement
is stored in the field quadratures of the two-mode cat state, which is in the continuous
variable regime.

The two-mode input state of the connection procedure is the product state

��ξ−(α)
�
a�

��ξ−(α)
�
b�
=

1

N−
α
(|α� − |−α�)a�(|α� − |−α�)b� . (5.14)

The action of the asymmetric beam splitters is described by the unitaries

Udaa� = er(â
�†d̂a−â�d̂†a) (5.15)

Udbb� = er(b̂
�†d̂b−b̂�b̂†a). (5.16)

These unitaries transforms the modes a�, b� and da, db into the modes a,b and a��,b��:

â = cos(r)â� + sin(r)d̂a, b̂ = cos(r)b̂� + sin(r)d̂b (5.17)

â�� = cos(r)d̂a − sin(r)â�, b̂�� = cos(r)d̂b − sin(r)b̂�. (5.18)

Consequently low reflection of the beam splitters corresponds to a small value of the pa-
rameter r. The modes a�� and b�� are sent to the 50:50 beam splitter. The action of the
balanced beam splitter is described by the unitary

Ua��b�� = e
π
4 (â

��b̂��†−â��†b̂��) (5.19)

which transformes the modes a��, b�� into the modes d, d��:

d̂ =
1
√
2
(â�� + b̂��), ˆ̃d =

1
√
2
(b̂�� − â��). (5.20)

A successful connection is conditioned on the measurement of the two photodetectors.
Assuming that only detector d clicks, corresponding to a single photon in mode d and no
photon in mode d̃, the state in the quantum memories will be projected into the state

|Ψ�ab = d̃ �0| d �1|BS (Ua��b��)BS (Udaa�)BS (Udbb�)
��ξ−(α)

�
a�

��ξ−(α)
�
b�
|0�da |0�db . (5.21)

where BS (Ua��b��) denotes the beam splitter described by the unitary Ua��b�� . Taking the
states through the beam splitters gives the normalized state

��Ψ−(r)
�
ab

=
1�
M−

α,r

(|αcos(r)�a |αcos(r)�b − |−αcos(r)�a |−αcos(r)�b) (5.22)
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where M−
α,r = 2

�
1− e−4|α|2cos2(r)

�
.5 This state is created with probability

P (α, r) =
2

N−2
α

e−2sin2(r)|α|2sin2(r) |α|2M−
α,r. (5.23)

There is a probability that two photons are extracted from the first two beam splitters and
afterwards one of these is lost on the way to the detectors. In that case the connection
would be mistaken as a success even though two photons were extracted. The state in the
quantum memories would be

��Ψ+(r)
�
=

1�
M+

α,r

(|αcos(r)�a |αcos(r)�b + |−αcos(r)�a |−αcos(r)�b) , (5.24)

which is orthogonal to (5.22). Consequently to obtain a high fidelity with state (5.22)
the parameter r should be so small that the probability of two photons being extracted
is negligible. Accordingly low reflectivity of the first two beam splitters will mean a small
probability of a successful connection.

The method suggested by N. Sanguard et al. works provided perfect one-mode cat states as
input states. However, the states generated in step one of the altered hybrid repeater look
like squeezed one-mode cat states. The method still work in the sense that entanglement
is created if only one photon is detected since the photon could originate from both lo-
cation A or B but the resulting entangled state in the quantum memories is not state (5.22).

The method is now considered with input states of the form (4.12). The resulting entangled
state will be the target state when connecting the approximately squeezed one-mode cat
states from step one of the repeater.
Assuming that detector d clicks corresponding to a single photon in mode d and no photon
in mode d̃ the two-mode state in the quantum memories is projected into

|Ψm�ab = d̃ �0| d �1|BS (Ua��b��)BS (Udaa�)BS (Udbb�) |ψm�a� |ψm�b� |0�da |0�db (5.25)

Taking the state d̃ �0| d �1| through BS (Ua��b��) gives the state

|Ψm�ab =
1
√
2
(a�� �1| b�� �0|+ a�� �0| b�� �1|)BS (Udaa�)BS (Udbb�) |ψm�a� |ψm�b� |0�da |0�db

(5.26)

5If detector d̃ fired instead of detector d the state in the quantum memories would be
��Φ−(r)

�
ab

=
1�

M−
α,r

�
|αcos(r)�a |−αcos(r)�b − |−αcos(r)�a |αcos(r)�b

�
. This state is equal to (5.22) up to a single qubit

rotation.
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The unitaries Uda,a� , Udb,b� can be expanded as

Uda,a� = 1 + r(â�†d̂a − â�d̂†a) +
r2

2!
(â�†d̂a − â�d̂†a)

2 +
r3

3!
(â�†d̂a − â�d̂†a)

3 + . . . (5.27)

Udb,b� = 1 + r(b̂�†d̂b − b̂�b̂†a) +
r2

2!
(b̂�†d̂b − b̂�b̂†a)

2 +
r3

3!
(b̂�†d̂b − b̂�b̂†a)

3 + . . . (5.28)

In the ideal limit where only one photon is extracted the parameter r is very small. Conse-
quently terms with rn>1 are neglected and the unnormalized state in the quantum memories
is ��Ψ�

m

�
ab

= (â+ b̂) |ψm�a |ψm�b . (5.29)

The normalized wave function of this state is

Ψm(x, y) = [2Γ(2m + 1/2)Γ(2m − 1/2)]−1/2 �x2m−1y2
m
+ x2

m
y2

m−1
�
e−

1
2 (x

2+y2) (5.30)

where x denotes mode a and y denotes mode b. This is a maximally entangled state.
Defining a orthonormal two-dimensional basis of {|0m� , |1m�} where

�x| 0m� = Γ(2m − 1/2)−1/2x2
m−1e−

1
2x

2
, �x| 1m� = Γ(2m + 1/2)−1/2x2

m
e−

1
2x

2
, (5.31)

the state (5.30) can be written as

|Ψm�ab =
1
√
2
(|0m�a |1m�b + |1m�a |0m�b), (5.32)

which clearly is a maximally entangled state. Physically this state corresponds to a super-
position of odd and even photon states. The state |0m� is a superposition of odd photon
states with a maximum of 2m−1 photons and |1m� is a superposition of even photon states
with a maximum of 2m photons.
The state |1m� is well approximated by the squeezed one-mode cat in eq. (4.13) and the
state |0m� is equally well approximated by an odd squeezed one-mode cat of the form

Ŝ(2)|ξ−(µ̃m)� = Ŝ(2)
1�
N−

µ̃m

(|µ̃m� − |−µ̃m�) (5.33)

where µ̃m =
�
2m − 1/2 . The fidelity with |0m� exceeds 99% for m ≥ 2. Hence the

connected state (5.30) is approximated by the state

|Ξ(µm, µ̃m)� =
1
√
2
Ŝa(2)Ŝb(2)(|ξ

−(µ̃m)�a
��ξ+(µm)

�
b
+
��ξ+(µm)

�
a
|ξ−(µ̃m)�b). (5.34)

In the limit of large m, µ̃m ≈ µm ≈ 2m/2 and the connected state will look like

Ŝ(2)aŜ(2)b
1�
M+

α,0

(|α�a |α�b − |−α�a |−α�b) (5.35)
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i.e. a locally squeezed two-mode cat state. The fidelity between this state and the state
(5.32) exceeds 99% for m ≥ 5.
If the photon was detected in mode d̃ instead of mode d the state in the quantum memories
would be

|Ψm�ab =
1
√
2
(|0m�a |1m�b − |1m�a |0m�b) (5.36)

Up to a local phase shift this is equal to (5.32) and is created with the same probability.
Therefore, when only one photon is detected - no matter in what detector - a successful
connection is obtained.

5.2.1 Connection of Wigner functions

The ideal limit of the connection step is the state in eq. (5.32), which is maximally entan-
gled and for large m looks like a locally squeezed two-mode cat state. This state is used as
a target state when connecting the Wigner functions generated in step one of the repeater
protocol meaning that the fidelity with this state is used as a measure of the entanglement
of the Wigner functions.

The connection setup is changed slightly to incorporate it in the repeater protocol. Losses
in the fibers are included and number resolving photodetectors are not assumed. The losses
are simulated by inserting two beam splitters before the central station that mixes the re-
flected signal from the first two beam splitters with vacuum. This is seen in figure 5.7.
The probability that a photon is lost on the way to the central station is sin2(θ). θ is
determined by the distance L between the first beam splitter and the central station and
the attenuation length Latt of the transmission fiber used:

cos2(θ) = e
− L

Latt (5.37)

The state before the first two beam splitters is the product of the Wigner functions gener-
ated in step one in the repeater and two vacuum states:

Wm(x, y)Wm(q, p)Wvac(x
�, y�)Wvac(q

�, p�) (5.38)

Wm(−,−) has the form in eq. (5.4) and Wvac(x, y) =
1
πe

− 1
2 (x

2+y2).
The modes described by (x, x�, y, y�) are to the left of the central station and the modes
described by (q, q�, p, p�) are to the right. Before the central station it is only necessary to
focus on the modes described by (x, x�, y, y�). The action of the first beam splitter is

x→ cos(r)x+ sin(r)x�, x� → cos(r)x� − sin(r)x

y→ cos(r)y + sin(r)y�, y� → cos(r)y� − sin(r)y (5.39)
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Figure 5.7: Setup for connecting the one-mode Wigner functions. The black dots are
quantum memories that store the modes described by x, y and q, p. The losses in the fibers
are described by inserting two beam splitters between the first beam splitters and the
central station. At the central station the modes described by x�, y� and q�, p� are combined
on a balanced beam splitter and the outputs are measured with detector d and d̃.

which results in the state

Wa1(x, x
�, y, y�) = Wm(cos(r)x+ sin(r)x�, cos(r)y + sin(r)y�)

×Wvac(cos(r)x
�
− sin(r)x, cos(r)y� − sin(r)y). (5.40)

The next beam splitter mixes x� and y� with vacuum (x��, y��):

x�→ cos(θ)x� + sin(θ)x��, x�� → cos(θ)x�� − sin(θ)x�

y�→ cos(θ)y� + sin(θ)y��, y�� → cos(θ)y�� − sin(θ)y� (5.41)

The number of photons that are lost is not known and consequently a trace over x�� and
y�� is made. This produces the state:

Wa2(x, x
�, y, y�) =

∞�

−∞

dx��
∞�

−∞

dy��Wa1(x, cos(θ)x
� + sin(θ)x��, y, cos(θ)x� + sin(θ)x��)

×Wvac(cos(θ)x
��
− sin(θ)x�, cos(θ)y�� − sin(θ)y�). (5.42)
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The modes described by (q, q�, y, y�) is brought to the central beam splitter in the same
manner producing the state Wb2(q, q�, p, p�).The action of the central beam splitter is:

x�→
x� + q�
√
2

, q� →
x� − q�
√
2

y�→
y� + p�
√
2

, p� →
y� − p�
√
2

(5.43)

Assuming that mode d̃ only contains vacuum and mode d contains anything but vacuum
the subsequent state is projected onto

