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Abstract

A protocol for generating entangled continuous variable states violating th

CHSH inequality utilizing a superconducting qubit-microwave cavity interac-

tion is suggested. The states are adapted from an article by Wenger et. al[35]

and reproduces these states differing only by a quadrature dependent phase in

one term of the entangled state. In a simple theoretical setup with no noise

and perfect detectors the states achieve an S value of ≈ 2.41. The protocol is

iterable, allowing for the expansion of the protocol by sacrificing propability

of preparing the desired state for generating a state with higher violation of

the CHSH inequality.

The origin of the correlations within the prepared state is examined through

the lens of subsystem decomposition, regarding them as stemming from a

qubit encoded in the continuous variable states.
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1Introduction

Entangled states violating a Bell inequality are the basis for building communi-

cation setups using quantum cryptography protocols that are, in theory, com-

pletely safe from eavesdropping by unwelcome third parties[4][12]. Utilizing

quantum states based on continuous variables is one potential avenue[20][38],

however so far very few attempts have been able to violate the Bell tests that

function as threshold for whether a state would be usable in a quantum cryp-

tography protocol[11][30].

Advances in superconducting qubits as well as coupling of these to microwave

cavities[31][21] raises the feasibility of building setups capable of violating a

Bell inequality with continuous variable states of very high fidelity[18]. Kirch-

mair et. al. 2013[18] produced multi component cat-states of remarkably

high fidelity using a superconducting Kerr-medium coupled to a microwave

cavity, achieving a superposition of as much as 4 coherent states, see figure

1.1. Entangling such states seemed like a promising prospect for violating a

Bell inequality and this was the initial inspiration for this project, although

later the coice was made to utilize a superconducting qubit-microwave res-

onator interaction linking the σx operator of the qubit with a quadrature of

the resonator phase space. The result is a protocol that generates an entan-

gled state of continuous variables in two microwave resonators theoretically

capable of violating the CHSH (Clauser-Horne-Shimony-Holt) inequality[7].

Aditionally, the protocol could be extended by repeating the initial steps before

entanglement to generate more complex states with a higher violation of the

CHSH inequality.

The ability of these states to violate the inequality can be better understood by

doing a decomposition of the states into a logical qubit and two gauge states
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Figure 1.1: Multicomponent cat states of Kirchmair[2013][18]. The ability to prepare
multicomponent coherent superpositions of high fidelity was the initial
inspiration for this thesis.

i.e. as a qubit encoded within the states. This interpretation is inspired by clus-

ter states and GKP states[13][26], leading one to hope that the applications

expected of these states within quantum error correction for example could

also be expected of the state prepared by this protocol.

2 Chapter 1 Introduction



2Theory

2.1 Bell tests

2.1.1 Some brief history

In the early days of quantum mechanics, the philosophy of the scientific fields

was one of determinism, i.e., that given precise enough instruments our ever-

improving understanding of physics would eventually give us the ability to

accurately predict the outcome of any physical event. The core principles

of quantum mechanics flew in the face of this orthodoxy with its inherent

uncertainties.

However, especially unpalatable was the concept of entanglement where a

particle is only well described through its shared state with its entangled

partner particle(s), in theory regardless of separation. This phenomenon that

could allow a particle to instantly experience changes in its state as a result

of a particle half a solar system away led Albert Einstein to infamously and

mockingly dub it “spooky action at a distance”[2] (it should be noted that

though entangled particles can affect each other regardless of distance, these

effects do not allow for faster than light communication).

As an attempt to save their deterministic worldview but hold on to the frame-

work of quantum mechanics, skeptics of quantum mechanics introduced the

hidden variable theory[9]. This theory explained the uncertainties and strong

correlations of quantum mechanics as being governed by hidden variables that

allowed results to appear random in the sense asserted by quantum mechan-

ics, but in fact be part of some distribution governed by these new variables.

Similarly, entangled states would not instantaneously change when one part

was manipulated, but instead have a predictable result if this new variable was

known.

When John Bell proposed Bell tests, they were meant to refute local variables

as an explanation of quantum phenomena[3].
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2.1.2 CHSH inequality

(the derivation in this section broadly follows that found in John Preskill’s

unpublished book “Quantum Information and Computation” Chapter 4[27])

Two observers, Alice and Bob, are each given one of an entangled qubit pair,

for example in one of the bell states

∣∣∣Φ+
〉

= 1√
2

(
|00⟩ + |11⟩

)
(2.1)

Alice can measure the observables a and a′ while Bob can measure b and b′,

but during any given experiment they can each measure one and only one

observable each. All four observables have two eigenvalues, all taking values

of ±1. What kind of correlations can we now expect from the results of Alice’

and Bobs measurements? Since both a and a′ have values of either +1 or −1,

then either their sum or difference should amount to 0 and the other to ±2.

Multiplying the respective terms with b and b′ we get

(a+ a′)b+ (a− a′)b′ = ±2 (2.2)

Taking expectation values and using that the expectation value of the absolute

value of a variable is the upper bound of the absolute value of the expectation

value, we write

S = |⟨ab⟩ + ⟨a′b⟩ + ⟨ab′⟩ − ⟨a′b′⟩| ≤ 2 (2.3)

which is the CHSH inequality[7] and limits the correlations we can expect from

experiments of the type above within classical physics. However, quantum

mechanics predicts cases that violate this inequality. Suppose a and a′ are

orthogonal operators working on Alice’ qubit while b and b′ are orthogonal

operators working on Bobs qubit, we write these operators on the form

4 Chapter 2 Theory



a(′) = σA · ā(′) (2.4)

b(′) = σB · b̄(′) (2.5)

where σA and σB are eigenoperators of Alice and Bobs qubits respectively,

while ā(′) and b̄(′) are vectors for each observable. The expectation values in S

now become

⟨Φ+|σA · ā(′) · σB · b̄(′)⟩ = cos θ (2.6)

with θ being the angle between ā and b̄. If a, a′, b and b′ are coplanar and are

separated by consecutive angles of π
4 we have

S = 3 · cos π4 − cos 3π
4 = 2

√
2 ≈ 2.83 (2.7)

so applying quantum mechanical principles to our system produces correlations

exceeding those predicted by classical ‘intuitive’ principles. Implicit in the

derivation of the inequality above is the assumption of hidden variables in the

system leading to deterministic, this means that violating the CHSH inequality

suggests that local-realism is not the correct description of our world.

Even with a successful Bell-test violation a local-realist might have complaints;

there are several loopholes that could lead to a Bell-test being inconclusive in

showing quantum mechanical correlations.

One is the locality loophole, if the two measurements aren’t done very far

apart or within a very short timeframe, a skeptic could rightfully claim that

information about the result of the first measurement could have reached

the second qubit before measurement, thus for this loophole to be closed

measurements have to be separated in spacetime so information about one

result travelling at spacetime cannot reach the other qubit before measurement.

Another is the detection loophole; when working with imperfect detectors with

2.1 Bell tests 5



efficiencies well below 100% a hidden variable model could feasibly favour

detection results that lead to a violation of the Bell inequality even if the results

with lost measurements didn’t, as such detection efficiencies should be taken

into account when testing hidden variable theory, though in many experiments

the ‘fair sampling’ assumption is used, meaning that the results measured are

assumed to be representative of the results that would have been achieved

with 100% detector efficiency.

