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Abstract

Fullerenes are carbon molecules with a hollow cage-like structure. Their surfaces
are made up exclusively of pentagon and hexagon rings. The number of theoret-
ically stable fullerenes is infinite, growing with O(N9), only a small handfull of
which have been synthesised. Those that have, have shown great promise in a va-
riety of uses, such as allergy and asthma medicine, cancer treatments, solar cells,
biosensors, and printable electronics. Therefore, it is of great interest to be able
to compute the properties of these molecules. Ideally we would like to be able to
search through entire isomerspaces, to find those with the right properties.

However, it is completely infeasible to analyse more than a single fullerene using
full ab-initio calculations, as even density functional theory (DFT) takes a week
of compute for C60. Thus, a more efficient approach is needed. Forcefield (FF)
methods are far more computationally efficient, and have been shown to produce
results that are of comparable quality to DFT optimised geometries. Current state-
of-the-art FF methods are able to compute optimal geometries for C200 isomers
in 100µs. While this is certainly fast, it is not yet sufficient for full isomerspace
exploration.

This thesis presents a fully lockstep parallel implementation of a pipeline for iso-
merspace forcefield optimisation, capable of leveraging thousands or even millions
of compute cores. Our lockstep parallel approach attains roughly 3 orders of mag-
nitude (950-1400x) faster performance than previous state-of-the-art FF implemen-
tation. Our implementation demonstrates essentially perfect scaling, consequently
enabling further performance gains for larger isomerspaces, given sufficient com-
pute resources.

The final pipeline allows us to exhaustively produce and optimise the entire C200

isomerspace ( 2·106 isomers) in 6 hours on two GPUs, making what was previ-
ously completely impractical (247 days), possible within the span of an afternoon.
This enables full isomerspace exploration, and sets the stage for molecular property
analysis of billions of fullerenes.
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8 CHAPTER 1. INTRODUCTION

1.1 Motivation
Fullerenes are carbon allotropes which form single atom thick polyhedral shells of car-
bon atoms. Their bond structures are cubic planar graphs made entirely of pentagons
and hexagons. Their surfaces resemble graphene sheets and like these have extreme
electron mobility and tensile strength. Unlike graphene, fullerenes come in many forms,
each with their own electromagnetic, optical, thermodynamic, and mechanical molecu-
lar properties.

Fullerenes were first discovered in 1985 by Harold Kroto, Richard Smalley and Robert
Curl. They were discovered by the use of a mass spectrometer, which was used to
analyse the gas produced by the pyrolysis of graphite. The mass spectrometer was able
to detect the presence of a new molecule, which was later identified as C60, the first
fullerene. The discovery of fullerenes was awarded the Nobel Prize in Chemistry in
1996. Since their discovery there has been a large amount of research into fullerenes,
with many applications.

Only a few fullerenes have been produced, but these have found a wide variety of uses
from asthma medicine, cancer treatments, solar cells, biosensors to printable electron-
ics. Therefore, it is of great interest to be able to compute geometries and properties of
these molecules.

It is, however, currently completely infeasible to analyse much more than a single
fullerene using full ab-initio calculations like DFT. Therefore, we require new meth-
ods and theory to discover structures that can be synthesised and poses useful prop-
erties. In this thesis we want to build the technical foundation for exploration of full
isomerspaces, comprising millions or even billions of distinct molecules, in order to
find those few of particular interest, that warrant weeks of supercomputer time for full
quantum chemical analysis.

Thurston established that the number of fullerene isomers for a given number of vertices
N grows with O(N9), e.g. there are 1812 C60 fullerene isomers and 214,127,742 C200

fullerene isomers. Figure Fig. 1.1 shows this scaling for the first 400 isomerspaces.

While forcefield optimisations are significantly faster than DFT or other quantum chem-
ical methods, it still takes roughly 100ms to optimise a single C200 fullerene, so a back
of the envelope calculation shows that it would take roughly 247 days to optimise all
214,127,742 C200 fullerenes. This realisation motivates the main research question of
this thesis: Can we use a lockstep parallel algorithm to exploit massively parallel hardware
enabling exhaustive exploration of full isomerspaces?

1.1.1 CARMA

The CARMA (CARbon MAnifolds) project at the helm of James Avery, is a project which
aims to take the development of fullerenes to the next level. The project aims to develop
new mathematical and computational methods to analyse the properties of fullerenes
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Figure 1.1: Number of regular x / + IPR fullerenes for a given number of vertices N .
Note the double logarithmic axes.

orders of magnitude faster than current methods. The project consists 6 subprojects
which are all aimed at different aspects of the project. The subprojects are as follows:

• Task M: Mathematics of Carbon Manifolds

• Task W: Wave Equations on Carbon Manifolds

• Task E: Isometric Embeddings

• Task F: Fulleroids, Schwarzites and other Carbon Manifolds

• Task P: Approximation of Molecular Properties

• Task R: Paths to Rational Synthesis

The primary focus of this thesis is Task E: Isometric Embeddings and further covers the
groundwork necessary for fast approximations of certain molecular properties. Fur-
thermore, the architecture of tools developed here could also be generalised to support
other Carbon Manifolds such as Fulleroids (generalisation of fullerenes, allowing for
heptagons, octagons et cetera).

The Fullerene program was created to be a versatile, open-source tool for generating and
analysing fullerene isomers. It can produce symmetrical, two-dimensional drawings of
fullerene graphs and generate precise three-dimensional molecular geometries using
force-field optimisation. In addition, the program can perform topological and graph
theoretical analysis and calculate various physical and chemical properties. It can serve
as a useful starting point for more advanced quantum theoretical calculations. The
program is written in standard C++ and Fortran and is available for download on
GitHub at https://github.com/jamesavery/fullerenes.

https://github.com/jamesavery/fullerenes
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1.2 Code Overview
For the present report, a significant amount of code had to be written, and we aim
to give an overview of the code base found in the repository at https://github.com/
jamesavery/fullerenes/tree/development

• src/cuda contains all the CUDA code written for the project.

– coord2d.cu Contains the implementation of the coord2d type, a 2D coordi-
nate structure used in the parallel lockstep Tutte embedding implementation.

– coord3d.cu Contains the implementation of the coord3d type, a 3D coordi-
nate structure used primarily in the parallel forcefield implementation.

– sym mat 3.cu Contains an efficient 3x3 symmetric matrix implementation,
SymMat3. It is used in the parallel lockstep forcefield implementation, and
allows for computation of eigenvalues and eigenvectors using a closed form
solution with numerical stability guardrails.

– forcefield.cu Contains the implementation of the parallel lockstep force-
field optimisation. see Section 4.2 for a detailed walkthrough of the algo-
rithms.

– tutte.cu Contains parallel lockstep Tutte embedding implementation, see
Algorithm 21.

– dualize.cu Contains the implementation of the parallel lockstep dualisation
algorithm, see Algorithm 26.

– spherical projection.cu Contains the implementation of the semi-parallel
spherical projection algorithm, see Algorithm 24.

– device deque.cu Contains the implementation of the CuDeque structure, a
device side, grid-parallel (bot not inter-block parallel) implementation of a
double ended queue, used in the MSSPs Algorithm 23.

– device cubic graph.cu Contains an implementation of the cubic graph util-
ity functions used in various algorithms, see Algorithm 7.

– device dual graph.cu Contains an analogous implementation to the cubic
graph, for triangulated graphs used in the dualisation algorithm.

– constants.cu Contains the implementation of the Constants utility data struc-
ture, see Section 4.3.1 and Algorithm 8.

– node neighbours.cu Contains an implementation of the node neighbours
utility data structure, see Section 4.3.1.

– reductions.cu Contains an implementation of the reduction and scan meth-
ods used in various algorithms throughout, see Algorithm 4,Algorithm 3 and
Algorithm 6.

– isomer batch.cu Contains the implementation of the IsomerBatch see Fig. 4.6.

https://github.com/jamesavery/fullerenes/tree/development
https://github.com/jamesavery/fullerenes/tree/development
https://github.com/jamesavery/fullerenes/tree/development/src/cuda
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/coord2d.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/coord3d.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/sym_mat_3.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/forcefield.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/Tutte.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/dualize.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/spherical_projection.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/device_deque.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/device_cubic_graph.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/device_dual_graph.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/constants.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/node_neighbours.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/reductions.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/isomer_batch.cu


1.2. CODE OVERVIEW 11

– cuda io.cu Contains I/O functions that act on IsomerBatch structures, see
Fig. 4.7.

– isomer queue.cu Contains the implementation of the IsomerQueue see Sec-
tion 4.5.

– launch dims.cu Contains the implementation of the LaunchDims structure,
which is only called from kernel launch sites, it computes the optimal launch
configuration for a given kernel and jbo configuration and stores them stati-
cally in the function.

– cu array.cu Contains the implementation of the CuArray structure, which
is a vector like structure implemented using CUDA Unified Memory, used to
communicate arbitrary data between host and device.

– launch ctx.cu Contains the implementation of the LaunchCtx structure, which
is to control the stream and device on which to launch a kernel or memory
operation, from C++ code.

• include/fullerenes/gpu contains all the header files through which the neces-
sary CUDA code is accessed from C++.

– kernels.hh contains the header file for the CUDA kernels, Tutte, forcefield,
dualisation, spherical projection.

– cu array.hh contains the header file for the CuArray structure.

– launch ctx.hh contains the header file for the LaunchCtx structure.

– isomer batch.hh contains the header file for the IsomerBatch structure.

– cuda io.hh contains the header file for the IsomerBatch I/O functions.

– isomer queue.hh contains the header file for the IsomerQueue structure.

• benchmarks Contains various scripts for benchmarking the forcefield, dualisation,
Tutte and spherical projection implementations, as well as the parallel primitives,
and timing of pipelines 0 through 7.

• tests Contains various scripts for testing and validating the forcefield, dualisa-
tion, Tutte and spherical projection implementations, parallel primitives, IsomerQueue,
IsomerBatch and CuArray structures.

https://github.com/jamesavery/fullerenes/tree/development/src/cuda/cuda_io.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/isomer_queue.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/launch_dims.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/cu_array.cu
https://github.com/jamesavery/fullerenes/tree/development/src/cuda/launch_ctx.cu
https://github.com/jamesavery/fullerenes/tree/development/include/fullerenes/gpu
https://github.com/jamesavery/fullerenes/tree/development/include/fullerenes/gpu/kernels.hh
https://github.com/jamesavery/fullerenes/tree/development/include/fullerenes/gpu/cu_array.hh
https://github.com/jamesavery/fullerenes/tree/development/include/fullerenes/gpu/launch_ctx.hh
https://github.com/jamesavery/fullerenes/tree/development/include/fullerenes/gpu/isomer_batch.hh
https://github.com/jamesavery/fullerenes/tree/development/include/fullerenes/gpu/cuda_io.hh
https://github.com/jamesavery/fullerenes/tree/development/include/fullerenes/gpu/isomer_queue.hh
https://github.com/jamesavery/fullerenes/tree/development/benchmarks
https://github.com/jamesavery/fullerenes/tree/development/tests
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2.1 Topology of Fullerenes
We have briefly summarised the developments in the fullerene program and forcefield
calculations in general. The motivation for the speedup of said forcefield calculations
and potential parallelisation paradigms that we might pursue. We must, however, cover
a few more details about the underlying data structures that we will be working both in
terms of computation and in terms of mathematical description.

2.1.1 Graphs

In graph theory a graph is a pair G = (V , E) where V is the set of vertices and E =

{{u1, v1}, {u2, v2}, . . . , {um, vm}} is a set of all connected vertex pairs called edges.

If the set of edges E is comprised of ordered pairs (u, v) ∈ V2, we say the graph is a
directed graph. We call u the source and v the target node, this ordering of pairs will
become important later as we define canonical orderings and mappings.

5 6
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Figure 2.1: An example showing a pla-
nar three-connected cubic graph and its cor-
responding adjacency matrix as well as a
sparse representation.

Additionally, if a graph can be embed-
ded in a plane, that is assign coordinates
{x, y} ∈ R2 to all vertices u ∈ V, such
that all of its edges only intersect at their
endpoints, the graph is said to be pla-
nar. There are infinitely many ways to
embed a graph in the plane, but when the
graph is planar and three-connected, any
planar embedding will contain the same
faces. Three-connected means: that at
least three vertices must be removed from
the graph to disconnect it.

For these reasons a three-connected pla-
nar graph also has a well-defined set of
faces F which allows us to represent the
graph both in terms of edges and vertices
but also as a set of faces, G = (V , E ,F).
Ernst Steinitz proved that any convex
polyhedron forms a three-connected pla-
nar graph, and every three-connected pla-
nar graph can be represented as the graph
of a convex polyhedron, therefore three-
connected planar graphs and by extension
fullerenes are also known as polyhedral graphs.

We shall see later how we can construct 3D representations of fullerenes from their
planar embeddings using a combination of Tutte embeddings and Spherical Projection.
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In the context of Fullerenes we represent the carbon atoms as vertices and the chemical
bonds between atoms as edges in the graph. A common way to store and represent the
edges E and vertices V is through the adjacency matrix Aij. The adjacency matrix is a
square n× n matrix such that its element Aij is one if there is an edge from vertex ui to
vertex uj and zero otherwise. Obviously however since this matrix is incredibly sparse
for a cubic (each vertex has 3 neighbours) graph, sparsity = 3N

N2 = 3
N

more precisely.
We ought to store the connectivity in a sparse matrix format, the cubic nature of the
graph lends itself to the 3 × N adjacency list, here each list within the adjacency list
describes the set of neighbours of a particular vertex.

Fig. 2.1 shows one such example of a cubic planar graph and its corresponding adja-
cency matrix and adjacency list representations. The visualisation makes the sparsity
quite clear.

2.1.2 Generation of Fullerene Graphs

We wish to perform calculations on all possible fullerenes within a given isomerspace
(CN), therefore an exhaustive and efficient generator for all fullerene isomers of a given
vertex number N is needed. Hasheminezhad et al.7 defined a set of patch replace-
ments or growth operations that could generate all fullerene isomers systematically,
through structural induction, starting from either C20 or C28. These growth operations
included a single operation that elongated a nanotube with minimal caps, and two
classes of generalized Stone-Wales transformations that depend on one or two parame-
ters. Brinkmann et al.5 used these growth operations to define an efficient algorithm for
generating all fullerene isomers up to a given maximum number. This algorithm prunes
the recursion tree in such a way that only one representative of each isomorphism class
is considered, preventing combinatorial explosion. The result is an incredibly efficient
algorithm that has been used to generate an exhaustive database of fullerene graphs up
to C400, which is available at the House-of-Graphs website.1 The BuckyGen program is
fast enough that the Brinkmann et al. made the perhaps reasonable claim ”The gener-
ation cost is now likely to be lower than that of any significant computation performed
on the generated structures.”,5 it will become clear that this is not the case.

2.1.3 Dual Graphs

While it is not the focus of this these to delve into the details of how these algorithms
work, it is important to understand the underlying data structures that are used to
represent the fullerene graphs. The BuckyGen program, which Brinkmann et al.5 aptly
named it, produces fullerenes in their face representation. This is also referred to as
the dual or the graph G∗. In graph theory, the dual of a graph is a graph that has
a vertex for each face (region bounded by edges) in the original graph, and an edge
connecting two vertices whenever the corresponding faces in the original graph share
an edge. Note that the dual for fullerenes is a triangulation with 12 vertices of degree 5
and the remaining vertices with degree 6. The dual of a graph is not unique in general,
but it is for cubic planar graphs, the same way the planar embedding is. The dual
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Figure 2.2: Planar embeddings of (left) the dual representation (right) the cubic rep-
resentation of the C20 dodecahedron. The numbering of neighbours shown in is chosen
according to their canonical neighbour numbers generated by the fullerene program.

operation is its own inverse hence (G∗)∗ = G, this will become relevant later when we
discuss the extension of forcefield methods to include flatness terms in the energy and
gradient expressions. To intuitively understand the dual of a fullerene graph, consider
the following example in Fig. 2.2, the C20 dodecahedron, which is the simplest fullerene
graph.

From this figure we see how the 0th node in the dual corresponds to the face bounded
by the edges {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 0} the edge {0, 1} in the dual indicates neigh-
bouring faces in the cubic and so on. The exact means of ascribing the canonical num-
bering of the neighbours will be further elaborated upon in the pipeline chapter where
we discuss both the sequential fullerene program implementation and a corresponding
parallel implementation (Section 5.3).
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2.2 Forcefield Optimisation
Forcefield methods, currently provide one of the most computationally efficient meth-
ods of molecular-geoemtry-optimisation. Forcefield optimisation is a method which es-
timates the forces between atoms within molecules using parametrisation of e.g. bond-
lengths, bond-bond angles, non-bonded interaction and out-of-plane torsion. The ben-
efit of this functional form, is that it brings down computational complexity to either
O(N3), if non-bonded interaction is included, or O(N2) otherwise. With N being the
number of atoms in the molecule. Let us briefly summarise the developments of the
forcefield method we have adopted in this thesis.

2.2.1 Developments in Fullerene Forcefields
The original version of the Fullerene program included a very simple harmonic forcefield
of the form

EWu =
kp
2

p−edges∑
ip

(Rip−Rp)
2+

kh
2

h−edges∑
ih

(Rih−Rh)
2+

fp
2

60∑
jp

(αjp−αp)
2+

fh
2

3N−60∑
jh

(αjh−αh)
2

(2.1)

Where kp and kh are the spring force constants for pentagons and hexagon edges respec-
tively, Rp and Rh are the equilibrium bond lengths for pentagons and hexagons respec-
tively, fp and fh are the force constants for pentagons and hexagons respectively, and
finally αp and αh are the equilibrium bond angles for regular pentagons and hexagons
respectively. This forcefield expression was introduced by Wu et al.19 for C60−Ih specif-
ically. And while the WU forcefield can in principle be applied to all fullerenes and
usually yields structures which are in good agreement with optimized structures from
quantum chemical calculations, it suffers from two problems. Firstly optimisations may
converge to local minima if the initial structure is not close to the global minimum.
Secondly the forcefield omits all torsion / dihedral bending terms and thus cannot re-
produce the convexity or planarity of DFT optimized structures. These problems were
addressed by Wirz et al.18 who introduced a new and improved forcefield for fullerene
optimisation. The Wirz forcefield is a generalization of the Wu forcefield and includes
torsion terms. The Wirz forcefield is given by:

EWirz =
fpp
2

pp−e∑
ipp

(Ripp −Rpp)
2 +

fph
2

ph−e∑
iph

(Riph −Rph)
2 +

fhh
2

hh−e∑
ihh

(Rihh −Rhh)
2

+
fp
2

60∑
jp

(αjp − αp)
2 +

fh
2

3N−60∑
jh

(αjh − αh)
2 +

fppp
2

ppp−e∑
kppp

(θkppp − θppp)
2

+
fhpp
2

hpp−e∑
khpp

(θkhpp − θhpp)
2 +

fhhp
2

hhp−e∑
khhp

(θkhhp − θhhp)
2 +

fhhh
2

hhh−e∑
khhh

(θkhhh − θhhh)
2
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The energy expression of the Wirz and Pedersen forcefields are identical however Ped-
ersen included a number of corrections to the gradient expression, which anecdotally
has served to improve convergence towards global minima.

This forcefield includes torsion terms for all 4 possible face configurations (pentagon-
pentagon-pentagon, pentagon-pentagon-hexagon, pentagon-hexagon-hexagon and hexagon-
hexagon-hexagon) and also distinguishes between pentagon-pentagon, hexagon-pentagon
and hexagon-hexagon bonds. Wirz showed that this forcefield produces structures with
bond lengths, bond angles and torsion angles are in good agreement with DFT opti-
mized structures for select fullerenes. The forcefield code is however written in difficult
to read and maintain Fortran and is therefore not very extensible. This was the pri-
mary purpose and outcome of Pedersen’s work:12 To convert the Fortran forcefield code
into readable and maintainable Python code; and to reformulate the forcefield optimi-
sation problem in a massively data-parallel manner using vector operations computable
in lockstep across not just singular isomers but potentially entire isomerspaces.

2.2.2 Bond Stretching

The bond stretching energy Ebonds is the energy required to stretch or compress a bond
between two atoms by a distance Rab − R0 away from its equilibrium length R0, where
ab denotes the bond between atoms a and b. Hooke’s Law states that the force required
to stretch a spring by a distance x is proportional to x and is given by F = −kx where
k is the spring constant. The energy required to stretch a spring by a distance x is then
given by E = 1

2
kx2. The bond stretching energy is therefore given by Eq. (2.2) where

kR is the bond stretching constant.

Ebond =
kR
2
(Rab −R0)

2 (2.2)

a

b

R a
b

Figure 2.3: Visualisation of bond
stretching of two atoms.

Fig. 2.3 shows two atoms and their interatomic dis-
tance. The Wu forcefield19 uses 2 different equilib-
rium bond length parameters one to signify that an
edge is part of a hexagon Rh and one for pentagons
Rp. The Wirz forcefield18 accounts for the fact
that every bond is a part of two and therefore de-
composes the equilibrium bond length parameters
into the three possible configurations: hexagon-
hexagon Rhh, pentagon-pentagon Rpp, hexagon-
pentagon Rhp each with their own corresponding
force constants khh, kpp and khp. It is not the scope
of this thesis to derive the gradients of the energy
expressions, we nonetheless provide the results in
their vector calculus form as presented by Peder-
sen.12 Eq. (2.3) shows the gradient of the bond
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stretching energy with respect to the movement of
atom a.

∇aEbond = −kR(∥ab∥ −R0)âb (2.3)

2.2.3 Angle Bending

Angle bending is the bending of the angle made up by three atoms a, b, c from their
bonds, ab and ac. The energy is computed in much the same way that bond stretching
is. We use the harmonic approximation of the energy expression around the cosine of
the equilibrium angle cos(θ0). The energy constituent resulting from angle bending is
expressed as follows:

Eangle =
kθ
2
(cos(θabc)− cos(θ0))

2 (2.4)

b

a

c

θabc

Figure 2.4: Visualisation of angle
bending of three atoms.

Fig. 2.4 shows the angle bending of three atoms.
The Wu forcefield19 uses 2 different equilibrium
angle parameters one to signify that the atoms
a, b, c are part of a hexagon θh and one for pen-
tagons θp. The Wirz forcefield18 and the Pedersen
forcefield12 both use cosines of the angle and equi-
librium angle parameters with the cosine of the an-
gle and equilibrium angle parameters respectively.
This does not fundamentally alter the energy ex-
pression, but it avoids having to compute the in-
verse cosine which is both a somewhat computa-
tionally expensive operation but also numerically
sensitive to floating point errors as it is only valid
in the range [−1, 1], so additional checks would
have to be performed. The cosine of the angle is
given by the dot product of the unit vectors of the
bonds ab and ac and as such is both fast and numerically stable.

The gradient of the angle bending energy, using cosines of angles with respect to the
movement of atom a is given by Eq. (2.5).12

∇aEangle = −kθ(cos(θabc)−cos(θ0))
(

1

∥ab∥(âbcos(θabc)− âc) +
1

∥ac∥(âccos(θabc)− âb)

)
(2.5)
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2.2.4 Torsion / Out of Plane Bending / Dihedral Angle

The dihedral energy Edih represents the energy required to move an atom a away from
its optimal distance to the plane made up of the atoms b − c − d. The dihedral energy
is given by Eq. (2.6) where kϕ is the dihedral force constant, ϕ is the dihedral angle and
ϕ0 denotes the equilibrium dihedral angle.

Edih =
kϕ
2
(cos(ϕ)− cos(ϕ0))

2 (2.6)

b

a

c

d

φ

Figure 2.5: Visualisation of the di-
hedral angle bending of the n̂abc

plane away from the n̂bcd plane.

Moving atom a changes the angle between the
planes a − b − c represented by the normal vec-
tor n̂abc and the plane n̂bcd. Naturally there exists
a dihedral angle between the planes n̂acd and n̂bcd

as well as between n̂abd and n̂bcd, but symmetry
dictates the expressions be the same. The gradient
of the dihedral energy with respect to the move-
ment of atom a is a rather convoluted expression
and the reader is referred to the work by Peder-
sen,12 for a full discussion of these gradient terms
and their derivation.

2.2.5 Outer Gradient Components

So far we have considered components of the gradient expression related directly to the
four atom system a, b, c, d, in Fig. 2.6 these atoms exist within the inner circle and
the neighbours of the atoms b, c, d which are considered outer neighbours of atom a ,
reside within the outer circle. The inner angles are the angles θabc, θacd and θadb. The
outer angle contribution comes about from the fact that moving atom a also changes
the angles θbabp , θbabm as well as θcacp , θcacm and θdadp , θdadm. The outer angle contribution
is given by Eq. (2.7).

∇acos(θbabp) =
1

∥ba∥(b̂bp − b̂acos(θbabp)) (2.7)

This expression is identical for all outer angles substituting atom b for c and atom
bp for cp and so on. All the outer angles are outlined and labelled in Fig. 2.6. Both
the Wirz forcefield and the forcefield by Pedersen included these outer angle gradient
terms. Pedersen noted that not only outer angles are affected by the movement of atom
a , the planes (a − bp − bm), (a − cp − cm) and (a − dp − dm) too are affected. All
dihedral angles involving these planes are affected and give rise to three additional
terms in the gradient expression for each of these outer planes. These expressions are
rather large so have been omitted here. The reader is referred to the work by Pedersen12

for a full discussion of these gradient terms and their derivation. In algorithms, we shall
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a

b

bpbm

c cp

cm

ddp

dm

θbabpθbabm

θcacp

θcacm

θdadp

θdadm

Figure 2.6: The four atom systems a, b, c, d resides within the inner circle and the
neighbours of the atoms b, c, d are labelled bp, bm, cp, cm, dp, dm these are considered
the outer neighbours of atom a and reside within the outer circle. We developed this
figure to help visualise all the components which are affected by the perturbation of
atom a .



22 CHAPTER 2. GRAPHS AND FORCEFIELD METHODS

refer to by them in their left-hand-side form ∇a(n̂babm · n̂abmbp), ∇a(n̂bbmbp · n̂abmbp) and
∇a(n̂babp · n̂abmbp) for brevity.

2.3 Summary
In Section 2.1 we have given a brief exposition on Graphs and how they relate Fullerenes
with nodes representing atoms and edges representing bonds, we have shown how adja-
cency lists are an efficient representation for cubic graphs in particular. We mentioned
how there are two information equivalent ways to represent a fullerene, either as a
cubic or as a dual this will become relevant in Section 5.3 and Section 4.7.

In Section 2.2 we have given a summary and explanation of the energy terms (bond-
stretching, angle-bending and dihedral bending) and corresponding forces involved in
the harmonic forcefield approximation used to optimise fullerene geometries.
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Figure 3.1: Visualisation of the isomerspace optimisation problem. From left to right:
Each square in the (orange) column represents a specific fullerene in the isomerspace.
The (blue) column represents the optimisation of a single fullerene. Each square
(green) in the fullerene represents a node / carbon-atom. Three neighbours (red)
are assigned to each carbon atom and two outer neighbours (teal) to each of the neigh-
bours.12

Pedersen prepared the forcefield optimisation problem for parallelisation through wide
vector (Numpy) operations. He explicitly showed how isomerspace optimisation can be
decomposed into multiple levels of parallelism (Fig. 3.1). It is our goal to investigate to
what extent it is possible to exploit this parallelism on modern hardware.

There are a number of ways one could exploit this parallelism. A common way to par-
allelise is to delegate independent tasks to individual processing elements. While task
parallelism is the right solution to many problems and can be implemented efficiently,
there are other parallelisation paradigms more suitable for vector-based operations.
One such paradigm that is particularly suited for vector problems is the Lockstep Paral-
lel paradigm. Lockstep Parallelism refers to the process of applying the same operations
(same instructions) to every constituent of a vector simultaneously. One benefit of lock-
step parallelism is that synchronisation is abstracted away from the programmer, since a
lockstep-parallel vector engine is conceptually synchronous, in theory this affords close
to perfect utilisation of compute units. Naturally, some hardware architectures approx-
imate this ideal better than others.
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For general purpose programming CPUs are the most common choice. CPUs are good
at exploiting task-level parallelism since they follow the multiple instruction multiple
data (MIMD) model, the CPU is optimised for performing entirely independent work
on each of its cores. CPUs only spend approximately 5-10%8 of transistors on actual
computation (ALUs) the rest is spent on e.g. caches, branch prediction, cache control
and out of order execution. Modern accelerator chip architectures instead have far
more compute units, but without the sophisticated control-flow management. E.g. TPU
& NPU (Tensor Processing Unit, Neural Processing Unit), which are optimised for tensor
contractions and matrix multiplications, GPGPUs (General Purpose Graphics Processing
Unit) optimised for graphics and vector operations, CGRA (Coarse Grained Reconfig-
urable Architecture) which are a customisable grid of tightly interconnected processing
and memory elements, AMD Xilinx AI Engine, a grid of tightly connected vector pro-
cessing units.

Each of these architectures are massively parallel and offer extremely high theoretical
peak performance, but this is rarely achieved. To reach this performance the problem
and the implementation must have the specific shape that fits the hardware, as the many
simple compute cores do not operate independently like on a CPU. However, common
to all these architectures is that a broad vector engine is a fitting abstraction. Therefore,
if we can write an algorithm in lockstep parallel, we reach near peak performance, given
data locality.

Currently, CPUs have in the range of 4-64 cores whereas modern vector engines have
thousands. Thus while CPUs are good for general purpose compute and are easy to
program, there is a huge potential to be exploited. Of these accelerator architectures
GPGPUs are by far the most mature and widely accessible. Thus, this thesis will fo-
cus on implementation of lockstep parallel algorithms on GPGPUs. We will pick apart
the forcefield-optimisation and describe how this computation can be mapped to any
data parallel hardware and how we can move from the abstract parallel lockstep al-
gorithm to a concrete and massively efficient implementation. We need to delve deep
into the details of hardware architecture and specific details of the programming model
to achieve this, covering memory hierarchies, register pressure, access patterns, bank
conflicts, occupancy, parallel primitives, asynchronous execution and more.

3.1 GPGPUs
The most common GPGPU execution model is the single instruction multiple data (SIMD)
model. SIMD is a form of data parallelism where a single instruction is executed on
multiple data elements simultaneously, using wide vector registers and arithmetic logic
units ALUs. SIMD is a common execution model particularly on GPUs but also exists
in small-scale (128-512 bit wide) on modern CPUs. Some GPGPUs instead use single
instruction multiple threads (SIMT) which is a form of data parallelism where a single
instruction is executed on multiple threads simultaneously. SIMT is the execution model
used by Nvidia GPUs and resembles the SIMD model with the exception that each thread
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has its own registers, stack pointer and program counter. This makes it a more flexible
execution model than SIMD but ultimately the two are very similar.

Not all workloads are suited for GPUs however: Codes with a lot of branching, many
conditional statements or random memory access patterns will not perform well. Fur-
thermore, it is in general rare for GPU applications to meet these theoretical peak per-
formance throughput figures, many HPC workloads simply require too much access to
memory and so it is not uncommon for GPU workloads to achieve on the order of 5% of
their theoretical peak performance. It all hinges on our ability to write the forcefield cal-
culation in such a way that all or almost all calculations are executed in lockstep across
entire isomerspaces and to ensure that data locality is maximised, this is the premise
for good utilisation of the GPGPU hardware.

3.1.1 Choosing a Programming Model

Graphics processing units have been around for a while however they have tradition-
ally not been used for anything other than graphics rendering. The advent of General-
Purpose computing on Graphical Processing Units (GPGPU) frameworks, specifically
Compute Unified Device Architecture (CUDA) and OpenCL gave rise to scientific com-
puting on GPUs. Today a plethora of GPGPU frameworks exist for porting code to GPUs,
from compiler directive standards like OpenACC and OpenMP to just-in-time (JIT) compil-
ers like Numba.

Given that the implementation by Pedersen was implemented in Python/Numpy, a nat-
ural choice would be to parallelise using either Numba, CuPy or any of the numerous
other automatic parallelisation frameworks. Higher-level approaches lack exposure to
lower level language features but most importantly they do not give the user control
over data locality and memory management, which is crucial. Additionally, composing
a program out of smaller premade kernels, while flexible, would not permit whole pro-
gram optimisation or link-time-optimisation (LTO) otherwise afforded by writing and
compiling the entire source code. For these reasons, this project was developed entirely
using CUDA and C++.

3.1.2 CUDA programming model

Let us introduce some concepts necessary to discuss parallelism on CUDA-enabled GPUs.
The CUDA programming model provides an abstraction of GPU architecture that acts
as a bridge between an application and hardware implementations. CUDA is available
in 3 flavours C/C++, Fortran and recently Python. The Python version is currently a
subset of the full C++ / Fortran implementation and the kernels are written as strings
in a C-like syntax.

We will often refer to the GPU as the device available on the system and the CPU is
referred to as the host. To run a CUDA program we must first: transfer data from host
memory to device memory since most Nvidia GPUs are dedicated processors with their
own physically separate memory. Second: load the GPU program and execute. Lastly:
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copy the results from device memory to host memory.

The nature of a CUDA kernel, a function that is launched from the host and executed on
the device, is such that anything you write is executed by all Nthreads different threads
as opposed to only once by a single thread, like regular C/C++ functions. Listing 3.1
and Listing 3.2 show how an array wide AXPY (A times X Plus Y) might be implemented
in C++ and CUDA respectively. Notice how the for loop is replaced by a single line
of code that is executed by all threads. The blockIdx.x and threadIdx.x are that are
built-in thread-local (each thread has its own value of these) variables.

void saxpy ( . . . ) {
f o r ( i n t i = 0 ; i ¡ N; i++){

c [ i ] = a * x[ i ] + y [ i ] ;
}
}

Listing 3.1: Standard C++ sequential
AXPY function

g l o b a l void saxpy ( . . . ) {
i n t t i d =
threadIdx . x + blockIdx . x *
blockDim . x ;
c [ t i d ] = a *
x[ t i d ] + y [ t i d ] ;
}

Listing 3.2: Typical thread parallel
AXPY implementation

While we can sometimes make do with the notion of a global thread identifier the fact
is, the Nvidia GPU has multiple levels of both memory and parallelism inherent to the
hardware. This tiered approach is not exclusive to Nvidia GPUs, AMD also uses multiple
tiers and many CPUs implement some form of Non-Uniform Memory Access (NUMA),
which requires special attention to maximise performance.

Specifically, the CUDA programming model currently exposes three levels of parallelism
each mapping to a level of the hardware stack. See Fig. 3.2.

• Threads are the lowest level of parallelism their instructions are carried out on a
single core, and they have access to fast thread-private memory registers.

• Blocks are collections of threads, the size of blocks is determined when you launch
a kernel. Blocks reside on a single Streaming Multiprocessor (SM) which is a col-
lection of primitive cores and control flow logic. Blocks have access to a form of
low-level cache L1 Cache a section of this cache can be explicitly accessed by the
programmer and is known as Shared Memory.

• Lastly, we have the kernel grid or just grid, a grid consists of blocks and can be
thought of as running on the entire device. Grids have access to the slowest form
device of memory in the device memory hierarchy, the GDDR SDRAM (Graphics
Double Data Rate Synchronous Dynamic Random Access Memory) referred to as
Global Memory since it can be viewed and modified by all threads on the device.
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Thread Thread Block Block 0 Block 1 Block Nblocks

Kernel Grid

Core

Streaming Multiprocessor (SM) SM 0 SM 1 SM (NSMs − 1)

Graphical Processing Unit (GPU / Device)

Registers L1 Cache / Shared Memory GDDR SDRAM / Global Memory

Software View

Hardware View

Memory View

Figure 3.2: A view of the three levels of parallelism in the CUDA programming
paradigm. Each tier of the software stack, Thread, Block and Grid has an approximate
mapping to Nvidia hardware and memory.

There are some important caveats to the underlying structure of thread blocks, opera-
tions on Nvidia GPUs are performed on thread groups known as warps, consisting of 32
threads, AMD calls them wavefronts, which are made up of 64 threads. Even though it
is technically possible to pick block sizes in the range N ∈ N ∩ [1, 1024] picking any N

that is not an integer multiple of 32 will result in masking away excess threads.

Nghost threads/block = 32− (Nthreads/block mod 32) (3.1)

0 1 2 3 4 31 6332 33 34 35 36 192 193 199 200 201 223

Warp 0 Warp 1 Warp 6

Ghost Threads

Figure 3.3: Schematic of the underlying structure of a thread block of size 200. The
block consists of 7 warps each containing 32 threads, the last 24 threads are masked
away in CUDA.

While CUDA exposes thread-level parallelism, and we may use thread identifiers to
index arrays to perform parallel operations, one should take great care when using
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these thread IDs for control flow. Due to the Single Instruction Multiple Thread (SIMT)
nature of Nvidia GPUs, any program branches must be executed by all threads within a
warp. Thus, if we create branches that require threads within the same warp to perform
different operations, the instructions will be serialized and threads not participating in
an instruction are simply masked away.

3.1.3 Discrete Resource Allocation
There are some important performance implications caused by the discrete allocation
of resources on the GPU. Let us consider the primary 3 components that lead to odd
saw-like tendencies in later benchmarks.

Block size: Each architecture iteration specifies a maximum number of threads that
can reside on a single SM. This number has so far been either 1024, 1536 or 2048.
One might reasonably assume that, given a thread-limit of 1024, one can fit 5 blocks
of block-size 200. This is not the case, instead, threads are allocated in chunks known
as the Warp Allocation Granularity, this in combination with the maximum number of
warps per multiprocessor therefore only 4 blocks of size 200 can be allocated on each
SM. More generally if we assume that register allocation (40 registers per thread) and
shared memory allocation are not limiting factors, the effect on Occupancy as Nvidia
coins it and Occupancy accounting for wasted effective compute due to ghost-threads,
is depicted in Fig. 3.4. We also plot the occupancy and effective occupancy as with
registers per thread set to 64, as is the compilation option of choice for much of the
program. Notice how the effective occupancy has fewer yet sharper jumps in occupancy
whereas the occupancy numbers vary at 32-thread intervals. These numbers are derived
using the CUDA occupancy calculator.15

Registers per thread: Nvidia permits two ways of controlling the maximum number of
registers allocated to each thread in a kernel launch. One either specifies a compilation
flag that applies across the compilation unit, or attaches a launch bound attribute to
kernels as needed. If neither is used the compiler has free rein to determine register
allocation for each kernel. The register file size varies from architecture to architecture
but has been fixed at 216 registers per SM since the Maxwell architecture (2014). Using
the same occupancy calculator as previously we can compute occupancy as a function
register count per thread. We fix the block size at 128 and shared memory per block at
0 MB. Results are plotted in Fig. 3.7.