Wvac(q
�, p�)(1−Wvac(x

�, y�)) = Wvac(q
�, p�)� �� �

a

−Wvac(q
�, p�)Wvac(x

�, y�)� �� �
b

(5.44)

Term a describes the situation when there is no click in detector d̃ while anything could
happen at detector d and term b describes the situation when no detector clicks. Accord-
ingly the combination a− b is when detector d clicks and detector d̃ do not.
Consequently the state in the quantum memories is:

Wab(x, y, q, p) =

∞�

−∞

dx�
∞�

−∞

dy�
∞�

−∞

dq�
∞�

−∞

dp�Wvac(q
�, p�)(1−Wvac(x

�, y�))

×Wa2(x, (x
� + q�)/

√
2, y, (y� + p�)/

√
2)

×Wb2(q, (x
�
− q�)/

√
2, p, (y� − p�)/

√
2) (5.45)

This Wigner function can be written in the form (5.4) as

Wab(x, y, q, p) =
2m+1�

{s,t,k,l}=0

wstklx
kplysqte−x2−p2−y2−q2 , (5.46)

which is seen by performing the integrals in eq.(5.45). The expressions for the matrix
elements wstkl can be seen in Appendix B.1

The probability of obtaining the state in eq. (5.45) is found by tracing over x, y, q, p:

PWab(r, θ) =

∞�

−∞

dx

∞�

−∞

dy

∞�

−∞

dq

∞�

−∞

dpWab(x, y, q, p) (5.47)

Note that Wab(x, y, q, p) is the average state obtained when connecting the one-mode
Wigner functions from step one in the repeater.
The expression in eq.(5.47) assumes that the efficiencies of the detectors are 100%. A more
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realistic efficiency would be 50%. In what follows the probability of obtaining the state
(5.45) is set to ηdPWab where ηd = 50% is the detector efficiency. This is a lower limit since
it assumes that there is a 50% chance that the detector clicks independently of the number
of photons hitting it. However, in the limit of high fidelity with the state (5.32) essentially
only one photon hits the detector. Note that the probability of a successful connection is
Pconnect = 2ηdPWab since a successful connection is also obtained when detector d̃ fires and
detector d does not.

For a fixed value of m the fidelity of the state (5.45) and the maximally entangled state in
eq. (5.32) depends on the parameters �∆,r and θ.
�∆ = (∆1,∆2, . . .)6 determines the initial fidelity of the one-mode Wigner functions and the
state (4.12). Hence �∆ gives an upper limit to the fidelity of the connected state and the
state (5.32).
r determines the number of photons extracted from the two one-mode states and conse-
quently the fidelity decreases when r is increased.
The probability of loosing a photon on the way to the central station is determined by θ,
which also influences the fidelity of the connected state and state (5.32). The probability
of a connected state when two photons or more are extracted from the one-mode states
increases as a function of theta compared to the same probability when only one photon is
extracted. Therefore the fidelity decreases as a function of θ given a fixed r. However this
effect will be small for r � 1. The dependence on the parameters described above is seen
in figure 5.8b,5.8a and 5.8c.

The performance of the connection step can be compared to Ref. [14]. A number re-
solving detector with an efficiency of 90%, an attenuation length of 22 km and a connection
distance of 100 km are assumed in Ref. [14]. Within these assumptions it is shown that
the average time needed to create an entangled pair with a fidelity of 90% with the state
(5.22) is T0 ∼ 54 ms.
Assuming perfect one-mode states of the form (4.12), an attenuation length of 22 km and
a detector efficiency of 90% (not number resolving) an entangled pair with a fidelity of
90% with a maximally entangled state is created over a distance of 100 km in an average
time of T0 ∼ 29 ms in the altered repeater protocol. Hence the rates are comparable but
number resolving detectors were not assumed in the repeater.

6�∆ is the vector of acceptance intervals for the different iterations in the growing step.
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(a) θ dependence of the fidelity

(b) �∆ dependence of the fidelity

Figure 5.8
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(c) r dependence of the fidelity

Figure 5.8: How the fidelity depends on the parameters r, θ and ∆. The fidelity is taken
with the state in eq. (5.32). In figure b) �∆ is represented as the rate of the generation of
the one-mode states in units of the source repetition rate.
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5.3 Entanglement swapping

The final step of the altered quantum repeater protocol is the entanglement swapping,
which is of crucial importance if entanglement is be distributed over a large distance. The
method of Ref. [13] based on homodyne detection is used to do entanglement swapping.
The swap procedure is seen in figure 5.9.

Figure 5.9: Setup of the swap procedure. The black dots are quantum memories contain-
ing the two-mode states. Two of the modes are combined on a balanced beam splitter
and the X̂ and P̂ quadratures are measured. A successful swap is conditioned on the X̂
measurement being close to zero.

If m is large and the outcome of the X̂ measurement is close to zero the state (5.32) is
swapped into a state well approximated by

Ŝa(2)Ŝb(2) |γ(θp,α)� =
1

M+
α (θp)

�
|−α�a |α�b e

iθp + |α�a |−α�b e
−iθp

�
(5.48)

where the phase θp depends on the P̂ measurement. This is because for large m the state
(5.32) looks like a locally squeezed two-mode cat state. The swap behavior of a two-mode
cat state is shown in section 4.3 and the local squeeze operators do not influence the out-
come of the swap7 The probability of an X̂ measurement close to zero is roughly 1

2 . Note
that this implies that for large m, near-deterministic swapping can be obtained using the
procedure described in Ref. [13].
It is not clear what happens when the state (5.32) is swapped for small m. This is studied
in some detail.

The state prior to the swap is considered to be

|Ψm�aa� |Ψm�bb� =
1

2
(|0m�a |1m�a� + |1m�a |0m�a�)(|0m�b |1m�b� + |1m�b |0m�b�) (5.49)

7To obtain state (5.48) the x and p modes should be interchanged in eq. (4.17) since the output modes
where the X̂ and P̂ quadratures are measured are interchanged.
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The modes a� and b are connected on a 50:50 beam splitter. Let x, x� denote mode a, a�

and y, y�denote mode b, b�. This brings the state to the form

|Ψm�aa� |Ψm�bb� →�
2m�

s=0

2m�

t=0

Ãs,tx
2m−1y�2

m−1 + B̃s,tx
2my�2

m
+ C̃s,tx

2my�2
m−1 + D̃s,tx

2m−1y�2
m

�
× e−

1
2 (x

2+y�2) (5.50)

where

Ãs,t =

�
2m

s

��
2m

t

�
2−2m(−1)tx�s+ty2

m+1−s−te−
1
2 (x

�2+y2) (5.51)

B̃s,t =
(2m − s)

2m
(2m − t)

2m

�
2m

s

��
2m

t

�
2−2m+1(−1)t+1x�s+ty2

m+1−2−s−te−
1
2 (x

�2+y2) (5.52)

C̃s,t =
(2m − s)

2m

�
2m

s

��
2m

t

�
2−2m+1/2(−1)tx�s+ty2

m+1−1−s−te−
1
2 (x

�2+y2) (5.53)

D̃s,t =
(2m − t)

2m

�
2m

s

��
2m

t

�
2−2m+1/2(−1)t+1x�s+ty2

m+1−1−s−te−
1
2 (x

�2+y2) (5.54)

The X̂ quadrature of the mode described by x� and the P quadrature of the mode described
by y is measured. This produces the unnormalized state

Φ(x, y�) =
A

Γ(2m − 1/2)
x2

m−1y�2
m−1 +

B

Γ(2m + 1/2)
x2

m
y�2

m
+

�
Cx2

m
y�2

m−1 +Dx2
m−1y�2

m�
[Γ(2m − 1/2)Γ(2m − 1/2)]−1/2. (5.55)

The normalized state can be written as

|Φm�ab� =
1

N
(A |0m�a |0m�b� +B |1m�a |1m�b� + C |1m�a |0m�b� +D |0m�a |1m�b�) (5.56)

where

A =
2m�

(s,t)=0

�
2m

s

��
2m

t

�
2−2m(−1)tHs,tΓ(2

m
− 1/2) (5.57)

B =
2m�

(s,t)=0

(2m − s)

2m
(2m − t)

2m

�
2m

s

��
2m

t

�
2−2m+1(−1)t+1Fs,tΓ(2

m + 1/2) (5.58)

C =
2m�

(s,t)=0

(2m − s)

2m

�
2m

s

��
2m

t

�
2−2m+1/2(−1)tGs,t[Γ(2

m
− 1/2)Γ(2m − 1/2)]

1
2 (5.59)

D =
2m�

(s,t)=0

(2m − t)

2m

�
2m

s

��
2m

t

�
2−2m+1/2(−1)t+1Gs,t[Γ(2

m
− 1/2)Γ(2m − 1/2)]

1
2 (5.60)

N = (|A|
2 + |B|

2 + |C|
2 + |D|

2)−1/2 (5.61)
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The matrix elements Fs,t, Hs,t and Gs,t depend on the measurement of the X̂ and P̂ quadra-
ture. The expression for these can be seen in Appendix B.2.

5.3.1 Entanglement investigations

The measure of the entanglement in the state (5.56) is the entropy of the reduced density
matrix for system b�. In the basis of {|1m�b� , |0m�b�} the reduced density matrix of system
b� is

ρb� =

�
|A|

2 + |D|
2 AC∗ +DB∗

CA∗ +BD∗ |C|
2 + |B|

2

�
.

The entropy is S(ρ) = −Tr[ρlog(ρ)]. The entropy as a function of the outcome of the P̂
measurement is seen in figure 5.10 for different m’s and different outcomes of the X̂ mea-
surement. For large values of the X̂ measurement outcome the entropy would essentially be
zero since the swapped state would be a product state (see section 4.3). In figure 5.10 the
outcomes of the X̂ measurements were chosen small enough for the swap to be successful.

The entropy and hence the entanglement of the swapped state depends rather strongly
on the outcome of the P̂ measurement even at m = 3. However the P̂ dependence is ex-
pected to wear off as m increases since the input states begins to look like locally squeezed
two-mode cat states with large amplitudes.
Figure 5.10 also shows that the acceptance interval around zero of the X̂ measurement
([−δ, δ]) can be increased for large m. This is due to the same concept as in the growing
of the cat states where the acceptance interval [−∆,∆] could be increased (see section 5.1).

