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Abstract

In this thesis we present a new function to correct for pile-up in Swift XRT gamma
ray burst data and use that correction to try to find empirically the parameters to
describe the canonical GRB X-ray afterglow lightcurve. The correction function
is arrived at by plotting the measured countrate against the corrected (by hand)
countrate for various bursts at various times and fitting a function to the dataset.
The purpose of finding this function was to be able to correct a large number of
lightcurves quickly because we wished to search for an empirical description of
the canonical GRB afterglow lightcurve. Armed with this function we then find
the main parameters of the X-ray afterglow lightcurve (slopes and breaktimes)
for chosen bursts and use them in correlation plots to try to determine a function
to describe the canonical lightcurve.
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Chapter 1

Introduction

Gamma Ray Bursts (GRBs) were first discovered by the Vela satellite in 1967
but it took quite a long time before any real progress was made in understanding
their nature. We now know that these sharp flashes of gamma radiation come
from cosmological distances and are associated with the most energetic events in
the Universe. There have been shown to be two different types of bursts, short
duration ones (< 2s) which release harder radiation and long duration ones (> 2s)
which release softer radiation. Here we will only discuss the longer type. In these
spectacular events enormous amounts of energy are released (roughly 105! ergs for
long GRB’s, perhaps rather less for short ones) in the form of high energy ~-ray
photons over a very short time period (usually less than 10% s for long bursts).
When it was finally established that the bursts were cosmological in origin a
model was developed which seems to describe them properly and has come to be
known as the standard fireball model. According to the standard fireball model
GRBs arise from the collapse of massive stars to form black holes leading to the
expulsion of jets of gas and radiation at relativistic speeds into the surrounding
medium. The radiation emitted during the bursts is emitted in two main phases;
the prompt emission, caused by internal shocks in the outflow of jets of matter,
and the afterglow which is caused by the decelaration of the forward shock in
the ambient medium. One of the as yet unsolved problems of these tremendous
events is finding a function to describe the afterglow decay lightcurve despite
the fact that it seems to follow more or less the same pattern every time. One
particular reason for seeking this function is to be able to determine when a burst
is detected how bright it will be after a given period of time (an hour, 24 hours
and so on). This would in turn make it significantly easier to decide if it will
be worth the effort of trying to observe the burst with particular satellites (that
may require a long time to focus on the target) or if the remaining afterglow will
by that time be too faint to be useful for that satellites purpose. This was in fact



the original motivation for the investigation presented here.

The Swift satellite has observed hundreds of GRBs with great precision since
its launch and the quick response time of this satellite has made it possible to
observe many of these GRBs almost from the onset of the prompt emission until
the afterglow has as good as disappeared. From observing all these afterglows a
certain picture of the emission decay has emerged, showing that the decay usually
proceeds in three distinct stages, each of which can be described by a power-law
but with sharp breaks in between them. As mentioned above there has been
effort for some time to find an empirical function to describe the decay with
more precision, both in order to facilitate the search for details of the underlying
mechanism and for the aforementioned reason of hoping to predict the brightness
of a new GRB after a given amount of time. In order to perform such a search
one must examine a large number of Swift lightcurves but here one encounters
a problem that must be solved first. This problem is that of piled-up data or
measurements where the CCD chip of the Swift XRT camera has been exposed
to a greater flux of photons than its readout time resolution is designed to handle
and therefore some of these photons are not counted. This leads both to lower
countrates and an artificial hardening of the spectrum as the energy of all photons
that hit a single pixel within one element of readout time is attributed to one
artificial photon [7]. Obviously this problem must be corrected for in order to
use the data for any kind of research. This can be an extremely time consuming
process when many bursts are involved as there has not been available any simple
and quick method to correct many datasets at once. Here it was decided to try
to find one function that the measured countrate could be plugged into in order
to make correcting a large number of datasets a much simpler and less time
consuming process. The details of the search for such a correction method will
form the greater part of this thesis followed by an investigation into the canonical
GRB X-ray lightcurve in which the pile-up correction method developed in the
first part of this project was used.

In the search for the canonical X-ray afterglow lightcurve it was decided to look for
correlation between the parameters of each of the power-law decay segments and
the break times between them. The collection of lightcurves generated using the
correction method and the code used to fully extract them from the measurement
data can be found in the appendices at the end of this thesis.



Chapter 2

Data analysis

The Swift website (http://swift.gsfc.nasa.gov) contains all the observation data
from the Swift mission available for download as well as a large cache of tools
specially developed to deal with this data. We used zselect, lcurve and lcmath
from the heasoft ftools package to extract images, spectra and lightcurves and
to subtract background noise from the data as well as to determine the proper
binning for the lightcurves. The ftool fkeyprint was used to determine the right
ratio between the source and background regions. During the search for the pile-
up correction function this was done by hand, one burst at a time in order to
compare the actual countrate observed with the true (pile-up corrected) coun-
trate. The process was as follows: When the data package for a burst had been
downloaded and unpacked the events files for photon counting mode and win-
dowed timing mode (for each mode separately) were read into zselect. First of all
an image was extracted and plotted using the program ds9 to locate the source
and a convenient area for a background extraction region (when a background
subtraction was deemed necessary). The image was used to create filters for the
source, both a circle and an annulus (30 arcseconds radius for the circle and
outer radius for the annulus, 8 pixels inner radius for the annulus) and a larger
circle for background extraction. If a background subtraction was required it was
done using lcmath having obtained the appropriate scaling factor for source and
background using fkeyprint. When investigating the pile-up correction zselect
was used to make time filters so the effects of pile-up at several different coun-
trates could be compared. When preparing the lightcurves that were used for
the pile-up investigation binning was uniformly chosen to be 50s. It should also
be noted that during this part background subtraction was skipped since when
pile-up does occur it will also affect what background noise is there, even if this
effect is probably negligeble.






