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Abstract

This thesis is a study of elastic proton-proton scattering measured
by the ALFA detectors at the LHC. During a special physics run the
protons were collided at a center-of-mass energy of 900 GeV and β∗ =
100 m, allowing the ALFA detector to measure the small scattering
angles of the colliding protons.

To get a complete understanding of the elastic signal measured in
ALFA a Monte Carlo simulation was developed. The analysis of the
simulated signal yielded a smearing of the signal in x due to the width
of the beam, and a smearing of the signal in y due to the divergence
of the beam particles arising from betatron oscillations.

A new maximum log-likelihood fit routine was developed and tested
on simulated data. The fit parameters from theory are ρ, the ra-
tio of the real and imaginary part of the forward scattering ampli-
tude, σtot, the total pp cross-section, and B, the nuclear modulus.
On simulated data, with no background, generated with ρ = 0.1,
σtot = 68 mb, and B = 16 GeV−2, the new fit routine was able to
obtain the results of: ρ = 0.1063±0.0042, σtot = 67.99±0.11 mb, and
B = 16.00± 0.17 GeV−2.
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Introduction

The Standard Model is possibly the most fundamental theory there is and it
explains a large variety of phenomenons in our every day life. The Standard
Model is the basis of the universe describing all fundamental particles and
forces apart from gravity. This has led to particle physics being one of the
main research topics of the physics world.

The Standard Model may seem complete by the discovery of the Higgs bo-
son in 2012, from the experiments conducted at the Large Hadron Collider
(LHC) at the European Organization for Nuclear Research (CERN), but this
is far from true. Even though the Higgs boson explains how particles have
mass, and the other gauge bosons describe the fundamental forces of elec-
tromagnetism and the strong and weak force, the Standard Model still has
no explanation of why there is much more matter than anti-matter, and it
also lack a description of dark matter. So it is safe to say that there is still
some unanswered questions concerning the Standard Model. Some of the
questions are researched by looking at the most simple form of interaction
between two particles, namely elastic scattering.

Elastic scattering is studied by the Absolute Luminosity For ATLAS (ALFA)
experiment, which is a sub-detector of ATLAS, the largest detector in the
LHC complex. ALFA measures elastically scattered protons interacting at
very high energies and scattering at very small angles. Elastic scattering is
mediated by the electromagnetic force and the strong force. In elastic scat-
tering no quantum numbers are exchanged, only energy is exchanged between
the two particles, making one particle leave the interaction point at the same
angle as the other due to energy conservation.

Although it is the simplest form of an interaction, elastic scattering still
offers interesting insights worth studying. Just now there has been a discov-
ery of a particle called the Odderon, proposed in 1973, as a result of research
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of elastic scattered protons.
The study of elastic scattering in ALFA is important for estimating the

probability of two protons interacting, in the LHC, called the pp total cross-
section, and the parameter ρ which is the ratio between the real and imagi-
nary part of the forward scattering amplitude. ALFA is furthermore designed
to provide a measure of the luminosity, the total number of collisions in the
LHC, which are also crucial for many other analyses concerning particle col-
lisions at the LHC.

This thesis focuses on the 900 GeV elastics physics run for the ALFA exper-
iment. First of there will be a description of the theory relevant for elastic
scattering of protons at 900 GeV. Then follows a brief description of the
LHC and ATLAS together with a thorough presentation of the experimental
setup and data taking for ALFA. The last part of the thesis covers the data
analysis, where the simulation and study of the elastic signal is the main
focus.
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1 Theory

This section provides a description of the theory of particle physics studied
in the experiment of elastic proton-proton collisions at 900 GeV carried out
by the ALFA collaboration. It will contain an introduction to the Standard
Model and an explanation of the forces related to elastic proton-proton col-
lisions, namely the electromagnetic force and the strong nuclear force. This
is followed by a description of the kinematics of elastic scattering and in the
end a theoretical model for the elastic cross section is presented.

1.1 The Standard Model

The Standard Model of particle physics describes the elementary particles
and the fundamental forces of nature, which make up our entire universe.
The forces of the Standard Model describe the interactions between particles
and thereby lay the foundation for all fundamental phenomenons such as
matter, atoms, electricity, light etc. [1].

The Standard Model is presented in fig. 1 and is divided into matter
and force carriers. The three fundamental forces of the Standard Model are
mediated by the gauge bosons, depicted in red on fig. 1. All gauge bosons
have spin of S = 1. The strong force is mediated by eight gluons, which
are all massless. The charge of the strong force is called colour, hence all
particles carrying colour charge is subject to the strong force. Gluons carry
colour charge themselves and this has some interesting consequences, such
as gluon self-interaction, which enables elastic scattering through the strong
force that is described later on. The electromagnetic force is mediated by
the photon. The photon is massless and has no charge, and can therefore not
interact with itself. The weak force is mediated by the neutral Z-boson and
the electrically charged W+/−-boson and both the Z-boson and the W+/−-
boson are massive. There are two charges associated with the weak force
called isospin and hypercharge [1].

There are three generations of matter and they all consist of two quarks
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and two leptons all with spin S = 1/2. All quarks and leptons have an asso-
ciated anti-particle, usually indicated with a bar, e.g. a quark and anti-quark
is denoted by q and q̄ respectively. The quarks are all electrically charged,
massive, and carry colour charge. They are therefore subject to all the fun-
damental forces of the Standard Model. The quarks come in doublets, up
and down quarks from the first generation, charm and strange for the second
generation, and top and bottom for the third generation. The up, charm,
and top have electrical charge of 2/3e, where e is the elementary charge of
the electron and the down, strange, and bottom have charge of −1/3e. Their
mass hierarchy is mup < mcharm < mtop and mdown < mstrange < mbottom,
thus rising as we go to higher generations [1].

The charged leptons, the electron, the muon, and the tau, are each as-
sociated with a nearly massless and electrically neutral neutrino. The three
charged leptons and their corresponding neutrinos makes up the three lepton
doublets. The electron, the muon, and the tau all have electric charge of -1.
The mass hierarchy of the charged leptons is me < mµ < mτ , whereas the
absolute mass and mass hierarchy for the neutrinos are not determined yet.
The only way to distinguish between the three generations are by mass [1].

All matter is made up from particles of the first generation, as this is the
only stable matter. All atoms of the periodic table are made from the up
and down quarks, which make up the protons and neutrons in the nucleus,
and electrons which orbit the nucleus [1].

The proton and neutron are called baryons as they consist of three quarks.
The proton consist of two up and one down quark, making it charged by 1e,
and the neutron consist of two down and one up quark making it neutral.
Particles consisting of multiple quarks held together by gluons and the strong
force are called hadrons [1].

1.2 Quantum Electrodynamics

Quantum electrodynamics (QED) is the theory of the electromagnetic inter-
action between particles. Particles subject to the electromagnetic interaction
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Figure 1: The Standard Model of particle physics. [2]
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Figure 2: QED proton-proton interaction.

are electrically charged particles, such as the electrons, quarks, or even pro-
tons seen as whole particles. The underlying symmetry of QED is U(1). The
U(1) symmetry group has one generator, which corresponds to a massless
gauge boson, e.i. the photon. Every interaction in QED corresponds to an
exchange of a virtual photon between the charged particles, an example of
this is seen in fig. 2 [1].

1.3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong nuclear force.
The symmetry of QCD is the SU(3) symmetry group, as the strong force is
invariant under SU(3) local phase transformations. This gives rise to eight
generators of the SU(3) symmetry group. These eight generators gives rise to
eight new gauge fields called gluons. The charge of the strong force is called
colour charge and it is in the transformation of these colour charges the local
gauge invariance of the strong force lies. The SU(3) group is non-Abelian,
which means that the generators of the SU(3) do not commute. This gives
rise to a self-interacting term in the Dirac-equation for the strong force, which
means that the gluons must carry colour charge. The gauge transformation
does not give rise to a mass term, thus the gluons are left massless. The
interactions of QCD is shown in fig. 3, where the self-interaction vertices is
shown in the middle and to the right. [1].
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Figure 3: QCD vertices.

Particles carrying color charge have never been observed as free particles.
This is due to colour confinement that states that there are no free particles
with colour charge. Quarks and gluons are therefore always bound with other
quarks, or gluons, in colourless states [1].

1.3.1 The Running of coupling constants

A coupling constant is a measure of the strength of an interaction. However,
the coupling constants of QED (α) and QCD, αs vary as functions of energy
transfer, q, and are thereby not constant.

The running of the QED coupling constant is given by:

α(q2) = α(µ2)
1− α(µ2) 1

3π ln
(
q2

µ2

) (1)

Where α(µ2) is a known value of α at some given energy transfer µ. The
running of the constants are calculated by renormalising with higher order
Feynmann loop diagrams [1]. The running of the coupling constant can be
explained by the screening of charge by virtual particles of opposite charge.
This phenomenon is called vacuum polarization, and it happens as charged
particles are surrounded by virtual photons and short lived virtual electron-
positron pairs. A charged particle attracts the virtual particles of opposite
charge. As a result the charge of the particle is screened by the virtual parti-
cles and the effective charge becomes smaller at larger distances, making the
QED coupling stronger at small distances, i.e. for large energy transfers [3].
Measurements of α reveals α(q2 ≈ 0) ≈ 1/137, and α(q2 = m2

Z) ≈ 1/129,
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which verifies the running of the QED coupling constant [4]. As the coupling
constant only depends weakly on the center-of-mass energy, and ALFA are
looking at elastic events with very small energy transfers, the coupling con-
stant is small and perturbative QED is applicable.

The running of the QCD coupling constant, αs, is given by:

αs(q2) = αs(µ2)
1 +Bαs(µ2) 1

3π ln
(
q2

µ2

) , with B = 11NC − 2Nf

12π (2)

With NC = 3 being the number of colours and Nf = 6 the number of
quarks. The expression differs from the one for QED as the gluons can self-
interact, thus given rise to a larger number of higher order Feynman loop
diagrams for QCD [1]. As B is positive, αs grows as the energy transfer
becomes small. This can be explained by anti-screening. A colour charged
test particle will be surrounded by virtual quarks and gluons all carrying
colour charge. The virtual quarks and gluons draws the color charge away
from the test particle, making the test color charge weaker, by spreading
the colour charge out onto a larger volume. Thus moving further away one
will see more colour charge making the strong coupling stronger at larger
distances, e.i. for low energy transfers [3]. Measurements of αs reveals αs(q ∼
1 GeV) ∼ 1 and αs(q2 = m2

Z) ≈ 0.1 [1].
In the low energy regime, of 900 GeV, one cannot use perturbative QCD

as the coupling constant becomes to large to treat it as a perturbation.

1.3.2 Regge Theory

The ALFA experiment measures very small scattering angles and therefore
very small energy transfers, this means that ALFA measures elastic events
in the non-perturbative regime of QCD [5].

Regge theory is a non-perturbative theory for QCD. When quarks are
bound in hadronic states they are colourless, due to colour confinement, but
they are allowed to have spin and angular momentum, which combined is
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denoted by J = L+ S. The total spin and mass are linearly related in what
is called Regge trajectories. The linear relation between spin and mass is
given by:

J = α0 + α′M2(J) (3)

WithM being the mass. Each allowed combination of quarks into hadrons
has this linear relation between mass and spin. For each integer or half integer
of spin J, depending on the initial value of S, there is another hadron [6].

These particles are called Reggeons, and can exist as propagating particles
when two protons interact through the strong force as they are colourless.

1.3.2.1 Reggeons as propagators

A particle interaction is governed by the strength of the coupling in the ver-
tices and the energy transfer. For the strong force the coupling is αs(q).
Using Reggeons as propagators we are able to determine the transition res-
onances by finding the Regge poles, on the Regge trajectories. The Regge
trajectories has a Regge pole for each integer and half integer spin. These
poles corresponds to Reggeons. By finding the Regge poles the resonances
can be calculated by the linear relation of the spin of the Regge poles to
the mass of the Reggeons. The total transition amplitude for two proton
interacting elastically through the strong force is given by adding the contri-
butions from all possible Regge poles together [7]. By having these colourless
Reggeons we are able to describe the interaction between protons due to the
strong force, as seen in fig. 4.

However, at large energies the total cross section starts to increase. This is
assured by the introduction of the so called Pomeron trajectory, named after
Pomeranchuk. He proved that at large energies the cross sections of proton-
proton and proton-antiproton becomes equal. A solution to this behavior are
the so called glue balls. A collection of gluons carrying the quantum numbers
of vacuum and being colourless [8]. Research have shown that Pomerons are
not sufficient to describe the pp cross section, thus a colorless glue ball of
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Figure 4: QCD proton-proton interaction.

odd charge parity called the Odderon was introduced to make up for the
sufficiency of the existing theories. The existence of the Odderon was first
predicted in 1973 and measurements by the TOTEM and D0 collaboration
and have just proven the existence of the Odderon in 2020 [9]. The Reggeons,
Pomerons, and Odderons are the possible propagators of elastic scattering
mediated by the strong force, and from these interactions the elastic nuclear
scattering amplitude is calculated. However, for this thesis the nuclear in-
teraction amplitude is approximated by a phenomenological model. This is
presented later in section 1.4.2.

1.4 Elastic Scattering

Elastic scattering is characterized by no quantum number being exchanged
between the interacting particles and small energy transfers. As the energy
transfer is small we are in the non-perturbative regime of QCD as explained
in section 1.3.1, thus we turn to phenomenological models to describe the
nuclear scattering amplitude. Whereas perturbative QED is sufficient to
describe the QED processes of elastic pp scattering.

This section includes a description of the kinematics used in elastic proton-
proton scattering with small momentum transfers and a thorough description
of the elastic scattering amplitude, which includes a Coulomb scattering am-
plitude, a nuclear scattering amplitude, and an interference term.
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Figure 5: Two protons scattering with angle θ

1.4.1 Kinematics

For elastic proton-proton scattering at the LHC, the two initial particles are
known to have the same energy and momentum in opposite directions. A
small drawing of pp scattering is shown in fig. 5. Here proton 1 and 2 scatters
into proton 3 and 4. The scattering angle is the same for proton 3 and 4 due
to momentum conservation.

The center-of-mass energy squared is given by the Mandelstam variable
s which is defined as s = (p1 + p2)2, with p1 and p2 as the four momentum
of the incoming protons [1]. As the incoming protons has equal but opposite
momentum s can be written as

s = (p1 + p2)2 = (E1 + E2)2 − (p1 + p2)2 = E2
1 + E2

2 + 2E1E2 (4)

As p1 = −p2 the last term is 0, and as E1 = E2, s can be written in
terms of the proton mass, mp, and the momentum, p = |p1|.

s = 4(m2
p + p2) (5)

The exchange of momentum between the incoming proton is given by the
Mandelstam variable t = (p1 − p3)2 = (p2 − p4)2. This can be written as

t = (p1 − p3)2 = (E1 − E3)2 − (p1 − p3)2 = (6)

= E2
1 + E2

3 − 2E1E3 − p1
2 − p3

2 + 2p1p3 (7)
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For elastic scattering p1
2 = p3

2 = p2, thus we have

t = 2m2
p + 2p2 − 2(m2

p + p2)− 2p2 + 2p2 cos θ (8)

= −2p2 + 2p2 cos θ (9)

As we are dealing with very small angles this can be approximated to

t = −2p2 + 2p2 cos θ ' −2p2 + 2p2
(

1− θ2

2

)
⇔ (10)

t = −(pθ)2 (11)

The ALFA experiment is designed on the basis of the relation between
momentum transfer t and scattering angle, θ. This relation is therefore of
great importance.

1.4.2 Elastic Cross section

Since protons are electrically charged and they consist of quarks they interact
through the electromagnetic force and the strong nuclear force. Because of
this the elastic cross-section for proton-proton scattering is comprised of a
Coulomb term, due to Coulomb interactions, a nuclear interaction term, due
to strong force interactions, and an interference term of the two forces [10].

The total elastic differential cross section is given by

dσ

dt
= |FCeiαφ(t) + FN |2 (12)

With FC and FN being the Coulomb and Nuclear term respectively, and
φ(t) being the interference term between the two types of interactions.

Coulomb Interaction Amplitude

The Coulomb interaction term arises from the electromagnetic interactions
between the protons. For small energy transfers the QED coupling constant is
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small and perturbation theory is therefore sufficient to describe the Coulomb
interaction cf. section 1.3.1. The dominating Feynman diagram for the
Coulomb interaction is shown in fig. 2. For small energy transfers the virtual
photon has a large wavelength and thus sees the proton as a whole charge
[1]. The form factor of the proton is therefore needed. A simple form factor
is the dipole parametrization given as

G(t) =
(

Λ
Λ + |t|

)2

(13)

with Λ = 0.71 GeV2 [11]. Another slightly more complicated model is the
double dipole model given by

Gdouble dipole(t) = a0

(
Λ0

Λ0 + |t|

)2

+ (1− a0)
(

Λ1

Λ1 + |t|

)2

(14)

with a0 = 0.976, Λ0 = 0.66, and Λ1 = 0.60 [11]. For small scattering
angles the forward scattering amplitude for the Coulomb scattering is given
by

FC = −2
√
παG2(t)
|t|

(15)

Where G(t) can be any form factor dependent on t [10].

Nuclear Interaction Amplitude

The nuclear interaction comes from strong force interactions between the
protons described by QCD. Because of the running of constants perturbative
QCD cannot be used and therefore a phenomenological model determined
from experiment which is sufficient for small values of t, is used instead [10].
This is given by

dσN
dt

= dσN
dt

∣∣∣∣∣
t=0

e−Ω(t) (16)

The optical theorem, derived in appendix B, describes the relation be-
tween the forward scattering amplitude and the total cross section given by
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σtot = 4
√
πIm(F (t = 0)) (17)

With the phenomenological model we now write

dσN
dt

= dσN
dt

∣∣∣∣∣
t=0

e−Ω(t) = |F (s, t = 0)|2e−Ω(t) (18)

= |Re(FN(t = 0)) + iIm(FN(t = 0))|2e−Ω(t) (19)

=
∣∣∣∣∣
(
Re(FN(t = 0))
Im(FN(t = 0)) + i

)
Im(FN(t = 0))

∣∣∣∣∣
2

e−Ω(t) (20)

Now inserting the optical theorem and defining ρ = Re(FN(t = 0))/Im(FN(t =
0)) we arrive at

dσN
dt

=
∣∣∣∣∣(ρ+ i) σtot4

√
π
e−Ω(t)/2

∣∣∣∣∣
2

(21)

The nuclear modulus Ω(t) can be expressed in different forms, for instance
three types of polynomials

Ω(t) =
NB∑
n=1

Bnt (22)

with NB = 1, 2, 3 [12]. The nuclear modulus can also be describes as in
[13] where it is given by

Ω(t) = Bt− C(
√

4µ+ t− 2µ) (23)

with µ = .0135 GeV and C being a parameter to be determined.