To understand the entanglement behavior seen in the plots the states prior to the swapping
are assumed to be of the general form

|Φ�xx�,1 = a1 |0m�x |0m�x� + b1 |1m�x |1m�x� + c1 |1m�x |0m�x� + e1 |0m�x |1m�x� . (5.62)

Consequently the product state before the 50:50 beam splitter is

|Φ�xx�,1 |Φ�yy�,2 =�
a1a2 |0m�x� |0m�y + a1c2 |0m�x� |1m�y + e1a2 |1m�x� |0m�y + e1c2 |1m�x� |1m�y

�
|0m�x |0m�y�

�
b1b2 |1m�x� |1m�y + b1e2 |1m�x� |0m�y + c1b2 |0m�x� |1m�y + c1e2 |0m�x� |0m�y

�
|1m�x |1m�y�

�
a1b2 |0m�x� |1m�y + a1e2 |0m�x� |0m�y + e1b2 |1m�x� |1m�y + e1e2 |1m�x� |0m�y

�
|0m�x |1m�y�

�
b1a2 |1m�x� |0m�y + b1c2 |1m�x� |1m�y + c1a2 |0m�x� |0m�y + c1c2 |0m�x� |1m�y

�
|1m�x |0m�y� (5.63)

In section 5.2 it was shown that

|1m�q ≈ Ŝ(2)
1�
N+

µm

(|µm�q + |−µm�q), |0m�q ≈ Ŝ(2)
1�
N−

µ̃m

(|µ̃m�q − |−µ̃m�q) (5.64)
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(a) The entropy for m = 1 iteration

(b) The entropy for m = 2 iteration

Figure 5.10
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(c) The entropy for m = 3 iteration

Figure 5.10: The entropy S(p) for different outcomes of the X̂ measurements and different
values of m. The dependence on the P̂ measurement is quite strong even for m = 3.
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Using these approximations and assuming that �2µ̃m| µm − µ̃m� ≈ 0, N+
µm

≈ N−
µ̃m

8 the

unnormalized state after the beam splitter with an outcome of the X̂ measurement close
to zero is

|Φ�xy� = A |0m�x |0m�y� + B |1m�x |1m�y� + C |1m�x |0m�y� + D |0m�x |1m�y� (5.65)

Where

A = 2e1c2cos(
√
2µmp�)− 2a1a2cos(

√
2µ̃mp�) + e−

1
2 (µm−µ̃m)2

×�
(a1c2 + e1a2)

�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

�
cos(

1
√
2
(µm + µ̃m)p�)

+I(e1a2 − a1c2)
�
e−

√
2x(µm−µ̃m) + e

√
2x(µm−µ̃m)

�
sin(

1
√
2
(µm + µ̃m)p�)

�
(5.66)

B = 2b1b2cos(
√
2µmp�)− 2c1e2cos(

√
2µ̃mp�) + e−

1
2 (µm−µ̃m)2

×�
(b1e2 + c1b2)

�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

�
cos(

1
√
2
(µm + µ̃m)p�)

+I(b1e2 − c1b2)
�
e−

√
2x(µm−µ̃m) + e

√
2x(µm−µ̃m)

�
sin(

1
√
2
(µm + µ̃m)p�)

�
(5.67)

C = 2b1c2cos(
√
2µmp�)− 2c1a2cos(

√
2µ̃mp�) + e−

1
2 (µm−µ̃m)2

×�
(b1a2 + c1c2)

�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

�
cos(

1
√
2
(µm + µ̃m)p�)

+I(b1a2 − c1c2)
�
e−

√
2x(µm−µ̃m) + e

√
2x(µm−µ̃m)

�
sin(

1
√
2
(µm + µ̃m)p�)

�
(5.68)

D = 2e1b2cos(
√
2µmp�)− 2a1e2cos(

√
2µ̃mp�) + e−

1
2 (µm−µ̃m)2

×�
(a1b2 + e1e2)

�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

�
cos(

1
√
2
(µm + µ̃m)p�)

+I(e1e2 − a1b2)
�
e−

√
2x(µm−µ̃m) + e

√
2x(µm−µ̃m)

�
sin(

1
√
2
(µm + µ̃m)p�)

�
(5.69)

In the first swap a1 = a2 = b1 = b2 = 0 and c1 = e1 = c2 = e2 = 1. This means that it is
the difference between µm and µ̃m that determines the entanglement of the swapped states.
For subsequent swapping the measurement outcome in the previous swaps also influence
the entanglement.
For large m, µm ≈ µ̃m ≈ 2m/2 and the coefficients A,B,C and D reduce to

A = (e1c2 − a1a2)cos(2
(m+1)/2p�) + I(e1a2 − a1c2)sin(2

(m+1)/2p�) (5.70)

B = (b1b2 − c1e2)cos(2
(m+1)/2p�) + I(b1e2 − c1b2)sin(2

(m+1)/2p�) (5.71)

C = (b1c2 − c1a2)cos(2
(m+1)/2p�) + I(b1a2 − c1c2)sin(2

(m+1)/2p�) (5.72)

D = (e1b2 − a1e2)cos(2
(m+1)/2p�) + I(e1e2 − a1b2)sin(2

(m+1)/2p�) (5.73)

8This is true for large m
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Assuming that b1 = −a∗1 and e1 = c∗1, the unnormalized swapped state can be written as

|Φ�xy� = A |0m�x |0m�y� −A∗
|1m�x |1m�y� + C |1m�x |0m�y� + C∗

|0m�x |1m�y� , (5.74)

which is a maximally entangled state. When swapping states of the type (5.32), b1 = −a∗1
and e1 = c∗1 in the first swap level. Consequently for large enough m the initial maximally
entangled state in eq. (5.32) is swapped into another maximally entangled state indepen-
dently of the number of swap levels performed as long as the X̂ measurements are close to
zero, which occurs with probability ∼

1
2 . This is because the state (5.32) looks like a locally

squeezed two-mode cat state for large m. It is shown in Appendix B.3 that �(A) = 0 and
�(C) = 0 when the initial states are of the form (5.32) and hence the swapped state in
eq.(5.74) reduces to state (5.48).

To see how well the state (5.32) swaps it is necessary to calculate the average entropy
of the output state after a number of swap levels. Assuming an X̂ measurement of zero
the average entropy of the output state in the first swap is:

S̄ =

∞�

−∞

dp1S(p1)P (p1) (5.75)

where S(p1) is the entropy as a function of the outcome, p1 of the P̂ measurement and
P (p1) is the probability density function of p1. The mean entropy of the next swap level is

S̄ =

∞�

−∞

dp1

∞�

−∞

dp2

∞�

−∞

dp3S(p1, p2, p3)P (p1, p2, p3) (5.76)

where p1, p2 are the outcomes of the P̂ measurements in the two prior swaps and p3 is
the outcome in this swap. It would require 15 integrals to calculated the mean entropy
of the fourth swap level and the calculation would take a very long time. To circumvent
this problem a number of experiments with given outcomes of the P̂ measurement are
simulated for every swap level. The simulation is made by picking an outcome of the P̂
measurement according to the probability distribution of P̂ in every swap, which produces
a set {p1, p2, . . . , pn}. Afterwards the entropy, S1(p1, p2, . . . , pn) corresponding to the set
can be calculated.
This procedure is repeated a 100 times for a maximum of four swap levels and the mean
entropy from the resulting 100 outcomes of S(�p) is calculated. All X̂ measurements are
assumed to have an outcome of zero. The method used to pick a value according to the
probability distribution of P̂ is described in Appendix B.4. The four swap levels have been
simulated for m = 1, 2 and 3 and the result is seen in figure 5.11. The error bars in the
plots are the standard deviation of the mean:

σx̄ =
σx
√
N

. (5.77)
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This is of the order of 1% in the fourth swap level with 100 simulations, which is acceptable.

Figure 5.11 shows that the mean entropy of the outcome state drops with the number
of swap levels in the repeater. This is caused by the accumulation of errors in each swap
level - the starting states of the second level of swapping are not maximally entangled as
in the first swap level. The drop in the entropy decreases with m since the starting state
begins to look like state (5.35) for large m.

(a) S̄ for m = 1 iterations

Figure 5.11
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(b) S̄ for m = 2 iterations

(c) S̄ for m = 3 iterations

Figure 5.11: The mean entropy S̄ for different values of m assuming that all X̂ measure-
ments have an outcome of zero. The plots were made by picking the outcome for the
P̂ measurement according to the related probability distribution. The simulation was re-
peated a 100 times to calculate the mean entropy. The error was calculated as the standard
deviation of the mean
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5.3.2 Swapping with Wigner functions

The growing and connection step of the repeater protocol were simulated using Wigner
functions to calculate the average outcome of the steps. To investigate the performance of
the repeater the entanglement swapping should be performed with the two-mode Wigner
functions of the connection step. The input state of the first swap is

Wm(x, x�, p, p�)Wm(y, y�, q, q�) =
2m+1�

(s,t,k,l)=0

wstklx
kx�splp�te−x2−x�2−p2−p�2

×

2m+1�

(s�,t�,k�,l�)=0

ws�t�k�l�y
ky�sqlq�te−y2−y�2−q2−q�2 . (5.78)

In the swap the modes described x�, p� and y, q are connected on a balanced beam splitter.
After measuring the X̂ and P̂ quadrature of these modes the unnormalized state in the
quantum memories is

Wm(x, p, y�, q�) =
2m+1�

(s�,t�,k,l)=0

w̃s�t�klx
kply�s

�
q�t

�
e−x2−p2−y�2−q�2 . (5.79)

The matrix elements w̃s�t�kl are

w̃s�t�kl =
2m+1�

(s,t,k�,l�)=0

wstklws�t�k�l�

s,t,k�,l��

(i,j,u,n)=0

�
s

i

��
k�

u

��
t

j

��
l�

n

�
(−1)k

�−u+n2−
1
2 (s+t+k�+l�)

×Λ
�
s+ k� − u− i

�
Λ
�
t+ l� − j − n

�
x�i+u
0 qj+n

0 e−x�2
0 −q20 (5.80)

where x�0 and q0 are the outcomes of the X̂ and P̂ measurements and

Λ(λ) =

�
0 if λ < 0,λ odd,

Γ
�
1+λ
2

�
if λ even.

(5.81)

It is not possible to make an average over the measurement outcomes because it is necessary
to find the entanglement of the swapped state, which depends on the specific values of
the outcomes. As a measure of entanglement the fidelity with a maximally entangled
state called the target state is used. To obtain an expression for the target state some
assumptions are made for the state (5.65) . Assuming that

cos(
1
√
2
(µm + µ̃m)p�) = cos(

√
2µmp�) = cos(

√
2µ̃mp�) = cos(θ)

sin(
1
√
2
(µm + µ̃m)p�) = sin(θ) (5.82)
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and that b = −a∗ and e = c∗ the unnormalized target state can be written as

|Φtarget�xq� = [Acos(θ) + Bsin(θ)] |0m�x |0m�q� − [A∗cos(θ) + B
∗sin(θ)] |1m�x |1m�q�

+ [Ccos(θ) + Dsin(θ)] |1m�x |0m�q� + [C∗cos(θ) + D
∗sin(θ)] |0m�x |1m�q� ,(5.83)

which is a maximally entangled state. Since the assumption that b = −a∗ and e = c∗ is true
for the first swap, this holds true for any swap within assumption (5.82). The coefficients
A,B,C and D depend on the measurements in the previous swaps. The expression for
the coefficients can be seen in Appendix B.5. θ is found by optimizing the fidelity as a
function of θ. The fidelity, F of state (5.83) and the normalized version of state (5.79) can
be written as:

F = (Acos2(θ) + Bsin2(θ) + Ccos(θ)sin(θ))(D + Ecos2(θ))−1. (5.84)

The optimal choice of θ is found by solving ∂F
∂θ = 0. The expressions for the constants

A,B, C,D, E can be seen in Appendix B.6.
The fidelity of state (5.83) and state (5.56) in the first swap is seen in figure 5.12 for
different outcomes of the X̂ measurement.
Figure 5.12 shows that the state (5.83) is a good choice of a target state since the fidelity
pattern is very similar to the entropy pattern seen in figure 5.10.