These results are very convenient as they give us good intuition for which register limits
to test in future benchmarks. We note that there are specific breakpoints of maximum
registers per thread, however Fig. 3.7 only demonstrates these effects for block size 128,
therefore we need to investigate the effect of changing maximum register in conjunction
with block size. As per previous discussion we need only consider block sizes that are
integer multiples of 32 since they are composed of warps.

In Fig. 3.6 we illustrate the effects on occupancy that changing block size and registers
per thread, carry. While occupancy may very well change on every block size increment
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Figure 3.4: Occupancy (blue) and Effective Occupancy (red) as a function of block
size on an RTX3080 GPU. Register count is set to 40 (solid lines) / 64 (dashed lines)
registers per thread and shared memory is set to 0 MB per block, to remove these
variables from the equation.
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Figure 3.5: Occupancy (blue) as a function of register count per thread on an RTX3080

GPU. Block size was fixed at 128 and shared memory is set to 0 MB. The black lines
indicate break points where maximum number of registers per thread are allocated for
a given occupancy level.
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Figure 3.6: (i) Colormap of Occupancy as a function of both maximum registers per
thread and the block size. The (ii) subplot shows the forward difference derivative of
the occupancy matrix (i) in the x-direction. The (iii) subplot shows which block sizes
have the highest occupancy for a given register count.

of 32 threads, registers per thread only affect occupancy at specific points. To make this
perfectly clear we apply the forward difference method to find the non-zero derivatives
of occupancy with respect to registers-per-thread (RPT). We find negative ∂Occ/∂RPT

at RPT levels 40, 48, 56, 64, 72, 80, 96, 128, 168 indicating that these are the thresholds of
interest that ought to be tested to optimise performance of our kernels. Furthermore,
part Fig. 3.6(iii) shows areas of maximum occupancy with respect to block size. What is
notable here is that block-size 128 is the only block size which for any given RPT value
has the best occupancy. We will use this information when deciding on a problem size
to profile our forcefield kernels with, in Fig. 4.18.

Shared Memory: The amount of shared memory required per block can either be al-
located statically declared by using the shared int array[64] syntax or, as is often
the case, dynamically by specifying it in the host code and accessing it using the extern

keyword. The amount of available shared memory per SM has evolved a fair bit in re-
cent architectures. Specifically the RTX 3080 is equipped with 102400 bytes of shared
memory per SM. It follows, then, that requesting a lot of shared memory can limit the
amount of blocks that can launched. We can similarly plot compute the occupancy levels
as a function of shared memory per block. Computed occupancy levels and breakpoints
are shown in Fig. 3.7. Note that these numbers are highly block size dependent and in
this example block size was fixed at 128 and registers per thread at 40

The actual occupancy in any real application will depend on all three variables, block-
size, registers per thread and shared memory per block. However, sometimes, and
the case in this thesis, the amount of shared memory required per thread is fixed as
memory complexity is linear O(N). Block size and register count are not possible to
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Figure 3.7: Occupancy (blue) as a function of shared memory usage per block on an
RTX3080 GPU. Block size was fixed at 128 and register count per thread at 40. The
(black) lines indicate break points where maximum shared memory is allocated for a
given occupancy level.

decouple however so there is some inherent trade-off in choosing a register per thread
- count which favours particular block-sizes. We shall see this in detail when measuring
performance of the forcefield calculations.

The performance implications of SIMT and the warp-level discretization of resource
allocation will become apparent when benchmarking the GPU applications.

3.1.4 Throttling

We have just seen how choice of maximum register count, shared memory per block and
block size all affect occupancy and effective occupancy, we have yet to discuss however,
the impact of throttling.

GPUs and especially modern ones, do not run at fixed clock speeds, instead the driver
determines when the GPU should boost the clock speed and conversely reduce it when
the GPU is overheating. The advantage of course being that better cooling will allow
us to squeeze out more performance from a given device. The disadvantage is that
reliability of performance measurements are slightly compromised, or at least require
extra care to be taken.

In order to determine the effects of variable clock speed or throttling we conduct an
experiment where a forcefield computation is carried out on the GPU repeatedly for
a total of 2000s. We then bin these kernel runtimes into 10s intervals and plot the
distribution of kernel runtime as a function of elapsed time. Fig. 3.8 shows the result
of this, it becomes clear that Device 0 is both more stable and more performant than
Device 1, indicating better thermal conditions for Device 0. Furthermore, using both
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devices at the same time appears to produce more erratic kernel runtimes.
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Figure 3.8: Forcefield Optimisation kernel runtime as a function of elapsed time, the
colour represents the probability of a certain runtime at a given elapsed time. Kernel
runtimes are binned into 200 x-axis and 50 y-axis segments. These distributions are
shown for (i) Device 0 and 1 running simultaneously, (ii) Device 0 and (iii) Device 1.
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Figure 3.9: Mean Forcefield Optimisation kernel runtime for (pink) Device 0 and 1
running simultaneously, (blue) Device 1 and (green) Device 0. The middle 68% of
kernel runtimes are represented by the shaded areas.

In Fig. 3.9 we take the mean kernel runtime and plot the middle 68% of kernel runtimes.
From this we are able to clearly see the performance differences as well as the much
longer stabilisation period of both Device 1 and the two devices together. It would
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seem that the runtime distribution for dual GPU continues to change even after 2000s
of elapsed time. Device 0 on the other hand appears to have stabilised already after
approximately 200 seconds. We therefore choose to run all single kernel benchmarks
on Device 0 and precede each of these benchmarks with 200s of GPU utilisation.

3.2 Memory
In the early days, computers were much simpler. The various system components CPU,
memory, mass storage, networking et cetera were developed in tandem consequently
performance was quite balanced. Importantly, networking and memory were not much
faster than the CPU at delivering data.6

This balance was disrupted as the basic structure of computers stabilised, and hardware
developers optimised individual subsystems. Performance of some components fell be-
hind particularly mass storage and memory subsystems (SDRAM today). To corroborate
this we look at the memory and compute performance of GPGPUs from the last 17 years
(Fig. 3.10). As we might expect the development of memory bandwidth as well as com-
pute throughput both exhibit exponential behaviour. The much famous Moore’s Law,
the empirical observation that transistor density doubles roughly once every two years,
led to the prediction that computer performance doubles every 18 months.11 From the
exponential fits in Fig. 3.10, we derive doubling rates of 2.6Y r for compute and 5.3Y r

for bandwidth, indicating that this performance doubling rate has reduced somewhat.
Furthermore, we realize the stark contrast between improvements in memory band-
width and compute throughput. Indeed, it would seem that the number of operations
we must perform for every byte transferred is doubling every ln(2)

0.27−0.13
= 4.9Y r.
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Figure 3.10: A comparison of compute throughput in FLOP/s and DRAM bandwidth for
consumer grade GPUs from 2006 to 2022. A linear fit to the natural logarithm of these
metrics show exponential coefficients of 0.27 and 0.13 respectively. The uncertainty
shown is 1σ derived from fitting parameter covariance matrix
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3.2.1 Memory Hierarchy
As mentioned the Nvidia GPUs have a three-level memory hierarchy, and as a general
rule of thumb, the higher the level of the memory hierarchy the slower the access time.
With GPUs it is common to get bandwidth bound if you need to frequently access DRAM,
it is therefore vitally important that we consider the actual placement of our data in
memory. We will see later that the penalty for fetching data from DRAM rather than
registers or shared memory can be quite severe.

3.2.2 Arithmetic Intensity
Let us introduce the term Arithmetic Intensity I as the ratio between work W in FLOPs
to memory traffic Q Bytes/s:

I =
W

Q
(3.2)

We often use this number to gauge the theoretical limits of performance for a given
application, this is done through roofline analysis. Roofline plots are rather odd-looking
plots designed to show the performance of applications relative to what is theoretically
possible.
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Figure 3.11: Roofline analysis for the RTX 3080 GPU cache bandwidths were deduced
from profiling results as these numbers are not publicly available. The plot shows a
roofline for level of the Nvidia memory hierarchy.

Let β be the peak bandwidth, the roofline function is then defined as Eq. (3.3)

Roofline = min{I × β,π} (3.3)

To achieve theoretical peak performance on many modern-day GPUs, we require all
operations to be Fused-Multiply-Add operations, which technically count as 2 FLOPs.
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This is rarely the case so for that reason we provide both this unrealistic ceiling that the
vendor provides and a modified ceiling where we weigh FMADDs as a single operation.
There is a myriad of other technical details that complicate roofline analysis. Most
urgently, arithmetic intensity is determined from reads and writes to DRAM, however,
it is possible to achieve higher effective bandwidth through caches. Therefore, it can
be instructive to include rooflines for more levels of a memory hierarchy using, βDRAM ,
βL1 and βL2. It follows that for I×β ≤ π the program is limited by bandwidth, memory-
bound, and if I × β ≥ π the application is compute-bound.

3.2.3 Register Pressure

We will see later that, in spite of accounting for different memory hierarchies arithmetic
intensity can be artificially influenced by register pressure. The reason for this is that, by
reducing the number of registers available to each thread, the compiler is forced to spill
more data to memory. If your kernel has low register pressure, the compiler may only
spill data to L1 cache or L2 cache. If your kernel has high register pressure, the compiler
may be forced to spill data to DRAM causing extreme performance degradation. (See
Fig. 4.16 for an example of this).

3.3 Benchmarking Methodology
In this thesis we will benchmark numerous algorithms and variants of these as well as
processing pipelines, therefore we provide here the measures taken in all benchmarks.
As per the discussion in Section 3.1.4 prior to all benchmarks we heat up the GPUs
by running arbitrary kernels for 200seconds, as this appeared to be sufficient given
figure Fig. 3.9. To make sure the results are consistent we run all benchmarks 10 times
and record the mean and standard deviations of the runtimes. Standard deviations are
presented as shaded grey areas around the mean lines in the benchmark figures.

For certain algorithms, particularly those where an indeterminate number of iterations
is required for convergence, it is important that the isomers are sampled randomly from
the isomerspace. And perhaps more subtly while one might not think that this matters
in lockstep algorithms with fixed number of operations and iterations, the actual graph
layout of a given isomer changes the access pattern to shared memory inevitably causing
varying levels of bank-conflicts.

By design the generator BuckyGen5 found in the fullerene program produces isomers in
procedural and recursive fashion. Thus sampling e.g. the first 1000 isomers will not
produce a representative sample of the isomers present in that isomerspace. To get
around this we have developed a random isomerspace sampling algorithm, shown in
Algorithm 1.

The algorithm works by first producing a random list of Ns non-repeating integers in
the range from 0 to MCN

, once we have such a list RI we sort it in ascending order
such that accessing the jth gives the jth the smallest ID. Now we start iterating over the
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isomerspace procedurally generating isomers and appending them to I l if the next ran-
dom number in the sequence RI [j] matches the iteration number i. Random numbers
were produced in the implementation using std::shuffle() and the Mersenne twister
engine, random generator.10

Algorithm 1 Random Isomerspace Sampling Algorithm

MCN
▷ Number of isomers in isomerspace CN

Ns ▷ Number of samples to pick from isomerspace
RI ← random uniform(0,MCN

) ▷ Uniform distribution of integers from 0 to MCN

R∗
I ← RI [0, · · · , Ns − 1]

R∗
I ← sort(R∗

I) ▷ Sort the list in ascending order
I l ▷ Ns × 1 List of randomly sampled isomers
j ← 0
for i ∈ {0, . . .MCN

− 1} do
G← buckygen next()
if i = R∗

I [j] then
I l[j]← G ▷ Add isomer to list
j ← j + 1

end if
end for

We produced a random sample of min(10000,MCN
) isomers from each isomerspace

C20, · · · , C200 as this number of isomers produced very smooth looking and confidence-
inspiring validation figures. These samples were saved to disk, to avoid having to gener-
ate the entire isomerspace every time we want to run a benchmark. The scope of bench-
mark pipelines and algorithms is limited to the isomerspace range C20, · · · , C200 because
generating entire isomerspaces becomes increasingly expensive, the isomerspace sam-
pling of C20, · · · , C200 takes approximately 24 hours.

Information about the exact system specifications and the compilers used in this thesis
can be found in Appendix A.
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3.4 Parallel Primitives
In parallel programming, there are several building blocks sometimes referred to as par-
allel primitives or collective operations. Parallel primitives include, but are not limited
to, broadcasting, barrier, gather, scatter, scans and reduction. As these primitives are
extremely common efficient realizations of these primitives are of great interest. Specif-
ically, the reduction operation and exclusive scan operation are not implemented in the
standard CUDA API as such we take care to implement these efficiently. 1

3.4.1 Reduction
Algorithm 2 Sequential Reduction

function REDUCE(I,⊕) ▷ N input array, associative operator
S ← 0 ▷ Accumulator
for i ∈ {0, . . . N − 1} do

S ← S ⊕ I[i]
end for
return S ▷ Result

end function

The reduction operation takes a number of elements and reduce them into a single
result using any binary and associative operator e.g. addition, subtraction, max, min
and others. The sum of a series is one particularly common problem which can be solved
with a reduction that is the sequential series of additions ((((((a+ b) + c) + d) + e) + f) + g)+

h can just as well be calculated in parallel (((a + b) + (c + d)) + ((e + f) + (g + h))).
As reduction is essentially an associative operator carried out on a binary tree, runtime
complexity of a parallel reduction is O(Nlog2(N)). Indeed, we may naively produce
a sum in a tree like fashion as depicted in Fig. 3.12a and written in pseudocode in
Algorithm 3.

Algorithm 3 In-Place strided parallel reduction

function REDUCE(I,⊕) ▷ N × 1 input array, associative operator
for i← 1 to ⌈log2(N)⌉ do

for j ∈ {0, . . . 2⌈log2(N)⌉−i} do in lockstep
I[j ∗ 2i]← I[j ∗ 2i]⊕ I[j ∗ 2i + j ∗ 2i−1]

end for
end for
return I[0] ▷ Result

end function

It turns out however that this approach runs into memory bank conflicts. The L1 Cache
in Nvidia GPUs is made up of b (typically 32) memory banks that can be accessed si-
multaneously thus yielding b times the memory bandwidth of a single bank. However,
if multiple threads request memory from the same bank the access has to be serialized.

1Library implementations from CUB exist but require lots of template parameters to be known at
compile time
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Figure 3.12: Two different approaches to parallel reductions.

For this reason, the tree-like reduction which accesses memory in strides of 2, 4, . . . 2N

will cause 2, 4, · · · , 2N -way bank conflicts. We can remedy this problem by simply ad-
dressing sequentially as per Fig. 3.12b. This transformation equates to a change in in-
dexing as seen in Algorithm 4. We can optimize the reduction method one step further
by reducing every 32 elements on an input array in the first step using warp-primitives
and then using a single warp to reduce the resulting elements. The advantage of warp-
level primitives is that threads within a warp can exchange data synchronously without
going through L1 Cache / Shared memory thus freeing up bandwidth and reducing
synchronization overhead we outline the process in Fig. 3.14a.

Algorithm 4 In-Place contiguous parallel reduction

function REDUCE(I,⊕) ▷ N × 1 input array and associative operator
for i← 1 to ⌈log2(N)⌉ do

for j ∈ {0, . . . 2⌈log2(N)⌉−i} do in lockstep
I[j]← I[j]⊕ I[j + 2⌈log2(N)⌉−i]

end for
end for
return I[0] ▷ Result

end function

We proceed to measure the performance of each reduction method by solving as many
block-wide reductions as will fit on the GPU at a given block-size (array-size). We run
these reductions 1000 times at each array-size and repeat the experiment 10 times to
derive standard deviation on the benchmarks. The results are shown in Fig. 3.13

We see that for very small block-sizes the choice of reduction method is unlikely to be
vital to performance, however as block-size grows so too does the discrepancy between
different algorithms. Already at block-size 200 there is a threefold speedup from using
either warp-primitive or contiguous reduction over the sequential method.
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3.4.2 Scan
If the associative operator is addition then the scan operation is the same as a prefix
sum, that is the result of applying the scan operation to an array G is:

scan(G) = {A0,
1∑
i

Ai,

1∑
i

Ai, · · · ,
N−1∑
i

Ai} (3.4)

The pseudocode for a sequential implementation of the prefix sum is shown in Algo-
rithm 5.

Algorithm 5 Sequential Inclusive Scan

function INCLUSIVESCAN(G,⊕) ▷ N × 1 input array
R[0]← G[0]
for i← 1 to N − 1 do

R[i]← R[i− 1]⊕G[i]
end for
return R ▷ Result

end function

The scan operation is slightly harder to parallelise due to the higher degree of depen-
dency between elements in the array, it is however, possible. One such parallel scan
algorithm is the Blelloch which has both the best work-efficiency and time-complexity.4

This algorithm has been implemented by developers at Nvidia and its performance was
measured. The algorithm was in this work, modified slightly. We require the scans to
be block-wide instead of grid-wide and furthermore we need to allow for arrays that
are not powers of 2 in size. In addition to the modified block-wide Blelloch scan we
also implement a divide and conquer approach making use of the API built-in warp-
primitive cooperative groups::scan(). The approach is visualized in Fig. 3.14b, and
a pseudocode version is presented in Algorithm 6.

The idea is to divide the array into nw warp-sized sections and scan these first, then
we scan the sums of each of these subsections, this corresponds to the ends of each
sub-scan, using a single warp and store it in R2. Finally, we can add the ith element R2

to the corresponding ith section of R1 and store it back in I.

This approach, while both being simple and having worse work-efficiency, turns out
to be by far the most efficient, from a hardware perspective this is not surprising, the
Blelloch scan accesses memory in a highly non-contiguous fashion as well as requir-
ing intra-block synchronisation at each step of the algorithm. The divide and conquer
approach, on the other hand, uses warp-primitives which require no intra-block syn-
chronization and implicitly makes use of the ability for threads within a warp to ac-
cess each-others thread local memory (registers). We benchmarked the performance of
these scan algorithms by performing as many concurrent block scans as the GPU could
support 1000 times, looping occurs inside the kernel to produce measurable run-time,
standard-deviations were gathered by running this test 10 times for each array size. Re-
sults are shown in Fig. 3.15. We see that while Blelloch scan initially does not manage
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Algorithm 6 In-Place Divide and Conquer Inclusive Scan

function INCLUSIVESCAN(I,⊕) ▷
nw = ⌈ N

ws
⌉ ▷ Number of subdivisions (warps in CUDA)

R1 ▷ nw × ws 1st pass scan results
R2 ▷ nw × 1 2nd pass scan results
S ▷ nw × 1 Sums of the subsections
for i ∈ {0, . . . nw − 1} do in lockstep

▷ Divide the array into nw components and scan these
R1[i] = scan(I[i ∗ ws, · · · , (i+ 1) ∗ ws − 1],⊕)

end for
for i ∈ {0, . . . ws − 1} do in lockstep

S[i] = R1[(i+ 1) ∗ nw] ▷ Stores the ends of each sub-scan contiguously in S
end for
R2 = scan(S[0],S[ws − 1]) ▷ Scan the result of the sub-scans
for i ∈ {0, . . . nw − 1} do in lockstep

for j ∈ {0, . . . ws − 1} do in lockstep
I[i ∗ nw + j] = R2[i]⊕R1[i][j]

end for
end for

end function

to outperform the very simple sequential, yet inter-block parallel, scan, it does starts to
win out at around block-size 300. Given that the current primary domain of interest are
isomerspaces C20, C24, · · · , C300 the development of the divide and conquer approach re-
ally pays off as the per block-scan is an order of magnitude faster at block-size 250. We
shall see later how the efficient divide and conquer algorithm enables an exceedingly
performant dualisation algorithm.

3.5 Summary
In Section 3.1 we have discussed the basics of GPGPU compute, memory and software
hierarchy (Fig. 3.2), given a brief introduction to CUDA and some of the terminology
that follows. We go through occupancy, and effective occupancy (Fig. 3.4) and evaluate
in great detail how the occupancy of a kernel is affected by block-size and registers per
thread (Fig. 3.6, Fig. 3.5, Fig. 3.7). We find that only a small subset of compilation
settings for the -maxrregcount flag, actually affect occupancy. Furthermore, we saw
that 128 is a perfect block size for evaluating kernel performance for different RPT
-maxrregcount settings (Fig. 3.6). In Section 3.1.4 we discussed the effect of throttling
on performance and how we need to accommodate for this by warming the GPUs up
prior to benchmarks (Fig. 3.9).

In Section 3.3 we outlined how we intend to ensure that isomers used for benchmarks
and validity testing actually are representative of the isomerspaces they belong to, by
creating and storing uniformly distributed isomers from each isomerspace. The ap-
proach was described in Algorithm 1.
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Figure 3.15: Time per Block scan using the sequential (blue) algorithm, Blelloch scan
(light blue) and the divide and conquer approach (green). Each measurement is de-
rived from 10 runs of 1000 intra-kernel executions. We test the performance at all the
possible array sizes up to a maximum of 1024 elements i.e. the block-size limit.

In Section 3.4 we have discussed how operations such as scans and reductions, can
be turned into highly performant parallel primitives on GPUs. Specifically we have
seen the way bank conflicts affects performance as well as the effect that using warp-
primitives and a divide and conquer approach can improve performance in spite of
higher work load for both scan and reduction primitives. We found that using divide and
conquer warp-primitive scan approach improves performance an order of magnitude
over a sequential scan at N = 200 and even outperforms the theoretically best scaling,
Blelloch scan. We shall use these primitives in numerous algorithms in this thesis and
as such they play a central role.
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Figure 4.1: Sequential pipeline for molecular geometry optimisation. Blue arrows in-
dicate the flow of control while red arrows depict operations performed on data. Green
boxes display the data residing on the CPU.

4.1 Overview and Motivation
Let us for a moment consider the steps required for producing an optimal molecular
geometry for a single molecule. We depict a combined flow-chart and state diagram
of such a system in Fig. 4.1. The sequential pipeline is as follows: we produce a face
graph using BuckyGen then dualize the graph such that the vertices denote atoms of
the system, penultimately embed the graph using Tutte embedding and project the
geometry on to a sphere to produce. Finally, we use a forcefield method to optimize
the geometry of the molecule. The full script for this pipeline implementation can be
found in Listing C.1. More details and exposition will be given on the Dualisation,
Embedding and Projection procedures in Chapter 5.
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Figure 4.2: Time per isomer of pipeline components benchmarked for isomerspaces
C20, C24, · · · , C200. Note that the y-axis is logarithmic. Note that sequential components
are denoted by ◦ and parallel components by ⋆.
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Benchmarking the components of this pipeline yielded the results shown in Fig. 4.2.
As we can see, the bottleneck of the pipeline is the forcefield optimisation step, at iso-
merspace C190 it takes 17 times longer to optimise than to embed the geometry in 2D.
This is not surprising as the forcefield optimisation step is by far the most computa-
tionally intensive step in the pipeline. Amdahl’s law states that the total application
speedup that one can achieve from parallelisation is limited by the fraction of the appli-
cation which is sequential, see Eq. (4.1).

S(s) =
1

1− p+ p
s

(4.1)

p denotes the fraction of the application runtime which benefits from parallelisation, s
is the speedup of the parallel component. In our case if we initially assume that the
forcefield optimisation is the only parallelisable component, then for C200, p = 0.956

which means in the limit lims→∞ we can expect a speedup of 1
1−0.956

= 21.7×.
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Figure 4.4: The sequential calling hierarchy is shown to the left of the figure. The
parallel calling hierarchy is shown to the right. Green boxes signify computations per-
formed on the CPU while purple boxes denote computations performed on the GPU. The
coloured arrows in the parallel calling hierarchy each represent a collection of threads
responsible for the computations of a single isomer.

4.2 First Design
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Figure 4.3: Labelling of the faces
of the graph from the perspective
of the arc ( a → b ).

Given that we would be able to derive this much
performance from parallelising the forcefield opti-
misation let us break down the forcefield optimi-
sation problem into its constituents. The calling
hierarchy is shown in Fig. 4.4. The hierarchy con-
sists of a main thread which calls optimize, in the
sequential case a single thread then optimises the
geometry using conjugate gradient descent cou-
pled with golden section line search (GSS). Each
of these functions in turn call functions to evalu-
ate the gradient and energy of the system. Before
we can discuss these components we must first
present some prerequisite utility functions.

4.2.1 Utility Functions
In subsequent algorithms in this section and the
next, we will require methods for accessing and
traversing the graph structure and inquiring about
neighbouring faces. In Algorithm 7 we define
these functions: ArcIdx, returns the index of a
neighbour in the neighbour list of a vertex. Next
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takes a vertex u and a neighbour v and returns the next neighbour of that vertex. Prev
returns the previous neighbour. NextOnFace and PrevOnFace return the next and previ-
ous neighbours on a face given an arc. FaceSize returns the size of the face associated
with an arc. These algorithms rely on the key fact that the neighbour list G has a
canonical ordering of neighbours, i.e. the neighbours are ordered in a clockwise fash-
ion around the vertex. And we are therefore able to associate any arc with a face: using
labelling found in figure Fig. 4.3 the arc a → b corresponds to F1, a → c to F2, b → bm
gives F4 and so on.

The utility methods just presented existed already in the fullerene program, but had to
be implemented in the CUDA code as well such that these methods could be computed
in parallel on the GPU, this implementation can be found in Listing B.1. Granted these
tools we are now ready to compute the constants required for the energy and gradient
functions. While both the fullerene program provided this in one form and Pedersen
implemented methods to compute these constants, neither are clearly documented, and
so we provide in Algorithm 8 pseudocode for this, the method is also implemented in
CUDA and can be found in Listing B.2.
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Algorithm 7 Utility Functions

1: function ARCIDX(G, u, v)
2: for j ∈ {0, 1, 2} do ▷ For each neighbour
3: if G[u, j] = v then return j ▷ Return the index of v in the neighbour list of u
4: end if
5: end for
6: end function
7:
8: function NEXT(G, u, v) ▷ Given a canonical edge and a graph, returns the next

neighbour
9: j = ArcIdx(G, u, v) ▷ Get the index of the current neighbour

10: return G[u, (j + 1) mod 3] ▷ The next neighbour is the neighbour one index
after the current neighbour

11: end function
12:
13: function PREV(G, u, v) ▷ Given the arc {u, v}, returns the previous neighbour
14: j = ArcIdx(G, u, v)
15: return G[u, (j + 2) mod 3] ▷ The previous neighbour is the neighbour two

indices after the current neighbour
16: end function
17:
18: ▷ Given the arc {u, v}, returns the next neighbour on the face
19: function NEXTONFACE(G, u, v) return prev(v, u)
20: end function
21:
22: ▷ Given the arc {u, v}, returns the previous neighbour on the face
23: function PREVONFACE(G, u, v) return next(v, u)
24: end function
25:
26: function FACESIZE(G, u, v) ▷ Given the arc {u, v}, returns size of the face
27: d = 1 ▷ Initialise the size of the face to 1
28: u0 = u ▷ Store the source vertex
29: while v ̸= u0 do ▷ While we have not returned to the source vertex
30: w = v ▷ Store the current vertex
31: v = NextOnFace(u, v) ▷ Get the next vertex on the face
32: u = w ▷ Set u to be the previous v
33: d = d+ 1 ▷ Increment the size of the face
34: end whilereturn d
35: end function
36: function GETFACE(G, u, v) ▷ Given the arc {u, v}, returns the face and its size
37: F = {∞,∞,∞,∞,∞,∞} ▷ Initialise the face to be a vector of size 6
38: F [0] = u ▷ Set the first element of the face to be the source vertex
39: d = 1 ▷ Initialise the size of the face to 1
40: while v ̸= F [0] do ▷ While we have not returned to the source vertex
41: w = v ▷ Temp variable to store the current v
42: v = NextOnFace(u, v) ▷ Get the next vertex on the face
43: u = w ▷ Set u to be the previous v
44: F [d] = v ▷ Add the new vertex to the face
45: d = d+ 1 ▷ Increment the size of the face
46: end while
47: return F
48: end function
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Algorithm 8 Constants

1: function CONSTANTS(G)
2: r0 ← [[Rpp, Rph], [Rhp, Rhh]]
3: θ0 ← [θp, θh] ▷ Equilibrium angles
4: ϕ0 ← [[[ϕppp, ϕpph], [ϕphp, ϕphh]], [[ϕhpp, ϕhph], [ϕhhp, ϕhhh]]]
5: Kbond ← [[Kpp, Kph], [Khp, Khh]] ▷ Bond constants
6: Kang ← [Kp, Kh] ▷ Angle constants
7: Kdih ← [[[Kppp, Kpph], [Kphp, Kphh]], [[Khpp, Khph], [Khhp, Khhh]]]
8: R0,Θ0,ϕ0,Θm0 ,Θp0 ,ϕa0 ,ϕm0 ,ϕp0 ▷ Arrays of constants
9: Kbond,Kang,Kdih,Kangm ,Kangp ,Kdiha ,Kdihm ,Kdihp ▷ Arrays of constants

10: for i ∈ {0, . . . , N − 1} do ▷ For each atom
11: for j ∈ {0, 1, 2} do ▷ For each neighbour
12: F1 ← FaceSize(G, i,G[i, j])− 5
13: F2 ← FaceSize(G, i,G[i, j + 1 mod 3])− 5
14: F3 ← FaceSize(G, i,G[i, j + 2 mod 3])− 5
15: F4 ← FaceSize(G,G[i, j],PrevOnFace(G[i, j], i))− 5
16: R0[i, j]← r0[F1, F2]
17: Kbond[i, j]← Kbond[F1, F2]
18: Θ0[i, j]← θ0[F1]
19: Kang[i, j]← Kang[F1]
20: ϕ0[i, j]← ϕ0[F1, F2, F3]
21: Kdih[i, j]← Kdih[F1, F2, F3]
22: Θm0 [i, j]← θ0[F3]
23: Kangm [i, j]← Kang[F3]
24: Θp0 [i, j]← θ0[F1]
25: Kangp [i, j]← Kang[F1]
26: ϕa0 [i, j]← ϕ0[F3, F4, F1]
27: Kdiha [i, j]← Kdih[F3, F4, F1]
28: ϕm0 [i, j]← ϕ0[F4, F1, F3]
29: Kdihm [i, j]← Kdih[F4, F1, F3]
30: ϕp0 [i, j]← ϕ0[F1, F3, F4]
31: Kdihp [i, j]← Kdih[F1, F3, F4]
32: end for
33: end for
34: return {R0,Θ0,ϕ0,Θm0 ,Θp0 ,ϕa0 ,ϕm0 ,ϕp0 ,
35: Kbond,Kang,Kdih,Kangm ,Kangp ,Kdiha ,Kdihm ,Kdihp}
36: end function

Lines [2 - 7] in Algorithm 8 represent the forcefield parameters discussed in Section 2.2.1
they are intended to be indexed with face sizes, 0 for pentagons, 1 for hexagons. For in-
stance Kbond[0, 0] is the bond force constant for a pentagon-pentagon bond, Kdih[1, 1, 1] is
the dihedral force constant for a dihedral angle in which the faces involved are hexagon-
hexagon-hexagon. The bold face constants, lines [8 - 9] are arrays of constants each
storing 1 constant for each of the 3 neighbours of each atom. Fig. 4.3 shows the faces
involved in Algorithm 8 from the perspective of the arc ( a → b ), for arc ( a → c
) F1 becomes F3, F2 becomes F1 and F3 becomes F1. We can realize from Algorithm 8
that in the ith iteration only the ith elements of the constant parameters are written to,
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thus no loop carried dependencies are present, and the process is entirely parallelisable.
Having presented a way of computing these constants we can now discuss conjugated
gradient descent.

4.2.2 Conjugate Gradient Descent

Treating the geometry of the fullerene as an energy minimisation problem, we require
an optimisation algorithm that finds a good balance between rate of convergence and
computational cost per step. One might consider the newton method, which has the
desirable property: quadratic convergence. This method, however, requires the compu-
tation and storage of the Hessian matrix which often is prohibitively expensive. In our
case this is a 3N × 3N matrix.

A number of quasi-newton methods exist which do not require the computation of the
Hessian yet continuously updates an approximation of the hessian matrix. The most
popular of these methods is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The
trouble of course being that we now actually need to store this approximate Hessian
and compute matrix-vector multiplications.

Limited-memory BFGS (L-BFGS) is a variant of the BFGS method which only stores m

updates to the position X and the gradient ∇f(X) as these are then used to implicitly
perform operations that otherwise would have been matrix-vector products. The L-
BFGS is certainly a candidate for our problem, however, we wish to also be able to
compare our results to the implementation of Wirz et al.18

Enter the Conjugate Gradient (CG) method, this is the method used by Wirz et al.18

and Pedersen.12 CG was shown to be equivalent to the L-BFGS method with m = 0.13

Indeed, Nazareth compared the performance of BFGS to that of CG noting that one
typically has to perform twice as many iterations to achieve the same accuracy with
CG as with BFGS. However, CG is much cheaper to compute, and it does not require
the storage of the Hessian matrix. In general CG requires N iterations to converge for
a system of N equations, however our system is nonlinear and therefore convergence
may be slower, more on that in Section 4.4.2. As a side note, it is possible to show
that for our system, the sparsity of this Hessian is quite high, thus it may be a possible
avenue to explore in the future, although a lot of work is required to find the analytical
second derivatives and implement it efficiently.

In Algorithm 9 we present the classical conjugate gradient descent algorithm, with the
distinction that all linear algebra operations are shown as explicit for loops iterating
over data. Furthermore, the gradient direction at the previous and current iteration is
explicitly denoted gt and gt+1. The purpose of these design choices is that we wish to
be very explicit about the data storage and dependencies of the algorithm and to make
clear which parts can be parallelised and which variables are shared between threads
of a block, which are required across the device and which are private.
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Algorithm 9 Sequential Conjugate Gradient Optimisation

1: function CONJUGATE GRADIENT(Xin, Gin)
2: for i ∈ {0, . . . ,M − 1} do ▷ For each isomer
3: for a ∈ {0, . . . , N − 1} do
4: X[a]←X in[i, a]
5: G[a]← Gin[i, a]
6: end for
7: C ← Constants(G) ▷ Multiple N × 3 arrays of constants
8: gt ▷ N × 3 array of gradients at previous iteration
9: gt+1 ▷ N × 3 array of gradients at current iteration

10: s ▷ N × 3 array of search directions
11: for a ∈ {0, . . . , N − 1} do ▷ For each atom
12: gt[a]← gradient(X,C, a) ▷ Compute the gradient w.r.t atom a
13: s[a]← −gt[a] ▷ Search direction
14: end for
15: sn ← 0 ▷ Norm of search direction squared
16: for a ∈ {0, . . . , N − 1} do ▷ For each atom
17: sn ← sn + s[a] · s[a] ▷ Compute the norm of the search direction
18: end for
19: for a ∈ {0, . . . , N − 1} do ▷ For each atom
20: s[a]← s[a]√

sn
▷ Normalize the search direction

21: end for
22: for t ∈ {0, . . . , 5N} do ▷ Perform 5N iterations
23: α← GSS(X, s,X1,X2) ▷ Perform a line search
24: for a ∈ {0, . . . , N − 1} do ▷ For each atom
25: gt+1[a]← gradient(X,C, a) ▷ Compute the gradient w.r.t atom a
26: end for
27: β ← 0 ▷ Polak-Ribiere coefficient
28: for a ∈ {0, . . . , N − 1} do ▷ For each atom
29: β ← β + (gt+1[a]− gt[a]) · gt+1[a]
30: X[a]←X[a] + αs[a] ▷ Update the coordinates
31: end for
32: for a ∈ {0, . . . , N − 1} do ▷ For each atom
33: s[a]← −gt+1[a] + βs[a] ▷ Update the search direction
34: gt[a]← gt+1[a] ▷ Assign the new gradient to the old gradient
35: end for
36: sn ← 0 ▷ Norm of search direction squared
37: for a ∈ {0, . . . , N − 1} do ▷ For each atom
38: sn ← sn + s[a] · s[a] ▷ Compute the norm of the search direction
39: end for
40: for a ∈ {0, . . . , N − 1} do ▷ For each atom
41: s[a]← s[a]√

sn
▷ Normalize the search direction

42: end for
43: for a ∈ {0, . . . , N − 1} do ▷ For each atom
44: X[a]←X[a] + αs[a] ▷ Update the coordinates
45: end for
46: end for
47: end for
48: end function
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Naturally, the outer loop over isomers has no dependency, this is task-level parallelism,
and it follows that if the contents of each iteration of this loop perform the same opera-
tions, then it is suitable for lockstep parallelism. Let us now inspect the contents of this
loop.

