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Chapter 1

Introduction

Within the last three decades, a new field of science on the borderlines between
physics, mathematics and computer science has sprung up. The field of quantum
information theory was founded, when it was realised that information encoded
in physical systems of quantum mechanical nature has properties which are fun-
damentally different from those of information encoded in systems described by
classical physics.

A computer based on quantum mechanics - a quantum computer - is a poten-
tially very powerful tool, because the laws of quantum mechanics can be exploited
to solve some computational problems which are presently considered intractable
on any classical computer. Important examples include efficient simulation of
quantum mechanical systems, and prime factoring of large integers. Historically,
Richard Feynmann was one of the first people to suggest a computer based on
quantum mechanics, and his idea was to use it for simulations of quantum systems
[13]. The field of quantum information theory only took flight in 1996 however,
when Shor realised that prime factoring of large integers can be solved efficiently
by a quantum computer [29]. This drew much funding to the field because most
modern cryptosystems used e.g. by banks, public authorities and on the internet —
most prominently the widespread RSA algorithm — are based on the assumption
that prime factoring is computationally intractable’.

More recently, much effort has been put into the study of quantum information
and much has been understood in terms of information theory and computation.
However progress has been largely theoretical. The physical implementation of
a full scale quantum computer is very difficult, due to the harsh requirements to
isolation of the quantum systems, low noise levels and efficient and controllable
interaction. Experiments have been performed which test basic operations needed
in the computer such as quantum teleportation, but only very small quantum com-
puters has been built to date (on the order of 10 qubits), and only a few quantum
algorithms have been implemented. Much therefore still remains to be done in this
field, and the work in this thesis should be viewed against the broader background

!This has never been proven, but no efficient classical algorithm has been found to date.



2 1. INTRODUCTION

of quantum information theory and the long-term goal of implementation of full
scale quantum computation.

In this thesis we focus on physical implementation of long-distance quantum
communication. Quantum communication already has commercial applications,
in quantum cryptographic hardware?, and we can also envision applications in
experiments on quantum mechanics or in the future information exchange between
quantum computers. The basic situation we consider is shown in fig. 1.1

|¥) —

A \B

Figure 1.1: Quantum communication over a noisy channel.

A signal encoded into quantum bits (qubits) is exchanged between two parties
A and B. For a realistic channel, there will be some noise during transmission, and
the received state will not be identical to the one which was sent. If nothing is done
to correct noise, the quality of the received signal will decrease exponentially with
the length of the channel, and the rate at which information can be transferred
from sender to receiver will also drop exponentially. For example qubits can be
encoded in the polarisation of photons which are sent through an optical fibre. De-
polarisation then leads to a degradation of the signal quality and absorption leads
to a decreased rate. For short communication ranges one may try to compensate
this by improving the quality of fibre, but such an approach is not scalable. As
signal quality drops exponentially with the communication length, the demands
to the properties of the fibre quickly become impossible to satisfy as the length is
increased. The exponential decrease in signal quality and communication rate is
the main problem which must be overcome for quantum communication to become
viable.

If A and B share a pair of entangled qubits, then, as explained in the chapter
on background theory, they can exchange information without loss by means of
quantum teleportation. Therefore the general problem of communication over
noisy channels can be reduced to the specific problem of establishing an entangled
pair between the two ends of a channel. Quantum repeaters are protocols which
have been designed to solve this problem. In this thesis we are concerned with a
particular type of quantum repeaters, originally proposed by Duan, Lukin, Cirac
and Zoller in [8] and for this reason termed DLCZ-type repeaters. The DLCZ-type
repeater is a probabilistic protocol in which quantum memories (i.e. memories
for qubits) play an integral role. In the original proposal by DLCZ the quantum
memories were atomic memories which allowed storage of quantum states of light,
and indeed this is true for all the systems that we shall look at. However the

2See e.g. http://www.magiqgtech.com/.



mathematical description of the protocol is broader and we try to emphasise this
throughout the thesis.

In the thesis three different quantum memories - all based on atomic storage of
light states - are inserted into the same DLCZ-type protocol. The first memory is
the original proposal by DLCZ, the second memory was proposed by Muschik et al
in [21] and the third memory has been demonstrated in experiment at the quantum
optics laboratory of the Niels Bohr Institute, with results reported in [18]. The
aim of the work has been to investigate how well the DLCZ-type protocol performs
for each of these memories. For all three systems, the two important parameters
for repeater operation are addressed: the quality of the generated entanglement
and the achievable communication rates. We examine how these quantities depend
on the parameters of the memories that are used, and verify that sub-exponential
scaling with the channel length can be achieved for both of them.

To be able to analyse the three protocols, a mathematical framework for DLCZ-
type repeaters is developed. We construct a model in terms of harmonic oscillators
and develop mathematical methods for both analytical and numerical treatment
of the repeater systems. In particular the idea of a generating function for Bogoli-
ubov transformations, due to A.S. Sgrensen, is implemented and extended, and a
pertubative model for DLCZ-type repeaters using a general parametrised quantum
memory is presented. The mathematical tools are implemented in Mathematica
programs. By means of the programs, interesting properties of the three repeater
systems are approached largely by numerical simulations, but also by analytical
calculations. The tools developed for analysis have a broader application than just
the three systems we examine, and they constitute a substantial part of the work
behind this thesis.

In addition to analysis of DLCZ-type repeaters using the three specific quantum
memories — and slightly apart from the main focus of the thesis — we also consider
a modification of the repeater protocol to include mixing of parallel channels. The
idea was to speed up the communication rate. Channel mixing is explained at the
end of the thesis, and some preliminary results are also presented.

Summing up, the essential work presented in this thesis consists of:

A model for DLCZ-type repeaters and quantum memories based on har-
monic oscillators, together with mathematical tools for making numerical
and analytic predictions.

e A pertubative approach to DLCZ-type repeaters using a general parametrised
quantum memory.

e For each of three specific atomic quantum memories, an analysis of the per-
formance of the original DLCZ protocol employing this memory.

A preliminary look at the effect of channel mixing for DLCZ-type repeaters.
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Thesis outline

The thesis is divided into eight chapters, with the following structure:

Chapter 1 (this chapter) Introduces the main objectives of the work and outlines
the thesis.

Chapter 2 Provides the reader with necessary background knowledge from quantum
mechanics and quantum information theory.

Chapter 3 Explains the concept of quantum repeaters in detail, in particular
the DLCZ-type repeater.

Chapter 4 Explains the generating function method, which is the back bone in
all our analytical and numerical calculations.

Chapter 5 Describes a pertubative approach to DLCZ-type repeaters using a
general quantum memory

Chapter 6 Describes each of the three quantum memories which are used for
repeaters and presents the results from analytical and numerical analysis of
each of them.

Chapter 7 Concludes on the results from chapter 5 and chapter 6 and outlines
future work.

Chapter 8 Describes the idea of channel mixing and reports on preliminary
results.



Chapter 2

Background Theory

The purpose of this chapter is to provide the reader with the necessary theoretical
background to understand how quantum repeaters work and to understand the
models we are going to use for their analysis. In the first section of the chapter we
describe various elements of quantum mechanics. In the second section we give an
introduction to quantum computing and quantum communication.

2.1 A bit of Quantum Mechanics

The reader is assumed to be familiar with quantum mechanics in the Dirac bra-ket
formulation and should also have met with most of the contents of this section
before, but as these are concepts which will be used extensively in the main body
of the thesis we make a short reminder here. We do not present proofs of any of the
claims in this section. Such proofs may be found in the literature, e.g. [12, 22, 27].

2.1.1 The Density Operator

In the usual formulation the states of a quantum system are vectors in a Hilbert
space describing the system: [¢) € H. Observables are Hermitean operators on
this space and the states evolve in time by unitary transformations. Recall that the
quantum state with state vector |¢)) may equally well be described by an operator,
called the density operator, defined as:

p =) (W (2.1.1)

All information about the physical system contained in |¢) is also contained in p
and everything which may be calculated from |¢)) can also be calculated from p.
In a given basis {|e;)} for H we may write:

p=2>_lei) (eil ples) (esl = lea) {ealw) (Wles) (e (2.1.2)

.3 1,J



6 2. BACKGROUND THEORY

hence, in this basis the density operator is represented by the density matriz with
elements (e;| p|e;). We shall not distinguish between the operator and its matrix
representation and we will use the terms density matrix and density operator
interchangeably.

The action of an operator A on H on the density matrix is given by:

ApAt (2.1.3)

If we perform a measurement of the observable O with eigenvalues o; then the
probability of obtaining each possible outcome and the associated post-measurement
density matrix are given by!:

PipP, iT
P(o;) = Tr(P;p) and T (Pp) (2.1.4)
where P, is the projection operator onto the eigenspace associated with o;. It
follows that the expectation value of O is simply Tr(Op).
When the system is composite, consisting e.g. of subsystems A and B, then the
density operators for the subsystems can be derived from that of the joint system
by taking the partial trace:

pa=Trp(p)  pp="Tra(p) (2.1.5)

the operators p4, pp are also called reduced density operators. Predictions about
measurements on the subsystems can be made from p4, pp in exactly the same
way as described for p above.

Two properties characterise the set of density operators: An operator p on H
is a density operator associated with some state (or mixture, see the next section)
if and only if it is positive and has unit trace:

(Wlolo) >0V ) e H  Tr(p) = 1 (2.1.6)

It follows from the positivity that any density operator is also Hermitean.

2.1.2 Mixed and Pure States

One reason that we use the density operator formalism is that it applies also to
incoherent mixtures of states and hence is more general than the state vector
formalism.

Suppose that our knowledge of the quantum system is limited so that we are
unable to ascribe to it a single state, but rather each state from the set {|1;)} is
known to occur with probability p;, where ) . p; = 1. When more than one of

!Strictly speaking, these formulae are valid only for projective measurement. Generalised
measurements with measurement operators which are not necessarily orthogonal projections and
outcomes which are not eigenvalues of an observable may be defined, but since we deal only with
the projective case in this thesis, we take (2.1.4) as our definition [22].
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the p; are non-zero, the system is described by a statistical or incoherent mixture
of states. We say that the system is in a mized state. When all but one of the
p; vanish the system is in a pure state.The density operator is defined for mixed
states in the following way:

p= Zpipz‘ = sz‘ |9i) (il (2.1.7)

All the properties listed in sec. 2.1.1 hold also for this definition.

Statistical averages over a mixture are very easily calculated from p. Whenever
we apply a linear map to (2.1.7) we get simply the weighted sum of this map applied
to each of the pure state density matrices p;, i.e. the mean. For example, for the
expectation value:

Tr(Op) = Z piTr(Op;) = Z pi (0); = (O) (2.1.8)

It is also easy to test whether the state is pure or mixed since for any density
matrix, p is pure if and only if Tr(p?) = 1.

We see that we have a nice handle on doing computations for systems which
behave probabilistically, and this will come in handy when we begin our study of
implementations of the repeater.

2.1.3 Fidelity

A measure of the closeness of quantum states is something we shall need extens-
ively. Such a measure is provided by the fidelity. The fidelity of an arbitrary state
p with respect to a pure state |¢)), we define to be:

F(p,¢) = Tr(ply)(4]) = (@lpl) (2.1.9)

Fidelity can also be defined in the case where both states are mixed, but this
definition will suffice for our purposes?.

It is not hard to prove that:
0< Flp,) <1 (2.1.10)

with F(p, ) = 0 if and only if the support of p is on a subspace orthogonal to |¢),
and F(p,v) = 1 if and only if p = |¢)(¢)|. Furthermore, it follows from the cyclic
property of the trace that the fidelity is preserved under unitary transformations:3

FUpUT,U)) = Flp, 1)) (2.1.11)

*Note though, that (2.1.9) does not generalise directly since Tr(pp) < 1 if p is not pure.
To ensure F(p,p) = 1 for mixed states, a root is included in the definition. In [22] F(p,0) =

Tev/p /20 pl /2.

3We shall write F(p,v) or F(p,|t))) alternately as is more convenient.
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In the case where both states are mixed, but can be simultaneously diagonalised,
F(p,0) can be given a geometric interpretation. Writing p = >, Aile;)(e;| and
o =), Kilei)(ei| we have:

F(p,o) =) _ Aiki (2.1.12)

which is simply the inner product of the vectors consisting of the eigenvalues of
the states. In the general case no such interpretation has been found*, but the
simple trace definition (2.1.9) means that the fidelity is easy to work with and to
evaluate, and so it remains a valuable tool [22].

It is apparent that the fidelity is not a metric, since a metric is minimal for
identical states. There are other distance measures which do yield metrics on the
set of density operators and have simple geometric interpretations, but we prefer
the fidelity because of its simplicity and because it is the common measure in the
literature on quantum repeaters [3, 6, 8, 21].

2.1.4 Entanglement

While the sections above dealt with the mathematical formalism of quantum mech-
anics, this section is about a genuine physical phenomenon.

Whenever a quantum system consists of several parts there is a possibility for
those parts to be correlated in a highly non-classical manner. The phenomenon
is called entanglement. In quantum communication entanglement is completely
essential for information transfer and the entire purpose of the repeater is to gen-
erate and distribute entanglement among different locations. Hence this concept
is central for the work in this thesis.

Formally entanglement is defined as follows:

Let |1ap) denote the joint state of systems A and B. Then, whenever
this state cannot be written as a product of states of the subsystems
[Wap) = |a) @ |1B), it is said to be entangled or non-separable.

A state which is not entangled is called separable. Entangled states between any
number of participants is possible, but here we will consider only bipartite entan-
glement - that is entanglement between just two systems.

The easiest way to understand entanglement is by example. Say that we have
two identical quantum systems described by two-dimensional Hilbert spaces H 4
and Hp. Each of these have a basis and, keeping a foresighted eye on the sec-
tion about qubits below, we denote the elements {|0),,|1) 4} and {|0)5,]1) 5}
respectively. We can then define four important examples of entangled states.

“Some attempts have been made in the case of qubit states, e.g. [4].
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The so-called Bell states:

00) 45 + [11) 45 - 00) 4 — [11) 45
7)) = o) = (2.1.13)
¥ e
o) = 01) o + [10) 45 o) = 01) 45 — [10) 45
V2 V2

We can use one of the Bell states to illustrate the correlations between entangled
systems. Suppose the state of the composite system is |1)4ap) = |V ™) and we make
a projective measurement on A onto the basis, i.e. we measure the observable:

Ma=X0]0) 00O+ M D41 XA eR (2.1.14)

The possible outcomes of this measurement are the eigenvalues Ao, A;. They each
occur with probability % and the corresponding post measurement states are’:

Py|¥~

PO~
12 172

=—110) 45 (2.1.15)
where Py = |0) 44 (0] and P, = |1) 44 (1] are the projection operators onto the
eigenspaces corresponding to A\g, \;®. Note that there is perfect correlation between
the measurement outcomes and the state of system B after the measurement. If
Ao was obtained, then the post measurement state of B is |1), if \; was obtained
the state is |0). As soon as the measurement on A has been performed we know
with certainty what would be the outcome of a similar subsequent measurement
on B.

In itself there is nothing non-classical about this kind of correlation. We would
obtain the same result if we were to pick at random from a large ensemble of
paper slips, half of which were labelled 10 and the other half 01. However sim-
ilar correlations are found also when |U~) are measured in other bases, and by
comparing expectation values from different measurements, it is possible to obtain
statistics which would be impossible for a classical system. More precisely the
so-called CHSH inequality can be broken. It is outside the scope of this thesis to
go into details, but essentially the CHSH inequality is valid for variables which are
classical in the sense that they have values which are fixed prior to measurement
(the assumption of realism), and hence by breaking it one shows that this cannot
be the case for quantum variables. Here we are touching upon the foundations
of quantum mechanics, the theory of hidden variables and the famous EPR para-
dox. Readers who would like know more about this are referred to the articles of
John Bell [1]. See for example “Bertlmann’s socks and the nature of reality” for a
discussion of entanglement.

®To obtain the probabilities one can find the reduced density matrix for system A: pa =
T‘rB(’\If) <\I/7’) Then P(Ao) = Tra(]0) 4, 4 (0] pa) and similarly for A1, c.f. sec. 2.1.1.

5Defined this way, the projection operators act only on system A; the operators in (2.1.15)
are really Poy, ® 1, P14 ® 1. However it is convention to keep the identity operator implicit.
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Since entanglement is of such importance, it would be useful to have first a way
of testing for entanglement and second a measure of the degree of entanglement
possessed by a given state.

The definition above does not lend itself very well to testing, since proving
non-existence of the states [14),|¢p) is in general a difficult task. Fortunately
there are other tests which are much simpler. A state is separable if and only if
the reduced density matrices of its subsystems are pure:

[v) 45 separable < pa = Trp(|Y) 45 (¥]) pure & Tr(p%) =1 (2.1.16)

where A, B may equally well be interchanged. Given a matrix it is straightforward
to calculate the trace, and so this is a good practical test for entanglement.

Defining a good measure of entanglement for mixed states is much harder”, and
presently there is no agreement on any single measure in the literature. Rather
a variety of different measures exist. An overview over some of these, with refer-
ences, may be found in Wei et al. [30]. We are not going to need an entanglement
measure since in this thesis we will be aiming not just at generating entanglement,
but at generating a particular entangled state. What we need then is a notion of
closeness of our generated states to this ideal state, and this is provided by the
fidelity. Suffice it to say that, whatever measure is adopted, the Bell states are
mazimally entangled and for two-qubit systems all the maximally entangled states
are related to the Bell states by single-qubit unitary transformations [5, 30]. Hence
when generating entangled states, the best we can hope for is a Bell state.

Entanglement comes about in many ways in nature. For example atoms which
interact with light (e.g. through absorption and spontaneous emission) generally
become entangled with the light field. Collisions between atoms can also give rise
to entangled states. In quantum computing and communication schemes one of
the great challenges is to keep the system free of undesirable entanglement with
the environment, while preserving controlled entangled states within. To create
entanglement it is preferable to use quantum systems which interact strongly with
each other, but at the same time we need the interaction with the surroundings
to be minimal, hence in any design there must be a trade-off between these two
effects. Generating entanglement in a controlled manner is not easy, and naturally
the method used must depend on the physical nature of the setup into which it is
integrated.