In order to swap the Wigner functions measurement outcomes for the P̂ and X̂ mea-
surements are simulated using the method described in Appendix B.4. Hence a set
{(p1, x1), (p2, x2), . . . , (pn, xn)} is obtained for a maximum of four swap levels and the fi-
delity of the resulting Wigner function and the state (5.83) is calculated. The procedure is
repeated a 100 times to obtain the average fidelity after each swap level. To see how the
fidelity drops with the number of swap levels the starting state is the Wigner function of
state (5.32). The simulations are made for m = 1, 2, 3 with different acceptance intervals
[−δ, δ] for the outcome of the X̂ measurements. The plots resulting from the simulation
are seen in figure 5.13.
The fidelity behaves in the same way as the entropy, which again confirms that state (5.65)
is a good target state. For m = 3 the final fidelity after four swap levels is ∼ 90% for
δ ≤ 1.8. Figure 5.13 also shows that the acceptance interval can be increased for larger
values of m as expected.

The entanglement swapping in the altered hybrid repeater is not as effective as in the
original hybrid repeater since a bound of 90% on the output fidelity was assumed in the
original repeater. This bound is already reached after four swap levels when swapping
states of the type (5.32) in the altered repeater, which is in the limit of ∆ → 0 and r → 0.
The fidelity will of course drop as ∆ and r increase because the starting state will look
less like the state (5.32)9 and thus a lower bound of 90% cannot be assumed in the altered
hybrid repeater for m ≤ 3 when more than three swap levels are made.

9This will also weakly influence the probability of a successful swapping i.e. the probability that the X̂
measurement falls in the acceptance interval.
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(a) Fidelity for m = 1 iterations

(b) Fidelity for m = 2 iterations

Figure 5.12
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(c) Fidelity for m = 3 iterations

Figure 5.12: The fidelity as a function of the P̂ measurement for different values of m and
different outcomes of the X̂ measurement. The similarity with figure 5.10 indicates that
state (5.83) is a good target state.
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(a) Mean fidelity for m = 1 iterations

(b) Mean fidelity for m = 2 iterations

Figure 5.13
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(c) Mean fidelity for m = 3 iterations

Figure 5.13: The mean fidelity as a function of the swap level for different values of m
and different choices of acceptance intervals (δ). The plots were made by picking outcomes
of the X̂ and P̂ measurements according to the related probability distributions. This
corresponds to simulating 4 swap levels in an experiment. The simulation was repeated a
100 times and the mean fidelity was calculated. The error was calculated as the standard
deviation of the mean.
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Chapter 6

Performance and Final Results

6.1 Optimization

The full scheme of the altered hybrid repeater is seen in figure 6.1 and is the nested
collection of all three steps - growing, connecting and entanglement swapping. To find the
highest rate of entanglement distribution the performance of the repeater is optimized.
The fidelity between the distributed state and the state in eq. (5.83) is used as a measure
of entanglement and a lower bound of 80% for the distributed entanglement is required i.e.

F = |�Φtarget| ρ̂out |Φtarget�|
2
≥ 0.8 (6.1)

where ρout is the density operator of the distributed state and |Φtarget� is the target state.
This bound is lower than in Ref. [13] because the entanglement swapping is not as effective
in the altered hybrid repeater as in the original hybrid repeater for iteration number m ≤ 3.
Do to runtime reasons the simulations are restricted to m ≤ 3 and it is necessary to have
m ≥ 4 in order to have a lower bound of 90% in the altered repeater.
There are 5 parameters to consider in the optimization:

- �∆: Smaller acceptance intervals in the growing procedure increases the fidelity of the
one-mode states with the optimal state obtained for �∆ = 0 but it also decreases the
rate at which the states are generated.

- m: Increasing m lowers the rate at which the one-mode states are generated but
increases the fidelity of the connected two-mode states and a locally squeezed two-
mode cat state. Thus the swap performance of the states are increased for large
m.

- r: The parameter r determines the reflectivity of the beam splitters in the connection
of the one-mode states. The entanglement of the connected states increases for r → 0
but the probability of a successful connection will likewise tend to zero.
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Figure 6.1: The nested collection of the altered hybrid repeater.

- δ: δ determines the probability of a successful swap and the fidelity of the output
state with the target state. The fidelity seems almost independent of δ up to a certain
value δmax,m where it drops (see figure 5.13). The probability of a successful swap
increases with δ and the optimal choice of δ is found be investigating how the increase
in the success probability compensates for the drop in the fidelity.

- n: The number of swap levels (n) determines the classical communication time (L0/c)
between the stations in the elementary links and hense the loss in the fibers between
the stations in the connection step.1

The optimization could be made by simply calculating the rate of the repeater on a grid
of values for ∆,m, r, δ and n. However do to runtime reasons this grid would not be very
dense for a straightforward calculation and the uncertainty in the optimal rate would be
large. Instead an analytical approximation of the repeater is made to determine in what
vicinity the optimal parameters lies and as a result get a denser grid around the optimal
values. Furthermore a optimal choice of δ is found by investigating the mean entropy of the
swapped state as a function of the outcome of the X̂ measurement in the first swap. δmax,m

denotes the optimal choice of δ for iteration m. The values of δmax,m and the procedure of

1The probability that a photon is lost in the fibers is e
− L0

2Latt where L0 is the length of the elementary
link and Latt is the attenuation length of the fibers
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choosing δmax,m are described in Appendix B.7.

The analytical approximation is based on the assumption that the errors in every step
of the repeater simply add up to give the drop in the final fidelity. This assumption allows
the output fidelity to be written as:

Fout,m(�∆, r, θ, δ, n) = 1− gm(�∆)− fm(r, θ)− hm(δ, n) (6.2)

where gm(�∆), fm(r, θ) and hm(δ, n) account for the errors in the first, second and third
step of the repeater. The simplification: hm(δ, n) → hm(δmax,m, n) = hm(n) is made since
the optimal choice of δ is δ = δmax,m. Also fm(r, θ) → fm(r) since the θ dependence is
very weak when r is small, which will be the case in the optimization.

The rate of the repeater is determined by the probabilities of a successful growing, con-
nection and entanglement swapping, which are denoted Pgrow,m(�∆), Pconnect,m(r, θ) and
Pswap,m(δ). It is necessary to express the output fidelity as a function of these probabilities
in order to make an optimization of the rate of the repeater. In the optimization δ = δmax,m

and therefore Pswap,m is a constant for a given number of iterations. Furthermore it is as-
sumed that

Pconnect,m(r, θ) ≈ Pconnect,m(r)cos(θ)2. (6.3)

2This assumption underestimates the actual success probability of the connection step since
it is only true when one photon is extracted from the input states. However it is not a
grave underestimation since r is very small, which means that essentially only one photon
is extracted. With this assumption the output fidelity is

Fout,m,n(Rgrow,m, Pconnect,m, n) = 1−G(Rgrow,m(�∆))− F (Pconnect,m(r))−Hn,m (6.4)

where G(Rgrow,m(�∆)), F (Pconnect,m(r)) and Hn,m accounts for the errors in the first, second

and third step of the repeater. Rgrow,m(�∆) denotes the rate of the growing step in units
of the source repetition rate (see eq. (4.15)).

The repeater was simulated numerically in Matlab to find the expressions for the func-
tions G(x), F (x) and the values of Hn,m. The simulations were made by varying one
parameter at a time and plot the resulting output fidelity against the probability associ-
ated with that parameter. The resulting curve was fitted with either a polynomial or an
exponential function. θ = 0 and δ = δmax,m in all simulations. The procedure used to
determine Hn,m, G(x) and F (x) can be described as follows:

- Hn,m: Let �∆ → 0, r → 0 and vary n and m. Then Hn,m is calculated as 1− Fout.

2Note that Pconnect,m(r) = Pconnect,m(r, 0).
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- F (Pconnect,m(r)): Let �∆ → 0 and vary r. Plot the resulting output fidelity against
Pconnection,m(r) for all combinations of m and n. The output fidelity should be cor-
rected by adding it with Hn,m. The resulting 12 curves are fitted with a function
f(x) = ax2 + bx+ 1 in which the fit parameters are a and b.

- G(Pgrow,m(�∆)): Let r → 0 and vary �∆. Correct the output fidelity by adding it with

Hn,m and plot it against Pgrow,m(�∆) for all combinations of m and n. The resulting
12 plots are all fitted with a function f(x) = 1+ cebx in which the fit parameters are
c and b.

The result of the simulations can be seen in Appendix C.1. The simulations showed that
the output fidelity can be written as:

Fout,m,n(Rgrow,m, Pconnect,m) = 1− an,mPconnect,m(r)2 − bn,mPconnect,m(r)

−cn,medn,mRgrow,m(�∆)
−Hn,m (6.5)

where an,m ≤ 0, bn,m ≥ 0, cn,m ≥ 0,dn,m ≥ 0 and Hn,m ≥ 0.
The fact that am,n ≤ 0 confirms that expression (6.5) is only a valid approximation for
Pconnection,m � 1. The validity of the approximation (6.5) was studied by running simu-

lations of the repeater for different values of m, �∆, r, θ and n. The output fidelities were
compared with the results obtained by using expression (6.5). In the simulations differences
≤ 10% for the output fidelity were seen for Pconnection,m � 1 and therefore approximation
(6.5) should only be used to give a first guess of the optimal values of the success probabil-
ities. Furthermore approximation (6.5) resulted in higher output fidelities than obtained
in the simulations.

The approximation (6.5) is used to optimize the rate of the repeater but additional as-
sumptions are necessary. Perfect one-mode quantum memories where the quantum signal
can be stored without losses are assumed. This assumption is common in quantum re-
peater schemes and is also made in Ref. [13]. Furthermore the classical communication
time L0/c is assumed to be the time it takes to make one connection attempt in step two
of the repeater. The length of the elementary links will be ∼ 100 km, which corresponds
to a classical communication time of ∼ 0.3 ms. The local processes in the connection step
take less than 1 µs and hence the assumption is valid.
The time it takes to provide the initial one-photon states for the growing of cat states
cannot be neglected. Since it is a local process this time is assumed to be tlocal = 1 µs and
thus the average time needed to grow a cat state is

tcat =
tlocal

Rgrowth,m(�∆)
(6.6)

In a sense the entanglement swapping is a non-local process because after a swap attempt
a signal needs to be transmitted to the two stations telling whether the swap was successful
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or not. Therefore the average time needed to perform a swap at the n’th swap level given
entanglement in two neighboring links at level n− 1 is

tswap =
2n−1L0

c
·

1

Pswap(δmax,m)
(6.7)

since the time of the local operations in the swap is negligible.
With the preceding assumptions the rate of the repeater is

1

r0
=

tlocal

Rgrowth,m(�∆)
·

1

Pconnect,m(r, θ)
·
3

2
+

L0

c
·

1

Pconnect,m(r, θ)
(6.8)

1

r1
=

1

r0
·
3

2
·

1

Pswap(δmax,m)
+

L0

c
·

1

Pswap(δmax,m)
(6.9)

1

r2
=

1

r1
·
3

2
·

1

Pswap(δmax,m)
+

2L0

c
·

1

Pswap(δmax,m)
(6.10)

...
1

rn
=

1

rn−1
·
3

2
·

1

Pswap(δmax,m)
+

2n−1L0

c
·

1

Pswap(δmax,m)
(6.11)

where n is the number of swap levels in the repeater. The assumption of eq.(3.21) gives
the factors of 3

2 ’s.