Coulomb and Nuclear Interference

The Coulomb and Nuclear interference term describes the interference be-
tween the Coulomb and nuclear interactions. The interference term is de-
scribed by the phase φ(t), in eq. (12). Currently the phase can be expressed
in two different forms presented below
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φ(t) = −γE − ln
(

Ω(t)
2

)
(24)

φ(t) = −
[
γE + ln

(
Ω(t)

2

)
+ ln

(
1 + 8

BΛ

)]
+ 4|t|

Λ ln
(

Λ
4|t|

)
− 2|t|

Λ (25)

with γE ' 0.577 being Euler’s constant, Ω(t) being the nuclear modulus,
B coming from the nuclear modulus, and Λ coming from the form factor.
The West and Yennie interference phase, in eq. (24), is also used in earlier
ALFA and TOTEM analyses [5] [12], and eq. (25) is the phase derived by
Cahn [14].

Total Elastic Differential Cross Section

By combining the Coulomb and Nuclear interaction terms with the interfer-
ence terms we get a theoretical formula for the total elastic differential cross
section given by:

dσ

dt
=
∣∣∣FCeiαφ(t) + FN

∣∣∣2 =
∣∣∣∣∣−2
√
παG2(t)
|t|

eiαφ(t) + (ρ+ i) σtot4
√
π
e−Ω(t)/2

∣∣∣∣∣
2

(26)

= 4πα2G(t)4

t2
− σtotαG(t)2

|t|
[ρ cos(αφ(t)) + sin(αφ(t))]e−Bt

2 (27)

+ (ρ2 + 1)σ
2
tot

16πe
−Bt (28)

The first term is the Coloumb term, the second term is the Coulomb
and Nuclear interaction term, and the last term is the nuclear term. The
contributions of the different terms and the total elastic differential cross
section is shown in fig. 6. The parameters to be eastimated by the ALFA
experiment are ρ, σtot, and the nuclear slope B. From theory fitted to earlier
measurement the approximate values of the parameters at 900 GeV is ρ = 0.1,
σtot = 68 mb, and B = 16 GeV2 [15]. These are also the parameters with
which the theory function in fig. 6 is plotted.

In ALFA the differential cross-section is estimated by measuring the scat-
tering angles of the events, translating this value into a value of |t| by using
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Figure 6: The theory function of the differential elastic cross section presented
in eq. (28). The parameters are set to ρ = 0.1, σtot = 68 mb, B = 16 GeV2.
Note that the signed is flipped for the CNI term.

eq. (11), and then counting the number of events as a function of |t|. This
distribution is then fitted with the theoretical formula in eq. (28).

Measurements of the total cross section is presented in fig. 7, where we
see the rise for high energy collisions, at high values of

√
s. The rise of σtot is

restricted by unitarity. When protons collide there are a certain number of
outcomes. The probability of this finite number of outcomes should all add
up to 1. Thus, σtot has to be bound in some way for high

√
s in order to

converge. This bound, proven through unitarity, is known as the Froissart-
Martin bound and is given by:

σtot(s) =≤ ln2
(
s

s0

)
(29)
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Figure 7: Measurements of the total cross section and the elastic cross section
as functions of center-of-mass energy,

√
s [16].
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2 Experimental Setup

The following section will cover the experimental setup of the ALFA exper-
iment. There will be a presentation of the Large Hadron Collider (LHC),
including a description of the beam properties and dynamics. Then the AT-
LAS experiment will be explained briefly, followed by a thorough description
of the ALFA experiment, and in end the data taking procedure is described.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest particle accelerator in the
world. Originally build for the Large Electron-Positron Collider (LEP) in the
1980’s, the circular tunnel with a circumference of roughly 27 km now con-
tains the LHC where protons are collided instead of electrons and positron.
In the LHC protons are accelerated to velocities close to the speed of light
and collided at large center-of-mass energies of up to 14 TeV [8].

The LHC is a part of the CERN complex, shown in fig. 8, underground on
the border between France and Switzerland near Geneva. The LHC makes
use of some of the other accelerators in the CERN accelerator complex to
accelerate the protons making them ready for injection in the LHC-ring.
The protons are obtained by removing the electrons of hydrogen in an elec-
tric field and after that the protons are accelerated for the first time in the
linear accelerator LINAC2. The next stage of acceleration happens in the
Proton Synchrotron Booster from there the protons are led into the Proton
Synchrotron (PS) and then they are led into the Super Proton Synchroton
(SPS) from where it is injected into the LHC ring. In the LHC the protons
are accelerated further to energies up to 14 TeV [8].

2.1.1 LHC Design

The LHC is divided into eight octants as shown in fig. 9. Each octant consists
of a straight section of about 500 m and is utilized for different purposes.
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Figure 8: The CERN Accelerator complex [17]
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Figure 9: Schematic overview of the LHC divided into octants [18]
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Figure 10: The principle behind the phase stability of the proton bunches
[19]

The four big experiments at the LHC, ATLAS, ALICE, CMS, and LHC-B,
are placed in the octants 1, 2, 5, and 8, respectively. The cleaning of the
beam happens in octant 3 and 8, where the beam is collimated. A technique
designed to reduce the width of the beam, by scraping off off-orbit protons
that could possibly harm the accelerator machinery. The off-orbit protons
are known as the beam halo particles [18]. In octant 6 the beam is dumped
in the end of runs or if there is a problem. Here the beam is lead down into
tunnels and dumped into absorbers [18].

In octant 4 the beam is accelerated by Radio Frequency (RF) cavities.
The RF cavities uses an alternating electric field to accelerate the proton
bunches to up to 14 TeV [8]. The RF cavities makes use of the Lorentz force
to accelerate the charge protons. The Lorentz force is given by

F = q(E + v ×B) (30)

Where q is the charge of the particle, E the electrical field, v the velocity
of the particle, and B the magnetic field. The RF cavity uses an oscillating
electric field in the direction of the beam to accelerate the protons. The os-
cillating fields of the RF cavities help maintain the proton bunches. Protons
with high energies arrive to the RF cavities earlier than the protons with
nominal energy, indicated by the green dot in fig. 10, and the protons with
larger energies are thus given a smaller kick. Protons with lower energies
than the nominal are given a larger kick. This is depicted on the rising side
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of the electric RF field indicated by the red dot in fig. 10. When the protons
become relativistic, larger energy will just result in larger radii of the particle
trajectories, so relativistic protons with high energy will arrive later and get
a smaller kick, whereas relativistic protons with low energy arrives early and
get a large kick , as we see for the blue dot on the falling side of the RF cavity
in fig. 10 [20]. As a result the particles in the bunches are tuned by the RF
cavities to have close to nominal energy all the time, keeping the bunches
together.

In the LHC there are 9300 magnets guiding the beam through the 27 km
long tunnel [21]. Dipole magnets bend the beam along the circular design
of the LHC, whereas the quadrupole and higher order magnets are used to
focus and defocus the beam [20]. The magnets of the LHC are cooled down
to 1.7 K by superfluid helium in order to make them superconductive. Oper-
ating with a current of about 12 kA they are able to achieve a magnetic field
of about 8 T [8].

2.1.2 The Beam

This section covers the motion of the beam through the LHC, and the mo-
tion of elastically scattered protons from the interaction point in the center
of ATLAS all the way to the detectors of ALFA placed on either side. The
motion of the beam is described by so called beam optics. The term arises
as the magnets of the LHC can be described very similar to optical lenses.
Dipole magnets bend the beam while the higher order magnets focus and
defocus the beam. This is crucial in order to control the beam and keeping
it from from blowing up which would result in a beam loss, and to optimize
data taking.

The coordinate system used to describe the motion of the beam in LHC
is given by (x, y, s), x pointing towards the center of the LHC ring, y being
the vertical coordinate, and s moving with the beam in the counterclockwise
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direction. Thus, a proton in the beam center moving in a perfect trajec-
tory around the LHC ring has the coordinates (x, y, s) = (0, 0, s) [22]. The
transverse motion of the beam in a ring of length L, is given by the Hill’s
equation:

d2u(s)
ds2 +K(s)u = 0 , K(s+ L) = K(s) (31)

Where the last condition says that when travelling around the ring one
time the particle should arrive at the same coordinate from where it started
[20].

The real part of the solution to eq. (31) is given by

u(s) =
√
εβ(s) cos(ψ(s)− ψ(0)) , ψ(s) =

∫ s

0

ds

β(s) (32)

ψ(s) being the phase advance of the beam, ε is the emittance, and β(s) =
p2(s) is the function which describes what is called the betatron oscillations.
The betatron oscillations are fully described by β(s) as it decides both the
amplitude and the phase advance oscillations, ψ. It is important that the
number of oscillations per turn, called the tune, is not an integer or half
integer as this would amplify every small imperfection in the apparatus for
each turn and in the end result in a beam loss [20].

Looking at the derivative of eq. (32) we get the divergence of the beam,
i.e. the local angle of a particles in the beam with respect to the direction of
the beam.

u′(s) = −
√

ε

β(s)(sin(ψ(s)− ψ(0))− α cos(ψ(s)− ψ(0))) , α = −β
′(s)
2
(33)

When measuring the small scattering angles of elastic scattered protons,
the divergence is important to take into account, as the divergence means
that we cannot be certain of the incoming angle of the scattered protons. The

26



divergence therefore results in larger uncertainties on the measured scattering
angles.

Taking energy loss and momentum dispersion into account the solution
to the Hill’s equations can be written as


u(s)
u′(s)
∆p/p

 = M


u∗(s)
u′∗(s)
∆p∗/p

 (34)

M =


√
β/β∗(cosψ + α∗ sinψ)

√
ββ∗ sinψ Du

(α∗−α cosψ−(1+α∗α sinψ))√
β/β∗

√
β/β∗(cosψ − α sinψ) D′u

0 0 1

 (35)

Where u(0) = u∗, u′(0) = u′∗, β(0) = β∗, α(0) = α∗, α(s) = α, β(s) = β,
ψ(s) = ψ, M(s) = M being the transport matrix, and s = 0 is taken to be
the exact center of the beam crossing. For elastic scattering the energy loss
∆p can be neglected [23]. This simplifies the equations to

u(s)
u′(s)

 = M

u∗(s)
u′∗(s)

 (36)

M =


√
β/β∗(cosψ + α∗ sinψ)

√
ββ∗ sinψ

(α∗−α cosψ−(1+α∗α sinψ))√
β/β∗

√
β/β∗(cosψ − α sinψ)

 =
M11 M11

M21 M22


(37)

The matrix M is known from the beam optics of the LHC, meaning the
position of the protons at ALFA can be expressed by

u(s) = M11u
∗ +M12u

′∗ (38)
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For elastic proton scattering the interaction point for the two protons
are identical, and the scattering angles are equally large with opposite signs.
This gives us

uL − uR = M11u
∗ +M12u

′∗ − (M11u
∗ −M12u

′∗) = 2M12u
′∗ (39)

⇔ u′∗ = θ∗u = uL − uR
M12

= uL − uR√
ββ∗ sinψ (40)

Where uL and uR denotes the measured coordinates of the left and the
right side of the interaction point (IP), and θ∗u is the u-component of the
scattering angle.

During the 900 GeV elastic campaign the optics of ALFA is designed
such that ψ = π/2 and β∗ = 50 in the x-plane and β∗ = 100 in the y-plane.
ψ = π/2 maximises the effective lever arm Leff =

√
ββ∗ sinψ, which max-

imises the precision on the measurement of the angle, as is seen in eq. (40).
During the elastic campaign ALFA is optimized such that α ' 0 making the
measured coordinates in the y-plane in ALFA independent of the position of
the interaction point. This optics setup is called parallel-to-point optics and
can only be done in one plane. For ALFA it is the vertical direction which
is optimized, as the ALFA detectors comes in above and below the beam
pipe [23]. Considering only particles scattering in the y-plane, the minimum
measurable value of the scattering angle can be estimated with eq. (36) and
by substituting u′∗y = θ∗y and uy = y.

ymin =
√
ββ∗ sinψθ∗y ⇔ θ∗y = ymin√

ββ∗
→ −t = (pθ∗y)2 = p2ymin

ββ∗
(41)

Remembering that ψ = π/2 because of parallel-to-point optics. Here ymin
is dependent on the beam spot width and of how close to the beam the ALFA
detectors is able to go.
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Emittance

Emittance is a measure of the width of the beam. Every proton in the beam
will oscillate on its way around the LHC ring due to the betatron oscillations.
At each point around the accelerator the motion of the particle is described
by the coordinates u and u′. At each turn the coordinates shift and at any
given point in s, u and u′ maps out an ellipse [20]. The ellipse is given by
the formula:

γu2 + 2αuu′ + βu′2 = ε , γ = 1− α2

β
(42)

Louivilles theorem states that if only conservative forces acts on the pro-
tons, the area of the ellipse, πε, remains invariant. However, there are several
non-conservative forces acting in the accelerator experiment acting on the
protons, e.g. energy loss, synchrotron radiation etc. Some of these forces
blow up the beam but some can also be used to cool the beam and bring
down the emittance. The maximum values of u and u′ is given by

umax =
√
εβ , u′max = √εγ, with β = v

c
, γ = 1√

1− β2 (43)

From this it is clear that the emittance, and therefore the beam spot, can
be made smaller by minimizing β or larger by maximizing β.

Every time the beam is accelerated in the s-direction the u′max is reduced
as it is inversely proportional to β which is a function of the momentum of
the protons. Thus, the normalized emittance is defined as

εN = γβε (44)

Using eq. (43) we can get an expression of ymin as umax is the beam spot
width. For ALFA we define ymin as a multiple of the beam spot width [24].

ymin = n
√
εβ (45)
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Combining with eq. (41) and eq. (44) we get the minimum achievable
measurement of momentum transfer, tmin [24].

−tmin = (pθ∗y)2 = p2ymin
2

ββ∗
= n2p2ε

β∗
= n2p2εN

γβ∗
(46)

With the protons travelling near the speed of light β = v/c ≈ 1. However,
the ALFA detectors is not able to go as close as the theoretical prediction,
but is still able to cover the range of interest in t [24].

The emittance is measured in various ways at the LHC. One of the ways
to measure the emittance is by Van der Meer scans. Van der Meer scans are
done by separating the beams and then counting the event rate while moving
the beams in opposite directions through each other. By then we can both
get a measurement of the emittance and luminosity [1].

The width of the beams is also measured with wire scanners. Wire scans
are done by moving a carbon wire through the beam while counting the rate
of scattered particles with scintillators surrounding the wire scanner [24].

The evolution of the emmitance throughout a run is measured by a
Beam Synchrotron Radiation Telescope (BSRT). The BSRT measures the
synchrotron radiation from a dipole magnet, and from that a profile of the
beam is calculated.

2.1.3 Luminosity

One the most important parameters when doing particle colliding experi-
ments is the number of interactions occurring when particles collide. Here
the luminosity plays a central role. The instantaneous luminosity, L, is a
measure of the collision rate. Recalling that the cross section is a measure of
the probability of an event, the total number of events can be calculated by
integrating the instantaneous luminosity over the period of the experiment
[1].
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N = σ
∫ t

0
L(t′)dt′ = σL (47)

where L is called the integrated luminosity and σ is the cross-section.
Hence, to determine the cross section by counting events, the luminosity
needs to be known. The luminosity is determined by the accelerator pa-
rameters and for the LHC the instantaneous luminosity can be expressed
as

L = fn1n2

4πσxσy
(48)

with f being the frequency of colliding bunches, n1 and n2 being the
number of protons in each of the colliding bunches, and σx and σy being the
beam spot width in the x and y direction. To get a large amount of event
the luminosity needs to be big, hence a small beam spot size is desirable. In
the 900 GeV run the emittance is bigger than for runs at higher energies as
the emittance, and therefore the beam spot size, is inversely proportional to
the beam energy [24].

Lack of accuracy of luminosity calculations will propagate to the error of
the measured cross-section, making the luminosity a very important factor
of the experiment [1].

2.2 ATLAS

ATLAS is the largest particle detector on the LHC ring, and it is on either
side of the ATLAS detector that the ALFA detectors are located. ATLAS
is an acronym for A Toroidal LHC AparatuS. ATLAS is designed to detect
many different particles in a large range of phase space surrounding the beam
interaction point (IP) located in the center of ATLAS. An illustration of the
ATLAS detector is shown in fig. 11 where the different parts of the detector
are labelled [25].
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Figure 11: An illustration of the ATLAS particle detector. [25]

The inner detector consists of a silicon pixel detector, silicon strip detector
and a transition radiation tracker, which are able detect charged particles
travelling through. The inner detector is used to reconstruct interaction
vertices and to measure momentum of charged particles. In order to measure
the momentum of the charged particles a 2 TeV magnetic field is applied over
the whole inner detector. In combination with the other the detectors of
ATLAS the inner detector plays a crucial role in particle recognition [25].

Outside the inner detector is the calorimeters. The calorimeters consist of
an electromagnetic calorimeter and a hadronic calorimeter. The electromag-
netic calorimeter is a sampling calorimeter and uses liquid argon (LAr) as its
detector medium and lead as the absorber. The outermost calorimeter is the
hadronic calorimeter, which consists of plastic scintillator tiles with steel as
the absorber. At the end caps of the calorimeters, electromagnetic end cap
calorimeters, hadronic end cap calorimeters, and forward calorimeters are in-
stalled. They all use LAr as detector medium, and copper or a combination
of copper and tungsten as detector medium. The calorimeters are designed
to measure the energy of particles decaying and being fully absorbed within
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the calorimeter, which is why the calorimeters have to be quite thick [25].
The outermost part of the detector is the muon spectrometer. The muon

spectrometer is designed to detect muons traversing the whole detector with-
out decaying [25].

2.2.1 ATLAS Trigger System

During an LHC run the proton-proton interaction rate is about 1 GHz, whereas
the data recording is limited to about 200 Hz due to technology limitations.
It requires a rejection system to bring the event rate down to a manageable
level. This rejection system is called the trigger system. ATLAS has two
initial trigger levels, the level 1 (L1) trigger system and the high level trigger
(HLT) system.

The L1 trigger system is based on custom electronics and uses informa-
tion from the calorimeters and muon spectrometers. The Central Trigger
Processer (CTP) is what ultimately decides whether to keep an event or not,
based on the information of the different trigger items from the L1 calorime-
ter triggers (L1Calo) and L1 muon triggers. The L1Calo trigger identifies
events with high transverse energy deposited in the calorimeters, and the
L1 muon trigger searches for particles with high transverse momentum orig-
inated from the interaction point. Each trigger item contains a prescale,
n, which decides that only the n’th event should be saved. The L1 trigger
system reduces the event rate from 1 GHz to 75 kHz [25].