More loopholes exist, with most of them having been closed in experiments that

achieved violation of a Bell test and with some experiments being successful

with more than one loophole closed[16][28][33].

2.2 Continuous variable Bell tests

Most Bell test and in fact most quantum information experiments are done

with discrete variable systems, for example for optical polarized or time binned

single photons[8][22][25].

However while protocols for generating states are fairly straightforward, de-

tection of single photons can be an issue, with efficiencies of the most common

detectors, single-photon avalanche photodiodes, ranging in values between

around 10 % and 65 %[10][14] depending on detector and wavelength, how-

ever newer types of detectors such as superconducting nanowire single photon

detector (SNSPDs) with efficiencies above 90%[37] reported. This of course

leaves wide open the Bell inequality detection loophole and by extension leaves

any quantum communication protocol based on these systems vulnerable to

eavesdropping.

A more project specific reason to not work with single photons is the lack of

options for SPDs in the microwave since we’re interested in the interaction

between SC qubits and microwave resonators.

Working with continuous variable states, on the other hand, allows us to use

homodyne detection[15] for measurements, which in turn can use conven-

tional photo-detectors with near unity efficiency.

The shift from discrete to continuous states also carries more inherent ad-

vantages than the ability to use conventional technology. In theory, access to

continuous variables could allow for more efficient quantum computation than

discrete ones. [Refs to some CV quantum computing[29][36][5]]

Since the CHSH inequality is essentially derived for a qubit with a binary result
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and our continuous variables in theory can have infinitely many different re-

sults, measurement results can’t be simply plugged into the inequality formula.

There are two approaches to solving this, either use a different Bell inequality

designed for continuous variables[6] or sort measurement results into groups

and assign each group a value, so called binning, which will be our approach.

The choice of binning is free and as one might expect the best choice of binning

depends on the states examined, so the objective is very much to make the

binning process reflect any correlations present in the states at hand. As the

mention of homodyne detection suggests, the variables usually considered

for continuous variable Bell tests, and indeed also here, are the quadrature

operators of the electric field, X̂1 = 1
2(â + â†) and X̂2 = 1

2i
(â − â†). They are

orthogonal, have the commutation relation [X̂1, X̂2] = i
2 , similar to that of

position x̂ and momentum p̂, which leads to the interpretation of X̂1 and X̂2

constituting a phase space of the electric field and the convention of simply

refering to them as position and momentum when working in the phase space,

which will also be the case in this thesis. The infinite dimensional Hilbert

spaces constituting the position and momentum variables are eigenstates of

the operators and the eigenvalue problem returns the position or momentum

value

x̂ |x⟩ = x |x⟩ (2.8)

p̂ |p⟩ = p |p⟩ , (2.9)

the postion and momentum states both form complete sets

∫ ∞

∞
dx |x⟩ ⟨x| = 1 (2.10)∫ ∞

∞
dp |p⟩ ⟨p| = 1, (2.11)

and the fourier transform shifts between the two bases

F(|x⟩) ∝
∫ ∞

∞
dpe−i2x̂p̂ |p⟩ (2.12)

F(|p⟩) ∝
∫ ∞

∞
dxei2p̂x̂ |x⟩ . (2.13)

2.2 Continuous variable Bell tests 7



Incidentally, this basis shift functions similarly to a Hadamard gate.

The displacement operators Dx̂ and Dp̂ that shift the state in x̂ and p̂ respec-

tively are

Dx̂(X) = e−i2xp̂ (2.14)

Dp̂(p) = e−i2px̂. (2.15)

These operators also functions as phase shift operators when applied to a state

of the conjugate basis.

For this project the generation of entanglement between continuous variable

states is done through the interaction with a superconducting qubit, but other

methods to induce correlations that have been used include Kerr mediums and

two mode squeezing[11][19][34].

2.2.1 Homodyne detection

The method for measuring the quadratures X̂1 and X̂2 that constitute our

continuous variables is called homodyne detection. It works by mixing the

state to be measured on a beam splitter with what is conventionally called a

local oscillator, a strong coherent field usually generated by the same source

used for the generation of the state to be measured, thus the name homodyne;

"same wave".

Suppose we have a coherent state |α⟩ to be measured through homodyne

detection with the local oscillator |β · e−iωt⟩ with β = |β| · e−iϕ and the beam-

splitter is a 50/50 beamsplitter meaning this would be balanced homodyne

detection. if the input modes are â (our state to be measured) and b̂ (the local

oscillator with output modes ĉ and d̂, the transformation through the beam

splitter is

ĉ
d̂

 = 1√
2

1 i

i 1

 ·

â
b̂

 . (2.16)
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Following the beam splitter, two detectors measure the intensities Iσ = ⟨σ̂†σ̂⟩
of modes ĉ and d̂, leading to the shared measurement of the difference of

intensities

Ic − Id = ⟨ĉ†ĉ− d̂†d̂⟩ = ⟨â†b̂− b̂†â⟩. (2.17)

We can now move the magnitude |β| out and, assuming |α⟩ also has frequency

ω, the time dependency cancels out. |β⟩ picks up a phase of π
2 so defining

θ = ϕ+ π
2 we have

Ic − Id = |β| · ⟨â†e−iωteiθ + âeiωte−iθ⟩ = 2|β|⟨X̂(θ)⟩, (2.18)

with

X̂(θ) = 1
2

(
â0e

−iθ + â†
0e

iθ
)
. (2.19)

So through the choice of local oscillator, the quadrature being measured can

be chosen with a given angle, the position and momentum quadratures are

X̂1 = X̂(0) (2.20)

X̂2 = X̂(π2 ). (2.21)

2.3 Wenger et. al. 2003

In a 2003 paper[35] Wenger et. al. proposed a theoretical CV scheme that

could produce values of the CHSH inequality arbitrarily close to the maximum

of 2
√

2 using an on the surface simple binning scheme and a superposition of

multi component coherent states. However, at the time the authors deemed

their proposal infeasible mainly due to the lack of a realistic way of imple-

menting certain parts of their protocol (specifically a coupling Hamiltonian

2.3 Wenger et. al. 2003 9



Figure 2.1: Left: A simple scheme one might come up with for an arbitrary state
sorting quadrature measurements according to whether the result came
out positive or negative, for example used in my early attempts with Kerr
induced cat states (see chapter 6.1). Right: The rootbinning scheme.
Quadrature measurements are sorted into bins according to whether |f⟩
and |g⟩ have the same or different sign in a given area.

and a CNOT-gate). This combination of states and binning quickly became my

blueprint for getting from SC qubit coupling to CV states capable of violating a

Bell inequality. Early on during the project I chose to pursue the states pro-

posed in this paper, hoping that a superconductor-microwave cavity interaction

would prove to be the missing piece of the puzzle. The wave function is an

even superposition of the states introduced in the article

|Ψ⟩ = 1√
2

(
|ff⟩ + eiθ |gg⟩

)
, (2.22)

with |f⟩ and |g⟩ being the even and odd functions described below. The binning

scheme introduced is coined “root binning” (see figure 2.1), translating the

continuous variable measurement obtained to a binary result necessary to

calculate the CHSH inequality by sorting results according to whether they

fall within areas of same or differing signs for the functions f and g described

below. Results sorted into the + bin (same sign) are assigned the value +1

while results sorted in the – (differing sign) are assigned -1. With results sorted