2.1.5 Harmonic Oscillator Systems

To analyse the performance of DLCZ-type repeaters we will model them by har-
monic oscillators. In this section we introduce concepts from the theory of har-
monic oscillators that we shall find need for. The ideas below are used in our

"For pure states one may use the von Neumann entropy.
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model of the DLCZ-type repeater, and are applied in the chap. 4 on the gener-
ating function as well as in subsequent sections which deal with specific physical
systems.

Recall that the state space of the quantum one-dimensional simple harmonic
oscillator is spanned by the number states {|n)}, n = 0,1,2,...8. The annihilation
and creation operators @, a' have the following properties:

[a,a] =1 (2.1.17)
al0) =0, aln) =+/nln—1), n >0 afln) = vn+1jn+1)

The number states can be expressed in terms of a' as:

1 ~T\n
In) = ﬁ(aT) 0) (2.1.18)

The state |0) is sometimes called a vacuum state. In the quantum description, light
(or any other bosonic field) is represented by one or more harmonic oscillators, and
the vacuum then corresponds to the state where there are no photons in the field.

Since the basis states can be expressed entirely in terms of a and |0), all
other states of the harmonic oscillator may also be expressed in these terms. Two
important classes of states are coherent states and squeezed states.

The coherent states are the right eigenstates of the annihilation operator: for
any complex number « there exists a state |«) such that a|a) = «|a). The coherent
states are not orthogonal but define an overcomplete basis for the state space. In
terms of the creation operator the coherent states are:

) = =% Z_% 3_%(&*)"\(» — D(a)[0) (2.1.19)

where the displacement operator D is defined by:
D(a) = ¢4 ~o"a (2.1.20)

All properties of the coherent states may be derived from the displacement op-
erator, whose properties may in turn be derived from equations (2.1.17). In the
generating function method of sec. 4.1, we make extensive use of displacement
operators.

Physically, coherent states are the ‘most classical’ states of the harmonic os-
cillator. They represent the opposite wave-like case to the number states, which
are the most particle-like states. E.g. in the case of light, the number state |1)
represents a single photon while the coherent states give a good description of
the output from a laser in which the photon number is not fixed but follows a
poissonian distribution [12, 20].

8The number states are also called Fock states.
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The squeezed states are non-classical. They are states for which the quantum
uncertainty of some observable is below the standard limit given by the Heisenberg
uncertainty relation. Here we consider quadrature squeezing. The gquadrature
operators are defined by:

X = i(fﬁ +a) P=—("—a) (2.1.21)
V2 V2
In the case of light, they correspond to the sine and cosine components of the
electric field. For a massive particle in a harmonic oscillator potential, they
correspond to position and momentum. They obey the uncertainty relation®:
((AX)?) ((AP)?) > %, and a squeezed state is a state for which:
((AX)?) <

or  {(AP)*) < (2.1.22)

1 1
2 2

In fig. 2.1 this corresponds to a deformation of the disk representing the uncertainty
of the state.

S(€x0)D(@)0) % D(@)|0) % S(6)D(@))0) %

\/
v
\/

Figure 2.1: Phase-space plot of: a) Squeezing in the X-quadrature. b) No squeezing.
c) Squeezing in the P-quadrature. The three pictures illustrate the action the squeezing
and displacement operators. The cross indicates the expectation values of X, P, which
for the coherent state |a) are v2Re(c), v/2Im(a) respectively. The coloured area shows
the expected spread (variance) around the mean. For no squeezing, the variance is the
same in all phase-space directions. When there is squeezing, some directions have reduced
variance at the expense of increased variance for the complementary (in the uncertainty
relation) directions.

Mathematically, squeezed states can be generated by acting with the squeezing
operator:
S(€) = ez (2.1.23)

Here ¢ = re? is in general a complex parameter. The magnitude 7 determines

the degree of squeezing and the phase 6 determines the axis in phase-space which
is squeezed. Squeezing along X, P are obtained for § = 0,7 respectively. If the
squeezing is not along one of these, the ellipse in fig. 2.1 will be rotated away from
the axes.

From the relation ((AA)?) ((AB)*) > L|([4, B))|?, cf. [27] p. 35.
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An important case is the squeezed vacuum state, given by S(£)|0). For this
state, when # = 0 we have:

(AX)?) = %e—% (AP)?) = %e”’" (2.1.24)

This relation also holds for any displacement of the state, as shown in the figure.
The squeezed vacuum state will play a role for one of the quantum memories we
look at in chap. 6 and the degree of squeezing will be an important parameter.
So far we have considered only a single harmonic oscillator, but what we shall
need for our repeater models is a collection of oscillators (or equivalently a higher-
dimensional harmonic oscillator). Different oscillators will represent different parts
of the physical system, e.g. one describes a field of light while another describes
the spin state of atoms. We index the collection of operators by . Each oscillator
is also called a mode, and the annihilation and creation operators a;, dZT are called
mode operators. The state space of the joint system is spanned by the tensor
products of the number states |n); for each mode!®. For N modes we write:

N

1 . N
|n1nN> = ® |nl>2 = m(abm...(a}r\,)mvwa@ (2125)
im1 .

where |vac) denotes the joint vacuum state, and d;r acts only on mode i. The
commutation relation in (2.1.17) is modified to be:

[a:, a1) = 0 (2.1.26)

As for a single oscillator, all states may be described in terms of the mode
operators and the vacuum. In particular, the two-mode squeezed vacuum state is
given by S;;(&)[vac), where:

Si5(€) = e i —€al] (2.1.27)
which implies:
Sis(©)lvac) = sech(r) > [~ tanhr]” nn):; (2.1.28)
n=0

It is easy to see that this state is entangled, since all components have n; = n;.
Two-mode squeezing is important for entanglement generation, and we will see an
example in sec. 6.2.

As the last topic in this section, we define Bogoliubov transformations. These
are transformations on the set of mode operators, which are linear and preserve
the commutation relations. Denoting the transformed operators with primes, a
general Bogoliubov transformation is given by:

dy = bjidi + cjia) (2.1.29)
%

10gince it is the tensor direct product of the Hilbert spaces for each mode.
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- ~ AT/
The bji, cj; are complex, and the requirement [d7, az] = §;x becomes'!:

bbf —ccf =1 (2.1.30)

where the matrices b, c have elements bj;, c;;.

It is sometimes easier to express an operator in terms of the action on the
mode operators than in terms of the number states. Many useful operations can be
expressed as Bogoliubov transformations, including one- and two-mode squeezing
as defined above.

2.2 Basics of Quantum Information

In this section we introduce basic concepts of quantum computing and commu-
nication - quantum information for short. We do not delve deeply into quantum
information theory, but discuss only fundamental ideas that will be needed for the
repeater'2. The section builds primarily on [22] and course materials from courses
at DAMTP, Cambridge.

2.2.1 Qubits and Memories

The basic entity of quantum information is the qubit. The qubit is the quantum
analogue of the classical bit, and it is defined simply as any two-level quantum
system. That is any system whose state space is two-dimensional.

There are many examples of physical systems which may serve as qubits. Spin
states of spin—% particles, polarisation states of photons or two hyperfine energy
levels of an atom are but a few. It is one of the great strengths of the mathematical
formulation of quantum information theory that it is independent of what system is
used for implementation. Thus abstractly a qubit is described by a two-dimensional
Hilbert space H. Usually there will be some basis for H connected in a natural
way with the physical system (i.e. a basis in which measurements are carried out
naturally). This basis we call the computational basis and we denote the elements
{]0),]1)}. Notice the use of italics to distinguish qubit states from harmonic
oscillator number states. The collective state of more qubits is described by the
tensor direct product of their Hilbert spaces, and the basis elements of the product
space are tensor products of the original basis elements. We adapt a notation
similar to (2.1.25), and for e.g. three qubits one computational basis state is
|001) = |0>1 ® |0>2 ® |1>3-

When quantum information is transmitted from one location in space to an-
other, it necessarily has to be encoded into qubits which can move (e.g. photons
but also other particles). On the other hand, when performing computations it is
often the case that not all qubits are operated on simultaneously, and the qubits
which are not active then have to be stored in some spatially fixed system. In

11F‘r0m (2.1.26): [d;7 dzl = Ziﬁ(bﬁb;;{'(s - cjiczg%) = ZZ bﬂb;;,b — Zz cjic;’gi

i1

2For a thorough introduction to quantum information theory, see [22].
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the terminology of quantum information theory we speak of flying and stationary
qubits. An ideal quantum memory is a quantum system into which the state of
flying qubits can be written and later retrieved unchanged'®. Naturally for any
realistic memory, the retrieved state will not be perfectly identical to the one which
was stored, but in any case we strive to keep the output as close to the input as
possible (i.e. the fidelity of the retrieved state w.r.t. the input state should be close
to 1) and the possible storage times as long as possible. In the context of quantum
repeaters, memories are useful because the repeater protocols involve many parallel
computations. Some of these will be faster than others and the output qubits then
need to be stored while the remaining computations finish. Also a lot of classical
communication takes place during the protocols and qubits need to wait for this
exchange to be done.

2.2.2 Computation and Communication

Just like the qubit resembles the classical bit by having two levels, the structure of
the quantum computer also resembles the structure of ordinary computers. Com-
putation is effected by applying a sequence of gates to a collection of bits and
reading out their state. However, the nature of the gates and the readout is very
different in the two cases, because qubits allow for superpositions of the levels and
their state will in general be disturbed by measurements. Mathematically commu-
nication can be viewed as a special case of computation. A communication channel
over which quantum information in the form of qubits is transmitted is simply a
computation where the input and output are allowed to be separated in space.
On the classical computer, gates are logic operators such as OR or AND.
Quantum gates are defined to be linear, unitary transformations on a set of qubits:

U:HO" — HO™ (2.2.1)

A set of quantum gates is said to be universal for quantum computation if any
transformation of the form (2.2.1) can be approximated arbitrarily well using only
gates from the set. As for the classical computer a small number of different gates
is sufficient for a universal set!.

In general, we distinguish between single-qubit operations, also called local
operations, and non-local operations, which act on more than one qubit and cannot
be factored into local operations.

Three single qubit operations, which we shall need below, are the bit flip, phase
flip and combined bit and phase flip gates. We denote them X, Z,Y respectively!'®

13We can also think about memories outside a qubit description. A quantum memory is simply
a system which allows storage and retrieval of the quantum state of some other, usually more
volatile, physical system.

Y1t can be proved that single qubit operations and the controlled-NOT gate together form a
universal set [22].

15Tn the computational basis, the XY, Z-gates are represented by the usual Pauli matrices.
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and they act on an arbitrary single qubit state |1)) = a|0) + b|1) as follows.
X ) =al1) +b|0) Z|y)y = al0) —b|1) (2.2.2)

Y|y = —ia|1) + ib|0)

We note that X interchanges the 0- and 7-components of [¢)) while Z shifts the
relative phase by .

As an example of a non-local operation we look at a two-qubit operation. The
controlled-NOT gate (cNOT) is a bit-flip on one qubit conditioned on the state
of another. When the state of the control qubit is |1), X is applied to the target
qubit. Since ¢cNOT is a quantum gate acting on qubits it is linear and preserves
superpositions. For example:

(2.2.3)

vor [0 g g)) - 101118

V2 V2

Note in this equation that while the initial state was separable, the final state is
a Bell state, i.e. a maximally entangled state. This ability to create entanglement
makes cNOT a very powerful gate, and in many proposed implementations of the
quantum computer, one of the main challenges is to implement this gate or one
which is equivalent to it under local operations [19, 22]. This is a difficult task
since the non-local nature of the gate means that the two qubits must interact in
a controlled manner.

An important difference between quantum and classical information is that it
is impossible to obtain complete knowledge about the state of qubits by measure-
ment, and attempts to do so will destroy the state. If for example we measure an
observable with eigenvalues {x} and a complete set of associated eigenkets {|z)},
then the outcome will be one of the x’s and the state of the system will be pro-
jected to the corresponding eigenket. Hence if the state of the system before the
measurement was a superposition:

) =3 cula) (2:2.4)

we do not learn anything about the coefficients c,. In general, to discover the values
of these coefficients accurately, we would need to measure on very (infinitely) many
copies of the state (2.2.4). But quantum mechanics does not allow us to make
copies. The no-cloning theorem states that:

It is impossible to construct a device, which given an unknown quantum
state will output two identical, perfect copies of that state [22].

The no-cloning theorem is a major obstacle when designing quantum algorithms
and communication protocols. For example we cannot keep backups of quantum
information which is sent over a lossy channel, and when we read out the result
of a computation, we do not obtain the full state of the qubits. However, even
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though complete knowledge of the final state may be inaccessible to us, we can
make sure, by designing the algorithms carefully that a single measurement (or
a few iterations) does give us information specific to the task the algorithm is
performing.

It should be apparent that the discipline of designing quantum algorithms is
somewhat more subtle than its classical counterpart. We will not discuss algorithm
design much in this thesis. We focus on quantum repeaters and we deal with them
partly trough a particular model in terms of harmonic oscillators rather than the
qubit formulation. We will need one very important circuit though, namely the
quantum teleportation algorithm. It is a remarkable fact that quantum mechanics
allows for the transfer of quantum information without any direct quantum channel
between the sender and the receiver. By quantum teleportation the state of one
qubit is transferred unto another, possibly far removed in space from the first, by
making use of prior entanglement and classical messages.

2.2.3 Quantum Teleportation

The teleportation circuit is shown in fig. 2.2. Three qubits are involved in the
teleportation. The first qubit, initially in the arbitrary state |¢), is the qubit to be
teleported. The second two qubits are prepared in one of the maximally entangled
states. Teleportation can be achieved with any maximally entangled state, but for
the sake of argument we choose the Bell state |#*). One may imagine that the
qubits of the entangled pair have been separated spatially by a large distance, so
that on one location the sender is keeping qubits 1,2 and on another location the
receiver is keeping qubit 3.

) —— D

UBell

) { P '

X 0 Z —W

Figure 2.2: Teleportation circuit. Time is running from left to right, and we label the
input qubits 1,2,3 from above. The initial state |¢) of qubit 1 is teleported onto qubit 3.
The bold lines carry classical information.

In the first step of the algorithm, a Bell measurement is performed on qubits 1
and 2. Since the four Bell states form an orthonormal set, they are a basis for the
two-qubit Hilbert space H®2. A Bell measurement is defined to be a projective
measurement onto this basis. Equivalently it is a unitary transformation from the
Bell to the computational basis'® followed by measurement in the computational

16Recall that any two bases of a Hilbert space are connected by a unitary transformation.
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basis (c.f. sec. 2.2.1). There are four possible outcomes corresponding to the Bell
states, and for each of these we list the resulting state of the third qubit:

Measurement outcome | |®F) | [®7) | [¥T) | |[T7)
State of qubit 3 |0y | Z W) | X ) | YY)

Table 2.1: Conditional states after the Bell measurement. Z,X,)Y are the phase and bit
flip gates. The reader is referred to app. A for the details of calculation.

The measurement outcomes have equal probabilities independent of the initial
state, and in each case the final state of qubit 3 is a pure state equal to the
input state of qubit 1 up to a combination of phase and bit flips conditional on
the outcome. Since each of the gates X,Y, Z square to 1, all we have to do to
recover [1)) is to compare our measurement outcome with tab. 2.1 and apply the
appropriate gate to qubit 3. This means that the sender must pass a classical
message of two bits to the receiver!”.

We have reached a remarkable result: Without any direct interaction and trans-
mitting only a short classical message the full quantum state of qubit 1 has been
transferred to qubit 3. What is more, as long as the measurement and gates work
perfectly and the prepared entanglement is really maximal, this transfer is perfect,
regardless of the separation between qubits 1 and 3. From the point of view of
communication this is very promising: If we can manage to distribute entangle-
ment among senders and receivers, then quantum information can be exchanged
without any further need for protection from noise. Since the entanglement distri-
bution takes place in advance of the actual signalling it can be allowed to be lossy
and imperfect without any risk of losing important messages, as long as the final
entangled states are good. The generation and distribution of entanglement is the
purpose of the quantum repeater.

Here we adopt the convention that a transformation from one basis to another actively maps
the basis vectors of the first onto the basis vectors of the second. This means that the matrix
representation of a state in the new basis is obtained by applying the Hermitean conjugate of the
transformation matrix in the old basis to the representation of the state in the old basis ([27] p.
36f).

1"Note that the need for a classical message prevents faster-than-light signalling. If the receiver
does not know the measurement outcomes, his best description of qubit 3 is an equally weighted
mixture of the states in tab. 2.1, but that is the state p = %]l known as a maximally mixed state
(c.f. sec. 3.1), corresponding to no information transfer at all.



Chapter 3

Quantum Repeaters

In this chapter we first discuss transmission of quantum information over a noisy
channel, which is the problem that quantum repeaters are designed to solve. We
then proceed in sec. 3.2 to describe two different quantum repeater protocols, in
particular the DLCZ-type repeater which is the main subject for this thesis. We
also introduce the model that the analysis and simulations of chap. 5 and chap. 6
are based on.

3.1 The Noise Problem

In any realistic physical system used to implement quantum computation, noise
will be present. None of the operations which we perform will be perfect; gates and
measurements will have errors and the system will not be perfectly isolated. Hence
quantum computation and communication must be implemented fault-tolerantly
to function in the presence of these imperfections. Communication across noisy
channels is what the quantum repeater is designed to achieve.

To get an idea of what effect noise will have consider a simple model of imperfect
operations. A is a single-qubit operation. The qubit system is denoted @) and the
environment is E. We take the effect of A on an arbitrary state p to be® [3]:

1
Apqe = pAidea poe + (1 —p)5 © Tro(pgr) (3.1.1)
The ideal operator A;4.q acts only on the qubit system. p can be understood as the
probability for the operation to succeed. With probability 1—p the operation fails,
in which case we have no knowledge of what happened to the qubit. It is projected
to the state 1/2. This state is called a mazimally mized state, because outcomes

of measurements on it are maximally random. For projective measurement onto
any orthogonal basis {|a), |b)} we have from (2.1.4): P(a) = P(b) = 3.

In quantum information theory this type of channel is known as a ‘depolarising channel’ and
its transmittance properties, such as capacity, have been studied [22].