The L1 trigger system passes events through to the HLT system. the HLT
consists of the level 2 trigger (L2) and the event filter. It uses information
from the regions of interest, i.e. information on coordinates, energy, and
signature types, to manage what data to read-out for offline analysis. The
HLT system reduces the data from 75 kHz to around 200 Hz [25].

2.3 ALFA

In this section the design of the ALFA (Absolute Luminosity for ATLAS)
experiment covered in detail. The ALFA experiment is designed to measure

33



Figure 12: An overview of ALFA. [26]

elastic proton-proton scattering at the smallest possible angles in order to
measure the total elastic cross section at very low energy transfers in order
to study the elastic Coulomb and nuclear scattering amplitudes.

2.3.1 Design

ALFA consists of eight detectors, four on each side of the interaction point
(IP) in ATLAS. On each side there are two detectors above the beam pipe
and two detectors below the beam pipe. An overview is presented in fig. 12.
The inner detectors are placed 237 m on each side of the ATLAS IP, with
the outer detectors placed 8 m further out at 245 m. The eight detectors
are named such that the first letter denotes if its an inner (A) or outer (B)
detector. The number 7 indicates that it is the seventh element seen from
the IP. L/R indicates if the detectors on the left- or right-hand side of the IP.
The left side is also called the A-side while the right side is called the C-side.
1 means that the detectors are installed in the straight section of octant 1,
and the final letter U or L indicates if its an upper or lower detector [26].

The ALFA detectors are installed in Roman Pots (RP), which sits above
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Figure 13: An illustration of ALFA divided into arms and armlets [19].

and below the beam pipe and are separated from the primary ultra high
vacuum of the beam pipe. This allows the detectors to be moved extremely
close to the beam by high precision screws, in order to measure elastically
scattered protons at extremely small angles of the order of 10 µRad. [5].

ALFA is divided into arms and armlets as seen in fig. 13. Each armlet has
two detectors and makes up an arm with the diagonally opposite armlet. Due
to momentum conservation elastic scattered protons has equal and opposite
scattering angles as seen in fig. 5 and described in section 1.4.1. Thus, when
measuring an elastically scattered proton in A7L1U and B7L1U a proton
with the same but opposite scattering angle should be measured in A7R1L
and B7R1L. These four detectors constitutes arm 1 while A7L1L and B7L1L,
and A7R1U and B7R1U makes up arm 2, as indicated by yellow and green
on fig. 12 [5].

Each of the ALFA detectors consists of a Main Detector (MD), which
measures the particles, a Overlap Detector (MD) that measures the gap
between an upper and lower detector, and trigger detectors to reduce noise
and pick out elastic events [27].

2.3.2 Main Detector

The Main Detectors measure the coordinates of the elastically scattered pro-
tons. The MDs consist of two sets of 10 layers of 64 scintillating fibres. One
set glued to the front of a titanium plate, and the other set glued to the back
of the plate. The two sets of fibre are arranged perpendicular to each other
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Figure 14: An illustration of the main and overlap detector of ALFA [5].

with angles of ±45◦ with respect to the y-axis. Each set of fibre makes up a
plane. The set at the front of the titanium plate is called the U-plane, and
the set on the back is called the V-plane. 40 of the 64 fibres are cut with
an angle of 45◦. This gives the MD diamond shape with the bottom being
horizontal in order to get as close the beam as possible. A depiction of the
Main Detector (MD) and Overlap Detector (OD) are shown in fig. 14, where
the diamond shape of the MD can be seen [5].

To prevent signals in one fibre from migrating to adjacent fibres, all fibres
are coated with thin aluminum film. All fibres are also coated with aluminum
at the ends except the fibres that are cut by 45◦. However because of the 45◦

cut the total internal reflection is sufficient enough to keep the light inside
the scintillating fibres [27].

The fibres are staggered with 1/10 overlap of the fibre thickness in order
to improve the detector resolution. In reality this staggering was not achieved
to perfection. So due to staggering imperfections, cross-talk between fibres,
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Figure 15: Scheme of the measurement of the gap between the upper and
lower detector, by detecting halo particles with the overlap detectors [19].

and inefficient fibres, the resolution of the detectors was measured to a value
around 30 µm [5].

The detector signal of both the MD and OD is read out by 23 multi-anode
photomultipliers (MAPMT) to 64 channels [5].

2.3.3 Overlap Detector

The Overlap Detectors (OD) are positioned on each side of the MD. The
OD makes use of halo particles travelling along the beam to determine the
width of the gap between the upper and lower detectors. The principle of
measuring the distance between the MDs are shown in fig. 15.

The ODs consists of three layers of 30 scintillating fibres each, with 15
fibres glued to the front of the titanium plate and 15 fibres glued to the back.
The fibres are aluminum coated and are staggered by 1/3 of the fibre sized
and are placed horizontally in order to measure the vertical distance. The
fibre staggering results in a resolution of 50 µm. As depicted in fig. 14 there
are two independent ODs on each side of the MD [5].

37



2.3.4 Trigger Detector

Both the MDs and the ODs are covered by a 3 mm thick scintillator plate,
called the trigger detectors. The purpose of the trigger detectors is to reduce
noise of the individual detectors. Each MD detector has two scintillating
tiles and reduces noise by requiring a coincidence in both trigger tiles. Each
OD has only one trigger tile and require a coincidence in both an upper and
lower OD to trigger [5].

2.4 Data Taking

This section covers the different aspects of data taking of the ALFA detector.
The data used in this thesis is from the 900 GeV elastic physics program,
which was a part of the special physics run at the LHC that took place in
October 2018 [24]. The data analysis in this thesis focuses on data taken
with the optics setting of β∗ = 100 m, to study elastic events at small values
of |t|. This thesis studies the data taken in run 363461, one of the 12 runs
taken with β∗ = 100 m and beam energy of 450 GeV.

2.4.1 Alignment

When the LHC is filled the beam is not necessarily centered in the beam pipe,
and the position of the beam can vary from fill to fill. Through a procedure
called Beam Based Alignment (BBA) the ALFA detectors are placed equally
close to the beam center. The BBA procedure has adopted its concept from
the collimation of the beam. The RPs are moved slowly towards the beam
center in steps of 10 µm. As the RPs reaches the beam halo edge they will
start scraping the beam similar to the collimators. The beam center is then
found by monitoring the ALFA trigger rate and the signal in Beam Loss
Monitors (BLM), installed behind the ALFA stations. When seeing a sharp
rise in the signal rate the beam halo edge is found. From this the beam
center is calculated and the RPs positions are determined. The position of
the RPs are not placed exactly on the beam edge but are instead placed 3σ
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away from the beam center, with σ being the beam spot width [27].

2.4.2 Data Monitoring

During the experiment run it is important to monitor the data taking in
order to get as high quality data as possible. This is done by monitoring
certain trigger items that gives an initial idea of the signal to background
ratio. Some of the level 1 (L1) trigger items monitored during the data taking
period are presented in table 1.

Each trigger item are paired with two buch group triggers, BGRP0,
BGRP1. BGRP0 triggers on every possible bunch crossing except the ones in
the abort gap. BGRP1 triggers on colliding bunches. These make sure that
events are only recorded in coincidence with two colliding proton bunches.
L1_ALFA_ANY triggers if any of the MDs trigger and is thus the loos-
est of the triggers in table 1. The trigger items L1_ALFA_ELAST15 and
L1_ALFA_ELAST18 are elastic triggers. They trigger if one detector in an
armlet is hit in coincidence with one of the detectors in the diagonally oppo-
site armlet. L1_ALFA_ELAST15 is the arm 1 trigger and L1_ALFA_ELAST18
is the trigger for arm 2. L1_ALFA_SYST17 and L1_ALFA_SYST18 are
background triggers. L1_ALFA_SYST17 triggers if a detector in an upper
armlet has a coincident event with one of the detectors in the other upper
armlet. The same goes for L1_ALFA_SYST18 which is just for the lower
detectors instead.

By observing the event rate for the elastic triggers and background trig-
gers the quality of data can be optimized. In fig. 16 it is seen how the event
rates of the elastic triggers, L1_ALFA_ELAST15 and L1_ALFA_ELAST18,
are higher than for the background triggers, L1_ALFA_SYST17 and
L1_ALFA_SYST18, in the beginning of the data taking. As time goes on
the background rate starts to grow as the beam halo intensifies. To bring
down the noise, the beam is collimated when the background triggers reaches
a certain rate. The beam monitoring graph in fig. 16 shows trigger rates just
before beam scraping [24].
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Figure 16: Beam monitoring graph for the two elastic and two background
triggers [24].

Trigger Item Trigger Logic
L1_ALFA _ANY B7L1U ∨ B7L1L ∨ A7L1U ∨ A7L1L ∨

A7R1U ∨ A7R1L ∨ B7R1U ∨ B7R1L
L1_ALFA_ELAST15 (B7L1U ∨ A7L1U) ∧ (A7R1L ∨ B7R1L)
L1_ALFA_ELAST18 (B7L1L ∨ A7L1L) ∧ (A7R1U ∨ B7R1U)
L1_ALFA_SYST17 (B7L1U ∨ A7L1U) ∧ (A7R1U ∨ B7R1U)
L1_ALFA_SYST18 (B7L1L ∨ A7L1L) ∧ (A7R1L ∨ B7R1L)

Table 1: List of L1 trigger items used to monitor data during a data taking
period. All trigger items has a prescale of 1 and are paired with bunch group
triggers BGRP0, BGRP1 [24].
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As time goes on the event rate is expected to drop, as the number of
protons in the bunches are reduced by elastic scattering, and various other
processes along the way around the LHC ring. The collimation scrapes away
a lot of the beam halo particles, but it also affects the beam as scattered
shower particles from the collimators could go in and affect some of the
beam protons [24].

The data taken in the ALFA experiment is divided into luminosity blocks,
or lumiblocks (LBs), which is a period of around 60 s, where the background
level and beam properties are stable. Thus, if a sudden change in the run con-
ditions occurs, data can be excluded so only good data is used for the analysis.
The lumiblocks are desired to be as small as possible in order for the smallest
amount of data to be discarded. However, the lumiblocks are required to have
a certain length, in order to be able to measure the integrated luminosity of
the experiment [19]. Through run 363461 the preliminary measurements of
integrated luminosity indicated an integrated luminosity of 90.2 µb−1 [24].

2.4.2.1 Collimation

During a data taking run in the LHC the number of off-orbit particles grow
due to various beam dynamics. These particles are called the beam halo
particles. The beam halo particles results in increased background and if the
beam halo becomes to large is may cause quenches in the superconductive
magnets. The magnets of the LHC is cooled to very low temperatures, and
even small energy deposits may cause the temperature to rise making them
lose their superconductive properties. To prevent quenches and reduce the
beam halo induced background events in particle experiments, beam colli-
mators are installed in the LHC. The collimators scrape the beam from halo
particles reducing the number of background events. During collimation of
the beam, the data taking is paused as the collimators creates a lot of shower
particles during beam scraping, which would result in a rise in background
events during a scraping period [26].

Initial test showed a signal rate of about 10 Hz, while the combined signal
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Figure 17: Illustration of the collimation principle. [28]

and background rate was around a few kHz not long after each scraping. As
a result more advanced scraping schemes was developed, namely a two stage
collimation scheme and a crystal collimation scheme [26].

The two stage collimation schemes consists of a primary collimator, TCP,
made of carbon-fibre-composite material to withstand the large amount of
energy deposited in the collimator. The secondary collimators, TCLA, which
are absorber collimators absorbs secondary halo particles and hadronic shower
particles from the primary collimators. An illustration of collimation are pre-
sented in fig. 17, where it is seen how halo particles hits the primary collima-
tors, resulting in hadronic showers which are then absorbed by the secondary
collimators.

For the two stage collimation scheme, the primary collimators are moved
into a distance of 2.5σ of the beam center, with σ being the beam width,
and then moved to data taking position. Then the absorber collimators
are moved to 2σ until the signal in the Beam Loss Monitors (BLM), placed
around the beam, stabilises. This ensures that the halo from 2σ and beyond
are cleaned. The secondary collimators are then moved to 2.5σ and the
Roman pots, where the ALFA detectors sits, are moved to a position of 3σ
from the beam [26].

For the two stage collimation scheme an initial scraping is carried out
during data taking. During data taking the trigger rates are monitored and
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Figure 18: Trigger rates of non-colliding bunches (upper) and the Roman Pot
position during data-taking (lower), showing the effect of the initial scraping
and rescraping due to the two stage collimation scheme. Run 363469 (LHC
Fill 7284). [26]

when they become two high a rescraping is carried out. This is shown in
fig. 18. Here the trigger rate for non-colliding bunches, of each of the de-
tectors increases as we move forward in time, and then suddenly drops due
to rescraping of the beam. The positions of the Roman Pots indicate when
the rescraping takes place, as the RPs moved out during scraping [26]. The
trigger rate of non-colliding bunches are used, as this only show background
events.

The crystal collimation scheme is similar to the two stage collimation
scheme. However, instead of secondary and tertiary collimators and ab-
sorbers, there is a bent crystal which steers the secondary halo particles and
hadronic shower particles from the primary collimators into an absorber. An
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Figure 19: Illustration of crystal collimation principle. [28]

illustration of this is shown in fig. 19. Here it is seen how the crystal bends
the secondary particles into the massive absorber.

For the crystal collimation scheme the primary collimator is moved to
2.5σ of the beam. Afterwards the collimators are moved out to 2.7σ and
the bent crystal are moved to 2.5σ. The crystal collimation is so efficient
that there, over a data taking period of about three hours, is no need for
rescraping. This is shown in fig. 20.

2.4.3 Monitoring Emittance

The emittance of the beam in the LHC is measure by wire scanners installed
for both beams. The wire scanners consist of a carbon wire moved slowly
through the transverse plane of the beam at low intensities. There is a wire
scanner installed both for the x and y direction. The wire is moved slowly
through the beam in constant motion, to ensure that there is measurement
for each proton bunch. The wire causes scattering of protons, and the event
rate of scattered particles are measured by a scintillator placed outside the
beam pipe. This event rate is then translated into a Gaussian beam profile
in each direction. The wire scanners gives two measurements per scan, one
for the inward motion and one where the wire is retracted [29].

The evolution of the emittance is monitored by a Beam Synchrotron Ra-
diation Telescope (BSRT) placed just down stream of a dipole magnet. The
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Figure 20: Trigger rates of non-colliding bunches (upper) and the Roman Pot
position during data-taking (lower), showing the effect of the initial scraping
and rescraping due to the crystal collimation scheme. Run 363500 (LHC Fill
7289) [26].
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dipole bends the beam causing the emittance of synchrotron radiation. For
low beam energies the intensity of synchrotron radiation emitted is not strong
enough to be measured, and is therefore amplified by an undulator. In the
space between the dipole and the next magnet the synchrotron radiation is
extracted by a mirror and passed on to the telescope outside the beam vac-
uum. From the radiation signal the telescope produces images of the beam
profile and is able to do so throughout an entire run. The measurement from
the BSRTs are calibrated with the emittance measurements from the wire
scans by the relation [29]:

σBSW =
√
σBSRT − σWS

From the measurement of the beam spot width σBSW the emittance can
be calculated by the relation:

ε = σ2
BSW

β(s)

Where β(s) is the beta function at some point s. The wire scans measures
the emittance at the beginning of the run whereas the BSRTs measures the
evolution of the emittance [29]. These measurements are later used in the
Monte Carlo (MC) simulation, in order to estimate the beam spot width and
the divergence throughout the data run. The divergence is related to the
emittance by

Du =
√

εu
γβ∗

(49)

2.4.4 Optics

The trajectories of protons scattering elastically and travelling roughly 240 m
to the ALFA detectors are affected by the magnetic fields of the dipole and
quadrupole magnets that are part of the LHC machinery. These magnets
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Detector (U/L) M11 M12 M21 M22

A7L1x -1.69399 9.59626 0.00005 -0.59062
B7L1x -1.69355 4.71859 0.00005 -0.59062
A7R1x -1.7658 9.81712 -0.00223 -0.55393
B7R1x -1.7842 5.24277 -0.00223 -0.55393
A7L1y 0.02012 189.128 -0.00559 -2.81583
B7L1y -0.02602 165.874 -0.00559 -2.81583
A7R1y 0.02048 186.165 -0.00569 -2.85018
B7R1y -0.02647 162.629 -0.00569 -2.85018

Table 2: Transport matrix values given by the optics design of the 900 GeV
elastic physics campaign [24].

where optimized in the 900 GeV run in order to be able to obtain protons
scattered at very small angles. During this elastic campaign the LHC was
optimized with β∗ = 100 m in the y-plane and β∗ = 50 m in the x-plane, and
with the betatron phase advance ψ = π/2 in so called parallel-to-point optics
as discussed in section 2.1.2.

The effect of the magnets combined is written as the transport matrix M
given in eq. (35) in section 2.1.2. There is a transport matrix for the inner
detectors on each side of the ATLAS IP and a transport matrix for the outer
detectors on both sides of the IP. These transport matrices are calculated by
the CERN - BE/ABP Accelerator Beam Physics Group, and their program
called MadX, which simulates and optimizes beam dynamics [30]. The values
of the matrices are given in table 2.

Recalling, from eq. (38), that it is the values of M11 and M12 which
are decisive for the position of the protons when reaching the ALFA detec-
tor. Thus the parallel-to-point optics are given by the small values of My,11.
They suppress the importance of knowing the exact vertical coordinate of
the interaction point. However the large values in My,12 demands a pre-
cise reconstruction of the scattering angle of the protons at collision. The
large absolute values of Mx,11 and Mx,12 results in a poorer resolution in the
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horizontal plane [24].

2.4.5 Track Reconstruction

When a proton hits the main detectors (MDs) it will cause the scintillating
fibres it traverses to light up. By detecting which fibres light up, the signals
in the U- and V-plane can be combined into a signal of x- and y-coordinates
in the beam coordinate system. Each MD consist of 20 layers of fibres with
10 fibres in the u-plane and 10 fibres in the v-plane which are perpendicular
to the U-plane. A proton hitting a plane will traverse multiple overlapping
fibres and the signals from these fibres are combined into a U or V coordinate.
The principle of this is shown in fig. 21. The pattern of the staggering of
the fibres improves the resolution as it narrows the overlap regions of fibres
with signals. This is seen on the right hand side of fig. 21. The maximum
overlap region is then used to determine the coordinate in the u and v plane.
Combining the signal in the U- and V-plane, the signals are translated into
x- and y-coordinates in the beam coordinate system [5].

On average an elastic event has signals in 23 fibres. Around 18-19 of these
signals are due to the proton and the rest are due to noise or background
events. To reduce noise there are constraints set on the number of hit fibres.
If a layer has more than 10 hits, the event is discarded. For events to be
approved, three or more layers are required to have between 1 and 3 hit fibres,
and each of the U- and V-plane need to have a minimum of 3 overlapping
fibres [5].