S can be calculated as for a discrete system. In the article, two infinite sums of

delta functions are considered

10 Chapter 2 Theory



finf(x, α) ∝
∞∑

j=−∞
cos

(πx
2α

)
δ

(
x− 2(j + 1

2)α
)

(2.23)

ginf(x, α) ∝
∞∑

j=−∞
sin

(πx
2α

)
δ

(
x− 2(j + 1

2)α
)

(2.24)

the main difference is their symmetry around 0, with f being even and g being

odd. Another interesting property is that they for α =
√
π they are (apart from

a scaling constant) identical to their fourier transforms. This along with the

fact that f and g overlap perfectly suggests that very strong correlations can

be expected. These states are of course unphysical because of both the infinite

number and narrowness of the peaks. More reasonable functions with limited

number of peaks and delta functions widened out to gaussians

fN(x, α) ∝
(N/2)∑

j=−(N/2)
cos

(π
4 (2j + 1)

)
· e−

(
x−2(j+ 1

2 )α
)2

/2
(2.25)

gN(x, α) ∝
(N/2)∑

j=−(N/2)
sin

(π
4 (2j + 1)

)
· e−

(
x−2(j+ 1

2 )α
)2

/2
. (2.26)

For 4 peaks these become

f(x, α) ∝ −e−(x+3α)2/2 + e−(x+α)2/2 + e−(x−α)2/2 − e−(x−3α)2/2 (2.27)

g(x, α) ∝ −e−(x+3α)2/2 − e−(x+α)2/2 + e−(x−α)2/2 + e−(x−3α)2/2. (2.28)

To calculate S, the probability of different measurement outcomes as sorted

within the bins described above must first be calculated

P±± =
∫

D±

∫
D±

dσAdσBΨ(σA, σB) (2.29)

with Ψ(σA, σB) being the wavefunction in the corresponding bases σA and

σB, and D± denoting group of bins to be integrated over. The corresponding

correlation function is then

2.3 Wenger et. al. 2003 11



(a)

(b)

Figure 2.2: Plots of the Wigner functions of (a) |f⟩ and (b) |g⟩, although the states
have been approximated with superpositions of Fock states given in [35].
Plots are done using the python package QuTip[17].
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EσAσB
= P++ + P−− − P+− − P−+. (2.30)

Finally, the CHSH inequality is calculated as

S = |Exx + Epx + Exp − Epp| ≤ 2. (2.31)

Because of f and g being even and odd respectively, a simpler expression for S

can be reached with some clever rewriting

S = | cos(θ)
(
W 2 + V 2

)
− 2 sin(θ)WV | (2.32)

with

V =
∫

D+
f(x)g(x)dx−

∫
D−

f(x)g(x)dx =
∫ ∞

−∞
|f(x)g(x)|dx (2.33)

W =
∫

D+
f̃(p)g̃(p)dp−

∫
D−

f̃(p)g̃(p)dp =
∫ ∞

−∞
|f̃(p)g̃(p)|dp, (2.34)

where f̃(p) and g̃(p) are the Fourier transform of f(x) and (g(x)). This periodic

function reaches its maximum at θ = −π
4 and tends towards the maximum

violation possible of S = 2
√

2 as number of peaks goes towards ∞. Some

results from the article can be seen in [figure] and [table], showing the

increased violation with increased number of peaks and α.

2.4 Coupling of σx to x̂

Here follows a very brief summation of the derivation of the σ̂xx̂ operator[32].

By driving the system on resonance, the interaction can be shown through

rotating wave approximation to be express-able on the form H ∝ σ̂xx̂. The

2.4 Deriving coupling operator 13



Hamiltonian for the interaction between the external driving field and the

qubit-cavity system can be written as

H = ℏωcâ
†â+ ℏωq

2 σ̂z + ℏgσ̂x(â† + â) − d⃗ · E⃗, (2.35)

with ωc being the frequency of the cavity mode and ℏωq being the qubit energy

spacing. d⃗ = d⃗eg |e⟩ ⟨g| + d⃗∗
eg |g⟩ ⟨e| is the dipole vector, E⃗ = E⃗0e

−iωLt + E⃗∗
0e

iωLt

is the driving field and ωL the laser frequency and g is the coupling constant.

Shifting to the interaction picture the interaction part of the Hamiltonian can

be written as

HI = ℏ∆a†a+ ℏδ
2 σ̂z + ℏg

(
σ̂+a

†ei2ωLt + σ̂−a
† + σ̂+a+ σ̂−ae

−i2ωLt
)

+
(
ℏ

Ω
2 + ℏ

Ω
2 e

i2ωLt
)
σ̂+ +

(
ℏ

Ω∗

2 + ℏ
Ω∗

2 e−i2ωLt
)
σ̂−,

(2.36)

where ∆ = ωc − ωL, δ = ωq − ωL and Ω
2 = −d⃗ · E⃗. The rotating wave

approximation is then applied, discarding rapidly oscillating terms that can be

taken to average to 0 on the timescale of any interaction we’re interested in.

HI = ℏ∆a†a+ ℏδ
2 σ̂z + ℏg

(
σ̂−a

† + σ̂+a
)

+ ℏ
Ω
2 σ̂x, (2.37)

assuming ωL ≫ g,Ω,∆, δ. Finally the interaction Hamiltonian is expressed in

a rotating frame by applying the unitary transformation

U ≡ e−i Ω
2 σ̂xt, (2.38)

yielding
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H′
I = U †HIU = ei Ω

2 σ̂xt
(
ℏ∆a†a+ ℏδ

2 σ̂z + ℏg
(
σ̂−a

† + σ̂+a
)

+ ℏ
Ω
2 σ̂x

)
e−i Ω

2 σ̂xt,

(2.39)

the resulting expression can be simplified greatly by assuming Ω ≫ g,∆, which

is ensured by driving the interaction with a strong laser, followed by another

rotating wave approximation, again disregarding rapidly oscillating terms,

yielding

H′
I = ℏ∆a†a+ ℏ

g

2(a† + a)σx

which for resonance ∆ = 0 becomes

H′
I = +ℏ

g

2(a† + a)σx.

This is the interaction operator that turns out to be useful in the generation of

the desired states.