As per previous, the argument of no loop carried dependencies applies in Algorithm 9
as well. We have intentionally designed the gradient function such that it returns the
gradient of a single atom. This allows us to parallelise the gradient calculation over
all atoms in the molecule. Notice that some for loops over atoms (a ∈ {0, . . . , N − 1})
in Algorithm 9, require the result of a previous iteration. Fortunately, these loops are
all a matter of summation and so while they are not perfectly parallelisable we can
use parallel reductions to compute these sums in O(log2(N)N) time. If we can show
that Golden Section Search is a collective operation that is computable in parallel, then
Algorithm 10 constitutes a parallel Conjugated Gradient Descent algorithm.
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Algorithm 10 Parallel Conjugate Gradient Descent

1: function CONJUGATE GRADIENT(Xin,Gin) ▷ Initial coordinates, Graphs
2: for i ∈ {0, . . . ,M − 1} do in lockstep ▷ For each isomer
3: X ←Xin[i] ▷ Copy the coordinates
4: G← Gin[i] ▷ Copy the neighbour list
5: C ← Constants(G) ▷ Multiple N × 3 arrays of constants
6: gt ▷ N × 3 array of gradients at previous iteration
7: gt+1 ▷ N × 3 array of gradients at current iteration
8: s ▷ N × 3 array of search directions
9: for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom

10: gt[a]← gradient(X,G,C, a) ▷ ∂E/∂X[a]
11: s[a]← −gt[a] ▷ Search direction
12: end for
13: sn ← reduce(s[a] · s[a],+) ▷ Norm of search direction squared
14: for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom
15: s[a]← s[a]√

sn
▷ Normalize the search direction

16: end for
17: for t ∈ {0, . . . , 5N − 1} do ▷ Perform 5N conjugate gradient steps
18: α← GoldenSectionSearch(X,G,C, s) ▷ Find best step size along s
19: for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom
20: gt+1[a]← gradient(X,G,C, a) ▷ ∂E/∂X[a]
21: end for
22: βtop ← reduce((gt+1[a]− gt[a]) · gt+1[a],+) ▷ Denominator of

Polak-Ribiere
23: βbottom ← reduce(gt[a] · gt[a],+) ▷ Numerator of Polak-Ribiere
24: β ← βtop/βbottom ▷ Polak-Ribiere
25: for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom
26: X[a]←X[a] + αs[a] ▷ Update the coordinates
27: end for
28: for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom
29: s[a]← −gt+1[a] + βs[a] ▷ Update the search direction
30: gt[a]← gt+1[a] ▷ Update the gradient
31: end for
32: sn ←

√
reduce(s[a] · s[a],+) ▷ Norm of search direction

33: for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom
34: s[a]← s[a]/sn ▷ Normalize the search direction
35: end for
36: end for
37: Xin[i]←X ▷ Store the result
38: end for
39: end function

In our parallel algorithms we specify the storage location of each variable through
colours. We use Xin to signify that a variable is a global variable in the sense that
it must be accessible to all processing elements on the device. X implies that a variable
needs to be accessed across processing elements within a single isomer (sub-problem),
this is the case for both the coordinate vector X and G seeing as the ath atom needs
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to access the coordinates of its neighbours and similarly needs to fetch the neighbours
of its neighbours. gt specifies that if the number of processing elements matches the
number of atoms, then the variable is local and can reside permanently in registers,
otherwise, it must be stored in some form of shared memory. Finally, variables without
colour are always local regardless of the number of processing elements.

Now let us proceed to discuss the subroutines involved in Algorithm 10. Starting with
the gradient subroutine, shown in Algorithm 11.
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Algorithm 11 Gradient

1: function GRADIENT(X, G, C, a)
2: g ← {0, 0, 0}
3: for k ∈ {0, 1, 2} do ▷ For each neighbour
4: b← G[a, k] ▷ Neighbour atom
5: c← G[a, (k + 1)%3] ▷ ((k + 1)%3)th neighbour of atom a
6: d← G[a, (k + 2)%3] ▷ ((k + 2)%3)th neighbour of atom a
7: bp ← next on face(G, a, b) ▷ Next atom on the face represented by the arc

(a, b)
8: bm ← prev on face(G, a, b) ▷ Previous atom on the face represented by the

arc (a, b)
9: ab←X[b]−X[a] ▷ Vector from a to b

10: ac←X[c]−X[a] ▷ Vector from a to c
11: ad←X[d]−X[a] ▷ Vector from a to d
12: abp ←X[bp]−X[a] ▷ Vector from a to bp
13: abm ←X[bm]−X[a] ▷ Vector from a to bm
14: bbp ←X[bp]−X[b] ▷ Vector from b to bp
15: bbm ←X[bm]−X[b] ▷ Vector from b to bm
16: bc←X[c]−X[b] ▷ Vector from b to c
17: cd←X[d]−X[c] ▷ Vector from c to d
18: bmbp ←X[bp]−X[bm] ▷ Vector from bm to bp
19: gbond ←Kbond[a, k] ∗ âb ∗ (∥ab∥ −R0[a, k]) ▷ Bond gradient
20: θ ← âb · âc ▷ Angle between ab and ac

21: gang ←Kang[a, k](
âbθ−âc
∥ab∥ + âcθ−âb

∥ac∥ )(θ −Θ0[a, k]) ▷ Angle gradient

22: sin(θabc)←
√
1− (−âb · b̂c)2 ▷ Sin of angle between ba and bc

23: sin(θbcd)←
√
1− (−b̂c · ĉd)2 ▷ Sin of angle between bc and cd

24: n̂abc ← −âb×b̂c
sin(θabc)

▷ Normal to the plane containing ab, bc and ac

25: n̂bcd ← −b̂c×ĉd
sin(θbcd)

▷ Normal to the plane containing bc, cd and bd

26: ϕ← n̂abc · n̂bcd ▷ Angle between n̂abc and n̂bcd

27: gdih ← b̂c×n̂bcd

sin(θabc)∥ab∥
+ âbϕ+ cot(θabc)ϕ

∥ab∥ (b̂c+ âbcos(θabc))(ϕ−Φ0[a, k])

28: gdiha
← · · · ▷ gradient w.r.t. outer dihedral plane n̂amp

29: gdihm
← · · · ▷ gradient w.r.t. outer dihedral plane n̂mpa

30: gdihp
← · · · ▷ gradient w.r.t. outer dihedral plane n̂pam

31: gangm ← · · · ▷ gradient w.r.t. outer angle between âb and b̂bm

32: gangp ← · · · ▷ gradient w.r.t. outer angle between âb and b̂bp
33: g ← g + gbond + gang + gdih + gdiha

+ gdihm
+ gdihp

+ gangm + gangp ▷ Total
gradient

34: end for
35: return g ▷ Return the gradient
36: end function

In Algorithm 11 we demonstrate how the gradient with respect to a single atom can be
encapsulated in a function. This function is called for each atom in the system, either
sequentially or in parallel, therefore we need not divide this algorithm into a parallel
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gradient and a sequential one. We note that G is accessed the same way by the ath call to
the function every time, and therefore we might store these neighbour values (G[a, 0],
G[a, 1], G[a, 2]), as well as next on face(G[a, k]) and prev on face(G[a, k]) ∀k ∈ [0, 2] in
thread private memory. Thus, further reducing the number of memory accesses and
increasing the performance. The implementation details can be found in Listing B.8.

While linear conjugate gradient descent allows the direct closed-form solution to the
optimal step length α at each iteration, nonlinear conjugate gradient descent requires
us to find the optimal step length α using a line search algorithm. We use the sequential
GSS to find the optimal step length. Since it only requires us to evaluate the objective
function (energy) rather than the gradient.
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Algorithm 12 Sequential Golden Section Search

function GOLDENSECTIONSEARCH(X, G, C, d)
X1 ▷ N × 3 System coordinates at x1

X2 ▷ N × 3 System coordinates at x2

a← 0 ▷ Initial bracket
b← 1 ▷ Initial bracket
τ ← 1+

√
5

2
▷ Golden ratio

x1 ← a+ (1− τ)(b− a) ▷ Initial sub-bracket
x2 ← a+ τ(b− a) ▷ Initial sub-bracket
for j ∈ {0, . . . , N − 1} do ▷ For each atom

X1[j]←X[j] + αx1d ▷ Compute coordinates at x1

X2[j]←X[j] + αx2d ▷ Compute coordinates at x2

end for
f1 ← Energy(X1,G,C) ▷ Compute energy at X1

f2 ← Energy(X2,G,C) ▷ Compute energy at X2

while |b− a| > ϵ do ▷ While bracket is not sufficiently small
if f1 < f2 then

b← x2 ▷ If f1 < f2 then minimum is within [a, x2]
x2 ← x1

f2 ← f1 ▷ Avoids re-evaluating Energy at X1

x1 ← a+ (1− τ)(b− a) ▷ Update sub-bracket
for j ∈ {0, . . . , N − 1} do

X1[j]←X[j] + αx1d ▷ Update coordinates at new x1

end for
f1 ← Energy(X1,G,C) ▷ Compute energy at X1

else
a← x1 ▷ If f1 ≥ f2 then minimum is within [x1, b]
x1 ← x2

f1 ← f2 ▷ Avoids re-evaluating Energy at X2

x2 ← a+ τ(b− a) ▷ Update sub-bracket
for j ∈ {0, . . . , N − 1} do

X2[j]←X[j] + αx2d ▷ Update coordinates at new x2

end for
f2 ← Energy(X2,G,C) ▷ Compute energy at X2

end if
end while
return (a+ b)/2 ▷ Return optimal step length

end function

As with previous algorithms, the sequential GSS algorithm has three surface-level can-
didate for-loops to parallelise, and so they have been turned into parallel loops in Algo-
rithm 13. The while loop governed by the convergence criterion ∥b− a∥ > ϵ is a non-
issue for task parallelism, but since we are interested in lockstep parallelism we simply
choose to do a statistically sufficient number of iterations, 20, was selected through trial
and error.



60
CHAPTER 4. DESIGN AND IMPLEMENTATION OF LOCKSTEP PARALLEL

FORCEFIELD ALGORITHM

Algorithm 13 Parallel Golden Section Search

function GOLDENSECTIONSEARCH(X, G, C d)
X1 ▷ N × 3 System coordinates at x1

X2 ▷ N × 3 System coordinates at x2

a← 0 ▷ Initial bracket
b← 1 ▷ Initial bracket
τ ← 1+

√
5

2
▷ Golden ratio

x1 ← a+ (1− τ)(b− a)
x2 ← a+ τ(b− a)
for j ∈ {0, . . . , N − 1} do in lockstep

X1[j]←X[j] + αx1d[j] ▷ Compute coordinates at x1

X2[j]←X[j] + αx2d[j] ▷ Compute coordinates at x2

end for
f1 ← Energy(X1,G,C) ▷ Compute energy at X1

f2 ← Energy(X2,G,C) ▷ Compute energy at X2

for i ∈ {0, . . . 20} do ▷ Perform 20 iterations
if f1 < f2 then ▷ if energy at x1 is lower than energy at x2

b← x2 ▷ If f1 < f2 then minimum is within [a, x2]
x2 ← x1

f2 ← f1 ▷ Avoids re-evaluating Energy at X1

x1 ← a+ (1− τ)(b− a) ▷ Update sub-bracket
for j ∈ {0, . . . , N − 1} do in lockstep

X1[j]←X[j] + αx1d[j] ▷ Update coordinates at new x1

end for
f1 ← Energy(X1,G,C) ▷ Compute energy at X1

else
a← x1 ▷ If f1 ≥ f2 then minimum is within [x1, b]
x1 ← x2

f1 ← f2 ▷ Avoids re-evaluating Energy at X2

x2 ← a+ τ(b− a) ▷ Update sub-bracket
for j ∈ {0, . . . , N − 1} do in lockstep

X2[j]←X[j] + αx2d[j] ▷ Update coordinates at new x2

end for
f2 ← Energy(X2,G,C) ▷ Compute energy at X2

end if
end for
return (a+ b)/2 ▷ Return the average of the bracket

end function

One caveat remains to the claim that Algorithm 13 is a lockstep parallel algorithm, we
must show the Energy function is a collective operation performed in parallel.

We now turn our attention to the core computation, the energy of the system. We
present first the sequential algorithm Algorithm 14 this algorithm is a pseudocode rep-
resentation of the forcefield developed in python by Pedersen et al.12

The sequential energy computation algorithm is shown in Algorithm 14. The algorithm
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consists of two nested for loops, the outer loop iterates over each atom in the system
and the inner loop iterates over each neighbour of the atom. The algorithm computes
the bond, angle and dihedral energies for each atom and sums them to the total en-
ergy. X is the position of each atom in the system, G denotes the adjacency list, R0 is
the equilibrium bond length, θ0 is the equilibrium angle, ϕ0 is the equilibrium dihedral
angle, Kbond is the bond force constants, Kang is the angle force constants and Kdih is
the dihedral force constants. Passing in all these arguments makes the function signa-
ture quite bloated, and we can simplify it by passing in the forcefield parameters in two
structs, one for the force constants and equilibrium values and one for the adjacency
list. For pseudocode, however, we have kept the function signature explicit.

Algorithm 14 Sequential Energy Computation

1: function ENERGY(X,G,C)
2: Etotal = 0 ▷ Total energy of the system
3: for a ∈ {0, . . . , N − 1} do ▷ For each atom
4: for k ∈ {0, 1, 2} do ▷ For each neighbour
5: b← G[a, k] ▷ kth neighbour of atom a
6: c← G[a, (k + 1)%3] ▷ (k + 1)th neighbour of atom a
7: d← G[a, (k + 2)%3] ▷ (k + 2)th neighbour of atom a
8: ab←X[b]−X[a] ▷ Unit vector from atom a to atom b
9: ac←X[c]−X[a] ▷ Unit vector from atom a to atom c

10: bc←X[c]−X[b] ▷ Unit vector from atom b to atom c
11: cd←X[d]−X[c] ▷ Unit vector from atom c to atom d

12: cos(β)← âb×ĉb√
1−âb·ĉb

· d̂b×ĉb√
1−d̂b·ĉb

▷ Dihedral angle between atoms a, b, c, d

13: rab ← ∥ab∥ ▷ Distance between atoms a and b
14: Ebond ← 1

2
Kbond[a, k](rab −R0[a, k])

2 ▷ Bond energy
15: Eangle ← 1

2
Kang[a, k](âb · âc− θ0[a, k])

2 ▷ Angle energy
16: Edih ← 1

2
Kdih[a, k](cos(β)−Φ0[a, k])

2 ▷ Dihedral energy
17: Etotal ← Etotal + Ebond + Eang + Edih ▷ Add energy contributions to total

energy
18: end for
19: end for
20: return Etotal ▷ Return total energy
21: end function

The only computation which is dependent on the previous iteration is the summation of
the energy contributions to the total energy. This summation can be performed in par-
allel using the reduction operation. As such we present a parallel energy computation
algorithm in Algorithm 15.
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Algorithm 15 Parallel Energy Computation

1: function ENERGY(X,G,C)
2: E ▷ N × 1 Energy contributions from each atom
3: for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom
4: E[a] = 0 ▷ Initialise energy contribution to zero
5: for k ∈ {0, 1, 2} do ▷ For each neighbour
6: b← G[a, k] ▷ kth neighbour of atom a
7: c← G[a, (k + 1)%3] ▷ (k + 1)th neighbour of atom a
8: d← G[a, (k + 2)%3] ▷ (k + 2)th neighbour of atom a
9: ab←X[b]−X[a] ▷ Unit vector from atom a to atom b

10: ac←X[c]−X[a] ▷ Unit vector from atom a to atom c
11: bc←X[c]−X[b] ▷ Unit vector from atom b to atom c
12: cd←X[d]−X[c] ▷ Unit vector from atom c to atom d

13: cos(β)← âb×ĉb√
1−âb·ĉb

· d̂b×ĉb√
1−d̂b·ĉb

▷ Dihedral angle between planes n̂abc and

n̂bcd

14: Ebond ← 1
2
Kbond[a, k](∥ab∥ −R0[a, k])

2 ▷ Bond energy
15: Eangle ← 1

2
Kang[a, k](âb · âc−Θ0[a, k])

2 ▷ Angle energy
16: Edih ← 1

2
Kdih[a, k](cos(β)−Φ0[a, k])

2 ▷ Dihedral energy
17: E[a]← E[a] + Ebond + Eangle + Edih ▷ Sum energy components
18: end for
19: end for
20: return reduce(E,+) ▷ Sum all energy contributions
21: end function

As is apparent from Algorithm 15 the computation of the energy contributions related
to each atom is entirely independent of each other and thus parallelisable. Thus, re-
placing the summation of the energy contributions to the total energy with a reduction
operation over individual atomic energy contributions E yields a parallel energy algo-
rithm which can be called as a collective operation by all processing elements devoted
to a given isomer.

Piecing together the conjugate gradient descent Algorithm 10, the gradient computa-
tion Algorithm 11, golden section search Algorithm 13 and the energy computation
Algorithm 15, we obtain the complete parallel forcefield optimisation algorithm.
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4.3 Pipeline 1: CUDA/C++ Forcefield
In Section 4.2 we described how one might parallelize forcefield optimisation on both
isomerspace levels and the level of individual isomers, and how the algorithms can be
executed in lockstep. In this section we aim to exemplify how parts of the algorithms
described in Section 4.2 can be implemented in CUDA/C++, and how they differ from
the original python implementation by Pedersen,14 it is adapted from.

4.3.1 Data Structures
Much of the pseudocode shown in Section 4.2 gives the impression that everything
is expressed in terms of functions calling other functions, and while this approach is
good for describing a general algorithm that could be implemented in any language, in
implementation it is convenient to introduce data structures which encapsulate certain
parts of the algorithm. In the CUDA/C++ implementation, we have introduced the
following data structures:

struct ArcData

real_t bond( … )
real_t angle( … )
real_t dihedral( … )

…
real_t real_t gradient( … )
real_t energy( … )

const coord3d ab, ac, ad, … struct NodeNeighbours

const node3 cubic_neighbours
const node3 next_on_face
const node3 prev_on_face
const node6 face_nodes
const node3 face_neighbours

struct Constants

const coord3d k_bond
const coord3d k_angle

…
const coord3d bond0
const coord3d angle0

struct ForceField<ForceFieldType T>

struct FaceData{ .. }
struct ArcData{ .. }
real_t energy( … )
real_t gradient( … )

const NodeNeighbours node_neighbours
const Constants constants

Figure 4.5: UML diagram of the data structures used in the CUDA/C++ implementa-
tion of the forcefield optimisation. Each thread on the device has a ForceField struc-
ture which contains one (UML: Composition) Constants and NodeNeighbours structure
containing all the static information which is required to compute the energy contribu-
tion from the corresponding atom, as well as the gradient component with respect to
said atom. ArcData is a helper structure created by ForceFields in its energy() and
gradient() methods. ArcData initialises its state through access to (UML: Association)
NodeNeighbours and uses Constants in its calculations.

ForceField is the overarching container for the shared state between the algorithms,
the motivation is that Algorithm 10, Algorithm 13, Algorithm 15 and Algorithm 11 all
access the same constants and the same graph information, and the data is untouched
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once it has been initialised. In the aforementioned algorithms the adjacency informa-
tion, G, is shown as a shared variable that is only necessary for the initialization of the
Constants (Algorithm 8). After the initialization each node actually only needs to store
the indices of its neighbours, the outer neighbours bm, bp, cm . . . and face neighbours if
flatness is used, more on that later. So it turns out we can make do with local adjacency
information, which we store in the NodeNeighbours struct. Similarly, the Constants

struct contains all the constants that are used in the energy and gradient computations.
It is important to note that these are not just design choices, they carry performance
implications, as storing information locally avoids the need for global memory access or
excessive cache use.

Now Algorithm 15 and Algorithm 11 could be implemented exactly as described in the
pseudocode, but we have chosen to encapsulate the interior of the neighbour loops k ∈
{0, 1, 2} in a structure ArcData and with each equation in Section 2.2 corresponding to
a function in the ArcData struct. The initialization of state, lines [9, 18] in Algorithm 11
is conveniently handled by the constructor. This is done to make the code more readable
and easier to extend with new equations, but it is ultimately a stylistic choice.

We have to mention that while coordinates X are also used across the algorithms, it is
not stored in the ForceField struct, the rationale is two-fold: first, the functions depend
on the coordinates of the nodes and the state is modified by the functions, secondly
storing these coordinates as a mutable state in ForceField was found to yield worse
performance, presumably because the compiler is unable to make certain optimisations.

4.3.2 Device Side Encapsulation

As mentioned in the CUDA programming model Section 3.1.2 we distinguish between
code that runs on the GPU as Device code and the calling code running on the CPU, as
the Host code. Now in typical CUDA/C++ code bases, there exists a lot of boilerplate
setup code which is required to get the GPU to do work. This may be an acceptable
consequence if one intends to write mostly self-contained scripts where host and device
code exist within the same file and compilation unit, however, the intention was for this
code to be integrated as an optional component in the Fullerene program. As such some
design choices were required to make the code both easier to interact with, maintain
and extend.

The most pressing concern in any Host - Device interaction is the transfer of data be-
tween the two. In CUDA/C++ this process is quite verbose and error-prone, you are
required to declare Host pointers and device pointers, allocate both of copying between
them then requires you to specify the number of bytes you want to copy and the di-
rection of the type of copy operation you wish to perform. This becomes incredibly
cumbersome especially if you have many arrays you wish to copy back and forth. This
is what motivated the design of the IsomerBatch structure which is the central data
container in which all isomers are stored and all GPU operations defined here are per-
formed on. It stores 4 arrays of data, the coordinates (MB ×N × 3)Xin, cubic graphs,
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ID0 ID1 ID2 ID3 … IDMb-1

F0 F1 F2 F3 … FMb-1

0 0 0 0 … 0

𝑮𝟎∗ 𝑮𝟏∗ 𝑮𝟐∗ 𝑮𝟑∗ … 𝑮𝑴𝒃(𝟏∗

𝑮0 𝑮1 𝑮2 𝑮3 … 𝑮Mb-1

𝑿𝟎𝟐𝑫 𝑿𝟏𝟐𝑫 𝑿𝟐𝟐𝑫 𝑿𝟑𝟐𝑫 … 𝑿𝑴𝒃(𝟏𝟐𝑫

𝑿0 𝑿1 𝑿2 𝑿3 … 𝑿Mb-1

MB

Dual Graphs

Cubic Graphs

2D Embeddings

3D Embeddings

= GPU = CPU

Isomer IDs
Status Flags
Iteration Count

Figure 4.6: Anatomy of the IsomerBatch, the red pictures are visualizations of the data,
dual and cubic graphs are pictured as dense adjacency matrices but are of course stored
in sparse form. 2D and 3D embeddings exist as coordinates, so the visual representation
is accurate here. We use purple to signify that the batch resides in GPU memory and
green for CPU memory.

(MB ×N × 3)Gin, dual graphs (MB ×Nf × 6)G∗
in, 2D embeddings (MB ×N × 2)X2D

in

as well as three sets of metadata all the dimension (MB × 1): id-list ID, status flags
F and iteration counter It. The anatomy of the IsomerBatch is shown in Fig. 4.6. We
will use this visualization of the IsomerBatches in the following sections to illustrate the
data flow.

We define a set of natural utility methods that act on IsomerBatch structures, copy,
resize and sort. The function signatures are shown in Fig. 4.7.

The user can specify the stream and corresponding GPU which operations should be en-
queued on, through the LaunchCtx struct. Furthermore, whether the operation should
be blocking or non-blocking can be specified through the LaunchPolicy enumerable.
The default behaviour, if nothing is specified, is to execute the operation on the default
stream on the default GPU and to block until previous enqueued operations have com-
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void copy (IsomerBatch&, const IsomerBatch&, const LaunchCtx&, const LaunchPolicy,  const std::pair<int,int>, const std::pair<int,int>) 
void resize (IsomerBatch&, const LaunchCtx&, const size_t, const LaunchPolicy) 
void sort (IsomerBatch& B, const BatchMember, const SortOrder) 

Figure 4.7: Function signatures of some primary utility functions on the IsomerBatch

struct.

pleted. The implementation of LaunchCtx can be found in launch ctx.cu. We shall see
in Section 5.4 how asynchronous execution enables pipeline parallelism and improves
performance.

The culmination of all this is that we can now express isomerspace optimisation very
simply as an extension to the Fullerene program. The code is shown in Listing 4.1

FullereneDual G( Nf ) ; //Graph fo r BuckyGen to f i l l
IsomerBatch B0(N, M b , BufferType :: HOST BUFFER) ; // Host batch
IsomerBatch B1(N, M b , BufferType :: DEVICE BUFFER) ; // Device batch
while ( more to do )
{

while (B0 . s ize () ¡ B0 . capacity ( ) )
{

// Generate next f u l l e r e n e
more to do &= BuckyGen :: next fu l lerene (Q,G) ;
i f ( ! more to do ) break ;
G. update () ;
PlanarGraph pG = G. dual graph () ; //Compute Cubic Graph
pG . layout2d = pG . tu t te layout () ; //Compute 2D Embedding
Polyhedron P(pG) ; // Create polyhedron
P . po in t s = P . zero order geometry () ; //Compute 3D Embedding
B0 . append(P , I ) ; //Append to batch
I++;

}
i f (B0 . s ize () == 0) break ;
cuda io :: copy (B1 , B0) ; //Copy to dev ice B1 ¡− B0
// F o r c e f i e l d op t im i sa t i on
i somerspace forcef ie ld :: optimize ¡PEDERSEN>(B1 , N* 5 , N*5) ;
B0 . c lear () ;
//Do something with r e s u l t s from B1 next . . . ( Future work)

}

Listing 4.1: Script for Pipeline 1: Lockstep Forcefield optimisation. Fullerenes are
produced by BuckyGen,then dualized, embedded and projected using methods in the
Fullerene program. We then append the Polyhedron to an IsomerBatch and finally copy
the batch to a device batch and call optimize on this batch.

https://github.com/jamesavery/fullerenes/blob/development/src/cuda/launch_ctx.cu
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Figure 4.8: Pipeline 1: Parallel Lockstep forcefield optimisation, everything else is
sequential. The figure shows a snapshot of the state of the IsomerBatch structures
throughout the first iteration of Listing 4.1. Orange coloured fields indicate that they
were modified by the previous operation, grey implies that the memory is default ini-
tialised.

Fig. 4.8 is a visual representation of the first pipeline (Listing 4.1) that is part flow-chart
part state-diagram, we use the same visual representation of IsomerBatch as in Fig. 4.6
to illustrate the state of the IsomerBatch structures throughout the first iteration of
the pipeline. We use green to imply that data resides on the CPU and areas enclosed
in green dashed lines indicate that operations within it are carried out on the CPU.
Similarly, purple is used to show that data resides on the GPU and that operations are
carried out on the GPU.

With the implementation of the parallel forcefield optimisation complete we must assess
correctness and convergence.
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4.4 Validation and Convergence
In the preceding sections we have shown how the forcefield optimisation algorithm can
be implemented conceptually on any massively parallel hardware, (Algorithm 10, Algo-
rithm 13, Algorithm 11) as well as how we can concretely implement it in CUDA/C++
and incorporate it in the Fullerene program (Listing 4.1). We have yet to show that
the implementation is valid and that the results are comparable to the results of the
sequential implementation.

4.4.1 Validation
To do this we selected random min(number of isomers(CN), 1000) isomers from each
isomerspace C20, C24, · · · , C200 and performed forcefield optimisation on them using
both the sequential Fortran implementation by Wirz et al. and the new parallel force-
field optimisation implementation. Ideally we would be able to compare coordinates
directly and measure their variation. However, Wirz et al. used a combination of con-
jugated gradient descent and brent’s method, and we used golden section search with
fixed iteration count. Therefore, comparing coordinates directly would not yield any-
thing meaningful. Instead, we compare the relative root mean squared error (RRMSE)
of the bond lengths, angles and dihedrals w.r.t equilibrium values. We perform this anal-
ysis using both the gradient corrected forcefield by Pedersen12 and the original forcefield
by Wirz et al.18

The results of this analysis are represented in Fig. 4.9 as sets of histograms. We see that
the shape of the histograms are very similar for all three forcefields, notably the original
Wirz forcefield implementation gives rise to a smear of outlier isomers with higher
RRMSE values. These appear to be absent in the other two forcefields. A caveat to this is
that the CUDA/C++ implementation produces a greater volume of invalid geometries
full of NaNs which cannot be shown in a histogram. Perhaps counterintuitively, this
analysis reveals that RRMSE values of bond lengths and angles decrease as CN → C200

indicating that the forcefield is converging to a more accurate representation of the true
potential energy surface. We presume that two factors are responsible for this, firstly
the total Gaussian curvature of the fullerenes can be distributed over a greater number
of faces and secondly the fraction of fullerenes that follow the isolated pentagon rule
(IPR), which is known to improve thermodynamic stability,9 increases as CN → C200.

In order to be able to more directly compare the results we summarise the information
in Fig. 4.9. The distributions are not normal distributions, therefore we plot the me-
dian and the 25th and 75th percentiles of the RRMSE values for each isomerspace CN

in Fig. 4.10, instead of means and standard deviations. From Fig. 4.10 we see that the
CUDA/C++ implementation of the Wirz forcefield is comparable to the sequential im-
plementation. Curiously, Wirz + GSS seems to find minima with lower Angle RRMSE
but slightly higher Dihedral RRMSE values. We do not know why this occurs, this might
be worth investigating further. In any case, the CUDA/C++ implementation of the Ped-
ersen forcefield seems to converge closer to the equilibrium parameters than the Wirz
forcefield.
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Figure 4.9: RRMSE of bond lengths, angles and dihedrals for Original Wirz forcefield
as well as CUDA/C++ implementations of Wirz + GSS and Pedersen + GSS. Each plot
contains a histogram of RRMSE values for each isomerspace CN , the probability is the
fraction of isomers in an isomerspace that fall within a given RRMSE bin. Bins were
linearly distributed from the minimum to the maximum value of the y-axes in each
plot.
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Figure 4.10: Medians of RRMSE of bond lengths, angles and dihedrals for Original
Wirz forcefield as well as CUDA/C++ implementations of Wirz + GSS and Pedersen
+ GSS. Shaded areas are encompassed by the 25th and 75th percentiles of the RRMSE
values for each isomerspace CN .

4.4.2 Convergence

So far we have discussed only how the forcefield optimisation itself may be performed in
parallel on massively parallel hardware, we now turn out attention to the convergence
of the optimisation algorithm itself.

We devised a script for optimizing isomers from the randomly sampled data, we per-
form optimisations in steps of 1/10N iterations until an upper limit of 50N iterations is
reached. After each optimisation step we push any finished isomers to an output queue
(the implementation of this will be discussed later) this way we are able to keep track of
the number of iterations required to converge each isomer. Fig. 4.11 shows the resulting
probability distribution of the number of iterations required to converge an isomer as a
function of isomerspace CN .

While it does appear that the number of iterations required does increase super-linearly
the incline is slight and appears to drop off, as if to suggest something of the order
Nlog(N) iterations required. Furthermore, we notice that a small spread of the distri-
bution can be observed for all isomerspaces, specifically the difference between the 50th

percentile and the 99th percentile is around 1×N iterations for most isomerspaces.
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Figure 4.11: (i) Logarithmic probability map showing the probability that an isomer
requires a given amount of iterations, the y-axis shows iteration count in multiples of
N . (ii) shows the required iterations to converge a fraction of the isomers, 50th (blue),
75th (pink), 90th (green), 99th (purple) and 100th (orange) percentiles respectively.
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We now look at the data in a slightly different way by plotting the number of fixed
iterations we would need to perform as a function of the percentile of isomers that we
wish to successfully optimise, as well as the average number of iterations required to
optimise a given percentile of isomers, given we are able to facilitate variable number
of iterations for each isomer.

We see that the per isomer, the ratio between, performing a fixed number of iterations
across all isomers and performing a variable number of iterations for each isomer, grows
as a function of the percentile of isomers we wish to have converged. The ratio grows
very slowly initially but naturally picks up as we approach the 100th percentile. The
work by Pedersen12 established a heuristic of 3N on the basis of a curated set of high
symmetry isomers, but we see here that 5N is really more appropriate to account for the
vast majority of isomers. If we set 5N as the number of iterations to perform in a fixed-
iteration isomerspace optimisation scheme, we would have in theory 40% performance
to gain from a variable-iteration scheme. This is the primary motivation for designing a
parallel queue, which we shall see in the next section.
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4.5 Pipeline 2: IsomerQueue Forcefield
As we have seen in the previous chapter, if we were able to somehow replace converged
isomers from a batch with new geometries every O(N) steps, we would be able to
theoretically achieve upwards of 40% better performance than otherwise. Additionally,
it gives a flexibility in choices of optimisation algorithms as we would be able to pick
an algorithm with better average case complexity even if the upper bound complexity
exceeds the current algorithm. Moreover, the flexibility would let us be greedier with
the choice of convergence criteria and maximum number of steps without sacrificing
heavily on performance. This is the motivation that drove us to design a queue system
that would allow us to replace converged isomers with new geometries every O(N)

steps.

4.5.1 Isomer Queue

The queue system is designed to be a FIFO queue which is accessed by many GPU
threads simultaneously through a set of collective operations. The queue is imple-
mented as a circular queue, meaning that rather than constantly resizing the under-
lying array, we simply wrap around the array when we reach the end. This is done by
keeping track of the front and back of the queue, and incrementing/decrementing them
respectively. This is the typical way in which a queue is implemented.

The IsomerQueue defines a set of operations which can be performed on it: refill batch

which refills a target batch with isomers from the queue, push which for a given batch
pushes all the converged and failed isomers onto the queue, overloaded version of push
which inserts a new isomer or entire batch into the queue. The nomenclature is slightly
different from that of usual FIFO implementations, as their purpose is slightly different.

4.5.2 Refill Batch

The refill batch operation is most similar to what might conventionally be called pop

or dequeue operation, but rather than returning a single element from the front of the
queue, it takes the first N elements from the queue and inserts them into the first N
empty slots in a target batch of isomers. To see how this works consider Algorithm 16:

The refill operation works by first checking each slot in the target batch B to see if it
needs to be replaced, this can be done in parallel as each element is independent of
each other. We assign a binary array AQ to indicate whether each element needs to
be replaced. We then compute the exclusive scan (see Section 3.4.2) of a copy of this
array S, which gives us the number of elements which need to be replaced up to the
ith element. The last element of S gives us the total number of elements which need
to be replaced Nr. Now we go through the AQ in parallel and check whether each
element needs to be replaced and whether its corresponding read index S[i] is within
the queue. If both of these conditions are true, we replace the ith element of B with the
mod(f+S[i], c)th element of the queue BQ. When all this is done we need to update the
queue counters f , b and s to reflect the number of elements which have been removed
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from the queue. The source code for this operation is shown in Listing B.6.

Algorithm 16 Refill Batch

1: function REFILL BATCH(B,F ,BQ,f , b, s, c) ▷ Batch, Flags, Queue Batch, front,
back, size, capacity

2: S ▷ size(B)× 1 Scan array for computing indices of empty slots in batch
3: AQ ▷ size(B)× 1 Binary array indicating whether each element must be

replaced.
4: for i ∈ {0, . . . , size(B)− 1} do in lockstep ▷ For loop across the queue
5: AQ[i]← F [i]! = NOT CONV ERGED
6: S[i]← AQ[i] ▷ Store the ith value of AQ in the S
7: end for
8: ex scan(S) ▷ Compute the exclusive scan of S
9: Nr ← S[size(B)− 1] ▷ Last element of S indicates number of requests

10: for i ∈ {0, . . . , size(B)} do in lockstep
11: if AQ[i] = 1 and S[i] < s then ▷ Check that the element is within the queue
12: B[i]← BQ[mod(f + S[i], c)] ▷ Replace the ith element of B
13: end if
14: end for
15: e← s > Nr ▷ Check if queue has more elements than number of requests
16: if e then
17: s← s−Nr ▷ Subtract requests from queue size
18: f ← mod(f +Nr, c) ▷ Increment front by number of requests
19: else
20: s← 0 ▷ Set queue size to 0
21: f ← −1 ▷ Set front to -1
22: b← −1 ▷ Set back to -1
23: end if
24: end function
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4.5.3 Push (Drain Batch)
The push operation is similar to the refill operation, but instead of replacing elements
in a target batch, it pushes all the converged and failed isomers from a source batch
onto the queue. To see how this differs from the refill operation consider the following
pseudocode:

Algorithm 17 Push

1: function PUSH(B,F ,BQ,FQ,f , b, s, c) ▷ Batch, Flags, Queue Batch, Queue Flags,
front, back, size, capacity

2: S ▷ size(B)× 1 Scan array for computing indices of empty slots in batch
3: AQ ▷ size(B)× 1 Binary array indicating whether each element must be

replaced.
4: for i ∈ {0, . . . , size(B)− 1} do in lockstep ▷ For loop across the queue
5: AQ[i]← F [i] = FAILED or CONV ERGED
6: S[i]← AQ[i] ▷ Store the ith value of AQ in the S
7: end for
8: ex scan(S) ▷ Compute the exclusive scan of S
9: Nr ← S[size(B)− 1] ▷ Last element of S indicates number of requests

10: for i ∈ {0, . . . , size(B)} do in lockstep
11: if AQ[i] = 1 then
12: BQ[mod(b+ 1 + S[i], c)]← B[i] ▷ Insert at the back of the queue
13: FQ[mod(b+ 1 + S[i], c)]← F [i] ▷ Producer consumer pattern
14: F [i]← EMPTY
15: end if
16: end for
17: if s = 0 and Nr > 0 then
18: f ← 0 ▷ Set front to 0
19: b← Nr − 1 ▷ Set back to number of requests - 1
20: else
21: b← mod(b+Nr, c) ▷ Increment back by number of requests
22: end if
23: s← s+Nr ▷ Increment queue size by number of requests
24: end function

The push shares the same structure as the refill operation, but there are some key
differences, firstly we do not need to check whether the read index is within the queue
as we are pushing onto the queue. The check for whether an element is to be pushed
is different as well as we only push elements which have converged or failed, we might
want to generalise this in the future such that any condition can be specified. The index
at which we insert is of course different as well, we insert at the back of the queue.
The updates to the queue counters are also different as we need to increment the back
counter by the number of requests Nr rather than the front, the size is simply updated by
adding Nr to it. One might wonder if this operation breaks if the capacity of the queue
is less than Nr + s and the answer is yes, but we account for this by increasing the
capacity of the queue to accommodate at most size(B) new elements, before pushing.
The source code for this operation can be found in Listing B.7.
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4.5.4 Host Side: Push and Pop
The push and pop are both host side operations that are used to insert singular ele-
ments from a queue or remove singular elements Graph, PlanarGraph or Polyhedron

objects. The pop operation is not intended to be used in performance sensitive code,
it exists more as a convenience method for testing or debugging, as it requires a host
side copy of the queue to be updated and a data layout conversion to happen such that
a Polyhedron object can be returned for further analysis in the fullerene program. The
host side overload of the push operation is necessary however as we need to facilitate
the initial data layout conversion of the individual Graph objects constructed in the
fullerene program to be inserted in an IsomerBatch for parallel processing. The source
code for these functions can be found in Listing B.4 and Listing B.5 respectively.