Chapter 3

Pile-up correction

In order to use Swift XRT data for research it is necessary to first correct the data
for the pile-up which inevitably occurs when detected bursts are brighter than the
equipment is designed for. A precise definition would be the coincidence of two or
more photons per CCD time-resolution element, or frame-time, within an event-
detection cell [2]. This happens, in other words, when photons come in faster
than the readout time of the instrument can cope with so it will measure fewer
counts than actually hit it resulting in lightcurves that are somewhat flattened at
the top. All photons that hit a given pixel during a single integration period will
be counted as one and so the end result will not only be reduced countrates during
the brightest period but also an artificially hardened spectrum since the energy
of all the photons will be attributed to this artificial one. This is a prominent
problem with single-photon-counting charge-coupled device (CCD) cameras and
must be dealt with for each such device as it is strongly dependent on readout
time, pixel size and other parameters of the device as well as general construction
quality. Here we will deal with two of the available modes of operation of the
Swift XRT instrument, windowed timing mode and photon counting mode. Of
those two the windowed timing mode can cope with much higher countrates (one
can expect pile-up to become significant at about 100 counts/s) but only gives a
1D image whereas the photon counting mode gives a 2D image (but here pile-up
becomes significant at about 0.7 counts/s). If there is pile-up it is concentrated
in the center of the image (since the GRBs are point sources) and so one can
exclude the piled-up region by picking an annulus shaped extraction area rather
than a circle when extracting spectra and lightcurves. This of course excludes the
brightest part of the image and must be corrected for to get the actual countrate.
The ftool zrtmkarf is used to create an Ancillary Response Function (ARF) file
which includes the point spread function of the chip and using this function with
the countrate from the annulus region one can find the true countrate. This



process is very time consuming however if many bursts are needed and so we
set out to find a simple and quick method to correct a large number of bursts
for pile-up without having to examine each and every one individually. Most of
all it was important to avoid the need to take an annular extraction region for
every single burst. The idea was to compare measured countrates with corrected
ones for several bursts, choosing several different time slices for each burst. This
would then be plotted up with the purpose of fitting a function to the data. If
successful one could then use this function to correct any number of bursts quickly
and simply for pile-up, requiring no more than plugging in the raw countrate from
a normal circular extraction region.

To get a good image of how strongly pile-up influences countrates several bursts
with high countrates were chosen, downloaded and unpacked from the Swift
archives. Then, using zselect and the ds9 imaging program, two region filters
(circle and annulus) were made for each burst. This way of analysing the pile-up
required the extraction regions to be uniform in size. As previously mentioned it
was decided to use 30 arcseconds radius for the circular extraction region and the
outer radius of the annular extraction region. The inner radius of the annuli was
chosen to be 8 pixels (1 pixel = 2”.36) in order to be sure of excluding the pile-up
of the brightest sources used for this investigation without cutting too much out
from those not so bright where pile-up is hardly noticable. To find what the true
countrate would be in the absence of pile-up the countrate for the annulus was
multiplied by the ratio between ARF files for circle and annulus, the function
being
AC
= CaA_a (3.1)
where ¢; is the true countrate, ¢, is the measured countrate using an annulus filter,
A, is the ARF file value for a circle and A, is the ARF file value for an annulus.
For each burst several different timeslices were chosen for the comparison and so
a plot of the ratio between measured (circle) countrate and corrected (annulus
multiplied by ARF ratio) countrate was constructed for each mode of operation
(windowed timing and photon counting, see figures 3.2, 3.3, 3.4 and 3.5). Also
we made sure to choose bursts captured on different locations on the CCD chip
as the point spread function is dependent on the distance from the middle of the
chip as well as the shape and size of the extraction region. It has been shown
that the point spread function can be well fitted by a King function [6]
2\ —

P(r) = (1+ <7~L) ) ’ (3.2)
where the parameters r. and ( are functions of the images location on the chip
as well as the energy of the incoming photons.

As the objective was to find one function to use in correcting the countrates
of every burst automatically it was necessary to first determine if position on
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the chip had significant influence on the correction offered by the point spread
function as this would make the task much more complicated if not entirely
futile. An investigation into the variation of ratio between the ARFs for circle
and annulus as a function of distance from the center of the chip confirmed that
while there was a difference it was small enough to be absorbed in what error
one must always expect anyway (around 10% can generally be assumed here
unless otherwise stated). Also there is the fact that the Swift satellite seems to
"aim" very well so the image is nearly always within half of the distance from the
center to the edge and usually much closer to the center than that. Therefore the
aforementioned effort to choose bursts captured on different locations on the chip
was deemed enough to make sure that the correction would be quite applicable to
any burst without sacrificing precision. The question of energy dependence was
even more vital to the project since, if the correction were significantly energy
dependent, the process of correcting each burst with the derived function would
hardly be much more practical than doing it by hand if one needed the energy
of each photon to use it. An investigation into this also revealed that the energy
dependence was within the aforementioned acceptable error (see figure 3.1).