2.4 Deriving coupling operator 15





3Results

3.1 Protocol for generating states

The purpose of this protocol is to generate 4 peak versions of the states of [35],

a sketch of the x̂ basis plots of the states (|f⟩ and |g⟩) can be seen in figure

3.2. The setup consists of two modes, each consisting of a microwave cavity

coupled to a superconducting qubit. In addition, both modes are coupled to

the same additional SC qubit used in the generation of the entanglement, see

figure 3.1. Initially both cavity fields are in the vacuum state |Ø⟩ and the qubits

are in an equal superposition in the x̂ basis

|ψqubit⟩ = 1√
2

(|+⟩ + |−⟩). (3.1)

Utilizing the σ̂xx̂ interaction operator the first two peaks can be formed, the

operator has the form

eiσx x̂t/ℏ (3.2)

with x̂ = 1√
2(â† + â) and σx =

0 1
1 0

. Since the state of the qubit is in the

x̂ basis, with the states |+⟩ = 1√
2(|0⟩ + |1⟩) and |−⟩ = 1√

2(|0⟩ − |1⟩) having

eigenvalues of ±1 respectively, the effect of σ̂x on the composite cavity-qubit

system in the x̂ basis is simply a sign dependent on the qubit being in either the

|+⟩ or |−⟩ state. The rest off the operator can be rewritten as a displacement

operator in the following way

e
i 1√

2
(â†+â)t/ℏ = e

it

ℏ
√

2
(â†+â) = e

it

ℏ
√

2
â†− it

ℏ
√

2
â = D

( it

ℏ
√

2
)
. (3.3)
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(a)

(b)

Figure 3.1: Two different views of the system. Two qubits are used in the preparation
of the local states in the cavities, while a third (coupled to both cavities) is
used to entangle the states in the cavities.(a) Overview of the interactions
between the different subsystems. (b) Schematic of the setup adapted
from [35] with overview of what subsystems the different parts of the
protocol affect, Γ preparing the individual cavity fields in the desired
states through two applications of the σ̂xx̂ operator

(
1) and 3)

)
and

two measurements of σ̂z
(

2) and 4)
)

and λ entangling the states of the
cavity fields through the application of the entangling operator and a
measurement of σ̂z.
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So applying the interaction operator to the initial state of either mode of the

setup we get

eiσxx̂t/ℏ
( 1√

2
(|+⟩ + |−⟩

)
|Ø⟩

= 1√
2

(
D

( it

ℏ
√

2
)

|+⟩ |Ø⟩ +D
(

− it

ℏ
√

2
)

|−⟩ |Ø⟩
)
,

(3.4)

and by choosing t
ℏ
√

2 = 2α we have

1√
2

(|+⟩ |i2α⟩ + |−⟩ |−i2α⟩). (3.5)

(Equations 3.4 and 3.5 correspond to step 1 of Γ in figure 3.1(b).)

We now have a cat state, however the state of the cavity field is entangled with

that of the qubit. Another application of the interaction operator is needed to

go from 2 to 4 peaks, but first the cavity and qubit states must be disentangled.

To this end a measurement along σ̂z is made

σ̂z(|+⟩ |i2α⟩ + |−⟩ |−i2α⟩)

= σ̂z(|0⟩ + |1⟩) |i2α⟩ + (|0⟩ − |1⟩) |−i2α⟩

=
{ |i2α⟩ |0⟩

− |−i2α⟩ |1⟩
= ± |i2α⟩ ± |−i2α⟩)(|+⟩ ± |−⟩),

(3.6)

corresponding to step 2 of γ in (b) of figure 3.1.

The interaction operator is then applied again, this time choosing t
ℏ
√

2 = α

±eiσxx̂α(|i2α⟩ ± |−i2α⟩) |+⟩ ± |−⟩)

= ±(|i3α⟩ |+⟩ ± |iα⟩ |−⟩ ± |−iα⟩ |+⟩ + |−i3α⟩ |−⟩),

′

(3.7)

corresponding to step 3 of γ in (b) of figure 3.1.

A measurement along ẑ is then made
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(a) (b)

Figure 3.2: Measurement dependent results of the protocol.

σ̂z(±(|i3α⟩ |+⟩ ± |iα⟩ |−⟩ ± |−iα⟩ |+⟩ + |−i3α⟩ |−⟩)

=
{±(|i3α⟩ ± |iα⟩ ± |−iα⟩ + |−i3α⟩) |0⟩

±(|i3α⟩ ∓ |iα⟩ ± |−iα⟩ − |−i3α⟩) |1⟩
.

(3.8)

The resulting state is an array of 4 coherent states with phases determined

by the results of the qubit measurements, as can be seen in figure 3.2. Since

we’re looking for an even superposition in the final state and since either mode

has 4 potential outcomes the protocol, we have a 1/16 chance of preparing

the desired state before entanglement is generated with the shared qubit.

In theory either |ff⟩ or |gg⟩ will work for generating the entangled state

|Ψ⟩ = 1√
2(|ff⟩ + eiθ |gg⟩, however the phase θ between the two states of

the superposition is introduced through the shared qubit Due to technical

limitations, mainly coherence time of the states versus the time required to

measure the one mode qubits and prepare the shared qubit, this phase has

to be chosen ahead of time. Thus only either |ff⟩ or |gg⟩, depending on the

chosen phase, will produce a state that will violate the CHSH inequality, at

least within the proposed scheme. Assuming |gg⟩ has been prepared and the

shared qubit is prepared in the state 1√
2(|+⟩ + eiθ |−⟩), we proceed with the

entangling operator (step 1 of Λ in (b) of figure 3.1)

ei(σx+1)/
√

2(x̂A+x̂B)t/ℏ. (3.9)
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Acting with this operator on the state described above, σx applied to the qubit

state returns an eigenvalue of ±1, so (σ̂x + 1) will equal either 0 or 2, meaning

the entire operator acts trivially when applied to a state of the cavity which

is coupled to the |−⟩ state of the qubit. For the |+⟩ state where the first

parenthesis no longer sums to zero, a rewriting similar to the single cavity case

can be used. Since the operators x̂A and x̂B commute the exponential can be

split into two, separating the operator for either cavity

ei
√

2(x̂A+x̂B)t/ℏ = e
i
√

2t
ℏ x̂A)e

i
√

2t
ℏ x̂B), (3.10)

we can now apply these to the respective modes, choosing the time (t
√

2)/ℏ =
π/2α, the effect is then a position dependent phase on the states of both

cavities. For now, we will use the approximation that peaks acquire the same

phase for the whole gaussian that describes it, determined by its mean. This is

a good approximation for large α, but it will be corrected later nonetheless. In

this approximation each cavity can now be evaluated separately applying the

corresponding part of the operator

e
i
√

2t
ℏ x̂(+ |3α⟩ + |α⟩ − |−α⟩ − |−3α⟩)

= ei3π/2 |3α⟩ + eiπ/2 |α⟩ − e−iπ/2 |−α⟩ − e−i3π/2 |−3α⟩

= −i |3α⟩ + i |α⟩ + i |−α⟩ − i |−3α⟩ = i |f⟩

(3.11)

so the interaction operator has the following effect when applied to the state

prepared in the two cavities and the shared qubit described above

e
i(σx+1)√

2
(x̂A+x̂B)t/ℏ |gg⟩ 1√

2
(|+⟩ + |−⟩)

= 1√
2

(i2 |ff⟩ |+⟩ + eiθ |gg⟩ |−⟩)
(3.12)

To separate the states of the cavities from the shared qubit a measurement

along ẑ is made (step 2 of Λ in (b) of figure 3.1)
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1√
2

(− |ff⟩ |+⟩ + eiθ |gg⟩ |−⟩) =

1√
2

(− |ff⟩ (|0⟩ + |1⟩) + eiθ |gg⟩ (|0⟩ − |1⟩)

=
{1

2(− |ff⟩ + eiθ |gg⟩) |0⟩
1
2(− |ff⟩ + eiθ |gg⟩) |1⟩

.