The rate should be optimized under the constraint that Fout ≥ 80%, which is possible
using the method of Lagrange multipliers. The approximation (6.5) is used to define the
functions

Tm,n = rn − Λ · (Fout,m,n(Rgrow,m, Pconnect,m)− 0.8) . (6.12)

and solve the equations

∂Tm,n

∂Pconnect,m(r)
= 0

∂Tm,n

∂Rgrow,m(�∆)
= 0

∂Tm,n

∂Λ
= 0 (6.13)

The solution
�
R∗

grow,m, P ∗
connect,m,Λ∗� are the optimal values of the connection success

probability and the rate of the growing procedure within assumption (6.5)3. For a given
distance d the optimization is made for all combinations of m and n. The optimal number
of iterations (m) and the optimal number of swap levels (n) are found by comparing the

3Note that Pconnect,m(r, θ) = Pconnect,m(r)cos2(θ) in the expression for rn
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rates for the different combinations of m and n. An attenuation length (Latt) of 20 km is
assumed and accordingly cos2(θ) = e−L0/40km. The result of the optimization is seen in
table 6.1.

In order to find the optimal rate of the repeater table 6.1 is used to make a grid of

d/km m n R∗
grow,m(�∆) P ∗

connect,m(r)cos2(θ)
100 1 0 0.205 0.221
200 2 1 0.0673 0.115
300 2 2 0.0586 0.0500
400 3 2 0.0143 0.0505
500 3 3 0.0133 0.0211
600 3 3 0.0128 0.0214
700 3 3 0.0124 0.0216
800 3 3 0.0120 0.0218
900 3 3 0.0116 0.0219
1000 3 3 0.0113 0.0221
1200 3 3 0.0110 0.0223
1400 3 4 0.00798 0.00668
1600 3 4 0.00773 0.00676
1800 3 4 0.00751 0.00683
2000 3 4 0.00731 0.00690

Table 6.1: Result of the optimization using the approximation (6.5) and the method of
Lagrange multipliers.

values for �∆,m, r and n on which to simulate the repeater. The number of iterations m
and the number of swap levels n are set to the values in table 6.1 since the uncertainty
of these is small4. Furthermore the values for δmax,m found in Appendix B.7 are used

for the acceptance intervals in the entanglement swapping. Rgrow,m(�∆) spans the interval�
1
2R

∗
grow,m(�∆), 32R

∗
grow,m(�∆)

�
in 10 equally spaced steps and likewise Pconnect,m(r, θ) spans

the interval
�
1
2P

∗
connect,m(r)cos2(θ), 32P

∗
connect,m(r)cos2(θ)

�
in 10 equally spaced steps. To

get an average output fidelity for each point 100 swap procedures are simulated for each of
the 100 grid points. The result is a grid of 100 points from which the optimal rate subject
to the bound Fout ≥ 80% is found. If the optimal point consists of one of the outer points
in the original intervals of Rgrow,m(�∆) and Pconnect,m(r, θ) a new simulation with different
intervals is made.
The assumptions in the simulations are: Latt = 20km, tlocal = 1µs, SPD detector efficien-
cies of 50% (not number resolving) and that a connection attempt takes the time L0/c.

4The rate-difference for different combinations of m and n was large

76



Furthermore perfect quantum memories and sources of perfect one-photon states are as-
sumed. The result of the simulation is shown in table 6.2 and the resulting figure 6.2.

d/km m n Rgrow,m(�∆) Pconnect,m(r, θ) rate (pairs pr second)
100 1 0 0.15 0.011 32
200 2 1 0.075 0.0051 4.4
300 2 2 0.075 0.0045 1.5
400 3 2 0.014 0.0024 0.55
500 3 3 0.012 0.0023 0.26
600 3 3 0.012 0.0017 0.17
700 3 3 0.011 0.0012 0.11
800 3 3 0.011 0.00091 0.071
900 3 3 0.011 0.00067 0.048
1000 3 3 0.011 0.00049 0.033
1200 3 3 0.0085 0.00025 0.014
1400 3 4 0.0030 0.00044 0.0067
1600 3 4 0.0030 0.00032 0.0047
1800 3 4 0.0030 0.00023 0.0033
2000 3 4 0.0030 0.00017 0.0023

Table 6.2: Result of the optimization of the altered repeater. The rate is measured in
entangled pairs pr. second. A lower bound of 80% with state (5.83) was assumed

Table 6.2 shows that the repeater has a rate of ∼ 2 pairs/minute at a distance of 1000
km with a lower bound of 80% on the fidelity. This is 20 times higher than the rate of the
original hybrid repeater scheme by Jonathan B. Brask et al., which was 0.1 pairs/minute
at a distance of 1000km. Nonetheless a lower bound of 90% on the fidelity was assumed in
Ref. [13] and furthermore figure 6.2 shows that the fractional difference of the rate of the
altered repeater and the original repeater decreases with the distance5. This is because the
states in the altered repeater do not swap as good as the states in the original repeater.
Consequently the altered repeater do not perform significantly better than the original
repeater except at small distances (< 500 km).

5The rate of the altered repeater is 33 times higher than the rate of the original repeater at a distance
of 100km, 20 times higher at a distance of 1000 km and 13 times higher at a distance of 2000km
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Figure 6.2: The optimal rate of the altered hybrid repeater and the original repeater vs.
the distance/km. The rate is measured in pairs pr. second. A lower bound of 80% with
state (5.83) was assumed in the altered repeater. The data needed to plot the rate of the
original repeater was provided by Jonathan B. Brask.
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6.2 Two-photon errors

So far perfect one-photon states have been assumed as input states for step one in the al-
tered repeater scheme. However this is not assumed in Ref. [13] in which the optimization
includes two-photon contributions. The rate at which the input states can be provided
is determined by the percentage contribution of two-photon errors (p). In the altered re-
peater tlocal = 1 µs, which is optimistic when perfect one-photon states are assumed i.e.
for vanishing p. Thus it is necessary to allow for two-photon errors in the repeater and
study how this affects the rate.

The perturbative approach of Ref.[26] is used to include two-photon errors in the altered
repeater. The input states of the repeater are

W (x, p) = (1− p)W1(x, p) + pW2(x, p) (6.14)

where W1 is a one photon state and W2 is a two-photon state. The product state at the
beginning of the repeater is

WN = ((1− p)W1 + pW2)
N =

N�

i=0

�
N

i

�
((1− p)W1)

i (pW2)
N−i (6.15)

where N = 2m+n+1, m is the number of iterations in the growing step and n is the number
of swap levels. Assuming that p � 1 all terms with pi>1 are neglected. Thus the input
state of the repeater is

(1−Np)WN
1 +NpWN−1

1 W2. (6.16)

Eq. (6.16) describes the situation where either all input states are one-photon states
((1−Np)WN

1 ) or where exactly one of the input states is a two-photon state (NpWN−1
1 W2).

The output fidelity of the repeater is calculated as:

F (p,m, n, �∆, r) = (1− f2Np)F1(m,n, �∆, r) + f2NpF2(m,n, �∆, r) (6.17)

where F1 is the output fidelity with perfect one-photon states and F2 is the output fidelity
where one of the input states is a two-photon state. The factor of N takes care of the fact
that the two-photon state could be any of the 2m+n+1 input states and the factor f2 takes
into account that the probability of a two-photon state being accepted is different from
the probability of a one-photon state being accepted. f2 is determined numerically from
simulating the growing step of the repeater since the probability of a successful connection
and swapping is more or less the same with or without a two-photon error.

F2(m,n, �∆, r) is calculated with the same grid used for the optimization of F1(m,n, �∆, r)
except that only grid points for which F1(m,n, �∆, r) ≥ 80% are considered. The runtime
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of the simulation is increased since a simulation with a two-photon input state and m iter-
ations corresponds to a simulation of m+ 1 iterations with one-photon inputs in terms of
the number of calculations. Therefore the simulations are restricted to distances ≤1000km.
From the simulations the largest value of p for which the bound

(1− f2Np)F1(m,n, �∆, r) + f2NpF2(m,n, �∆, r) ≥ 80% (6.18)

is still satisfied is determined for each grid point individually.
It is necessary for the rate of the repeater to depend on p when two-photon components
are included. Assuming sources of two-mode squeezed vacuum states to produce the one-
photon states as in Ref.[13], the probability of producing a one-photon state, p1 and a
two-photon state, p2 is

p1 =
tanh2r

cosh2r
, p2 =

tanh4r

4cosh2r
(6.19)

where r is the squeezing parameter and it is assumed that θ = 0 (see eq.(4.3)). For weak
squeezing (r � 1) p2 ≈

1
4p

2
1 and the percentage contribution of two-photon states, p is

p =
1

1 + p1
p2

≈
1

1 + 4
p1

≈
p1
4
. (6.20)

When using sources of two-mode squeezed vacuum states it is possible to produce photons
for the repeater in a deterministic way. A detector is placed to measure one of the output
modes from the source and the other output mode is kept if the detector ’clicks’. A click
means that the other mode contains at least one photon6. The average time it takes to
generate one input state for the repeater including two-photon errors and assuming sources
of two-mode squeezed vacuum states is

tinput =
tsource

4pηdetector
(6.21)

where ηdetector is the probability of the detector to measure a photon. The rate of the whole
repeater is obtained by letting

tlocal →

�
3

2

�
tsource

4pηdetector
(6.22)

in eq. (6.8) - (6.11). Photodetectors with efficiencies of 50% were assumed in the preceding
simulations and therefore ηdetector = 50%. tsource is varied in order to determine how the
rate of the altered repeater depends on the source repetition rate. For each distance d
and each value of tsource the optimal rate is found from the grid points. The result of the
calculation is seen in figure 6.3.

6The possibility of dark counts where the detector clicks without any photon hitting it is neglected

80



Figure 6.3: The optimal rate vs. the distance for different values of tsource. The rate
obtained when assuming perfect one-photon input states is reached for tsource ∼ 10−9 s.
The rate for tsource ≥ 10−8 s and distances > 300km could be improved by including
the two-photon contribution in the Lagrange-optimization instead of using the grid where
perfect one-photon input states were assumed.
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The rate obtained when assuming perfect one-photon input states is reached when
tsource ∼ 10−9 s, which corresponds to a source repetition rate of GHz. This is a high
repetition rate when the signal needs to be stored in quantum memories7.
The procedure used to include two-photon errors in the repeater effectively amounts to a
perturbative treatment of p. As a small test of eq.(6.17) the repeater was simulated for
the gridpoints where m = 2 and n = 1 using states of the form (6.14) as input states. The
resulting output fidelities deviated with ≤ 5% from the results using eq.(6.17). Furthermore
eq.(6.17) resulted in higher output fidelities than the simulations.
It is desirable to include the two-photon error in the Lagrange-optimization as well, which
would result in a grid for each value of p. Looking at figure 6.3 it seems that the rate could
be improved for distances > 300km and tsource ≥ 10−8 s. However, it requires numerous
simulations of the repeater to do the Lagrange optimization including two-photon errors,
which is time consuming.