Having confirmed that the use of a single function of measured countrate would
be acceptable to correct quickly for pile-up the next step was to find that function.
As previously mentioned we compared the measured countrates (using the circu-
lar extraction region) of different bursts at different times during the afterglow
decay (3-5 different times for each burst) with the corresponding corrected coun-
trates (using the annular extraction region and multiplying by the ARF ratio).
This data along with the function fit to each set of points (pc-mode and wt-mode)
can be seen in the following plots (3.2, 3.3, 3.4 and 3.5). To fit a function to the
data we used the MPFIT routine for IDL (available from Craig Markwandts
homepage, http://cow.physics.wisc.edu/ craigm/idl/fitting.html). Originally the
plan was to fit a power-law to the data but it soon became clear that a power-law
did not represent the available data very well. Plotted in logspace both datasets
show a small yet significant curvature which must be taken into account so the
function used for fitting the data was of the form

R, = aRVRS'8 1 (3.3)

where a, b, and ¢ are the parameters to be fitted, R,, is the measured countrate
and R; is the true countrate. As the objective is of course to transform measured
countrates into correct ones the final correction function was therefore of the form

—b++/b2 —4c(log a—log Ry
2c

R, =10 (3.4)
For the photon counting mode the fit eventually gave the function
Ry, = 0.906696 RY-099773 R, 0129157 loa R (3.5)
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Figure 3.1: The circle/annulus ratio for Ancillary Responce Function files as a
function of energy using photon counting mode. By far the greatest part of the
radiation for each burst is in the lower half of the energy range presented here.
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with X2_j.ccq = 1.7162. Converting this to the much more useful format of having
the correct countrate as a function of the measured countrate gives

0.467706—0.516628 log Rm,

R, = 1270900+ —0.258314 . (36)

For the windowed timing mode the fitting resulted in the function
R,, = 0.561183 R} %70 R, 00932849 loe I (3.7)

with X% j..q = 1.7157. Converting this to the form of correct countrate as
function of measured countrate gives

1.56986—0.373140 log Rim,

R, = 106-91301+ ~0.186570 . (3.8)

Once these correction functions were available it was necessary to test them on
a number of bursts that had not been used to extract the points for the fitting
process. This was of course done by applying the correction functions to whole
lightcurves extracted from the measurement data, and then comparing them to
pile-up corrected lightcurves that were available elsewhere. We compared this
correction to the lightcurves made available by Nat Butler (see Butler and Ko-
cevski [1]) and those available from the Swift website by Evans et al. at the
UK Swift Science Centre at the University of Leicester [4]. This yielded some
interesting results as our corrected lightcurves seemed to consistently agree very
well with Butler’s lightcurves but frequently did not agree with the lightcurves
from Evans et al. in Leicester. Burst after burst showed the same pattern, gener-
ally the disagreement between the different correction methods becoming visible
when countrates started getting very high and pile-up therefore very significant.
In general the most obvious difference came at very high countrates (upwards of
100 counts/s) where the lightcurves from Evans et al. show rather lower coun-
trates than those from Butler and those presented here. Of course all three agree
much better when countrates are too low for pile-up to appear because then there
is nothing to correct and it should be kept in mind that outside the realm of very
high countrates disagreements are generally minor and irregular. The following
plots (3.6, 3.7 and 3.8) show representative cases of the similarities and differences
between the three correction methods.
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Figure 3.2: The relation between measured countrates and corrected countrates
for photon counting mode. The curve represents the fitted function as described
in the text.
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Figure 3.3: The relation between measured countrates and corrected countrates
for photon counting mode shown in logspace. The curve represents the fitted
function as described in the text.
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Figure 3.4: The relation between measured countrates and corrected countrates
for windowed timing mode. The curve represents the fitted function as described
in the text.
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Figure 3.5: The relation between measured countrates and corrected countrates
for windowed timing mode shown in logspace. The curve represents the fitted
function as described in the text.
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Figure 3.6: GRB061007. Here one can see how the three lightcurves are in good
agreement at lower countrates. Appraching 1000 counts/s our lightcurve shows
rather higher countrates than the other two.
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Figure 3.7: GRB070129. Here one can see how our lightcurve is in good agreement
with Butler throughout but disagrees with Evans at high countrates.
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Figure 3.8: GRB050416A. Here one can see decent agreement with Butler (though
rather low this time) but hardly any with Evans which is much higher.
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Chapter 4

The canonical GRB afterglow
lightcurve

Observations of GRBs have shown that the afterglow decay lightcurve usually fol-
lows three basic stages. These stages may not all be apparent in every lightcurve
but usually one can find at least some of them fairly easily. Each stage can be
described by a power-law N o t*, where N is the countrate and « is the decay
index, and between these stages there are break points ¢; and ¢,. The first stage
is a very steep decay slope, the second a very flat one and the third is again
steeper (but not as steep as the first stage slope). During the very steep decay of
the first stage one generally finds that —3>~a;>~ — 5, the flatter decay slope
of the second stage shows —0.5>~as>~ — 1.0 and the steeper decay slope of the
third stage —1>~a3>~ — 1.5 [7]. What has eluded researchers so far however is
determining whether or not there is a clear relationship between the parameters
describing these different stages of the decay and, if so, what function describes
that relationship. It should be made clear here that bursts exhibiting significant
X-ray flares or other strong deviations from the underlying decay process were
generally excluded from this investigation to reduce the risk of confusion or error
in determining the various decay rates and break times. It is often the case with
X-ray flares that they obscure the structure of the lightcurve, for example if the
onset of the flare happens late in a stage and the flare lasts past the next break
time and well into the next stage. In such a scenario (and many similar ones)
it becomes very difficult to determine the relevant parameters of the lightcurve
with sufficient accuracy to be entirely reliable. Due to this kind of uncertainty
the number of bursts that eventually were chosen for this investigation is very
small compared to the vast number of bursts available.