If more than one track are seen in an armlet, these tracks are matched
with the diagonally opposite armlet signal tracks. Usually more tracks are
only seen in one the armlets, and the track that does not match a track in
the opposite detectors is discarded. These tracks are mostly due to beam
halo particles. If there are multiple elastic events in both detector arms, the
tracks that matches each other best are used [5].

48



Figure 21: Hit pattern of a proton traversing the scintillating fibres in the
U-plane [5].

2.4.6 Run Conditions

During run 363461 certain conditions are monitored throughout. These con-
ditions are important to know when simulating the data taken in this par-
ticular run.

Beam conditions

The luminosity is measured during LHC runs with multiple detectors and
software, e.g. a Cherenkov integration detector (LUCID), the inner detec-
tor of ATLAS, and the Beam Conditions Monitor (BCM). The preliminary
integrated luminosity for run 363461 is measured to be 90.2 µb−1. this mea-
surement has to be calibrated by Van der Meer scans, which measures the
absolute luminosity [24].

The emittance was monitored by Beam Synchrotron Radiation Systems
(BSRT) and wire scans. The wire scans are used to calibrate the BSRTs in the
beginning of LHC runs [5]. During a data taking run the protons bunches and
thereby the emittance grow due to internal interactions in the bunches. The
evolution of the emittance is exponential of the form ε(t) = C − a exp(τ · t),
where C is an offset determined by wire scans, and the parameters, a and τ ,
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of the exponential evolution, is determined by the BSRT measurements. This
evolution is later used for the event generation in the Monte Carlo simulation
[24].

Detector Status

The conditions and performance of the detectors are of great importance to
the ALFA analysis of elastic physics. The performance of the detectors ulti-
mately determines the efficiency and resolution of the ALFA measurements.
During data taking the detectors are monitored to make sure the detectors
are functioning properly and that the data is of high quality.

One of the crucial parameters of track reconstruction and resolution is
the number of overlapping fibres hit in the detectors. In fig. 21 an event with
10 overlapping fibres in the U-plane is shown. This results in a narrow signal
with great resolution in the U-plane, and this is of course desirable. From
fig. 22 it is seen how many overlapping layers that are hit during the triggered
elastic events of run 363461. In the optimal case all the events would have
10 overlapping fibres in both the U- and V-plane, resulting in strong narrow
signals in the upper right corners of the distributions in fig. 22. All detectors
show close to optimal signals in all detectors despite B7L1U and B7R1L,
where the distributions peak around 9 overlapping layers in both the U- and
V-plane, as can be seen in fig. 22a and fig. 22h.

Before the 900 GeV elastic physics run two previous runs at ALFA had
already taking place, one at 8 TeV and one at 13 TeV [19][22]. During these
runs the ALFA detectors were exposed to a lot of radiation, which in the
long run damages the detectors. This could be the reason for this small defi-
ciency in detector B7L1U and B7R1L. Previous to the 900 GeV campaign the
detector signals were optimized to some degree to catch most of the signal,
however a more thorough optimization could be carried out [24].

The efficiency of the detector layers is shown in fig. 23. The layer efficiency
is given by how often the layers contributes to an elastic event. The plots in
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fig. 23 shows that most layers has an efficiency of ∼ 90%, however fig. 23a and
fig. 23h shows several layers with efficiencies lower than 90% for the detectors
B7L1U and B7R1L respectively. This correlates with the plots fig. 22a and
fig. 22h where deficiencies in number of overlapping layers where seen in the
same detectors.
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(a) B7L1U.
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(b) B7L1L.
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(c) A7L1U.
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(d) A7L1L.
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(e) A7R1U.
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(f) A7R1L.
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(g) B7R1U.
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(h) B7R1L.

Figure 22: Number of hits in overlapping fibre in the U- and V-plane for
elastic events.
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(b) B7L1L.
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(c) A7L1U.
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(d) A7L1L.
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(e) A7R1U.

2 4 6 8 10 12 14 16 18 20

Layer number

50

60

70

80

90

100

110

120

La
ye

r 
ef

fic
ie

nc
y 

[%
]

U-plane

V-plane

ATLAS Work In Progress

* = 100 mβ = 900 GeV  s

 ]-1bµ[ run 363461  90  = 92.7 %〉
U

ε〈
 = 92.0 %〉

V
ε〈

(f) A7R1L.

2 4 6 8 10 12 14 16 18 20

Layer number

50

60

70

80

90

100

110

120

La
ye

r 
ef

fic
ie

nc
y 

[%
]

U-plane

V-plane

ATLAS Work In Progress

* = 100 mβ = 900 GeV  s

 ]-1bµ[ run 363461  90  = 92.8 %〉
U

ε〈
 = 92.8 %〉

V
ε〈

(g) B7R1U.
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Figure 23: Layer efficiency for each of the 8 detectors.
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3 Data Analysis

This data analysis is based on run 363462 of the elastic physics campaign
with center-of-mass energy of 900 GeV and β∗ = 100 m. The elastic events in
this run are intended to probe the region of the Coulomb Nuclear interference
of the differential cross section. During data taking a preliminary measure-
ment of the integrated luminosity was carried out indicating an integrated
luminosity of 90 µb−1 for the 363462 run.

ALFA is built to measure the elastic cross section of protons, by detect-
ing elastically scattered protons at very small angles. To recognize an elastic
event, the principle of momentum conservation is utilized, as this means that
elastic events has an equal scattering angle for both of the outgoing protons.

The cross-section is measured by counting elastic events and reconstruct-
ing their scattering angles, and thereby the energy transfer, and then fitting
the distribution of events, as a function |t|, with theory. The counting of
events and the cross-section are related by,

σ = Ntot −Nbg

εAL
(50)

WhereNtot is the total number of events, Nbg is the number of background
events, ε is the detector efficiency, A is the acceptance of the detector, and
L is the integrated luminosity. Other than the physical aspects of the ex-
periment, the measurement of the cross-section also relies on the detectors
performance. All these aspects of data taking has to be taking into account
when analysing the data.

This analysis is based on the elastic signal simulated with a Monte Carlo
(MC) simulation developed for the ALFA experiment. The purposes of the
analysis is to gain a full understanding of how the elastic signal behaves ac-
cording to the various experimental effects of ALFA and get an idea of how
the signal of ALFA in analysed in the best way possible. There is yet to be
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conducted a modelling of the background of ALFA at 900 GeV, therefore this
analysis in solely based on MC simulated signal events.

The following section presents a brief description of the background sources
of ALFA. Then explanation of how elastic events are selected in the offline
analysis are provided, followed by a thorough study of the experimental ef-
fects of ALFA are provided. Then follows an analysis of the performance of
various t-reconstruction methods, and in the end an analysis of the optimal
fit procedures is provided.

The analysis is developed on the basis of an existing data analysis frame-
work used in earlier analyses [22] [24] [19].

3.1 Selection of Events

The initial selection of events is done during data taking by the elastic triggers
L1_ALFA_ELAST15 and L1_ALFA_ELAST18. Further event selections
are carried out after data taking to bring down noise and background event
rate. The criteria for further event selection is based on track reconstruction,
trigger criteria, and geometrical cuts, and cuts based on correlations of the
measurements in the different detectors. This section will cover how this
event selection is carried out.

3.1.1 Track and Trigger

In fig. 21 a perfect track is depicted, with hits in 10 overlapping fibres. How-
ever, every track is not like this as the scintillating fibres do not have an
efficiency of 100 % and hits in adjacent fibres may worsen the resolution.
Therefore, for a track to be reconstructed, there are certain requirements.

• A track should have a minimum of 3 overlapping fibres

• At least 3 of the layers of these fibres should only have a multiple of 3
hits
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• A detector must not contain a multiple of 5 additional hits that are not
reconstructed into a track

The purpose of the first criterion is to reduce noise in the detector. This
requirement also ensures a certain track resolution due to the 3 overlapping
fibres. The second criterion reduces tracks from shower events, as shower
events make it difficult to know, which track was induced by an elastic proton.
The third criterion is to discard events that might have had an additional
track which was not reconstructed, e.g. due to noise in the detector. The
non-reconstructed track could be a proton track corresponding to a track
in the opposite detectors, but as it is not reconstructed it cannot be used
[19]. These criteria are for run 363461. The criteria are adjusted from run to
run depending on, data quality, track reconstruction efficiency, and detector
resolution.

3.1.2 Geometrical Selection Cuts

Due to the LHC beam screen and inefficiencies in the ALFA detectors, there
are made geometrical selection cuts on the detectors to enhance the data
quality. The two cuts applied are the beam screen cut and the edge cut. The
principle of these cuts are depicted in fig. 24.

The beam screen cut is applied because of the LHC beam screen. The
LHC beam has a protective screen around the beam, which is located 4 m
before the inner ALFA detectors. This beam screen causes a drop in the
event rate for large values of y, as particles with a large vertical angle will
hit the beam screen and scatter or cause shower particles. To reduce noise
arising from the beam screen a cut in the vertical coordinate is made.

Looking at fig. 25 it is clear that the event rate drop is not identical for
all ALFA detectors. The inner detectors, denoted with A, are affected by
the beam screen at larger y-values than the outer detectors. This is probably
due to the alignment of the detectors with respect to the beam. In earlier
analyses the beam screen cut has been the same for all detectors, while in this
analysis the beam screen cut are made individually for all detectors. The cuts
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Figure 24: An illustration of a main detector with the applied beam screen
cut and edge cut. The beam screen is the red region in top of the MD and
the edge cut is the cut applied in the bottom of the MD. The blue area are
a visualisation of where elastic protons are most likely to hit. The red and
blue areas are not to scale, and are only for visualisation purposes.
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Figure 25: The event rate drop of the eight ALFA detectors. The beam
screen cut is indicated by the dashed line, and the colors correspond to the
detectors. B7L1U has the same cut as B7R1L and A7L1L and has the same
cut as A7R1U.

57



Detector Beam Screen Cut, y
B7L1U −122.3 mm
B7L1L −122.2 mm
A7L1U −120.5 mm
A7L1L −120.3 mm
A7R1U −120.3 mm
A7R1L −121.0 mm
B7R1U −122.5 mm
B7R1L −122.3 mm

Table 3: Individual beam screen cuts for each detector. All values are nega-
tive in order to be able to compare the beam screen cuts of all the detectors.

are made by finding the biggest drop in event count between two adjacent
bins, and then making the cut at the y-value of the bin edge between the two
bins subtracted by 1 mm. By making individual beam screen cuts for each
detector more elastic events are preserved. The individual beam screen cuts
are presented in table 3. Here all values are negative, as the y-coordinates of
the upper detectors are made negative in order to compare all detectors in
fig. 25.

An additional cut is made in the bottom of the main detectors. This cut
is referred to as the edge cut. The edge cut ensures that the MD trigger
tile overlaps the scintillating fibres and all active layers of the detector are
traversed. The region near the detector edge is the region most sensitive to
elastic protons scattered at the smallest angles. Therefore it is unfortunate
that this part has to be cut of in the analysis. However it is important
to ensure that the detector acceptance are uniform over the whole detector
region. For this run the edge cut, cuts off the 90 µm closest to the beam [22].
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3.1.3 Elastic Correlation

Elastic correlation cuts are based on the correlation between the coordinates
measured in ALFA. Two elastically scattered protons are bound to have
an equally large and opposite scattering angle by momentum conservation.
Thus, the coordinates measured in the ALFA detectors of elastic protons are
strongly correlated. By simulating signal events, these correlations on the
elastic protons can be used to discard background events, which does not
have the same correlations. The correlation distributions made during this
analysis are listed below:

xAi vs. xCi

xAo vs. xCo

xAi vs. θAx

xCi vs. θCx

yAi vs. yCi

yAo vs. yCo

yAi vs. θAy

yCi vs. θCy

The i/o denotes the inner/outer detector, and A/C denotes at which side
of ATLAS the detector is placed. θx/y is the local angle calculated from the
difference between the coordinates measured in the inner and outer detector,
in an armlet, divided by the distance between the detectors.

In fig. 26a and fig. 26c the elastic selection plots of the x-coordinates
measured in the inner and outer detectors are plotted, respectively. Due to
conservation of energy a diagonal signal is expected, as the scattering angles
must be equal. However, the diagonal signal is smeared due to divergence,
beam spot width, and detector resolution, and a signal in the opposite di-
agonal is also seen. In fig. 26e we also expect a diagonal signal, as large
absolute values of x must result in large angles in the x-plane. Again we see
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a smearing of the signal and an off-diagonal signal for low absolute values
of x. Elastic selection plots i the y-plane are shown in fig. 26b, fig. 26d and
fig. 26f, which are diagonal as expected by the same logic as for the x-plots,
but also has a smeared signal. The smearing of the signal is investigated
further in section 3.4.

3.2 Background

The background events in the ALFA experiment come primarily from three
sources: Beam halo particles, single diffractive (SD) events, and protons
which have had a double pomeron exchange (DPE). In DPE procceses both
protons emits a pomeron which then interact resulting in more outgoing
particles. In these processes both protons lose momentum but survive and
can be detected in the detectors as elastic events. However, these events are
not elastic as energy is lost.

In single diffractive events one of the protons survive while the other pro-
tons breaks apart. These events can be detected as elastic with the surviving
proton detected in one detector in coincidence with uncorrelated noise in the
other detector arising from beam halo particles or other sources of detector
noise.

These events have a possibility of satisfying the elastic selection trigger
criteria and can be difficult to distinguish from real signal events. Thus they
are inevitably present in the detector signal sample. The background should
be modelled in order to be able to distinguish signal from background and
get the best possible estimation of the physics parameters of the elastic cross
section. For the 900 GeV elastic campaign there has not yet been conducted
a modelling of the background sources.

3.3 Experimental Effects of ALFA

This section covers the various experimental effects of the ALFA experiment.
The detector effects includes the acceptance, the evolution of the beam spot
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Figure 26: Elastic correlation plots.
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width, and the detector resolution. The acceptance is a measure of how
efficient the ALFA detectors are in detecting elastic events as a function of
t. The evolution of the beam spot width describes how the width of the
beam grows in time between scraping blocks, and the detector resolution is
how precisely the ALFA detectors are in determining the coordinates of the
particles hitting the detectors.

3.3.1 Acceptance

The acceptance of the ALFA detectors are determined through simulation.
The acceptance is defined as a ratio of total number of simulated events
divided by the total number of accepted events. The number of accepted
events is counted after the geometrical cuts and the elastic selection criteria.

The acceptance is presented in fig. 27. For small energy transfers a drop
is seen around |t| ≈ 2 · 10−3 due to the edge cut. The drop beyond the
peak is due to the shape of the detector. The protons scatter uniformly in
the azimuthal angle φ, and the detector covers a large range in φ for low
scattering angles θ. Going to larger scattering angles the detectors covers
a smaller part of φ-space, resulting in more particles missing the detectors.
For the plot in fig. 27 the detector efficiency is taken to be 100%, which is
not the case. Thus, a drop in efficiency is expected, while the shape of the
histograms are expected to remain the same more or less.

3.3.2 Beam Spot Width

During data taking the beam halo is populated by more and more particles.
This causes the beam spot width to grow over, as well as the beam positions
during the data taking period might change. The interaction point (IP) is
a crucial factor to where the proton ends up in the detector, and the beam
spot width ultimately results in smearing of the signal.

From fig. 28a and fig. 28b it is clear that the position of the beam spot
does not change dramatically throughout the run. However, as expected,
the width of the beam increases throughout the data taking run as seen in
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fig. 28c and fig. 28d. The measurements in fig. 28 are from the inner detector
of ATLAS. The inner detector of ATLAS was not turned on throughout the
entire run, hence not all lumiblocks has a measurement of the beam properties
in these plots.

The evolution of the beam is furthermore measured by BSRTs. These
measurements are normalized by wire scans and are presented in fig. 29.
When simulating the experiment the measurements are fitted by exponential
functions, which are then used to simulate the evolution of the emittance.
The emittance is crucial knowledge as both the beam spot width and the
divergence are dependent of the emittance. As divergence smears out the
scattering angle it is an important factor to include in the simulation, to
resemble the actual data as much as possible. The beam spot width has a
big impact as well, although mostly in the x-plane as parallel-to-point optics
ensures that all particles scattered with the same vertical angle ends up at
the same position in y in the detectors.
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Figure 28: The position and width of the beam as a function of time given
by LB number during run 363461. The grey regions are scraping blocks. The
beam spot position and width are measured by the ATLAS inner detector.
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Figure 29: Normalized emittance as function of time. The emittance deter-
mined from BSRT measurements and normalized by the wire scans.

3.3.3 Detector Resolution

The detector resolution is determined by two factors: The resolution of the
detectors, due to the staggering of the scintillating fibres, and multiple scat-
tering. Multiple scattering arises from the protons traversing the first detec-
tor, from where the scattering angle is changed slightly, due to many small
angle deflections in the detector material. Due to the central limit theory
the sum of the many small angle scatters are Gaussian distributed with an
width of [15]

θ0 = 13.6 MeV
βcp

z

√
x

X0

[
1 + 0.088 ln

(
x

X0

)]
(51)

where βc, is the velocity of the particle, p is the momentum, z is the charge
number, and x/X0 is the thickness of the traversed material in terms of scat-
tering length. All protons leaving the inner detector picks up an additional
error of θ0 due to multiple scattering, which results in a poorer resolution of
the outer detectors compared to the inner detector. The resulting multiple
scattering error is given by [15]
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σMS = 1√
3
xθ0 (52)

As θ0 is inversely proportional to the momentum of the particles, it is
clear that multiple scattering has a larger effect on the convoluted error of the
ALFA experiment done with a center-of-mass energy of 900 GeV compared to
the experiment done with a center-of-mass 8 TeV. From the error calculated
for 8 TeV the multiple scattering error can be estimated by

σMS,900 GeV = 8 TeV
900 GeVσMS,8 TeV

The convoluted error of the 8 TeV run is measured to be around 42 µm [22].
The data taken in the 900 GeV campaign reveals a resolution of 100 µm. This
is seen in fig. 30 where the residuals of the predicted y-values and measured y-
values are plotted and fitted by a Gaussian. The width of the fitted Gaussian
reveals a convoluted resolution of 100 µm for all armlets. Assuming that the
detectors are in same condition for the two runs and the fact that multiple
scattering scales inversely with momentum it can be written that

σ8 TeV =
√

2σ2
Det + σ2

MS,8 TeV = 42 µm (53)

σ900 GeV =
√

2σ2
Det + σ2

MS,900 GeV = 100 µm (54)

σ900 GeV =

√√√√2σ2
Det +

(
σMS,8 TeV

8 TeV
900 GeV

)2

= 100 µm (55)

Combining eq. (53) and eq. (55), σMS,8 TeV and σDet is determined to

σMS,8 TeV ≈ 10 µm

σMS,900 GeV ≈ 10 µm 8 TeV
900 GeV ≈ 90 µm

σDet ≈ 29 µm
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Thus, with multiple scattering the detector resolution, σDet, is determined
to be around 29 µm. This is consistent with what it was measured to be in
preliminary test [22], meaning that multiple scattering is a valid explanation
to the poor resolution of the data in the 900 GeV campaign.