19
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The operation is now applied iteratively, and we study the effect of this on the
qubit state. Let p; denote the density matrix of the qubit after ¢ iterations of A,
and assume the initial state of the qubit to be pure pg = |¢) (1|, while the state of
the environment is arbitrary. Applying A once to the initial state, we get:

1
Apo®@pe = plAidea po] ® pe + (1 —p)§ ® pE

1
= |:pAideal po+ (1 —p)E] ® pE (3.1.2)

= pP1®pE

where we have used Trg(po ® pr) = pr which follows from the unit trace property
of the density matrix. Inductively we find after ¢ iterations:

o A Ak
pi =" Ajgear po+ Y1 (1 — p)—Has (3.1.3)
k=0

In the case where the qubit is transmitted over a channel, ideal operation corres-
ponds to a perfectly faithful transfer and we simply have A;4.; = 1. From (3.1.3)
it is then easy to compute the fidelity of the transmitted state with respect to the
ideal state [1)). We obtain:

i—1
Floa) = (@l oo+ 300 —p)3 | )

k=0
1—1
- ey
k=0

_ Z44_1—pil—p:1+pi
L 2

L(lz_ p) (3.1.4)

where we summed the geometric progression to get the third equality. From this
expression we see that whenever the channel is not perfect, i.e. when p < 1, the
fidelity drops exponentially in the number of iterations, towards 1/2 which is the
fidelity of the maximally mixed state. We may think of a communication channel
as made up of many small segments, each with fixed probability of success as in
(3.1.1) (or equivalently the channel has a fixed failure rate per unit length). It then
follows that the transmission fidelity drops exponentially with the channel length.
This feature, exhibited here in our simple noise model, is the general problem
which has to be overcome for quantum communication to become viable.

It can be seen (e.g. by computing Tr(p?)) that as i increases, p; gradually
departs from the initial pure state to become more and more mixed. This loss of
purity is called decoherence. In a slightly more general noise description it can be
seen as the result of entanglement with the surrounding environment: Again we
take a single qubit initially in a pure state |¢)) = a|0) + b|1), and the initial state
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of the environment may also be taken as pure? |e;,). The qubit is not perfectly
isolated from the environment, but taken together they form a closed system and
hence evolve unitarily. Let U denote the transformation when the system evolves
for some unspecified, fixed time. The general form of the evolution is then:

U[0) @ lein) = [0)|eco) + |1)]eor)  Ul1) @ |ein) = [0)|e10) + |1)]en)

UlY) ® lein) = al0)|eoo) + al1)]eo1) + b]0)|e10) + b 1)]e1r) (3.1.5)

Here the environment states |ej;) need not be mutually orthogonal or normal-
ised. We see that the final state of the qubit is no longer pure. Tracing over the
environment gives a mixed reduced density matrix:

+ |b|2<€01|€01

= 10)(01 (|al*(eooleon) + ab*(eaoleor) + a*bleor|eoo) ))
+10)(11 (Jal* (o1 lean) + ab*(e11]eqn) + a*bleroleor) + [b]* (er1lero))
+ [1)(0] (\a!2<600|601> + ab*(eqpleo1) + a*blegolerr) + ]b[ <610\611>)
+11)(1] (|a|*(eo1]eor) + ab*(e11leor) + a*bleotlerr) + [b|* (ernlenn))  (3.1.6)

Depending on the environment states (i.e. on the particular U) the final deviation
from [¢) may be large or small. Hence the importance of isolating the qubits well
should be apparent.

Starting from models of noise, such as the ones above, it is possible to find
general methods for dealing with errors. For example (3.1.5) can be understood as a
combination of random bit and phase flips acting on the qubit (see [22] p. 434), and
a code can then be designed which will detect and correct these flips. The general
idea of the so-called ‘error-correcting codes’ is to encode one computational qubit
redundantly into several physical qubits and use the redundancy to protect the
state of the encoded qubit. An important criterion for any scheme of fault-tolerant
computing is that the overhead in resources and computation time must not grow
exponentially with the size of the computation, since otherwise the scheme quickly
becomes obsolete when the circuit size is increased. For quantum computation
it turns out that by making use of error-correcting codes any computation can
be performed fault-tolerantly, provided that the probability of error for the basic
gates in the circuit is below a certain threshold? [3, 22].

So in principle the problem of noise is solved. However the threshold is low.
Depending on the code, it is typically on the order of 10~* - 10~2 for local opera-
tions while the tolerable error probability for transmission may be higher [3, 22]*.
This is a very harsh requirement to a practical implementation. Also it should be
noted that the error models considered above are not completely general. Physic-
ally a qubit may be encoded into a system with more than two levels, and errors

%If it is not, we just extend our description of the environment to include whatever other
systems it is entangled with.

3 Also, some physical assumptions must be made about the noise, parallel computing must be
possible and ancilla qubits must be provided ([22] chap. 10).

*And according to private correspondence with A. S. Sgrensen.
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could then take the state outside the qubit subsystem, causing the qubit state
to become undefined. For example one could imagine encoding the qubit onto a
photon which is absorbed.

For these reasons, we are motivated to look for other quantum communication
schemes. Fortunately several schemes with less stringent bounds are provided by
quantum repeater protocols, which allow efficient transmission of information over
an arbitrary distance with error-tolerances at the level of percent® [3, 6, 8].

3.2 Quantum Repeaters

As has been stressed several times already, the purpose of the quantum repeater
is to create entanglement and distribute it among different parties. In this section
we consider the basic structure of the repeater. Several variants of the repeater
protocol exist (e.g. [3, 6, 8] and more), and we mention briefly the approach
introduced in the original paper [3], where the term gquantum repeater was also
coined®. The approach taken in the main work of this thesis was introduced in [§],
and we describe it in more detail.

3.2.1 Basic Structure of the Repeater

The basic structure of the repeater is shown in fig. 3.1. Two locations A, B are
connected by a noisy quantum channel. Our goal is to establish a maximally
entangled pair between A and B. To be specific, say that the state we aim to
establish is [W+). The channel is divided into 2V segments of length Lg, so that
the total channel length is L = 2V L¢. Final entanglement is established in two
iterative steps.

L,
—
o——00——00 - o0 Y )
Amsterdam Bujumbura

Figure 3.1: Quantum repeater. The devision into segments is shown. The meeting point
of two segments is called a repeater station or a node. The physical systems underlying
different segments and nodes are identical.

Initialisation. To begin with, an entangled pair is created for each Lg-
segment. Since the physical qubits must interact to become entangled, entan-
glement creation has to happen locally. The two qubits of the created pair are
stored at either end of the segment. A quantum memory in which qubits may
be stored over time and retrieved is an integral part of the repeater and is very

Here it should perhaps be stressed that these schemes achieve only this: transmission of
information. They do not provide universal quantum computation at the given noise levels.
5To the best of my knowledge.
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nontrivial to implement; hence in the construction of repeaters much work must be
put into finding a good memory. However at this point, we need not worry about
the details of how the memory functions. How entanglement is created depends
on the physical nature of the qubits, and so also does the form of the created state
and the degree of entanglement it possesses. It is crucial that the fidelity F' w.r.t.
|UT) is close to unity. Depending on the scheme used, it is possible to find a strict
lower limit for the initial fidelity.

Connection When entangled pairs have been established at all segments, they
are connected to increase the entanglement distance. The connection is illustrated
in fig. 3.2. It consists of a quantum teleportation of one end of a pair onto the
far-away end of a neighbouring pair (c.f. sec. 2.2.3). The result is an entangled pair
with a new fidelity F’ extending over twice the distance, L; = 2Lg. Performing

entanglement connection” at every second node produces a string of 2V ~! segments
each of length L; and each occupied by pairs of fidelity F”.
uantum :
o—F{oa)E o etm E o
1 4 teleportation 1 4

Figure 3.2: Entanglement connection. Solid lines indicate entangled pairs. A Bell meas-
urement is performed on qubits 2 and 3, and the state of 2 is teleported onto 4. Because
the initial states are not maximally entangled and the gates and measurements are not
perfect, the fidelity is degraded in the process. F’ < F.

A final entangled state between A and B is established by iterating the con-
nection N times. In each iteration the number of segments is halved and the
entanglement distance is doubled by connecting pairs L; = 2' L.

Because of imperfect operations and imperfections in the entangled states, the
fidelity decreases in each connection step. For good repeater performance (i.e.
better than direct transmission), this decrease must be sub-exponential in the
distance. The approach to the repeater [3] and the class of repeaters considered in
this thesis are distinguished by how they achieve this.

3.2.2 Repeater with Purification

In the first proposal entanglement purification was used to restore a good fidelity
after each connection. There are several ways to purify® states of low F to states
of high F'. For example one may distill a nearly maximally entangled state from a
collection of low-F' states by a sequence of measurements, and selections based on
the outcomes. If the initial fidelity of the pairs is above a certain threshold Fj;p,

"The teleportation process of fig. 3.2 is sometimes called ‘entanglement swapping’, but in the
context of repeaters we prefer the term ‘entanglement connection’.

8Note that the term purification is also used in the quantum information literature for a
mathematical technique to associate a pure state of a composite system with a mixed density
operator of a subsystem, e.g. [22].
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then the average fidelity of the new collection of pairs after each selection round
will be higher. Hence iterating the procedure will drive F' towards 1 (or towards an
upper limit F,,;). Fig. 3.3 illustrates the combined connection and purification.

This procedure can be integrated into the repeater by having parallel channels
of the type in fig. 3.1. For each Lg-segment then, we create a collection of low-
F' pairs from which a smaller number of nearly maximally entangled states are
distilled. These high-F pairs are then connected and the process is iterated.

The imperfections in gates and measure-
ments determine F,q., Finin and the drop in |
fidelity by connection, and so the condition gt
F' > F,;, fix the error bounds above which 0.8l
the repeater becomes inoperable. With an er-
ror model of the type (3.1.1), Briegel et al. show |
that error probabilities on the percent-level can 0.6p.
be tolerated. They also demonstrate that the 0.9
resources required for operation (i.e. the num- 04; P
ber of parallel channels) and the time needed to (.3} . e ]
establish entanglement between A and B grow £ 03 04 05 06 0.7 08 09 1
at worst polynomially with the distance. Hence
the repeater is in principle operable over long Figure 3.3: Iteration loop. The fig-
distances and in the presence of noise [3]. ure is taken from [3]. The upper

A few other purification schemes [2, 7] were 2nd lower curve show the fidelity

. . . after one purification or entangle-
considered already in [3], and it was demon- : :
ment connection step respectively
strated that the need for many parallel channels ¢ o0 e a9 elity before the
can be eliminated. In [6] it is shown that puri- ey,
fication can be achieved with just two qubits at
each node.

The lowest possible value of the threshold for purification F;y, is 1/2 [7], and
this provides us with a benchmark for the fidelity of the entangled states generated
by the quantum repeater. 1/2 is the maximal average fidelity that may be reached
by means of classical communication. This may be realised in the following way.
If it was possible by classical communication alone to establish qubit pairs with
an average fidelity above 1/2, then by purification of a collection of such pairs it
is also possible to establish a (nearly) maximally entangled pair. Thus maximal
entanglement would be established between distant systems without any quantum
interaction between those systems whatsoever. We will refer to the 1/2 classical

limit on several occasions later in the thesis.

3.2.3 DLCZ-type Repeater

In [8] Duan, Lukin, Cirac and Zoller have proposed a repeater protocol which has
no separate purification step. Instead the entanglement connection is probabil-
istic. Although a specific implementation were considered in [8], in this thesis the
term DLCZ-type repeater refers to any repeater protocol with this structure: i.e.
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probabilistic connections and no separate purification. The DLCZ-type repeater
is illustrated in fig. 3.4.

,—JLL disentangled level
o oo (0N ) oo e
ent. creation po o
connection Qo [« X¢] o0 20— - -

failure .
ent. conection p;

o P0———— -

lm
=2

[ ———————————E

Figure 3.4: DLCZ-type repeater. [ denotes distance levels. At the [’th level, after !
connections, each of the entangled pairs span a distance L; = 2'L¢. p; is the probability
of success for stepping from level I — 1 to level [ by entanglement connection (or creation).

At each entanglement connection, success is conditioned on the outcome from
some measurement. The probability p; of obtaining the required outcome may
depend on the level®. The purpose of the conditioning is to project the created L;-
pair to a state which minimises the drop in fidelity from one level to the next and in
this way ensure that the decrease in fidelity as the entanglement distance increases
is sub-exponential in the distance. A low drop in fidelity per connection step may
be thought of as being paid for by a high probability for the connection to fail:
1 — p;. As a general rule, the lower the required drop in F, the lower p; must be.
Since for the unaided, noisy channel fidelity of transmittance drops exponentially
(c.f. sec. 3.1), we can think of the DLCZ-type repeater as having some built-in
purification in the entanglement connection [8]. It should be noted that, in contrast
to the first approach, there is no need for any non-local operation to be involved in
the connection step. In particular it is not necessary to perform Bell measurements
or to implement the cNOT gate (no Bell measurement is needed for probabilistic
teleportation in fig. 3.2). This is good because implementing non-local operations
is generally hard.

From fig. 3.4 it should be clear that a good quantum memory is important for
operation of a DLCZ-type repeater. Since all entanglement connection and gener-
ation steps are probabilistic, connection or generation for neighbouring segments
cannot be expected to succeed simultaneously. Therefore entangled states need
to be stored while corresponding entangled pairs are established for neighbouring
segments. Only then can the states be retrieved and connection can be attempted.

As for the earlier proposal, the DLCZ-type repeater can be made to have sub-
exponential overhead in resource use and communication time. Since all the nodes
are identical systems, we see that the resource use is linear in the channel length.

9the purification procedure described in sec. 3.2.2 also had a probabilistic element, because it
used conditioning on measurement outcomes, but here we associate a probability with the entire
step from one level to the next
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To estimate the communication time we consider entanglement connection between
pairs of length L; 1. When the connection fails, entanglement is lost on the whole
L;-segment involved, as illustrated in fig. 3.4, and the repeater protocol has to be
restarted from the initial entanglement generation on this segment. The average
number of attempts before connection succeeds is 1/p;. We let 7 denote the time
spent on a single entanglement connection or creation attempt!'®, and #; denote
the average time needed to establish an entangled L;-pair. If we approximate the
time needed to generate (in parallel) two neighbouring L, ;-pairs by the average

time for generating one such pairll, we obtain a recurrence relation for ¢;:
1
t; = —(7’ +tl_1) (3.2.1)
b

which has the solution:

-1
1 1 T
t=m7(—+-+ = 1+§ ||p 3.2.2
(pl pl'“po) Pi---po =0 j—0 ’ ( )

Putting [ equal to N = logy(L/Lg) in this expression gives the total time needed to
establish entanglement between A and B as a function of the channel length. The
behaviour of ¢ty depends on the specific implementation through the p;. We see
that for ¢ to have sub-exponential dependence of the channel length, the p; must
not drop off exponentialy with /. This has to balance with the complementarity
between low drop in F' and low p;; there is a trade-off between low communication
time and a high final state fidelity. A scheme which achieves such balance was
demonstrated by Duan et al. in [8]'2.

As a last remark of this section, we mention another purpose of the measure-
ments in the entanglement connection step. In addition to minimising the fidelity
drop, they are also used to control the form of the final entangled states generated
by the repeater. If the form of the final states is known, it may be possible to
design (probabilistic) quantum communication schemes which can operate even
when the fidelity of the states is not high. For example, the entangled states might
take the form:

p = clvac)(vac| + (1 — )| ¥~ )(T7| (3.2.3)

where we imagine the underlying physical system to be photonic modes. If we
make a joint measurement with another state and condition on the presence of a
photon, the vacuum component in this expression cannot contribute to the suc-
cessful outcomes. This way it is possible to construct a probabilistic teleportation

Othe time spent on classical communication between the nodes may also be included in 7.

1'This is an underestimation. The average time for two pairs to succeed is higher than for a
single pair. The error in the final communication time due to this approximation is found when
we compute communication rates for specific repeaters in chap. 6. It is approximately a factor
2.5.

2Note that in [8] the authors consider only the dominant term of (3.2.2). This is in addition
to the approximation made in obtaining that formula.
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protocol which works with almost perfect fidelity [8]. The probability for the pro-
tocol to succeed is determined by the coefficient c. We return briefly to this in
sec. 5.4.

3.2.4 Modelling

A major part of the work presented in this thesis has been to analyse the perform-
ance of different DLCZ-type repeaters. To do this we need a specific model for
the physical systems which make up the repeater, i.e. the quantum memories, the
manner of entanglement creation, etc. As our model we choose a set of harmonic
oscillators.

ai, as,as
A l" A /\/ /\/
ar, ;S AR ap R
@ —Q @ @

e’

Figure 3.5: Harmonic oscillator model. Two oscillator modes are associated with each re-
peater segment. Additional modes may be involved in write-in and read-out from memor-
ies and in entanglement generation and connection. Modes involved in connection are
indicated by red.

For a given segment, we associate a mode with either end. All operations which
are part of the repeater protocol are assumed to be described by Bogoliubov trans-
formations of the mode operators for these and auxiliary modes, and by projective
measurements in the the number state basis (2.1.18).

With this model, the computational basis for our qubits is given by the two
lowest number states:

|0>qubit = |0> |1>qubit = |1> (3.2.4)

This kind of qubits is usually considered not to be a very good encoding, because
some single-qubit operation, such as the bit flip gate X, are difficult to do. With
this encoding X requires a change of the excitation number (e.g. photon number
for light), that is, an active transformation. It is prefferable to encoded a qubit
into two modes with a fixed excitation number in a so called dual-rail encoding.
However, as demonstrated in [8] , entangled states of the form (3.2.5) below may
be used to teleport dual-rail encoded qubits and they can also be used in quantum
cryptography applications.

If we denote the mode operators for a segment by ar,ar, then a maximally
entangled state across that segment is given by:

1 1, .