The method chosen for this investigation was to look for correlation between
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the measured parameters of lightcurves where some or all of the stages are very
clear and therefore easy to fit a power-law to. Here the fitting was done in the
simplest way possible, the data was plotted in logspace and straight lines fitted to
relevant parts of the lightcurves. Since the idea of performing this investigation
arose when considering the possibility of observing new Swift GRBs with other
satellites the problem was approached from the viewpoint of having just received
notice of a new GRB along with its brightness for the first several minutes and
wishing to know whether training another satellite on it (knowing roughly how
long that process will take) will be worth it or whether the afterglow of the
burst will by then have faded below useful brightness for the satellite in question.
Therefore it was decided to look for correlation between the three main stages,
mainly consecutive ones. Therefore data from bursts that clearly displayed some
or all of the described stages was collected and compiled into correlation plots
between (always in the order the stage or event appears in the lightcurve) o
and t1, ag and as, t; and s, oy and ty and finally ¢5 and ag (figures 4.1, 4.2,
4.3, 4.4 and 4.5). The plan was to use these plots to try to find out if there was
noticable correlation between the measured decay indices and break times. The
bursts chosen for this search and their relevant parameters can be seen in the
following table.

Burst oy t1 1o to Qs
GRB050505 —0.194 | 2460.3 | —1.32
GRBO050716 —0.168 | 175.3 | —1.90
GRB050730 —2.08 | 176.7 | —0.454 | 4293.0 | —1.87
GRB050801 —0.316 | 147.7 | —0.810
GRBO050803 —5.63 | 258.2 | —0.896

GRB050922C —-0.469 | 116.0 | —1.15
GRBO060105 —1.16 6371.7 | —1.90

GRB060109 | —4.07 | 436.8 | —0.0908
GRB060202 —-3.38 | 974.5 | —0.974
GRB060204B 180.7 | —0.657
GRB060413 | —1.80 | 2968.7 | —0.316
GRBO060502A | —3.00 | 272.7 | —0.598
GRB060614 | —2.48 | 5079.2 | —0.280

GRB060729 2384 | —0.418
GRB060813 —0.310 | 430.8 | —1.13
GRB060814 —3.09 | 657.0 | —0.370
GRB061110A —0.444 | 138.1 | —3.87

GRBO061121 —8.03 | 177.9 | —0.0811 | 2018.8 | —1.51
GRB061202 —6.40 | 335.2 | —0.261

These bursts were chosen for this investigation on the basis of the stages of
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decay being clearly defined and data being available from two consecutive stages
(necessary to find the breaktime between them). Certainly one could choose more
bursts but this would require including data that is much less clear and rather
more questionable. As can be seen from the correlation plots in this chapter
(figures 4.1, 4.2, 4.3, 4.4 and 4.5) this would probably not improve matters very
much, simply because there does not really seem to be much correlation between
the lightcurve parameters.

The correlation plots in this chapter, showing the relationships between the vari-
ous parameters, are all without any plotted error bars. The reason for that is very
simply that after fitting lines to slopes that are often very hard to define properly
(where does the slope really start and stop for instance?, how much deviation is
not just deviation but actually a small flare or break or some other actual change
in the lightcurve?) and then using those fits to calculate the breaktimes in curves
where every point generally has a fairly large error to begin with, any calculated
error would probably be rather meaningless by this point. In attempts to fit
functions to the data a 10% error was assumed. As it turned out the correlation
plots did not reveal any clear connections between the slopes during the various
stages and the break times. The only plot that prompted any real attempts to fit
curves to it is figure 4.1 (showing what correlation there is between a; and ;).
For this dataset we experimented with fitting an inverse proportion function but
very quickly found out that it simply did not describe the data at all. Excluding
the highest two points gave marginally better results but not nearly good enough
to make this pursuit worth continuing with. The other plots mostly present two
problems, either there are no signs of any trends in them or they show two wildly
different trends.

One can only conclude that this method of searching for a function to describe
the canonical lightcurve of GRB afterglows is not particularly likely to yield any
results. In fact we feel that while a very high percentage of GRBs certainly show
more or less the same qualitative behavior during their decay period the whole
process seems to be simply too chaotic and too dependent on many different
factors (such as various qualities of the GRB progenitor and its immediate en-
vironment) to make a single function to describe the decay lightcurve attainable
empirically. It seems likely that in order to predict the decay behavior it will
be necessary to 'go the other way round’, that is to first gain a more precise
understanding of the mechanics of the prompt emission and afterglow emission
as well as of any influence the surroundings of the progenitor can have on the
proceedings.
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Chapter 5

Conclusion

We have presented here a new method to correct Swift GRB lightcurves for pile-
up in the form of one function (for each mode of operation of the Swift XRT
instrument) for transforming the observed countrates into corrected ones. This
function was arrived at by comparing the observed countrates to countrates cor-
rected by using an annular extraction region to avoid pile-up and fitting a function
to this dataset. When this correction became available it was used to correct al-
most all (a few were skipped due to insufficient data or other similar problems)
Swift lightcurves dated from the beginning of April 2005 to the end of July 2007
(plots of these lightcurves are included in Appendix A). From this collection we
then chose convenient bursts to use in attempting to empirically determine a
function to describe the canonical GRB afterglow lightcurve by making corre-
lation plots between the different stages of the afterglow decay. This effort did
not yield positive results, in fact one must draw the conclusion that determining
such a function empirically is not a particularly viable method and that it will
probably be necessary to derive it from what information can be discovered about
the GRB progenitor and its surroundings.
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Appendix A