(3.13)

The measurement dependent sign may seem troublesome, but luckily the Bell

inequality can still be violated regardless of this sign if the right θ is chosen

since the dependency of S on θ is periodic with a periodicity of π. Thus, the

protocol prepares the 4-peak state of Wenger et. al. 2003 with a probability

of 1/16, with an overall phase and potentially an internal phase that doesn’t

impact results.

This result was obtained assuming that the position operator x̂ applied to a

coherent state is well approximated by multiplying a single phase onto the

state, however without this approximation we expect a position dependent

phase.

Going back to the operator partitioned into cavity specific exponentials and

again choosing (t
√

2)/ℏ = π/2α, we can write the exponential as a real cosine

and an imaginary sine

e
iπ
2α

x̂Bt(|i3α⟩ + |iα⟩ − |−iα⟩ − |−i3α⟩)

= (cos
(
π

2αxBt
)

+ i sin
(
π

2αx̂Bt
)

)(|i3α⟩ + |iα⟩ − |−iα⟩ − |−i3α⟩).
(3.14)

With the chosen time, the contents of the trigonometric functions will equal

either π/2 or 3π/2 at the peaks, meaning that the cosine will be approximately

0 and the sine will be approximately ±1, meaning the imaginary part is

approximately equal to |f⟩ and in fact going towards |f⟩ as α → ∞, meanwhile

we have a real cosine part going towards 0 as α → ∞, see figure 3.3.

To find out how the entangling operator affects the wavefunctions of the

states in the momentum basis, we do the Fourier transform of the x̂ basis

wavefunctions to find those of the p̂ basis, for |g⟩ we have
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(a)

(b)

Figure 3.3: Comparison of |fprotocol⟩ (real and imaginary parts) and |farticle⟩ for (a)
α = 3 and (b) α = 10. As α increases the imaginary part dies out and the
state produced by the protocol becomes all but indistinguishable from
the desired state.
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F(e−(x+3α)2/2 + e−(x+α)2/2 − e−(x−α)2/2 − e−(x−3α)2/2)

= 1√
2π
e−(π2 p2)/2(e−i6απp + e−i2απp − ei2απp − ei6απp)

= −i
√

2
π
e(−(π2 p2)/2)(sin(6απp) + sin(2απp)).

(3.15)

So in the p̂ basis we have a sum of sine functions with a gaussian envelope

function. For the approximate |f⟩ state produced by the operator on the |g⟩
state, with the Fourier transform of the x̂ basis function we have

F((e iπ
2α

x̂B )(e−(x+3α)2/2 + e−(x+α)2/2 − e−(x−α)2/2 − e−(x−3α)2/2)) (3.16)

and for Fourier transforms of the product of functions we have

F(f(x) · g(x)) = F(f(x)) ∗ F(g(x)) (3.17)

where ∗ denotes the convolution of the two functions. For the Fourier transform

of an exponential of this form we have

F(eikx) = δ(p− k/2π) (3.18)

and for the convolution of a function with a delta function we can use the

sifting property

∫ ∞

−∞
f(t)δ(t− T )dt = f(T ) (3.19)

from which follows

f(t) ∗ δ(t− T ) =
∫ ∞

−∞
f(τ)δ(t− T − τ)dτ = f(t− T ) (3.20)
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(a) (b) (c)

(d) (e)

Figure 3.4: Wavefunctions for the p̂ basis of (a) |g⟩, (b)|fprotocol⟩,(c) and |farticle⟩.
Comparisons between (d)|g⟩ and |fprotocol⟩, note that the states are iden-
tical except for a shift in p̂, (e) |fprotocol⟩ and |farticle⟩, the states share
roots and local extrema, but the Gaussian envelope is shifted.

so for |f⟩approx (eq 3.16) we get

F
(
e(iπ/2α)x̂B (e−(x+3α)2/2 + e−(x+α)2/2 − e−(x−α)2/2 − e−(x−3α)2/2)

)
= δ(p− 1

4α) ∗ 1√
2π
e−(π2p2)/2(e−i6απp + e−i2απp − ei2απp − ei6απp)

= 1√
2π
e−(π2(p− 1

4α
)2)/2(e−i6απ(p− 1

4α
) + e−i2απ(p− 1

4α
) − ei2απ(p− 1

4α
) − ei6απ(p− 1

4α
))

= i

√
2
π
e−(π2(p− 1

4α
)2)/2

(
cos(2απp) − cos(6απp)

)
(3.21)

this result is very similar to the Fourier transform of |f⟩ from Wenger[2003][35];

√
2
π
e−π2p2/2

(
cos(2απp− cos(6απp)

)
. (3.22)
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Figure 3.5: Comparison of how the value of the CHSH inequality depends on the
value α for the state using |fprotocol⟩ and |farticle⟩. Both shows S converg-
ing toward the same value as α → ∞, meaning the faults introduced by
the protocol become insignificant for large α. Both are plottet for θ = −π

4 .

Like |f⟩approx in the x̂ basis there’s a prefactor of i. The fact that both the

x̂ basis and p̂ basis of |f⟩ gain a phase of i compared to the original article

means the phase θ in the wavefunction |ff⟩ + eiθ |gg⟩ can simply be changed

to θ → θ+ π, or simply adding a factor of -1, which as explained above doesn’t

disturb our efforts to violate the CHSH inequality. Apart from the phase, the

gaussian envelope function of the approximate p̂ basis of |f⟩ is shifted by 1/4α
compared to |f⟩ from the article. By shifting the entire function back and

comparing to |g⟩, it becomes clear that it’s simply |g⟩ shifted in p̂, see figure

3.4.

The CHSH inequality[7] is (see chapter 2.1.2)

S = |Exx + Epx + Exp − Epp | ≤ 2, (3.23)

where EσAσB
is the correlation function for a given choice of measurement

basis σ for cavity A and B and is given by
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Figure 3.6: Comparison of how the value of the CHSH inequality depends on the
value θ for the state using |fprotocol⟩ and |farticle⟩. Both share optimal
values of theta since the protocol introduces a factor of i for |f⟩ in both
the x̂ and p̂ basis, meaning the θ dependency of |ff⟩ + eiθ |gg⟩ is shifted
by π, which is of course the period of the function. Both are plottet for
α = 5

E = P++ + P−− − P+− − P−+. (3.24)

Here P(±±) is a double integral with the sign denoting whether the integral is

over the same-sign bins or different-sign bins of the root binning scheme for

the corresponding mode;

P(±±) =
∫

D±

∫
D±

dσAdσBΨ(σA, σB), (3.25)

with Ψ(σA , σB) being the wavefunction in the corresponding bases and D±

denoting the group of bins to be integrated over. Since the state prepared only

differs slightly from the state described in Wenger et al [2003], the value of the

Bell inequality (S) unsurprisingly have similar dependencies on θ and α. In fact,

since the unwanted part of fprotocol vanishes as α → ∞, Sprotocol → Sarticle for

α → ∞ (see figure 3.5). The additional factor -1 in front of fprotocol introduces

a relative phase shift of π compared to the state of the article, however since S
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as a function of θ has a periodicity of π we end up with the same we end up

with similar graphs. The dependency of θ on S is shown in figure 3.6.