4.5.5 Host Side: Resize
The resize operation is a host side operation which is used to resize the queue. It is
used to increase the capacity of the queue to accommodate more elements. The process
of resizing any container necessarily involves allocation of new memory, copying of the
old data to the new memory and deallocation of the old memory. This is generally
costly, so we want to avoid it as much as possible. Resizing a circular queue container
is somewhat less trivial than resizing for instance a vector container, as we need to
account for the scenario where the back counter is less than the front counter. In this
case we need to copy the elements in the interval [front, capacity− 1] of the underlying
container to the front of the new container [0, capacity−front−1], similarly the [0, back]

interval of the original queue must be copied to [capacity−front, capacity−front+back]

of the new queue. The source code implementation of this operation can be found in
Listing B.3.

4.5.6 The Queue Enabled Design
We have discussed the conceptual data structure of a circular FIFO queue and gone
through the fundamental collective and sequential operations which can be performed
on the queue. We now wish to use this queue in conjunction with the fullerene program
and the lockstep parallel forcefield optimisation previously discussed. Fig. 4.13 shows
the queue enabled design of isomerspace optimisation.

The queue enabled design of isomerspace optimisation uses a mix of sequential and
parallel methods. BuckyGen generates isomers which are then dualized, embedded and
projected onto a sphere, using the pre-existing sequential fullerene program functions.
These initial geometries are then pushed onto a queue Q0. We then proceed to refill
a batch B0 using refill batch, forcefield optimizing this batch 0.5N steps and finally
pushing any finished isomers Push onto a queue Q1. These final three steps are repeated
until the queue Q0 has fewer isomers than the size of the batch size(B0). When not
enough isomers are present in Q0 to start over producing more isomers and generating
their initial geometries.
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Figure 4.13: The queue enabled design of isomerspace optimisation. The green dashed
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are executed in lockstep. The blue lines indicate the flow of control throughout the
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4.6 Performance
In Section 4.4.2 we showed the variance in number of forcefield optimisation steps
required for each isomer, and with it motivated the development of a parallel isomer
queue to enable a faster fullerene optimisation pipeline in theory. In this section we will
benchmark the performance of the forcefield optimisation section of the pipeline and
compare it with the queue enabled design presented in the previous section.

4.6.1 Forcefield Optimisation Performance

In the introduction of this chapter we showed how the forcefield optimisation kernel
is the bottleneck of the fullerene optimisation pipeline, by an order of magnitude. Let
us compare the performance of the sequential forcefield optimisation kernel as imple-
mented in Fortran and Python with the parallel forcefield optimisation kernel as imple-
mented in CUDA.
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Figure 4.14: Forcefield optimisation time per isomer as a function of isomerspace CN

for the sequential Fortran implementation, the sequential Python implementation and
the parallel CUDA implementation. The speedup is shown in the subplot below.

As we can clearly see from Fig. 4.14, the parallel CUDA implementation of the forcefield
optimisation kernel is significantly faster than the sequential Fortran and Python imple-
mentations. The python implementation is somewhat of a ridiculous comparison here,
showing 6 orders of magnitude speedup, as the python implementation was never built
to perform. The python implementation is however mathematically the most similar to
the CUDA implementation. Importantly the CUDA implementation is around 200-600×
faster than the pre-existing Fortran implementation, the kind of speedup that we were
hoping to extract from efficient lockstep parallelisation.
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4.6.2 Queued Forcefield Optimisation Performance

Now we are ready to compare the performance of the CUDA forcefield optimisation
kernel with the queue enabled design presented in Section 4.5.6.
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Figure 4.15: (i) Forcefield optimisation time per isomer as a function of isomerspace
CN for the parallel CUDA implementation and the parallel CUDA implementation using
the IsomerQueue. (ii) Fraction of the runtime spent on IsomerQueue operations. (iii)
Speedup of the IsomerQueue implementation relative to the previous implementation.

As we can see from Fig. 4.15 the queue enabled design, provides only a subtle perfor-
mance gain of approximately 1.15× in the isomerspace range {C70, · · · , C200} over the
previous design. Notably it takes a while for this design to reach its full potential, we
see that prior to C60 the queue enabled design is actually slower than the previous de-
sign. The reasons are twofold, firstly the queue based design relies on the IsomerBatch

always being full of NOT CONVERGED isomers to achieve maximum performance, and for
small isomerspaces this is not the case. Secondly, the queue based design requires some
overhead to manage the queue, and this overhead is not completely negligible, as we
can see from Fig. 4.15 (iii). Fortunately the overhead scales linearly with the number
of isomers in the queue, and so as the isomerspace increases the overhead becomes a
smaller and smaller fraction of the total runtime.

Moreover, the performance of the queue enabled design is directly proportional to the
convergence properties that our optimisation algorithm exhibits, this is perhaps the
greatest strength of the queue enabled design. If we were to alter the optimisation
algorithm or change the convergence criterion we would expect the performance of the
queue enabled design to change accordingly.

We have yet to exhaust all performance optimisation avenues, we will explore that
which remains in the next subsection.
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4.6.3 Fine-Tuning the Forcefield Optimisation Kernel

Per the discussion in chapter 2.1.1 of discrete resource allocation on Nvidia GPUs, we
ought to investigate the impact of restricting register allocation on occupancy and
memory traffic and consequently performance. We know from figure Fig. 3.6 that
only specific intervals of maximum registers per thread need be tested. With this in
mind we proceed to benchmark the forcefield optimisation with the relevant different
-maxrregcount arguments.
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Figure 4.16: (i) Optimisation time per isomer as a function of isomerspace CN shown
for all significant settings of -maxrregcount. (ii) Predicted cumulative hours of opti-
misation required up to optimise all isomers up to a given isomerspace CN , tested for
the same settings of -maxrregcount. Error-bars have been omitted from this plot due
to cluttering concerns.

What we discover from Fig. 4.16 is that the optimal register allocation per thread varies
somewhat with isomerspace. In the interval [C20, C52] 168 registers per thread wins out,
this actually makes perfect sense as this is the domain prior to full saturation of the
GPU (not enough isomers in these isomerspaces to saturate the GPU) and so we would
expect high register counts to outperform. Then for C54 128 registers is ideal, and in
the interval [C56, C64] 96 registers is optimal. Then for [C66, C96] 80 registers is ideal.
For the interval [C98, C128] 64 registers is optimal. Finally, for [C130, C160] 96 registers
is once again ideal. In the penultimate stretch of isomerspaces [C162, C192] 80 registers
outperforms. And Finally for [C194, C200] 72 registers wins. We can see that the optimal
register allocation varies, but this plot does not immediately yield any insight into what
happen when we vary the register count.

In order to perform more detailed analysis of the kernel we must reduce the dimen-
sionality of the problem. We will do this by fixing the isomerspace and varying the
register count. As per figure Fig. 3.6 we note that a block size of 128 threads provides
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maximum occupancy for any given register count. We will therefore fix the block size /
isomerspace to 128 threads.
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Figure 4.17: (i) Hit rate of the L1 and L2 cache as well as occupancy as a function of
register count. (ii) reciprocal arithmetic intensity to each level of the memory hierarchy.
(iii) Fractional time spent segmented into various warp states.

What we see in Fig. 4.17 some expected trends in subplots (i) and (ii), namely that
as the amount of resources allocated to each thread increases the memory traffic to
L1, L2 and most importantly DRAM significantly decreases, and as a result cache hit
rates improve as more of the relevant spills are resident in cache at any time. The fact
that memory traffic to DRAM and L2 drops all the way to 0Bytes/FLOP shows that
the kernel by design can be executed entirely in registers and shared memory, given
enough resources. One might erroneously think that 72 registers per thread is the op-
timal register count looking at subplot (iii), here we see that warps are spending 64%

of the time issuing instructions, but in fact we are only interested in the time spent
issuing compute instructions as the amount of floating point instructions that need to
be issued is an invariant of the problem, thus maximizing the amount of time spent
issuing compute instructions is the only thing which has a 1:1 correlation with time
spent in the kernel. For this purpose we see that 96 registers is ideal, corroborating
our findings in Fig. 4.16. Fig. 4.17 also answers the question of why simply allocating
maximal number of registers is not the best strategy: as the register count exceeds 96
we observe three trends, 1) the fractional time spent in the ’other stalls’ state increases
as things like waiting for arithmetic pipes to clear and waiting for the results of a previ-
ous arithmetic operation become visible as occupancy decreases. 2) More time is spent
waiting for barriers to resolve and finally 3) stalls due to waiting for shared memory
transactions to finish increase, these exist primarily because of unavoidable bank con-
flicts in the memory access pattern. We suggest that all three trends are a display of
the magnification effect, that is all these stalls were present previously, but other issues
were more prominent. To further solidify this point, note that there is a caveat to all
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these performance counter statistics, NVIDIA’s profiling tools used to only increment a
stall counters when the warp scheduler had no eligible warps for a given cycle. Since
compute capability 3.0 however, each stalled warp increments its ’most critical’ stall
reason by one every cycle.2 That is to say we do not actually know for a fact that the
most represented stall reason is actually what causes the warp scheduler to lose out on
issuing instructions. We simply assume it to be the case.

In Fig. 3.13 we actually did not see any significant improvement in performance when
using the warp shuffle based reduction, in fact for isomerspaces [C128, C256] performance
was equal to or worse than tree based no-conflict reduction. What we notice from our
analysis of the kernel performance is however that barrier stalls are a not insignificant
portion of the stall reasons, so we will attempt to reduce the number of barriers by using
a warp shuffle based reduction.
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Figure 4.18: (i) Hit rate of the L1 and L2 cache as well as occupancy as a function of
register count. (ii) reciprocal arithmetic intensity to each level of the memory hierarchy.
(iii) Fractional time spent segmented into various warp states.

The trends are much the same as in Fig. 4.17, but importantly we notice that the com-
pute fractions have all increased by a small amount, for 96 registers it increased from
47.6% to 49.8% a 4.6% relative improvement that we expect translates to a 4.6% rela-
tive improvement in performance. We note that the performance gain appears to have
come from a reduction in barrier stalls and time spent waiting for shared memory trans-
actions, this is extremely reasonable as the warp shuffle based reduction requires fewer
transactions and has fewer barriers.

The combined effort of carefully choosing register count and analysing the effects of
the compound kernel + warp shuffle based reduction, yields some very decent per-
formance gains. The benchmark results are shown in Fig. 4.19. We see that for iso-
merspaces [C20, C52] the new implementation is roughly 20% worse, this is completely
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expected since for small isomerspaces there are not enough isomers to saturate the GPU,
so allocating more resources to each isomers gives obvious benefits. For isomerspaces
C66, · · · , C200 the program is anywhere from 20% to 80% faster than the prior implemen-
tation, this is the main takeaway.
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Figure 4.19: (i) Time per isomer as a function of isomerspace CN comparing the queue
implementation from Fig. 4.15 with one where we employ --maxrregcount 80 and a
warp shuffle based reduction. (ii) Shows speedup of the new implementation over the
prior implementation. (iii) Shows speedup of the new implementation over the Fortran
implementation.

In Fig. 4.19 (iii) we see that forcefield optimisation is now between 750 and 500 times
faster than the Fortran implementation in the isomerspace range {C62, · · · , C200}. In the
next chapter we will investigate the performance of the entire pipeline and opportuni-
ties for parallelisation.
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4.7 Flatness
In the preceding sections we have shown how to parallelise and implement a forcefield
optimisation efficiently, we have shown that the forcefield optimisation yields more
accurate results than the previous state of the art forcefield by Wirz et al.18 (Fig. 4.10).
The forcefield is not perfect however, specifically the forcefield tends to occasionally
produce concave structures or concave sub-structures (regions of the fullerene). In this
section we will explore how flatness can be used to improve the forcefield.

4.7.1 Introduction
In chemistry aromaticity is a property of cyclic or ring-like molecules or regions of
molecules. An aromatic molecule is one where electrons from π-orbitals are shared be-
tween all atoms of the structure. If one considers the analogy of the benzene molecule
(Fig. 4.20) one can conceptually think of the pi-orbital electrons moving around, above
and below, the benzene ring pushing it from either side, consequently giving rise to
planarity.

Figure 4.20: The aromatic benzene molecule. Carbon atoms (gray) with σ-bonds
(black) and free π-orbital bonds (red).12

Pedersen anecdotally measured the planarity of the faces of the C60 − Ih (icosahedral)
fullerene isomer, optimised using DFT methods, finding that pentagons were exactly
planar and that the mean distance to the least square plane was of order 10−6Å for
hexagons.12 It was therefore posited that planarity or flatness, as we will sometimes
call it to distinguish it from graph planarity, might be an important property to consider
when optimising the geometry of a fullerene. Let us now explore how we can compute
the flatness of the faces within a fullerene.

4.7.2 Computing Flatness
The process of computing the flatness of molecular region can be decomposed into a
problem of finding the best plane for a set of points, in our case coordinates of atoms
within a given hexagon / pentagon.

A plane in R3 can be represented by a normal vector n, and a point in the plane x0. If we
perform a coordinate transformation such that x1 + · · · + xd = 0 (d is the face-degree)
then the plane equation reads (Eq. (4.2)):
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X̃n = 0 (4.2)

Where X̃ is a matrix of the transformed coordinates of the atoms in the hexagon/pen-
tagon face. Now for sets with more than three points Eq. (4.2) is an overdetermined
system of equations, and we can find the normal vector n by solving the least squares
problem (Eq. (4.3)).

X̃
T
X̃n = 0 (4.3)

Let A ≡ X̃
T
X̃, now in the case where all the points are within the same plane n is an

eigenvector to A with λ = 0. If the λ has multiplicity 2 then the points are on a line,
and if the multiplicity is 3 then the points are all the same.

In the scenario where they do not lie exactly in a plane the solution n to Eq. (4.3) is the
eigenvector corresponding to the smallest eigenvalue of A, λ0. Thus, λ0 is a measure of
how flat the face is.

Now from this there is a fairly simple way to incorporate flatness into our forcefield
calculation:

Eflat =
Kflat

2

∑
f∈F

λf (4.4)

Where F is the set of faces of the fullerene, and λf is the smallest eigenvalue of the least
squares problem for the face f . Now the gradient derivation is a little more involved,
but we will not go into the details here. The result however can be seen in Eq. (4.5).

∂Eflat

∂xa

= 2Kflat

3∑
i=1

((xa − xci) · nfi)n
T
fi

(4.5)

Where nfi is the normal vector to the face fi and xa is the coordinate of atom a, xci is
the centroid of the face fi. Here the sum is over the neighbouring faces of the atom a:
F1, F2 and F3 in Fig. 4.3. The derivation was carried out by Avery and can be found in
flatness.pdf.3

4.7.3 Implementing Flatness
Now in pseudocode the algorithm for computing the flatness gradient contribution for
each atom becomes (see Algorithm 18).

In Algorithm 18 we are expressing how the flatness gradient is computed for a sin-
gle atom. The function GetFace takes in the graph of the fullerene and the atom and

https://www.nbi.dk/~avery/CARMA/FF/flatness.pdf
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Algorithm 18 Computing Flatness

1: function FLATNESSGRADIENT(X,G)
2: gflat ▷ The flatness gradient
3: for a ∈ {0, . . . , N − 1} do ▷ For each atom
4: gflat[a]← {0, 0, 0} ▷ Initialise the ath atom’s flatness gradient
5: for j ∈ {0, 1, 2} do ▷ For each neighbouring face
6: d,f ← GetFace(G, a,G[a, j]) ▷ Get the jth neighbouring face
7: X ▷ Node coordinates in the face
8: for i ∈ {0, · · · , d− 1} do
9: X[i]←X[f [i]] ▷ Fill in the coordinates

10: end for
11: xc ← (X[f [0]] +X[f [1]] + · · ·+X[F [d− 1]])/d ▷ Compute the centroid
12: X̃ ←X − xc ▷ Transform the coordinates
13: A← X̃

T
X̃ ▷ Compute the least squares matrix

14: λ0 ← SmallestEigenvalue(A) ▷ Find the smallest eigenvalue
15: n← Eigenvector(A, λ0) ▷ Compute the eigenvector corresponding to λ0

16: gflat[a]← gflat[a] + 2Kflat((xa − xc) · n)nT ▷ Compute the gradient
17: end for
18: end for
19: return gflat

20: end function
21:
22: function FLATNESSENERGY(X,G)
23: E ▷ Stores energy contributions from each atom
24: for a ∈ {0, · · · , N − 1} do in lockstep ▷ For each atom
25: Ea ← 0 ▷ Energy of atom a
26: for j ∈ {0, 1, 2} do ▷ For each neighbouring face
27: d,F ← GetFace(G, a,G[a, j]) ▷ Get the jth neighbouring face
28: X ▷ Node coordinates in the face
29: for i ∈ {0, · · · , d− 1} do
30: X[i]←X[F [i]] ▷ Fill in the coordinates
31: end for
32: xc ← (X[F [0]] +X[F [1]] + · · ·+X[F [d− 1]])/d ▷ Compute the centroid
33: X̃ ←X − xc ▷ Transform the coordinates
34: A← X̃

T
X̃ ▷ Compute the least squares matrix

35: λ0 ← SmallestEigenvalue(A) ▷ Find the smallest eigenvalue
36: E[a]← E[a] +

Kflat

2d
λ2
0 ▷ Compute the energy contribution

37: end for
38: end for
39: return reduce(E,+)
40: end function
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the face index and returns the degree of the face and the face itself. The function
SmallestEigenvalue takes in a matrix and returns the smallest eigenvalue of the matrix,
and Eigenvector takes in a matrix and an eigenvalue and returns the corresponding
eigenvector. A custom 3x3 symmetric matrix structure was written (SymMat3 in co-
ord3d.cuh) to store the upper triangular elements of the matrix, and to facilitate eigen-
value and eigenvector computation in closed form.

This was implemented and sparsely benchmarked to find that performance had de-
graded by approximately a factor of 6. We believe this performance degradation is a
result of two issues:

1. Excessive Computation: Every thread needs to compute the least squares matrix
for each face and finally solve the eigenvalue problem. This means that each least
square matrix is computed and solved 5 or 6 times for each atom.

2. Increased Register Pressure: Each thread now has to store all neighbours in its
neighbouring faces, the coordinates of the nodes in the face and the least square
matrix.

This is what motivated us to look for a solution that does not require us to recompute
the least squares matrix for each face.

4.7.4 Optimisation: Solve the Eigenvalue Problem Once Per Face
If we dissect Algorithm 18 we see that we require the following information in order to
compute the flatness gradient with respect to an atom:,

1. The normal vector to each of its neighbouring faces nfi

2. The centroid of each of its neighbouring faces xci

3. Its own position xa

So if we are somehow able to compute (in parallel) and store all the Nf normal vectors
and centroids in shared memory, then the gradient computation becomes far more effi-
cient. This requires a little of preliminary work, since we have so far been working with
the cubic-graph in a vacuum.

Specifically we need to:

• Assign unique indices to each face in the fullerene.

• Store the indices of the neighbouring faces that each atom has.

• For thread i ∈ [0, Nf [ we need to store the cubic-indices of nodes that make up the
ith face.

https://github.com/jamesavery/fullerenes/blob/development/src/cuda/coord3d.cuh
https://github.com/jamesavery/fullerenes/blob/development/src/cuda/coord3d.cuh
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Fortunately this is the dualisation problem all over again, and we have already seen
how to solve that efficiently in parallel in Algorithm 26. We can use the same approach
to solve this problem, so we omit the details here, but know that it occurs during the
construction of the NodeNeighbours structure.

In Algorithm 19 we have implemented these optimisations, F [i, 0], · · · ,F [i, d− 1] is the
node indices belonging to ith face, and G∗[a, j] is the jth neighbouring face of atom a,
not to be confused with the dual graph produced by BuckyGen, where G∗[i, j] is the jth

neighbouring face of the ith face. With the updated design the gradient computation re-
quires us to store normal vectors and centroids in shared memory (N ,Xc) such that it
can be accessed by all threads to compute Eq. (4.5). The energy computation becomes a
simple reduction of the energy contributions from each face. The optimised implemen-
tation of the flatness energy and gradient computation can be found in forcefield.cu.

4.7.5 Performance Impact of Flatness Term
In Algorithm 19 we have seen how it is possible to incorporate the flatness term effi-
ciently into the forcefield calculations without disrupting the existing method. If the
performance penalty for adding a forcefield term is too great then it becomes a lot less
appealing to include it, so let us investigate how the flatness enabled forcefield performs
in comparison with the CUDA Pedersen implementation.
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Figure 4.21: Performance comparison of the CUDA Pedersen forcefield with blue and
without red the flatness term. We measure here the time (per isomer) that it takes to
perform 5N iterations of forcefield optimisation.

We see that the flatness enabled forcefield is about 45% slower than the CUDA Pedersen
implementation in the early isomerspaces and drops steadily towards 30% slower at
C200 we presume that this is a matter of different component scaling. The reductions
in the forcefield scale with O(N log2(N)), whereas the energy and gradient calculations
scale with O(N). Whether we are willing to sacrifice the 30% performance hit for the

https://github.com/jamesavery/fullerenes/blob/development/src/cuda/forcefield.cu
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Algorithm 19 Optimised Flatness Energy and Gradient Computation

function FLATNESSGRADIENT(X,G,G∗,F ) ▷ Coordinates, graph, dual graph, faces
N ,Xc ▷ Normal vectors and centroids
for i ∈ {0, . . . , Nf − 1} do in lockstep ▷ For each face

X ▷ Node coordinates in the face
for j ∈ {0, · · · , d− 1} do

X[j]←X[F [i, j]] ▷ Fill in the coordinates
end for
Xc[i]← (X[F [i, 0]] +X[F [i, 1]] + · · ·+X[F [i, d− 1]])/d ▷ Compute the

centroid
X̃ ←X −Xc[i] ▷ Transform the coordinates
A← X̃

T
X̃ ▷ Compute the least squares matrix

λ0 ← SmallestEigenvalue(A) ▷ Find the smallest eigenvalue
N [i]← Eigenvector(A, λ0) ▷ Find the corresponding eigenvector

end for
gflat ▷ The flatness gradient
for a ∈ {0, . . . , N − 1} do in lockstep ▷ For each atom

gflat[a]← {0, 0, 0} ▷ Initialise the ath atom’s flatness gradient
for j ∈ {0, 1, 2} do ▷ For each neighbouring face

i← G∗[a, j] ▷ Get the face index
gflat[a]← gflat[a] + 2Kflat((xa −Xc[i]) ·N [i])N [i]T ▷ Compute the

gradient
end for

end for
return gflat

end function

function FLATNESSENERGY(X,G,G∗,F ) ▷ Coordinates, graph, dual graph, faces
E ▷ Stores the energy contributions from each face
for i ∈ {0, . . . , Nf − 1} do in lockstep ▷ For each face

X ▷ Node coordinates in the face
for j ∈ {0, · · · , d− 1} do

X[j]←X[F [i, j]] ▷ Fill in the coordinates
end for
Xc[i]← (X[F [i, 0]] +X[F [i, 1]] + · · ·+X[F [i, d− 1]])/d ▷ Compute the

centroid
X̃ ←X −Xc[i] ▷ Transform the coordinates
A← X̃

T
X̃ ▷ Compute the least squares matrix

λ0 ← SmallestEigenvalue(A) ▷ Find the smallest eigenvalue
E[i]← Kflat

2
λ2
0 ▷ Compute the energy

end for
return reduce(E,+)

end function
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Figure 4.22: RRMSE of bond lengths, angles, dihedrals and RMSE of flatness for CUDA
Pedersen forcefield and CUDA flatness forcefield. Each plot contains a histogram of
RRMSE/RMSE values for each isomerspace CN , the probability is the fraction of iso-
mers in an isomerspace that fall within a given RRMSE/RMSE bin. Bins were linearly
distributed from the minimum to the maximum value of the y-axes in each plot.

flatness term is a matter of quality of results versus performance. We should note that
methods with fewer floating point operations exist for computing the eigenvalues of
3x3 symmetric matrices, but the method used here is numerically stable.

4.7.6 Results

With flatness efficiently implemented let us investigate the impact it has on fullerene
internal coordinates, bond-lengths, bond-angles, dihedral-angles and finally flatness.
We use the same methodology as in Section 4.4 to perform the quantitative comparison
of the flatness enabled forcefield with the CUDA Pedersen implementation.
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Note that for flatness the measure is RMSE rather than RRMSE, since flatness is an
absolute value rather than a relative value. The equilibrium parameter for flatness is
0 and as such it is not possible to compute RRMSE. We see that the flatness enabled
forcefield performs better at flatness than the CUDA Pedersen forcefield, and it appears
to do this by relaxing the constraint on angles and especially bond-lengths. Qualitatively
we inspected some of the isomers that improved the most, with regard to RMSE flatness,
these isomers are shown in Fig. 4.23.

What might be visually apparent from Fig. 4.23 is that the flatness enabled forcefield
seems to produce slightly more convex structures by ’inflating’ the molecules. As we
saw from the quantitative analysis this is achieved through slight relaxation of the bond-
lengths.

4.7.7 Discussion

We have seen how the flatness calculation can be integrated efficiently into the CUDA
forcefield calculations, incurring a mere 30% performance deficit. We have also seen
that the flatness enabled forcefield performs better than the CUDA Pedersen forcefield
in terms of flatness, at the cost of slightly higher bond-length and angle deviation.
Since the forcefield calculation relies on parametrization of ideal bond-lengths, angles
et cetera, we ultimately cannot say whether the flatness enabled forcefield is more
accurate than the CUDA Pedersen forcefield. To get a measure of whether it is more
accurate we would have to compare these structures to experimental data, or practically
speaking, DFT optimised structures. This assessment is beyond the scope of this thesis,
but it needs to be investigated in the future.

One caveat to the energy and gradient flatness calculations that has been omitted thus
far, is that the force constant Kflat has not been determined yet, force constants are de-
termined using DFT methods, so this is a task for the future. In out implementation we
have set Kflat = Kbond through lack of a better value. Moreover, the gradient calculation
is currently the gradient w.r.t. λ0, not λ2

0, it has not been decided whether the flatness
term should be harmonic in λ0 or

√
λ0 = σ0 (Singular Value Decomposition of X̃).

4.8 Summary
In Section 4.2 we go through the every component of the forcefield optimisation al-
gorithm, Algorithm 9, Algorithm 12, Algorithm 14 and transform each of these into
algorithms which fit the lockstep paradigm: Algorithm 10, Algorithm 13, Algorithm 15
and Algorithm 11.

In Section 4.3 we outline the data structure hierarchy of the CUDA implementation of
the forcefield optimisation Fig. 4.5 and introduce some key components of the CUD-
A/C++ framework developed in this thesis like the IsomerBatch and the operations
defined on it. Moreover, the LaunchCtx is introduced as a way of controlling the execu-
tion of CUDA kernels. We provide a small example demonstrating how the framework
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C100 C120

C140 C160

C180 C200

Figure 4.23: Select isomers from our random samples of isomerspaces
C100, C120, · · · , C200 that improved the most in terms of RMSE flatness. The CUDA Peder-
sen optimised molecules are drawn in teal with the flatness optimised molecules drawn
in orange. These visualisations were made using the Visual Studio Code extension
Protein Viewer.16 Dashed lines indicate that planarity of a face fell within a default
threshold.

https://marketplace.visualstudio.com/items?itemName=ArianJamasb.protein-viewer
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incorporates into standard C++ code (Listing 4.1).

In Section 4.4 we saw how the CUDA/C++ implementation produces geometries that
are in better agreement with the forcefield parameters than the Wirz et al. implementa-
tion in the fullerene program (Fig. 4.9 and Fig. 4.10). We further performed an analysis
of the convergence statistics of our randomly sampled isomers (Fig. 4.11) we found that
the variation is small, yet if we want to ensure that 99.8% of the isomers converge we
are required to perform 5N iterations Fig. 4.12.

Motivated by the fact that we would potentially be wasting 40% more iterations than
required on average (Fig. 4.12) if we use fixed number of iterations for all isomers, we
introduced a queue based approach in Section 4.5.6. We go through each of its natu-
ral sequential host-side operations, push and pop, as well as the collective operations
refill batch and drain batch. We provide pseudocode that explains how one can
implement these collective operations (Algorithm 16 and Algorithm 17). Finally, we
benchmarked the queue based implementation and saw a modest 15% improvement in
performance (Fig. 4.15). We went on to optimise this further by reducing the number
of registers allocated to each thread and substituting our prior reduction method with a
warp-based reduction method, yielding yet another 20-80% performance improvement
(Fig. 4.19). We compared the optimised CUDA/C++ implementation to the Wirz et al.
implementation in the fullerene program and found that the CUDA/C++ implementa-
tion is 450-700x faster (Fig. 4.19).

In Section 4.7 we introduced the concept of flatness and showed how it can be imple-
mented naively in the CUDA/C++ forcefield (Algorithm 18) but better yet, how we
can optimised on these algorithms to reduce duplicate computation (Algorithm 19).
We analysed the resulting geometries and the RRMSE bond-length, angle, dihedral and
RMSE flatness distributions for randomly sampled isomers (Fig. 4.22). We found that
the flatness enabled forcefield yields more convex structures, owing to the face planarity,
yet sacrifices bond-length and angle accuracy RRMSE. Our performance measurements
showed that the efficient addition of flatness calculations to the CUDA/C++ forcefield
implementation incurs a mere 30% performance deficit (Fig. 4.21) compared to the
anecdotally assessed degradation of 600% for the naive implementation.
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Figure 5.1: Time per Isomer performance for lockstep parallel forcefield optimisation
(⋆), sequential Tutte embedding (◦), sequential spherical projection (◦), sequential du-
alization from dual to cubic representation (◦) and BuckyGen generation of graphs (◦).
The shaded areas represent performance ±2 standard deviations. In (i) the y-axis is
logarithmic to make faster components visible. ⋆ marker is used to indicate a parallel
component, ◦ marker for sequential components.

In the preceding chapter, we have shown that not only is the forcefield massively data
parallel and possible to parallelize, but it is possible to write the implementation in such
a way that 50% of the runtime can be spent on pure floating-point arithmetic Fig. 4.19,
a remarkable result. Furthermore, we have shown, it is possible through the ingenuity
of the IsomerQueue (Section 4.5), an efficient and completely novel, flexible lockstep
parallel queue implementation that fits in the SIMT model, to allow isomers to converge
at different rates (Section 4.4.2). We may now ask ourselves what is next, well if we
plot out the runtime of the entire pipeline from BuckyGen to the forcefield optimisation
after parallelizing the forcefield we arrive at Fig. 5.1. In this figure, we see that the
forcefield is now so fast that it beats components of the pipeline that were previously
trivial.

In this chapter, we will explore the bottlenecks present in the isomerspace optimisation
pipeline Fig. 4.8, systematically investigate each bottleneck, explore to what extent if
at all, it is possible to exploit data parallelism and move them into the lockstep-parallel
paradigm. Just how much faster can we make these processes? This is the question we
will answer here.

5.1 Pipeline 3: Tutte Embedding
Pipeline 1 and its constituents were benchmarked and shown in Fig. 5.1, as discussed
in the previous chapter, the parallel forcefield has enabled us to produce a pipeline that
is between 20 and 13 times faster, in the [C60, C200] range, than Pipeline 0. What is
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immediately apparent through component benchmarks is that Tutte embedding is now
responsible for the vast majority of the runtime. From visual inspection of Fig. 5.1 alone
we can see that it is an order of magnitude slower that all other components at C200.
This is what motivates us to investigate the Tutte embedding process in more detail, just
how parallelisable is it?
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5.1.1 Tutte Embedding

Given a graph G which is planar and 3-connected, there exists a unique crossing-free
embedding with the property that each vertex v ∈ V is at the average position of its
neighbours. Furthermore, the embedding defines an outer face that bounds the re-
maining vertices, this face is a convex polyhedron of degree h. We can represent the
condition that a vertex v be at the centre of its neighbours with two linear equations,
one for the x coordinate and one for the y coordinate. In total for a graph G with N

vertices we get 2(N − h) equations with 2(N − h). Indeed, this system of equations
was shown to be non-degenerate in the 3-connected case. Thus solving this system of
equations yields a unique solution and planar embedding.17

5.1.2 Sequential Tutte Algorithm

Algorithm 20 Sequential Tutte Embedding Algorithm

1: function TUTTEEMBEDDING(G) ▷ Graph to embed
2: X2D ▷ N × 2 array of floats containing 2D coordinates
3: X2D

new ▷ N × 2 next array of floats containing 2D coordinates
4: F0 ← GetFace(G, 0,G[0, 0]) ▷ Get outer face
5: converged← False
6: while not converged do
7: ∆max ← 0 ▷ Store maximum change of solution in iteration
8: for j ← 0 to N − 1 do
9: if not F[j] then

10: bc ← (0, 0) ▷ barycentre
11: d̄ = 0 ▷ Mean distance to neighbours
12: for k ← 0 to 2 do
13: n← G[j, k] ▷ kth neighbour
14: bc ← bc +X2D[n]
15: d̄ = d̄+ norm(X2D[j]−X2D[n])
16: end for
17: bc ← bc/3 ▷ Average position of 3 neighbours
18: d̄← d̄/3 ▷ Average distance to 3 neighbours
19: X2D

new[j]← 0.15 ·X2D[j] + 0.85 · bc ▷ Time step
20: ∆rel ← norm(X2D[j]−X2D

new[j])/d̄
21: ∆max ← max(∆max,∆rel)
22: end if
23: end for
24: X2D ←X2D

new ▷ Update positions
25: if ∆max < tol then ▷ Check if change less than tolerance
26: converged← True
27: end if
28: end while
29: return X2D ▷ Return 2D Embedding
30: end function
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The linear system of equations defined by the Tutte embedding is incredibly sparse
specifically 3

N−h
, and while it can be solved by many more sophisticated solvers we

present here a simple iterative solver.

First, we must define an outer face, we choose the one represented by the arc G[0, 0]→
G[0, 1]. The coordinates of these vertices are fixed, and we proceed to solve the system
by iteratively updating the position of the free vertices. In each iteration, we find the
barycentre bc and the average distance to neighbours d̄ for all vertices. Once we have
found the barycentres we can update the new positions and store them in a temporary
array, X2D

new[j] ← 0.15 ·X2D[j] + 0.85 · bc. The double-buffered nature of having both
X2D

new and X2D is what saves us from potential loop carried dependence. After each
iteration we copy the new positions X2D = X2D

new. We then gauge the solution by
finding the maximum relative change ∆max w.r.t. mean neighbour distance d̄, if this
change is below a certain threshold tol the solution has converged.
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5.1.3 Parallel Tutte Algorithm
Fortunately, iterative solvers expose far better parallelism than direct solvers like Gaus-
sian elimination where each row operation is dependent on the previous. Algorithm 20
then lends itself very well to parallelism, indeed most of the algorithm is completely
data-parallel.

Algorithm 21 Parallel Tutte Embedding Algorithm

1: function TUTTEEMBEDDING(Gin,X
2D
out) ▷ Cubic Graph, Output Embeddings

2: for i← 0 to M − 1 do in lockstep ▷ For each isomer
3: G← Gin[i] ▷ Load the jth graph
4: F0 ← GetFace(G, 0,G[0, 0]) ▷ Define an outer face
5: for it ∈ {0, . . . 10N − 1} do ▷ Perform 10N iterations
6: ∆max ← 0 ▷ Store maximum change of solution in iteration
7: for j ← 0 to N − 1 do in lockstep ▷ For each atom
8: if j /∈ F0 then ▷ If not in outer face
9: bc ← (0, 0) ▷ barycentre

10: d̄ = 0 ▷ Mean distance to neighbours
11: for k ← 0 to 2 do ▷ For each neighbour
12: n← G[j, k] ▷ kth neighbour
13: bc ← bc +X2D[n] ▷ Add neighbour position
14: d̄ = d̄+ norm(X2D[j]−X2D[n]) ▷ Add distance to neighbour

to d̄
15: end for
16: bc ← bc/3 ▷ Mean position of 3 neighbours
17: d̄← d̄/3 ▷ Mean distance to 3 neighbours
18: X2D

new[j]← 0.15X2D[j] + 0.85bc ▷ Time step
19: end if
20: end for
21: for j ← 0 to N − 1 do in lockstep
22: X2D[j]←X2D

new[j] ▷ Update positions
23: end for
24: end for
25: X2D

out[i]←X2D ▷ Store the jth embedding
26: end for
27: end function

The parallel algorithm (Algorithm 21) proceeds exactly like the sequential algorithm
with few exceptions. Each processing element PEi is now responsible for computing
the barycentre bc and mean neighbour distance d̄ of the jth vertex. Each PEi then
computes the update to the jth position X2D

new[j] according to the same formula as per
previous (Algorithm 20). Now, notably there is one caveat to lockstep parallelising
the Tutte embedding: the convergence criterion checks the maximum relative change
∆max of the solution; and while we could compute this in parallel using a reduction
operation, it would break the lockstep parallelism of the algorithm. Therefore, we
perform a sufficient (10N was determined) number of iterations as with the forcefield
optimisation (Algorithm 10).
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5.1.4 Tutte Validation
Algorithm 21 is implemented in CUDA/C++ and found in tutte.cu. We first validate
that our lockstep algorithm indeed produces the desired results. We note that floating-
point maths is not associative and certain instructions exist on GPUs such as the fused-
multiply-add operation, which will produce different yet more accurate results than
performing a multiply operation followed by an addition. For these reasons, some dis-
crepancy in the solutions is to be expected.