Lightcurves

Here follow all the lightcurves generated for this work. They were made using
the lightcurve extraction and plotting program written by Darach Watson with
the pile-up correction presented in this paper added into the code.
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Appendix B

The lightcurve extraction code

This program was written by my supervisor during this project, Dr. Darach
Watson. Its function is to extract and background correct Swift GRB lightcurves
(using heasoft software) and plotting them. When the pile-up correction was
ready I wrote it into the code of this program near the end (clearly marked by
double lines and statements above and below that part). That short section is
the only part of this program that I wrote or had any part in writing. The reason
for including the entire code of the program here despite it not being my own
work is to make the method used to produce the lightcurve plots as clear and
transparent as possible. It should be mentioned that this is the windowed timing
mode version of the pile-up correction, the photon counting mode version only
differs from this one in a few constants which can be found in the text.

#include <string.h>
#include <stdio.h>
#include <math.h>

#include "fitsio.h"

/* I still want to add

a) command line switches and defaults for input parameters
1) BACKSCAL determination (call an ftool)

2) pile-up correction

3) flux calibration

Perhaps add a wrapper (perl?) around this programme to do these things */
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/* A subroutine to write the binned data out */
int write_out(long srcbin, long bgdbin, double binstart, double binstop,
double intervals[][2], int nintervals, float backscale, double grbtime);

int main(int argc, char *argv[])

{

fitsfile *srcfptr; /* Source FITS file pointer, defined in
fitsio.h */

fitsfile *backfptr; /* Background FITS file pointer, defined
in fitsio.h */

char nullstr[]="*"; // The Null string used in fits reading

char  keyword [FLEN_KEYWORD], colname[FLEN_VALUE]; // Holders of
keywords and column names for CFITSIO

int status = 0; /* CFITSIO status value MUST be initialized
to zero! */

int anynul; // Used in fitsreading commands
int previous_nintervals = 0; // Number of intervals in the
previous bin
int all_nintervals=0; // Sum of number of intervals in current
and previous bin
int close_bin = 0; // Flag to tell the writing routine to write
out the previous bin
int previous_exists = 0; // Flag to say if there is a valid previous

bin so that the current one may be written out

int srctimecol = 0, backtimecol = 0; // Number of the TIME column
in the source and background EVENTS extensions

int gtistartcol = 0, gtistopcol = 0; // Number of the TSTART and
TSTOP columns in the source GTI extension

long srcnrows = 0, backnrows = 0, gtinrows = 0; // Number of rows in
the source and background EVENTS extension and the source GTI extension

long total_src_counts = 0, total_bgd_counts = 0; // Final number of
source and bgd counts found in the data, used for a sanity check

long gti_ctr = 0; // counter for the current GTI (array)

long interval_ctr = 0; // counter for number of intervals in a bin
(array)

long ii = 0; // iterator for reading intervals (array)

long jj = 1; // iterator for reading gti rows into array (file)

long ss = 1; // counter for the current source event (file)

long bbb = 1; // counter for the current background event (file)

long srcfinalbin = 0, backfinalbin = 0; // co-added data for the
final bin before a big gap

long bin_src_counts = 0, bin_bgd_counts = 0; // source and background
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counts in the current bin

long previous_bin_src_counts = 0, previous_bin_bgd_counts = 0;
// source and background counts in the previous bin

double bin_start_time = 0, bin_end_time = 0; // start and end times of
the current bin

double previous_bin_start_time = 0, previous_bin_end_time = 0;
// start and end times of the previous bin

double SNratio = 0; // S/N ratio of the current bin

double SNmin = 5; // Required S/N ratio per bin. An input parameter

double backscale = 1; // Scaling factor for the background. An input
parameter

double grbtime = 0; // Time of the GRB in units of the input file
(e.g. Swift spacecraft seconds). An input parameter

double gtis[1000]1[2]; // Array of start and stop times of each GTI
(the source GTI extension data)

double time_interval[1000][2], previous_time_interval[1000][2];
// Start and stop times of intervals in the current and previous (before
a big gap) bin

double srctimes = 0, backtimes = 0; // Event times read from the src
and background EVENTS extensions.

int open_bin = 0;

int open_interval = 0; // The start time for the next bin, cannot set
the next bin’s start time until we close the current bin

double tolerance_time = le-7; // An epsilon time added to the end of
each bin set using an event arrival time
(must be smaller than the frame time!)

double input_total_exposure_time = 0; // The total exposure time in
the events file, use for a sanity check

double final_total_exposure_time = 0; // The total exposure time found
from the bintimes, use for a sanity check

/* Set up. Checking and setting input arguments */
if (argc !'= 6) {
rintf("Usage: snbinevts srcfilename[ext][col filter][row filter]

p g
[regfilter (\"src_sky.reg\")] bgdfilename[ext] [col filter][row filter]
[regfilter (\"bgd_sky.reg\")] backscale snratio grbtime\n");

printf("\n");

printf("Make a signal-to-noise ratio binned lightcurve from events
data \n");

printf("\n");

printf("Output is an ascii data file\n");

return(0) ;