The resolution measured in fig. 30 is measured from the y-coordinates.
Due to the symmetry of the detector and multiple scattering in the x- and
y-plane, it is expected that the resolution of the x-plane is equal to that of
the y-plane.

3.4 Simulation

This section describes the simulation of the ALFA experiment, followed by
a study of how the various experimental effects influences the signal.

In order to study the ALFA experiment thoroughly, a simulation is build
to model every aspect of the experiment, which is tweaked in order for the
simulated data to resemble the actual data as much as possible.

Every elastic event in the simulation is created with a value of t from the
theory describing the expected distribution of t depicted in fig. 6. As the
scattered protons are uniformly distributed in the azimuthal plane, φ, every
event is assigned a random value of φ between −π and π.

With the emittance estimated from data, t and φ are used to calculate
an interaction point (IP) and an initial scattering angle. A divergence term
is then added to the scattering angle of the event.

From the IP the events are transported to the detectors via the transport
matrices given in table 2. After checking whether the events hit the detec-
tors, the events are smeared according to the detector resolution. The inner
detectors are smeared by σDet = 30 µm and the outer detectors has additional
smearing according to multiple scattering of σ900 GeV =

√
2σDet + σ2

MS,900 GeV ≈
95 µm.

During the data taking period of ALFA the data taking is monitored as
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Figure 30: The residuals of the predicted and the measured y-coordinates of
the four outer detectors. The residuals are fitted by Gaussians revealing a
convoluted error for all the detectors of ≈ 100 µm.
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described in section 2.4.2 and section 2.4.3. Through the data collected in
monitoring, the data is split into super lumiblocks (SLBs). A super lumi-
block is a period of 10 lumiblocks, where the background level and the beam
properties are approximately constant.

The number of simulated events in each SLB are then scaled to match
the ratio between the number of detected events in the SLBs according to
data. The events of each SLB are then generated with the beam properties
estimated from data monitoring.

The Monte Carlo simulation used for this analysis has generated events in
the |t|-range from 4 · 10−5 GeV2 to 6 · 10−2 GeV2, with the theory parameters
ρ = 0.1, σtot = 68 mb, B = 16 GeV−2.

3.4.1 Elastic Selection

The selection of elastic events are done on the basis of the elastic correlations
of the simulated signal as described in section 3.1.3. The principle of energy
conservation sets constraints of how elastic scattered protons behave and are
seen in the detectors, and these correlations are then utilized to discard event
that does not behave accordingly.

The elastic selection cuts are presented in fig. 31. The distributions xAi/o
vs. xCi/o and x

A/C
i vs. θA/Cx for both detector arms are fitted by two 2-

dimensional Gaussian functions of the form

f(x, y) = A exp
[
−
(
aB(x− x0)2 + 2bB(x− x0)(y − y0) + cB(x− x0)2

)]
+B exp

[
−
(
aR(x− x0)2 + 2bR(x− x0)(y − y0) + cR(x− x0)2

)]
(56)
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with

a1 = cos2 θ

2σ2
xB

− sin2 θ

2σ2
yB

, a2 = cos2(θ − δθ)
2σ2

xR

− sin2(θ − δθ)
2σ2

yR

b1 = sin 2θ
4σ2

xB

+ sin 2θ
4σ2

yB

, b2 = sin 2(θ − δθ)
4σ2

xR

+ sin 2(θ − δθ)
4σ2

yR

c1 = sin2 θ

2σ2
xB

− cos2 θ

2σ2
yB

, c2 = sin2(θ − δθ)
2σ2

xR

− cos2(θ − δθ)
2σ2

yR

σx/yB/R
is the width of the ellipse, where B/R denotes the black and red

ellipse seen on the fits of the x-plane in fig. 31. θ describes the rotation of
the ellipses and δθ describes the angle between the two ellipses. The ellipses
are both set to be centered in the same point.

First the ellipses are fitted with the whole function, then the center and
the angles are fixed to the fitted values. Now the widths σx/yB

are fitted
again while subtracting the signal described by the red ellipse from the total
underlying distribution. Afterwards the widths σx/yB

are fitted while sub-
tracting the signal described by the black ellipse from the total distribution.
By then it is assured that the large diagonal signal is fitted without taking
the signal of the red ellipse into account, and then the small ellipse are fitted
by the red function without seeing the large underlying signal of the black
ellipse.

The yAi/o vs. yCi/o are fitted by a straight lines with the slope fixed to -1.
The slope is fixed to -1 as the signal is known to be diagonal in the beam co-
ordinate system. After fitting the straight line, the distribution is projected
onto a plane orthogonal to the line, and fitted with a Gaussian to get the
with of the diagonal signal. The fit procedure of yAi vs. θAy is the same as for
the yAi/o vs. yCi/o plot, though with the slope not being fixed to -1.

The elastic selection cuts are made by excluding points lying outside 3
standard deviations of the fitted widths, indicated by the ellipses on the plots
in x, and lines on the plots in y. When discarding the points lying outside
the ellipses, or lines, 98% of the elastic events are preserved.

The elastic selection fits shown in fig. 31 are all signal distributions for
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arm 1 and for the local angle on the A-side. Due to the symmetrical nature
of elastic scattering in the φ plane, the signal in arm 1 and 2, and on the
A-side and C-side, are close to identical. Elastic cuts are also done for arm
2 and the C-side and can be seen in section C.1.

3.4.2 Beam Spot Width

The simulation enables a study of how the signal data are affected by the
beam spot width (BSW), the divergence, and the detector resolution. The
width of the beam spot has an affect on the output signal of the x plots,
this is seen in fig. 32 and fig. 33 where the signal smears out for both the
xAi vs. xCi and xAi vs. θAx distributions when the beam spot width increases.
However, looking at the plots in fig. 34 there is no noticeable difference
between small beam spot width and large beam spot widths, for the elastic
correlation distributions in the y-plane. The parallel-to-point optics ensures
that particles with the same scattering angle in y end up at the same vertical
coordinate in the detector. Thus, it is expected that the width of the beam
spot do not have an impact on the signal in the y-plane.

The plots of fig. 32, fig. 33, fig. 34 are all distributions of the signal in
arm 1, and the distributions of the local angles are only presented for the
A-side. Due to the symmetric nature of elastic scattering the same behavior
of the signal as the BSW is varied, is seen for arm 2 and for the local angle
on the C-side. This is presented in section C.2.

In fig. 35 the width of the fitted ellipses and the angle between the ellipses
are plotted as functions of the nominal beam spot width. In fig. 35a it is seen
that the width of the black ellipse scales roughly linearly with the BSW. The
same goes for the red ellipse, shown in fig. 35c. However, fig. 35e the angle
between the ellipses does not change as a function of the BSW. The outlier in
fig. 35e can be explained by looking at fig. 32b where the red ellipse are seen
to be roughly circular, thus making the angle an irrelevant fit parameter for
the red ellipse in the xAi vs. xCi distribution fit for 1/2 of the nominal BSW.
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Figure 31: Elastic selection correlation fits. The x-plots are fitted with two
ellipses. The y-plots are fitted with straight lines, and the width is fitted
by projection the points onto a plane, orthogonal to the line, which is then
fitted with a Gaussian. All plots are signal from arm 1.
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The width of the ellipses fitting the xAi vs. θAx distributions also increases
roughly linearly as the BSW increases, which is shown by the linear fits in
fig. 35b and fig. 35d. fig. 35f shows that there is no notable change in the
angle between the ellipses as functions of BSW.

The linear dependence in shown in fig. 35a, fig. 35b, fig. 35c, and fig. 35d
can possibly be utilized for determination of the beam spot width of the
beam by fitting the signal distribution of actual data.

In fig. 36 the widths of the signal of the of the yAi vs yCi and yAi vs θAy
distributions as functions of the BSW is presented. The width of the signal
of the yAi vs yCi distributions is shown to be constant as a function of the
BSW, in fig. 36a. However, in fig. 36b an increase in width is seen as the
BSW grows, although the increase of signal width is small, which is why it
is difficult to see in fig. 34.

3.4.3 Divergence

As the beam has a certain emittance, the incoming angle of the protons are
not known precisely, as the protons are allowed to have an angle inside the
beam due to the betatron oscillations. This angle is called the divergence
and it is a source of smearing of the signal measured in ALFA. In the sim-
ulation the scattering angles are estimated by adding an additional random
divergence term to the scattering angle, which allows us to study how the
signal is affected by the divergence.

The study of the divergence is done on signal distributions of the inner
detectors and the local angle on the A-side in arm 1. This is done because
the signal in the inner and outer detectors behaves the same, while the sym-
metry of elastic scattering results in the signal on either side and arm of the
detectors are equivalent. The distributions with varying divergence in the
outer detectors, and on the C-side, and the distributions of arm 2 can be
seen in section C.3.

In fig. 37 it is seen that the divergence is the main cause of the smearing
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(e) 5/4 of nominal BSW.
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(f) 6/4 of nominal BSW.

Figure 32: Distributions of xAi vs. xCi , generated with varying fractions of
nominal beam spot width. With nominal divergence and detector smearing
applied.
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(f) 6/4 of nominal BSW.

Figure 33: Distributions of xAi vs. θAx , generated with varying fractions of
nominal beam spot width. With nominal divergence and detector smearing
applied.
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(c) yAo vs. yCo . 2/4 of nominal BSW.
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(d) yAo vs. yCo . 6/4 of nominal BSW.
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(e) yAi vs. θAy . 2/4 of nominal BSW.
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(f) yAi vs. θAy . 6/4 of nominal BSW.

Figure 34: Distributions of yAi vs. yCi , yAo vs. yCo , and yAi vs. θAy , with 2/4
and 6/4 of nominal beam spot width. With nominal divergence and detector
smearing applied in all plots.
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(a) xAi vs. xCi fit: σxB .
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(b) xAi vs. θAx fit: σxB .
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(c) xAi vs. xCi fit: σxR .
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(d) xAi vs. θAx fit: σxR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

fraction of nominal BSW

0.05

0.1

0.15

0.2

0.25

0.3

0.35θδ

ATLAS Work In Progress

(e) xAi vs. xCi fit: δθ
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(f) xAi vs. θAx fit: δθ

Figure 35: The evolution of σxB
, σxR

, and δθ as functions of nominal beam
spot width, for the fits of the xAi vs xCi distributions and xAi vs θAx distribu-
tions.
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(a) yAi vs. yCi fit: σ
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(b) yAi vs. θAy fit: σ

Figure 36: The evolution of the width of the signal, σ, as functions of the
fraction of the nominal BSW, of the yAi vs. yCi and yAi vs. θAy distributions.

of the signal in the yAi/o vs. yCi/o distributions. The protons that scatter elas-
tically both with an incoming angle of 0, will scatter back to back with the
same outgoing angles and will result in a signal on the diagonal in the plots
of fig. 37. The divergence results in the protons protons not necessarily hav-
ing the same incoming angle, which causes a lot of the events to not have
back-to-back scattering angles, thus smearing out the signal in fig. 37. The
correlation between the width of the signal of the yAi vs. yCi distributions and
the fraction of nominal divergence is plotted in fig. 39a, which reveals a close
to linear correlation. This correlation could be used, together with other
measurements, to determine the divergence of the elastic events in data.

The signal is extremely narrow with no divergence, shown in fig. 37a. As
the distributions are plotted with nominal BSW and detector smearing it
shows that tells us that the main cause of smearing is the divergence and
that the BSW and detector smearing almost has no effect, as the signal is
extremely narrow with no divergence. This is backed up by what we saw for
the BSW in the previous section.

The divergence seems to have little, if any, effect on the plots in the x-plane
and neither on the yA/Ci vs θA/Cy distributions. This is shown in the plots

78



presented in fig. 38. The small effect in the x-plane can be explained by the
optics of the 900 GeV elastic run. The transport matrix elementM12 is small
for all detectors in the x-plane and from Hill’s equation eq. (36) it is seen
that matrix element M12 governs the influence of the scattering angle on the
resulting coordinate measured in the detectors. As the divergence affects the
scattering angles, the small values ofM12 in the x-plane, suppresses the affect
of the divergence in the x-plane. This also means, that the large values of
M12 in the y-plane results in a huge affect of the divergence of the measured
y-coordinates in the detectors, which is what is seen in fig. 37.

The signal in the yA/Ci vs θA/Cy distributions does not smear out when
going up in divergence, as shown in fig. 39b where the width of the signal
of the yAi vs θAy distribution is plotted as a function of divergence. This is
because these plots are only made with coordinates in one side of the detector.
The divergence has an affect on the back-to-back scattering angles of the two
protons, as it is not certain that the protons collide with an incoming angle
of 0. Hence, the divergence does not affect the correlations between the
local scattering angles in y and the y-coordinate of the inner detector, as
the protons with the same outgoing angle, regardless of the incoming angle,
will end up at the same y-coordinate in the detector. The only effect is that
there due to divergence are more protons at higher values of y, seen by a
longer yellow center in the middle of the signal in fig. 38f. We also see a
small enlargement of the signal in the center of the xAi vs θAx distribution, x.

3.4.4 Detector Smearing

Detector smearing is the smearing of the signal due to the resolution of the
detectors and multiple scattering. The convoluted resolution is 100 µm ac-
cording to the fits in fig. 30. The inner detectors has a resolution of ∼ 29 µm
and the outer detectors has a resolution of σout = 94.5 µm. The effect of
detector smearing is visualized in fig. 40 where the correlations of the outer
detectors are plotted as it is in these where we expect to see the largest effect
of the detector resolution. The correlation plots of xAo vs. xCo and yAo vs. yCo
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(b) 2/4 of nominal divergence.
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(c) 3/4 of nominal divergence.
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(d) Nominal divergence.
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(e) 5/4 of nominal divergence.

1−10

1

10

E
ve

nt
s

4 6 8 10 12 14 16 18 20
y (A7L1U) [mm]

20−

18−

16−

14−

12−

10−

8−

6−

4−

y 
(A

7R
1L

) 
[m

m
]

ATLAS Work In Progress

Simulated Events = 999992

(f) 6/4 of nominal divergence.

Figure 37: Distributions of yAi vs. yCi , generated at different fractions of
nominal divergence. With nominal BSW and detector smearing applied.
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(a) xAi vs. xCi . 0 divergence.
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(b) xAi vs. xCi . 6/4 of nominal div.
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(c) xAi vs. θAx . 0 divergence.
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(d) xAi vs. θAx . 6/4 of nominal div.
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(e) yAi vs. θAy . 0 divergence.
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(f) yAi vs. θAy . 6/4 of nominal div.

Figure 38: xAi vs. xCi , xAi vs. θAx , and yAi vs. θAy distributions with 0 and 6/4
of nominal divergence. With nominal BSW and detector smearing applied.
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Figure 39: The evolution of the width of the signal, σ, as functions of the
fraction of the nominal divergence, of the yAi vs. yCi and yAi vs. θAy distribu-
tions.

are plotted in mm and a smearing of ∼ 0.1 mm is therefore negligible and
does not show in these plots. The same goes for fig. 40c and fig. 40d where
the small contribution from the detector smearing is negligible compared to
the smearing of the signal arising from the BSW which is visualized in fig. 33.

The effect of the detector smearing is seen in fig. 41. As discussed the yAi vs
θAy distribution is not affected by the BSW or the divergence due to parallel-
to-point optics. This means that the detector smearing becomes the main
factor of smearing of the signal. The detector smearing smears out the local
angle, calculated from the y-coordinate in the inner and outer detectors, and
as the outer detector has a much larger resolution than the inner detector
due to multiple scattering, the signal is smeared.

3.4.5 The Transport Matrix

For further investigation the various features of the experiment, the trans-
port matrix elements are varied to see how this affects the data signal in
the elastic selection plots. The matrix elements studied are MAx

11,237 M
Ax
12,237
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(a) xAo vs. xCo . No smearing.

1

10

210 E
ve

nt
s

6− 4− 2− 0 2 4 6
x (B7L1U) [mm]

6−

4−

2−

0

2

4

6

x 
(B

7R
1L

) 
[m

m
]

ATLAS Work In Progress

Simulated Events = 999992

(b) xAo vs. xCo . With smearing.
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(c) xAi vs. θAx . No smearing.
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(d) xAi vs. θAx . With smearing.
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(e) yAo vs. yCo . No smearing.
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(f) yAo vs. yCo . With smearing.

Figure 40: The xAo vs. xCo , xAi vs. θAx and yAo vs. yCo , distributions with and
without detector smearing and with nominal BSW and divergence.
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(a) yAi vs. θAy . No smearing.
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(b) yAi vs. θAy . With smearing.

Figure 41: Distributions of yAi vs. θAy generated with and without detector
smearing and with nominal BSW and divergence.

of A7L1x presented in table 2, the x denoting the coordinate, A denoting
the side, and 237 denoting the distance from the IP from the inner detector.
This allows us to see how the signal of the x-coordinate, measured in the
inner detectors on the A-side, is affected by the matrix elements.

The distribution of xAi vs xCi and xAi vs θA generated at different values
of MAx

11,237 are presented in fig. 42 and fig. 43, respectively. It is clear that
the signal fitted by the black ellipse remains diagonal for all plots, while the
signal fitted by the red ellipse rotates as the absolute value ofMAx

11,237 is made
smaller.

The signal of the red ellipse is explained by the beam spot width. As a
consequence of the beam having a width, the interaction point of the elastic
events can be shifted in x and y, however due to the parallel-to-point optics
no effect of the beam spot width is seen in y. If the IP of an elastic event
is shifted in x, and has a dominantly vertical scattering angle, there will
be no diagonal correlation between the two measured x-coordinates. Such
event cause the signal fitted by the red ellipse. According to Hill’s equation,
eq. (36), the matrix element MAx

11,237 is multiplied with the position of the
vertex point, hence matrix elementMAx

11,237 influence the features of the signal
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due to the beam spot width, which is the red ellipse.
In table 4 some of the fit values of the ellipses shown in fig. 42 and fig. 43

and in fig. 44 and fig. 45 are presented. Looking at the fits withMAx
11,237 varied,

it is clear that the red ellipse of the xAi vs xCi and the xAi vs θA distributions
is rotated, when having half the nominal value of the matrix elementMAx

11,237,
while we do not see any rotation going from the nominal value of MAx

11,237 to
90% of the nominal value. From the plots and the fit values, it is apparent
that the varying of matrix elementMAx

11,237 does not influence the angle of the
black ellipse, which remains diagonal. However, when decreasing the value
of MAx

11,237 the signal gets more narrow, as seen in the how values of σxB
and

σxR
decrease as MAx

11,237 is decreased. This is expected it is the BSW that
smears out the signal in the x-plane.