To validate the parallel algorithm we produce the first 10000 isomers in the isomerspaces
C20, C24, · · · , C200 using the BuckyGen generator.5 We then compute the Tutte layout us-
ing both the sequential C++ algorithm on a CPU and in parallel using Algorithm 21 on
the GPU. For each isomer we compute the average absolute error and average relative
error using Eq. (5.1) and Eq. (5.2)

ϵ = |vapprox − vtarget| (5.1)

ν =
|vapprox − vtarget|
|vtarget|+ δ

(5.2)

Here δ is 1 when vtarget < 10−8 and 0 otherwise, this leads to an absolute error calcu-
lation when the vtarget is close to zero. The reason being that comparing floating point
numbers that are approximately zero are prone to give large relative errors thus skew-
ing the results. Having computed these relative and absolute errors we bin them in
the logarithmic space from 10−8 to 10−2 and arrive at the probability density maps in
Fig. 5.2.
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Figure 5.2: Probability densities of (a) relative error and (b) absolute error based on the
first 10000 samples generated by BuckyGen from each isomerspace C20, C24, · · · , C200.

https://github.com/jamesavery/fullerenes/blob/development/src/cuda/tutte.cu
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We note some curious stripe-like artefacts in Fig. 5.2. This is not entirely unexpected
as the BuckyGen program produces fullerenes recursively using growth operations from
a smaller subset of irreducible fullerenes.5 This provided the original motivation for
producing a set of randomly sampled isomers from each isomerspace as per Algorithm 1.
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Figure 5.3: Probability densities of (a) relative error and (b) absolute error based
on 10000 randomly sampled isomers, generated using the method described in Algo-
rithm 1, from each isomerspace C20, C24, · · · , C200.

Now performing the same error analysis using random samples we see that figures
Fig. 5.2 and Fig. 5.3 share many of the same features including this double-pronged
shape of the absolute error distributions, confirming that this feature is not a product of
procedurally generated isomers. Instead, we concede that it has to be a general feature
that could warrant future investigation. We suggest here that it could be a feature
of the underlying system of equations that has to be solved. The stripe-like artefacts
have mostly been resolved, and we arrive at a much smoother and more consistent
distribution from sampling the isomerspaces. From Fig. 5.3 we estimate that the vast
majority of isomers exhibit relative error in the domain [10−8, 10−3] with the average at
around 10−6 relative error in the sampled isomerspaces. First and foremost this gives us
confidence in the parallel algorithm working correctly and secondly the discrepancy in
results is well within reason for the purposes of calculating initial geometry.

5.1.5 Performance of the Tutte Embedding
We execute each kernel in sequence (dualize → Tutte → projection → optimize).
This is repeated 10 times to arrive at mean execution time and standard deviations on
the execution time. We compute the optimal batch size using the LaunchDims class
described previously, this method of course minimizes ghost threads, for a given block
size. The kernels are executed on a sample of random isomers picked from the randomly
generated isomers (see Algorithm 1). First we measure the performance of the new
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parallel Tutte embedding kernel relative to the sequential method, we see from Fig. 5.4
that performance is roughly ≈ 1000 times higher for most isomerspaces beyond the
saturation point (C58). This demonstrates that the Tutte embedding algorithm fits very
well in the lockstep parallel paradigm.
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Figure 5.4: (j) Runtime per isomer of ⋆ parallel and ◦ sequential Tutte embedding
methods. The runtime is plotted on a logarithmic scale to allow for both to be visible.
(ii) Speedup of parallel kernel relative to sequential method plotted as a function of the
isomerspace number CN . Shaded area corresponds to ±2σ

As noted in the description of Algorithm 21 we expect the sequential method to scale
with O(N2) and the parallel version to scale with O(log2(N)N2). To test this we plot
the (k) runtime, (ii) runtime per node (N) and (ii) runtime per node squared (N2) for
both the parallel and sequential implementations in Fig. 5.5. And curiously it appears in
Fig. 5.5 (iii) that both parallel and sequential implementations scale slightly worse than
O(N2). We reason that since the number of mathematical operations performed within
a single iteration of solving the Tutte embedding, definitely increases at a linear rate,
it must be the number of iterations required to converge, that increases super-linearly.
Ultimately the assumption that our naive iterative solver converges in O(N) iterations
seems to be false, a more robust iterative solver, like conjugated gradient, could be
implemented to remedy this if deemed necessary.
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Figure 5.5: k Runtime per isomer, ii runtime per node (N), (iii) runtime per node
squared (N2) all plotted against isomerspace CN . (a) Sequential CPU Tutte embedding,
(b) Parallel lockstep GPU Tutte embedding.

5.1.6 Pipeline 2: Performance
Now that the Tutte embedding has been parallelised we are able to write an updated
pipeline which now consists of the following steps:

1. BuckyGen: ◦ Generating isomers using the BuckyGen generator.

2. Dualisation: ◦ Dualising the Graph object to generate the cubic graph.

3. Input Conversion: • (Overhead) Inserting the Graph object into an IsomerBatch.

4. 2D Tutte Embedding: ⋆ (Parallel) Lockstep parallel Tutte embedding of the
IsomerBatch

5. Output Conversion: • (Overhead) Extracting data from the IsomerBatch and
inserting Polyhedron objects into a std::queue<Polyhedron>

6. Projection: ◦ Sequential spherical projection of the Polyhedron objects.

7. Input Conversion: • (Overhead) Inserting Polyhedron objects into an IsomerQueue.

8. FF Optimisation: ⋆ (Parallel) Lockstep parallel queue enabled forcefield optimi-
sation of an IsomerBatch (see Fig. 4.13)

This pipeline was implemented and benchmarked in the script at appendix Listing C.3.
The steps have been labelled with their corresponding markers from Fig. 5.6. Note
how some steps have been compounded into categories: Overhead corresponds to the
insertion and extraction of isomers to and from IsomerBatches
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Figure 5.6: i Pipeline speedup relative to the baseline sequential pipeline. ii fractional
breakdown of runtime contributions from the most impactful remaining components.

Indeed, parallelising the Tutte embedding has yielded roughly 7.5× speedup compared
to pipeline 2 at isomerspace C200 and the total speedup now approaches 115× relative
to the baseline sequential pipeline.

The overhead in Fig. 5.6 consists of layout conversion from Graph object to GPU Layout
and the reverse from GPU Layout to Polyhedron objects and once again from Polyhe-
dron objects to GPU Layout. This overhead is now responsible for approximately 50%

of the total runtime at isomerspace C200. However, the majority of the overhead is tied
down to the fact that we wish to first compute on the CPU, then on the GPU, then CPU,
and finally on the GPU again, if we are able to compute the spherical projection on the
GPU as well there will be no need to convert data layout more than once. This is the
motivation for parallelising the spherical projection algorithm.
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Figure 5.7: Illustrates how the Tutte embedding (a) is projected onto a sphere. The red
outline marks the outer face fO from which the shortest paths are computed. The green
line shows the shortest path from the outer face to the blue node. The position of the
blue node with respect to some reference direction gives the azimuthal angle θ and the
distance from the outer face gives allows us to compute the polar angle ϕ.12

5.2 Pipeline 4: Spherical Projection
To generate a starting geometry we use a relatively computationally inexpensive method
of projecting the 2D embedding found from the Tutte embedding Section 5.1.1, onto a
sphere. Let dv be the topological distance from the outer face to the vertex v and dmax

be the maximum topological distance from the outer face to any vertex. Then we define
the polar angle,

ϕv =
(dv + 1/2)π

dmax + 1
(5.3)

And the azimuthal angle,

θv = tan−1((X2D
v −Cv)x, (X

2D
v −Cv)y) (5.4)

Fig. 5.7 visualizes how such a planar Tutte embedding is projected onto a sphere.
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Algorithm 22 Sequential Spherical Projection Algorithm

1: function SPHERICALPROJECTION(G,X2D,X) ▷ Graph, 2D embedding
2: C ▷ (dmax + 1)× 2 centroids for each depth group
3: D ← MSSP(fO, G) ▷ N × 1 Topological distances from outer face fO
4: V ▷ dmax + 1 lists of vertices at each distance
5: Φ ▷ N × 1 polar angles
6: Θ ▷ N × 1 azimuthal angles
7: for j ← 0 to N do
8: append(V [D[j]], j) ▷ Add jth vertex to the list according to topological

distance
9: end for

10: for d← 0 to dmax do
11: C[d]← (0, 0) ▷ Centroid at depth d
12: for v ∈ V [d] do
13: C[d]← C[d] +X2D[v]/size(V [d]) ▷ Compute centroid
14: end for
15: for v ∈ V [d] do
16: Φ[v]← (d+ 1/2)× π/(dmax + 1)
17: r ←X2D[v]−C[d]
18: Θ[v]← atan2(rx, ry)
19: end for
20: end for
21: for j ∈ {0, . . . N − 1} do
22: x← cos(Θ[j])× sin(Φ[j]) ▷ Conversion from spherical to Cartesian

coordinates
23: y ← sin(Θ[j])× sin(Φ[j])
24: z ← cos(Φ[j])
25: X[j]← (x, y, z)
26: end for
27: cm ← (0, 0, 0) ▷ Center of mass
28: for j ∈ {0, . . . N − 1} do
29: cm ← cm +X[j]/N
30: end for
31: for j ∈ {0, . . . N − 1} do
32: X[j] = X[j]− cm ▷ Move centre of mass to the origin (0, 0, 0)
33: end for
34: r̄ ← 0 ▷ Average distance to neighbouring vertices in the graph
35: for j ∈ {0, . . . N − 1} do
36: for k ← 0 to 2 do
37: w ← G[j, k]
38: r̄ ← r̄ + norm(X[j]−X[w])/(3×N)
39: end for
40: end for
41: for j ∈ {0, . . . N − 1} do
42: X[j] = s×X[j]/r̄ ▷ Normalize and scale spherical projection
43: end for
44: return X
45: end function
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In order to compute spherical coordinates we have to first determine the topological
distance from the source vertices u in the outer face fO to every other vertex v /∈ fO we
need to compute the multiple source shortest paths or MSSPs.

Algorithm 23 Sequential MSSPs Algorithm

1: function MSSPS(F0,G) ▷ Outer face, Cubic graph
2: S ▷ Source vertices maximum size is N
3: G ▷ N × 3 cubic adjacency list
4: Ql ▷ First in first out queue
5: D ▷ N × 1 Topological distance to vertices in the graph
6: for j ∈ {0, . . . N − 1} do
7: D[j]←∞ ▷ Distances are∞ before discovery
8: end for
9: for s ∈ S do

10: D[s]← 0 ▷ The distance to the sources is 0
11: push(Ql, s) ▷ We start at the sources
12: end for
13: while size(Ql) > 0 do
14: v ← pop(Ql)
15: for k ← 0 to 2 do
16: w ← G[v, k]
17: if D[w] =∞ then ▷ This node has not been visited before
18: D[w]←D[v] + 1
19: push(Ql, w)
20: end if
21: end for
22: end while
23: return D ▷ Return topological distances
24: end function

The MSSPs algorithm is implemented using a first in first out or FIFO queue using a
breadth-first search (BFS) approach. We start out by initialising the topological distance
array D to∞, in reality we may choose something like −1 or 231, as a flag for whether
a node has been visited previously. Then set the source distances to 0 and push the
source vertices S (in our particular case the sources are the vertices of the outer face
fO) to the queue Ql. Now we enter the main part of the algorithm. First we let v be
the first element of the queue, which is popped from the front, and continue to check
if its neighbours have been visited before. If a neighbour w has not been seen before
we know that it must be topologically 1 further away than v, and we finally add this
neighbour w to the queue. This way we traverse the nodes with the shortest topological
distance first and since all edges E have a weight of 1 we know that the distances are
indeed the shortest possible distances. This process is repeated until all vertices in the
graph have been visited. The runtime complexity of the sequential MSSPs algorithm is
O(N) as both push and pop operations on a queue are O(1) and these operations are
performed O(N) times.
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Once we have computed the topological distances from fO we are able to compute the
spherical projection. First we fill V sorted by distance such that the jth list V i contains
vertices that are j distance from fO. Now we compute the centroids of all vertices at
each depth Cd, then we compute the azimuthal and polar angles according to equations
Eq. (5.4) and Eq. (5.3). Once the spherical coordinates, assuming a unit sphere r = 1,
have been computed we can trivially convert to Cartesian coordinates. In the final part
of the algorithm, lines 29 - 45, we compute the centre of mass cm by summing up the
coordinates, each with same mass, and dividing by the total number of vertices/atoms
N . We then subtract cm from each coordinate in X, effectively centering the coordinate
system. Finally, we compute the average Cartesian distance between vertices r̄ and
use this in conjunction with a scale factor s to produce a normalized scaling of the
coordinate system. The purpose of this last step is entirely empirical, as it has proven
more robust to separate the vertices by a scale factor of s ≈ 4. Assuming that enough
memory can be reserved for V ahead of time, as memory allocations have do not in
general have guarantees about runtime complexity, we can model it as a constant that
only has to happen once O(1). The MSSPs embedded in the algorithm has complexity
O(N). Furthermore, since the remaining operations in Algorithm 22 are all simple
arithmetic operations or reads/writes from simple arrays and the largest for-loop is N

iterations the total runtime complexity must also be O(N).

5.2.1 Parallel Spherical Projection Algorithm
Unfortunately the otherwise work-efficient linear time complexity MSSPs algorithm im-
plemented sequentially Algorithm 23 is not trivial to parallelise as it makes use of a
queue which is not a structure which lends itself very well to concurrency, as the or-
der of insertions and removals from the queue object is paramount to the function of
the algorithm. For these reasons the algorithm is unchanged, and we only exploit the
isomer-level of parallelism and use a single processing element to compute the MSSPs
per isomer. In order to implement Algorithm 23 in CUDA a sequential queue imple-
mentation was required, as no such queue is provided in CUDA or CUB by default, a
simple cyclical array-based queue was written in CUDA device deque.cu. The queue
takes a pointer to a piece of memory provided by the user and a capacity, it is the users’
responsibility to ensure that no pointer aliasing occurs, this design was chosen as dy-
namic memory allocation is expensive, and we wish to be able to exploit the L1 cache
on NVIDIA hardware by passing a pointer to cache.

https://github.com/jamesavery/fullerenes/blob/development/src/cuda/device_deque.cu
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Algorithm 24 Parallel Spherical Projection Algorithm

1: function SPHERICALPROJECTION(Gin,X
2D
in ,Xout) ▷ Cubic Graphs, 2D

Embeddings, 3D Embeddings
2: for i ∈ {0, . . .M − 1} do in lockstep ▷ For each isomer
3: G← Gin[i] ▷ Input Graph
4: X2D ←X2D

in [i] ▷ Input 2D Embedding
5: D ← MSSPs(F0,G) ▷ N × 1 topological distance from fO to other vertices
6: C ▷ (dmax + 1)× 2 centroids for each depth group
7: Nd ▷ (dmax + 1)× 1 number of vertices at each distance
8: Φ ▷ N × 1 polar angles
9: Θ ▷ N × 1 azimuthal angles

10: R ▷ N × 1 mean neighbour distances
11: for j ← 0 to dmax do in lockstep ▷ For each atom
12: Nd[j]← 0 ▷ Initialise number of vertices at each depth
13: end for
14: for j ← 0 to N − 1 do in lockstep ▷ For each atom
15: atomic add(Nd[D[j]], 1) ▷ Compute number of vertices at each depth
16: end for
17: for j ← 0 to N − 1 do in lockstep ▷ For each atom
18: d←D[j] ▷ Get depth of vertex
19: atomic add(C[d],X2D[j]/Nd[d]) ▷ Compute centroid at depth d
20: end for
21: for j ← 0 to N − 1 do in lockstep ▷ For each atom
22: Φ[j]← (D[j] + 1/2)× π/(dmax + 1) ▷ Compute polar angle using

Eq. (5.3)
23: r ←X2D[j]−C[D[j]] ▷ Compute radial vector
24: Θ[j]← atan2(rx, ry) ▷ Compute azimuthal angle using Eq. (5.4)
25: end for
26: for j ∈ {0, . . . N − 1} do in lockstep ▷ For each atom
27: x← cos(Θ[j])× sin(Φ[j]) ▷ Conversion to Cartesian coordinates
28: y ← sin(Θ[j])× sin(Φ[j])
29: z ← cos(Φ[j])
30: X[j]← (x, y, z) ▷ Store new coordinates
31: end for
32: cm ← reduce(X,+)/N ▷ Center of mass computed using a reduction
33: for j ∈ {0, . . . N − 1} do in lockstep ▷ For each atom
34: X[j] = X[j]− cm ▷ Move centre of mass to the origin (0, 0, 0)
35: end for
36: for j ∈ {0, . . . N − 1} do in lockstep ▷ For each atom
37: R[j]← 0 ▷ Initialise distance array
38: for k ← 0 to 2 do
39: w ← G[j, k]
40: R[j]← R[j] + norm(X[j]−X[w])/(3×N)
41: end for
42: end for
43: r̄ ← reduce(R,+) ▷ Compute mean distance
44: for j ∈ {0, . . . N − 1} do in lockstep
45: X[j] = s(X[j]/r̄) ▷ Normalize and scale spherical projection
46: end for
47: X[i]←X ▷ Store result
48: end for
49: end function
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Algorithm 22 presents further challenges in terms of parallelism in lines 12-19, because
the lists V0, V1 · · ·Vdmax have unknown length and would require some form of dynamic
parallelism to properly parallelise, and while this is in general fine on CPUs, GPUs and
other wide vector-hardware are notoriously ill-suited for this. As the general level of
degree of parallelism is N we elect to stick to this level of parallelism and modify the
problem slightly to fit in the SIMT-paradigm. Instead of sequentially creating and sort-
ing the list of vertices V as in Algorithm 22, we notice that each vertex has a depth
associated with it D[j], now each PE simply has to add its coordinate X[j] to the
centroid it belongs to C[D[j]]. We note that since multiple processing elements will
access the same element in C we must take care to avoid race conditions. While this
could be resolved with reductions they would be of unknown size and inevitably re-
quire dynamic parallelism, the very problem we are trying to solve, therefore we turn
to atomic additions. Technically this avoids race conditions and theoretically this yields
the correct answer since addition is associative, however floating-point addition is not
associative and thus the results are non-deterministic. Whether this is acceptable de-
pends on the use case, however for the purposes of reproducibility of this thesis and the
results within, we have chosen to deal with this using a specific work-order of atomics
through synchronisation primitives. This leads to an unknown runtime complexity for
the MSSPs algorithm, since atomics are implementation specific. The conversion from
spherical coordinates to Cartesian coordinates is entirely data parallel and thus O(N).
Finally, the coordinate transformation and scaling of operations are dealt with using
simple N element wide reductions, the parallel runtime complexity of the reduction
operation is O(N log2(N)). Thus, the total runtime complexity is presumably bounded
by the MSSPs. Further work may be done to rethink the MSSPs algorithm for massively
parallel hardware and parallelisability of the centroid computations. There is however,
as of writing, no cause for concern if this algorithm is used in conjunction with forcefield
optimisation as forcefield optimisation scales with O(N2) and performs a much greater
number of operations per atom.

5.2.2 Validity of Parallel Spherical Projection Algorithm

As with all other floating-point based algorithms, due to the non-associative nature
of operations, some reasonable discrepancy in the results must be tolerated. We use
the same 1000 isomers randomly sampled as discussed in the Tutte-embedding valida-
tionSection 5.1.4. For the validity analysis of the spherical projection we perform first
an accuracy assessment using Tutte embeddings generated using the sequential Algo-
rithm 20 followed by spherical projection on the GPU, and a second analysis starting
from Tutte embeddings generated in parallel using Algorithm 21. We do this to check
the impact on initial geometry of cumulative rounding error.

It becomes clear from Fig. 5.8, the double pronged shape in the absolute density map
propagates from the Tutte-embedding error profile Fig. 5.3. Furthermore, we see that
indeed some increase in relative error can be observed when going from spherical pro-
jection performed on sequentially embeddings (a), to projection performed on GPU
computed embeddings (b). The relative errors are still very reasonable and whether
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Figure 5.8: Relative error probability density maps (top) and absolute error Probability
density maps (bottom). In column (a) The Tutte-embedding is performed on the CPU
and in column (b) the Tutte-embedding is performed on the GPU.

this increased discrepancy from sequential generated geometry, actually results in worse
quality is not clear.

5.2.3 Performance of Parallel Spherical Projection Algorithm
The performance of the parallel spherical projection algorithm is measured in the same
script from Listing C.9 from Fig. 5.9 we see that performance peaks at speedup of ≈ 210

around isomerspace C62 which is sensible as this is just beyond the saturation point,
beyond this parallelism only decreases for the reasons discussed in the description of Al-
gorithm 24. Indeed, performance drops below 100-fold speedup already at isomerspace
C194. While the fully parallelised components of Algorithm 24 may initially have domi-
nated the runtime cost we certainly see the impact of the sequential MSSPs as N → 200.

As with the Tutte embedding, we similarly analyse the scaling behaviour of the spher-
ical projection algorithm by plotting runtime per isomer T/M , node T/(M ∗ N) and
node squared T/(MN2) (Fig. 5.10). The runtime per node of the sequential algorithm
(Fig. 5.10 ii,a) is constant, verifying that runtime complexity is indeed O(N) as ex-
pected. The parallel algorithm on the other hand has much worse scaling as expected,
more detailed performance analysis is required to verify the predicted O(N2) parallel
runtime complexity as the O(log2(N)N) are seemingly still significant at isomerspace
C200.

5.2.4 Pipeline 4: Performance
While the spherical projection algorithm undoubtedly has worse scaling characteristics
than we would like, the projection is itself a very small fraction of the total compu-
tational cost, so it turns out to be rather insignificant. Furthermore, the real purpose
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Figure 5.9: (j) Runtime per isomer of ⋆ parallel and ◦ sequential spherical projection
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Figure 5.11: (j) The speedup of pipeline 4 relative to pipeline 3 (♦) and speedup
relative to the sequential baseline ▲. (ii) Breakdown of fractional runtime comprised
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of implementing a parallel version was to move computation and thus data transfer
and data layout conversion away from the CPU. We explore now a new more parallel
pipeline comprised of the following components:

1. BuckyGen: ◦ (Sequential) Generating isomers using the BuckyGen generator.

2. Dualisation: ◦ (Sequential) Dualising the resulting Graph objects.

3. Input Conversion: • (Overhead) Inserting the Graph object into an IsomerBatch.

4. 2D Tutte Embedding: ⋆ (Parallel) Lockstep parallel Tutte embedding of the
IsomerBatch.

5. Projection: ⋆ (Parallel) Semi parallel spherical projection of the IsomerBatch.

6. Insertion • (Overhead) Inserting the IsomerBatch into an IsomerQueue.

7. FF Optimisation: ⋆ (Parallel) Lockstep parallel queue enabled forcefield optimi-
sation of an IsomerBatch.

Pipeline 4 has been benchmarked using the script in Listing C.4.

Naturally we see that as more of the program becomes parallel and overhead is reduced
the performance improvements are increasingly modest. We find that removing data
layout conversions and construction of polyhedron objects has increased performance
by a factor of 2 − 3× in the isomerspace range from C60 to C200 and a total pipeline
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speedup compared to baseline of 220× for C200. Furthermore, note that the parallel
runtime fraction has increased to about 44% ± 2% for isomerspace C200. In Fig. 5.11
(ii) we see that the most impactful remaining sequential component is the dualisation
algorithm, constituting between 70% and 44% of the total runtime in the range C50 to
C200. For this reason we investigate how to parallelise the dualisation algorithm.
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5.3 Pipeline 5: Dualisation

The dual graph G∗ of a planar graph G is a graph that has a vertex for each face in
G and an edge for every pair of neighbouring faces in G. Dual graphs are not unique
in general but for three-connected graphs they are, therefore G∗ represents the same
information as G and the dual operation is its own inverse (G∗)∗ = G. Therefore, dual
graph could refer to either of two representations, we shall refer to the representation
where each atom is a vertex as the cubic graph G and the dual of this graph as the dual
G∗.

The BuckyGen5 program produces triangulated dual graphs in a canonical clockwise
adjacency list representation. That is graphs are represented by adjacency list G∗ with
G∗[i, j] being the jth neighbouring vertex of the ith vertex. Specifically a planar graph
is said to be a plane triangulation if the boundary of each face contains exactly three
edges. The ordering of neighbouring vertices in G∗ is what affords a particularly trivial
way to identify and number the faces (triangles)in the dual graph. Many algorithms
revolve around the atoms of the fullerene rather than the pentagons and hexagons of
the fullerenes thus an algorithm for computing the cubic graph G from G∗ is required.
Specifically we wish to produce the adjacency list G which has dimensions N × 3 from
the adjacency list G∗ with dimension Nf × 6.

5.3.1 Sequential Algorithm

The first step of the algorithm is to iterate over the vertices u and add all triangles to
an array T that have not yet been added. However since each triangle is made up of 3
vertices it follows that each triangle may be found 3 times, to solve we use a hashmap
D intended to store all arcs Nde and their discovery status. Now we can check if an
arc has been seen before, if it has not been seen we proceed to append the triangle
corresponding to that arc and assign true to all arcs comprised by the triangle.

The second step of the algorithm is to assign numbers to each of the triangles in T

these triangles already have the trivial ordering according to their indices i = [0, N ]

now we wish to be able to identify these numberings based on the vertices the triangle
is made up of. We insert the triangles in a hashmap through a hash combination of
its constituent vertices. Since every triangle can be represented in 6 different ways we
choose the canonical triangle to be the vertices sorted in ascending fashion.

Now we are able to iterate over the triangles in t ∈ T and the arcs in t. We can
identify the jth neighbouring triangle as the one made up of tj → t[mod(j + 1, 3)] →
prev(tj, t[mod(j+1, 3)]) now we look up the triangle number assigned to this triangle and
assign it to the (i, j)th element in the cubic adjacency list G. That is G[i, j] = find(T l, tn),
this then concludes the algorithm.
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Algorithm 25 Sequential Dualisation Algorithm

1: G ▷ Cubic Adjacency List
2: G∗ ▷ Dual Adjacency List
3: D ▷ Hash-map of (arcs, booleans) as (key, value) pair
4: T ▷ Array of triangles
5: T l ▷ Hash-map with of type triangles, integers
6: for u ∈ {0, . . . Nf − 1} do ▷ Nf is the number of faces
7: for i ∈ {0, . . . Degu − 1} do ▷ Degu is the degree of the uth face
8: v ← G[u, i]
9: w ← next on face(u, v)

10: if not find(D, (u, i)) then
11: T .append((u, v, w))
12: D[(u, v)]← true ▷ Set D to true for all arcs involved in the triangle
13: D[(v, w)]← true
14: D[(w, u)]← true
15: end if
16: end for
17: end for
18: for i ∈ {0, . . . N − 1} do
19: t← sort(Ti) ▷ Sort the triangle vertices to get well-defined representation
20: T l[t]← i ▷ Insert the ith triangle with numbering i
21: i← i+ 1
22: end for
23: for i ∈ {0, . . . N − 1} do
24: t← Ti

25: for j ∈ {0, 1, 2} do
26: u← t[j]
27: v ← t[mod(j + 1, 3)]
28: w ← prev(u, v) ▷ Vertices u, v, w of the jth neighbouring triangle
29: tn ← sort((u, v, w))
30: G[i, j]← find(T l, tn) ▷ Number associated with the neighbouring triangle
31: end for
32: end for
33: return G
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Algorithm 26 Parallel Dualisation Algorithm

1: function DUALIZE(G∗
in,Gout) ▷ Dual graphs, Cubic graphs

2: for i← to M − 1 do in lockstep ▷ For each isomer
3: O ▷ Nf × 1 Offset Array
4: T ▷ Nf × 6 Sparse arc to triangle ID matrix
5: R ▷ N × 2 Representative Arcs for each of the triangles in the dual
6: G∗ ← G∗

in[i] ▷ Nf × 6 Dual adjacency list
7: A ▷ Nf × 6 list of arcs that are representative for a triangle, default value is
∞

8: for u ∈ {0, . . . Nf − 1} do in lockstep ▷ For each face
9: na ← 0 ▷ Number of triangles that the uth face represents

10: for j ∈ {0, . . . Degu − 1} do ▷ For each neighbour of the uth face
11: (b, c)← CannonArc(G∗, u,G∗[u, j])
12: if b = u then ▷ If the canonical arc starts with u, then save it
13: A[u, j]← c ▷ Save the canonical arc
14: na ← na + 1 ▷ Increment the number of triangles
15: end if
16: end for
17: O[u] = na ▷ Store na in the offset array
18: end for
19: exclusive scan(O,+) ▷ Prefix sum to compute ordering of arcs
20: for u ∈ {0, . . . Nf − 1} do in lockstep ▷ For each face
21: na ← 0
22: for j ∈ {0, . . . Degu − 1} do
23: if A[u, j] ̸=∞ then
24: T [u, j]← O[u] + na ▷ Triangle ID corresponding to {u→ A[u, j]}
25: na ← na + 1 ▷ Increment #of triangles that the uth face represents
26: k = T [u, j] ▷ Store the kth triangle ID
27: R[k] = (u,A[u, j]) ▷ Store the representative arc for the kth

triangle
28: end if
29: end for
30: end for
31: for i ∈ {0, . . . N − 1} do in lockstep ▷ for each triangle
32: (u, v)← R[i] ▷ Representative arc for the ith triangle
33: w ← next(u, v) ▷ Third vertex of the ith triangle
34: t← (v, u, w) ▷ Vertices comprising the ith triangle
35: for j ∈ {0, 1, 2} do ▷ For each neighbour of the ith triangle
36: Representative arc for jth neighbour
37: (b, c)← CannonArc(G∗, t[j], t[mod(j + 1, 3)])
38: k = ArcIdx(G∗, b, c) ▷ Index of the c in the adjacency list of b
39: G[i, j]← T [b, k] ▷ Store triangle ID of the jth neighbour
40: end for
41: end for
42: Gout[i]← G
43: end for
44: end function
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5.3.2 Parallel Algorithm

There are a number of issues with parallelising the dualisation Algorithm 25, notably
hash-maps are notoriously difficult to implement concurrently and unless they are ab-
solutely essential we should refrain from using them. Therefore, we create two lookup
tables, T of dimension Nf × 6 containing triangle numbers associated with the (u, j)th

arc in G, and R of dimension N × 2 a list of all the arcs which represent a triangle.
The table T serves a similar purpose to the triangle hashmap in Algorithm 25, with
the crucial difference, that we cannot use triangles as keys to access the table. Instead,
we must convert the representative arc (u, v) to (u, j) where G[u, j] = v, the function
ArcIdx() finds this index j given an arc (u, v) by iterating over the neighbours of u. To
fill out these lookup tables in parallel we notice that we can uniquely identify all tri-
angles in parallel by representing each triangle with the arc tj → t[mod(j + 1, 3)] with
the source node t[j] = min(t) being the smallest node in the triangle. Choosing this
representation means that each PEu can now independently ascertain whether they
are the representative node by checking that min(t) = u. As such the parallel duali-
sation algorithm works by having each PEu iterate over ∀j ∈ {0, Degu − 1}G∗[u, j],
then for each neighbour v = G[u, j] check whether the minimum node in the triangle
(u, v, next(u, v)) is u. If this is the case we store the vertex v in the A[u, j], the arc is
implicitly u → A[u, j], so we only need to store the destination node not the source.
We can then keep track of the number of triangles represented by each node na such
that a unique identifier can be associated with each triangle. We assign this to an offset
array O[u] = na, now we can realize unique identifiers by first performing an exclusive
prefix sum on the array yielding a list of ascending offsets. This exclusive prefix sum
is a subset of the parallel primitive scan, which can be computed efficiently in parallel.
With these offsets computed we can finally find the triangle numbers T by having each
PEu iterate over the neighbours of the uth face, if ac[j] is not ∞ we know that it is a
representative arc, and we assign it: T [u, j] = O[u]+na and increment na. Additionally,
we can fill out the k = T [u, j]th element of R[k] = (u,A[u, j]) since we now know the
triangle number and representative arc.

Finally, having filled out the lookup tables, we proceed to have each PEu find a triangle
t = (v, u, w) where (u, v) = Ru and w = next(u, v). From this triangle we can find its
neighbouring triangles by considering the arcs v → u, u → w and w → v, from these
edges we find the canonical arc (b, c) that represents each of the neighbouring triangles.
Iterating over the neighbour arcs j = 0, 1, 2 we can now fill out the cubic adjacency list
G[u, j] = T [b, k] where k = ArcIdx(b, c) and (b, c) = CannonArc(G, t[j], t[mod(j + 1, 3)])

is the canonical arc.

All the array accesses and integer arithmetic involved in Algorithm 26 have constant
runtime complexity, and they are performed at most order N times therefore these
operations have the same runtime complexity (O(N)). The prefix sum however has
slightly worse scaling characteristics at O(N log2(N)). Thus, the parallel dualisation
algorithm has a total runtime complexity of O(N log2(N)).
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Figure 5.12: (i) Time per isomer performance for the sequential (◦) dualisation al-
gorithm and the parallel lockstep implementation (⋆). (ii) Speedup of parallel kernel
relative to sequential method plotted as a function of the isomerspace number CN .
Shaded areas represent ±2σ.

5.3.3 Validation of Dualisation Algorithm

Validation of the dualisation algorithm trivial compared to evaluating the validity of the
floating-point based algorithms, Tutte-embedding Algorithm 21 and spherical projection
Algorithm 24. Since dualisation is an exact algorithm consisting only of associative
integer maths operations we can just check that every single element in G is identical
for the parallel algorithm and the sequential algorithm. We generate the first 10000
isomers in the isomerspaces C20, C24, · · · , C200 and confirm that indeed 100% of the
isomers pass the test.

5.3.4 Performance of Dualisation Algorithm

The sequential algorithm is written in C++ using standard library implementations of
unordered map. We benchmark the performance of the dualisation algorithm across the
isomerspace range C20, C24, · · · , C200 using the script in Listing C.9. The absolute and
comparative performance can be seen in figure Fig. 5.12.

We see that, opting for lookup tables and efficient parallel exclusive scan over a po-
tential concurrent hash-map has yielded an exceedingly efficient GPU based dualisa-
tion algorithm, reaching between 4000× and 6000× speedup in the isomerspace range
[C62, C200] compared with the sequential C++ implementation Algorithm 25. What was
previously computed for C200 in 200µs per isomer can now be done in 40ns per isomer.
As per the discussion about Algorithm 26 we expect O(N log2(N)) runtime complexity.
However, the base 2 logarithm grows very slowly in our range of interest, ⌈log2(20)⌉ = 5,
⌈log2(200)⌉ = 8 and the maximum number of blocks per multiprocessor, 16 for architec-
ture 8.6, using -maxrregcount=40 means that saturation is not reached until blocksize
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Figure 5.13: (i) Runtime per isomer, (ii) runtime per node (N), (iii) runtime per
node squared (N2) all plotted against isomerspace CN . (a) Sequential Dualisation, (b)
Parallel lockstep Dualisation.

64. Furthermore, the prefix sum is so efficient that it does not yet constitute a large
fraction of the dualisation runtime. For these reasons we may not be able to see the log2
factor in the isomerspace range [C20, C200].

We inspect the runtime complexity of the sequential and parallel implementations in
Fig. 5.13, and see that as expected the sequential dualisation algorithm appears to have
linear runtime complexity and the parallel dualisation algorithm, while more complex
due to discrete hardware resource allocation, still appears to scale almost linearly.

5.3.5 Pipeline 5: Performance
With all components except for the BuckyGen generator now running in parallel lockstep
on the GPU we construct a new pipeline consisting of the following steps:

1. BuckyGen: ◦ (Sequential) Generating isomers using the BuckyGen generator.

2. Input Conversion: • (Overhead) Inserting the Graph object into an IsomerBatch.

3. Dualisation: ⋆ (Parallel) Dualising an entire IsomerBatch in lockstep producing.

4. 2D Tutte Embedding: ⋆ (Parallel) Lockstep parallel Tutte embedding of the
IsomerBatch.

5. Projection: ⋆ (Parallel) Semi parallel spherical projection of the IsomerBatch.

6. Insertion: • (Overhead) Inserting the IsomerBatch into an IsomerQueue.

7. FF Optimisation: ⋆ (Parallel) Lockstep parallel queue enabled forcefield optimi-
sation of an IsomerBatch.
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Figure 5.14: (i) Speedup of pipeline 5 relative to the previous pipeline iteration,
pipeline 4 and relative to the baseline pipeline 0. ii Fractional breakdown of the re-
maining runtime components, parallel (⋆), generate and overhead 4. Shaded areas
represent ±2σ.

As with the previous pipelines we benchmark this pipeline using a randomly selected
sample of the randomly sampled isomers from isomerspaces [C20, C200], the script can
be found in Listing C.5.

In pipeline 5 the overhead only refers to the one necessary data layout conversion from
CPU to GPU after generating. We see that pipeline 5 is indeed 3 × −1.8× faster than
pipeline 4 in the range [C50, C200] this is exactly what we expect from trivialising what
previously constituted 44(2)% of the runtime (at C200). Finally, pipeline 5, compared to
the sequential baseline, is now 400× faster, and we see that overhead and generation
of isomers now make up ≈ 16% and the parallel component makes up 84% of the
runtime at isomerspace C200. Furthermore, the parallel components become ever larger
constituents as N grows seeing as all the O(N2) components run in lockstep parallel.
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Figure 5.15: Visualisation of (a) the sequential two-processing-stage pipeline and (b)
a parallel pipeline implementation. Here the different colours signify different batches,
blue pink and green are the first, second and third batches respectively.

5.4 Pipeline 6: Pipeline Parallelism
Pipeline parallelism is the process of breaking a task into a sequence of processing
stages, each of which depends on the one before it. However instead of waiting for
each processing stage to finish before starting the next stage we can simply let each
of the processing stages work on different problems simultaneously. In the context of
pipeline 5, we first generate a full batch of isomers then insert these in an IsomerQueue

after which the GPU performs the dualisation, Tutte embedding, spherical projection
and forcefield optimisation, we then repeat this process until the entire isomerspace is
completed. We realize that we can let the CPU produce isomers from BuckyGen while the
GPU processes isomers present in the IsomerQueue. Fig. 5.15 shows how the sequential
processing stages can be converted into a parallel pipeline.