}
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backscale = atof(argv[3]);
SNmin = atof(argv([4]);
grbtime = atof (argv[5]);

fits_open_file(&srcfptr, argv[1], READONLY, &status);
// Open source file

fits_open_file(&backfptr, argv[2], READONLY, &status);
// Open background file

/* Read the source GTI extension into an array */
if (fits_movnam_hdu(srcfptr, BINARY_TBL, "GTI", 0, &status))
printf ("Error: this program only works with event files with GTI
extensions\n") ;
else
{
fits_get_colnum(srcfptr, CASEINSEN, "START", &gtistartcol, &status);
fits_get_colnum(srcfptr, CASEINSEN, "STOP", &gtistopcol, &status);
fits_get_num_rows(srcfptr, &gtinrows, &status);

for (jj = 1; jj <= gtinrows && !status; jj++) {
if (fits_read_col (srcfptr,TDOUBLE,gtistartcol,jj,1,1,nullstr,
&srctimes,&anynul,&status) )
break; /* jump out of loop on error */
if (srctimes == gtis[jj-2]1[1]) srctimes += tolerance_time;
// We should really do error-checking here as well.
gtis[jj-11[0] = srctimes;
if (fits_read_col (srcfptr,TDOUBLE,gtistopcol,jj,1,1,nullstr,
&srctimes,&anynul,&status) )
break; /* jump out of loop on error */
gtis[jj-11[1] = srctimes;
input_total_exposure_time += gtis[jj-1]1[1]-gtis[jj-11[0];
}
}

/* Move to the EVENTS extension for both src and bgd files */
if (fits_movnam_hdu(srcfptr, BINARY_TBL, "EVENTS", 0, &status)
|| fits_movnam_hdu(backfptr, BINARY_TBL, "EVENTS", 0, &status))
printf ("Error: this program only works with fits files with EVENTS
extensions\n");
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else

{
fits_get_colnum(srcfptr, CASEINSEN, "TIME", &srctimecol, &status);
fits_get_num_rows(srcfptr, &srcnrows, &status);

fits_get_colnum(backfptr, CASEINSEN, "TIME", &backtimecol, &status);
fits_get_num_rows(backfptr, &backnrows, &status);

/* Need to do error handling here where no TIME column is found*/

printf ("## Lightcurve created by snbinevts from the input command:\n");

printf("## \’%s %s %s %s %s %s\’\n",argv[0],argv[1],argv[2],argv[3],
argv[4],argv[5]);

printf ("## \n");

printf ("#Time (s) \t Rate (c/s)\t Time_low\t Time_high\t Rate_low\t
Rate_high\t src_cts\t bgd_cts\t Exposure\n");

//  CREATING THE BINS
//

fits_read_col (backfptr,TDOUBLE,backtimecol,bb,1,1,nullstr,&backtimes,
&anynul ,,&status); // Read the 1st bgd event arrival time

time_interval[0] [0] = gtis[0][0];
// Set the start time of the first bin
time_interval[0][1] = time_intervall[0] [0];
// Set the end of the first time interval for the first bin
open_bin = 1;
interval_ctr = 0;

/* We want to read all source events and all GTIs, but we do not use a
for loop because we do not always want to increment */
while (gti_ctr < gtinrows)
{
if (ss <= srcnrows)
{
if (open_bin){
/* Start a new bin */
bin_src_counts = 0; // Initialise the bin src counts
bin_bgd_counts = 0; // Initialise the bin bgd counts
bin_start_time = time_interval[interval_ctr] [0];
// Set the start time of the new bin
interval_ctr = 0; // Reset the time interval counter for this bin
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time_interval [interval_ctr] [0] = bin_start_time;
open_bin = 0;

}

fits_read_col(srcfptr,TDOUBLE,srctimecol,ss,1,1,nullstr,&srctimes,
&anynul ,&status); // Read the ss’th source event arrival time

/* Source event inside the current GTI */
if (srctimes <= gtis[gti_ctr][1])
// If the next photon is inside the current GTI,
{
bin_src_counts++;
// increment the current bin source count
time_interval [interval_ctr][1] = srctimes;
// Increase the current time interval stop time to this arrival_time
time_interval [interval_ctr+1][0] = srctimes + tolerance_time;
// Start time of the next time interval set to the end of the current one
plus epsilon
ss++; // Prepare to read a new photon arrival time
} // End of photon inside the current GTI loop

/* Source event outside the current GTI */
else
{
time_intervall[interval_ctr][1] = gtis[gti_ctr][1];
// Fix the end of the current interval to the end of the current GTI
gti_ctr++;
// Move to the next GTI
time_intervall[interval_ctr+1][0] = gtis[gti_ctr][0];
// Start time of the next time interval set to the start of the next GTI

/* We do not want to sum over time periods where there is no
data if we can avoid it, so we... */

/* Check if the next GTI is closer than the width of the
previous bin */
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/* If it is too far away, we need to tie off the old bins and
start a new one */

/* Next GTI is close enough to span. This loop is where we plop
into a new GTI in the same bin */

if ( !(previous_exists) || ((gtis[gti_ctr][0]-gtis[gti_ctr-1]1[1])
< (previous_bin_end_time-previous_bin_start_time)) )
{
open_interval = 1;
}
else if ( (bin_src_counts <= 1) || (gti_ctr >= 2) &&
((gtislgti_ctr] [0]-gtis[gti_ctr-1]1[1]) < (gtislgti_ctr-1]1[0]-gtis[gti_ctr-2]1[11)) )
{
open_interval = 1;
}
/* Next GTI is too far away to add to this bin */
else
{

/* We have to stop a bin here whether it reaches SNmin or not, */
/* So we want to even out the last two bins so that the last  */
/* bin does not have a tragically low S/N */