= — al,)vace 2.
\/5(|01>+|10>)—\/§( L +ag)lvac) (3:2.5)

The entanglement creation step aims to generate states that are close to this ex-
pression. The process is a Bogoliubov transformation of ar,ar along with axillary

) =
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modes followed by measurements - for example entanglement may be generated for
photonic modes which are then loaded into atomic memory modes. Similarly, en-
tanglement connection is a Bogoliubov transformation of e.g. ar, and a/, from the
neighbouring segment complemented by auxiliary modes (see fig. 3.5). In this case
the memories may be read out into the extra modes, which are then manipulated
and measured. The result is an entangled state stored in modes @ , ar which form
the modes of the new segment (c.f. fig. 3.2). The modes ar,ar can be storage
modes of quantum memories located at the nodes of the repeater, but they do not
have to be. Alternatively one can view the complete state transfer (write-in +
read-out) formally as part of the entanglement connection.

Each entanglement connection - no matter the distance level - is supposed
to be performed in the same manner; that is, the form of the auxiliary states
involved and the Bogoliubov transformation are always the same. Likewise the
entanglement creation procedure is also the same on all segments of the channel. In
principle, when the Bogoliubov transformations and measurements of the protocol
are fixed, it is enough to specify the input state for the entanglement creation. The
state of entangled pairs at any higher level can then be calculated (conditional on
connections to succeed).

Although at first glance the choice of harmonic oscillators as a model may seem
restrictive, it is in fact quite general. Many quantum systems may be described
by or approximated by harmonic oscillators. For example we shall consider light
interacting with spin states of atomic ensembles. Other examples might include
electrons in potential wells or vibrational modes of trapped ions - systems which are
considered for implementation of quantum computation. The Bogoliubov trans-
formation also has wide applicability. It includes, but is not restricted to: all linear
optical transformations (e.g. beam splitters), generation of squeezed states, and
light-atom interactions. However it cannot generally be used to treat evolution
under Hamiltonians that are not quadratic in the mode operators. One example
of a phenomenon our model is insufficient to treat is the optical Kerr effect, which
is a photon number dependent phase shift experienced by an optical mode passing
through a non-linear medium. The phase shift can produce an effective photon-
photon interaction, and it has been proposed to use this for implementation of
non-local quantum gates. The Hamiltonian relevant for the Kerr effect is fourth
order in the mode operators for the light field [12, 14].

Our strategy for analysing repeaters will be to develop numerical and analytical
tools for dealing with general Bogoliubov transformations and projective measure-
ments. We shall want to monitor the density matrix for the entangled states at
each distance level, to study it’s dependence on the parameters of the Bogoliubov
transformation, the probabilities for measurement conditions to be fulfilled, and
the fidelity w.r.t. maximally entangled states. Having such tools at our disposal,
we can then insert the appropriate parameters for various specific, physical imple-
mentations of the repeater and obtain results for their performance. For example
we can investigate the distance over which a high fidelity can be maintained and
the dependence of this on memory parameters. To get as realistic models as pos-
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sible, we should make sure that the tools developed allow for errors such as loss of
excitation in a mode (e.g. photon loss) or imperfect detectors.
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Chapter 4

Methods for Analysis

At the end of the preceding chapter we introduced a model for single-step repeaters
based on harmonic oscillators. In the present chapter we develop a mathematical
tool for doing calculations on such a system — a generating function for Bogoliubov
transformations. We then proceed to explain how the generating function is used
to analyse the performance of repeaters, and sketch how it is implemented in
Mathematica notebook programs. To the best of my knowledge, the idea of the
generating function described below is due to A. S. Sgrensen, K. Mglmer and J.
Sherson.

4.1 The Generating Function

Our basic problem is the following: For interaction processes interesting to us,
e.g. interaction between light and atoms, we are often able to solve the equations
of motion in the Heisenberg picture, and hence find a Bogoliubov transformation
which describes the evolution of the mode operators. However we would like to
find also the evolution of the state density matrix in the Schrédinger picture. The
generating function is a tool to do this.

Generally, given an arbitrary Bogoliubov transformation on a set of modes we
can define a generating function from which the contribution to any element of
the output density matrix from any element of the input density matrix can be
calculated by differentiation. The generating function method is employed both in
our numerical simulations and in deriving analytical expressions for the evolution
of the density operator (c.f. chap. 5).

We assume that our system S can be described by a set of harmonic oscillator
modes {a;}. To construct the generating function, we begin by noting:

n
T)"\vac> = La—eo‘&lT lvac) (4.1.1)

1
Vn! Vnl 0a” 0e0

where the parameter « is arbitrary (and thus can be chosen real). Now we also

n)i = —=(a
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have!:
eo‘&z|vac) = eo‘&ze_a*&ﬂva@ :ea‘i}_a*&ie%[o‘&z’_o‘*&i]|Uac>
e%|°“2Di(a)|vac> (4.1.2)
thus
1 o
In); = ——e%‘o‘|2Di(a)|Uac> (4.1.3)

m dar a=0

This is a useful result because it allows us to evaluate contributions from the input
to the output density matrix simply as vacuum expectation values of displacement
operators, as we will see below.

We let O denote the subsystem for which we are interested in the output state,
and R denote the remaining modes S = OR. Furthermore we assume that a
Bogoliubov transformation U on S is known. The reduced density matrix for the
output modes is then:

ot = Tep(Up2U) (4.1.4)

In the following we assume for simplicity that S consists of just two modes, and
that we are interested in the output state of mode 2 (think for example of one light
mode interacting with one atomic mode). In app. B we give general expressions
valid for arbitrary mode numbers. The contribution from the [nm)i2(n'm’| element
of the input state to the |I)5(I’| element of the output state is:

(0 umnrm = 2Ty U)o (n'm U] 1) (4.15)
Defining a generating function:

F(al7a27517/827’72762) (416)

X Stogoat X X ~t
= Try [2<0|652a2U651“16ﬁ2a2\vac> (vac|e®t 12292 UT672a2|0>2}

the weight factor can be written:

2<Z|T&'1 |:U‘nm>l2<n/m/‘UTi| |l/>2 (417)
1 o o on om 9" o
— 5 7 ,—F ) ) Y Y 76
memmww@%wwwwém”&@””hm

The parameters «;, 3; select the input matrix element while s, do select elements
of the output matrix; all zero means that the bracket should be evaluated at
a1, a9, 01, P2,72,09 = 0. We see that if the function F' is known we can compute
the output state for any given input state. It is in this sense that F' generates the
Bogoliubov transformation U.

!We get this by using the disentangling theorem: If [A, [A, B]] = [B,[A, B]] = 0 for a pair of
operators A, B, then e15 = ¢AeBe 2[4 5] ([12] p. 49).
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As it stands the generating function (4.1.6) cannot be directly evaluated, since
most often we know only the transformation of the mode operators a; but not the
matrix representation® of U. Therefore we rewrite F' in a more useful form.

First, by making use of (4.1.2) and the definition of the trace we, have:

F(ar, az, Br, B2,72,02) (4.1.8)
o0
51 o il 5 at goal
= (vac|e®181 22711282 |(), [Z |Z>1<Z|] 2(0]%282 7 P11 P202 |y q.c)
i=0
— o5 (ad a3+ +B3 45 +63)

x (vac| Dy (—an)Dy(—az)UT Dy (72)0)2(0| Da(—02)U D1 (81) Da(B2) Jvac)

where we have taken the parameters of F' to be real.

Next, in app. B we prove that the projection operator in the middle of the
above expression can be written:

dpdx _, T +1
|0>2<0| :/229—71_6 (2+p2)/4D2( \/§p) (419)

Inserting this into (4.1.8) and pulling out the integration, we get:

F(al7a27517/827’72762) (4110)
_ e3(0F+a3+B7+83+73+63)

" / dpd _(s24p2)/4
2w
T+ 1ip

V2

x (vac| Dy (—a1) Da(—az)UT Dy(y2) Da( )D2(=02)U D1 (B1)D2(B2)|vac)

The general many-mode expression corresponding to this is given in (B.7). Under
a Bogoliubov transformation a displacement operator transforms into a product of
displacement operators, and so (4.1.10) expresses F' as an integral over the vacuum
expectation value of a product of displacement operators. For any given U a final
expression for [ is obtained in three steps:

1) The transformed displacement operators are calculated. Explicitly, under
the general Bogoliubov transformation:

UT&jU = Z bjz' a; + Cji d;[ (4.1.11)
7

2The generating function method is one way to obtain this representation.
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the density operator D;(f3) transforms to:
UTD;(B)U = Exp [ﬁ Z(b}ya} + jidi) = B 3 (byidi + cjid] )]
= [T Esp (885 — ez)al + (3e}; — 5;0)ai]
= HDi(ﬁbji — B*cii) (4.1.12)

2) The vacuum expectation of the displacement operators is evaluated. This
is done first by reducing the product to a single operator for each mode via the
identity ([12] p. 50):

D(a)D(B) = ™) D(a + ) (4.1.13)

and second by taking the expectation values of these operators:
(vac|D(a)vacy = e slal’ (4.1.14)

3) The resulting expression, which is a quadratic expression in the output
mode integration variables z, p, is integrated along with the prefactors present in
(4.1.10). After integration we have an analytic expression for F which involves
only the «, 3,7, d-variables and the parameters of U.

From the F obtained by going through steps (1)-(3) above we can calculate the
transformation of any input state p' under U. However, when analysing physical
setups we shall also want to include the effect of measurements, which cannot
be described by a unitary transformation. In particular, we want to compute the
state of the output modes O conditioned on a certain outcome from a measurement
on some of the remaining modes R. Fortunately the generating function can be
extended to allow for this.

We consider the measurement to take place after the transformation U. From
(2.1.4) the unnormalised conditional output state is seen to be:

p2t = Trp(PUpUTPT) (4.1.15)

where the projection operator P acts on the subset of modes R which is measured.
This expression replaces (4.1.4) and the formulae deriving from it must be modified
accordingly. In the two-mode example above we can take P = P; to act on mode
1 (e.g. we measure the light mode after interaction and find the conditional state
of the atoms). Then, using PTP = P2 = P (since P is a projection operator) we
find that the last term in (4.1.8) is replaced by:

('UCLC|_D1(—Oé]_)DQ(—Oég)UTDQ(’}/Q)|0>2<0|P]_D2(—(52)UD]_ (ﬂl)Dg(ﬂg)‘va@ (4.1.16)

We are interested in cases where the measured modes are photonic, and the re-
quired outcomes are either one or no clicks in a photodetector. For detectors which
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are perfect but do not resolve the number of photons (i.e. they distinguish only
between presence and absence of light), the possible projection operators are:

Piark = 10)(0]  Plignt = 1 —[0)(0| (4.1.17)

From (4.1.9) both of these may be written in terms of displacement operators, and
so the new generating function now including measurements is again expressed as
vacuum expectation values of displacement operators. The many-mode generating
function including measurements is given in (B.9).

Having established that the generating function is general enough to suit our
purposes, we mention two additional useful features of this formulation.

Firstly, note that because the state (4.1.15) is not normalised, the trace Tr(p%™")
equals the probability of obtaining the measurement outcome corresponding to P.
Hence by defining the generating function as above we obtain both the conditional
output states and their probabilities in one calculation.

Secondly, we see that squeezing of input states may be treated easily. Recall
that the squeezed vacuum state is S(£)|0) with the squeezing operator given by
(2.1.23). This state in principle contains finite contributions from all the even num-
ber states ([12] p. 161). But if we were to specify the corresponding input density
matrix in (4.1.15), we would have to make a cutoff since we cannot take arbitrarily
high derivatives in our programs (or sum arbitrarily many terms). However we can
avoid this necessity by incorporating S(£) into the Bogoliubov transformation U
and thus into the generating function. U is replaced by US(£) and the input state
for the squeezed mode is vacuum. The three steps to obtain F' are unchanged;
in (1) the displacement operators transform first under U and then under S(&)
using®:

ST€)D(B)S(€) (4.1.18)

= Exp [6 (cosh(r)&T — sinh(r)d) - B* (cosh(r)& — sinh(r)dT)}
= D(Bcosh(r) + 3" sinh(r)) = D(Re(B)e" + iIm(B)e™")

where the squeezing is in the X-quadrature. Multi-mode squeezing can be treated
in similar faghion.

4.2 Using the Generating Function

When investigating the performance of various DLCZ-type repeaters we focus on
two crucial properties, namely the fidelity which can be maintained over a given
distance, and the communication rate which can be achieved. There is a simple
strategy to access these properties, using the generating function:

3Since we have: ST(£)aS(€) = cosh(r)a — sinh(r)a' (e.g. [12] p.153).
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1) First one should consider the entanglement generation step. In some cases
this step is simply assumed to be perfect and the generated states are perfect Bell
states. In other cases we can obtain an appropriate Bogoliubov transformation for
the generation, and then use the generating function to compute the output state
of this transformation starting from a disentangled input. Note that successful en-
tanglement generation for any segment of the repeater results in the same density
matrix, and hence we need only perform the computation once.

2) Next the entanglement connection step is considered. From the Bogoliubov
transformation for connection the corresponding generating function is computed,
and using the entangled states from the generation step as input, the state after
successful connection is found. Referring to fig. 3.4, this gives us the entangled
state at the [ = 1 level. The states at subsequent distance levels are found by
iterating this procedure using the output states from one connection as input to
the next.

3) Finally, from the list of density matrices found in (2), we can get the fidel-
ity and the probability of successful entanglement connection at each level. The
fidelity w.r.t. the Bell state (3.2.5) is easily computed using the definition (2.1.9).
The probability for entanglement connection to succeed is simply the trace of the
computed unnormalised output state, as mentioned in sec. 4.1. Knowing p; at each
level, we can find the average time spent on creating one final entangled pair and
hence the communication rate, either from the approximate expression (3.2.2) or
by numerical simulation.

The strategy may be used both for numerical simulation and for obtaining
analytical results. This is simply a question of whether we specify numerical values
for the parameters of the Bogoliubov transformations. In the analytical case, the
computer-generated expressions for the density matrix and the fidelity can be very
complex, and it is then necessary to make some approximation to simplify them,
e.g. by expanding in small parameters.



Chapter 5

A Perturbative Approach

This and the following chapter contain the main results of the work behind this
thesis. In the present chapter we derive general analytical expressions, which
will apply to any DLCZ-type repeater using the same entanglement connection
setup as the original proposal [8] and fulfilling a few additional assumptions. In
the following chapter we analyse three particular repeater systems, comparing
analytical predictions with numerical simulation.

5.1 Starting Point for the Perturbation

Consider the most general Bogoliubov transformation describing a complete state
transfer (i.e. write-in and subsequent read-out) for a quantum memory!:

iy = bray + c1a] + Y b + Eia) (5.1.1)
i
Here a; is the mode operator for the input mode con-
taining the state to be stored in the memory, and @} is ay X 2 a
the output mode into which the state is read out. The Hg% a3’_1>
remaining operators describe auxiliary modes involved -

in the write-in and read-out processes. The b and c¢

coefficients are in general complex.

Starting from this equation we will derive analyt-
ical results for the behaviour of DLCZ-type repeaters
using a particular entanglement connection scheme and
any quantum memory. We do this by perturbation in
the parameters of the memory Bogoliubov transforma-
tion away from the case of perfect state transfer. The

entanglement connection scheme is illustrated in fig. 5.2

Figure 5.1: Complete state
transfer. The state of
mode a; is stored in
the quantum memory and
later retrieved into the
mode af.

!For readers who are worried that the discrete sum is not the most general form, the mode
reduction of the next section can be applied also when the sum is replaced by an integral over a

continuous index.
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(1out a1 | gao oo | 21 G20ut
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Figure 5.2: Conditional entanglement connection. Two entangled pairs, stored in modes
A1out, @11 and Gopye, G21 are connected. The modes aq1 and ao; are written into and then
read out from two quantum memories. The output modes are mixed on a 50-50 beam
splitter and measured. The auxiliary modes @12, G413, G22, G23 involved in the state transfer
will be explained in the next section.

Although the figure depicts mixing on a beam splitter as for light modes, we
keep in mind that beam splitter interactions can be realised also for other physical
systems and hence the connection does not have to operate on light [21, 24].

Successful connection is conditioned on a single click in one detector only. The
procedure can be understood intuitively as follows: Each of the two entangled
pairs which are being connected is of the form (3.2.5) and contains one excitation.
In the case of ideal memories and detectors, there are three possibilities for the
read-out: none, one or both of the excitations are read out. If no excitation is read
out, there can be no click and the connection fails. If both excitations are read
out, there will be two clicks and the connection fails. If just one excitation is read
out, the beam splitter will erase any information about which pair it originated
from, and hence the system is left in a superposition of excitation in modes @10yt
Or G94,¢ Which is exactly the desired state.

The intuitive explanation can be made rigorous by considering the effect of the
beam splitter on the state |¥. . ) ® |V ..} and subsequent projective meas-
urements. The details are referred to app. C. When the memories and detectors
are not perfect, or the input state is not maximally entangled, the fidelity will
begin to degrade on connection and the goal of the following analysis is to tell how
much and in what manner this happens.

Referring back to fig. 3.4, our aim is to find an expression for the density matrix
of the entangled pairs at each distance level. The number of modes in (5.1.1) is not
fixed and may in principle be large. The first step towards this end will therefore
be to reduce the mode number, to the convenient size of three.

5.2 Mode Reduction

It is always possible to define new, independent mode operators as, ag by:

baiin = > bia;  cadl +czal =D Gal (5.2.1)
7 )
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where bg, co, c3 are complex coefficients. We can then rewrite (5.1.1):
= byay + c1a] 4 badg + codd + c3dl (5.2.2)

This is our new Bogoliubov transformation, which now involves only three modes.
The modes as, a3 are exactly the auxiliary modes of fig. 5.2. In the figure, the first
index refers to the pair (left or right), while the second index corresponds to the
index in (5.2.2). The b, ¢ coefficients should be obtained from (5.1.1) and there is
some freedom in the choice of phases.