The pipeline now works as follows: first produce an initial batch of isomers, insert these
into an IsomerQueue, use this queue to refill The pipeline now consists of two separate
processing stages that occur simultaneously. First we need to generate the initial batch,
the blue batch in Fig. 5.15, then insert them into an IsomerQueue, call it Input Queue,
which is used as a simple buffer. After the first set of isomers has been generated we
refill an IsomerBatch with isomers. Now we can start the main loop where we first
spawn a thread using std :: async() which then goes off and generates isomers while the
GPU processing is initialised on the Main Batch, Dualisation → Tutte Embedding →
Spherical Projection → Forcefield Optimisation. Once these steps complete we wait
for the generating thread to complete, in the case that parallel processing surpasses
generation, then refill the Main Batch with new isomers and repeat the loop until
all isomers have been optimised. For our benchmark in Listing C.6 the same 680579
isomers sampled from isomerspace C20, C24, · · · , C200 are used, and the benchmark is
executed 10 times for each isomerspace to account for fluctuations in runtime. The
results are shown in Fig. 5.16.

We see that the pipeline parallelisation has almost perfectly amortised the runtime cost
of generating isomers and converting their data layout, as the pipeline5 to pipeline4
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Figure 5.16: (i) Speedup of pipeline 6 relative to the previous pipeline iteration,
pipeline 5 and relative to the baseline pipeline 0. ii Fractional breakdown of the re-
maining runtime components, parallel (⋆), generate and overhead 6. Shaded areas
represent ±2σ.

speedup closely matches the fractional cost that these components contributed in pipeline
5 (Fig. 5.14), e.g. at isomerspace C200 we expect a speedup of at most 1.16× and indeed
we achieve a speedup of 1.16(2) at this isomerspace, which is as much as we could hope
for.

5.5 Pipeline 7: Multi-GPU Support
Amdahl’s law states that the maximum theoretical speedup of an application is S =

1/(1−P ) where P is the parallel fraction of the program’s runtime. Given the 84% par-
allel fraction of pipeline 6 we can predict that a maximum speedup of S = 1/(1−0.84) =
6.25× is possible. While traditionally this occurs as the number of parallel processing
elements p→∞, however since we are able to hide the sequential component through
pipeline parallelism and assuming that all parallel components scale perfectly it will
ideally only require 84%/16% = 5.25× more parallel hardware to achieve maximum
throughput at isomerspace C200. We now investigate how close to perfect scaling we
are actually able to achieve by adding multi-GPU support.

With the tools developed so far, adding multi-GPU support is actually not very difficult
using multiple LaunchCtx objects, we simply need to have all GPU functions switch to
the device attributed to either a given LaunchCtx using cudaSetDevice(ctx.deivce). Fur-
thermore, IsomerBatch and IsomerQueue now have a device attributed to them such
that copying can be automatically handled using this information and cudaMemcpyPeerAsync()

if we every wish to copy between GPUs. Now we just create two IsomerBatches (pro-
cessing batches for each of the two GPUs), two IsomerQueue objects for insertion as
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in pipeline 7. Importantly we use the LaunchPolicy::ASYNC to enqueue operations on
both GPUs simultaneously from the main thread on the CPU without waiting for each
to finish before enqueueing the other this is shown in listing. We note that we ought to
however avoid this if possible since it just uses PCIE bandwidth as no GPU-GPU inter-
connect is present on the system we are benchmarking on.

Listing 5.1: Excerpt from pipeline 7 benchmark script
115 // Generate new isomers while proces s ing the prev ious batch
116 auto generate handle = std : : async ( std : : launch : : async , genera te i somers ) ;
117 auto T2 = high resolut ion c lock : : now() ;
118 //Main proces s ing
119 isomerspace dual : : dualise (B0 , device0 , LaunchPolicy : : ASYNC) ;
120 isomerspace dual : : dualise (B1 , device1 , LaunchPolicy : : ASYNC) ;
121 isomerspace tutte : : tu t te layout (B0 , 10000000, device0 , LaunchPolicy : : ASYNC) ;
122 isomerspace tutte : : tu t te layout (B1 , 10000000, device1 , LaunchPolicy : : ASYNC) ;
123 isomerspace X0 : : zero order geometry (B0 , 4 .0 , device0 , LaunchPolicy : : ASYNC) ;
124 isomerspace X0 : : zero order geometry (B1 , 4 .0 , device1 , LaunchPolicy : : ASYNC) ;
125 i somerspace forcef ie ld : : optimise<PEDERSEN>(B0 ,N*5 ,N*5 , device0 , LaunchPolicy : : ASYNC) ;
126 i somerspace forcef ie ld : : optimise<PEDERSEN>(B1 ,N*5 ,N*5 , device1 , LaunchPolicy : : ASYNC) ;
127 // Output f i n i s h e d isomers
128 Out Q0 . push(B0 , device0 , LaunchPolicy : : ASYNC) ;
129 Out Q1 . push(B1 , device1 , LaunchPolicy : : ASYNC) ;
130 device0 . wait () ; device1 . wait () ;
131 auto T3 = high resolut ion c lock : : now() ; T par [ l ] += ( T3 − T2) ;
132 // Wait f o r generat ion to f i n i s h , i f t h i s process i s f a s t e r than GPU operat ions , the

c a l l r e tu rns immediately .
133 generate handle . wait () ;
134 // R e f i l l batches with new isomers
135 In Q0 . r e f i l l b a t c h (B0 , device0 , LaunchPolicy : : ASYNC) ;
136 In Q1 . r e f i l l b a t c h (B1 , device1 , LaunchPolicy : : ASYNC) ;
137 device0 . wait () ; device1 . wait () ;
138 auto T4 = high resolut ion c lock : : now() ; T io [ l ] += (T4 − T3) ;
139
140 }

Listing 5.1 demonstrates the use of different LaunchCtx objects to achieve concur-
rent multi-GPU utilisation, we benchmark this script using the same randomly sam-
pled isomers as previously, but we synthetically insert each isomer in two different
IsomerQueue, one for each GPU and process these as shown in the listing. Benchmark-
ing isomerspaces C20, C24, · · · , C200 yields the results shown in Fig. 5.16. Seeing as the
parallel component of the program previously constituted very close to 100% and the
generation of isomers is still faster than the parallel components it is perhaps no sur-
prise that we are able to reach close to perfect speedup i.e. doubling the amount of
parallel processing power using 2 RTX 3080 GPUs has yielded double the performance
as evidenced by the benchmark. We reach a performance 900× higher than that of the
sequential pipeline and minimal overhead as both, data layout conversion and isomer
generation can be hidden by pipeline parallelism.

5.6 Summary
In Section 5.1 we investigate the new bottleneck in the program Tutte embedding, which
became visible after the massive speedup gained in the forcefield optimisation. We
showed how the implementation of Tutte embedding in the Fullerene program was al-
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ready quite well suited for the lockstep parallel paradigm, since many of its components
were readily data-parallel. We provided a fully lockstep-parallel method for Tutte em-
bedding in Algorithm 21. Gauging the runtime complexity we noted slightly worse than
quadratic scaling Fig. 5.5 presumably due to the use of a primitive solver. The CUD-
A/C++ implementation was nonetheless quite a bit faster than the sequential variant
( 1000x speedup). We evaluated the validity of our Tutte embedding by comparing the
results directly to the sequential C++ implementation, we found that the vast majority
of isomers had mean relative error of less than 10−5 (Fig. 5.3).

Having optimised the Tutte embedding the next bottleneck surfaced, spherical projec-
tion and the I/O associated with layout conversion (Fig. 5.6). We realised that the
spherical projection algorithm present in the Fullerene program was not well suited for
the lockstep parallel paradigm, since it employed a BFS traversal of the graph which
requires dynamic parallelism at best. We therefore implemented lockstep parallelism,
where immediately possible, and left the BFS traversal to be executed sequentially by a
single GPU thread per isomer. The resulting spherical projection algorithm is shown in
Algorithm 24 and was benchmarked to be 100-200x faster than the sequential version
(Fig. 5.9). The validity of the spherical projection was verified by comparing the results
to the sequential C++ implementation the same way the Tutte embedding was verified
(Fig. 5.8).

Yet again, the removal of one bottleneck revealed a new one, this time the final sequen-
tial component (apart from the BuckyGen generator), the dualisation algorithm. We first
go through the sequential implementation of the dualisation algorithm in Algorithm 25
we discover multiple problematic components, but first and foremost the use hash-maps
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to store and access triangles and arcs. In Algorithm 26 we showed how we can circum-
vent the use of hash-maps entirely, instead using static arrays index juggling and an
exclusive scan to achieve a massive 4000-6000x speedup (Fig. 5.12). The validation
of the dualisation algorithm is much more direct, since the result is an adjacency-list
consisting entirely of integers the results have to match the sequential implementation
exactly, and they do.

At this point we had arrived at a total pipeline speedup of 350-500x, we saw that
BuckyGen had started taking up a large fraction of the total runtime. This motivated us
to pursue pipeline parallelism to overlap the generation of one batch of isomers, with
the optimisation of another. Fig. 5.16 shows the results of this endeavour, we were able
to achieve a total pipeline speedup of 450-700x. Finally, we explore the possibility
of using multiple GPUs to further increase the speedup, we find that we can achieve
a total speedup of 950-1400x (Fig. 5.17). A remarkable achievement considering the
sequential implementation was written in Fortran and C++, both languages with strong
performance characteristics.
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6.1 Future Work
Production of isomer geometries is in itself interesting, but it serves a greater purpose,
one of the main objectives in the CARMA project is to approximate the molecular prop-
erties of these isomers. Many of these properties require the Hessian to be calculated.
Granted the speed of the pipeline presented in this thesis, the computation of the Hes-
sian would need to be implemented in a comparatively efficient manner. As we alluded
to in Section 4.2.2, the Hessian is a sparse matrix for our system, e.g. the bond-gradient
∇a(Rab) depends only on the atoms a and b, therefore the hessian w.r.t to this term only
has non-zero elements at the matrix-elements (a, a), (a, b). Preliminary work revealed
that a total of 27 distinct analytical tensor expressions make up the Hessian for the
current forcefield expression by Pedersen.12 We have attempted to derive all of these
expressions, but errors were made in the process due to the non-commutative nature of
several tensor-tensor operations and ambiguous/mis- representation of tensor calculus
on Wikipedia. Therefore, most of the derivations have to be redone in the future.

The flatness term warrants further investigation and comparison, of the acquired ge-
ometries to DFT calculations. This is necessary to evaluate the quality of the geometries
and to extract accurate force-constants.

The Tutte-embedding (Algorithm 21) and spherical projection (Algorithm 24) algo-
rithms presented in this work provide the efficient basis for generating initial geome-
tries for the forcefield optimisation. Convergence of the forcefield relies heavily on the
quality of these geometries therefore the Tutte embedding plus spherical projection is
a candidate for substitution in the future. Indeed, more robust prototypes for produc-
ing accurate initial geometries have already been proposed by Avery. Work is required
to adapt these to a node-parallelisable regime such that they can be implemented ef-
ficiently in lockstep parallel and compete computationally with the implementation in
this thesis.

6.2 Conclusion
In this thesis we have developed and shown algorithms for lockstep parallelisation of
forcefield optimisation for entire isomerspaces. In Section 3.4 we have shown algo-
rithms and implementations of parallel primitives, scan and reduction, we saw how
proper memory access pattern (Fig. 3.12) is critical to performance, a simple inter-
change of a slightly faster reduction method in the forcefield yielded 5% performance
improvement (Fig. 4.18).

In Section 4.2 we showcased how a forcefield optimisation could be carried out in
lockstep parallel, outperforming the previous state-of-the-art fullerene forcefield opti-
misation (Wirz et al.18) by a factor of 500-750x (Fig. 4.19).

In Section 4.5.6 we were able to develop a lockstep parallel approach to running vari-
able number of iterations per isomer, by developing an efficient parallel queue (Fig. 4.13)
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allowing us to extract an additional 15% performance (Fig. 4.15).

In Section 4.7.5 we demonstrated how we were able to add a flatness term to the
harmonic energy expression and implement it in the lockstep-parallel forcefield without
serious performance degradation. The flatness term, on internal-coordinate analysis,
appears to trade bond-length deviation for face flatness. Visual inspection (Fig. 4.23)
of select isomers found that the flatness term appears to improve convexity of isomers,
this is desirable as fullerenes are known to be convex.

In Section 5.1 we showed how we were able to implement a Tutte embedding algorithm
in lockstep parallel, achieving a speedup over the sequential C++ implementation from
the Fullerene program, of 1000x (Fig. 5.4). Moreover, Section 5.2 saw a not fully parallel
implementation of the spherical projection algorithm, achieving a speedup over the
sequential C++ implementation from the Fullerene program, of 100x (Fig. 5.9).

In Section 5.3 we showed an extremely efficient dualisation algorithm which was the
last piece of the pipeline-puzzle required to get proper speedup of the entire pipeline.
The dualisation algorithm was implemented in a lockstep parallel way that requires zero
hashmaps, thanks to clever indexing and efficient parallel exclusive scan primitives.
Thus achieving a staggering speedup over the sequential C++ implementation from
the Fullerene program, of 4000-6000x (Fig. 5.12).

In Section 5.4 we showed that with all the components in the pipeline parallelised we
were able to achieve a total program speedup over the sequential pipeline, of 350-500x
(Fig. 5.14). At this point we noted the BuckyGen generator had started to constitute a
significant portion of the total runtime, we were able to hide this runtime by overlapping
the BuckyGen and the lockstep parallel forcefield optimisation (pipeline parallelism)
using asynchronous execution. This allowed us to achieve a total speedup over the
sequential pipeline, of 450-700x (Fig. 5.16). Finally, we were able to demonstrate
essentially perfect scaling from single to dual GPU achieving a total speedup over the
sequential pipeline, of 950-1400x (Fig. 5.17).

Now, the main research question of this thesis was: Can we use a lockstep parallel al-
gorithm to exploit massively parallel hardware enabling exhaustive exploration of full iso-
merspaces?. The final pipeline allows us exhaustively produce and optimise the entire
C200 isomerspace in a projected time of 6 hours on two GPUs, making what was pre-
viously completely impractical (247 days), possible within the span of an afternoon.
Thus, the answer to the question is a resounding yes.
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cpuinfo.txt

processor : 0

vendor_id : AuthenticAMD

cpu family : 23

model : 1

model name : AMD Ryzen Threadripper 1950X 16-Core Processor

stepping : 1

microcode : 0x8001137

cpu MHz : 2200.000

cache size : 512 KB

physical id : 0

siblings : 32

core id : 0

cpu cores : 16

apicid : 0

initial apicid : 0

fpu : yes

fpu_exception : yes

cpuid level : 13

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev

bugs : sysret_ss_attrs null_seg spectre_v1 spectre_v2 spec_store_bypass retbleed

bogomips : 6799.32

TLB size : 2560 4K pages

clflush size : 64

cache_alignment : 64

address sizes : 43 bits physical, 48 bits virtual

power management: ts ttp tm hwpstate eff_freq_ro [13] [14]

meminfo.txt

Memory Device

Array Handle: 0x000F

Error Information Handle: 0x0016

Total Width: 64 bits

Data Width: 64 bits

Size: 16 GB

Form Factor: DIMM

Set: None

Locator: DIMM 0

Bank Locator: P0 CHANNEL A

Type: DDR4

Type Detail: Synchronous Unbuffered Unregistered

Speed: 2933 MT/s

Manufacturer: Unknown

Serial Number: 00000000

Asset Tag: Not Specified

Part Number: F4-3200C14-16GTZR

Rank: 2

Configured Memory Speed: 1467 MT/s

Minimum Voltage: 1.2 V

Maximum Voltage: 1.2 V

Configured Voltage: 1.2 V
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free.txt

total used free shared buff/cache available

Mem: 125Gi 13Gi 7.7Gi 256Mi 104Gi 110Gi

Swap: 8.0Gi 877Mi 7.1Gi

device info.txt

Device Number: 0

Device name: NVIDIA GeForce RTX 3080

Memory Clock Rate KHz: 9501000

Clock Rate KHz: 1740000

Memory Bus Width bits: 320

Peak Memory Bandwidth GB/s: 760.080000

L2 Cache Size bytes: 5242880

Total Global Memory bytes: 1914765312

Shared Memory Per Block bytes: 49152

Registers Per Block: 65536

Registers Per Multiprocessor: 65536

Warp Size: 32

Cooperative Launch Support: 1

Concurrent Kernels Support: 1

Max Threads Per Block: 1024

Max Threads Per Multiprocessor: 1536

Max Threads Per Dimension: 1024, 1024, 64

Max Grid Size: 2147483647, 65535, 65535

Reserved Shared Memory Per Block bytes: 49152

Single to Double Precision Performance Ratio: 32

Compute Capability: 8.6

Number of Multiprocessors: 68

Device Number: 1

Device name: NVIDIA GeForce RTX 3080

Memory Clock Rate KHz: 9501000

Clock Rate KHz: 1740000

Memory Bus Width bits: 320

Peak Memory Bandwidth GB/s: 760.080000

L2 Cache Size bytes: 5242880

Total Global Memory bytes: 1911488512

Shared Memory Per Block bytes: 49152

Registers Per Block: 65536

Registers Per Multiprocessor: 65536

Warp Size: 32

Cooperative Launch Support: 1

Concurrent Kernels Support: 1

Max Threads Per Block: 1024

Max Threads Per Multiprocessor: 1536

Max Threads Per Dimension: 1024, 1024, 64

Max Grid Size: 2147483647, 65535, 65535

Reserved Shared Memory Per Block bytes: 49152

Single to Double Precision Performance Ratio: 32

Compute Capability: 8.6

Number of Multiprocessors: 68
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A.1 Compilers
For this thesis we used the following compilers to compile Fortran, C++ and CUDA
code respectively:

• gfortran 9.5.0

• g++ 11.3.0

• nvcc 11.8.89
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Listing B.1: Graph Utility
d e v i c e device node t dedge ix ( const device node t u , const device node t v ) const{

f o r ( uint8 t j = 0 ; j ¡ 3 ; j++)
i f ( cub ic ne ighbours [u*3 + j ] == v ) re turn j ;

asser t ( f a l s e ) ;
re turn 0 ; // Make compi ler happy

}
d e v i c e device node t next ( const device node t u , const device node t v ) const{

device node t j = dedge ix (u , v ) ;
re turn cub ic ne ighbours [u*3 + (( j +1)%3)] ;

}
d e v i c e device node t prev ( const device node t u , const device node t v ) const{

device node t j = dedge ix (u , v ) ;
re turn cub ic ne ighbours [u*3 + (( j +2)%3)] ;

}
d e v i c e device node t next on face ( const device node t u , const device node t v ) const{

re turn prev (v , u) ;
}

d e v i c e device node t prev on face ( const device node t u , const device node t v ) const{
re turn next (v , u) ;

}
d e v i c e device node t face s i ze ( device node t u , device node t v ) const{

device node t d = 1 ;
device node t u0 = u ;
while ( v != u0)
{

device node t w = v ;
v = next on face (u , v ) ;
u = w;
d++;

}
re turn d ;

}
d e v i c e u int8 t get face or iented ( device node t u , device node t v , device node t * f ) const{

constexpr i n t f max = 6 ;
i n t i = 0 ;

f [0] = u ;
while ( v !=f [0] && i ¡ f max )
{

i++;
device node t w = next on face (u , v ) ;
f [ i ] = v ;
u = v ;
v = w;

}
i f ( i>=f max ) {asser t ( f a l s e ) ; re turn 0 ; } // Compiler wants a re turn statement
e l s e re turn i + 1 ;

}
d e v i c e device node2 get face representat ion ( device node t u , device node t v ) const{

constexpr i n t f max =6 ;
i n t i = 0 ;
auto s t a r t node = u ;
device node2 min edge = {u , v} ;
while ( v != s ta r t node && i ¡ f max ){

device node t w = next on face (u , v ) ;
u = v ; v = w;
i f (u ¡ min edge . x ) min edge = {u , v} ;

++i ;
}
// a s s e r t ( nex t on face (u , v ) == s ta r t node ) ;
re turn min edge ;

}
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Listing B.2: Constants
s t r u c t Constants{

device coord3d f bond ;
device coord3d f i n n e r a n g l e ;
device coord3d f i n n e r d i h e d r a l ;
device coord3d f ou te r ang le m ;
device coord3d f o u t e r a n g l e p ;
device coord3d f o u t e r d i h e d r a l ;
dev i ce rea l t f f l a t = 1e2 ;

device coord3d r0 ;
device coord3d angle0 ;
device coord3d outer angle m0 ;
device coord3d outer ang le p0 ;
device coord3d inner d ih0 ;
device coord3d oute r d ih0 a ;
device coord3d outer dih0 m ;
device coord3d outer d ih0 p ;
INLINE Constants ( const IsomerBatch& G, const uint32 t i somer idx ){

// Set p o in t e r s to s t a r t of f u l l e r e n e .
const DeviceCubicGraph FG(&G. cub ic ne ighbours [ i somer idx *blockDim . x* 3]) ;
device node3 cub ic ne ighbours = {FG . cub ic ne ighbours [ threadIdx . x* 3] ,

FG . cub ic ne ighbours [ threadIdx . x*3 + 1] ,
FG . cub ic ne ighbours [ threadIdx . x*3 + 2]} ;

f o r ( uint8 t j = 0 ; j ¡ 3 ; j++) {
// Faces to the r i g h t of a r c s ab , ac and ad .

uint8 t F1 = FG . f a ce s i ze ( threadIdx . x , d get ( cubic ne ighbours , j ) ) − 5 ;
uint8 t F2 = FG . f a ce s i ze ( threadIdx . x , d get ( cubic ne ighbours , ( j +1)%3)) −5;
uint8 t F3 = FG . f a ce s i ze ( threadIdx . x , d get ( cubic ne ighbours , ( j +2)%3)) −5;

//The fa ce s to the r i g h t of the a r c s ab , bm and bp in no p a r t i c u l a r order , from t h i s we can deduce F4 .
uint8 t neighbour F1 = FG . f a ce s i ze ( d get ( cubic ne ighbours , j ) ,

FG . cub ic ne ighbours [ d get ( cubic ne ighbours , j ) *3] ) −5;
uint8 t neighbour F2 = FG . f a ce s i ze ( d get ( cubic ne ighbours , j ) ,

FG . cub ic ne ighbours [ d get ( cubic ne ighbours , j ) *3 + 1] ) −5;
uint8 t neighbour F3 = FG . f a ce s i ze ( d get ( cubic ne ighbours , j ) ,

FG . cub ic ne ighbours [ d get ( cubic ne ighbours , j ) *3 + 2] ) −5;

uint8 t F4 = neighbour F1 + neighbour F2 + neighbour F3 − F1 − F3 ;
d set ( r0 , j , op t imal bond lengths [F3 + F1 ]) ;
d set ( angle0 , j , op t ima l co r ne r co s an g l e s [F1 ]) ;
d set ( inner dih0 , j , o p t im a l d i h c o s a n g l e s [ face index (F1 , F2 , F3 ) ] ) ;
d set ( outer angle m0 , j , o p t im a l co r ne r co s an g l e s [F3 ]) ;
d set ( outer angle p0 , j , op t ima l co r ne r co s an g l e s [F1 ]) ;
d set ( outer d ih0 a , j , o p t i m a l d i h c o s a n g l e s [ face index (F3 , F4 , F1 ) ] ) ;
d set ( outer dih0 m , j , o p t i m a l d i h c o s a n g l e s [ face index (F4 , F1 , F3 ) ] ) ;
d set ( outer d ih0 p , j , o p t i m a l d i h c o s a n g l e s [ face index (F1 , F3 , F4 ) ] ) ;

//Load fo r ce cons tan t s from neighbouring face in format ion .
d set ( f bond , j , bond forces [F3 + F1 ]) ;
d set ( f i n n e r a n g l e , j , a n g l e f o r c e s [F1 ]) ;
d set ( f i n n e r d i h e d r a l , j , d i h f o r c e s [F1 + F2 + F3 ]) ;
d set ( f outer ang le m , j , a n g l e f o r c e s [F3 ]) ;
d set ( f ou t e r ang l e p , j , a n g l e f o r c e s [F1 ]) ;
d set ( f o u t e r d i h e d r a l , j , d i h f o r c e s [F1 + F3 + F4 ]) ;
#end i f

}
}

} ;
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Listing B.3: Queue Resizing
cudaError t IsomerQueue :: res ize ( const s i z e t new capacity , cons t LaunchCtx& ctx , const LaunchPolicy p o l i c y ){

cudaSetDevice ( m device ) ;
//Lambda func t ion because i t i s only c a l l e d in here and avoids d u p l i c a t i o n of code because these t rans fo rmat ions need to be appl ied to both host and dev ice batches .
auto queue re s i ze ba t ch = [&]( IsomerBatch& batch ){

// Const ruct a tempory batch : a l l o c a t e s the needed amount of memory .
IsomerBatch temp batch = IsomerBatch ( batch . n atoms , new capacity , batch . bu f f e r t ype , batch . g e t d e v i c e i d ( ) ) ;
//Copy content s of old batch in to newly a l l o c a t e d memory .
cuda io :: copy ( temp batch , batch , ctx , po l i cy ,

{0 , batch . i somer capac i t y − * props . f r o n t } , {* props . f ront , batch . i somer capac i t y }) ;
cuda io :: copy ( temp batch , batch , ctx , po l i cy ,

{batch . i somer capac i ty− * props . f ront , batch . i somer capac i t y − * props . f r o n t + * props . back } ,
{0 ,* props . back }) ;

f o r ( i n t i = 0 ; i ¡ batch . p o in t e r s . s ize () ; i++)
{

void * temp ptr = * get ¡1>(batch . po i n t e r s [ i ] ) ;
printLastCudaError ( ” Free f a i l e d ” ) ;
// Reass ign p o i n t e r s of the input batch , to the new memory
* get ¡1>(batch . po i n t e r s [ i ] ) = * get ¡1>(temp batch . p o in t e r s [ i ] ) ;
// Ass ign old p o i n t e r s to temporary ob jec t , l e t d e s t r u c t o r take care of cleanup .
* get ¡1>(temp batch . p o in t e r s [ i ] ) = temp ptr ;

}
batch . i somer capac i t y = temp batch . i somer capac i t y ;

} ;
i f ( * props . back >= * props . f r o n t ){

cuda io :: res ize ( host batch , new capacity , ctx , p o l i c y ) ;
cuda io :: res ize ( dev ice batch , new capacity , ctx , p o l i c y ) ;

} e l s e {
queue re s i ze ba t ch ( hos t ba tch ) ;
queue re s i ze ba t ch ( dev i ce ba tch ) ;
* props . f r o n t = 0 ;
* props . back = * props . s ize − 1 ;

}
* props . capacity = new capaci ty ;
i s ho s t upda ted = true ;
i s dev i c e upda ted = true ;
re turn cudaGetLastError () ;

}
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Listing B.4: Queue Pop
Polyhedron IsomerQueue :: pop( const LaunchCtx& ctx , const LaunchPolicy p o l i c y ){

cudaSetDevice ( m device ) ;
t o h o s t ( c tx ) ;
i f ( * props . s ize == 0) throw std :: run t ime er ror ( ”Queue i s empty ” ) ;
neighbours t out neighbours (N, std :: vector ¡ in t >(3)) ;
f o r ( i n t i = 0 ; i ¡ N; i++){

out neighbours [ i ][0] = hos t ba tch . cub ic ne ighbours [( * props . f r o n t ) *N*3 + i *3 + 0] ;
out neighbours [ i ][1] = hos t ba tch . cub ic ne ighbours [( * props . f r o n t ) *N*3 + i *3 + 1] ;
out neighbours [ i ][2] = hos t ba tch . cub ic ne ighbours [( * props . f r o n t ) *N*3 + i *3 + 2] ;

}
std :: vector ¡ coord3d> out coords (N) ;
f o r ( i n t i = 0 ; i ¡ N; i++){

out coords [ i ][0] = hos t ba tch . X[( * props . f r o n t ) *N*3 + i *3 + 0] ;
out coords [ i ][1] = hos t ba tch . X[( * props . f r o n t ) *N*3 + i *3 + 1] ;
out coords [ i ][2] = hos t ba tch . X[( * props . f r o n t ) *N*3 + i *3 + 2] ;

}
* props . f r o n t = ( * props . f r o n t + 1) % * props . capacity ;
* props . s ize −= 1 ;
re turn Polyhedron (Graph( out neighbours , t rue ) , out coords ) ;

}
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Listing B.5: Single Isomer Push
cudaError t IsomerQueue :: i n s e r t ( const Graph& in , const s i z e t ID , const LaunchCtx& ctx , const LaunchPolicy p o l i c y ){

cudaSetDevice ( m device ) ;
// Before i n s e r t i n g a new isomer , make sure tha t the host batch i s up to date with the dev ice ve r s ion .
t o h o s t ( c tx ) ;

// I f the queue i s f u l l , double the s i ze , same beahvior as dynamical ly a l l o c a t e d con ta ine r s in the s td l i b r a r y .
i f ( * props . capacity == * props . s ize ){

res ize ( * props . capacity * 2 , ctx , p o l i c y ) ;
}

//Edge case : queue has no members
i f ( * props . back == −1){

* props . f r o n t = 0 ;
* props . back = 0 ;

} e l s e {
* props . back = * props . back + 1 % * props . capacity ; }

// E x t r a c t the graph informat ion ( neighbours ) from the PlanarGraph o b j e c t and i n s e r t i t a t the appropr ia te l o c a t i o n in the queue .
auto Nf = N / 2 + 2 ;
s i z e t f a c e o f f s e t = * props . back * Nf ;
f o r ( node t u=0 ; u ¡ in . neighbours . s ize () ; u++){

hos t ba tch . f a ce degree s [ f a c e o f f s e t + u] = in . neighbours [u ] . s ize () ;
f o r ( i n t j=0 ; j ¡ in . neighbours [u ] . s ize () ; j++){

hos t ba tch . dual ne ighbours [6* ( f a c e o f f s e t+u)+ j ] = in . neighbours [u][ j ] ;
}

}

// Ass ign metadata .
hos t ba tch . s t a t u s e s [* props . back ] = IsomerStatus :: NOT CONVERGED;
hos t ba tch . IDs [* props . back ] = ID ;
hos t ba tch . i t e r a t i o n s [* props . back ] = 0 ;
* props . s ize += 1 ;

// Since the host batch has been updated the dev ice i s no longer up to date .
i s dev i c e upda ted = f a l s e ;
re turn cudaGetLastError () ;

}
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Listing B.6: Refill Batch
g l o b a l void r e f i l l b a t c h ( IsomerBatch B , IsomerBatch Q B , IsomerQueue :: QueueProperties queue ,

i n t * s can ar ray ){
auto num ins ide c i r cu l a r r ange = [] ( const i n t begin , cons t i n t end , cons t i n t t e s t v a l ){

i f ( begin ¡ 0 end ¡ 0) { re turn f a l s e ; }
i f ( begin ¡= end) { re turn ( t e s t v a l >= begin && t e s t v a l ¡= end) ; }
e l s e { re turn ( t e s t v a l >= begin t e s t v a l ¡= end) ; }

} ;

//Must ensure tha t a l l wr i t e s to queue counters from the host are v i s i b l e to the dev ice threads before reading them .
threadfence system () ;

DEVICE TYPEDEFS
extern shared i n t smem[] ;
auto Nf = B . n fa ce s ; // Number of f a ce s
auto queue reques t s = 0 ;
// Grid s t r i d e f o r loop , a l lows f o r handl ing of any batch s i z e .
auto l i m i t = ((B . i somer capac i t y + gridDim . x − 1) / gridDim . x ) * gridDim . x ; // Fas t c e i l i n g i n t e g e r d i v i s i o n .
f o r ( i n t i somer idx = blockIdx . x ; i somer idx ¡ l i m i t ; i somer idx+= gridDim . x){
GRID SYNC
bool access queue = f a l s e ;
i f ( i somer idx ¡ B . i somer capac i t y ) access queue = B . s t a t u s e s [ i somer idx ] != IsomerStatus :: NOT CONVERGED;
// Perform a gr id scan over the array of 0s and 1s (1 i f a block needs to acces s the queue and 0 otherwise ) .
// I f the gr id i s l a r g e r than the batch capac i ty , we only want to scan over the i n t e r v a l [0 ,B . i somer capac i ty −1]
g r i d e x s ca n ¡ in t >(scan array , smem, ( i n t ) access queue , min(( i n t )B . i somer capac i ty , ( i n t ) gridDim . x ) + 1) ;
//The block ge t s i t s uniqueue index from the back of the queue p l u s t i t s p o s i t i o n in the scan array .
auto queue index = ( *queue . f r o n t + scan ar ray [ b lockIdx . x ] + queue reques t s ) % *queue . capacity ;
//Check tha t the index i s i n s i d e the queue
access queue &= num ins ide c i r cu l a r r ange ( *queue . f ront , *queue . back , queue index ) ;
i f ( access queue ){

// Given the queue index , copy data from the queue ( conta iner Q B) to the t a r g e t batch B .
s i z e t queue ar ray idx = queue index *blockDim . x+threadIdx . x ;
s i z e t g l o b a l i d x = blockDim . x* i somer idx + threadIdx . x ;
r e i n t e r p r e t c a s t ¡ coord3d*>(B . X)[ g l o b a l i d x ] = r e i n t e r p r e t c a s t ¡ coord3d*>(Q B . X)[ queue ar ray idx ] ;
r e i n t e r p r e t c a s t ¡ node3*>(B . cub ic ne ighbours )[ g l o b a l i d x ] = r e i n t e r p r e t c a s t ¡ node3*>(Q B . cub ic ne ighbours )[ queue ar ray idx ] ;
r e i n t e r p r e t c a s t ¡ coord2d*>(B . xys )[ g l o b a l i d x ] = r e i n t e r p r e t c a s t ¡ coord2d*>(Q B . xys )[ queue ar ray idx ] ;
// Face p a r a l l e l copying
i f ( threadIdx . x ¡ Nf ){

s i z e t queue face idx = queue index * Nf + threadIdx . x ;
s i z e t o u t p u t f a c e i d x = isomer idx * Nf + threadIdx . x ;
r e i n t e r p r e t c a s t ¡ node6*>(B . dual ne ighbours )[ o u t p u t f a c e i d x ] = r e i n t e r p r e t c a s t ¡ node6*>(Q B . dual ne ighbours )[ queue face idx ] ;
r e i n t e r p r e t c a s t ¡ uint8 t *>(B . f a ce degree s )[ o u t p u t f a c e i d x ] = r e i n t e r p r e t c a s t ¡ uint8 t *>(Q B . f ace degree s )[ queue face idx ] ;

}
// Per isomer meta data
i f ( threadIdx . x == 0){

B . IDs [ i somer idx ] = Q B . IDs [ queue index ] ;
B . i t e r a t i o n s [ i somer idx ] = 0 ;
B . s t a t u s e s [ i somer idx ] = Q B . s t a t u s e s [ queue index ] ;
Q B . s t a t u s e s [ queue index ] = IsomerStatus :: EMPTY;

}
}
queue reques t s += scan ar ray [min(( i n t )B . i somer capac i ty , ( i n t ) gridDim . x )] ; //The l a s t element of the scanned array w i l l t e l l us how many blocks , accessed the queue .
}
GRID SYNC
i f (( threadIdx . x + blockIdx . x ) == 0) {

//Main thread checks i f the number of r eques t s f o r new isomers i s g rea t e r than the queue s i ze , then e i t h e r s e t s queues ize to 0 by s u b t r a c t i n g queue s i z e or s u b t r a c t s the number of r eques t s .
bool enough le f t in queue = *queue . s ize >= queue reques t s ;
atomicSub system (queue . size , enough le f t in queue ? queue reques t s : *queue . s ize ) ;
i f ( *queue . s ize == 0) {

atomicExch system (queue . f ront ,−1) ;
atomicExch system (queue . back , −1) ;
} e l s e {
//Here we c o r r e c t the f r o n t index by cons ider ing , what the f r o n t was at the s t a r t , how many reques t s were made and , what the capac i t y of the queue i s .
atomicExch system (queue . f ront ,
enough le f t in queue ? ( *queue . f r o n t + queue reques t s ) % *queue . capacity : *queue . back ) ;

}
}

}
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Listing B.7: Batch Push
g l o b a l void push ( IsomerBatch B , IsomerBatch Q B , IsomerQueue :: QueueProperties queue , i n t * s can ar ray ){

auto num ins ide capac i t y = [] ( const i n t size , cons t i n t capacity , cons t i n t t e s t v a l ){
i f ( s ize ¡ 0 capacity ¡ 0 t e s t v a l ¡ 0) { re turn f a l s e ; }
re turn s ize + t e s t v a l ¡= capacity ;

} ;
//Must ensure tha t a l l wr i t e s to queue counters from the host are v i s i b l e to the dev ice threads before reading them .

threadfence system () ;
DEVICE TYPEDEFS
extern shared i n t smem[] ;
auto Nf = B . n fa ce s ; // Number of f a ce s
auto queue reques t s = 0 ;
// Grid s t r i d e f o r loop , a l lows f o r handl ing of any batch s i z e .
auto l i m i t = ((B . i somer capac i t y + gridDim . x − 1) / gridDim . x ) * gridDim . x ; // Fas t c e i l i n g i n t e g e r d i v i s i o n .
f o r ( i n t i somer idx = blockIdx . x ; i somer idx ¡ l i m i t ; i somer idx+= gridDim . x){
GRID SYNC
bool access queue = f a l s e ;
i f ( i somer idx ¡ B . i somer capac i t y ) access queue = (B . s t a t u s e s [ i somer idx ] == IsomerStatus :: CONVERGED) (B . s t a t u s e s [ i somer idx ] ==