/* First check if there are enough counts in the current bin to stand
alone */

/* If so, we will need to write out the previous bin, set the current
bin to */

/* the previous and start a new bin */

if ( (bin_src_counts-(backscale*bin_bgd_counts)) >
(0.4*(previous_bin_src_counts-(backscale*xprevious_bin_bgd_counts))) )

{

close_bin = 1;
// Ideally I want to divide the last bins into two even ones but it’s too hard

}

/* If there are too few counts in the current bin to stand alone, */
/* add the current bin to the previous bin and start a new bin */
else

{

/* what we do is rewind by one bin and set previous_exists = 0 */
/* add the two bins together */
bin_src_counts += previous_bin_src_counts;
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bin_bgd_counts += previous_bin_bgd_counts;
bin_start_time = previous_bin_start_time;
// set the start of the current bin to the start of the previous bin

/* add current intervals to previous */

for (ii = 0; ii <= (interval_ctr + 1); ii++)
// The +1 is important because we have defined time_intervall[interval_ctr+1][0]
above

{

previous_time_interval[previous_nintervals+1+ii] [0]
time_interval[ii] [0];

previous_time_interval [previous_nintervals+1+ii][1]
time_interval[ii][1];

}

interval_ctr += (previous_nintervals + 1);
// Add the current number of intervals to the previous

for (ii = 0; ii <= (interval_ctr + 1); ii++)
{
time_intervall[ii] [0]
time_intervall[ii] [1]

}

previous_time_interval[ii] [0];
previous_time_interval[ii] [1];

for (ii = 0; ii <= (previous_nintervals + 1); ii++) {

// Clear the previous time intervals
previous_time_interval[ii] [0]
previous_time_interval[ii] [1]

}

I
o O

close_bin = 1;
previous_exists = 0;
} // End of can it stand alone loop
} // End of is it close enough loop
} // End of photon outside current GTI loop

bin_end_time = time_intervall[interval_ctr][1];
// Set the end of the time bin to be the current interval stop time

if (backtimes < time_interval[interval_ctr][0])
printf ("Warning: There is a problem with the background.\n
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Background event with time %8.71f is earlier than the current time interval
(before %8.71f)\n", backtimes, time_interval[interval_ctr][0]);
/* Work out the background counts up to this point */
while ((backtimes >= time_interval[interval_ctr][0]) &&
(backtimes <= time_interval[interval_ctr][1]))
// increase background bin count by background photons in newly added
time section
{
bin_bgd_counts++;
bb++;
if (bb > backnrows) backtimes = 1e300;
// Don’t want to read beyond last row, but still need to exit
else fits_read_col (backfptr,TDOUBLE,backtimecol,bb,1,1,
nullstr,&backtimes,&anynul,&status) ;
// Read the bb’th arrival time (increment if inside current interval)

}

/* Get the SN ratio and see if we can close the bin yet */

if (bin_src_counts) SNratio = (bin_src_counts -
backscale*xbin_bgd_counts)/sqrt(bin_src_counts +
backscalexbackscale*bin_bgd_counts) ;

else SNratio = 0;

if (SNratio > SNmin) close_bin = 1; // Set the write flag

/* Write out the previous bin, swap the current bin to previous
and start a new bin */
if (close_bin)

{

/* Finalise the background counts for the interval */

/* We can now safely write the previous bin out if it exists */
if (previous_exists) {
write_out(previous_bin_src_counts, previous_bin_bgd_counts,
previous_bin_start_time, previous_bin_end_time, previous_time_interval,
previous_nintervals, backscale, grbtime);
for (ii = 0; ii <= previous_nintervals; ii++) {
final_total_exposure_time += (previous_time_intervall[iil[1] -
previous_time_interval[ii] [0]);

}
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total_src_counts
total_bgd_counts
}
for (ii = 0; ii <= previous_nintervals; ii++) {
// Clear the previous time intervals
previous_time_interval[ii] [0]
previous_time_interval[ii] [1]

}

previous_bin_src_counts;
previous_bin_bgd_counts;

+ +
non

0;
0;

/* Swap the current bin to previous */
for (ii = 0; ii <= interval_ctr; ii++) {

// Set the previous time intervals to the current values
previous_time_interval[ii] [0] time_interval[ii] [0];
previous_time_interval[ii] [1] time_intervall[iil] [1];

}
for (ii = 0; ii <= interval_ctr; ii++) {

// Clear the current time interval
time_intervall[ii] [0]
time_interval[ii] [1]

}
previous_bin_src_counts = bin_src_counts;
previous_bin_bgd_counts = bin_bgd_counts;
previous_bin_start_time = bin_start_time;
previous_bin_end_time = bin_end_time;
previous_nintervals = interval_ctr;
close_bin = 0; // Reset the write flag
open_bin = 1;
open_interval = 1;
previous_exists = 1;

} // End of bin closing loop

0;
0;

if (open_interval) {
interval_ctr++;
// Make a new interval
time_interval[interval_ctr] [1] = time_interval[interval_ctr] [0];
// Set the end of the new interval to the start of the new interval to
start with (should be overwritten by the next event)
open_interval = 0;

}

} // End of reading source counts loop
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/* Where there are no counts left, but some GTI, we need to write out */
/* the remaining GTIs to the intervals and then write out the last point */
else
{
time_interval[interval_ctr] [1] = gtis[gti_ctr][1];
bin_end_time = time_interval[interval_ctr] [1];

while ( (backtimes >= time_interval[interval_ctr][0]) &&
(backtimes <= time_interval[interval_ctr][1]) )
// increase background bin count by background photons in newly added
time section
{
bin_bgd_counts++;
bb++;
if (bb > backnrows) backtimes = 1e300;
// Don’t want to read beyond last row, but still need to exit
else fits_read_col (backfptr,TDOUBLE,backtimecol,bb,1,1,nullstr,
&backtimes,&anynul,&status) ;
// Read the bb’th arrival time (increment if inside current interval)