The overall phase of the output mode is not important? and therefore we may
always assume that b; is real and nonnegative. From the expression for baas we
see that a possible complex phase on by can be absorbed into the definition of the
mode operator G and so we can also assume that by is real®. Likewise the phase
of ¢3 can be absorbed in ag. For this mode we have:

“2hié (5.2.3)
by

Cgflg = Eréz —
i
and so we choose c3 real. Hence in general we have:
b1,bs,c3 € R 0<b c1,c9 € C (524)

The values of b1, c; are given from (5.1.1). For the remaining coefficients we
have:

[b2|* = [bada, bz%] Z |bi]? (5.2.5a)
i
Cy = [@2 CQdT + ngT] = Z biéi (5.2.5b)
’ 2 3 i by
les|? = [chag + chas, CQ(I; + 03a3 |ea? Z &% — |eo? (5.2.5¢)

And because @’ must preserve the canonical commutation relations:
b2+ 03 — |1 — |eaf? — Jes* =1 (5.2.6)

Now, with the above expressions for the memory Bogoliubov transformation
and the coefficients involved, we are ready to consider repeater operation perturb-
atively.

5.3 Perturbation

To compute the generating function for entanglement connection, we need to know
the corresponding transformation on the modes which are measured, and on the

2We can choose any value for it, by a phase shift on the output mode.
3We may also take bs to be nonnegative but this assumption is not necessary.
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modes which contain the interesting output state — i.e. modes Giout, G20ut IN
fig. 5.2. We need not know the transformation on the auxiliary modes which are
traced out (see sec. 4.1 and (B.9)). Since the two output modes are not involved in
the connection procedure, the transformation on these modes is simply the identity.
From fig. 5.2 we obtain for the measured modes:

. 1, . . L. .
iy, = V2 (a4 +a5)  ag = V2 (41, — a31) (5-3.1)

with primed operators given by (5.2.2). In addition to the mode transformation,
we also need the measurement operators corresponding to the desired outcomes
for successful connection. Because efficient photon-resolving detectors are very
difficult to implement in practice, we choose to work solely with detectors that do
not count the number of excitations. For non-counting detectors, the measurement
operators are given by (4.1.17).

Having computed the generating function according to the three steps of sec. 4.1,
we can find the output density matrix of modes a1y and dogy¢ for any input en-
tangled state. Since all segments of the repeater are identical, the input states of
the right and left pair are the same.

We now derive an expression for the density matrix of the entangled pairs as
a function of the distance level. In the ideal case of a perfect quantum memory,
by = 1in (5.2.2) while the remaining coefficients vanish. We do perturbation away
from this case in each of the coefficients separately, keeping the others at zero. We
will perform the derivation in the best-case scenario of a perfect entanglement gen-
eration step, i.e. the input state to the first entanglement connection is maximally
entangled. This means that our derivation gives the best possible performance
for a repeater using a quantum memory described by (5.1.1) and the conditioning
scheme of fig. 5.2.

The strategy we use is to parametrise the density matrix on a form which
is preserved by connection to lowest order in the perturbation. By performing
connection with this parametrised matrix as, input we obtain coupled recurrence
relations for the parameters in the matrix, and solving these we find an expres-
sion for the matrix as a function of the number of entanglement connections or
equivalently as a function of the distance level. We present here the derivation for
perturbation in by. Perturbation in the other coefficients is treated similarly and
the recurrence relations and expressions for the density matrix can be found in
app. D.

We start by computing the generating function for the connection, from the
Bogoliubov transformation (5.3.1). We assume the initial input state to be |¥1),
i.e. in the first step we connect two Bell states. The input state of all auxiliary
modes is supposed to be vacuum. Inserting this input and the generating function
for the connection into our Mathematica-program, we obtain an expression for the
output density matrix, which we may expand in by, assuming that by < 1. We
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make the following substitutions:
by — /1 —b3 c1,c2,c3 — 0 (5.3.2)

where we have used (5.2.6). Expanding each entry of the matrix to lowest order
then gives (in the number state basis):

1/3 +2b3/9 0 0 0

B 0 1/3—b2/9 1/3—12/9 0
PL= 0 1/3—b2/9 1/3—b2/9 0 (5.3.3)

0 0 0 0

Repeating the procedure a few times with the new density matrix as input motiv-
ates us to try the following parametrisation:

1 —2f; + 2g,b3 0 0 0
0 fi—ab3 fi—abl 0
— 5.3.4
P 0 f—gbd fi—gbd O (53.4)
0 0 0 0

where fj, g; are functions of . We now perform the entanglement connection with
the parametrised p; as input and after some simplification we find that the output
takes the form:

o fi 9 JPH20 40
1 22—lfl+2(ll”z—2)2 b3 3 i 3 i 0
f1 74291 50 f1 £ +291 72
Pl+1 = 0 2—fi (fz 2)2 zb 2—fi (fz 2)? zb; 0
0 fi fi+20 b2 fi fi+2q b2 0
2~fi — (fi-2)? 2~fi — (fi-2)?

0 0 0 0

(5.3.5)
We note that the form of the matrix is preserved if we set:
Ji f2 + 2g,

Jir1 = rfl and gi+1 = (}l_72)2 (5.3.6)

This confirms our choice of parametrisation, if these recurrence relations have a
unique solution. We will see that they do, and we can obtain the functional form
of p; by solving them.

To solve the recurrence for f;, we define a new variable f; = fl_l, and the
recurrence relation becomes:

firi=2fi—1 (5.3.7)

This is a linear inhomogeneous difference equation with constant coefficients, and
has a unique solution. From (5.3.3) the initial condition is f; = f;~ 1 — 3. It is easy
to check that f; = 2 4+ 1 is a solution, and hence we have f; = 1/(2' +1). Now
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fi can be eliminated from the recurrence relation for g; by inserting the solution.
We get:
22+ 1)%g 4+ 1
gi+1 = (2l+1 + 1)2

(5.3.8)

Again this equation may be simplified by a change of variable. With g = (2! +1)2¢,
we find:
Gi+1 =291+ 1 (5.3.9)

The initial condition is §; = 9¢g1 = 1 and the solution is seen to be § = 2! — 1.
Thus the relations (5.3.6) with initial conditions given by (5.3.3) are solved by:

1 2l 1

- d _ - -
hi=gim = a=Gry

(5.3.10)

Note that the solution is valid also for [ = 0, and that the approximation (5.3.4)
to the density matrix is valid as long as the term g;b2 is small.

Together (5.3.4) and (5.3.10) determine the density matrix for entangled pairs
at any distance level of the repeater for which the approximation is valid, and
enable us to compute physically interesting quantities. In the next section we look
at the fidelity.

In app. D we give the density matrices, recurrence relations and solutions for
perturbation in the other coefficients ¢y, co, c3. The solution when more than one
of the coefficients are nonzero is obtained simply by adding each perturbation
separately to the solution for perfect state transfer (as given by (5.3.4) and (5.3.10)
when by = 0). For this to be valid the perturbative expansion must not contain any
cross terms of the same order as the lowest order term for any single coefficient. We
have checked this by performing the expansion in all coefficients simultaneously in
Mathematica and eliminating higher order terms.

5.4 Conditional Fidelity
To lowest order in by the fidelity of p; w.r.t. [¥™) is:

2 2l —1
_ +\ 2
Fi=F(p,¥") = T 2(2l e b3 (5.4.1)

The first thing we notice from this expression is that even in the ideal case of by = 0
the fidelity is decreasing very fast. After only two connection steps F' = 2/5 which
is below the classical 1/2-limit. The decrease is sub-exponential in L;/Lo = 2,
but if the fidelity is below 1/2 after two connections even for an ideal memory, this
is not of much encouragement. It looks like something is wrong with our scheme;
however we should check exactly what the problem might be.

In fact an exponential decrease in [ should not come as a great surprise. It
is due to the fact that we are using non-counting detectors. Recall that in the
conditional entanglement connection of fig. 5.2 we can think intuitively of three
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possibilities: read out of none, one or both of the excitations contained in the
two entangled pairs. None lead to no click, and one leads to a single click and
successful connection. In the case where two excitations are read out, the event
should be rejected as a failed connection. However because of bunching at the beam
splitter?, both excitations will enter the same detector, and when the detectors
are non-counting this will produce only a single click. Hence this event will be
accepted as a successful connection, but the conditional state of the output modes is
vacuum. This vacuum can propagate to subsequent distance levels of the repeater,
since connection of a vacuum state with an entangled state can also lead to a
detector click and a vacuum output. From (5.3.4) we see that the the vacuum
component of the density matrix at the [’th level deviates from 1 by 2f;, and
from the solution (5.3.10) this deviation decreases exponentially. It is the growing
vacuum component which leads to the decay of the fidelity.

Is it then a hopeless task to build the repeater using non-counting detectors?
No, we have found that the problem is with the vacuum component of the states,
and in this case there is a workaround. In the original proposal [8] by DLCZ
a teleportation protocol for qubits in dual rail encoding was described, in which
the vacuum components of the entangled states used do not contribute to the
fidelity of teleportation. The protocol is not straightforward to implement; it is
probabilistic and involves a posterior confirmation of successful operation after the
conditioning step. But this has no influence on the operation of the repeater, which
simply delivers final entangled pairs that are used in the teleportation protocol for
quantum communication. In quantum cryptography entangled states with a large
vacuum component are also potentially useful. The Ekert protocol for sharing
a secret key between two parties require the parties to share a large number of
entangled pairs of qubits. Both qubits of each pair is measured, and the presence
of an excitation will thus be automatically confirmed [11]. Hence pairs with a
vacuum component might well be used in such a protocol. Since the quality of the
secret key or the fidelity of teleportation using the DLCZ proposal is not influenced
by the vacuum component of the generated entangled states, we need a new figure
of merit for the quality of these states. Instead of the fidelity, we will use the
conditional fidelity defined as:

F = F(p/Te(py), o) where o1 = p1 — |vac)(vac|pilvac)(vac|  (5.4.2)

The conditional fidelity is simply the fidelity when the vacuum component of the
density matrix is set to zero. The teleportation proposed by DLCZ works perfect
when the conditional fidelity of the entangled states used is 1.
Now we can review the perturbation in by. From (5.3.4) it is not hard to find
that:
F=1 (5.4.3)

“When two photons enter a 50-50 beam splitter from opposite sides, they will always exit on
the same side. This derives from the postulate that the wave-function of bosonic particles must
always be symmetric. The effect is called ‘bunching’.
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Apart from a growing vacuum component, the entangled pairs of the repeater are
perfect when c1,cg,c3 = 0. This is because the transformation (5.2.2) is passive
in this case, i.e. it contains only annihilation operators, and therefore no extra
excitations can arise during the state transfer in and out of the memory. All that
can happen is loss of excitations into the auxiliary mode a9, which can lead either
to connection failure or vacuum output. For perturbation in ¢y, o, c3 the trans-
formation is not passive, and consequently the conditional fidelity decreases with
increasing distance level.

In the following sections, we will consider three particular physical repeater
systems. We will compare the results of numerical simulation for the conditional
fidelity with analytical predictions from the perturbative approach, and we shall see
that there is very good agreement within the range of validity of the perturbation.



Chapter 6

Three Repeater Systems

In this chapter we employ the generating function method to find the performance
of three different proposals for repeater systems, obtaining for each of them the
fidelity which can be maintained over a given number of connection steps and the
corresponding communication rate. Each repeater is described in detail and the
results from numerical simulation are presented and compared with the analytical
prediction.

6.1 Common features

All three repeaters are based on atomic ensemble quantum memories interacting
with light. Such a memory consists of an ensemble of atoms contained within a
cell which allows access by light beams, e.g. for the memory of sec. 6.4 paraffin-
coated glass cells are used. By passing a light pulse through the cell, it is possible
to transfer the quantum state of a light mode to the internal state of the atoms,
and later to retrieve it by another pulse. The light-atom interaction is not the
same for the three setups, but it is common to all of them that it is the collective
atomic mode which is used for storage. Individual atoms are not addressed. The
three setups also use the same entanglement connection scheme, namely the one
given in fig. 5.2. This choice was motivated by its simplicity and by the initial
idea of this project: to insert the one-pass memory (see sec. 6.4) into the original
DLCZ-repeater protocol [8] and find the performance.

Chronologically, the DLCZ-repeater is the oldest proposal (2001) followed by
the one-pass memory (2004) and the two-pass larmor precessing memory (2005).
We treat the last two systems in opposite order, because this makes for an easier
read.

45
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6.2 The DLCZ-repeater

The first repeater protocol we look at is the original DLCZ-protocol' presented
in [8]. In the first section below we describe the physical setup and give the
Bogoliubov transformations applicable to entanglement generation and connection,
which is what we need to know to apply the generating function. In the following
section we present the results of our simulation of the protocol.

6.2.1 Setup

The level structure of the atoms relevant for the light-matter interaction to be
used is shown in fig. 6.1a. The atoms are assumed to be described by a true
X-system?. The two lower states may f.x. correspond to hyperfine sublevels of
an alkali metal [8]. All atoms are initially prepared in the ground state |1) and
excitations can then be stored by inducing transitions |1) — |2). Read-out can be
achieved by the inverse transition. We now introduce quantum operators to give
a formal description of the system of light and atoms.

(a) (b)

Figure 6.1: Elements of DLCZ. a) Each of the quantum memories consists of an ensemble of
atoms with the level structure shown. The transitions involved in entanglement generation
and connection are displayed. b) Successful entanglement generation requires a click in
one detector only. The incoming beams are filtered away, and the Stokes light associated
with atomic excitations is measured.

The light fields are naturally described by mode operators ar, where different
modes are distinguished spatially or by polarisation or wavelength. We can make
a similar description for the atoms. We define the collective ground (or ‘vacuum’)
state for an atomic ensemble to be @), [1); with j running over all the atoms. The

Do not mistake the terms ‘DLCZ-repeater’ and ‘DLCZ-type repeater’. The first refers only
to the original proposal [8] while the second refers to a broader class of protocols (c.f. sec. 3.2.3)

*For any real atom the actual level structure is more complicated that this, and it is an
approximation to use the A-system description. According to private correspondance with A. S.
Sgrensen good experimental approximations to the A-system can be obtained, although it is not
easy.
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ensemble is then described by a harmonic oscillator with creation operator:

il = = 2,1 (6:2.1)

where N4 is the number of atoms. The light pulses of the scheme are designed such
that the excited level |3) always has vanishing population, and it does not enter
our description. The mode given by a4 is called a symmetric, collective mode. It
should be noted at this point that since there is a finite number of atoms, only
a finite number of excitations are allowed for the mode 4. However the ground
state population will always be dominant, and the collective mode behaves just
like a harmonic oscillator mode.

The setup for entanglement generation is shown in fig. 6.1b. Entanglement is
generated between two cells directly; we do not generate entangled light and store
it subsequently. In fact the DLCZ-protocol ‘as is’ does not use a full quantum
memory. Write-in for arbitrary states of the light mode is not implemented. How-
ever, this is not necessary for repeater operation, as long as entanglement between
nodes can be established. To create entanglement a weak coherent pulse of light
with a detuning from the |1) — |3) transition is passed through each of the cells.
With a small probability the symmetric collective mode of the ensemble will then
be excited, and an associated Stokes photon will be emitted®. The scattered Stokes
light is filtered from the input light, mixed on a beam splitter and measured. A
single click in one detector only is required for successful connection.

The interaction between the light and atoms can be understood effectively as
a two-mode squeezing acting on the collective mode a4 and the measured mode
ay, of the Stokes light. The details of the derivation may be found in [9]*. This
means that the state after passage of the input light is a squeezed state of the
form (2.1.28) which exhibits perfect correlation between atomic excitations and
output Stokes photons. Now we can see that our entanglement generation is very
reminiscent of the connection shown in fig. 5.2. The two atomic cells play the
roles of output modes and each of them is entangled with a Stokes light mode.
Measuring the light modes leads to an entangled state of the atomic cells. The
mathematical details are given in app. C.

To be able to simulate the generation step, we need the Bogoliubov trans-
formation for modes a4 and ar. From the results given in [9], we can find the
expression:

Pe (6.2.2)
].—pc ]-_pc ]-_pC C

@>

@>
Q>

30ne may think of this as one atom making a transition |1) — |2), the identity of the particular
atom being unknown to us. But quantum mechanically the state of the ensemble after emission
of the Stokes photon is the coherent superposition of excitation of individual atoms.

“The essential steps are adiabatic elimination of the excited level |3) to find the interaction
Hamiltonian and then solution of the Heisenberg equations of motion for the interesting modes.
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where primes denote the operators after the interaction and p. determines the
probability to create an atomic excitation. More precisely, the probability of cre-
ating at least one excitation® is (p.+p?)/(1—p.), which reduces to p. when p. < 1.
In terms of experimentally controllable parameters, p. is given by:

pe=1—e" (6.2.3)
where & is the effective coupling strength for the light-atom interaction, with 2
proportional to the number of atoms and the number of photons in the input pulse
[9, 10, 28].

From the calculation in app. C it is found that the probability for entanglement
connection to succeed is p. and that the deviation of the created states from |¥T)
is also of order O(p.). Hence there is a trade-off between these two effects. A high
fidelity requires low p., but this will decrease the communication rate.

Denoting the output operators by double primes, the full transformation for
entanglement generation including the beam splitter becomes:

iy = 5 (i +ih) i = —= (i — dl)
&Zn = d;u di:m = &%2 (6.2.4)
with primed operators given by (6.2.2).

The setup for entanglement connection is similar to fig. 6.1b, except that the
incoming light pulse is now a strong coherent pulse resonant on the |2) — |3)
transition. This pulse converts the excitations stored in the atoms into light on
the |3) — |1) transition and leaves the atoms in the collective ground state. The
efficiency of this conversion can be made very close to 1 [8], and the corresponding
Bogoliubov transformation is therefore:

. 1 R ~ 1 .
iy = 7 (Ga1 + Ga2) aly = 7 (GA1 — Ga2) (6.2.5)

The two transformation equations (6.2.4) and (6.2.5) are all that we need to
know to apply the generating function method. From the transformation for en-
tanglement generation we compute the initial entangled state of the atomic storage
modes (i.e. the state at the Oth level of the repeater). To find the states at higher
levels it is then sufficient to know the Bogoliubov transformation for read-out. In
fig. 5.2 we are allowed to think of modes @iy, @11, 021, G204t @S storage modes,
rather than input modes for the memories. Two of these modes are read out and
measured, and the resulting state of the remaining two modes, which is at the next
level of the repeater, is computed. The difference between this way of calculation,
and the one implied by fig. 5.2 is of no importance. It is simply a question of
whether the final entangled state generated by the repeater will be contained in
the atomic storage modes or in some other (light) mode.

n/2
®From [9], the joint state of the modes after interaction is: /T — pe Y., 2 (al a’,)"|vac) and

it follows that the probability of excitation is (p. + p2)(1 —p2*)/(1 — p.) where N, is the number
of atoms. This gives the expression in the text, except when p. is very close to 1.
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6.2.2 Results

Using the Bogoliubov transformations obtained in the previous section we have
simulated the DLCZ-repeater for varying values of the parameter p. and we have
found the fidelity at each distance level. For a certain value of p. we have also
obtained the communication rate. In the model of the DLCZ-repeater protocol
presented in the previous section, the entanglement connection step is essentially
assumed to be perfect®, while the p.-dependence enters in the entanglement gen-
eration step. The analytical model of sec. 5 was based on the opposite assumption
and does therefore not apply in the present case. However some analytical pre-
dictions for the communication rate were given already in [8]. Only very rough
estimates of the fidelity were given there, and we present accurate values from
numerical simulation and suggest an explanation for the observed behaviour. We
begin by studying the fidelity and subsequently look at the communication rate.