IsomerStatus :: FAILED) ;
g r i d e x s ca n ¡ in t >(scan array , smem, ( i n t ) access queue , min(( i n t )B . i somer capac i ty , ( i n t ) gridDim . x ) + 1) ;
// Checks i f the isomer owned by a given block i s f i n i s h e d or empty , i f i t i s we want to rep lace i t with a new one .
i n t queue index = *queue . back ¡ 0 ? ( s can ar ray [ b lockIdx . x ] + queue reques t s ) : ( *queue . back + 1 + queue reques t s + scan ar ray [ b lockIdx . x ]) % *queue . capacity ;
access queue &= num ins ide capac i t y ( *queue . size , *queue . capacity , queue reques t s + scan ar ray [ b lockIdx . x ]) ;
i f ( access queue ){

// Given the queue index , copy data from the queue ( conta iner Q B) to the t a r g e t batch B .
s i z e t queue ar ray idx = queue index *blockDim . x+threadIdx . x ;
s i z e t g l o b a l i d x = blockDim . x* i somer idx + threadIdx . x ;
r e i n t e r p r e t c a s t ¡ coord3d*>(Q B . X)[ queue ar ray idx ] = r e i n t e r p r e t c a s t ¡ coord3d*>(B . X)[ g l o b a l i d x ] ;
r e i n t e r p r e t c a s t ¡ node3*>(Q B . cub ic ne ighbours )[ queue ar ray idx ] = r e i n t e r p r e t c a s t ¡ node3*>(B . cub ic ne ighbours )[ g l o b a l i d x ] ;
r e i n t e r p r e t c a s t ¡ coord2d*>(Q B . xys )[ queue ar ray idx ] = r e i n t e r p r e t c a s t ¡ coord2d*>(B . xys )[ g l o b a l i d x ] ;
// Face p a r a l l e l copying
i f ( threadIdx . x ¡ Nf ){

s i z e t queue face idx = queue index * Nf + threadIdx . x ;
s i z e t o u t p u t f a c e i d x = isomer idx * Nf + threadIdx . x ;
r e i n t e r p r e t c a s t ¡ node6*>(Q B . dual ne ighbours )[ queue face idx ] = r e i n t e r p r e t c a s t ¡ node6*>(B . dual ne ighbours )[ o u t p u t f a c e i d x ] ;
r e i n t e r p r e t c a s t ¡ uint8 t *>(Q B . f ace degree s )[ queue face idx ] = r e i n t e r p r e t c a s t ¡ uint8 t *>(B . f a ce degree s )[ o u t p u t f a c e i d x ] ;

}
// Per isomer meta data
i f ( threadIdx . x == 0){

Q B . IDs [ queue index ] = B . IDs [ i somer idx ] ;
Q B . i t e r a t i o n s [ queue index ] = B . i t e r a t i o n s [ i somer idx ] ;
Q B . s t a t u s e s [ queue index ] = B . s t a t u s e s [ i somer idx ] ;
B . s t a t u s e s [ i somer idx ] = IsomerStatus :: EMPTY;

}
}
queue reques t s += scan ar ray [min(( i n t )B . i somer capac i ty , ( i n t ) gridDim . x )] ; //The l a s t element of the scanned array w i l l t e l l us how many blocks , accessed the queue .
}
GRID SYNC
i f (( threadIdx . x + blockIdx . x ) == 0) {

i f ( *queue . s ize == 0 && queue reques t s > 0) {
atomicExch system (queue . f ront , 0) ; atomicExch system (queue . back , queue requests −1) ; }

e l s e {
atomicExch system (queue . back , ( *queue . back + queue reques t s ) % *queue . capacity ) ;

}
// Pushing to queue simply i n c r e a s e s the s i z e by the number of push reques t s .
atomicAdd system (queue . size , queue reques t s ) ;

}
}
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Listing B.8: ArcData Implementation
s t r u c t ArcData{

//124 FLOPs ;
uint8 t j ;
INLINE ArcData ( const uint8 t j , cons t coord3d* r e s t r i c t X , const NodeNeighbours& G){

b u i l t i n a s s u m e ( j ¡ 3) ;
th i s −>j = j ;
node t a = threadIdx . x ;
r e a l t r rmp ;
coord3d ap , am, ab , ac , ad , mp;
coord3d X a = X[a ] , X b = X[ d get (G. cubic ne ighbours , j ) ] ;

//Compute the a r c s ab , ac , ad , bp , bm, ap , am, mp, bc and cd
ab = ( X b − X a ) ; r r ab = bond length ( ab ) ; ab hat = r rab * ab ;
ac = (X[ d get (G. cubic ne ighbours , ( j +1)%3)] − X a ) ; r r a c = bond length ( ac ) ; ac ha t = r r a c *

ac ; rab = non re s c ip roca l bond leng th ( ab ) ;
ad = (X[ d get (G. cubic ne ighbours , ( j +2)%3)] − X a ) ; r rad = bond length (ad) ; ad hat = r rad *

ad ;

coord3d bp = (X[ d get (G. next on face , j ) ] − X b ) ; bp hat = u n i t v e c t o r (bp) ;
coord3d bm = (X[ d get (G. prev on face , j ) ] − X b ) ; bm hat = u n i t v e c t o r (bm) ;

ap = bp + ab ; r r ap = bond length (ap) ; ap hat = r rap * ap ;
am = bm + ab ; r ram = bond length (am) ; am hat = r ram * am;
mp = bp − bm; r rmp = bond length (mp) ; mp hat = r rmp * mp;

bc hat = u n i t v e c t o r ( ac − ab ) ;
cd hat = u n i t v e c t o r (ad − ac ) ;

//Compute i n v e r s e s of some arcs , these are s u b j e c t to be omitted i f the equat ions are adapted a pp rop r i a t e l y with i n v e r s i o n of s i gn s .
ba hat = −ab hat ;
mb hat = −bm hat ;
pa hat = −ap hat ;
pb hat = −bp hat ;

}
INLINE r e a l t harmonic energy ( const r e a l t p0 , const r e a l t p) const{

re turn ( r e a l t )0 .5 * (p−p0) * (p−p0) ;
}
INLINE coord3d harmonic energy gradient ( const r e a l t p0 , const r e a l t p , const coord3d gradp ) const{

re turn (p−p0) *gradp ;
}
INLINE r e a l t bond () const { re turn rab ; }
INLINE r e a l t angle () const { re turn dot ( ab hat , ac ha t ) ; }
INLINE r e a l t dihedral () const
{

coord3d nabc , nbcd ; r e a l t cos b , cos c , r s i n b , r s i n c ;
cos b = dot ( ba hat , bc hat ) ; r s i n b = ( r e a l t )1 .0/ sqrt (( r e a l t )1 .0 − cos b * cos b ) ; nabc =

cross ( ba hat , bc hat ) * r s i n b ;
co s c = dot(−bc hat , cd hat ) ; r s i n c = ( r e a l t )1 .0/ sqrt (( r e a l t )1 .0 − cos c * cos c ) ; nbcd =

cross(−bc hat , cd hat ) * r s i n c ;
re turn dot ( nabc , nbcd ) ;

}
coord3d
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Listing C.1: Benchmark Pipeline V0 Script
#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;

i n t main( i n t argc , char ** argv ){
const s i z e t N s t a r t = argc>1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ;

↪→ // Argument 1: Number of v e r t i c e s N
const s i z e t N l im i t = argc>2 ? s t r t o l ( argv [2] ,0 ,0) : 200 ;

↪→ // Argument 1: Number of v e r t i c e s N

auto N runs = 1 ;
ofstream o u t f i l e ( ” IsomerspaceOpt V0 ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V0 STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ;
auto sample s i ze = min(200 ,( i n t ) num ful lerenes . f ind (N)−>second ) ;
BuckyGen :: buckygen queue Q = BuckyGen :: s t a r t (N, f a l s e , f a l s e ) ;
auto Nf = N/2 + 2 ;
Graph FF ;
FF . neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
FullereneDual G;
G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;
bool more to generate = true ;

auto T0 = high resolut ion c lock :: now() ;
auto

T seq = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ;

auto path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
i fstream i somer sample ( path , std :: i o s :: b inary ) ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
std :: vector ¡ device node t> i n p u t b u f f e r ( f s i z e / s i z e o f ( device node t ) ) ;
auto ava i l ab l e samp le s = f s i z e / ( Nf*6* s i z e o f ( device node t ) ) ;
isomer sample . read ( r e i n t e r p r e t c a s t ¡ char *>( i n p u t b u f f e r . data () ) , Nf*6* s i z e o f (

↪→ device node t ) * ava i l ab l e samp le s ) ;

std :: vector ¡ in t> random IDs ( ava i l ab l e samp le s ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;
bool more = true ;
f o r ( i n t l = 0 ; l ¡ N runs ; l++){
f o r ( i n t i = 0 ; i ¡ sample s i ze ; ++i ){

f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){
i f (more) more &= BuckyGen :: next fu l lerene (Q, FF) ;
G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = i n p u t b u f f e r [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}

auto T0 = high resolut ion c lock :: now() ;
G. update () ;
PlanarGraph pG = G. dual graph () ;
pG . layout2d = pG . tu t te layout () ;
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auto T1 = high resolut ion c lock :: now() ; T seq [ l ] += T1 − T0 ;
Polyhedron P(pG) ;

auto T2 = high resolut ion c lock :: now() ; T io [ l ] += T2 − T1 ;
P . po in t s = P . zero order geometry () ;
P . optimize () ;

auto T3 = high resolut ion c lock :: now() ; T seq [ l ] += T3 − T2 ;

}}
using namespace cuda io ;
auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns + mean( T seq ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡

↪→ (mean( T seq ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ”
↪→ ¡ ¡ (mean( T io ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1
↪→ us+mean( T seq ) /1us ) / sample s i ze ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ mean( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par )
↪→ /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ sdev ( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;

}

}
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Listing C.2: Benchmark Pipeline V1 Script
#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;

i n t main( i n t argc , char ** argv ){
const s i z e t N s t a r t = argc>1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ;

↪→ // Argument 1: Number of v e r t i c e s N
const s i z e t N l im i t = argc>2 ? s t r t o l ( argv [2] ,0 ,0) : 200 ;

↪→ // Argument 1: Number of v e r t i c e s N

auto N runs = 10 ;

ofstream o u t f i l e ( ” IsomerspaceOpt V1 ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V1 STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ;
auto sample s i ze = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) *

↪→ 4 ,( i n t ) num ful lerenes . f ind (N)−>second ) ;
auto M b = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) , ( i n t )

↪→ num ful lerenes . f ind (N)−>second ) ;

// Pre a l l o c a t e the dev ice queue such tha t i t doesn ’ t happen during benchmarking
auto Nf = N/2 + 2 ;
FullereneDual G;
G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;
bool more to generate = true ;

auto T0 = high resolut ion c lock :: now() ;
auto

T seq = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ;

auto path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
i fstream i somer sample ( path , std :: i o s :: b inary ) ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
std :: vector ¡ device node t> i n p u t b u f f e r ( f s i z e / s i z e o f ( device node t ) ) ;
auto ava i l ab l e samp le s = f s i z e / ( Nf*6* s i z e o f ( device node t ) ) ;
isomer sample . read ( r e i n t e r p r e t c a s t ¡ char *>( i n p u t b u f f e r . data () ) , Nf*6* s i z e o f (

↪→ device node t ) * ava i l ab l e samp le s ) ;

std :: vector ¡ in t> random IDs ( ava i l ab l e samp le s ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;
f o r ( i n t l = 0 ; l ¡ N runs ; l++){

cuda io :: IsomerQueue i somer q (N) ;
cuda io :: IsomerQueue out queue (N) ;
out queue . res ize (2* sample s i ze ) ;
isomer q . res ize (2* sample s i ze ) ;
IsomerBatch batch0 (N, M b , DEVICE BUFFER) ;
f o r ( i n t i = 0 ; i ¡ sample s i ze ; ++i ){

f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){
G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = i n p u t b u f f e r [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;
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}
}

auto T s t a r t = high resolut ion c lock :: now() ;
G. update () ;
PlanarGraph pG = G. dual graph () ;
pG . layout2d = pG . tu t te layout () ;

auto T3 = high resolut ion c lock :: now() ; T seq [ l ] += T3 − T s t a r t ;
Polyhedron P(pG) ;

auto T4 = high resolut ion c lock :: now() ; T io [ l ] += T4 − T3 ;
P . po in t s = P . zero order geometry () ;

auto T5 = high resolut ion c lock :: now() ; T seq [ l ] += T5 − T4 ;
isomer q . i n s e r t (P , i , LaunchCtx () , LaunchPolicy :: SYNC) ;

auto T6 = high resolut ion c lock :: now() ; T io [ l ] += T6 − T5 ;
}
while ( out queue . g e t s i z e () ¡ sample s i ze ){
auto T0 = high resolut ion c lock :: now() ;

isomer q . r e f i l l b a t c h ( batch0 ) ;
auto T1 = high resolut ion c lock :: now() ; T io [ l ] += T1 − T0 ;

gpu kernels :: i somerspace forcef ie ld :: optimize ¡BUSTER>(batch0 ,N* 0.5 ,N*5) ;
auto T2 = high resolut ion c lock :: now() ; T par [ l ] += T2 − T1 ;

out queue . push( batch0 ) ;
auto T3 = high resolut ion c lock :: now() ; T io [ l ] += T3 − T2 ;
}

}
using namespace cuda io ;
auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns + mean( T seq ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡

↪→ (mean( T seq ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ”
↪→ ¡ ¡ (mean( T io ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1
↪→ us+mean( T seq ) /1us ) / sample s i ze ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ mean( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par )
↪→ /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ sdev ( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;

}
LaunchCtx :: c l e a r a l l o c a t i o n s () ;

}
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Listing C.3: Benchmark Pipeline V2 Script
#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;

i n t main( i n t argc , char ** argv ){
const s i z e t N s t a r t = argc>1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ;

↪→ // Argument 1: Number of v e r t i c e s N
const s i z e t N l im i t = argc>2 ? s t r t o l ( argv [2] ,0 ,0) : 200 ;

↪→ // Argument 1: Number of v e r t i c e s N

auto N runs = 10 ;
ofstream o u t f i l e ( ” IsomerspaceOpt V2 ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V2 STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ;
auto Nf = N/2 + 2 ;
auto sample s i ze = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) *

↪→ 4 ,( i n t ) num ful lerenes . f ind (N)−>second ) ;
std :: queue ¡ std :: tup le ¡ Polyhedron , s i ze t , I somerStatus>> poly queue ;

//Queue needs to a l l o c a t e memory the f i r s t time something i s pushed , we don ’ t want to
↪→ measure th i s ,

//So we make sure the queue p r e a l l o c a t e s some memory .
f o r ( s i z e t i = 0 ; i ¡ sample s i ze ; i++){

poly queue . push({Polyhedron (N) , i , I somerStatus :: FAILED}) ;
}
while ( ! poly queue . empty () ){

poly queue . pop () ;
}

FullereneDual G;
G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;

bool more to generate = true ;

auto T0 = high resolut ion c lock :: now() ;
auto

T seq = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ;

auto path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
i fstream i somer sample ( path , std :: i o s :: b inary ) ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
std :: vector ¡ device node t> i n p u t b u f f e r ( f s i z e / s i z e o f ( device node t ) ) ;
auto ava i l ab l e samp le s = f s i z e / ( Nf*6* s i z e o f ( device node t ) ) ;
isomer sample . read ( r e i n t e r p r e t c a s t ¡ char *>( i n p u t b u f f e r . data () ) , Nf*6* s i z e o f (

↪→ device node t ) * ava i l ab l e samp le s ) ;

std :: vector ¡ in t> random IDs ( ava i l ab l e samp le s ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;
f o r ( i n t l = 0 ; l ¡ N runs ; l++){
cuda io :: IsomerQueue Q0(N) ;
cuda io :: IsomerQueue Q1(N) ;
cuda io :: IsomerQueue Q2(N) ;
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IsomerBatch batch0 (N, sample s ize , DEVICE BUFFER) ;
IsomerBatch batch1 (N, sample s ize , DEVICE BUFFER) ;
IsomerBatch h batch (N, sample s ize , HOST BUFFER) ;
// Pre a l l o c a t e the dev ice queue such tha t i t doesn ’ t happen during benchmarking
Q0 . res ize (2* sample s i ze ) ;
Q1 . res ize (2* sample s i ze ) ;
Q2 . res ize (2* sample s i ze ) ;
f o r ( i n t i = 0 ; i ¡ sample s i ze ; ++i ){

f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){
G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = i n p u t b u f f e r [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}

auto T1 = high resolut ion c lock :: now() ;
G. update () ;
PlanarGraph pG = G. dual graph () ;

auto T2 = high resolut ion c lock :: now() ; T seq [ l ] += (T2 − T1) ;
Q0 . i n s e r t (pG , i , LaunchCtx () , LaunchPolicy :: SYNC , f a l s e ) ;

auto T3 = high resolut ion c lock :: now() ; T io [ l ] += (T3 − T2) ;
}

auto T1 = high resolut ion c lock :: now() ;
Q0 . r e f i l l b a t c h ( batch0 ) ;
gpu kernels :: isomerspace tutte :: tu t te layout ( batch0 ) ;

auto T2 = high resolut ion c lock :: now() ; T par [ l ] += (T2 − T1) ;
cuda io :: copy ( h batch , batch0 ) ;
cuda io :: output to queue ( poly queue , h batch ) ;

auto T3 = high resolut ion c lock :: now() ; T io [ l ] += (T3 − T2) ;

while ( ! poly queue . empty () )
{

auto wT1 = high resolut ion c lock :: now() ;
auto [P , ID , s t a t u s ] = poly queue . f r o n t () ;

auto wT2 = high resolut ion c lock :: now() ; T io [ l ] += (wT2 − wT1) ;
P . po in t s = P . zero order geometry () ;

auto wT3 = high resolut ion c lock :: now() ; T seq [ l ] += (wT3 − wT2) ;
Q1 . i n s e r t (P , ID ) ;

auto wT4 = high resolut ion c lock :: now() ; T io [ l ] += (wT4 − wT3) ;
poly queue . pop () ;

}

while (Q2 . g e t s i z e () ¡ sample s i ze ){
auto T0 = high resolut ion c lock :: now() ;

Q1 . r e f i l l b a t c h ( batch1 ) ;
auto T1 = high resolut ion c lock :: now() ; T io [ l ] += T1 − T0 ;

gpu kernels :: i somerspace forcef ie ld :: optimize ¡BUSTER>(batch1 ,N* 0.5 ,N*5) ;
auto T2 = high resolut ion c lock :: now() ; T par [ l ] += T2 − T1 ;

Q2 . push( batch1 ) ;
auto T3 = high resolut ion c lock :: now() ; T io [ l ] += T3 − T2 ;

}
}
using namespace cuda io ;
auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns + mean( T seq ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡

↪→ (mean( T seq ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ”
↪→ ¡ ¡ (mean( T io ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1
↪→ us+mean( T seq ) /1us ) / sample s i ze ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ mean( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par )
↪→ /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ sdev ( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;

}
LaunchCtx :: c l e a r a l l o c a t i o n s () ;

}
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Listing C.4: Benchmark Pipeline V3 Script
#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;

i n t main( i n t argc , char ** argv ){
const s i z e t N s t a r t = argc>1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ;

↪→ // Argument 1: Number of v e r t i c e s N
const s i z e t N l im i t = argc>2 ? s t r t o l ( argv [2] ,0 ,0) : 200 ;

↪→ // Argument 1: Number of v e r t i c e s N
auto N runs = 10 ;
ofstream o u t f i l e ( ” IsomerspaceOpt V3 ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V3 STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ; //No isomers in isomerspace 22 ;
auto sample s i ze = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) *

↪→ 4 ,( i n t ) num ful lerenes . f ind (N)−>second ) ;
auto M b = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) , ( i n t )

↪→ num ful lerenes . f ind (N)−>second ) ;
std :: queue ¡ std :: tup le ¡ Polyhedron , s i ze t , I somerStatus>> poly queue ;
FullereneDual G;

bool more to generate = true ;

auto T0 = high resolut ion c lock :: now() ;
auto

T seq = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs ) ;

auto Nf = N / 2 + 2 ;
auto path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
i fstream i somer sample ( path , std :: i o s :: b inary ) ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
std :: vector ¡ device node t> i n p u t b u f f e r ( f s i z e / s i z e o f ( device node t ) ) ;
auto ava i l ab l e samp le s = f s i z e / ( Nf*6* s i z e o f ( device node t ) ) ;
isomer sample . read ( r e i n t e r p r e t c a s t ¡ char *>( i n p u t b u f f e r . data () ) , Nf*6* s i z e o f (

↪→ device node t ) * ava i l ab l e samp le s ) ;

std :: vector ¡ in t> random IDs ( ava i l ab l e samp le s ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;

G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;
f o r ( s i z e t l = 0 ; l ¡ N runs ; l++){

IsomerBatch batch0 (N, sample s ize , DEVICE BUFFER) ;
IsomerBatch batch1 (N, M b , DEVICE BUFFER) ;
cuda io :: IsomerQueue Q0(N) ;
cuda io :: IsomerQueue Q1(N) ;
cuda io :: IsomerQueue Q2(N) ;
// Pre a l l o c a t e the dev ice queue such tha t i t doesn ’ t happen during benchmarking
Q0 . res ize (2* sample s i ze ) ;
Q1 . res ize (2* sample s i ze ) ;
Q2 . res ize (2* sample s i ze ) ;
f o r ( i n t i = 0 ; i ¡ sample s i ze ; ++i ){

f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){
G. neighbours [ j ] . c lear () ;
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f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {
auto u = i n p u t b u f f e r [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}

auto T0 = high resolut ion c lock :: now() ;
G. update () ;
PlanarGraph pG = G. dual graph () ;

auto T2 = high resolut ion c lock :: now() ; T seq [ l ] += (T2 − T0) ;
Q0 . i n s e r t (pG , i , LaunchCtx () , LaunchPolicy :: SYNC , f a l s e ) ;

auto T3 = high resolut ion c lock :: now() ; T io [ l ] += (T3 − T2) ;
}

auto T1 = high resolut ion c lock :: now() ;
Q0 . r e f i l l b a t c h ( batch0 ) ;

auto T2 = high resolut ion c lock :: now() ; T io [ l ] += (T2 − T1) ;
gpu kernels :: isomerspace tutte :: tu t te layout ( batch0 ) ;
gpu kernels :: isomerspace X0 :: zero order geometry ( batch0 , 4 .0) ;

auto T3 = high resolut ion c lock :: now() ; T par [ l ] += (T3 − T2) ;
Q1 . i n s e r t ( batch0 ) ;

auto T4 = high resolut ion c lock :: now() ; T io [ l ] += (T4 − T3) ;

while (Q2 . g e t s i z e () ¡ sample s i ze )
{

auto T0 = high resolut ion c lock :: now() ;
Q1 . r e f i l l b a t c h ( batch1 ) ;
auto T1 = high resolut ion c lock :: now() ; T io [ l ] += (T1 − T0) ;
gpu kernels :: i somerspace forcef ie ld :: optimize ¡BUSTER>(batch1 ,N* 0.5 ,N*5) ;
auto T2 = high resolut ion c lock :: now() ; T par [ l ] += (T2 − T1) ;
Q2 . push( batch1 ) ;
auto T3 = high resolut ion c lock :: now() ; T io [ l ] += (T3 − T2) ;

}
}
using namespace cuda io ;
auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns + mean( T seq ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡

↪→ (mean( T seq ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ”
↪→ ¡ ¡ (mean( T io ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1
↪→ us+mean( T seq ) /1us ) / sample s i ze ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ mean( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par )
↪→ /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ sdev ( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;

}
LaunchCtx :: c l e a r a l l o c a t i o n s () ;
}
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Listing C.5: Benchmark Pipeline V4 Script
#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;

i n t main( i n t argc , char ** argv ){
const s i z e t N s t a r t = argc>1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ;

↪→ // Argument 1: Number of v e r t i c e s N
const s i z e t N l im i t = argc>2 ? s t r t o l ( argv [2] ,0 ,0) : 200 ;

↪→ // Argument 1: Number of v e r t i c e s N
auto N runs = 10 ;

ofstream o u t f i l e ( ” IsomerspaceOpt V4 ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V4 STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ; //No isomers in isomerspace 22 ;
auto sample s i ze = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) *

↪→ 4 ,( i n t ) num ful lerenes . f ind (N)−>second ) ;
auto M b = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) , ( i n t )

↪→ num ful lerenes . f ind (N)−>second ) ;
std :: queue ¡ std :: tup le ¡ Polyhedron , s i ze t , I somerStatus>> poly queue ;

bool more to generate = true ;
i n t N f = N/2 + 2 ;
auto T0 = high resolut ion c lock :: now() ;
auto

T seq = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ;

Graph G;
auto Nf = N/2 +2;
std :: s t r i n g path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
auto n samples = f s i z e / ( Nf * 6 * s i z e o f ( device node t ) ) ;
i fstream i n f i l e ( path , std :: i o s :: b inary ) ;
std :: vector ¡ device node t> dual ne ighbours ( n samples * Nf * 6) ;
i n f i l e . read (( char * ) dual ne ighbours . data () , n samples * Nf * 6 * s i z e o f ( device node t ) )

↪→ ;

std :: vector ¡ in t> random IDs ( n samples ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;

G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;
std :: cout ¡ ¡ ” Isomerspace : ” ¡ ¡ N ¡ ¡ std :: endl ;
f o r ( s i z e t l = 0 ; l ¡ N runs ; l++)
{

IsomerBatch batch0 (N, sample s ize , DEVICE BUFFER) ;
IsomerBatch batch1 (N, M b , DEVICE BUFFER) ;
cuda io :: IsomerQueue Q0(N,0) ;
cuda io :: IsomerQueue Q1(N,0) ;
cuda io :: IsomerQueue Q2(N,0) ;

// Pre a l l o c a t e the dev ice queue such tha t i t doesn ’ t happen during benchmarking
Q0 . res ize (2* sample s i ze ) ;
Q1 . res ize (2* sample s i ze ) ;
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Q2. res ize (2* sample s i ze ) ;

f o r ( i n t i = 0 ; i ¡ sample s i ze ; ++i ){
f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){

G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = dual ne ighbours [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}

auto T2 = high resolut ion c lock :: now() ;
Q0 . i n s e r t (G, i ) ;

auto T3 = high resolut ion c lock :: now() ; T io [ l ] += (T3 − T2) ;
}

auto T1 = high resolut ion c lock :: now() ;
Q0 . r e f i l l b a t c h ( batch0 ) ;

auto T2 = high resolut ion c lock :: now() ; T io [ l ] += (T2 − T1) ;
gpu kernels :: isomerspace dual :: dua l i ze ( batch0 ) ;
gpu kernels :: isomerspace tutte :: tu t te layout ( batch0 ) ;
gpu kernels :: isomerspace X0 :: zero order geometry ( batch0 , 4 .0) ;

auto T3 = high resolut ion c lock :: now() ; T par [ l ] += (T3 − T2) ;
Q1 . i n s e r t ( batch0 ) ;

auto T4 = high resolut ion c lock :: now() ; T io [ l ] += (T4 − T3) ;
while (Q2 . g e t s i z e () ¡ sample s i ze ){

auto T1 = high resolut ion c lock :: now() ;
Q1 . r e f i l l b a t c h ( batch1 ) ;

auto T2 = high resolut ion c lock :: now() ; T io [ l ] += (T2 − T1) ;
gpu kernels :: i somerspace forcef ie ld :: optimize ¡BUSTER>(batch1 ,N* 0.5 ,N*5) ;

auto T3 = high resolut ion c lock :: now() ; T par [ l ] += (T3 − T2) ;
Q2 . push( batch1 ) ;

auto T4 = high resolut ion c lock :: now() ; T io [ l ] += (T4 − T3) ;
}

}
using namespace cuda io ;
auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns + mean( T seq ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡

↪→ (mean( T seq ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ”
↪→ ¡ ¡ (mean( T io ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1
↪→ us+mean( T seq ) /1us ) / sample s i ze ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ mean( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par )
↪→ /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ sdev ( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;

}
LaunchCtx :: c l e a r a l l o c a t i o n s () ;

}
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Listing C.6: Benchmark Pipeline V5 Script
#inc lude ¡ future>
#inc lude ¡ thread>
#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;
us ing namespace gpu kernels ;
i n t main( i n t argc , char ** argv ){

const s i z e t N s t a r t = argc > 1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ; // Argument
↪→ 1: Number of v e r t i c e s N

const s i z e t N l im i t = argc > 2 ? s t r t o l ( argv [2] ,0 ,0) : 200 ; //
↪→ Argument 1: Number of v e r t i c e s N

const s i z e t N runs = argc > 3 ? s t r t o l ( argv [3] ,0 ,0) : 10 ;

ofstream o u t f i l e ( ” IsomerspaceOpt V5 ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V5 STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;

f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ; //No isomers in isomerspace 22 ;
auto n f u l l e r e n e s = ( i n t ) num ful lerenes . f ind (N)−>second ;
auto b a t c h s i z e = min( i somerspace forcef ie ld :: optimal batch size (N) , n f u l l e r e n e s ) ;
auto sample s i ze = min( i somerspace forcef ie ld :: optimal batch size (N) * 4 , n f u l l e r e n e s ) ;

bool more to generate = true ;
i n t N f = N/2 + 2 ;
auto I = 0 ;
auto T0 = high resolut ion c lock :: now() ;
auto

T seq = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ;

Graph G;
auto Nf = N/2 +2;
std :: s t r i n g path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
auto n samples = f s i z e / ( Nf * 6 * s i z e o f ( device node t ) ) ;
i fstream i n f i l e ( path , std :: i o s :: b inary ) ;
std :: vector ¡ device node t> dual ne ighbours ( n samples * Nf * 6) ;
i n f i l e . read (( char * ) dual ne ighbours . data () , n samples * Nf * 6 * s i z e o f ( device node t ) )

↪→ ;

std :: vector ¡ in t> random IDs ( n samples ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;

f o r ( s i z e t l = 0 ; l ¡ N runs ; ++l )
{
IsomerBatch B0(N, ba t ch s i ze , DEVICE BUFFER) ;
IsomerBatch B1(N, ba t ch s i ze , DEVICE BUFFER) ;
cuda io :: IsomerQueue Q0(N) ;
cuda io :: IsomerQueue Q1(N) ;
cuda io :: IsomerQueue Q2(N) ;
// Pre a l l o c a t e the dev ice queue such tha t i t doesn ’ t happen during benchmarking
Q0 . res ize (2* sample s i ze ) ;
Q1 . res ize (2* sample s i ze ) ;
Q2 . res ize (2* sample s i ze ) ;
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G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;
LaunchCtx i n s e r t c t x = LaunchCtx (0) ;
LaunchCtx device0 = LaunchCtx (0) ;
auto genera te i somers = [&]( ) {

f o r ( i n t i = 0 ; i ¡ b a t c h s i z e ; ++i ){
f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){

G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = dual ne ighbours [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}
I++;
Q0 . i n s e r t (G, i , i n s e r t c t x , LaunchPolicy :: ASYNC) ;

}
i n s e r t c t x . wait () ;

} ;

genera te i somers () ;
while (Q2 . g e t s i z e () ¡ sample s i ze ){

Q0. r e f i l l b a t c h (B0) ;
auto generate handle = std :: async ( std :: launch :: async , genera te i somers ) ;
auto T1 = high resolut ion c lock :: now() ;

isomerspace dual :: dua l i ze (B0 , device0 , LaunchPolicy :: ASYNC) ;
isomerspace tutte :: tu t te layout (B0,10000000 , device0 , LaunchPolicy :: ASYNC) ;
isomerspace X0 :: zero order geometry (B0 , 4 .0 , device0 , LaunchPolicy :: ASYNC) ;
device0 . wait () ;

auto T2 = high resolut ion c lock :: now() ; T par [ l ] += ( T2 − T1) ;
Q1 . i n s e r t (B0 , device0 , LaunchPolicy :: ASYNC) ;
device0 . wait () ;

auto T3 = high resolut ion c lock :: now() ; T io [ l ] += (T3 − T2) ;
while (Q1 . g e t s i z e () >= B1 . capacity () ){

auto T1 = high resolut ion c lock :: now() ;
Q1 . r e f i l l b a t c h (B1) ;

auto T2 = high resolut ion c lock :: now() ; T io [ l ] += (T2 − T1) ;
i somerspace forcef ie ld :: optimize ¡BUSTER>(B1 ,N* 0.5 ,N*5) ;

auto T3 = high resolut ion c lock :: now() ; T par [ l ] += (T3 − T2) ;
Q2 . push(B1 , device0 ) ;

auto T4 = high resolut ion c lock :: now() ; T io [ l ] += (T4 − T3) ;
}

generate handle . wait () ;
while ( I >= sample s i ze && Q2. g e t s i z e () ¡ sample s i ze && Q0. g e t s i z e () == 0)

↪→ {
auto T1 = high resolut ion c lock :: now() ;

Q1 . r e f i l l b a t c h (B1) ;
auto T2 = high resolut ion c lock :: now() ; T io [ l ] += (T2 − T1) ;

i somerspace forcef ie ld :: optimize ¡BUSTER>(B1 ,N* 0.5 ,N*5) ;
auto T3 = high resolut ion c lock :: now() ; T par [ l ] += (T3 − T2) ;

Q2 . push(B1) ;
auto T4 = high resolut ion c lock :: now() ; T io [ l ] += (T4 − T3) ;

}
}

}
using namespace cuda io ;
auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns + mean( T seq ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡

↪→ (mean( T seq ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ”
↪→ ¡ ¡ (mean( T io ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1
↪→ us+mean( T seq ) /1us ) / sample s i ze ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ mean( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par )
↪→ /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ sdev ( T seq ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;

}
LaunchCtx :: c l e a r a l l o c a t i o n s () ;
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}
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Listing C.7: Benchmark Pipeline V6 Script
#inc lude ¡ future>
#inc lude ¡ thread>
#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;
us ing namespace gpu kernels ;
i n t main( i n t argc , char ** argv ){

const s i z e t N s t a r t = argc > 1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ; // Argument
↪→ 1: Number of v e r t i c e s N

const s i z e t N l im i t = argc > 2 ? s t r t o l ( argv [2] ,0 ,0) : N s t a r t ; //
↪→ Argument 1: Number of v e r t i c e s N

auto N runs = 10 ;

ofstream o u t f i l e ( ” IsomerspaceOpt V6 ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V6 STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ; //No isomers in isomerspace 22 ;
auto b a t c h s i z e = i somerspace forcef ie ld :: optimal batch size (N) ;
auto n f u l l e r e n e s = ( i n t ) num ful lerenes . f ind (N)−>second ;
auto sample s i ze = min( b a t c h s i z e * 1 , n f u l l e r e n e s ) ;
i f ( n f u l l e r e n e s ¡ b a t c h s i z e *2){

sample s i ze = max( n f u l l e r e n e s /2 ,1) ;
} e l s e i f ( n f u l l e r e n e s >= b a t c h s i z e *8){

sample s i ze = b a t c h s i z e *4 ;
} e l s e i f ( n f u l l e r e n e s >= b a t c h s i z e *6){

sample s i ze = b a t c h s i z e *3 ;
} e l s e i f ( n f u l l e r e n e s >= b a t c h s i z e *4){

sample s i ze = b a t c h s i z e *2 ;
} e l s e i f ( n f u l l e r e n e s >= b a t c h s i z e *2){

sample s i ze = b a t c h s i z e ;
}

std :: cout ¡ ¡ N ¡ ¡ endl ;

bool more to generate = true ;
i n t N f = N/2 + 2 ;
auto T0 = high resolut ion c lock :: now() ;
auto

T seq = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ;

Graph G;
auto Nf = N/2 +2;
std :: s t r i n g path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
auto n samples = f s i z e / ( Nf * 6 * s i z e o f ( device node t ) ) ;
i fstream i n f i l e ( path , std :: i o s :: b inary ) ;
std :: vector ¡ device node t> dual ne ighbours ( n samples * Nf * 6) ;
i n f i l e . read (( char * ) dual ne ighbours . data () , n samples * Nf * 6 * s i z e o f ( device node t ) )

↪→ ;

std :: vector ¡ in t> random IDs ( n samples ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;
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G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;

f o r ( s i z e t l = 0 ; l ¡ N runs ; l++)
{
IsomerBatch B0(N, sample s ize , DEVICE BUFFER , 0) ;
IsomerBatch B1(N, sample s ize , DEVICE BUFFER , 1) ;
cuda io :: IsomerQueue In Q0 (N, 0) ;
cuda io :: IsomerQueue In Q1 (N, 1) ;
cuda io :: IsomerQueue Out Q0(N, 0) ;
cuda io :: IsomerQueue Out Q1(N, 1) ;
LaunchCtx i n s e r t 0 c t x = LaunchCtx (0) ;
LaunchCtx i n s e r t 1 c t x = LaunchCtx (1) ;
LaunchCtx device0 = LaunchCtx (0) ;
LaunchCtx device1 = LaunchCtx (1) ;

// Pre a l l o c a t e the dev ice queue such tha t i t doesn ’ t happen during benchmarking
In Q0 . res ize (2* sample s ize , i n s e r t 0 c t x ) ;
In Q1 . res ize (2* sample s ize , i n s e r t 1 c t x ) ;
Out Q0 . res ize (2* sample s ize , i n s e r t 0 c t x ) ;
Out Q1 . res ize (2* sample s ize , i n s e r t 1 c t x ) ;

auto genera te i somers = [&]( ) {
f o r ( i n t i = 0 ; i ¡ sample s i ze ; ++i ){

f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){
G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = dual ne ighbours [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}
In Q0 . i n s e r t (G, i , i n s e r t 0 c t x , LaunchPolicy :: ASYNC) ;
In Q1 . i n s e r t (G, i , i n s e r t 1 c t x , LaunchPolicy :: ASYNC) ;

}
i n s e r t 0 c t x . wait () ; i n s e r t 1 c t x . wait () ;

} ;

// Produce and i n s e r t the f i r s t batch
genera te i somers () ;
In Q0 . r e f i l l b a t c h (B0 , i n s e r t 0 c t x , LaunchPolicy :: SYNC) ;
In Q1 . r e f i l l b a t c h (B1 , i n s e r t 1 c t x , LaunchPolicy :: SYNC) ;