The fit in fig. 43a still has the diagonal black ellipse, although the red
ellipse is rotated, which results in the signal within the black ellipse to be
wider than for larger values of MAx

11,237.

Varying matrix element MAx
12,237 probes features of the data signal having

to do with the diagonal correlations, due to the scattering angles. As the ele-
mentMAx

12,237 is multiplied with the scattering angle at the IP, theMAx
12,237 has

an impact on the signal feature associated with the scattering angle. This is
mainly the signal of black ellipses of the double ellipse fits. We see a rotation
of the black ellipse signal in all plots in fig. 44 and fig. 45. When varying
MAx

12,237 it is only done for the detector on the A-side, and essentially when
reducing MAx

12,237 the scattering angle is decreased making the signal in x on
the A-side more narrow while the signal on the C-side remains the same.
This results in a rotation of the black ellipse in fig. 44. As the scattering
angles are reduced by making MAx

12,237 smaller, the signal in fig. 45 become
more narrow in both θA and x. Thus, also rotating the black ellipses in these
plots. The signals of the red ellipses do not seem to be affected much by
varying MAx

12,237, as the signal of the red ellipse is mostly due to the beam
spot width.
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Distribution θ [rad] θ − δθ [rad] σxB
[mm] σxR

[mm]
xAi vs. xCi : 0.5MAx

11,237 0.7678 0.766 0.461 0.574
xAi vs. xCi : 0.9MAx

11,237 0.7721 0.723 0.553 0.618
xAi vs. xCi : 1.0MAx

11,237 0.7724 0.727 0.576 0.679
xAi vs. θA: 0.5MAx

11,237 0.016 0.033 0.593 0.369
xAi vs. θA: 0.9MAx

11,237 0.016 0.017 0.392 0.432
xAi vs. θA: 1.0MAx

11,237 0.016 0.017 0.403 0.476
xAi vs. xCi : 0.7MAx

12,237 0.592 0.317 0.454 0.685
xAi vs. xCi : 0.9MAx

12,237 0.720 0.672 0.600 0.647
xAi vs. θA: 0.7MAx

12,237 0.028 0.035 0.447 0.487
xAi vs. θA: 0.9MAx

12,237 0.018 0.011 0.327 0.360

Table 4: The values of some fit parameters of the ellipses presented in fig. 42
and fig. 43, and in fig. 44 and fig. 45. θ is the angle of the black ellipse, and
θ− δθ is the angle of the red ellipse. The widths σxB

and σxR
are the widths

of the black and red ellipse indicated by B and R. The errors of the fit values
are negligible.
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(c) A7L1x: 1.0M11.

Figure 42: Distributions of xAi vs xCi fitted by the double ellipse fit. The
three distributions have been generated at different values of the transport
matrix element M11 of the x-coordinate measured in the inner detector on
the A-side. The value of M11 is indicated by a fraction of the nominal value
for each plot.
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(b) A7L1x: 0.9M11.
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(c) A7L1x: 1.0M11.

Figure 43: Distributions of xAi vs θAx fitted by the double ellipse fit. The
three distributions have been generated at different values of the transport
matrix element M11 of the x-coordinate measured in the inner detector on
the A-side. The value of M11 is indicated by a fraction of the nominal value
for each plot.
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(a) A7L1x: 0.7M12.
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(b) A7L1x: 0.9M12.
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(c) A7L1x: 1.0M12.

Figure 44: Distributions of xAi vs xCi fitted by the double ellipse fit. The
three distributions have been generated at different values of the transport
matrix element M12 of the x-coordinate measured in the inner detector on
the A-side. The value of M12 is indicated by a fraction of the nominal value
for each plot.
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(b) A7L1x: 0.9M12.

1

10

210

E
ve

nt
s

10− 8− 6− 4− 2− 0 2 4 6 8 10
x (A7L1U) [mm]

600−

400−

200−

0

200

400

600

R
A

D
]

µ
 [

A xθ

ATLAS Work In Progress

Simulated Events = 999992

(c) A7L1x: 1.0M12.

Figure 45: Distributions of xAi vs θAx fitted by the double ellipse fit. The
three distributions have been generated at different values of the transport
matrix element M12 of the x-coordinate measured in the inner detector on
the A-side. The value of M12 is indicated by a fraction of the nominal value
for each plot.
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3.5 Estimation of t

This section provides a description and performance analysis of the t-reconstruction
methods, derived from Hill’s equations, and a new reconstruction method
called the Hyper Cube (HC) reconstruction method.

The differential cross-section as a function of the energy transfer, t, is
described in theory by the formula given in eq. (28) with the parameters ρ,
σtot, and the nuclear slope B. To fit the parameters to data, it is crucial to
be able to reconstruct the scattering angle of the elastic scattered events as
this is related to t by t ' −(pθ)2.

The t-reconstruction techniques currently used in ALFA are derived from
the transport equations obtained from eq. (36). The transport equations are
given by

uA237 = MA
11,237u

∗ +MA
12,237(θ∗u +DA

u ) (57)

uA245 = MA
11,245u

∗ +MA
12,245(θ∗u +DA

u ) (58)

uC237 = MC
11,237u

∗ +MC
12,237(θ∗u +DA

u ) (59)

uC245 = MC
11,245u

∗ +MC
12,245(θ∗u +DA

u ) (60)

θA = MA
21u
∗ +MA

22(θ∗u +DA
u ) (61)

θC = MC
21u
∗ +MC

22(θ∗u +DC
u ) (62)

The coordinates and matrix elements are denoted by A/C, indicating
the side of the detector, and 237/245 indicating the distance to the inter-
action point. Hence, 237 denotes the inner detectors and 245 denotes the
outer detectors. These equations can be combined into various methods of
reconstructing the scattering angle. The matrix elements are known from
MadX, while the interaction point, scattering angle, and the divergence are
unknown. ALFA currently uses three reconstruction methods in combina-
tion with each other. These are called subtraction, local subtraction, local
angle. For this analysis a new algorithm for t-estimation has been developed
that uses simulated of events to estimate t, called the Hyper Cube (HC)
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reconstruction method.

3.5.1 Subtraction

The subtraction method utilizes the coordinates measured on each side of
the IP. Here the first four transport equations are used, where eq. (57) and
eq. (59) constitutes the inner pair, and eq. (58) and eq. (60) constitutes the
outer pair. Combining these equations we arrive at

θ∗u =
MC

11
MA

11
uA − uC

MC
11

MA
11
MA

12 +MC
12

≈ uA − uC

MA
12 +MC

12
(63)

The last part only holds if MA
11 ≈ MC

11. Comparing the values of the
transport matrix, presented in table 2, it is seen that this only holds for y
with the optics used for the 900 GeV campaign.

The final result can then be calculated by an average of the angle mea-
sured by the outer detectors and the inner detectors. A simple average only
holds if the matrix elements ofM12 is of similar size. Otherwise the least pre-
cise measurement will dominate over the reconstructed angle with the highest
precision. From table 2 it is seen that there is a factor 2 between the values of
Mx,12 between the inner and the outer detector, whereas the matrix elements
for y are quite similar in size. In this analysis the subtraction method is used
both with a simple average in x, and a version of the subtraction method
where the outer coordinate is omitted, and one where the inner coordinate
is omitted. As described the resolution in the outer detectors are far worse
than for the inner detectors, hence we expect to see better performances for
the techniques using measurements in the inner detectors rather than the
outer.

3.5.2 Local Subtraction

Local subtraction is done by subtracting the measured coordinates of the
inner detector with the coordinates measured in the outer detector on one
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side of the detector. The eq. (57) and eq. (58) is used for the A-side and
the eq. (59) and eq. (60) is used for the C-side. The scattering angle is then
reconstructed by

θ∗u,A/C =
M

A/C
11,245u

A/C
237 −M

A/C
11,237u

A/C
245

M
A/C
11,245M

A/C
12,237 −M

A/C
11,237M

A/C
12,245

(64)

An average of the reconstructed angles of the two sides is then combined
to a final reconstructed scattering angle.

3.5.3 Local Angle

The local angle methods utilizes the fact that there are no magnets between
the inner and outer detectors. This makes the calculation of the local angle
in an armlet very straight forward. Combining eq. (61) and eq. (62) the
scattering angle can be reconstructed as

θ∗u =
MC

21
MA

21
θAu − θCu

MC
21

MA
21
MA

22 −MC
22

≈ θAu − θCu
MA

22 −MC
22

(65)

Where θA/C = (u245 − u237)/d, with d being the distance between the
inner and outer detector. It is crucial to have large values of M22 in order to
obtain high precision.

3.5.4 Reconstruction of t

The subtraction, local subtraction, and local angle reconstruction methods
can be combined in various ways to determine the scattering angle. In this
analysis 10 methods and combinations of methods are studied. The 10 meth-
ods of t reconstruction are:

• Subtraction (Sub)
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• Subtraction inner (SubInner), where only the coordinates in the inner
detectors are used. x-coordinates of the inner detectors are used, while
both the outer and inner y-coordinates are used.

• Subtraction light out (SubLightOut), where only the x-coordinates
of the outer detectors are used, while both the outer and inner y-
coordinates are used.

• Full Local Subtraction (FullLocSub), where only local subtraction is
used.

• Standard Local Subtraction (StdLocSub), where local subtraction are
used in x, and subtraction are used in y.

• Full Local Angle (FullLocAng), where only the local angle method is
used.

• Standard Local Angle (StdLocAng), where the local angle method is
used in x and subtraction is used in y.

• Local Subtraction A (LocSubA), where only local subtraction on the
A side is used.

• Local Subtraction C (LocSubC), where only local subtraction on the
C side is used.

The results of the 10 combinations are presented in fig. 46 and fig. 47.
The relative error on of the reconstruction precision is plotted against the
true value of t, and it reveals that every reconstruction method is more effi-
cient for large values of |t|true. Low |t|true values are difficult to reconstruct,
as small errors on the reconstruction leads to large relative errors. All the
plots reveals a bias towards overestimating |t| for low |t|true. This is due to
divergence. In fig. 49a and fig. 49a, the reconstruction efficiency of simu-
lated data with no divergence is shown. The plots show that events below
|t| ≈ 2 · 10−4 is cut due to the edge of the detector and the edge cut, when
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there is no divergence, and that the bias is gone. The divergence results in
the scattering angles of the elastic events being measured as either smaller or
larger than the true angle. This results in some events being overestimated
and some being underestimated. One of the consequences of this is that some
of the events that are not expected to be detected, due to the edge cut, are
seen in the detector as their scattering angles are made larger by the diver-
gence. These events are then predicted to have a higher value of |t| than the
true value, resulting in a bias for |t| values below |t| ≈ 2 · 10−4. This bias
is seen as the tails to the right for low |t|true in all the plots in fig. 46 and
fig. 47. It is clear that the tails are results of the divergence as the same bias
is not seen in fig. 49 with no divergence. When plotting with divergence but
without BSW the same bias is still present, as seen in fig. 50, which tells us
that the bias is not due the BSW.

In fig. 48 the performances of all the reconstruction methods derived from
the transport equations are compared. It is difficult to distinguish which
reconstruction method is performing the best as most of the methods are
performing at the same level. However, it is clear that the local subtraction
methods done on only one side of the IP are the worst performing methods.
By a small margin, the best performing reconstruction method is the sub-
traction method only using the inner detectors, called SubInner. The next
best performers are the subtraction and subtraction light methods. By com-
paring the SubInner and the subtraction method, it is clear that adding the
measurements in the outer detectors slightly worsens the performance. This
is probably due to the resolution of the outer detector being around 3 times
larger than the inner detectors, which then penalizes the reconstruction.

The error of the reconstruction of t comes primarily from the divergence.
This is seen by comparing the plots of fig. 46a, fig. 46d, fig. 49a, fig. 49b,
fig. 50a, and fig. 50b. The distributions show no notable difference when
having no beam spot with, compared to having a beam spot width of nom-
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inal size. However, with divergence turned off the reconstruction improves
dramatically.

3.5.5 Hyper Cube Estimation

For this analysis a new t estimation method was developed. Each elastic event
is measured in one of the arms of ALFA resulting in 8 measured coordinates
per event. On the A-side is measured an x and y coordinate in the inner
detector and an x and y coordinate measured in the outer detector, for one
proton, the other outgoing proton is measured equivalently by the diagonally
opposite armlet on the C-side. Hence, the elastic events are distributed in
a 8-dimensional coordinate space. The Hyper Cube (HC) t-estimation is
done by simulating events similar to data, which are also distributed in the
8-dimensional coordinate space. For each data point |t|HC is then estimated
by making a weighted average of the |t| values of the nearby MC points. The
weights of the weighted average is calculated as an 8-dimensional Gaussian
distance from the nearby MC points to the data point given by:

wi = 1
2πσ4

i σ
4
o

exp
[
− 1

2σ2
i

(
A/C∑
j

(xD,ij − xMC,ij)2 + (yD,ij − yMC,ij)2)

− 1
2σ2

o

(
A/C∑
j

(xD,oj − xMC,oj)2 + (yD,oj − yMC,oj)2)
]

where σi = σDet = 29 µm and σo = 95 µm, and i/o denoting the in-
ner/outer detectors, and D/MC denotes the data/MC coordinates. In this
way the outer detectors, which have a poorer resolution, are suppressed a bit
compared to the inner detectors. We already saw how the measurements in
the outer detector actually makes the t-reconstruction a bit worse. As the
measurements in the outer detectors are suppressed by their poor resolution,
the measurements of the inner detectors become more important.

In order to not having to measure the distance to every MC point from
every data point, both the data and MC points are sorted in hyper cubes
(HCs). The event distributions of the 4 x-coordinates are given in fig. 51
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(a) Subtraction.

1

10

210

310

E
ve

nt
s

4− 3− 2− 1− 0 1 2 3 4

true
)/ttrue-t

reco
(t

4−10

3−10

2−10

]
2

 [G
eV

tr
ue

|t|

ATLAS Work In Progress
Simulated Events = 999992

(b) Subtraction Light.
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(c) Subtraction light out.
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(d) Subtraction Inner.
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(e) Full Local Sub.
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(f) Standard Local Sub.

Figure 46: The performances of the t-reconstruction methods. The relative
error of |t|reco as a function of |t|true.
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(a) Full Local Angle.
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(b) Standard Local Ang.
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(c) Local Subtraction A.
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(d) Local Subtraction C.

Figure 47: The performances of the t-reconstruction methods (continued).
The relative error of |t|reco as a function of |t|true.
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Figure 48: The relative error of the reconstruction of t, for the 10 different
methods.
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(a) Subtraction. No divergence.
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(b) Sub. Inner. No divergence.

Figure 49: Best performing t-reconstruction methods, Subtraction and
SubInner, done on simulated data with no divergence.
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(a) Subtraction. No BSW.
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(b) SubInner. No BSW.

Figure 50: Best performing t-reconstruction methods, Subtraction and
SubInner, done on simulated data with no beam spot width.

and the distributions of the 4 y-coordinates are given in fig. 52. Here the
red dotted lines indicates how the 8 coordinates are split in ten ranges each,
which makes up the HCs. The ranges are set by eye such that there is roughly
the same amount of events in each range.

The HC t-estimation for a data point is done by calculating the Gaussian
weights to all MC points in the same hyper cube, and to all MC points in
the surrounding HCs that are within 100 µm distance of the HC containing
the data point. When the weights are calculated the |t|HC of the data point
is estimated by a weighted average. Thus, the MC points close to the data
point has a larger impact on the HC t-estimation than the MC points further
away.

For this analysis two MC samples are used for the HC reconstruction
method. The main MC sample of 10,000,000 events distributed in the full
|t|-range, 4 ·10−5 GeV2 ≤ |t| ≤ 6 ·10−2 GeV2, is combined with an MC sample
of 4,000,000 events distributed in the low |t|-range of 4 · 10−5 GeV2 ≤ |t| ≤
5 · 10−3 GeV2 is used, to achieve a more precise reconstruction of t in the low
energy regime, where the reconstruction is known to be difficult.
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(a) x outer A-side.
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(b) x inner A-side.
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(c) x inner C-side.
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(d) x outer C-side.

Figure 51: The signal distributions of the x-coordinates measured in the
ALFA detectors. The red dotted lines indicates where the distributions are
split into HCs.
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(a) y outer A-side.
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(b) y inner A-side.
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(c) y inner C-side.
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(d) y outer C-side.

Figure 52: The signal distributions of the y-coordinates measured in the
ALFA detectors. The red dotted lines indicates where the distributions are
split into hyper cubes.
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(a) The relative error of |t|HC.
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(b) |t|HC vs. |t|true.

Figure 53: The performance of the HC reconstruction of t, where |t|HC is |t|
estimated by the HC reconstruction method.

HC Estimation Performance

The idea of the HC estimation was to get a smaller bias of the reconstructed
t-values, by using all of the information of the data point and comparing to
the surrounding MC points generated at different values of |t|. However, from
the plots in fig. 53 a bias to overestimate |t| is seen for small values of |t|true
as was seen for the other reconstruction methods. By comparing fig. 53a
and fig. 54a, it can be concluded that the SubInner method is more precise
but slightly more biased than the HC reconstruction. By comparing fig. 53b
and fig. 54b it is seen that the HC method, although less precise, are able
to estimate events to have lower |t|HC values, than the SubInner method, as
the SubInner methods is not able to estimate |t| values below 2 · 10−4 due to
the edge cut. Hence, using the SubInner method some information are lost
for small values of |t|true, and as we shall see the fit parameter ρ are sensitive
to events for low |t| making these events very important.

The problem right now with the HC estimation method is that due to
the emittance, divergence, and detector smearing the points are scattering
widely in the 8-dimensional space. This means that not all data points are
close enough to an MC point in order to be estimated. The HC estimation
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(a) The relative error of |t|SubIn.
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(b) |t|SubIn vs. |t|true.

Figure 54: The performance of the SubInner reconstruction of t, where |t|SubIn
is |t| estimated by the SubInner reconstruction method. Here the SubInner
reconstruction is done on the same points as for the HC reconstruction in
fig. 53.

misses around 13% of the data points and they are distributed as shown in
fig. 55. Most of the points not seen by the MC simulation are events with
large values of |t|, which means they have large scattering angles. These
events are more likely to be missed as they are distributed onto a larger area
due to the elastic events being uniformly distributed in the azimuthal angle,
φ. The distribution has a bump around 5 · 10−3 GeV2, which is likely due to
the extra MC estimation sample of 4 million events generated in the |t|-range
of 4 · 10−5 GeV2 to 5 · 10−3 GeV2.