Apart from |ff⟩ + eiθ |gg⟩, which Wenger[2003][35] revolves around, |fg⟩ +
eiθ |gf⟩ also yields a violation of the CHSH inequality, an important result as

this doubles the chances of the protocol succeeding. This result and how it can

be understood will be discussed further in the Discussion section. A plot of S

as a function of θ for this state is shown in 4.5.
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4Discussion

4.1 Noise

In this chapter I will discuss the expected effects of noise and detection ineffi-

ciencies on the cavity states. The extension of the protocol to generate states

with additional peaks is discussed including the trade off between higher S

value and lower probability of generating the desired state.

The next section interprets the states as an entangled pair of qubits encoded in

the continuous variables of the system in a subsystem decomposition adapted

from the description of cluster and GKP states. Finally a few words on the

choice of binning and eventual tweaks to the bins.

One of the lessons one might take away from the results above is that in

order to maximize the violation of the CHSH inequality the average photon

number α should be increased as much as feasible. However this information

comes from a very simplistic model that includes no noise or losses and perfect

generation and detection of states.

A fairly simple model could be modelling noise as our state being mixed with

another noisy mode on a beamsplitter just before detection. Mathematically

this is done through a convolution of the two modes, resulting in our states

being ’smeared out’[23]

Ψdetected(σ̂) = ψ(σ̂)output ∗ ϕnoise(σ̂), (4.1)

for measurement basis σ̂ (x̂ or p̂). For high α the well seperated array of

Gaussians of the x̂ basis should still be well defined, but one would fear that

the fairly intricate trigonomic functions of the p̂ basis would lose some of its

features to this noise.

This trade-off would likely lead to an α dependency of S of rapid increase

followed by slow decline, resulting in an optimization problem dependent on
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Figure 4.1: Sketch of expected results for introducing a simple model for noise, with
S peaking and then slowly decaying. The position and size of the peak,
and thus wether the CHSH inequality is violated, of course depends
heavily on the noise in the model.

system specifics. A sketch of expected results can be seen in figure 4.1.

A way to mitigate this problem is to use squeezed light[24]. If the main

problem holding back the performance of these states is the noise in the p̂ basis

while the states in the x̂ are comparatively undisturbed, utilizing light squeezed

in the p̂ basis would improve results by sacrificing the ample resolution of the

x̂-states for more well defined p̂-states.

4.2 Additional peaks in states

With the generated state being able to achieve a CHSH inequality above 2.4
(albeit in a perfect noiseless and lossless system) the results are promising.

However, even the state of [35] that we emulate is already an approximation

and truncation of states designed to reach the maximum CHSH violation of

2
√

2, which has infinite peaks. While infinite peaks is unphysical, extending

the states beyond 4 seems like an interesting prospect for improving results.

Similar to [35], extending the protocol with extra steps of applying the σxx̂

operator followed by measurements along ẑ should, given the right ẑ measure-

ments, yield higher peak versions of |f⟩ and |g⟩. Some S values from states
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Figure 4.2: Table of S values for N peaks from [wenger et al 2002], α = 7.5.

with different number of peaks from [35] can be seen in 4.2, showing that

expanding the protocol could indeed lead to a significant increase in S.

Of course, since we do additional measurements with two possible outcomes,

we should expect lower odds of preparing the desired state. In fact it appears

that the propability of preparing, for example, the |f⟩ state with N = 2j peaks,

where j is the number of iterations of the protocol applied, is

P (
∣∣∣f (2N)

〉
) = 1

2j
, (4.2)

simply because its one of N possible outcomes, with no suggestion that mul-

tiple ẑ measurement result combinations prepare the same state. To prepare

the pre-entanglement state |ff⟩ we then have the probability 1
2j

2 = 1
22j . How-

ever, luckily, as will be discussed further below, apart from |ff⟩ + eiθ |gg⟩,
|fg⟩ + eiθ |fg⟩ also produces a violation of the CHSH inequality in this setup,

requiring the pre-entanglement result |fg⟩. This doubles our chances and

results in the probability

1
22j−1 , (4.3)

of preparing a desired state.

Using this method of repeatedly applying σxx̂ will only yield states with 2j

peaks. States with number of peaks in between these might be achievable with

the tools used here by using a different protocol.

Some results for 8 and 16 peaks are shown in 4.3, and some interesting

observations may be inferred from them. Since the effect of the σxx̂ operator

is to split any peak in two with either same or opposite sign, we want the

state after the second to last application to be one alternating in sign between

peaks, denoted |Y ⟩ in 4.3. The last application will then split it into |f⟩ for

measuring |0⟩ and |g⟩ for |1⟩. To have |Y ⟩ we should have a state with all peaks
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(a)

(b)

Figure 4.3: Generated states given results of ẑ measurements during protocol. On
the top and left is listed both the measurements (ẑN ) and the result
of the measurement (|0⟩ or |1⟩). (a) 8 peaks, corresponding to 3 σxx̂
applications & ẑ mesurements and (b) 16 peaks, corresponding to 4 σxx̂
applications & ẑ mesurements. As can be seen, regardless of number
N of iterations of splitting operator σ̂xx̂ and measurement of ẑ, the
results required to generate |f⟩ or |g⟩ is to measure |0⟩ for the first (N-2)
measurements and |1⟩ for the second to last measurement.
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having the same sign, denoted |W ⟩ in 4.3, since measuring |1⟩ will then yield

|Y ⟩. So to prepare |f⟩ or |g⟩ we would like the result |0⟩ for the first (N − 2)
measurements of ẑ to prepare |W ⟩, |1⟩ for ẑN−1 to prepare |Y ⟩ and for ẑN |0⟩
will prepare |f⟩ and |1⟩ will prepare |g⟩. So in this protocol |W ⟩ and |Y ⟩ are

effectively precursors to |f⟩ and |g⟩.

4.3 Encoded Qubit

To understand why these states with this choice of binning violate the CHSH

inequality it can be helpful to decompose the position wavefunction of the

states. In this picture we view the position space as being partitioned into

a number of smaller spaces enclosing two peaks. Each of these are divided

into two, representing our binning scheme, and finally we have the modular

position within our bin. We write the state as

|Ψ⟩x −→ |L⟩L ⊗ |m⟩G ⊗ |u⟩G , (4.4)

where the subscripts indicate that the states have been divided into a logical

subsystem consisting of the information of what bin we are in, this subsystem

is equivalent to a qubit, and the gauge subsystem consisting of the modular

position within a bin, in our case the Gaussian (-like) distribution making up

the peaks, as well as the ’copies’ of our two peak bin pair making up our qubit.

From this it should be clear that the binning of our measurement data reduces

the measurement to a measure of this qubit, while the information of qubit

copy m and modular position u is disregarded.

While this in itself may be interesting it doesn’t explain the violation of the

CHSH inequality, since so far the state has been shown to be entangled through

the states |f⟩ and |g⟩ and not this abstract qubit. Therefore we revisit the

entangling step of the protocol within the framework of this encoded qubit.