Note that except for the communication rate which is found by a stochastic
method, we do not indicate any uncertainties in our numerical results. The errors
in the numerical output from Mathematica were ~10716 (i.e. 15 digits precision),
which is at least 10 orders of magnitude less than the smallest numbers in our
results, corresponding to a relative error of ~10710.

We have simulated the repeater using non-counting photodetectors, and as pre-
dicted in sec. 5.4 the fidelity drops hyperbolically with the communication distance
L; (this prediction applies also when entanglement connection is perfect, and of
course having an imperfect generation step does not help). An example is plotted
in fig. 6.2

104 @
0.8

0.6 1

Fidelity F

0.4 [}

0.0 4

Entanglement distance L;/Lg

Figure 6.2: Simulated fidelity. The DLCZ-repeater was simulated at p. = 10~3. Note that
the values follow the first term of (5.4.1) very nicely.

5The read-out has unit efficiency. It is possible to introduce a finite efficiency for this process.
We will come back to this when we discuss sources of error.
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We note that already after two connection steps the fidelity has dropped below
the classically obtainable value of 1/2. Recall from sec. 5.4 that the drop is a
consequence of an increasing vacuum component.

However, if we consider distribution of entanglement for cryptography or tele-
portation via the protocol suggested in [8], then the figure of interest is the condi-
tional fidelity. In fig. 6.37 we show the conditional fidelity obtained from simulation
of the DLCZ-repeater for five different values of p..

1.0 4 ——g———0——¢g ¢ — 90— — 00— 0

Conditional fidelity £
/ ’
o”/

*_ R —
e—— 00— 00—
0.4 4 °
\O o——— 0 o — 06— 00—
0.2
0.0 -
20 21 22 23 24 25 26 27 28 29 210

Entanglement distance L;/Lg

Figure 6.3: Simulated conditional fidelity. Starting from the top, the values of p. for the
five plots are 10710 (red), 10~2 (orange), 10~2 (olive), 10~! (green), ~ 0.5 (blue)

As expected the highest fidelities are obtained when p. is small and higher
order effects such as double excitations are suppressed. We note that the plots
are s-shaped: F remains almost constant for a few steps before dropping abruptly
below the classical limit 1/2.

It then saturates to a constant value. Focusing on the first part of the plots,
the plateau and drop, this can be seen on closer inspection (e.g. by plotting it on
a linear scale) to have the shape of a function of the form 1 — 3(L;/Ly)*. We can
understand this in the following manner.

We know (c.f. app. C) that errors of order O(p.) in form of double excitations
enter the generated entangled states. In fact the coefficient of the double excitation
term of the generated state is p./2 and the conditional fidelity of the state is
F=1-p, /2. Now, if a pair containing two excitations is connected with U'*) using

" Apologies in advance to any red/green colourblind readers. The figure should be readable
from the legend, even if colours cannot be distinguished.
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Figure 6.4: Connecting a doubly excited pair. In the RHS pair both samples are excited.
Since read-out is perfect the excitation in mode 3 is always read out. If the detectors count
photons the read-out from mode 2 must therefore be vacuum for successful connection
and modes 1,4 are then in the state |11). If photons are not counted, read-out of the
LHS excitation also contributes to successful connection and the output is (|01)(01] +
11)(11])/2.

photon counting detectors, then the state conditioned on successful connection
again has two excitations (see fig. 6.4). This means that this type of error will
propagate to higher distance levels of the repeater. The effect persists also for
non-counting detectors, with a coefficient 1/v/2 for the double excitation term of
the output. Since the number of initial entangled pairs which contribute to an
entangled pair at level [ is 2! and the error probabilities for all of them are equal,
we expect the double-excitation error in the entangled state, and hence in F, to
increase exponentially with {: F ~ 1 — Bd!, where 3 should be of order p.. Now
I =logy(L;/Ly) and so:

F a1 — Bas/E0) — 1 — B(L;/L0)"82() = 1 — B(Ly/Lo)* (6.2.6)

This type of function does in fact fit the simulated results for F quite well®.
Fig. 6.5 shows a fit to the plot for p. = 1073. For the plots of fig. 6.3 we find a in
the range 1 to 2 and § ~ 0.5p..

Since we find good agreement between the simple model (6.2.6) and the sim-
ulations, it is reasonable to suppose that it is double-excitations in the generated
entangled pairs which cause the conditional fidelity to fall off. The DLCZ-repeater
performs well in terms of F, as long as no double-excitations enter the system,
but as soon as a double excitation are present, F drops. The scheme breaks down
whenever there is ‘a photon too much’ somewhere. The probability of an extra
photon grows linearly with the number of repeater segments, i.e. with the distance
L;, and this leads to a polynomial scaling for the error in . The value of « is not
exactly 1 because the errors from the initial states do not simply add. Successful
connection events coming from connection of two Bell states have a vacuum com-
ponent and are therefore partially suppressed in the conditional fidelity. But the
output from connection of a double-excitation with a Bell state has no vacuum
component and is not suppressed.

Note that a polynomial - or at least sub-exponential - scaling for the (condi-
tional) fidelity is one of the essential requirements for a repeater system to beat

8In [8] the error in F' was assumed to be linear, and hence our model is a slight improvement
over this.
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Figure 6.5: Fit of the function (6.2.6) to F' obtained from simulation with p. = 10~3. The
fit has a = 1.8 and 8 = 0.4p..

the classical channel, and we have seen that the DLCZ-repeater does in fact meet
this demand.

Now for the communication rate. When we simulate the repeater we obtain
at each level [ the unnormalised density matrix, and by taking the trace of this
we find the success probability p; for the entanglement connection leading to this
level. From the list of probabilities we can simulate the communication rate. The
algorithm that we use to find the communication rate is explained in chap. 8
in the context of channel mixing repeaters. It is based on stochastic processes
(i.e. it is a kind of Monte-Carlo simulation), because measurements in quantum
mechanics are inherently random. Due to the nature of the algorithm the runtime
complexity is O(2(L/Lg)) = O(2V*1), where N is the number of connection steps
required to generate a final entangled pair and L is the total length of the repeater.
The number of runs necessary for good statistics also increases linearly with the
time ¢y required to generate a final entangled pair. From the estimate (3.2.2)
we can see that this is at least exponential in N (= pg), since p; < p. for all
higher levels. The algorithm was written in Mathematica, which is not a great tool
for numerics, and is rather slow. Therefore the distance levels and values of p.
that we can reach within moderate runtimes are considerably restricted. On our
hardware, by running in parallel ~20 copies of the program it is possible to obtain
overnight a good estimate for the rate with reasonable statistics when N = 3 and
pe = 1073, As a consequence of the limitations, it has not been possible to simulate
the communication rate for many different values of p.. The simulations that we
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have performed are summarised in tab. 6.1 below, together with the corresponding

analytical values from (3.2.2).

In all cases N =3 Pe=10"3]p.=10"2 | p. = 1071
Simulated rate [107° - 771] | 6.6 +0.6 73+2 880 + 8
Analytical rate [107° - 771 15 150 1700
Final conditional fidelity F 0.98 0.86 0.50

Table 6.1: Communication rate for the DLCZ-repeater. The final values of F' which may
be read off fig. 6.3 are also given.

The rates are given in units of 10771, where 7 is the time spent on a single
entanglement generation or connection attempt. That is 7 is the light-atom in-
teraction time plus the time spent on measurements and classical communication
between different segments of the repeater.

We note that the analytical expression (3.2.2) overestimates the rate by a factor
of approximately 2.5. This is due to the approximations made in the derivation of
the expression, as given in sec. 3.2.3. As a tool for order-of-magnitude estimates,
our numerical simulations confirm the validity of (3.2.2) and hence also of the
corresponding expression used in [8], which is simply the dominant term of (3.2.2).
The dominant term is larger than the sum of all the other terms by a factor of at
least O(po) = O(pe)-

The rates obtained here are not directly comparable with the communication
times which were found by DLCZ in [8], because they consider only photon count-
ing detectors and compensate by including an inefficiency for the entanglement
connection step. In the paper [8] it is claimed that introducing an inefficiency
for the connection step is equivalent to using non-counting detectors, and analyt-
ical expressions for the communication time are derived on this basis. However
we have checked that the expressions given there for the connection probabilities
(which lead to the expression for the time) actually imply photon counting. For
a channel length L ~ 2*Lg and an efficiency 2/3 for the entanglement connection
DLCZ predict a rate of O(1075771), which is within one order of magnitude from
the lowest rate in tab. 6.1.

The rates given in tab. 6.1 are low from the viewpoint of practical quantum
communication. To get a feeling for the numbers, we can take 7 ~ 1lms. The pulses
used in the experiments with the one-pass memory have this order of magnitude
[18], and we can use it to get an idea of the rate. With 7 = 1ms the lowest rate of
tab. 6.1 becomes O(10ms~!) corresponding to about 0.5 qubits/minute. For com-
parison, in a quantum key distribution experiment performed in Vienna in 2004,
the key size was ~80,000bits [23], and so, with the DLCZ-repeater rate, the key
would take about 4 month to send. If 7 can be reduced to a nanosecond however,
the key may be sent in ~15 minutes, which might be sufficient for experimental
verification of the protocol. For the DLCZ-system it may be possible to use short
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pulses®.

Even though the rates for the DLCZ-repeater are low, they are substantially
higher than for direct communication between sender and receiver. We can view
direct communication as a situation in which the nodes of the repeater are con-
nected sequentially from one end of the channel towards the other, instead of in
parallel. I.e. entanglement connection is performed first at node 2, then at node
3 etc. until the last node is reached. Entanglement generation is performed not
in parallel, but one segment ahead of the connection. The communication time
increases exponentially with the channel length L/Lg. If we let p. = 1072 and use
the same success probability for entanglement connection as was used in obtaining
tab. 6.1, then the rate for direct communication over a channel of length L = 23
is ~107267~1, This is 10?! times less than the repeater rate.

In summary, we have found that the DLCZ-repeater outperforms direct com-
munication both in terms of fidelity and communication rate. We have found that
it is double excitations which cause the conditional fidelity to degrade. We have
also found that for ms pulses the communication rate is too low for practical ap-
plication of the repeater, and that for experiments to be viable the connection time
7 needs to be reduced to substantially below this order of magnitude, e.g. to the ns
level. Many sources of noise present in a realistic system have been ignored in our
treatment, and the cost of classical communication has been completely neglected.
These error sources will be discussed in the outlook sec. 7.2.

6.3 Repeater with Two-pass Larmor Precessing Memory

In this section we consider a repeater based on the quantum memory proposed in
[21]. Christine Muschik of the Max-Planck-Institut fiir Quantenoptik, Germany
has kindly shared her results and provided the Bogoliubov transformation for a
full state transfer into and out of the memory, including noise terms from atomic
decoherence and reflection losses. This means that of the three systems we treat in
this thesis, the results for this repeater are likely to give the most realistic picture
of actual performance.

6.3.1 Setup

In contrast to the memory used in the DLCZ-repeater, the proposal [21] is a full-
fleshed quantum memory with both write-in and read-out. Fig. 6.6b shows the
procedure which is the same for storage and retrieval. A strong coherent light
beam polarised along x makes two passes through the atomic ensemble. States to
be written into the memory are encoded in a weak y-polarised field superposed
on the coherent beam, and they can be stored in and retrieved from the collective
atomic spin, which is also assumed to be strongly polarised along x. The states

9Since a high fidelity requires ~ to be small, while for the one-pass memory a high « is desirable
(recall that « is proportional to the total photon number).
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are retrieved in y-polarisation. For completeness we mention that if one chooses a
direction for the second pass of the light pulse opposite to the one shown in fig. 6.6b
(bottom to top), then one obtains the same type of two-mode squeezing interaction
between atoms and light as in the entanglement generation of the DLCZ-scheme
(sec. 6.2.1). Here however, we are concerned with a repeater using the shown
memory protocol for which the interaction takes a new form.

The atomic level structure relevant for the interaction involves four sublevels
as shown in fig. 6.6a. We quantise the system along x and the quantum number m
refers to the x-component of the total angular momentum of an atom. The popu-
lation of the ground state |1) is dominant, so that the collective spin is polarised
along x'0. The x-polarised coherent pulses are detuned from the transition from
ground to excited level and couples to transitions between sublevels of equal m
while the y-polarised field couples to transitions which change m.

(a) m=+1/2 ﬂ |4) (b) /

ha Y
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: s e
\
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« 2/4
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D m=—1/2

m=+1/2

Figure 6.6: Two-pass larmor precessing memory. a) Level structure of the atoms in the
external magnetic field. The collective atomic spin is assumed to be polarised with a
dominant population of the m = 1/2 ground state. b) Setup for write-in or read-out. The
length of the light pulse is assumed to be much longer than the path length from first
entry to second exit of the ensemble, and two parts of the pulse therefore interact with
the atoms simultaneously.

For light quantum information is encoded in small deviations of the total polar-
isation from the x-direction, and similarly for atoms it is encoded in deviations of
the angular momentum from the x-direction. Hence the relevant quantum variables
for describing the memory are those of polarisation and angular momentum. Due
to the strong x-polarisation it is possible to make a two-dimensional description
which will look the same for light and atoms [18, 21, 25, 28|.

Fig. 6.7 illustrates this for light. The Cartesian axes correspond to components
of the light Stokes vector (see below), and every point on the surface of the sphere
represents a possible Stokes vector of polarised light!'!. For a strongly x-polarised

10Such a state of the ensemble is sometimes called a coherent spin state (CSS) [17, 18].
1Points inside the sphere corresponds to light with an unpolarised component.
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Figure 6.7: Holstein-Primakoff approximation. This figure was inspired by [25].

beam the states are localised closely around the Si-pole, and the magnitude of any
deviation from the pole is much smaller than the mean of S;. In a tight region
around the pole the spherical geometry may be replaced by a two-dimensional
planar one.

Starting with the light, recall from classical optics that the polarisation of a
light beam is determined by three Stokes parameters which are the differences of
intensities between polarisation along orthogonal axes x,y, between axes rotated
+45° and —45° from x and between right- and left-circular light (see e.g. [16]).
The quantum analogues, called Stokes operators, are defined by:

1, ... it n

S, = i(alaz_alay)
1 . . . . 1, ... o

52 = 5(@3_45(14_45 — a-i-_45a—45) = E(alay + a;;a:c) (631)
1, .+ N 1, .. o

S5 = 5l }az—aiar)ZE(alay—alaz)

The Stokes operators obey the angular momentum commutation relation:
[Sa, Sp] = i€apySy (6.3.2)

In the case where one polarisation is dominant, this relation can be replaced by a
Heisenberg-Weyl (position-momentum) commutator. This is exactly the situation
for the write-in and read-out light: since <dldw> > <d;dy> the possible outcomes
of measurement of S; are concentrated tightly around some fixed value s; = (S7),
as illustrated in fig. 6.7. Therefore we can replace the operator S; by s11, and
define new variables:

Sa S3

X = Pr = —
L L\/5

(X1, Pr] =i (6.3.3)

El
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where the subscript L is for ‘light’. The polarisation of the light is now completely
described by a harmonic oscillator with creation operator dTL = (X —iP)/V2
(which is effectively al)!2.

We can obtain a similar description for the atomic angular momentum. The
collective angular momentum operators for the ensemble are defined similar to

(6.2.1):

1
Jo = o o=,z 6.3.4
[e% \/N—A ZZ: ]a,z y ( )
where j,; is the operator for the 7’th atom. The angular momentum operators
obey the commutation relation (6.3.2), i.e. [Jq,Jg] = i€q3, and when J, is dom-
inant, the angular momentum may be described by operators X 4, P4, analogous
to X, Pr, for the light:

Jo J3

(J1) = (J1)

With these variables everything we need to know about the dynamics of the light-
atom interaction can be expressed.

The derivation of the Bogoliubov transformation for write-in and read-out of
the memory can be found in [21], and we will not reproduce it here. We simply
outline the ingredients in the scheme.

The interaction Hamiltonian for light passing through an atomic sample like
the one used here was derived in [17], and has the form X7 X 4 or P;, P4 depending
on geometry. Each of these interactions alone do not lead to a memory protocol.
Something more is needed, and in the present case it is provided by the second
passage of the light (in sec. 6.4.1 we shall see another approach). The interaction
during the first passage is PrP4. The quarter-wave plate, shown in fig. 6.6b,
interchanges circular and linear polarisation and hence interchanges X and Pr,
and at the same time the geometry of the second passage implies that the atomic
variables are also interchanged. The interaction in the second passage is therefore
X1 X 4. The combination of these two interactions does lead to a memory protocol.
This was shown in [28]. However the protocol presented there is not symmetric in
X and P due to the asymmetry of the setup fig. 6.6b. The last ingredient of the
present scheme, the magnetic field, is introduced to compensate this asymmetry.
In the presence of an external magnetic field along the x-axis, the y,z-components
of the atomic angular momentum will experience Larmor precession. Let 7 be the
pulse length and ¢ the time of one passage through the loop of fig. 6.6b. When
the Larmor frequency ) is fixed such that + < Q7! < 7, i.e. such that the
angular momentum is frozen during interaction with one slice of the light pulse

Xy =

(6.3.5)

12The procedure we have described here for approximating the angular momentum algebra by
the Heisenberg-Weyl algebra, although not quite rigorous, is well established in the literature [10,
17,18, 21, 28]. It is sometimes called the Holstein-Primakoff approximation. Some caution should
be taken with this approach, as demonstrated in the more mathematically careful treatment of
[25].
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but rotates over the total pulse, then the asymmetry is washed out. As a result
the Bogoliubov transformation describing the memory is completely symmetric,
and in the absence of noise the efficiency of a state transfer depends only on the
strength of the interaction between atoms and light.