As the distribution of event in fig. 55 is not uniform, the distribution
of events estimated is changed compared to generated sample. Thus, to
make up for this, the events that are missed by the HC estimation is instead
estimated by the SubInner reconstruction method. Looking at fig. 46d, the
performance of |t|, hence we expect the missed event to be estimated with a
good precision.
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Figure 55: Distribution of |t| of points not estimated by the HC reconstruc-
tion method.

HC dσ/dt estimation

The estimation of dσ/dt (dσ) is important for the likelihood fit, that will
be discussed in the next section. It is usually done by estimating t and
then translating this into a value for dσ by the theory formula presented in
eq. (28). Using the HC estimation method dσ could be estimated directly
by the weighted average, the same way as for the HC t-estimation described
earlier. dσ as a function of |t| has a very steep curve in some |t|-ranges, where
small errors in t-estimation will blow up the relative error of the estimated
dσ. By estimating dσ directly this may be avoided.

The methods of dσ estimation is presented in fig. 56, here dσ is esti-
mated by the theory function and the estimated |t| value estimated by the
HC reconstruction method and the SubInner method in fig. 56a and fig. 56b
respectively, and in fig. 56c dσ is estimated directly from the weighted av-
erage the nearby MC points. From these plots we do not observe a drastic
improvement from estimating |t|HC to estimating dσHC. The most precise
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estimation of dσ is done with the SubInner method, as was seen for the t-
reconstruction, but the bias is also stronger in this case. All three methods
are biased towards underestimating dσ for small values of |t|true. This is ex-
plained by the bias of the |t|HC and |t|SubIn estimation, where the divergence
causes events with |t|-values below ∼ 2 · 10−4 to end up in the detector and
being overestimated. This results in underestimation of dσ for low values of
|t|true as dσ decreases when going up in transferred energy, |t|.

All three methods have a tendency to overestimate dσ in the range of
2 ·10−4 ≤ |t|true ≤ 2 ·10−3. This is probably due to the very steep slope of the
dσ as a function of |t| in that range as seen in fig. 6. When estimating dσ from
a value of |t|, it can cause huge relative errors if |t| is underestimated, whereas
the relative errors does not become quite so large when overestimating |t|
as the curve flattens when going to larger |t|. For the HC estimations in
fig. 56a and fig. 56c the bias towards overestimating dσ is greater than for
the SubInner method. This again has something to do with the steep slope
of dσ. As the MC simulation is generated from the theoretical function of
dσ, a lot more events are created at large (small) values of dσ (|t|). Hence,
the dσ of the data points is estimated by more MC points with high (low)
values of dσ (|t|), leading to an overestimation of dσ. This bias may be
solved by estimating dσHC and |t|HC with a more flat distribution of points
as a function of |t|.

As there is not seen any major improvements when estimating dσHC with
the HC method, this method will not be used for fitting. Instead, the fitting
routine will be carried out using the HC t-reconstruction method and the
SubInner method. As the energy transfer for an elastic event is just a matter
of the momentum and the scattering angle, it does not change when varying
the theory of the differential cross section. So by using the t-estimation
methods the measurements of t in the detectors and the theory are kept
apart until the fitting routine.
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(a) HC t-reconstruction.
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(b) SubInner t-reconstruction.
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(c) HC dσ-estimation.

Figure 56: Relative error of dσ-estimation as function of |t|true. dσ is esti-
mated by calculating it from the theory function with |t|HC, and |t|SubIn in
(a) and (b). In (c) dσ estimated directly by HC method.
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3.6 Fit

This section presents a study of the performance of a maximum log-likelihood
fit routine developed for the estimation of the theory parameters from simu-
lated data. The log-likelihood fit is studied by fitting simulated data, recon-
structed with both the HC method and the SubInner method, to see which
t-reconstruction methods performs best when fitting. The fit performance is
tested by fitting an MC data sample of ∼ 600, 000 events, with another MC
sample of ∼ 5, 000, 000 events. The fit is not yet tested on real data.

The log-likelihood used for this analysis is given by

−2LLH(q̄) = 2
Ndata∑
i=1

ln pi = 2
Ndata∑
i=1

ln
 dσi(q̄, ti)∑NMC

j=1
dσj(q̄,tj)
dσj(q̄G,tj)

 (66)

where Ndata is the number of data points, dσi(q̄, ti) is the differential cross
section calculated from theory with the parameters q̄ for the i’th data point.
NMC is the number of MC points used for the normalisation, dσj(q̄, tj) is the
differential cross section calculated with the parameters q̄ for the j’th MC
point, and the parameters q̄G is the parameters from which the MC sample
was created. q̄G is only used as a reference point and should not affect the
fit results. The log-likelihood is multiplied by −2, which means that eq. (66)
should be minimized in order to find the parameter value that results in the
maximum probability for the data set. The factor 2 is added for it to match
a χ2.

The sum in the denominator is the normalization, where the theory is
reweighted in reference to the theory at which the MC sample was generated.

3.6.1 Bias Correction

The distributions shown in fig. 53 and fig. 54 reveals a bias towards overesti-
mating |t| for low values of |t|true for both the SubInner and HC reconstruc-
tion method. This bias can be corrected for by utilizing the distributions
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presented in fig. 53b and fig. 54b. These plots shows the distributions of the
|t|true for all reconstructed values of |t|. When correcting the bias dσ is calcu-
lated by extracting the distribution of the |t|true for the given value of |t|HC,
or |t|SubIn and using this distribution as a PDF. This is done by creating a
1D histogram of |t|true by slicing the histograms of fig. 53b and fig. 54b at
the value of either |t|HC or |t|SubIn depending on the reconstruction method.
This 1D |t|true histogram is then normalized to 1 making it a PDF of the
|t|true values for that given value of |t|HC (|t|SubIn). The bias corrected value
of dσBC is then calculated by

dσBC(q̄) =
Nbins∑
i=1

nidσ(q̄, |t|true,i) (67)

where ni value of the i’th bin, corresponding to the probability of the
event having the value of |t|true,i, which is the value of the bin center of
the i’th bin. dσ(q̄, |t|true,i) is dσ calculated with the value of |t|true,i, and
Nbins being the number of bins of the 1D slice histogram. In this way dσBC
takes into account all the possible values of |t|true that the given event has a
probability of having. Three of the 1D slice histograms at three given values
of |t|HC and |t|SubIn are shown in fig. 57, where the means of the slices are
indicated by the dotted lines.

This bias correction method is carried out for both the HC estimation
method and the SubInner method and the performance is tested by how well
the fit performs with and without the bias correction.

3.6.2 Preliminary Tests

Preliminary tests have been carried out in order to make sure that the fitting
method is behaving properly, and to ensure that we can trust the fit.

Presented in fig. 58 is how the theory function behaves when varying the
three fit parameters ρ, σtot, and B. When changing one variable the other
variables are fixed so that only the effect of the one variable shows. The im-
portant |t|-ranges for each of the parameters can be seen from fig. 58. From
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(a) Slices of fig. 53b at 3 values of
|t|HC.
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Figure 57: Three vertical slices of the plots fig. 53b and fig. 54b, at the values
|t|HC/SubIn = 2 · 10−4 GeV2, 5 · 10−4 GeV2, 1 · 10−3 GeV2. The black dotted
line indicate the mean value of the histograms.

fig. 58a it is clear that to fit ρ it is important to have events in the |t|-range
from around 10−4 GeV−2 to 5 · 10−3 GeV−2, as this is the region for which
ρ has an impact on how many events is expected. In fig. 58b it shows that
for σtot the crucial |t|-range is from 5 · 10−4 GeV−2 and beyond, and for the
nuclear slope B the crucial |t|-range is from 5 ·10−4 GeV−2, which can be seen
in fig. 58c. This information is useful when fitting as it may explain why the
fits performs as it does for the different parameters.

The denominator of eq. (66) is the reweight normalization used for this par-
ticular fit. The reweight normalization is expected to behave the same way
no matter what initial parameters the MC sample is generated at, apart from
an offset between MC samples not generated with the same theory param-
eters. However, the evolution of the reweight normalization should be the
same for different values of q̄G. This is shown in fig. 59 where the reweight
normalization sum as a function of the three parameters are plotted for three
different MC samples, generated at different values of ρ, while σtot and B are
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kept the same for the three samples. Looking at all three plots in fig. 59, it is
clear that the reweight normalization sums, as functions of the test param-
eters, all has identical slopes but different offsets as expected. This means
that the fitting function in eq. (66) will be independent of the parameters at
which the MC sample is generated.

Comparing with the plots in fig. 58, we see that the normalization sum
is expected to increase when decreasing ρtest, which is exactly what happens
for all three functions in fig. 59a. The reweight normalization is expected to
increase as a function of σtot,test, which is also what is observed in fig. 59b.
This makes sense as σtot is the total cross-section, and when the cross-section
increases more events should be observed. The functions in fig. 59c all have a
decreasing normalization sum as a function of the nuclear slope Btest, which
is again what is expected by looking at fig. 58c.

3.6.3 Fit Performance

The fit performance is tested for three t-reconstruction methods; SubInner,
HC, and HC and SubInner combined. The fit is compiled both with and
without the bias correction, to test if the bias correction enhances the fit
performance. The MC data sample, that is fitted, is of approximately 600,000
events is generated at the values of ρ = 0.1, σtot = 68 mb, and B = 16 GeV−2,
and so is the MC sample used for the reweight normalization.

To test how the t-reconstruction methods perform while fitting, the fitting
function in eq. (66) is evaluated by varying one variable and fixing the other
two variables to the true values. This yields parabolas with a minimum
around the fitted value, and the error of the fit can be estimated by eye by
going up 1 on the y-axis from the minimum and reading the parameter value
corresponding to ymin + 1.

In fig. 60 is shown how the three parameters ρ, σtot, and B fits individually
with the other two parameters fixed, when using only the HC reconstruction
method and not taking the missed events into account. The parameter values
to be fitted are presented on the plots. As expected fig. 60 yields that the

111



4−10 3−10 2−10

]2|t| [GeV

210

310

410

510

]
2

 [m
b/

G
eV

dtσd

-2 = 68 mb, B = 16 GeV
tot

σ = 0.01, ρ

-2 = 68 mb, B = 16 GeV
tot

σ = 0.10, ρ

-2 = 68 mb, B = 16 GeV
tot

σ = 0.19, ρ

ATLAS Work In Progress

(a) ρ = 0.01, 0.1, 0.19.
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(b) σtot = 58 mb, 68 mb, 78 mb.
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(c) B = 12 GeV−2, 16 GeV−2, 20 GeV−2

.

Figure 58: The theory function with varying values of ρ, σtot, and B. Each
variable are varied with the other two variables fixed, in order to see how the
theory function changes as the parameters are varied.
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(c)
∑ dσj(q̄,tj)

dσj(q̄G,tj) as function of B.

Figure 59: The reweight normalization as function of the three parameters
ρ, σtot and B, calculated from three different MC samples The three samples
are all generated with σtot = 68 mb, and B = 68 GeV−2, and has different
values of ρ being ρ = 0.08, 0.1, 0.12.
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HC method on it is own is not very successful in fitting the correct values.
As there’s a lot of points not included in this fit, the distribution of events
as a function of |t| is missing all the events plotted in fig. 55. Hence, the
distribution that is fitted does not represent the true distribution of the
theory from which the MC data sample is generated. In order to account for
the events that are not estimated by the HC reconstruction, these events are
instead reconstructed by the SubInner reconstruction method. The fits done
on MC data with reconstructed t of the combined HC and SubInner method
is presented in fig. 61. These fits all show improvements compared to the fits
in fig. 60. All of the fits in fig. 61 seems to have a minimum within one σ
of the true value, however none of the fits have the minimum of exactly the
correct value.

The bias correction has also been applied to the fit with the reconstructed
t of the combined HC and SubInner method. These fits are shown in fig. 62
and shows that the fit to σtot improves a bit as it has a minimum of -2LLH
is closer to the true value. The fitted minimum changes for ρ and is now
overestimated a bit with the true value being within 2σ instead of 1σ as for
the non bias corrected fit. The bias correction does not seem to change the
fit to B, which was also already fitted within 1σ without the bias correction.

The fitting of events reconstructed with the SubInner method is tested in
fig. 63. In fig. 63a it is seen that the fit is not sensitive to ρ and does not fit
the correct value. The fit to σtot in fig. 63b is more precise however still sev-
eral σs from the correct value, whereas the fit to B, in fig. 63b, fits the right
value just within 1σ. The poor fits with the SubInner reconstructed events
can be explained by the bias seen in fig. 54. The SubInner reconstruction
is overestimating |t|SubIn for |t|true < 5 · 10−4 GeV2, and since the theory is
sensitive to changes of ρ in this |t|-range, it follows that the fit has trouble
fitting ρ. B is fitted quite well as changes in B only affects the theory for
|t| > 2 · 10−3 GeV−2, where the SubInner reconstruction method performs
well. The theory is sensitive to changes in σtot for |t| > 5 · 10−4 GeV2, thus
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the fit to σtot is only affected a bit by the bias of the SubInner reconstruction,
though enough to be several σs from the true value.

In fig. 64 the fits of the three variables fitted with SubInner as the re-
construction method with the bias correction applied, are presented. By
comparing the fits in fig. 63 and fig. 64 we see the effect of the bias correc-
tion. Looking at the fits of ρ, in fig. 63a and fig. 64a a huge improvement
shows, as ρ is now fitted within 2σ of the true value. The fit to σtot also im-
proves as it fits almost exactly to the correct value with the bias correction
applied, seen in fig. 64b. The fit to B was already pretty good within one σ
and this does not change when the bias correction is applied.

The bias corrected fits in fig. 62, done with HC and SubInner t-reconstruction
combined, and in fig. 64, done only with SubInner t-reconstruction, is close to
identical. This indicates that events reconstructed with the HC method could
just as well have been estimated by the SubInner reconstruction method.
Hence, even though the HC method is able to reconstruct to lower values of
|t| than the SubInner method, this does not improve the fits. It may be that
the two methods is so similar because the points, estimated by SubInner in
the combined method, is very crucial to the fits, thus dominating the events
estimated by the HCs.

The best performing fits based on the parabolas presented in fig. 60, fig. 61,
fig. 62, fig. 63, fig. 64, are the fits done with the t-reconstruction methods: HC
and SubInner combined, HC and SubInner combined with bias correction,
and the SubInner with bias correction. For further testing of the performance
of these three fit procedures, all three parameters are fitted at once with the
minuit minimizer. Fitting all three parameters at once means that the corre-
lations of the fit parameters are also taken into account. This is done on the
original MC data sample and on 9 new MC data samples made by bootstrap-
ping the original MC data sample, by reweighting the events with a random
Poisson PMF with µ = 1. These fits are made in order to see how the fit
results differs as the data fluctuates. The fit results are presented in fig. 65,

115



0 0.01 0.02 0.03 0.04 0.05

test
ρ

8712.56

8712.57

8712.58

8712.59

8712.6

8712.61

8712.62

8712.63

8712.64

8712.65

310×

-2
LL

H

ATLAS Work In Progress
 = 0.10ρ

  = 68.00 [mb]
tot

σ

]-2B = 16.00 [GeV

(a) -2LLH as function of ρ.

48 48.5 49 49.5 50 50.5 51 51.5 52

 [mb]
tot,test

σ

8689.1

8689.15

8689.2

8689.25

8689.3

8689.35

8689.4

8689.45

8689.5

310×

-2
LL

H

ATLAS Work In Progress
 = 0.10ρ

  = 68.00 [mb]
tot

σ

]-2B = 16.00 [GeV

(b) -2LLH as function of σtot.

37.5 37.6 37.7 37.8 37.9 38

]-2B [GeV

8691.7095

8691.71

8691.7105

8691.711

8691.7115

310×

-2
LL

H

ATLAS Work In Progress
 = 0.10ρ

  = 68.00 [mb]
tot

σ

]-2B = 16.00 [GeV

(c) -2LLH as function of B.

Figure 60: -2LLH as function of the three parameters ρ, σtot, B. The HC
method is used for t-reconstruction with the bias correction not applied.
In these fits events missed by the HC reconstruction are neglected. While
varying one parameter the other two parameters are fixed to the true values.
The events missed by the HC reconstruction method is left out. The true
values of parameters is given on the plots.
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Figure 61: -2LLH as function of the three parameters ρ, σtot, B. The HC
method in combination with SubInner is used for t-reconstruction with no
bias correction applied. While varying one parameter the other two param-
eters are fixed to the true values. The true values of parameters is given on
the plots.
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Figure 62: -2LLH as function of the three parameters ρ, σtot, B. HC method
in combination with SubInner is used for t-reconstruction with no bias cor-
rection applied. While varying one parameter the other two parameters are
fixed to the true values. The true values of parameters is given on the plots.
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Figure 63: -2LLH as function of the three parameters ρ, σtot, B. The SubIn-
ner method is used for t-reconstruction with no bias correction applied. While
varying one parameter the other two parameters are fixed to the true values.
The true values of parameters is given on the plots.
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Figure 64: -2LLH as function of the three parameters ρ, σtot, B. SubInner
is used for t-reconstruction with the bias correction applied. While varying
one parameter the other two parameters are fixed to the values at which the
MC data sample is generated. The true values of parameters is given on the
plots.
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fig. 66, and fig. 67, for the HC and SubInner t-reconstruction method com-
bined without bias correction, the HC and SubInner t-reconstruction method
combined with bias correction, and the SubInner reconstruction method with
bias correction, respectively.

The fit using the HC and SubInner method combined, without the bias
correction, has a tendency to underestimate all of the fit parameters, as the
average value of the fit results for all three parameters are several standard
deviations below the true value.

The other two reconstruction methods with the bias correction applied,
both show improved results, and the two methods have almost the same
outcome. There is a small tendency to overestimate ρ with a value of ρ =
0.1063 and σρ = 0.0042, even though the mean of the fits still lies within two
standard deviations of the true value. For both reconstruction methods the
mean of the fit results of σtot and B fits almost exactly the true values.

The correlations between the fit parameters, when fitting all three param-
eters at a time, might affect the fit results. An average of the correlations of
the three parameters are presented in table 5, where we see that the three
parameters are correlated. σtot and B are the most correlated parameters,
which makes sense as they are sensitive to events in the same |t|-range. Look-
ing at fig. 68, where ρ is fitted independently, it is still overestimated, which
could mean that the error of the ρ-fit is not due to the correlations between
the parameters.