This decomposition is fairly straightforward to envision in the x-basis, so let us

start there. The x̂ operator becomes

x̂ = α · σ̂(L)
z + 4α · n̂(m) + û, (4.5)
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Figure 4.4: Decomposition of the |f⟩ state into a qubit |L⟩ and two gauge states
|m⟩ (’copy’ of the qubit) and |u⟩ (modular position). Note that of the 3
subsytems only |u⟩ is continuous.
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for a distance between the peaks of 2α, since the width of a qubit (2 peaks) is

then 4α and the distance from the middle of a copy m to the middle of a qubit

bin (at the maximum of a peak) is α. û returns the modular position, n̂ is the

number operator and returns the number of the copy and σ̂z =
1 0

0 −1

. The

entangling operator is then

e
ig
2 (σx+1)(x̂A+x̂B)t = e

ig
2 (σx+1)(α·σ̂z

(L)
A +4α·n̂(m)

A +ûa+α·σ̂z
(L)
B +4α·n̂(m)

B +ûB)t (4.6)

Lets now take a look at |g⟩ and |f⟩ in this decomposition

|g⟩ = |L⟩|g⟩ ⊗ |m⟩|g⟩ ⊗ |u⟩|g⟩ = −
(

|0⟩L + |1⟩L

)
⊗

(
|0⟩m − |1⟩m

)
⊗ |u⟩ (4.7)

|f⟩ = −
(

|0⟩L − |1⟩L

)
⊗

(
|0⟩m − |1⟩m

)
⊗ |u⟩ (4.8)

So the state |ff⟩ + eiθ |gg⟩ becomes

(
|00⟩L + |11⟩L + |01⟩L + |10⟩L

)
⊗

(
|00⟩m + |11⟩m − |01⟩m − |10⟩m

)
⊗ |u⟩A ⊗ |u⟩B

+eiθ ·
(

|00⟩L + |11⟩L − |01⟩L − |10⟩L

)
⊗

(
|00⟩m + |11⟩m − |01⟩m − |10⟩m

)
⊗ |u⟩A ⊗ |u⟩B

=
(
Φ+

L + Ψ+
L

)
⊗

(
Φ+

m − Ψ+
m

)
⊗ |u⟩A ⊗ |u⟩B

+eiθ ·
(
Φ+

L − Ψ+
L

)
⊗

(
Φ+

m − Ψ+
m

)
⊗ |u⟩A ⊗ |u⟩B

=
((

1 + eiθ
)
Φ+

L −
(
1 − eiθ

)
Ψ+

L

)
⊗

(
Φ+

m − Ψ+
m

)
⊗ |uAuB⟩ ,

(4.9)

where Φ+ and Ψ+ of course are the bell states 1√
2(|00⟩+|11⟩) and 1√

2(|01⟩+|10⟩)
respectively. It is worth noting that the logical qubits are entangled only with

each other and not the gauge states.

So the correlations for both modes in the x̂-basis becomes
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⟨Ψxx|Ψxx⟩

=
((

1 + e−iθ
)
Φ+

L −
(
1 − e−iθ

)
Ψ+

L

)((
1 + eiθ

)
Φ+

L −
(
1 − eiθ

)
Ψ+

L

)
⊗

(
Φ+

m − Ψ+
m

)†(
Φ+

m − Ψ+
m

)
⊗ ⟨uAuB|uAuB⟩

∝ cos θ

(4.10)

Similar to the result in [35]. I have not been able to complete the calculation

for the p̂-basis, but I expect the results to be similar to [35] as well, i.e.

⟨Ψpp|Ψpp⟩ ∝ cos θ (4.11)

⟨Ψxp|Ψxp⟩ ∝ sin θ (4.12)

⟨Ψpx|Ψpx⟩ ∝ sin θ. (4.13)

This would mathematecally explain why θ = −π
4 maximizes S, for ∞ peaks at

least, since the derived expression for S in [Wenger 2002] is

S = | cos(θ)
(
V 2 +W 2

)
− 2 sin(θ)VW | ≤ 2, (4.14)

where V and W are the normalized overlaps of |f⟩ and |g⟩ in the x̂ and p̂-basis

respectively.

The decomposition used above is adapted from the description of two families

of continuous variable states proposed as potential foundations for quantum

computing, CV cluster states and among them GKP states[13][26]. The idea is

to have an array of identical qubits encoded in the states. These copies can be

used to shield the qubit from noise and decoherence, thus making the system

much more stable.

Cluster states do tend to have unwanted correlations between the encoded

qubit and the gauge subsystems making them less effective. This can be solved

by including GKP states in the entanglement as these states can ’unzip’ the

encoded qubit from the gauge subsystems, making it the states much more

desireable[26].
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Figure 4.5: S as a function of θ for |fg⟩ + eiθ |gf⟩ for α = 5

This interpretation of the states generated by the protocol described in this

report highlights the potential for similar states of an extended protocol to

higher number of peaks to be useful in error correction within quantum

computing.

4.3.1 |fg⟩ + eiθ |gf⟩

With this interpretation of the choice of binning and states boiling down to

an encoded qubit, one might ask that if the even entanglement |ff⟩ + eiθ |gg⟩
produces a violation of the CHSH inequality, could other combinations violate

CHSH too? As it turns out the answer is yes, the state |fg⟩ + eiθ |gf⟩ have the

same α and θ dependencies for S (see figure 4.5) and as the periodicity in θ of

π shows both |ff⟩ − eiθ |gg⟩ and |fg⟩ − eiθ |gf⟩ are suitable states as well.

The phase bit not changing the S value of states means the random sign

introduced here by the protocol does not limit our efficiency.The even-odd

parity bit of the encoded logical qubit being interchangable, however, means

the protocol doubles in efficiency with now having two usable outcomes

instead of one.
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4.4 Choice of binning

The states used are constructed specifically to work with the root binning

scheme, so changing the overall binning scheme is unlikely to improve results.

However with noise, losses and detector inefficiency likely to distort the shape

of the wave functions, it is possible that tweaking the bins and their edges

could improve correlations.

This optimization could be done after the fact, finding the best set of bins

from measurement data. However this would require comparing results via

conventional means, which for practical use in quantum communication of

course would mean giving up your quantum key. Not exactly ideal, so bins

would have to be agreed ahead of time.
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5Conclusion

Through the interaction of superconducting qubits with microwave cavities

a protocol for producing continuous variable states violating the CHSH in-

equality has been proposed. It’s based on the scheme proposed in Wenger

[2002][35], reproducing the states down to a position dependent phase on one

term of the entangled superposition. In terms of the subsystem decomposition

of the state, this phase can be understood to stem from the interaction between

the entangling operator and the modular position subsystem.

The protocol is not deterministic but has a 1
8 chance of succeeding, however

since preparing measurements on the interacting qubits tell whether the proto-

col was successful only successfully prepared states need be considered when

calculating the inequality. In a theoretical with no noise and loss and perfect

generation and detection the states have an S value of almost 2.5. Of course

a realistic setup with all these included will lead to lower S values, but this

can be mitigated either by utilizing squeezed light to shield especially against

noise in the intricate p̂-basis wavefunctions, or by extending the protocol to

generate states with additional peaks than the 4 of states produced by this

protocol.

An extended protocol would have a success rate of 2
N2 where N is number of

peaks of the generated states since not only |ff⟩+eiθ |gg⟩ but also |fg⟩+eiθ |gf⟩
is found to violate the CHSH inequality for appropriate choice of phase θ. This

again can be understood in the subsystem decomposition view of the states as

having different states of the encoded logical qubit.