The transformation for the full state transfer in the absence of noise is, from
[21]:

X} =—(1- e"‘z)XL — el — e R X+ e 2K, (6.3.6a)
P =—(1—e")P,—e " 12\/1—e Py +e /2P, (6.3.6b)

Here primes denote the output light, X, P, apply to the write-in pulse, while
X1, Pp, are the input operators for the retrieval pulse. r is the coupling strength
and is assumed to be the same for write-in and read-out. x? is proportional to
the number of atoms and photons [10, 28]'3. To compute the generating function,
we prefer to rewrite the equations as a Bogoliubov transformation of the mode

operators. This is easy, since they are symmetric in X and P:

ap=—(1- G_RQ)EIL — e R/2 V1—e a4+ e_”2/2c:1L (6.3.7)

Note that the  memory is perfect, when K > 1.
In our simulation we do not actually use the noise- T

less transformation (6.3.7). We take into account reflec- f’

tion losses when the light passes through the cell with the g/f

atoms, and decoherence of the atomic spin state by spon- r r

taneous emission. Decoherence of the atomic angular mo-

mentum happens when the atoms scatter photons into other
modes than the forward mode. The angular momentum of
the atoms is changed by the scattering. We consider only
transverse decoherence, where the y- and z-components of
J change, but neglect longitudinal decoherence, in which J,
is changed.

74

Figure 6.8: Losses.

The Bogoliubov transformation including noise contains 22 independent modes,
and will be omitted here!*. When we compute the generating function for entan-
glement connection we first apply the mode reduction of sec. 5.2. The parameters
of the transformation are x, the reflection coefficient r (the same for all cell walls)
and the atomic decoherence rate /7. They are indicated on fig. 6.8. When r — 0
and 77 — 0 the noisy transformation reduces to (6.3.7). Note that other sources of
photon loss between the two passes or before detection can also be included in 7.

13The coupling constant kappa here is not the same as for the DLCZ-repeater. However, they
are both proportional to photon and atom numbers.

14We omit is also because Christine Muschik has kindly shared her unpublished results, and
hence it would not be fitting to reproduce them.
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Referring to fig. 5.2 the full transformation for entanglement connection be-

comes: 1 1
iy = 75 (@ + k) afp = 5 (011 — A7) (6:3.8)

with primed operators given by (6.3.7) (or the corresponding noisy transformation).

So far we have said nothing about entanglement genera-
tion. Since the present repeater is using quantum memories
for light, the way to generate entanglement would be to cre- /.\ /\
ate entangled states of light and store them subsequently. / \
This can be achieved f.x. by parametric down conversion:
in a non-linear crystal one photon can be converted into two
photons of lower frequency, and the output light is then in a
two-mode squeezed state (2.1.28), i.e. it is entangled. If we
condition on a single click in the setup shown in fig. 6.9, the
two such states can be used to generate |U). It is possible Figure 6.9: Entangle-
to include such entanglement generation in our simulations ment generation.

(the squeezing operator may be included in a generating

function). However, we will assume simply a perfect entanglement generation
step. This is a good starting point to examine the behaviour of the repeater for
varying values of the memory parameters.

Summing up, for simulation we use the Bogoliubov transformation for the full
state transfer including noise, and we assume the initial state of the input modes to
be perfectly entangled pairs [U*). The initial state of all other modes is assumed
to be vacuum.
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6.3.2 Results

We have performed numerical simulation of the two-pass protocol described above
and found the conditional fidelity and communication rate. For this repeater pro-
tocol all the results of chap. 5 apply. Below we compare the analytical predictions
from perturbation theory with the results of the numerical simulation.

There are three parameters, x ,r, n, in our memory model. Of these x and 7
turn out not to be crucial for the conditional fidelity, while 7 limits the number
of connection steps for which a good fidelity can be maintained. x is important
for the success probability of the entanglement connection and hence for the com-
munication rate. This also depends on r, although weaker. The value of 7 is not
crucial for the performance of the protocol, and for a realistic value n ~ 0.1 it
performs essentially the same as for n ~ 0. Fig. 6.10 shows the dependence of the
conditional fidelity on « and 7.
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Figure 6.10: Simulated conditional fidelity. a) Dependence on 7. The plots show F plotted
for n =0 (red), n = 0.01, n = 0.1, n = 0.2 (green). b) Dependence on x. F is plotted for
k=0.1, kK = 1.0 (red), k = 2.0, K = 3.0 (green). For both (a) and (b) » = 0.01. Not all
plots are visible due to overlap.

In fig. 6.11 we display F for varying values of the reflection coefficient. We get
the same s-shaped plots as for the DLCZ-repeater, indicating that the mechanism
causing the fidelity to drop may be similar. F is plotted for x = 2 and 1 = 0.1.
According to private correspondence with C.A. Muschik and J. Sherson these are
realistic numbers close to the limit of what can be achieved experimentally at
present.

Note that the conditional fidelity depends strongly on r. It is desireable to keep
r as low as possible, whence one should be very careful about the cells that are
used in experiment. The strong dependece on r might motivate us to dispence with
cells, and use potential-trapped atomic clouds instead, although other problems
may be envisaged in such systems.

We would like to compare the simulation results with the analytical model of
chap. 5. Therefore we have applied mode reduction as described in sec. 5.2 to
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Figure 6.11: Simulated conditional fidelity. For all plots x = 2 and n = 0.1 except the top
for which n = 0. From top to bottom the values r are: r = 0 (red), »r = 0.01 (orange),
r = 0.05 (green), r = 0.1 (blue).

the full state transfer Bogoliubov transformation. This transformation contains 22
independent modes (i.e. 7 in (5.1.1) runs from 1 to 21) and the coefficients of the
mode operators are complicated expressions in x,r and 7, but nevertheless there
are some nice features: First the coefficient ¢; = 0. Second, for all modes either
lN)Z- = 0 or ¢; = 0, which implies that ¢o = 0. Third, the remaining coefficients turn
out to be real. Hence we need only do perturbation in by and c3 and we need not
worry about the phases. Recall that there are no cross terms and that we obtain
the simultaneous perturbation in by, cs simply by adding the separate solutions.
From the expressions in sec. 5.3 and app. D one may find the density matrix p; for
the entangled pairs at the [’th level of the repeater, and from p; we can compute
F and F. We find:

2 2l —1 128 —1)(2" —6)
= -2 24 - 2 6.3.9
211 @223 2+1 8 (6.3.9)
and to lowest order in by and cs:
. 1
F=1- 521(21 —1)c3 (6.3.10)

Note that only c3 appears in the conditional fidelity. We can understand this in the
following way. Referring back to (5.2.2) for the reduced Bogoliubov transformation
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of the state transfer it is seen, that a non-zero cs changes the transformation from
passive to active. Non-zero bs cannot add any extra excitations into the system,
but non-zero cs leads to double excitations, and, as we have seen, these lead to a
decrease of F. The presence of double excitations, when ¢ is non-zero can be seen
directly from the expression for the density matrix given in app. D. From (D.4)
we have:

2l -1,

Tr(|11)(11]pr) = 291

(6.3.11)

which implies that the probability for a double excitation to occur is directly
proportional to ¢3 and approaches c3 with increasing level.
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Figure 6.12: Analytic (curve) and simulated (dots) conditional fidelity. The parameter
values are k = 2, r = 0.01, n = 0.1. The dashed vertical line indicates the predicted level
at which F' drops away from 1.

In fig. 6.12 we plot F obtained from the pertubative approach, and the cor-
responding values from simulation for the orange curve of fig. 6.11. Note that
(6.3.10) is the lowest order approximation to the full expression obtained in the
pertubation, and hence agrees witht the plot only for small [. We see that there is
good agreement until the deviation of F from 1 becomes large, i.e. until the error
in I becomes significant. Similar agreement is found for other values of the para-
meters; further plots can be found in app. E. We can use (6.3.10) to give a rough
estimate of the level at which the error in conditional fidelity becomes significant,
or equivalently the level at which good repeater performance breaks down. The
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breakdown occurs when the magnitude of the c3-term approaches 1, i.e. when:
Loiiol -2
52 (2" =1)=cj (6.3.12)

For any choice of parameters k,r,7n the value of ¢z is computed and this equation
is solved to find the value of [ where F' drops'®. We have indicated the estimated
breakdown on fig. 6.12 and we note that there is good agreement with the numerical
simulation (see also app. E). The values for the location of the breakdown obtained
from (6.3.12) should only be taken as rough estimates since, when the c3-term
approaches 1, the perturbation to first order in c3 which lead to (6.3.10) ceases to
be valid and the drop is also not a well located entity. The breakdown of repeater
performance and the breakdown of the perturbative approach coincide.

We should note that the expression (6.3.10) resembles the simple model of
(6.2.6) but is not identical to it. In sec. 6.2.2 we did not have any exact analytical
model for the evolution of errors and we simply allowed the power a of L;/Lo = 2!
to deviate from 1 because we observed that some contributions to F containing
errors are suppressed less than others. In the present case we have a more accurate
description of the density matrix and the form of the errors. It may well be that
the actual form of F for the DLCZ-repeater also involves several terms of different
powers in L;/Lg, and by fitting we can find that the model (6.2.6) is in fact a
good approximation to (6.3.10) for low levels. However the essential feature is
the same in both cases: the error in conditional fidelity grows polynomially in the
communication distance L;/Lo = 2. Both repeater schemes outperform direct
communication (via a noisy channel) as required.

For the communication rate obtained by simulation we have only single number.
This is again due to the restrictions imposed by the runtime of our algorithm. We
obtain the communication rate for the orange curve of fig. 6.11 when N = 3. Three
connection steps is about the highest we can go with moderate runtimes and we
choose the orange curve because a fidelity well above the classical 1/2 limit is
maintained. By increasing x one may also increase the rate, but x = 2 is already
pushing the experimental limits and so we do not go above this value. Since in the
simulation of the repeater which led to the fidelities fig. 6.11 we assumed perfect
generation of entanglement, i.e. |¥1), we do not have a success probability for the
generation step. Therefore we have to make a choice. To ease comparison with
the DLCZ-repeater results, we choose py = 1072, We find:

Again we see that the analytically calculated rate is too high by a factor of
about 2.5, but is accurate within the order of magnitude. The rate for direct
Tr=1 ie. 102 times less.

From the simulated rates the performance of the DLCZ-repeater is slightly
better than for the system of this section: The rates agree within two standard
deviations, but the final conditional fidelity for the DLCZ-repeater is 19% higher.

communication is ~102

5The solution can be found either numerically or by solving z(z — 1) = 2c3 2. Putting z = 2'
yields I = log,(1 + 1/1 4 8c32) — 1 where we chose the positive root since I > 0.
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N =3 | Simulated rate [107° - 771] | Analytical rate [107° - 77!] | Final F
K =2
n=0.1 5.3 4 0.7 12 0.79
r = 0.01

Table 6.2: Communication rate for repeater with two-pass larmor rotating memory and
final conditional fidelity. 7 is the time for a single connection or generation attempt.

However, in the simulation of the DLCZ-repeater we did not consider any noise
sources, while here we have taken into account realistic reflection losses and atomic
decoherence. Hence we cannot say anything conclusive about which protocol per-
forms better. It might be interesting to examine the communication rate in the
case of no noise, r =n = 0.

Further sources of noise which were not included in our simulations will be
discussed in the outlook sec. 7.2.

6.4 Repeater with One-pass Memory

The third and last repeater we shall look at is based on the quantum memory
realised experimentally by the quantum optics group at the Niels Bohr Institute
(part of QUANTOP!®). Their results were reported in [18]. Only the write-in
step has been demonstrated in experiment and in simulations we assume a perfect
read-out. We also consider a read-out in terms of sequential passes of a light pulse,
which leads to transformation equations similar to those of write-in.

6.4.1 Setup

The setup for write-in to this memory shown in fig. 6.13 is very similar to that of
sec. 6.3.1, and the level structure of the atoms is the same. As for the two-pass
scheme, the interesting quantum states are encoded in a weak y-polarised field
superposed on a strong x-polarised coherent beam, and they are written into the
atomic angular momentum. The system is quantised along x and the population of
the ground level (with m = 41/2) is assumed to be dominant, so that the angular
momentum is strongly polarised in the x-direction. Hence the Holstein-Primakoff
approximation (fig. 6.7) applies again, and the light and atoms are described by
harmonic oscillator quadrature operators Xy, Pr, X4, P4. As mentioned previ-
ously a single pass through the cell is not enough to make a quantum memory.
For the two-pass scheme the second pass was introduced to obtain the desired
storage of states. In the present scheme measurement and feedback is used. As
indicated on the figure, the operator X for the light is measured after passage
through the cell, and the outcome of the measurement is fed back onto the atomic

Danish  National  Research  Foundation  Center  for  Quantum  Optics,
http://www.quantop.nbi.dk/
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operator P4 using a magnetic pulse. With this feedback the write-in equations for
the quadrature operators become [17, 18|:

X;l =X+ &Py, (6.4.1&)
P = (1 —kg)Ps — gX[, (6.4.1Db)

where primes denote operators after the interaction and feedback. & is the coupling
strength and ¢ is the feedback gain. Note that the equations are mot symmetric
in X and P because the geometry of the setup is not symmetric in y and z and
because of the absence of any external magnetic field.
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Figure 6.13: One-pass memory. a) Level structure of the atoms in the ensemble. The
collective atomic spin is assumed to be polarised with a dominant population of atoms in
an even superposition of the m = +1/2 ground states. b) Setup for write-in. A magnetic
pulse conditioned on measurement outcome feeds X back onto the atoms.

Write-in described by (6.4.1) has been demonstrated in experiment with a
fidelity of stored states up to ~70% as reported in [18]. However no read-out from
the cells has been demonstrated, and in our simulations we will assume that the
read-out used in the entanglement connection step is simply perfect. It would of
course be preferable to have a more realistic model for the read-out, but as none has
been demonstrated and there is no obvious, experimentally feasible protocol (see
below) we take this approach. Using a perfect read-out means that our simulations
will give an upper bound on the performance of a repeater based on the connection
scheme fig. 5.2 and the one-pass memory. Any such repeater with a realistic read-
out is bound to perform worse than our ideal case. With this choice for the
read-out, the full state transfer into and out of the memory is given by:

X; =Xy = X4+ kP (6.4.2a)
P, =P\ =(1-rkg)Ps—gXyp (6.4.2b)
which in terms of the mode operators takes the form:

. K9\ . K9 . { . l .
ayp =(1- Tg)aA—i—?gaZ— §(ﬁ+g)aL+§(ﬁ—g)aTL (6.4.3)
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We note that in this equation, there is no choice of the parameters k, g for
which the transfer is perfect. Two terms drop out when x = g = 1, and the
transfer would be perfect, up to a phase shift, if the dL—term was not there. The
phase (—¢) on Gy we can eliminate simply by a /2 phase shift on the incoming
light. To suppress the &2 contribution to the output requires the initial atomic
state to be squeezed.

Recall from sec. 2.1.5 that a squeezed state is a state for which the uncertainty
(variance) of one of the quadrature operators is below the limit in the Heisenberg
uncertainty relation at the expense of a larger uncertainty in the conjugate op-
erator. We can generate squeezed states by acting with the squeezing operator
(2.1.23), and as discussed at the end of sec. 4.1, this operator can be included into
the Bogoliubov transformation used to compute the generating function. This
means that we should replace the input atomic operator a4 by (see [12] p. 153):

ST(€)aaS(€) = cosh(r)ay — e sinh(r)[zf4 (6.4.4)

From (6.4.2) we see that it is the X 4-quadrature that we need to squeeze. Hence

we set § = 0. For convenience we also define a new parameter s which from (2.1.24)
is the factor of squeezing in the quadratures:

o s+1 . s—1

s=e cosh(r) = —— sinh(r) = —

(=5 7 (=5 7

Applying the squeezing to the input atomic operators and a phase shift to the input

light, we find that the Bogoliubov transformation for the state transfer becomes:

(6.4.5)

s(1—kg)+1, s(kg—1)+1. 1 . 1 .
NG aa NG af4+§(/1+g)aL— —(ﬁ—g)aTL (6.4.6)

2
We immediately see that the state transfer is perfect in the limit k = ¢ = 1 and
s> 1.
To simulate the repeater using the generating function method, we need the
transformation for the entanglement connection fig. 5.2, including the beam split-
ter. The Bogoliubov transformation used in the simulations is:

) 1, R R 1 . ~
ay, = E (ah; +aly) g = ﬁ () —aly) (6.4.7)

with primed variables given by (6.4.6). With equation (6.4.7) we have included the
squeezing operator, which generates the squeezed input states, into the state trans-
fer Bogoliubov transformation, and the input state of the atomic modes should
therefore be taken to be vacuum. The states of the input light are supposed to be
perfect Bell states |[¥1) coming from an ideal entanglement generation step. Any
realistic entanglement generation, such as parametric down conversion, will lead
to a worse performance of the repeater.

Above we stated that there is not an obvious experimentally feasible protocol
for read-out of the one-pass memory. We can however suggest a scheme which
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leads to equations of the same form as (6.4.1). Fig. 6.14 shows the proposed setup.
The entire read-out pulse makes two sequential passes through the cell (this is in
contrast to the setup fig. 6.1 where the pulse meets itself in the sample). The
transformation equations in this case are:

X7 = X1 + koP) (6.4.8a)
Pi = (1 — Rlﬁg)PL - /£1X1/4 (648b)

Here k1, ko are the coupling strengths in the first and second pass respectively. We
see that k1 corresponds with the feedback gain for write-in while ko corresponds
to the coupling strength. The primes on the atomic operators indicate that a light
state has already been stored in them during write-in.