// Generate new isomers while proces s ing the prev ious batch
auto generate handle = std :: async ( std :: launch :: async , genera te i somers ) ;
auto T2 = high resolut ion c lock :: now() ;

//Main proces s ing
isomerspace dual :: dualise (B0 , device0 , LaunchPolicy :: ASYNC) ;
isomerspace dual :: dualise (B1 , device1 , LaunchPolicy :: ASYNC) ;
isomerspace tutte :: tu t te layout (B0 , 10000000, device0 , LaunchPolicy :: ASYNC) ;
isomerspace tutte :: tu t te layout (B1 , 10000000, device1 , LaunchPolicy :: ASYNC) ;
isomerspace X0 :: zero order geometry (B0 , 4 .0 , device0 , LaunchPolicy :: ASYNC) ;
isomerspace X0 :: zero order geometry (B1 , 4 .0 , device1 , LaunchPolicy :: ASYNC) ;
i somerspace forcef ie ld :: optimise ¡PEDERSEN>(B0 ,N* 5 ,N* 5 , device0 , LaunchPolicy ::

↪→ ASYNC) ;
i somerspace forcef ie ld :: optimise ¡PEDERSEN>(B1 ,N* 5 ,N* 5 , device1 , LaunchPolicy ::

↪→ ASYNC) ;
// Output f i n i s h e d isomers
Out Q0 . push(B0 , device0 , LaunchPolicy :: ASYNC) ;
Out Q1 . push(B1 , device1 , LaunchPolicy :: ASYNC) ;
device0 . wait () ; device1 . wait () ;

auto T3 = high resolut ion c lock :: now() ; T par [ l ] += ( T3 − T2) ;
// Wait f o r generat ion to f i n i s h , i f t h i s process i s f a s t e r than GPU operat ions

↪→ , the c a l l r e tu rns immediately .
generate handle . wait () ;
// R e f i l l batches with new isomers
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In Q0 . r e f i l l b a t c h (B0 , device0 , LaunchPolicy :: ASYNC) ;
In Q1 . r e f i l l b a t c h (B1 , device1 , LaunchPolicy :: ASYNC) ;
device0 . wait () ; device1 . wait () ;

auto T4 = high resolut ion c lock :: now() ; T io [ l ] += (T4 − T3) ;

}
using namespace cuda io ;
o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ min( sample s i ze * 2 , n f u l l e r e n e s ) ¡ ¡ ” , ” ¡ ¡ mean( T seq ) /1ns ¡

↪→ ¡ ” , ” ¡ ¡ mean( T par ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;
o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ min( sample s i ze * 2 , n f u l l e r e n e s ) ¡ ¡ ” , ” ¡ ¡ sdev ( T seq ) /1

↪→ ns ¡ ¡ ” , ” ¡ ¡ sdev ( T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;
}

LaunchCtx :: c l e a r a l l o c a t i o n s () ;
}
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Listing C.8: Benchmark Pipeline V7 Script
#inc lude ¡ numeric>
#inc lude ¡ future>
#inc lude ¡ random>

const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =
↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace gpu kernels ;
us ing namespace cuda io ;
#def ine SYNC LaunchPolicy :: SYNC
#def ine ASYNC LaunchPolicy :: ASYNC

i n t main( i n t ac , char ** argv ){
i n t N s t a r t = ac > 1 ? s t r t o l ( argv [1] ,0 ,0) : 20 ; // Argument 1: Number

↪→ of v e r t i c e s N
i n t N end = ac > 2 ? s t r t o l ( argv [2] ,0 ,0) : N s t a r t ; // Argument 1:

↪→ Number of v e r t i c e s N
auto N runs = 3 ;

ofstream o u t f i l e ( ” IsomerspaceOpt V7 ” + t o s t r ing ( N end ) + ” . t x t ” ) ;
ofstream o u t f i l e s t d ( ” IsomerspaceOpt V7 STD ” + t o s t r ing ( N end ) + ” . t x t ” ) ;
f o r ( i n t N = N s t a r t ; N ¡ N end + 1 ; N+=2){

i f (N == 22) cont inue ;
auto n f u l l e r e n e s = num ful lerenes . f ind (N)−>second ;
Graph G;
auto Nf = N/2 +2;
G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;
auto bucky = BuckyGen :: s t a r t (N, f a l s e , f a l s e ) ;

std :: s t r i n g path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
auto n samples = f s i z e / ( Nf * 6 * s i z e o f ( device node t ) ) ;
i fstream i n f i l e ( path , std :: i o s :: b inary ) ;
std :: vector ¡ device node t> dual ne ighbours ( n samples * Nf * 6) ;
i n f i l e . read (( char * ) dual ne ighbours . data () , n samples * Nf * 6 * s i z e o f ( device node t ) )

↪→ ;
auto optimal batch size = i somerspace forcef ie ld :: optimal batch size (N) ;
auto sample s i ze = min( optimal batch size , ( i n t ) n samples ) ;
i f ( n f u l l e r e n e s ¡ optimal batch size *2){

sample s i ze = max(( i n t ) n f u l l e r e n e s /2 ,1) ;
} e l s e i f ( n f u l l e r e n e s >= optimal batch size *8){

sample s i ze = optimal batch size *4 ;
} e l s e i f ( n f u l l e r e n e s >= optimal batch size *6){

sample s i ze = optimal batch size *3 ;
} e l s e i f ( n f u l l e r e n e s >= optimal batch size *4){

sample s i ze = optimal batch size *2 ;
} e l s e i f ( n f u l l e r e n e s >= optimal batch size *2){

sample s i ze = optimal batch size ;
}

std :: vector ¡ in t> random IDs ( n samples ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
auto id range end = min(( i n t ) n samples , sample s i ze ) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+n samples ) ;
auto

T ends = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T par = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ,
T io = std :: vector ¡ std :: chrono :: nanoseconds>(N runs , chrono :: nanoseconds (1) ) ;

auto f i n i s h e d f u l l e r e n e s = 0 ;
//ACTUAL PIPELINE CODE
fo r ( i n t i = 0 ; i ¡ N runs ; i++){
f i n i s h e d f u l l e r e n e s = 0 ;
LaunchCtx i n s e r t 0 c t x (0) ;
LaunchCtx i n s e r t 1 c t x (1) ;
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LaunchCtx dev i ce0 c tx (0) ;
LaunchCtx dev i ce1 c tx (1) ;

IsomerQueue input0 queue (N, 0) ;
IsomerQueue input1 queue (N, 1) ;
IsomerQueue opt0 queue (N, 0) ;
IsomerQueue opt1 queue (N, 1) ;
IsomerQueue output0 queue (N,0 ) ;
IsomerQueue output1 queue (N,1 ) ;
input0 queue . res ize ( sample s i ze *2) ;
input1 queue . res ize ( sample s i ze *2) ;
output0 queue . res ize ( sample s i ze ) ;
output1 queue . res ize ( sample s i ze ) ;
opt0 queue . res ize ( n samples *2) ;
opt1 queue . res ize ( n samples *2) ;

IsomerBatch input0 (N, sample s i ze * 2 , DEVICE BUFFER , 0) ;
IsomerBatch input1 (N, sample s i ze * 2 , DEVICE BUFFER , 1) ;
IsomerBatch opt0 (N, sample s ize , DEVICE BUFFER , 0) ;
IsomerBatch opt1 (N, sample s ize , DEVICE BUFFER , 1) ;

i n t I a s ync = 0 ;
auto genera te i somers = [&]( i n t M){

i f ( I a s ync == min( n f u l l e r e n e s , n samples *10) ) re turn f a l s e ;
f o r ( i n t i = 0 ; i ¡ M; i++){

i f ( I a s ync ¡ min( n f u l l e r e n e s , n samples *10) ){
f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){

G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = dual ne ighbours [ i d s u b s e t [ I a sync%n samples ] *Nf*6 + j *6 +
↪→ k] ;

i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;
}

}
input0 queue . i n s e r t (G, I async , i n s e r t 0 c t x , ASYNC) ;
input1 queue . i n s e r t (G, I async , i n s e r t 1 c t x , ASYNC) ;
I a s ync++;

}
}

input0 queue . r e f i l l b a t c h ( input0 , i n s e r t 0 c t x , ASYNC) ;
input1 queue . r e f i l l b a t c h ( input1 , i n s e r t 1 c t x , ASYNC) ;
isomerspace dual :: dua l i ze ( input0 , i n s e r t 0 c t x , ASYNC) ;
isomerspace dual :: dua l i ze ( input1 , i n s e r t 1 c t x , ASYNC) ;
isomerspace tutte :: tu t te layout ( input0 , 1000000 , i n s e r t 0 c t x , ASYNC) ;
isomerspace tutte :: tu t te layout ( input1 , 1000000 , i n s e r t 1 c t x , ASYNC) ;
isomerspace X0 :: zero order geometry ( input0 , 4 .0 , i n s e r t 0 c t x , ASYNC) ;
isomerspace X0 :: zero order geometry ( input1 , 4 .0 , i n s e r t 1 c t x , ASYNC) ;
i n s e r t 0 c t x . wait () ; i n s e r t 1 c t x . wait () ;

re turn I a sync ¡ min( s i z e t ( c e i l ( n f u l l e r e n e s /2) ) , n samples *10) ;
} ;
auto T1 = chrono :: high resolut ion c lock :: now() ;
genera te i somers ( sample s i ze *2) ;

opt0 queue . i n s e r t ( input0 , dev i ce0 c tx , ASYNC) ;
opt1 queue . i n s e r t ( input1 , dev i ce1 c tx , ASYNC) ;
opt0 queue . r e f i l l b a t c h ( opt0 , dev i ce0 c tx , ASYNC) ;
opt1 queue . r e f i l l b a t c h ( opt1 , dev i ce1 c tx , ASYNC) ;
dev i c e0 c tx . wait () ; dev i c e1 c tx . wait () ;
T ends [ i ] += T1 − chrono :: high resolut ion c lock :: now() ;
bool more to do = true ;
bool more to generate = f a l s e ;
auto s tep = max(1 , ( i n t )N/2) ;

while ( more to do ){
bool optimize more = true ;
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auto generate handle = std :: async ( std :: launch :: async , generate i somers , opt0 .
↪→ i s omer capac i t y *2) ;

while ( optimize more ){
auto T2 = chrono :: high resolut ion c lock :: now() ;
i somerspace forcef ie ld :: optimize ¡BUSTER>(opt0 , step , N* 5 , dev i ce0 c tx , ASYNC) ;
i somerspace forcef ie ld :: optimize ¡BUSTER>(opt1 , step , N* 5 , dev i ce1 c tx , ASYNC) ;
output0 queue . push( opt0 , dev i ce0 c tx , ASYNC) ;
output1 queue . push( opt1 , dev i ce1 c tx , ASYNC) ;
opt0 queue . r e f i l l b a t c h ( opt0 , dev i ce0 c tx , ASYNC) ;
opt1 queue . r e f i l l b a t c h ( opt1 , dev i ce1 c tx , ASYNC) ;
dev i c e0 c tx . wait () ; dev i c e1 c tx . wait () ;
T par [ i ] += chrono :: high resolut ion c lock :: now() − T2 ;
f i n i s h e d f u l l e r e n e s += output0 queue . g e t s i z e () + output1 queue . g e t s i z e () ;
output0 queue . c lear ( dev i c e0 c tx ) ;
output1 queue . c lear ( dev i c e1 c tx ) ;
optimize more = opt0 queue . g e t s i z e () >= opt0 . i somer capac i t y ;

}
auto T3 = chrono :: high resolut ion c lock :: now() ;
generate handle . wait () ;
more to generate = generate handle . get () ;
opt0 queue . i n s e r t ( input0 , dev i ce0 c tx , ASYNC) ;
opt1 queue . i n s e r t ( input1 , dev i ce1 c tx , ASYNC) ;
dev i c e0 c tx . wait () ; dev i c e1 c tx . wait () ;
f i n i s h e d f u l l e r e n e s += output0 queue . g e t s i z e () + output1 queue . g e t s i z e () ;
auto T4 = chrono :: high resolut ion c lock :: now() ;
i f ( more to generate ) T par [ i ] += T4 − T3 ;
i f ( ! more to generate ){

while ( opt0 queue . g e t s i z e () > 0){
i somerspace forcef ie ld :: optimize ¡BUSTER>(opt0 , step , N* 5 , dev i ce0 c tx ,

↪→ ASYNC) ;
i somerspace forcef ie ld :: optimize ¡BUSTER>(opt1 , step , N* 5 , dev i ce1 c tx ,

↪→ ASYNC) ;
output0 queue . push( opt0 , dev i ce0 c tx , ASYNC) ;
output1 queue . push( opt1 , dev i ce1 c tx , ASYNC) ;
opt0 queue . r e f i l l b a t c h ( opt0 , dev i ce0 c tx , ASYNC) ;
opt1 queue . r e f i l l b a t c h ( opt1 , dev i ce1 c tx , ASYNC) ;
dev i c e0 c tx . wait () ; dev i c e1 c tx . wait () ;

}
f o r ( i n t i = 0 ; i ¡ N*5 ; i += step ){

i somerspace forcef ie ld :: optimize ¡BUSTER>(opt0 , step , N* 5 , dev i ce0 c tx ,
↪→ ASYNC) ;

i somerspace forcef ie ld :: optimize ¡BUSTER>(opt1 , step , N* 5 , dev i ce1 c tx ,
↪→ ASYNC) ;

}
output0 queue . push( opt0 , dev i ce0 c tx , ASYNC) ;
output1 queue . push( opt1 , dev i ce1 c tx , ASYNC) ;
dev i c e0 c tx . wait () ; dev i c e1 c tx . wait () ;
more to do = f a l s e ;

}
T ends [ i ] += chrono :: high resolut ion c lock :: now() − T4 ;

}
}
i f ( n f u l l e r e n e s > n samples *10){

auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ f i n i s h e d f u l l e r e n e s

↪→ ¡ ¡ ” , ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T io ) /1ns ) / t o t a l
↪→ * 100. ¡ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1us ) /
↪→ f i n i s h e d f u l l e r e n e s ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ n f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡ f i n i s h e d f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡ mean
↪→ ( T ends ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ n f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡ f i n i s h e d f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡
↪→ sdev ( T ends ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T par ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”
↪→ \n” ; }

e l s e {
auto t o t a l = ( f l o a t ) (mean( T io ) /1ns + mean( T par ) /1ns + mean( T ends ) /1ns ) ;
std :: cout ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ n f u l l e r e n e s ¡ ¡ ” ,
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↪→ ” ¡ ¡ (mean( T par ) /1ns ) / t o t a l * 100. ¡ ¡ ”%, ” ¡ ¡ (mean( T io ) /1ns ) / t o t a l * 100. ¡
↪→ ¡ ”%, ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us+mean( T par ) /1us + mean( T ends ) /1us ) /
↪→ n f u l l e r e n e s ¡ ¡ ” us/ isomer\n” ;

o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ n f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡ n f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡ mean( T ends
↪→ ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T par ) /1ns + mean( T ends ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io )
↪→ /1ns ¡ ¡ ”\n” ;

o u t f i l e s t d ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ n f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡ n f u l l e r e n e s ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T ends ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T par ) /1ns + sdev ( T ends ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T io ) /1ns ¡ ¡ ”\n” ; }

std :: cout ¡ ¡ ( f l o a t ) f i n i s h e d f u l l e r e n e s / ( f l o a t ) (mean( T par ) /1ms) ¡ ¡ std :: endl ;
}
LaunchCtx :: c l e a r a l l o c a t i o n s () ;

}
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Listing C.9: Benchmark Parallel Components

#inc lude ” f u l l e r e n e s /gpu/ isomer queue . hh”
#inc lude ” f u l l e r e n e s /gpu/ cuda io . hh”
#inc lude ” f u l l e r e n e s /gpu/ ke rne l s . hh”
#inc lude ” f u l l e r e n e s /gpu/ benchmark funct ions . hh”
#inc lude ” numeric ”
#inc lude ” random”
#inc lude ” f i l e s y s t e m ”
using namespace gpu kernels ;

i n t main( i n t argc , char ** argv ){

s i z e t N s t a r t = argc > 1 ? s t r t o l ( argv [1] ,0 ,0) : ( s i z e t )20 ; //
↪→ Argument 1: S t a r t of range of N

s i z e t N l im i t = argc > 2 ? s t r t o l ( argv [2] ,0 ,0) : N s t a r t ; //
↪→ Argument 2: End of range of N

s i z e t N runs = argc > 3 ? s t r t o l ( argv [3] ,0 ,0) : 3 ; //
↪→ Argument 3: Number of t imes to run experiment

s i z e t warmup = argc > 4 ? s t r t o l ( argv [4] ,0 ,0) : 0 ; //
↪→ Argument 4: Seconds to warmup GPU

ofstream o u t f i l e ( ” ParBenchmark ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream ou t s td ( ” ParBenchmark STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
o u t f i l e ¡ ¡ ” Generate , Samples , Update , Dual , Tutte , X0 , Optimize \n” ;

cuda benchmark :: warmup kernel (warmup*1s ) ;
LaunchCtx c tx (0) ;
f o r ( s i z e t N = N s t a r t ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ;
Graph G;

auto b a t c h s i z e = i somerspace forcef ie ld :: optimal batch size (N) ;
auto n f u l l e r e n e s = ( i n t ) num ful lerenes . f ind (N)−>second ;
auto sample s i ze = min( b a t c h s i z e * 1 , n f u l l e r e n e s ) ;
i f ( n f u l l e r e n e s ¡ b a t c h s i z e ){

sample s i ze = n f u l l e r e n e s ;
} e l s e i f ( n f u l l e r e n e s ¡ b a t c h s i z e *2){

sample s i ze = b a t c h s i z e ;
} e l s e i f ( n f u l l e r e n e s ¡ b a t c h s i z e *3){

sample s i ze = b a t c h s i z e *2 ;
} e l s e i f ( n f u l l e r e n e s ¡ b a t c h s i z e *4){

sample s i ze = b a t c h s i z e *3 ;
} e l s e {

sample s i ze = b a t c h s i z e *4 ;
}

i f (N == 22) cont inue ;
std :: cout ¡ ¡ sample s i ze ¡ ¡ endl ;

bool more to generate = true ;

std :: vector ¡ std :: chrono :: nanoseconds>
T gens ( N runs ) ,
T duals ( N runs ) ,
T t u t t e s ( N runs ) ,
T X0s ( N runs ) ,
T opts ( N runs ) ,
T f l a t ( N runs ) ,
T queue ( N runs ) ,
T io ( N runs ) ;

auto Nf = N/2 + 2 ;
G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;
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auto path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
i fstream i somer sample ( path , std :: i o s :: b inary ) ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
std :: vector ¡ device node t> i n p u t b u f f e r ( f s i z e / s i z e o f ( device node t ) ) ;
auto ava i l ab l e samp le s = f s i z e / ( Nf*6* s i z e o f ( device node t ) ) ;
isomer sample . read ( r e i n t e r p r e t c a s t ¡ char *>( i n p u t b u f f e r . data () ) , Nf*6* s i z e o f (

↪→ device node t ) * ava i l ab l e samp le s ) ;

std :: vector ¡ in t> random IDs ( ava i l ab l e samp le s ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;

auto f i n i s h e d i s o m e r s = 0 ;
f o r ( s i z e t l = 0 ; l ¡ N runs ; l++)
{

f i n i s h e d i s o m e r s = 0 ;
IsomerBatch batch0 (N, sample s ize , DEVICE BUFFER ,0) ;
IsomerBatch batch1 (N, sample s ize , DEVICE BUFFER ,0) ;
IsomerBatch batch2 (N, sample s ize , DEVICE BUFFER ,0) ;
IsomerBatch h batch (N, sample s ize , HOST BUFFER) ;
LaunchCtx c tx (0) ;
cuda io :: IsomerQueue i somer q (N,0 ) ;
cuda io :: IsomerQueue i somer q cub i c (N,0 ) ;
cuda io :: IsomerQueue OutQueue(N,0 ) ;
OutQueue . res ize ( sample s i ze ) ;
i somer q cub i c . res ize (min( n f u l l e r e n e s ,10000 + sample s i ze ) ) ;
isomer q . res ize (min( n f u l l e r e n e s , sample s i ze ) ) ;
f o r ( i n t i = 0 ; i ¡ sample s i ze ; i++){

f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){
G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = i n p u t b u f f e r [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}
i somer q . i n s e r t (G, i ) ;

}
batch0 . c lear () ;
isomer q . r e f i l l b a t c h ( batch0 ) ;
auto TDual = isomerspace dual :: t ime spent () ;
isomerspace dual :: dua l i ze ( batch0 ) ;
auto TTutte = isomerspace tutte :: t ime spent () ; T duals [ l ] += isomerspace dual ::

↪→ t ime spent () − TDual ;
isomerspace tutte :: tu t te layout ( batch0 ) ;
auto TX0 = isomerspace X0 :: t ime spent () ; T t u t t e s [ l ] += isomerspace tutte ::

↪→ t ime spent () − TTutte ;
isomerspace X0 :: zero order geometry ( batch0 , 4 .0) ;
T X0s [ l ] += isomerspace X0 :: t ime spent () − TX0 ;

cuda io :: copy ( batch1 , batch0 ) ;
while ( i somer q cub i c . g e t s i z e () ¡ min( n f u l l e r e n e s ,10000) ){

i somer q cub i c . i n s e r t ( batch1 ) ;
cuda io :: copy ( batch1 , batch0 ) ;

}
auto TFF = high resolut ion c lock :: now() ;
i somerspace forcef ie ld :: optimize ¡BUSTER>(batch0 ,N* 5 ,N*5) ;
auto TF la t = high resolut ion c lock :: now() ; T opts [ l ] += TFla t − TFF ;
i somerspace forcef ie ld :: optimize ¡FLATNESS ENABLED>(batch1 ,N* 5 ,N*5) ;
T f l a t [ l ] += high resolut ion c lock :: now() − TFla t ;
OutQueue . push( batch2 , ctx , LaunchPolicy :: SYNC) ;
auto T0 = high resolut ion c lock :: now() ;
auto j = i somer q cub i c . g e t s i z e () ;
i f ( n f u l l e r e n e s >= 10000){

while ( j > sample s i ze ){
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auto T1 = high resolut ion c lock :: now() ;
i somer q cub i c . r e f i l l b a t c h ( batch2 , ctx , LaunchPolicy :: SYNC) ;
auto T2 = high resolut ion c lock :: now() ; T io [ l ] += T2 − T1 ;
i somerspace forcef ie ld :: optimize ¡BUSTER>(batch2 ,N* 0.5 ,N* 5 , ctx ,

↪→ LaunchPolicy :: SYNC) ;
auto T3 = high resolut ion c lock :: now() ;
OutQueue . push( batch2 , ctx , LaunchPolicy :: SYNC) ;
f i n i s h e d i s o m e r s += OutQueue . g e t s i z e () ;
j = i somer q cub i c . g e t s i z e () ;
OutQueue . c lear ( ctx , LaunchPolicy :: SYNC) ;
T io [ l ] += high resolut ion c lock :: now() − T3 ;

}
} e l s e {

while ( f i n i s h e d i s o m e r s ¡ n f u l l e r e n e s ){
auto T1 = high resolut ion c lock :: now() ;
i somer q cub i c . r e f i l l b a t c h ( batch2 ) ;
auto T2 = high resolut ion c lock :: now() ; T io [ l ] += T2 − T1 ;
i somerspace forcef ie ld :: optimize ¡BUSTER>(batch2 ,N* 0.5 ,N*5) ;
auto T3 = high resolut ion c lock :: now() ;
OutQueue . push( batch2 ) ;
j = OutQueue . g e t s i z e () ;
f i n i s h e d i s o m e r s += j ;
OutQueue . c lear () ;
T io [ l ] += high resolut ion c lock :: now() − T3 ;

}
}
T queue [ l ] += high resolut ion c lock :: now() − T0 ;
c tx . wait () ;
i f (OutQueue . g e t c a p a c i t y ()> 10000 + sample s i ze ) std :: cout ¡ ¡ ” Warning : OutQueue

↪→ i n i t i a l c apac i t y exceeded ” ¡ ¡ std :: endl ;
// s td :: cout ¡ ¡ f i n i s h e d i s o m e r s ¡ ¡ ” : ” ¡ ¡ ( ( h i g h r e s o l u t i o n c l o c k :: now() − Tio ) /1

↪→ us ) ¡ ¡ ” us ” ¡ ¡ ( T queue [ l ]/1 us ) ¡ ¡ ” us ” ¡ ¡ ( T io [ l ]/1 us ) ¡ ¡ ” us ” ¡ ¡ (
↪→ T r e f i l l /1us ) ¡ ¡ ” us ” ¡ ¡ ( Tpush/1us ) ¡ ¡ ” us ” ¡ ¡ ( Tget /1us ) ¡ ¡ ” us ” ¡ ¡
↪→ ( Tc lea r /1us ) /( f l o a t ) f i n i s h e d i s o m e r s ¡ ¡ ” us ” ¡ ¡ s td :: endl ;

}
using namespace cuda io ;
// P r i n t out runtimes in us per isomer :
std :: cout ¡ ¡ N ¡ ¡ ” Dual : ” ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ ( f l o a t ) (mean(

↪→ T duals ) /1us ) / sample s i ze ¡ ¡ ” us Tutte : ” ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n
↪→ (2) ¡ ¡ ( f l o a t ) (mean( T t u t t e s ) /1us ) / sample s i ze ¡ ¡ ” us X0 : ” ¡ ¡ std :: f i x e d ¡ ¡
↪→ std :: s e t p r e c i s i o n (2) ¡ ¡ ( f l o a t ) (mean( T X0s ) /1us ) / sample s i ze ¡ ¡ ” us Opt : ” ¡ ¡
↪→ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ ( f l o a t ) (mean( T opts ) /1us ) / sample s i ze ¡ ¡
↪→ ” us F l a t : ” ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ ( f l o a t ) (mean( T f l a t ) /1us )
↪→ / sample s i ze ¡ ¡ ” us Queue : ” ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n (2) ¡ ¡ ( f l o a t ) (
↪→ mean( T queue ) /1us ) / f i n i s h e d i s o m e r s ¡ ¡ ” us ” ¡ ¡ std :: f i x e d ¡ ¡ std :: s e t p r e c i s i o n
↪→ (2) ¡ ¡ ” IO : ” ¡ ¡ ( f l o a t ) (mean( T io ) /1us ) / f i n i s h e d i s o m e r s ¡ ¡ ” us ” ¡ ¡ std ::
↪→ endl ;

// P r i n t out what f r a c t i o n of the runtime tha t each component took :
o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ f i n i s h e d i s o m e r s ¡ ¡ ” , ” ¡ ¡ mean( T gens )

↪→ /1ns ¡ ¡ ” , ” ¡ ¡ mean( T duals ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T X0s ) /1ns ¡ ¡ ” , ” ¡ ¡ mean(
↪→ T t u t t e s ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T opts ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T f l a t ) /1ns ¡ ¡ ” , ”
↪→ ¡ ¡ mean( T queue ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T io ) /1ns ¡ ¡ ”\n” ;

ou t s td ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ f i n i s h e d i s o m e r s ¡ ¡ ” , ” ¡ ¡ sdev ( T gens )
↪→ /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T duals ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T X0s ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T t u t t e s ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T opts ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T f l a t ) /1ns ¡ ¡ ” , ” ¡ ¡
↪→ sdev ( T queue ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T io ) /1ns ¡ ¡ ”\n” ;

}

}
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Listing C.10: Benchmark Sequential Components
#inc lude ” f i l e s y s t e m ”
#inc lude ” random”
#inc lude ” numeric ”
const std :: unordered map ¡ s i ze t , s i ze t> num ful lerenes =

↪→ {{20 ,1} ,{22 ,0} ,{24 ,1} ,{26 ,1} ,{28 ,2} ,{30 ,3} ,{32 ,6} ,{34 ,6} ,{36 ,15} ,{38 ,17} ,{40 ,40} ,{42 ,45} ,{44 ,89} ,{46 ,116} ,{48 ,199} ,{50 ,271} ,{52 ,437} ,{54 ,580} ,{56 ,924} ,{58 ,1205} ,{60 ,1812} ,{62 ,2385} ,{64 ,3465} ,{66 ,4478} ,{68 ,6332} ,{70 ,8149} ,{72 ,11190} ,{74 ,14246} ,{76 ,19151} ,{78 ,24109} ,{80 ,31924} ,{82 ,39718} ,{84 ,51592} ,{86 ,63761} ,{88 ,81738} ,{90 ,99918} ,{92 ,126409} ,{94 ,153493} ,{96 ,191839} ,{98 ,231017} ,{100 ,285914} ,{102 ,341658} ,{104 ,419013} ,{106 ,497529} ,{108 ,604217} ,{110 ,713319} ,{112 ,860161} ,{114 ,1008444} ,{116 ,1207119} ,{118 ,1408553} ,{120 ,1674171} ,{122 ,1942929} ,{124 ,2295721} ,{126 ,2650866} ,{128 ,3114236} ,{130 ,3580637} ,{132 ,4182071} ,{134 ,4787715} ,{136 ,5566949} ,{138 ,6344698} ,{140 ,7341204} ,{142 ,8339033} ,{144 ,9604411} ,{146 ,10867631} ,{148 ,12469092} ,{150 ,14059174} ,{152 ,16066025} ,{154 ,18060979} ,{156 ,20558767} ,{158 ,23037594} ,{160 ,26142839} ,{162 ,29202543} ,{164 ,33022573} ,{166 ,36798433} ,{168 ,41478344} ,{170 ,46088157} ,{172 ,51809031} ,{174 ,57417264} ,{176 ,64353269} ,{178 ,71163452} ,{180 ,79538751} ,{182 ,87738311} ,{184 ,97841183} ,{186 ,107679717} ,{188 ,119761075} ,{190 ,131561744} ,{192 ,145976674} ,{194 ,159999462} ,{196 ,177175687} ,{198 ,193814658} ,{200 ,214127742} ,{202 ,233846463} ,{204 ,257815889} ,{206 ,281006325} ,{208 ,309273526} ,{210 ,336500830} ,{212 ,369580714} ,{214 ,401535955} ,{216 ,440216206} ,{218 ,477420176} ,{220 ,522599564} ,{222 ,565900181} ,{224 ,618309598} ,{226 ,668662698} ,{228 ,729414880} ,{230 ,787556069} ,{232 ,857934016} ,{234 ,925042498} ,{236 ,1006016526} ,{238 ,1083451816} ,{240 ,1176632247} ,{242 ,1265323971} ,{244 ,1372440782} ,{246 ,1474111053} ,{248 ,1596482232} ,{250 ,1712934069} ,{252 ,1852762875} ,{254 ,1985250572} ,{256 ,2144943655} ,{258 ,2295793276} ,{260 ,2477017558} ,{262 ,2648697036} ,{264 ,2854536850} ,{266 ,3048609900} ,{268 ,3282202941} ,{270 ,3501931260} ,{272 ,3765465341} ,{274 ,4014007928} ,{276 ,4311652376} ,{278 ,4591045471} ,{280 ,4926987377} ,{282 ,5241548270} ,{284 ,5618445787} ,{286 ,5972426835} ,{288 ,6395981131} ,{290 ,6791769082} ,{292 ,7267283603} ,{294 ,7710782991} ,{296 ,8241719706} ,{298 ,8738236515} ,{300 ,9332065811} ,{302 ,9884604767} ,{304 ,10548218751} ,{306 ,11164542762} ,{308 ,11902015724} ,{310 ,12588998862} ,{312 ,13410330482} ,{314 ,14171344797} ,{316 ,15085164571} ,{318 ,15930619304} ,{320 ,16942010457} ,{322 ,17880232383} ,{324 ,19002055537} ,{326 ,20037346408} ,{328 ,21280571390} ,{330 ,22426253115} ,{332 ,23796620378} ,{334 ,25063227406} ,{336 ,26577912084} ,{338 ,27970034826} ,{340 ,29642262229} ,{342 ,31177474996} ,{344 ,33014225318} ,{346 ,34705254287} ,{348 ,36728266430} ,{350 ,38580626759} ,{352 ,40806395661} ,{354 ,42842199753} ,{356 ,45278616586} ,{358 ,47513679057} ,{360 ,50189039868} ,{362 ,52628839448} ,{364 ,55562506886} ,{366 ,58236270451} ,{368 ,61437700788} ,{370 ,64363670678} ,{372 ,67868149215} ,{374 ,71052718441} ,{376 ,74884539987} ,{378 ,78364039771} ,{380 ,82532990559} ,{382 ,86329680991} ,{384 ,90881152117} ,{386 ,95001297565} ,{388 ,99963147805} ,{390 ,104453597992} ,{392 ,109837310021} ,{394 ,114722988623} ,{396 ,120585261143} ,{398 ,125873325588} ,{400 ,132247999328}}
↪→ ;

us ing namespace chrono ;
us ing namespace c h r o n o l i t e r a l s ;

i n t main( i n t argc , char ** argv ){
const s i z e t N l im i t = s t r t o l ( argv [1] ,0 ,0) ; // Argument 1: Number of

↪→ v e r t i c e s N
auto N runs = 5 ;
ofstream o u t f i l e ( ” SeqBenchmark ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
ofstream ou t s td ( ” SeqBenchmark STD ” + t o s t r ing ( N l im i t ) + ” . t x t ” ) ;
o u t f i l e ¡ ¡ ” Generate , Samples , Update , Dual , Tutte , X0 , Optimize \n” ;
f o r ( s i z e t N = 20 ; N ¡ N l im i t+1; N+=2)
{

i f (N == 22) cont inue ;
BuckyGen :: buckygen queue Q = BuckyGen :: s t a r t (N, f a l s e , f a l s e ) ;

auto sample s i ze = min( gpu kernels :: i somerspace forcef ie ld :: optimal batch size (N,0 ) , (
↪→ i n t ) num ful lerenes . f ind (N)−>second ) ;

FullereneDual G;

bool more to generate = true ;

std :: vector ¡ std :: chrono :: nanoseconds>
T gens ( N runs , chrono :: nanoseconds (0) ) ,
T duals ( N runs , chrono :: nanoseconds (0) ) ,
T t u t t e s ( N runs , chrono :: nanoseconds (0) ) ,
T X0s ( N runs , chrono :: nanoseconds (0) ) ,
T opts ( N runs , chrono :: nanoseconds (0) ) ,
T po lys ( N runs , chrono :: nanoseconds (0) ) ;

auto Nf = N /2 + 2 ;
G. neighbours = neighbours t (Nf , std :: vector ¡ node t >(6)) ;
G.N = Nf ;

auto path = ” isomerspace samples / d u a l l a y o u t ” + t o s t r ing (N) + ” seed 42 ” ;
i fstream i somer sample ( path , std :: i o s :: b inary ) ;
auto f s i z e = std :: f i lesystem :: f i l e s i z e ( path ) ;
std :: vector ¡ device node t> i n p u t b u f f e r ( f s i z e / s i z e o f ( device node t ) ) ;
auto ava i l ab l e samp le s = f s i z e / ( Nf*6* s i z e o f ( device node t ) ) ;
isomer sample . read ( r e i n t e r p r e t c a s t ¡ char *>( i n p u t b u f f e r . data () ) , Nf*6*

↪→ ava i l ab l e samp le s * s i z e o f ( device node t ) ) ;

std :: vector ¡ in t> random IDs ( ava i l ab l e samp le s ) ;
std :: io ta ( random IDs . begin () , random IDs . end () , 0) ;
std :: shuf f le ( random IDs . begin () , random IDs . end () , std :: mt19937{42}) ;
std :: vector ¡ in t> i d s u b s e t ( random IDs . begin () , random IDs . begin ()+sample s i ze ) ;

f o r ( i n t l = 0 ; l ¡ N runs ; l++){
f o r ( i n t i = 0 ; i ¡ sample s i ze ; ++i ){

f o r ( s i z e t j = 0 ; j ¡ Nf ; j++){
G. neighbours [ j ] . c lear () ;
f o r ( s i z e t k = 0 ; k ¡ 6 ; k++) {

auto u = i n p u t b u f f e r [ i d s u b s e t [ i ] *Nf*6 + j *6 +k] ;
i f (u != UINT16 MAX) G. neighbours [ j ] . push back (u) ;

}
}

auto T1 = high resolut ion c lock :: now() ;
G. update () ;
PlanarGraph pG = G. dual graph () ;

auto T2 = high resolut ion c lock :: now() ; T duals [ l ] += T2 − T1 ;
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Polyhedron P(pG) ;
auto T3 = high resolut ion c lock :: now() ; T po lys [ l ] += T3 − T2 ;

P . layout2d = P . tu t te layout () ;
auto T4 = high resolut ion c lock :: now() ; T t u t t e s [ l ] += T4 − T3 ;

P . po in t s = P . zero order geometry () ;
auto T5 = high resolut ion c lock :: now() ; T X0s [ l ] += T5 − T4 ;

P . optimize () ;
auto T6 = high resolut ion c lock :: now() ; T opts [ l ] += T6 − T5 ;

}
}
using namespace cuda io ;
o u t f i l e ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ mean( T gens ) /1ns ¡ ¡ ” , ” ¡ ¡ mean(

↪→ T duals ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T X0s ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T t u t t e s ) /1ns ¡ ¡ ” , ” ¡ ¡
↪→ mean( T opts ) /1ns ¡ ¡ ” , ” ¡ ¡ mean( T polys ) /1ns ¡ ¡ ”\n” ;

ou t s td ¡ ¡ N ¡ ¡ ” , ” ¡ ¡ sample s i ze ¡ ¡ ” , ” ¡ ¡ sdev ( T gens ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev (
↪→ T duals ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T X0s ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T t u t t e s ) /1ns ¡ ¡ ” , ” ¡ ¡
↪→ sdev ( T opts ) /1ns ¡ ¡ ” , ” ¡ ¡ sdev ( T polys ) /1ns ¡ ¡ ”\n” ;

}

}
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