39





6Appendixes

6.1 Early attempts

Before figuring out a protocol that worked for generating continuous vari-

able states violating the CHSH inequality, several other attempts were made

unsuccessfully. Here follows a summation.

6.1.1 Kerr induced multi component cat states

Initially the idea was to utilize multi component cat states generated through

the interaction of a microwave cavity and a Kerr medium as a basis[18].

Partially as a learning experiance, the first attempts involved rather simple

setups using a single source and beamsplitter and simple binning scheme with

the full expectation not to achieve a violation of the CHSH inequality. The

team behind the article detailing the Kerr induced states were able to prepare

4 component cat states, so this seemed like a good starting point. The binning

scheme I used was a simple positive-negative scheme, i.e. results ≥ 0 were

given the value 1 and results ≤ 0 give -1. The states considered were

|Ψ′square′⟩ =
3∑

n=0

1
2

∣∣∣ei(2n+1)π/4α
〉

(6.1)

|Ψ′diamond′⟩ =
3∑

n=0

1
2

∣∣∣einπ/2α
〉

(6.2)

|Ψ′triangle′⟩ =
2∑

n=0

1√
3

∣∣∣ei2nπ/3α
〉
. (6.3)

After being split on a 50/50 beamsplitter with a vacuum state, these states

become
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(a) (b)

(c)

Figure 6.1: (a) Phase space visualization of the multicomponent cat states. (b) very
simple setup of source, beamsplitter and observers.(c) resulting state of
splitting the ′square′ state on a beamsplitter.

|0⟩0 |Ψ′square′⟩ −→ 1
2

3∑
n=0

∣∣∣∣∣ei(2n+3)π/4 α√
2

〉
2

∣∣∣∣∣ei(2n+1)π/2 α√
2

〉
3

(6.4)

|0⟩0 |Ψ′diamond′⟩ −→ 1
2

3∑
n=0

∣∣∣∣∣ei(n+1)π/2 α√
2

〉
2

∣∣∣∣∣einπ/2 α√
2

〉
3

(6.5)

|0⟩0 |Ψ′triangle′⟩ −→ 1√
3

3∑
n=0

∣∣∣∣∣ei(4n+3)π/6 α√
2

〉
2

∣∣∣∣∣ei2nπ/3 α√
2

〉
3

(6.6)

see figure 6.1. These states are entangled, with as many terms as there are

components in the initial states, however calculating the CHSH inequality with

the simple binning scheme described above leads to no violations for either

state. Assuming large α (so that states are orthogonal), a simple estimation of

S can be made simply by ’counting’ the correlations from the phase space plot,

counting each coherent component as 1 and placing them in appropriate bins,

see figure 6.1, the correlations are calculated as
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Eσaσb
= P+σa +σb

+ P−σa −σb
− P+σa −σb

− P−σa +σb
, (6.7)

with P±σa ±σb
being the probability of measuring a given bin for a given mea-

surement basis. The correlations become

Eab = 1
4

(3
2 + 3

2 − 1
2 − 1

2

)
= 1

2 (6.8)

Eab′ = 1
4

(3
2 + 3

2 − 1
2 − 1

2

)
= 1

2 (6.9)

Ea′b = 1
4

(1
2 + 1

2 − 3
2 − 3

2

)
= −1

2 (6.10)

Ea′b′ = 1
4

(3
2 + 3

2 − 1
2 − 1

2

)
= 1

2 , (6.11)

so that S becomes

S = |12 + 1
2 + 1

2 −
(

− 1)
| = 2 ≤ 2, (6.12)

so the inequality holds.

A thorough calculation of S shows that this is in fact the upper limit on S as

can be seen in figure 6.2 (a) and (b).

6.1.2 Reverse engineering |ff⟩ + eiθ |gg⟩

Following these early attempts described above, the decision was made to

attempt to recreate entangled states that had already been shown to vio-

late the CHSH inequality theoretically and the choice fell on the states of

Wenger[2002][35] since these states also consisted of multiple coherent states,

albeit in arrays rather than radially distributed in phase space, and as such

seemed feasible to reproduce with the tools at hand, although later the method

of utilizing an interaction with a Kerr medium was discarded.

First an attempt was made to find unitary 2x2 operators that could disentangle

|ff⟩ + eiθ |gg⟩, since the Hermetian conjugate of the operator would then be
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(a) (b)

(c) (d)

Figure 6.2: (a) CHSH inequality for a 4 component cat state as a function of mean
photon number α for an angle between observer basis of measurement of
π
4 . (b) The same plot extended to all angles, as can be seen some angles
may approach the maximum of 2 faster, but non violate the inequality, as
expected. (c) & (d) Wigner function of 4 component cat state, showing
multiple negative regions as well as a lot of symmetry.
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able to entangle the found state into |ff⟩ + eiθ |gg⟩. A 2x2 unitary matrix has

the general form

 a b

−eiϕb∗ eiϕa∗

 , (6.13)

with |a|2 + |b|2 = 1. This matrix depends on 4 parameters; ϕ, the phases of a

and b and a
b
.

To check whether a given operator has disentangled the state, we use the Von

Neumann entropy, defined as

S = − Tr{ρ ln ρ}, (6.14)

with Tr being the trace and ρ is the density matrix of the state. The Von

Neumann of a state has the property that it is 0 only if the state is a pure state,

meaning that we can use it as a measure for whether the state is entangled or

not. So with a 4 variable operator and a scalar variable to minimize (or at least

minimize the argument of), this has turned into an optimization problem.

The python optimization package Optuna[1] was used to search for parameters

generating S = 0, however after some 100.000 trials no such parameters

were found. After this attempt the σxx̂ operator derived for a SC qubit-

MW resonator interaction by another masters student presented itself as an

interesting prospect for a nonlinear operator to induce entanglement and

turned out succesful.

6.2 Superfluous states generated by the
protocol

As stated in the results chapter, the initial 2 applications of single resonator

σxx̂ operators can lead to 4 different states, |f⟩, |g⟩, |Y ⟩ and |W ⟩, and with

2 resonators this means 16 different possible outcomes. Only four of these

(|ff⟩ , |gg⟩ , |fg⟩ , |gf⟩) violate the CHSH inequality, albeit for different values
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(a) (b)

(c) (d)

Figure 6.3: Plots of S as a function of θ at α = 5 for the states found not to violate the
CHSH inequality, the x̂ basis wavefunction can be seen in 3.2; (a) |WW ⟩+
eiθ |Y Y ⟩, equivalent to |Y Y ⟩+e−iθ |WW ⟩. (b) |Y W ⟩+eiθ |WY ⟩, |WY ⟩+
e−iθ |Y W ⟩ has similar results. |fW ⟩ + eiθ |gY ⟩ with |gY ⟩ + eiθ |fW ⟩,
|Wf⟩ + eiθ |Y g⟩ and |Y g⟩ + eiθ |Wf⟩ all having similar result, albeit some
with −θ substituted for θ. (d) |fY ⟩ + eiθ |gW ⟩, similar to the previous
plot this is also representative of |gW ⟩ + eiθ |fY ⟩, |Wg⟩ + eiθ |Y f⟩ and
|Y f⟩ + eiθ |Wg⟩.

of θ, but theit S values was plotted non the less hoping to find an unexpected

inequality violation. The plots can be seen in figure 6.3.
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