7A high source repetition rate also means a broad energy bandwidth of the photons which is hard to
read into e.g. a quantum memory based on an atomic ensemble.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

The main subject of this thesis was the hybrid quantum repeater protocol suggested by
Jonathan B. Brask et al. in Ref. [13]. This repeater protocol consists of three steps de-
scribed in chapter 4. The first step is to create entanglement in the elementary links in
form of bell-like states. I the next step approximately squeezed two-mode cat states are
grown from the bell-like states. The final step of the protocol is entanglement swapping,
which is performed using balanced beam splitters and homodyne detection.

The objective of this thesis was to improve the original hybrid repeater protocol by
Jonathan B. Brask et al. Two ways of improving the protocol was studied, which resulted
in an altered repeater protocol. The first of these was to optimize the method used to
grow the approximately squeezed cat states. The method was studied using single-photon
states as input states, which produced approximately squeezed one-mode cat states. The
optimization was made by allowing for different acceptance intervals in every iteration of
the growing procedure. The optimal choices of acceptance intervals was found by imple-
menting the growing procedure in the program Matlab and making a numerical simulation
of the growing step. Wigner functions were used in the simulation in order to get the av-
erage outcome of the growing procedure. The average success probability and the average
output fidelity with a squeezed one-mode cat state was calculated on a grid of different
values for ∆1,∆2 . . .∆m where ∆m determines the acceptance interval of iteration m. The
simulation was performed for a maximum of three iterations under the assumption that
∆m+1 > ∆m.
The optimization showed that the rate of growing approximately squeezed cat states was
improved by allowing for different acceptance intervals in each iteration. However the im-
provement was not significantly high for output fidelities > 90%. For an output fidelity of
90% the rate of growing in units of the source repetition rate was raised from 0.1378 to
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0.1423 for two iterations and from 0.03791 to 0.04104 for three iterations. Perfect one-mode
quantum memories were assumed in the simulation.

The other idea to improve the original scheme was to interchange step one and two. In
this way it is not necessary to reestablish entanglement in the elementary links every time
a growing procedure fails. The method suggested by N. Sanguard et al. in Ref. [14] to
connect one-mode cat states into two-mode cat states was used. The squeezing of the
one-mode cat states made it necessary to use another target state for the connection than
the two-mode cat states of Ref. [14]. The new target state was a maximally entangled
state described in a basis of {|1m� , |0m�} where the subscript m refers to the number of
iterations in the growing procedure. |1m� and |0m� are superpositions of even and odd
Fock states respectively. For m ≥ 5 the target state is a locally squeezed two-mode cat
state. A numerical simulation of the connection step was made in Matlab in which photon
losses and imperfect photo-detectors were included. The average time needed to establish
entanglement using the approximately squeezed cat states as input states was shown to be
comparable to the time of entanglement creation in Ref.[14].

In section 5.3 the swapping procedure of Ref. [13] was applied to the connected two-mode
states of the altered repeater. The swapping procedure was simulated in Matlab using
Wigner functions to describe the states. The measurement outcomes for the X̂ and P̂
measurements in the swapping procedure were simulated by picking values according to
the corresponding probability distributions of the outcomes. The target state of the re-
peater after a number of swap levels was a maximally entangled state described in the basis
of {|1m� , |0m�}. For m ≥ 5 this target state is essentially a locally squeezed two-mode cat
state and thus near-deterministic swapping can be obtained using the method described
in Ref.[13] for large m. The result of the simulation was that the two-mode states of the
altered repeater do not swap as good as the connected states in Ref.[13].

The final step of the thesis was to assemble the three steps of growing cat states, con-
necting them and entanglement swapping into an altered hybrid repeater protocol. The
performance of the repeater depended on a number of parameters belonging to each of the
three steps. An analytical approximation of how the final fidelity with the target state
depended on these parameters was made in order to find the optimal rate at which the
repeater could distribute entanglement. The approximation was based on numerical sim-
ulations of the repeater in Matlab and was used to find a first guess of the optimal choice
of each parameter at a given distance. Afterwards the repeater was simulated numerically
on a grid around each point in order to find the optimal rate of the repeater. When calcu-
lating the rate of the repeater perfect one-mode quantum memories, an attenuation length
of 20km in the fibers and a time of L0/c to do a connection attempt was assumed1. Fur-

1L0 is the length of an elementary link and c is the speed of light
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thermore a source of perfect one-photon states were assumed. The time needed to produce
the one-photon states was 1µs and the lower bound on the final fidelity was 80%.
The result of the optimization was that the altered hybrid repeater had a rate of ∼ 2
pairs/minute at a distance of 1000km with a lower bound of 80% on the fidelity with the
maximally entangled target state. The original hybrid repeater by Jonathan B. Brask et
al. had a rate of 0.1 pairs/minute at a distance of 1000 km with a lower bound of 90% on
the fidelity with a maximally entangled target state. Furthermore the fractional difference
of the rate of the altered repeater and the original repeater decreased with the distance
because the states in the altered repeater did not swap as good as the states in the original
repeater. It was not possible to set a lower bound of 90% on the fidelity in the altered
repeater scheme because the simulation was restricted to m ≤ 3.

Two-photon errors were included in the repeater in a perturbative way and sources of
two-mode squeezed vacuum states were imagined to generate the input states of the re-
peater. This made it possible to study how the rate of the altered repeater depended on
the source repetition rate. It was shown that a source repetition rate around 1 GHz was
required to obtain a rate comparable to to the rate where perfect one-photon states were
assumed as input states. A repetition rate of 1 GHz is high because the signals need to be
stored in quantum memories.

7.2 Outlook

The initial hope was that the altered hybrid repeater would perform significantly better
than the original hybrid repeater of Ref. [13]. The rate of the altered repeater turned out
to be higher than the rate of the original repeater but with a lower bound of 80% on the
output fidelity with a maximally entangled state compared to a bound of 90% in Ref. [13].
A lower bound of 90% in the altered repeater requires simulations with m > 3, which would
decrease the rate at which the cat states are grown. However, this does not influence the
time-consuming connection step and the swap performance of the two-mode states would
be increased. Hence it is possible that the rate of the altered repeater with a bound of 90%
would be comparable to the rate obtained in Ref. [13] and perhaps higher. The programs
that I have written in Matlab to simulate the repeater can be used directly to simulate the
whole repeater for m > 3 but the simulation will be time consuming, which is the reason
that I have not done this.

It would also be interesting to include the two-photon error in the Lagrange-optimization
since it seems that the grid used for the two-photon simulation could be chosen more
wisely. The plots in figure 6.3 indicate that a higher rate could be obtained for distances
> 300km and tsource ≥ 10−8 s if another grid was chosen. I have written the programs
necessary to simulate the repeater with two-photon errors in Matlab and the only obsta-
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cle is that the simulations are time-consuming. The programs are described in Appendix D

Another approach to improve the altered hybrid repeater would be to remove the squeezing
of the approximate cat states before the connection. The connected states swap ’poorly’
for small m because of the squeezing in the one-mode input states, which makes the con-
nected states deviate from two-mode cat states. The squeezing produced when growing the
cat states are ∼ 3dB,2 which is accessible experimentally and therefore could be removed
[30, 31, 32]. To remove the squeezing in the X̂ quadrature the state would have to be
equally ”squeezed” in the P̂ quadrature. It is hard to squeeze the state in a quantum
memory and it might be necessary to read out the state, squeeze it and read it in again.
This would lower the rate of the repeater along with the possibility of errors in the process.

The Achilles heel of the altered repeater scheme is the swapping operation, which could
be improved by letting m > 3 or by removing the squeezing in the one-mode states. How-
ever perfect quantum memories allowing a signal to be stored and retrieved without any
losses were also assumed in the repeater. This is not a very realistic assumption though
it is common to assume highly efficient quantum memories in quantum repeater litera-
ture [13, 14, 29, 34, 35]. The quantum memories realized experimentally are far from
being 100% effective [33] and thus an effective way of dealing with the errors introduced
by inefficient quantum memories is necessary. One solution is to make an entanglement
purification protocol for the repeaters. Entanglement purification is the process where
’copies’ of the distributed pair are used to increase the entanglement. By local operations
the ’copies’ are manipulated to produce a more entangled pair [36, 37, 38]. This means
that the initial entanglement of the distributed pairs do not need to be as high because
the final entanglement can be enhanced by the purification protocol.
Such purifications protocols exists for various type of states but to my knowledge it does
not exist for the cat states used in the hybrid repeaters. Developing an entanglement pu-
rification protocol for cat states would be an interesting challenge.

Another approach to the problem of inefficient quantum memories is to use multimode
quantum memories. In the optimization quantum memories capable of storing one mode
each were assumed while multimode memories can store a number of modes. Multimode
memories could be used in both parallelization and multiplexing schemes where parallel
channels are used to distribute entanglement. Especially multiplexed schemes have shown
to be robust to memory inefficiencies [39]

A side from the preceding suggestions to improve the repeater scheme there are some other
areas of the altered repeater to consider. The possibility of dark counts was neglected in
the simulations. It was assumed in both the generation of the one-photon states and in

2See Ref. [13]
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the connection step that the photodetectors did not click if nothing hit them. However,
the photodetectors realized experimentally have the possibility of dark counts where the
detector clicks without any photon hitting it. This would be a serious error in the repeater
since it allows for vacuum components in the input states and decreases the performance
of the connection step. Thus including dark counts in the simulation would decrease the
rate of the repeater.
Finally the local operations in the altered repeater made use of beam splitters and homo-
dyne detection. Losses connected with these operations were neglected but could also be
included in the simulation.
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Appendix A

Teleportation

The general scheme of entanglement assisted teleportation is shown in this appendix. The
appendix is based on material form the course ”Quantum Information Theory” at NBI,
Copenhagen.