3

gti_ctr++;

interval_ctr++;
time_interval[interval_ctr] [0]
time_intervall[interval_ctr] [1]

gtis[gti_ctr] [0];
time_interval[interval_ctr] [0];

write_out(previous_bin_src_counts, previous_bin_bgd_counts,
previous_bin_start_time, previous_bin_end_time, previous_time_interval,
previous_nintervals, backscale, grbtime);
// Write the previous bin to output
for (ii = 0; ii <= previous_nintervals; ii++) {
final_total_exposure_time += (previous_time_intervalliil][1] -
previous_time_interval[ii] [0]);
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ti
//

/%

}
total_src_counts += previous_bin_src_counts;
total_bgd_counts += previous_bin_bgd_counts;
write_out(bin_src_counts, bin_bgd_counts, bin_start_time, bin_end_time,
me_interval, interval_ctr, backscale, grbtime);
Write the final bin to output
for (ii = 0; ii <= interval_ctr; ii++) {
final_total_exposure_time += (time_intervall[ii][1] - time_interval[ii] [0]);
}
total_src_counts += bin_src_counts;
total_bgd_counts += bin_bgd_counts;

3

fits_close_file(srcfptr, &status);
fits_close_file(backfptr, &status);

printf ("\n\n");

printf ("#Number of source counts input = %4d\t\t",srcnrows);

printf("%4d = Number of source counts found\n",total_src_counts);

printf ("#Number of background counts input = %4d\t\t",backnrows);

printf ("%4d = Number of background counts found\n",total_bgd_counts);
printf ("#Total exposure time input: %8.71f\t\t",input_total_exposure_time);
printf("%8.71f = Total exposure time found\n",final_ total_exposure_time);

if (status) fits_report_error(stderr, status); /* print any error message */
return(status) ;

In the last bin, we must either divide the counts evenly between the last
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*/

/*

two bins or just drop them all into the penultimate bin and scratch the
last one. This division is at ~30% (lots of work on this number... is this
just sqrt(2)?)

The mean bintime (bin_mean_time) is defined as the weighted mean of the
exposures. So the bin will span from the start of the first relevant
exposure time to the end of the relevant exposure time (bin_start_time
and bin_end_time respectively, but the time of the bin will be the
weighted mean.

int write_out(long srcbin, long bgdbin, double binstart, double binstop,
double intervals[][2], int nintervals, float backscale, double grbtime)

{

int i
double
double
double
double
double
double
double
double
double
double
double
double

0; // iterator over the intervals in the bin
exposure = 0; // Exposure value for the bin
bintime = 0; // Mean weighted bin time
count_rate = 0; // The count rate
count_rate_err = 0; // The error on the count rate
ratelow = 0;
ratehigh = 0;
lograte = 0;
logratelow = 0;
logratehigh = 0;
ratesqrt = O;
ratelowsqrt = 0
ratehighsqrt =

J
J
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double ratecorr = 0;
double ratelowcorr = 0;
double ratehighcorr = 0;
double ten = 10;
double ratepower = 0;
double ratelowpower = O;
double ratehighpower = 0;
binstart -= grbtime;
binstop -= grbtime;
for (i = 0; i <= nintervals; i++) {
intervals[i] [0] -= grbtime;
intervals[i] [1] -= grbtime;
exposure += intervals[i][1] - intervals[i][0];
// printf ("%8.71f %8.71f\n",intervals[i] [1],intervals[i] [0]);
}
for (i = 0; i <= nintervals; i++) {
bintime += 0.5%(intervals[i][1] + intervals[i][0])*((intervals[i][1] -
intervals[i] [0])/exposure); // This is the weighted mean bin time
}
count_rate = (srcbin - backscale*bgdbin)/exposure;
count_rate_err = sqrt(srcbin + backscalexbackscalexbgdbin)/exposure;
ratelow = count_rate - count_rate_err;
ratehigh = count_rate + count_rate_err;

[ K - */
/* pile-up correction for windowed timing mode */
/* by Jon Hafsteinn Gudmundsson follows: */
e */

lograte = loglO(count_rate);

logratelow = loglO(ratelow);

logratehigh = loglO(ratehigh);

ratesqrt = sqrt(1.56986 - (0.373140 * lograte));
ratelowsqrt = sqrt(1.56986 - (0.373140 * logratelow));
ratehighsqrt = sqrt(1.56986 - (0.373140 * logratehigh));
ratepower = 6.91301 - (ratesqrt / 0.186570);
ratelowpower = 6.91301 - (ratelowsqrt / 0.186570);
ratehighpower = 6.91301 - (ratehighsqrt / 0.186570) ;
ratecorr = pow(ten, ratepower);

ratelowcorr = pow(ten, ratelowpower) ;

ratehighcorr = pow(ten, ratehighpower);
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F I e T R

/* end of pile-up correction

S

printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
return O;

%8.71f\t", bintime);
%8.71f\t", ratecorr);
%8.71f\t", binstart);
%8.71f\t", binstop);
%8.71f\t", ratelowcorr);
%8.71f\t", ratehighcorr);
%4d\t", srcbin);

%4d\t", bgdbin);
%8.71f\n", exposure);
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