The deviation of the fitted ρ values are tested further by fitting ρ in 11
single parameter fits, with fixed σtot = 68 mb and B = 16 GeV−2. The first
test is done by fitting using the true values of |t| of the MC data sets. This
is compared to single parameter fits of ρ using the SubInner t-reconstruction
method and the bias correction. The results are presented in fig. 68 where we
see very similar results for the fits using |t|true and |t|SubIn. This tells us that
the SubInner with bias correction fit is performing very well, and that the
offset is not due to poor reconstruction of |t| or an inefficient bias correction.

The inadequacy of the ρ fits may arise from the acceptance of the ALFA
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Fit routine ρρ,σtot ρρ,B ρσtot,B

HC+SubInner, no BC 0.43 0.62 0.80
SubInner, with BC 0.42 0.62 0.80

Table 5: The average correlations of the fit parameters of the 10 fits presented
in fig. 66, and fig. 67, with ρX,Y being the correlation coefficient between the
parameters X and Y . The error on the correlation coefficients are negligible.

detectors and the MC sample not being generated for small enough values of
|t|. Due to the divergence, some protons, with very small scattering angles,
are not expected to be observed in ALFA, but end up in the detectors anyway,
while some events that are expected to be seen do not hit the detectors. Thus,
some of the events with |t| < 4 · 10−5 GeV2, that could have been observed
in the detectors due to the divergence, are not seen as the MC sample are
generated in the range of 4 · 10−5 GeV2 ≤ |t| ≤ 6 · 10−2 GeV2. This results
in a deficit of events in the low |t|-range, where ρ is sensitive. These events
would have contributed a lot to the value of the LLH as they correspond to
very large values of dσ, and as they are not seen in the detectors the fit to ρ
is penalized. This can possibly be made up for by expanding the |t|-range of
the MC simulation.

Using the maximum log-likelihood fit routine to fit events, which are
not run through the detector and therefore not subject to the acceptance of
ALFA, with an MC sample created in the same way, yields a fit result of ρ
well within 1σ of the true value. This indicates, that the offset in ρ could be
due to the acceptance of ALFA, as the fit routine works well when the events
of the MC samples are not dependent of the acceptance.

It can, however, be inferred that the SubInner reconstruction method
with the bias correction is performing very well, as the fits in fig. 68b shows
close to identical results as to the fits done with |t|true.
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Figure 65: Fit results for the 10 MC data samples, fitted with the combined
HC and SubInner t-reconstruction. On the x-axis is Data Set number, where
the original MC data sample is number 1 and the rest are the samples made
from bootstrapping. The mean and standard deviation (std) of the 10 fit
results are printed on the plots. The true values of the MC data sample are:
ρ = 0.1, σtot = 68 mb, B = 16 GeV−2.
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Figure 66: Fit results for the 10 MC data samples fitted with the combined
HC and SubInner t-reconstruction and bias correction applied. On the x-axis
is Data Set number, where the original MC data sample is number 1 and the
rest are the samples made from bootstrapping. The mean and standard
deviation (std) of the 10 fit results are printed on the plots. The true values
of the MC data sample are: ρ = 0.1, σtot = 68 mb, B = 16 GeV−2.
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Figure 67: Fit results for the 10 MC data samples fitted with SubInner t-
reconstruction and bias correction applied. On the x-axis is Data Set number,
where the original MC data sample is number 1 and the rest are the samples
made from bootstrapping. The mean and standard deviation (std) of the 10
fit results are printed on the plots. The true values of the MC data sample
are: ρ = 0.1, σtot = 68 mb, B = 16 GeV−2.

125



0 2 4 6 8 10 12

Data Set

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13ρ

ATLAS Work In Progress
 0.0012, std = 0.0025±: mean = 0.1057 ρ

(a) |t|true.

0 2 4 6 8 10 12

Data Set

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13ρ
ATLAS Work In Progress

 0.0012, std = 0.0025±: mean = 0.1056 ρ

(b) SubInner and BC.

Figure 68: Fit results for 11 MC data samples fitted with (a) |t|true and (b)
SubInner t-reconstruction and bias correction applied. On the x-axis is Data
Set number, where the original MC data sample is number 1 and the rest are
the samples made from bootstrapping. The mean and standard deviation
(std) of the 11 fit results are printed on the plots. The true values of the MC
data sample are: ρ = 0.1.
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4 Discussion

The primary focus of the thesis has been on developing a MC simulation
for ALFA, and to study the 900 GeV elastic signal generated with the MC
simulation. The simulated elastic signal has been studied through the elastic
correlation distributions, where the affect of the beam spot width, divergence,
detectors smearing, and transport matrices, was analysed. Then followed a
test of the t-reconstruction methods together the development and testing of
the new HC reconstruction method. At last a new fit routine was developed
using the reconstructed t-values to fit a MC data sample.

Elastic Selection

For the elastic selection cuts a new fitting function with two ellipses instead
of one was used to fit the elastic correlation distributions. Looking at these
fits it is clear that adding another ellipse does not help saving a lot of events
that would have otherwise been discarded, as the width of the two ellipses
often are very similar. However, fitting with two ellipses discloses information
about the optics of ALFA and in the future the elastic selection fits could be
used to determine the values of the transport matrix elements. The widths
of the ellipsis of the fitted xAi/o vs. xCi/o and x

A/C
i vs. θA/Cx distributions

could in the future be used to determine the beam spot width., while the
width of the yAi/ovs.yCi/o could help determine the divergence. A lot of other
combinations of elastic selection distributions could be studied to get an even
more thorough understanding of the data.

Background

For now no background simulation has been made for the 900 GeV elastic run.
Hence, a model of both the single diffractive background events and the DPE
background events will have to be developed in order to get a real sense of
how it influences the signal at 900 GeV, and how it affects the reconstruction
efficiency and fit performance.
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t-reconstruction

For this thesis the HC reconstruction method was developed. The HC re-
construction is a very cumbersome way to estimate t for data events, as
each data point has to calculate the distance weights to the surrounding
MC points, and this takes a long time. Unfortunately the HC reconstruc-
tion does not provide an improved t-reconstruction techniques, however there
is room for improvement. First and foremost stratified sampling should be
used in order for the HC reconstruction to be able to estimate t for all events.
The stratified sampling could also make sure to generate MC points closer
to the data points than what is currently done and by then enhancing the
reconstruction resolution. Another thing that may improve the HC recon-
struction is to do the estimation with more MC events, although this would
increase the, already long, run time of the reconstruction algorithm. If the
HC reconstruction cannot be improved, one should just use the SubInner re-
construction method as this performed just as well as the HC reconstruction,
and it is a lot faster and more simple to use.

Fits

In the end the best performing fits were the ones done with the HC and the
SubInner reconstruction combined with the bias correction applied, and the
fits done with only SubInner t-reconstruction also with bias correction. The
fitting tests showed the importance of the bias correction, so this is certainly
a feature that should be kept for future analysis.

The advantage of the SubInner reconstruction method is that it is a fast
way to estimate t, whereas the HC reconstruction is very slow and cumber-
some. By now the SubInner t-reconstruction, with bias correction, achieves
fit results which are as good as the fits done with the true values of |t|, which
is close to optimal. Thus, as the SubInner reconstruction method has the
advantage of being very fast and easy to use, it should be used for further
analysis unless the HC reconstruction method is improved a lot.

The fits with the bias correction has a tendency to fit ρ to a slightly larger
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value than the true value. When fitting with the |t|true values of the events,
the offsets in the ρ-fits are still present, meaning that the offset cannot be
due to the bias correction or t-reconstruction being inadequate. The reason
for the offset in ρ might be due to the acceptance of ALFA and the fact that
the MC samples are not generated at small enough |t|-values. This means
that some events at very low |t|, which has the possibility of ending up in
the detector, are not generated, resulting in a deficit of events in the low
|t|-range where ρ is sensitive. This may be tested by fitting an MC data
sample generated for a |t|-range going well below 4 · 10−5 GeV.

5 Conclusion

This thesis presents a thorough study of the simulation of the ALFA exper-
iment conducted at an center-of-mass energy of 900 GeV and β∗ = 100 m.
The main focus has been on understanding how the elastic signal is affected
by the various aspects of the ALFA experiment, and to build a data anal-
ysis software to analyse the elastic signal from ALFA in the best way possible.

The elastic signal was studied with the elastic correlation distributions, which
are mostly diagonal due to the symmetric nature of elastic scattering. In that
signal was however seen another perpendicular signal, which is likely due to
the width of the beam spot. Both signals were fitted with ellipses, and this fit
routine could possibly be used for future estimation of the beam spot width
and detector optics, by fitting real data. It was seen that the smearing of
the signal in the vertical direction is mostly due to the divergence. Hence,
measuring the width of the real data signal in y, could help estimate the
divergence. The resolution of the detectors only has a noticeable smearing
effect for the distributions of the local angle in y because of the large reso-
lution of the outer detectors. The resolution of an armlet is measured to be
100 µm and a plausible reason is that multiple scattering of the protons in
the inner detectors results in poor resolutions in the outer detectors.
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It can be concluded that the Hyper Cube estimation method still needs
improvement. By now it is not able to estimate all events, and therefore
the SubInner method is used for the events the HC method is not able to
reconstruct. This should be fixed with stratified sampling. The SubInner
reconstruction has a better resolution, but the HC estimation method shows
promise when it comes to reconstructing events for |t|-values below the range
of the SubInner technique. However, both the HC estimation and SubInner
reconstruction has bias towards overestimating |t| for low values of |t|true,
that has to be corrected for when fitting.

For this analysis a new maximum log-likelihood fit has been developed.
The LLH fit shows promising results, when the bias is corrected for. Still,
the fits are only tested on simulated data without background, thus further
testing is needed. With the bias correction the combined method of HC es-
timation and SubInner reconstruction performs just as well as the SubInner
does on its own. This could be due to the SubInner having a dominant ef-
fect in the combined method, or the reason could be that the HC estimation
is on the same level as the SubInner reconstruction. If it is not possible
to improve the HC estimation method by stratified sampling, the SubInner
method should be preferred as it is much faster and easier to use.

When fitting an MC data distribution created at the values ρ = 0.1, σtot =
68 mb, and B = 16 GeV−2, we are able to obtain a fit of ρ = 0.1063± 0.0042,
σtot = 67.99 ± 0.11 mb, and B = 16.00 ± 0.17 GeV−2. As the offset of the ρ
fits, is also seen when fitting with |t|true, it might be due to the acceptance
of ALFA, and that the MC samples used for this analysis is not generated at
|t| low enough for all measurable elastic events to be detected.

The performance of the fits using SubInner t-reconstruction and bias cor-
rection seems to be very promising moving forward, as the fits obtains nearly
identical results as to the fits done with |t|true.
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Appendices

A Partial wave expansion

A wave function can be expanded in a series of Legendre polynomials, essen-
tially splitting the wave into multiple waves of different total spin J [31].

AF (s, cos(θs)) =
√
s

πqs

∞∑
J=0

(2J + 1)PJ(cos(θs))aFJ (s) (68)

Each partial wave has an amplitude that depends on J . These amplitudes
are essential for calculating the transition amplitudes in scattering theory.
Using Regge theory we are able to write the partial wave amplitudes as
functions of the spin and mass of the reggeons [31].
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B The Optical Theorem

The optical theorem is a theorem that relates the forward scattering ampli-
tude of elastic scattered particles to the total cross section based on unity.

Given a trasition matrix S, taking an initial state i to a final state f , the
sum of probabilities of going from the initial state to all possible final states
should be unity. This is written as

∑
f

pi→f =
∑
f

|〈f |S |i〉|2 =
∑
f

〈i|S† |f〉 〈f |S |i〉 = 〈i|S†S |i〉 = 1 (69)

We now write the scattering matrix as S = 1 + iT , with T being the
transition matrix. Having a two body initial state with four momenta p1 and
p2 and a final state with an arbitrary number of particles n, we can write:

〈f |S |i〉 = 〈p′1p′2...p′n|S |p1p2〉 (70)

= δif − i(2π)4δ4(P f − P i) 〈f |T |i〉 (71)

with P f = p′1 + p′2 + ...+ p′n and P i = p1 + p2. The transition rate is then

Rfi = (2π)4δ4(P f − P i)|〈f |T |i〉|2 (72)

and it relates to the total cross section as

σ12→n = 1
4|p1|

√
s

∑
f

Rfi (73)

Here |p1| is the three-momentum of the initial particle 1 in the center-of-
mass frame.

As the scattering matrix is unitary it follows that

S†S = (1− iT )†(1− iT ) = 1 (74)

⇒ −i(T − T †) = T †T (75)
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Now we look at two states l and i and write

〈l|T |i〉 − 〈l|T † |i〉 =
∑
f

(2π)4δ4(P f − P i) 〈l|T † |f〉 〈f |T |i〉 (76)

Now we require l = i we have

2Im 〈i|T |i〉 = (2π)4δ4(P f − P i)|〈f |T |i〉|2 (77)

The right hand side in is exactly the transition rate, and Im 〈i|T |i〉 cor-
responds to the imaginary part of the forward scattering amplitude in the
limit where no momentum is exchanged. We are now able to relate the for-
ward scattering amplitude to the total cross-section by combining eq. (72)
and eq. (73) and eq. (77). [8]

σtot = 1
4|p1|

√
s
Im 〈i|T |i〉 = 1

4|p1|
√
s
Im(A(s, t = 0)) (78)

At last we introduce F such that

dσ

dt
= |F |2 (79)

σtot = 4
√
πIm(F (t = 0)) (80)

Thus we have a relation relating the total cross section and the forward
scattering amplitude. [10]
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C Elastic Selection Fits

C.1 Selection Cuts for Arm 2 and the C-side
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(f) yAi vs. θAy .

Figure 69: Elastic selection correlation fits. The x-plots are fitted with a
double ellipse. The y-plots are fitted with straight lines, and the width is
fitted by projection the points to a plane, orthogonal to the line, and then
fitted with a Gaussian. All plots are signal from arm 2.
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(a) xCi vs. θCx of arm 1.
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(b) xCi vs. θCx of arm 2.
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(c) yCi vs. θCy of arm 1.
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(d) yCi vs. θCy of arm 2.

Figure 70: Elastic correlation selection fits of yCi vs. θCy and yCi vs. θCy in
arm 1 and 2.
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C.2 Elastic Selection Fits: BSW
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(c) 3/4 of nominal BSW.
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(e) 6/4 of nominal BSW.

1

10

210

E
ve

nt
s

10− 8− 6− 4− 2− 0 2 4 6 8 10
x (A7L1L) [mm]

600−

400−

200−

0

200

400

600

R
A

D
]

µ
 [

A xθ

ATLAS Work In Progress

Simulated Events = 999992

(f) 6/4 of nominal BSW.

Figure 71: Distributions of xAi vs. xCi and xAi vs. θAx distribution of arm
2, plotted with varying the fractions of nominal beam spot width. With
nominal divergence and detector smearing.
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(d) Arm2: 3/4 of nominal BSW.
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(e) Arm1: 6/4 of nominal BSW.
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(f) Arm2: 6/4 of nominal BSW.

Figure 72: Distributions of xAo vs. xCo distribution of arm 1 and 2, plot-
ted with varying the fractions of nominal beam spot width. With nominal
divergence and detector smearing.
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(c) Arm1: 3/4 of nominal BSW.
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(d) Arm2: 3/4 of nominal BSW.
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(e) Arm1: 6/4 of nominal BSW.
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(f) Arm2: 6/4 of nominal BSW.

Figure 73: Distributions of xCi vs. θCx distribution of arm 1 and 2, plotted with
varying the fractions of nominal beam spot width. With nominal divergence
and detector smearing.
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(e) yAi vs. θAy . 2/4 of nominal BSW.
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(f) yAi vs. θAy . 6/4 of nominal BSW.

Figure 74: Distributions of yAi vs. yCi , yAo vs. yCo , and yAi vs. θAy , with 2/4
and 6/4 of nominal beam spot width. With nominal divergence and detector
smearing in all plots. All distributions are from arm 2
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(a) yCi vs. θCy of arm 1. 2/4 of nom-
inal BSW.
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(b) yCi vs. θCy of arm 1. 6/4 of nom-
inal BSW.
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(c) yCi vs. θCy of arm 2. 2/4 of nom-
inal BSW.
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(d) yCi vs. θCy of arm 2. 6/4 of nom-
inal BSW.

Figure 75: Distributions of yCi vs. θCy , with 2/4 and 6/4 of nominal beam
spot width for arm 1 and 2. With nominal divergence and detector smearing
in all plots
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C.3 Elastic Selection Fits: Divergence

143



1

10

210

310

E
ve

nt
s

4 6 8 10 12 14 16 18 20
y (A7R1U) [mm]

20−

18−

16−

14−

12−

10−

8−

6−

4−

y 
(A

7L
1L

) 
[m

m
]

ATLAS Work In Progress

Simulated Events = 999992
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(b) 3/4 div.
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(c) 6/4 div.

Figure 76: Distributions of yAi vs. yCi with 2/4 and 6/4 of nominal beam
spot width. With nominal divergence and detector smearing in all plots. All
distributions are from arm 2
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(b) Arm 2. No div.

1−10

1

10

E
ve

nt
s

4 6 8 10 12 14 16 18
y (B7L1U) [mm]

18−

16−

14−

12−

10−

8−

6−

4−

y 
(B

7R
1L

) 
[m

m
]

ATLAS Work In Progress

Simulated Events = 999992

(c) Arm 1. 3/4 div.
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(e) Arm 1. 6/4 div.
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Figure 77: Distributions in arm 1 and 2 of yAo vs. yCo with no divergence
and with 2/4 and 6/4 of nominal divergence of arm 1 and 2. With nominal
divergence and detector smearing in all plots.
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(a) A-side, arm 2. No div.
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(b) A-side, arm 2. 6/4 div.
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(c) C-side, arm 1. No div.

1

10

210

E
ve

nt
s

20− 18− 16− 14− 12− 10− 8− 6− 4−
y (A7R1L) [mm]

50

100

150

200

250

300

350

R
A

D
]

µ
 [

A yθ

ATLAS Work In Progress

Simulated Events = 999992

(d) C-Side, arm 1. 6/4 div.
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(e) C-side, arm 2. No div.
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(f) C-Side, arm 2. 6/4 div.

Figure 78: Distributions in arm 1 and 2 of yA/Ci vs. θA/Cy with no divergence
and with 6/4 of nominal divergence width of arm 1 and 2. With nominal
divergence and detector smearing in all plots.
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Figure 79: Distributions in arm 1 and 2 of xAi/o vs. xCi/o with no divergence
and with 6/4 of nominal divergence. With nominal divergence and detector
smearing in all plots.
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Figure 80: Distributions of xA/Ci vs. θA/Cx with no divergence and with 6/4
of nominal divergence width of arm 1 and 2. With nominal divergence and
detector smearing in all plots.
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