First a set of tools is defined:

Tool 1 Let |Ω� be a maximally entangled state in the Hilbert space H = C
d ⊗ C

d. There
exits a orthonormal basis {|1� , . . . , |d�} such that

|Ω� =
1
√
d

d�

i=1

|i� ⊗ |i� (A.1)

This is the Schmidt decomposition of |Ω�

Tool 2 Let U be a d× d matrix. Then

(U ⊗ I) |Ω� = (I⊗ UT ) |Ω� (A.2)

proof:

�k, l|U ⊗ I |Ω�
?
=

�
k, l

�� I⊗ UT
��Ω

�

1
√
d

d�

i=1

�k|U |i� · �l| i�
?
=

1
√
d

d�

i=1

�
l
��UT

��i
�
· �k| i�

1
√
d
�k|U |l� =

1
√
d

�
l
��UT

��k
�

(A.3)
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Figure A.1: Alice and Bob shares a maximally entangled state |Ω�A2B
symbolized with the

connected black dots. Furthermore Alice has a unknown state |Ψ�A1
that she wishes to

teleport to Bob

Tool 3 Let |Ψ�A ∈ C
d be a state in system A and |Ω�AB ∈ C

d ⊗ C
d be a maximally

entangled state of the bipartite system AB. Then

(�Ψ|A ⊗ Ib) |Ω�AB =
1
√
d
|Ψ∗

�B (A.4)

proof: Let |Ψ� =
�d

j=1Cj |j�. Then:

(�Ψ|A ⊗ Ib) |Ω�AB =
1
√
d

d�

i,j=1

C∗
j (�j|A ⊗ IB) (|i�A ⊗ |i�B)

=
1
√
d

d�

i=1

C∗
i |i�B

=
1
√
d
|Ψ∗

�B (A.5)

Tool 4 There exist unitaries {Ui}i=1...d2 such that:

|Ωi� = (I⊗ Ui) |Ω� (A.6)

is a orthonormal basis in C
d ⊗ C

d. For d=2:

{Ui} = {I,σx,σy,σz}and

{|Ωi�} =
���Ψ+

�
,
��Ψ−� ,

��Φ+
�
,
��Φ−�� (A.7)

With these tools in place the teleportation scheme can be shown. The setup is seen in
figure A.1 The initial state is

|Ψ�A1
⊗ |Ω�A2B

∈ C
d
⊗ C

d
⊗ C

d (A.8)
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where |Ψ�A1
is the unknown state that Alice wants to teleport to Bob. Now alice performs

a joint measurement of the von Neumann type on system A1 and A2 and gets outcome i.
Consequently the system is:

�
|Ωi� �Ωi|A1A2

⊗ IB
� �

|Ψ�A1
⊗ |Ω�A2B

�
(A.9)

Using tool 4 Bob’s system is:

�
�Ω|A1A2

(IA1 ⊗ U †
i,A2

)⊗ IB

� �
|Ψ�A1A2

⊗ |Ω�A2B

�
= (use tool 2 )

�
�Ω|A1A2

⊗ IB
�
|Ψ�A1

⊗

�
U †
i,A2

⊗ IB

�
|Ω�A2B

= (use tool 3)

1
√
d

�
�Ψ∗

|A2
⊗ IB

� �
IA2 ⊗ U∗

i,B

�
|Ω�A2B

=

1

d
U∗
i,B |Ψ�B (A.10)

If Bob are told the measurement outcome from Alice he can apply UT
i to get |Ψ�B. Thus

the state |Ψ� has been teleportet to Bob.
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Appendix B

Supplement to Chapter 5

B.1 Matrix element wstkl

The Matrix element wstkl is

wstkl =
2

π4

2m+1�

{i,i�,j,j�}=0

{i−s,j−t,i�−k,j�−l}�

{s�,t�,k�,l�}=0

{s�,t�,k�,l�}�

{s��,t��,k��,l��}=0

w̃ijw̃i�j�µ
ij
sts�t�µ

i�j�

klk�l�γ
k�s�
k��s��γ

t�l�
t��l��

×(ηk
��s��ηt

��l��

� �� �
a

− 2κk
��s��κt

��l��

� �� �
b

) (B.1)

Term a describes the situation where there is no click in detector d̃ and anything can
happen at detector d while term b describes the situation where no detector fires. The
combination a− b is the situation where detector d fires and detector d̃ do not.

w̃ are the matrix elements of the one-mode input states being connected. The expres-
sions for η,γ and κ are

µi,j
sts�t� =






�i
s

��j
t

��i−s
s�
��j−t

t�
�
cos(r)s+tsin(r)i+j−s−tcos(θ)s

�+t�sin(θ)i+j−s−t−s�−t�

×Λ(∞, i− s− s�)Λ(∞, j − t− t�) if i > s, j > t

0 if s > i, t > j

γk
�s�

s��k�� = 2−
1
2 (2k

�+2s�−k��−s��+1)

�
s�

s��

��
k�

k��

�
(−1)s

�−s��Λ(∞, k� − s� − k�� − s��)

ηs
��k�� = Λ(∞, k�� + s��)

κs
��k�� = 2−

1
2 (k

��+s��+1)Λ(∞, k�� + s��)
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where

Λ(ε,λ) =

�
0 if λ < 0,λ odd,� ε
−ε x

λe−x2
dx if λ even.

(B.2)

B.2 Matrix elements Fs,t, Gs,t and Hs,t

The expressions of the matrix elements Fs,t, Gs,t and Hs,t seen in eq.(5.57) -eq.(5.60) are:

Fs,t = 2−
1
2 (s+t)xs+te−

1
2x

2






√
2Γ

�
2m −

1
2(s+ t+ 1)

�
1F1

�
2m −

1
2(s+ t+ 1), 12 ,−

p2

2

�
if s+ t = even,

−2ipΓ
�
2m −

1
2(s+ t)

�
1F1

�
2m −

1
2(s+ t), 32 ,−

p2

2

�
if s+ t = odd.

Gs,t = 2−
1
2 (s+t)xs+te−

1
2x

2





−2ipΓ
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1
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�
1F1
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1
2(s+ t− 1), 32 ,−

p2

2

�
if s+ t = even,

√
2Γ

�
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1
2(s+ t)

�
1F1

�
2m −

1
2(s+ t), 12 ,−

p2

2

�
if s+ t = odd.

Hs,t = 2−
1
2 (s+t)xs+te−

1
2x

2






√
2Γ

�
2m −

1
2(s+ t− 1)

�
1F1

�
2m −

1
2(s+ t− 1), 12 ,−

p2

2

�
if s+ t = even,

−2ipΓ
�
2m −

1
2(s+ t− 2)

�
1F1

�
2m −

1
2(s+ t− 2), 32 ,−
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�
if s+ t = odd.

where x and p are the outcomes of the X̂ and P̂ measurements.

1F1 are the confluent hypergeometric function defined as:

1F1 =
∞�

n=0

(a)nzn

(b)nn!
(B.3)

where (a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1)

B.3 Coefficients A and C

The explicit expressions for the coefficients A and C in eq.(5.74) are:

A = [�(c1)�(c2) + �(c1)�(c2)−�(a1)�(a2) + �(a1)�(a2)] cos(2
(m+1)/2p�)

− [�(c1)�(a2)−�(a2)�(c1)−�(a1)�(c2)−�(c2)�(a1)] sin(2
(m+1)/2p�)

+I [�(c1)�(c2)−�(c2)�(c1)−�(a1)�(a2)−�(a2)�(a1)] cos(2
(m+1)/2p�)

+I [�(c1)�(a2) + �(c1)�(a2)−�(a1)�(c2) + �(a1)�(c2)] sin(2
(m+1)/2p�)(B.4)

C = [�(c1)�(a2)−�(a1)�(c2)−�(a1)�(c2)−�(c1)�(a2)] cos(2
(m+1)/2p�)

− [�(a2)�(a1)−�(c2)�(c1)−�(c1)�(c2)−�(a1)�(a2)] sin(2
(m+1)/2p�)

+I [�(c2)�(a1)−�(a1)�(c2)−�(a2)�(c1)−�(c1)�(a2)] cos(2
(m+1)/2p�)

+I [�(c1)�(c2)−�(a1)�(a2)−�(c1)�(c2)−�(a1)�(a2)] sin(2
(m+1)/2p�)(B.5)

When states of the type (5.32) are swapped, a1 = a2 = 0 and c1 = c2 = 1 in the first swap
level. In that case �(A) = 0 and that �(C) = 0 in this swap level and hence in all later
swap levels.
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B.4 Simulating measurement outcomes

The cumulative distribution functions (CDF) of the outcome of the X̂ and P̂ measurements
are used to pick the outcomes according to the probability distributions. The definition of
the cumulative distribution function is:

Definition 1 Let f(x) be probability density function of a real valued variable x. The
cumulative distribution function, F (x) is

F (x) =

x�

−∞

f(t)dt (B.6)

The cumulative distribution function can be used to find the probability that the variable
x lies in some interval ]a; b]:

P (a < x ≤ b) = F (b)− F (a) (B.7)

Where P (a < x ≤ b) is the probability that x lies in the interval ]a; b].

The procedure of picking measurement outcomes is:

- Use the build-in random number generator in Matlab to pick a number, c ∈ [0; 1].

- Solve the equation CDF (x) = c, where CDF (x) is the cumulative distribution func-
tion corresponding to the relevant quadrature operator.

- The solution x∗ is the measurement outcome picked according to the probability
distribution.
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B.5 Coefficients A,B,C and D

The expressions of the coefficients A,B,C and D in eq. (5.83) are:

A = 2 [�(c1)�(c2) + �(c1)�(c2) + �(a1)�(a2)−�(a1)�(a2)] + e−
1
2 (µm−µ̃m)2

×�
(�(a1)�(c2)−�(a1)�(c2) + �(c1)�(a2) + �(c1)�(a2))

�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

�

+i [�(a1)�(c2) + �(c2)�(a1) + �(c1)�(a2)−�(a2)�(c1)]
�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

��

+2i [�(c1)�(c2)−�(c2)�(c1)−�(a1)�(a2)−�(a2)�(a1)] (B.8)

B =

�
− [�(c1)�(a2)−�(a2)�(c1)−�(a1)�(c2)−�(c2)�(a1)]

+i [�(c1)�(a2)−�(a1)�(c2) + �(c1)�(a2) + �(a1)�(c2)]

�

×

�
e−

√
2x(µm−µ̃m) + e

√
2x(µm−µ̃m)

�
e−

1
2 (µm−µ̃m)2 (B.9)

C = 2 [�(c1)�(a2)−�(a1)�(c2)−�(a1)�(c2)−�(c1)�(a2)] + e−
1
2 (µm−µ̃m)2

×�
(�(c1)�(c2)−�(a1)�(a2)−�(c1)�(c2)−�(a1)�(a2))

�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

�

+i [�(a2)�(a1) + �(c2)�(c1) + �(c1)�(c2)−�(a1)�(a2)]
�
e−

√
2x(µm−µ̃m)

− e
√
2x(µm−µ̃m)

��

+2i [�(c2)�(a1)−�(a1)�(c2)−�(a2)�(c1)−�(c1)�(a2)] (B.10)

D =

�
− [�(a2)�(a1)−�(c2)�(c1)−�(c1)�(c2)−�(a1)�(a2)]

+i [�(c1)�(c2)−�(c1)�(c2)−�(a1)�(a2)−�(a1)�(a2)]

�

×

�
e−

√
2x(µm−µ̃m) + e

√
2x(µm−µ̃m)

�
e−

1
2 (µm−µ̃m)2 (B.11)
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B.6 Coefficients A,B, C,D and E

The expressions of the coefficients A,B, C,D and E in eq.(5.84) are:

A = |A|
2 (F0000 + F1111)− (A∗)2F1100 + A

∗
C(F1000 − F1101) + A

∗
C
∗(F0100 − F1110)

−A
2F0011 − AC(F0001 − F1011) + AC

∗(F0010 − F0111) + |C|
2 (F1010 + F0101)

+(C∗)2F0110 + C
2F1001 (B.12)

B = |B|
2 (F0000 + F1111)− (B∗)2F1100 + B

∗
D(F1000 − F1101) + B

∗
D
∗(F0100 − F1110)

−B
2F0011 − BD(F0001 − F1011) + BD

∗(F0010 − F0111) + |D|
2 (F1010 + F0101)

+(D∗)2F0110 + D
2F1001 (B.13)

C = (A∗
B+ B

∗
A)(F0000 + F1111)− 2A∗

B
∗F1100 + (A∗

D+ B
∗
C)(F1000 − F1101)

+(A∗
D
∗ + B

∗
C
∗)(F0100 − f1110)− 2ABF0011 + (AD+ BC)(F0001 − F1011)

+(AD∗ + BC
∗)(F0010 − F0111) + (C∗

D+ D
∗
C)(F1010 + F0101) + 2C∗

D
∗F0110

2CDF1001 (B.14)

D = 2(|B|2 + |D|
2) (B.15)

E = 2(|B|2 + |D|
2 + |A|

2 + |C|
2) (B.16)

where

F0000 =

∞�

−∞

dx

∞�

−∞

dy

∞�

−∞

dp

∞�

−∞

dq

∞�

−∞

dk

∞�
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dl

�x+
1

2
l|�y +

1

2
k| |0m, 0m� �0m, 0m| |y −

1

2
k�|x−

1

2
l�

×e−iqle−ipkW (x, p, y, q) (B.17)

The Wigner function W (x, p, y, q) is the Wigner function in eq.(5.79).

B.7 Choice of δmax,m

The optimal choice of δ is found by calculating the average entropy in the first swap level
for a given outcome of the X̂ measurement . The initial states are assumed to be of the
form in eq.(5.32) and the average entropy, S̄ is calculated by numerically evaluating the
integral

S̄ =

∞�

−∞

dpS(p1)P (p1) (B.18)

p1 is the outcome of the P̂ measurement, S(p1) is the entropy of the swapped state and
P (p1) is the probability density function of the outcome p1. The average entropy as a
function of the X̂ measurement is seen in figure B.1
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(a) The mean entropy as a function of the outcome of the X̂ measure-
ment for m = 1

(b) The mean entropy as a function of the outcome of the X̂ measure-
ment for m = 2

Figure B.1
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(c) The mean entropy as a function of the outcome of the X̂ measure-
ment for m = 2

Figure B.1: The mean entropy as a function of the outcome of the X̂ measurement for
m = 1, 2 and 3. From these plots the value of δmax,m is found.
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Figure B.1 shows that the average entropy actually increases a bit until a maximal

value of the X̂ measurement outcome,
���X̂max,m

��� is reached. The values of
���X̂max,m

��� are

���X̂max,1

��� = 0.4
���X̂max,2

��� = 1.0
���X̂max,3

��� = 1.7 (B.19)

Choosing δmax,m =
���X̂max,m

��� gives success probabilities of ∼ 0.28 for m = 1, ∼ 0.46 for

m = 2 and ∼ 0.50 for m = 3. Since the upper limit of the success probability is 1
2 the

optimal choice of δ clearly is δmax,m = 1.7 for m = 3.
Furthermore δmax,m = 0.5 for m = 1 and δmax,m = 1.1 for m = 2 was chosen, which
correspond to success probabilities of ∼ 0.30 and ∼ 0.47. This was checked by simulating
the repeater numerically with δ > δmax,m for m = 1 and m = 2. The simulations confirmed
that δmax,m = 0.5 for m = 1 and δmax,m = 1.1 for m = 2 since the increase in the success
probability was not large enough to compensate for the drop in the output fidelity.
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Appendix C

Supplement to Chapter 6

C.1 Analytical approximation

The simulation showed that the output fidelity could be written as:

Fout,m,n(Pgrow,m, Pconnect,m) = 1− an,mPconnect,m(r)2 − bn,mPconnect,m(r)

−cn,medn,mPgrow,m(�∆)
−Hn,m (C.1)
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The numerical matrices of the constants an,m, bn,m, cn,m, dn,m andHn,m are seen in eq.(C.2)-
(C.6)

a =





0 0 0
0 0 0

−2.19 −5.39 −6.81
−9.75 −14.6 −20.1
−15.6 −26.1 −39.9




(C.2)

b =





0.90 0.91 0.95
1.40 1.53 1.65
2.25 3.08 3.40
3.69 4.92 5.83
4.26 6.46 8.54




(C.3)

c =





0.0063 1.0 4.7
0.223 1.50 5.08
0.460 2.59 6.26
1.56 3.73 8.77
2.02 6.68 16.1




· 10−3 (C.4)

d =





15.0 24.2 92.0
13.1 23.1 93.8
12.3 21.6 94.5
10.2 21.0 92.6
9.47 19.0 83.8




(C.5)

H =





0 0 0
0.039 0.017 0.009
0.111 0.052 0.021
0.215 0.111 0.056
0.350 0.192 0.113




(C.6)

Eq. (C.6) shows that the state’s swap performance increases for large values of m and eq.
(C.2)-(C.5) shows that the fidelity drops as a function of r and �∆. Hence the approxi-
mation of the output fidelity behaves as expected The fact that an,m ≤ 0 shows that the
approximation is valid when Pconnect,m(r) � 1.

100



Appendix D

Matlab programs

The program used for the simulation of the repeater was Matlab R2009b developed by
Mathworks. Additional analytical calculations was made in the program Mathematica by
Wolfram. The main m-files and functions used in the simulations are listed in this ap-
pendix. The notebooks produced in Mathematica are not listed since they contain only
minor analytical calculations.
The code with comments is posted on the web under headlines that correspond to the ones
listed below. It can be found at http://fys.ku.dk/snappy. The code is not printed since
the amount of code is considerable.

Generation of cat states

precat.m: This m-file calculates a number of matrices used in the calculations of the
growing of cat states. The matrices are all independent of the choice of acceptance
interval and are calculated separately from the rest of the growing step. ”precat.m”
should be executed before any of the other m-files in the folder.

grid.m : This m-file calulates the rate in units of the source repetition rate of a growing
procedure of m iterations as well as the fidelity with either a squeezed one-mode
cat state or the state in eq. (4.12). Which state to calculate the fidelity with and
the number of iterations should be specified in the m-file. When executing ”grid.m”
it calculates the fidelity and rate on a specified grid of values for �∆. grid assumes
perfect one-photon states as input states

Optim3e1.m: This function calculates the Wigner function of the output state after one
iteration. The function needs the acceptance interval as input. The function can
be used to calculations with both pure one-photon inputs and with one two-photon
component.

Optim3e2.m: This function calculates the Wigner function of the output state after two
iterations. The function needs the acceptance intervals as input. The function can
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be used to calculations with both pure one-photon inputs and with one two-photon
component.

Optim3e3.m: This function calculates the Wigner function of the output state after three
iterations. The function needs the acceptance intervals as input. The function can
be used to calculations with both pure one-photon inputs and with one two-photon
component.

Connection of cat states

connection.m: This m-file calculates the Wigner function of the two-mode state that re-
sults from connecting two of the one-mode states produced in step one of the altered
repeater scheme. The Wigner function of the one-mode states should be put in a cell
named ”Set” which is loaded into the workspace before running ”connection.m”. In
”connection.m” the length of the elementary links, the reflectivity of the beam split-
ters and the number of iterations performed in the growing step should be specified.
”connection.m” also calculates the fidelity with state (5.30) and the probability of a
successful connection.

Swapping optimal

precalc.m: This m-file calculates matrices used to simulate the swap levels. The matrices
are all independent of the choice of acceptance interval and the outcome of the X̂
and P̂ measurements. ”precalc.m” should be executed before any of the other m-files
in this folder.

xprobability1-4.m: These are the probability density functions for the X̂ quadrature in
swap level 1-4 using the state (5.30) as starting state. The functions use the outcomes
of the previous X̂ and P̂ measurements as inputs as well as the outcome of the X̂
measurement in the relevant swap level. The number of iterations in the growing
step should be specified in the functions

probability1-4.m: These are the probability density functions for the P̂ quadrature in
swap level 1-4 using the state (5.30) as starting state. The functions use the outcome
of the previous X̂ and P̂ measurements as inputs as well as the outcome of the X̂ and
P̂ measurement in the relevant swap level.The number of iterations in the growing
step should be specified in the functions

entanglement1-4.m: These functions calculates the entropy of the output state after
swap level 1-4. They use the outcome of the previous X̂ and P̂ measurements as
inputs as well as the outcome of the X̂ and P̂ measurement in the relevant swap level.
The number of iterations in the growing step should be specified in the functions

Swapping
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precalc.m: This m-file calculates matrices used to simulate the entanglement swapping.
The matrices are independent of the acceptance interval and the measurement out-
comes for the X̂ and P̂ measurements. ”precalc.m” should be executed before any of
the other m - files in the folder.

gridswap1-4.m: These m-files simulate swap level 1-4 using the two-mode Wigner func-
tions from the connection step as input states. The two-mode Wigner functions re-
sulting from pure one-photon states should be put in a cell named ”Setcon” and the
Wigner functions with a two-photon error should be put in a cell named ”Setcon2”.
Both cells should be loaded into the workspace before executing the m-files. The
acceptance interval, the number of simulations and the number of iterations in the
growing step should be specified in each m-file. The m-files makes use of the functions
”swapw1.m”,”swapw2.m”, ”swappf1.m”,”swappf2.m”, ”Mus1.m”,”Mus2.m”,”CDFp1.m”
and ”CDFx1.m”

swapw1-2.m: Used to calculate the Wigner function after a swap. The functions needs
the Wigner functions for the two states that are swapped and the outcome of the X̂
and P̂ measurments as inputs. The number of iterations in the growing step should
be specified before executing the functions.

swappf1-2.m: These functions calculates the fidelity with the target state in eq.(5.83)
and the coefficients of this state in a given swap. The functions needs the Wigner
function of the state after the swap, the coefficients from the previous target states
and the outcome of the X̂ measurement as inputs. The number of iterations in the
growing step should also be specified.

Mus1-2.m: Calculates matrices used in the functions ”CDFx1.m” and ”CDFp1.m”. The
Wigner function of the two states that are swapped are given as input states. The
number of iterations in the growing step should be specified.

CDFx1.m: This calculates the cumulative distribution function of the X̂ quadrature in
a swap. The number of iterations in the growing step should be specified.

CDFp1.m: This calculates the cumulative distribution function of the P̂ quadrature in
a swap. The number of iterations in the growing step and the outcome of the X̂
measurement in the swap should be specified.

probx1.m: This is the probability density function of the X̂ quadrature in a given swap.
It is used to normalize after the measurement of X̂.

A part from these functions and m-files the function tprod developed by Jason Farquhar has
been used. This function makes it possible to perform tensor products in Matlab. The code
for this function is available at: http://www.mathworks.com/matlabcentral/fileexchange/16275
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Extensively use of the tensor toolbox developed by Scandia National Laboratories has also
been made. The toolbox is available at: http://csmr.ca.sandia.gov/ tgkolda/TensorToolbox/.
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