T

é
e

Figure 6.14: Read-out from one-pass memory. After the first passage, the entire light pulse
is coupled into a delay line (it is not measured) and then makes a second passage through
the cell.

The setup fig. 6.14 is not very realistic with current experimental technology.
Sequential passes require a delay line, as illustrated, with an optical length greater
than the read-out pulse length. In [18] the duration of write-in pulses is on the
order of ms which means above 10km of delay line. At the current experimental
stage this is impossible!”. However we should not exclude the possibility that
future experiments might be constructed with shorter pulse lengths or otherwise,
to allow a delay line, and that the dynamics of (6.4.8) might be realised!®.

The primary reason that we have mentioned the read-out scheme above is that
the simulations we have performed can be understood alternatively as simulations
of a repeater using this read-out scheme together with a perfect write-in step ,(as
opposed to perfect read-out and write-in described by (6.4.1)). With perfect write-

7 According to private correspondence with J. Sherson.
18 An obvious alternative to sequential passes is feedback onto the light in complete analogy
with the write-in. However this is at least as difficult to realise experimentally.
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in, the transformation for the state transfer becomes:

X| = X[ + koPy = X1 + ko Pi" (6.4.9a)
P} = (1 — k1ko)Pp — k1 Xy = (1 — kiko)Pp — k1 X7 (6.4.9b)

where X", Pi” apply to the input light which is stored in the atoms and Xy, Py,
apply to the read-out pulse before interaction. The form of (6.4.9) and (6.4.2) is
exactly the same except that the noisy terms to be squeezed now come from the
read-out light pulse and not from the initial atomic state. Hence our simulation
results apply equally well to a repeater with the read-out fig. 6.14. The symmetry
between the two models comes from the fact that the identity transformation —
which describes the perfect step in both protocols — commutes with any other
transformation.

6.4.2 Results

We will proceed along the same lines as in sec. 6.3.2. Numerical simulations of the
one-pass memory repeater are compared with analytical results from the perturb-
ative approach in chap. 5, and we also find the communication rate for a specific
choice of parameters.

In our model of the one-pass memory there are three parameters x, g and
s, and no sources of decoherence have been included. We have noted already in
the description of our model that the squeezing s is crucial for the quality of a
state transfer into and out of the memory and hence for repeater performance.
In fig. 6.15 we have plotted the conditional fidelity found from simulation for five
different values of s. The values of k, g are chosen to be optimal with the given
squeezing. Using the generating function we have performed the first entanglement
connection analytically in Mathematica and obtained an expression in s, k, g for
the fidelity after connection. For fixed values of s this expression was optimised
w.r.t. x and ¢ and the resulting values were then used in numerical simulation of
the remaining connection steps'®. The values are given in the figure caption and
we note that they are always close to 1, which is the optimal choice when s > 1.
The curves again take an s-shape, as with both systems previously analysed.

Mode reduction of the Bogoliubov transformation (6.4.6) for the state transfer
is easy, since it is already on the reduced form (5.2.2), and we can simply read off

the coeflicients:
_ s(1—rg)+1

1

1 -1 1
6125(’1—9) 622% c3 =0

91t is not possible simply to obtain an exact analytic expression for the density matrix at
each level via the generating function, because the complexity of the expressions generated by
Mathematica increase explosively with the level and so does the time it takes to generate the
expressions.
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Figure 6.15: Simulated conditional fidelity. From top to bottom the values of [s, x, g]
are [10%,1.00,1.00] (red), [105,1.00,1.00] (orange), [10%,1.00, 1.00] (olive), [10,1.01,0.96]
(green), [1,1.17,0.83] (blue).

Adding the solutions for perturbation in bo, c1, ¢ from sec. 5.3 and app. D we obtain
the density matrix p; in the perturbative approximation and the corresponding
fidelity and conditional fidelity:

2 2l 1 12.23 —¢.922 _5.9! 1(28—=1)(2 —
F=_2 B+ 1 62 5249, 1200,
2041 (20 +1)2 3 (20 +1)2 3 2041
(6.4.11)
and ) )
F=1- 5(2l — 1)t - 521(21 —1)c (6.4.12)

Note that the coefficient of ¢3 in (6.4.12) is the same as the cz-coefficient in (6.3.10).
This is because perturbation in cs and c3 lead to the same parametrisation of the
density matrix (see app. D).

Again, c1, co constitute the active elements of the state transformation, while
by does not contribute to the conditional fidelity. From (D.1) and (D.4) the prob-
ability for a double excitation in p; is:

2l -1,

Tr(|11)(11]p;) = (1 )er + 251 (6.4.13)

2
2l 41

And from (6.4.12) we may estimate the level at which repeater performance breaks
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down by solving the equation®’:

1 1
5(2l — 1) + 521(21 -3 =1 (6.4.14)
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Figure 6.16: Analytic and simulated conditional fidelity. The parameter values are s = 10,
k = 1.01, g = 0.96. The dashed vertical line indicates the predicted level at which F
drops away from 1.

The locations of breakdown obtained this way are indicated on fig. 6.16 and
the figures in app. E. As for the repeater of sec. 6.3 we find good agreement with
numerical simulation.

Note that the expression (6.4.12) is polynomial in the communication distance
L;/Lo = 2!, as for both of the repeater schemes studied previously.

As for the repeater with the two-pass larmor rotating memory, we have just
a single number for the communication rate of the repeater using the one-pass
memory. We have computed the rate for three connection steps of the green curve
in fig. 6.15. We choose this curve, since N = 3 is the highest number of steps
we can simulate with moderate runtimes and, according to private correspondence
with J. Sherson and others, a squeezing of s = 10 is the maximum which can be
achieved with present technology?!. For the entanglement generation, which was
assumed to be perfect, we choose a success probability of pg = 1072. For these
parameters, we have found:

20We have solved the equation numerically.
21Tn more conventional experimentalist terms: a squeezing of 10db
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N =3 | Simulated rate [107° - 771] | Analytical rate [107° - 771] | Final F’
s =10
k =1.01 6.8 £0.7 15 0.78
g =0.96

Table 6.3: Communication rate for repeater with one-pass memory and final conditional
fidelity. 7 is the time for a single connection or generation attempt.

Also for this system the analytical rate is off by a factor of ca. 2.5 but agrees
with the simulated rate on the order of magnitude, and the direct communication
rate is ~107267~1. Within a few standard deviations the rate agrees with both
the DLCZ-repeater and the repeater with a two-pass larmor rotating memory, and
we can give no conclusion as to which protocol performs better. We note, though,
that no errors sources were included in simulations of the present scheme and even
under these ideal conditions a high squeezing is required for repeater operation.
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Chapter 7

Conclusion and Outlook

In this chapter we summarise and conclude the results which have been presented
and discussed in chap. 5 and 6. We also outline future work: extending simulations
to include noise and photon counting.

7.1 Conclusion

Three DLCZ-type repeaters have been studied in this thesis. Each of them use a
different atomic quantum memory, but all use the entanglement connection scheme
of the original DLCZ proposal (fig. 5.2) with non-counting photodetectors. Very
idealised models have been considered for the memories. In all three cases either
write-in or read-out was assumed to be perfect, and only for the two-pass memory
of sec. 6.3 was noise during memory operation considered.

To make the simulations possible all memories were treated as harmonic os-
cillator systems, and a range of Mathematica programs were developed, based on
the generating function method of chap. 4. These programs themselves consti-
tute a substantial part of the output from the master thesis project. They allow
simulation of any DLCZ-type repeater using a memory which may be described
by harmonic oscillators. Indeed they allow us to compute the output state from
any Bogoliubov transformation, given the input. They can be used to obtain both
numerical and analytical results, although some numerical tasks are solved rather
inefficiently, due to the fact that Mathematica is not a very fast language for numer-
ics. The slow numerical algorithms should be portable to faster languages. Based
on the harmonic oscillator model and the generating function, we also developed a
perturbative model of a DLCZ-type repeater using a general parametrised quantum
memory and perfect entanglement generation. This model was applicable to two
out of the three systems studied.

For the three repeaters which were studied the relevant measure of the qual-
ity of generated entanglement was found to be the conditional fidelity F, because
non-counting detectors lead to a rapidly increasing vacuum component of the gen-
erated states. States with good conditional fidelity may be used for quantum key

73
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distribution or in probabilistic teleportation with posterior confirmation of excita-
tions, as explained in [8]. The conditional fidelity decreases polynomially with the
communication distance for all three systems, as required to beat direct commu-
nication, and within the validity range of the perturbation there is good agreement
between F computed from numerical simulation and F computed from our ana-
lytical model. The model gives good estimates of the level (i.e. the number of
connection steps) after which F departs from 1, as this coincides with the level
where the perturbation breaks down.

It was seen that the observed decrease in fidelity can be explained by the
occurrence of extra excitations created during light-atom interaction. The double
excitations can cause decrease fast-than-linear in the communication length L, and
we believe this is because states without excitations are suppressed more in . Our
analytical model provides expressions for the probability of double-excitations to
occur in terms of the perturbation parameters.

For realistic settings of the memory parameters, the communication distances
for which a good conditional fidelity can be maintained are rather low. The system
of sec. 6.3, a reflection coefficient of » = 0.01 is straining the current experimental
limits. With this value a conditional fidelity well above the classical 1/2 limit
is maintained only for three connection steps. Similarly, with a high squeezing
s = 10 for the system of sec. 6.4 we can do three connections before F drops
below 1/2. For the DLCZ-repeater the important parameter is the excitation
probability p., and high fidelities are obtained when p. < 1 which may be achieved
by using light pulses of low photon number (i.e. weak pulses). For this system
about six steps can be reached with good F with a p, equal to the entanglement
generation success probability for the other two systems. However F is likely to
drop faster if reflection losses and other noise sources are included. Judging from
recent experiments with entangled photons, the segment length L of the repeaters
may be of order 1-100km [8, 23, 26]. Three connection steps then corresponds to
a total communication length of at most L = 23Lg = 800km. Hence we find that
even within our idealised models, the inter-country communication implied by the
city names in fig. 3.1 is far from a realistic scenario for the systems considered. It
cannot be excluded that one of them may be used for experimental verification of
the repeater protocol.

Communication rates were obtained for three parameter settings of the DLCZ-
repeater and for only one parameter setting for each of the remaining repeaters.
The rates confirm that the repeaters outperform direct communication signific-
antly: when the communication distance L = 23L and the success probability
for entanglement generation py = 1073, all three repeaters give rates' of order
10~57~!, while the rate for direct communication is ~1072¢. Here 7 is the time
spent on a single connection or generation attempt. Taking 7 = 1ms, which from

!One might worry that the fact that the communication rates are close to equal is an artifact
of the runtime limitations on our simulation. However, this is not so. We have chosen realistic
values of the memory parameters, and found the rates for those settings. We have not adjusted
the parameters to maximise the rate.
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[18] is a realistic value, the bit-rate becomes ~0.5 qubits/minute. Again this is
much too low for practical applications such as quantum key distribution, but may
also be insufficient for experimental verification of the protocols, since in experi-
ment good statistics is required for conclusive results.

Because our models are very idealised it is difficult to say anything about
which repeater would be easier to implement in an experimental setting, or which
repeater will perform better under realistic conditions. All three systems that
have been studied exhibit the important features of a quantum repeater: sub-
exponential scaling of the (conditional) fidelity and communication rates well above
the rate for direct transmission. Hence each of them may in principle be used in
experimental verification of DLCZ-type quantum repeaters. The DLCZ-repeater
seems to maintain better fidelity at a communication rate of the same order of
magnitude as those found for the other two protocols, but this picture may change
when reflection losses and other error sources are included. For the repeater of
sec. 6.3, reflection losses at the sides of the cell containing the atomic sample
was the major source of noise, and the important parameter for the conditional
fidelity was the reflection coeflicient r. Because the memories used in the two other
protocols only require one pass of the light pulse, we do not expect reflection losses
to be as severe for these systems, but they are still likely to play a role. For the
repeater using the one-pass memory a high squeezing is required for performance
comparable to that of sec. 6.3 under ideal conditions, and if the fidelity is further
degraded by reflection losses and other noise this repeater will not perform well.
Hence we suggest that it is more expedient to implement either the DLCZ-repeater
or the repeater using the two-pass memory in experiment.

7.2 Outlook

The work presented in this thesis is very open ended in the sense that much can
be done to improve and extend the results.

First, it is desirable simply to perform more simulations than we have done,
since some aspects of the repeaters were not studied very thoroughly due to lack
of time to perform the required program runs. Particularly for the communication
rates it could be interesting to obtain more data to find e.g. how the rate depends
on the communication distance L and the coupling parameter x. As a part of
this, it might be advantageous to port the algorithm used to simulate the rate to
a language which handles numerics fast than Mathematica. For example C++.
From the pertubative model we may also obtain analytical expressions for the
success probabilities for entanglement connection, and from these probability we
may get an analytical expression for the communication rate, which could then be
compared with simulation.

Second, in all our work we have considered only non-counting photodetectors,
because efficient photon counting detectors are very difficult to construct experi-
mentally. However, it cannot be excluded that a photon counting detector suitable
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for the repeater schemes studied here could be developed and it is interesting to
examine how the protocols would perform with such a detector. Photon count-
ing may easily be treated with the generating function method and in fact during
the work on this project, we have already implemented photon counting partially.
Programs computing the generating function for entanglement connection using
photon counting detectors have been written for all three memories, and the per-
turbation in chap. 5 has been partially solved for a repeater using this connection
procedure. Simulations leading to values of the fidelity and communication rate
still remain to be carried out.

Third, and most important, a lot of error sources have been neglected in the
simulations that have been done so far. The most important of these errors are dark
counts. For a photodetector it may happen that the detector clicks even though no
photon is present. Such an event is called a dark count. Dark counts are a serious
type of error because they can lead to double excitations in the entangled states
of the repeater, and we have seen that double excitations caused the observed
decrease in conditional fidelity. If a dark count occurs at the time of connection
of two entangled states, we may get the situation shown in fig. 7.1. None of the
excitations in the two entangled pairs are read out, but the detector clicks and
hence connection is assumed to be successful. The resulting state of mode 1 and
4 is a double excitation.

1 |t 2 3 ) 4
o o C o
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Figure 7.1: A dark count error leading to a double excitation.

A low dark count rate is 10Hz to 100Hz2, which for an entanglement connection
time of 7 = 1ms corresponds to a dark count probability during connection of 1 to
10%. This probability is not negligible, and hence dark counts must be expected
to have significant impact on repeater performance. It is possible to treat dark
counts within the generating function method by considering separately the two
situations: 1) no dark count occurs, 2) a dark count occurs. For each situation the
generating function can be computed (recall that measurements are included in the
generating function), and at each timestep of the repeater we can then compute
the state after entanglement connection as

p = (1= pdc)p1 + Pdcp2 (7.2.1)

where p1, po come from entanglement connection with the two generating functions
corresponding to (1) and (2). Inclusion of dark count in the simulations is of high
priority in future work.

2See e.g. http://www.edinst.com/detectors.htm
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In addition to dark counts there are other physical sources of error present:
Reflection losses and atomic decoherence were considered for the repeater of sec. 6.4
and should also be considered for the two other systems. Detector inefficiency is
equivalent to photon loss and can be included by an increase of reflection coefficient.
Background photons hitting the detectors have the same effect as dark counts and
should be isolated against.

Fourth and last, as in the original DLCZ proposal [8], the cost of classical com-
munication has been completely neglected in our simulations of the communication
rate. It is not obvious that the time spent on classical information exchange is neg-
ligible compared to the time needed for entanglement generation and connection
attempts, and a thorough analysis of the exact amount of classical communication
needed for repeater operation would be desirable.

In summary, much can still be done in terms of noise inclusion to improve our
picture of the performance of the three repeater systems considered in this thesis.
The tools needed to do so are largely in place in our Mathematica implementation
of the generating function method. Most important are dark counts, which may
be included by a slight modification of the programs we have developed.
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Chapter 8

Parallel Channel Mixing

In this chapter we report on investigation of an idea to improve the performance
of parallel DLCZ-type repeaters by a modification of the repeater protocol on the
abstract level, i.e. independent of the physical implementation, namely channel
mixing. After unsuccessful attempts at an analytical solution, an algorithm for
numerical simulation was implemented in Mathematica to find the communication
rate. The idea for modification and the method used for simulation are presented
in the sections below.

Unfortunately time has not allowed a thor-

node ough numerical analysis of what communica-

- :::::@::::::::: tion rates can be achieved with the modified
P-4 protocol. For an accurate analysis good statist-
— ics are required, demanding many runs of our

station algorithm for each parameter setting. Although

Figure 8.1: Parallel DLCZ-type re- We have been careful about the complexity of
peater channels. The terms node the algorithm it has a runtime on the order of
and station have different meanings 10 hours on our machines' for moderate com-
as illustrated. munication distances and realistic values of the
connection probabilities. As mentioned in the
previous chapter, it would have been preferable to use a numerically fast program-
ming language such as C++ or perhaps MATLAB. We have used the algorithm
to obtain the communication rates given in chap. 6 and have also made a few
simulations of parallel channel mixing for the systems discussed there.

8.1 Idea

Recall that the communication rate for a quantum repeater is the number of final
entangled states established per unit time. If m identical repeaters are operated
independently in parallel, then the combined communication rate will be m times

!The IMB pentium 4 machines in the NBI computer room.
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the rate for a single repeater. We want to investigate, how much the combined
rate can be improved for parallel DLCZ-type repeaters by mixing channels.

Recall from sec. 3.2.3 that entanglement between nodes of separation Lg is ini-
tially created and then extended over increasing distances by successive connection
at every second node. We consider a system of m parallel DLCZ-type repeaters,
and we suppose that nodes in different repeaters which are at the same distance
from the endpoints are located close to each other spatially in stations as shown
in fig. 8.1. Following the DLCZ-type repeater protocol, each entanglement con-
nection is a probabilistic event which fails with a probability depending on the
distance level (c.f. fig. 3.4). In the case of failure entanglement is lost on the
whole segment involved in the connection. If connection was successful for the
neighbouring segments on the same level, these pairs will then be idle until a new
attempt succeeds. With parallel repeater channels, it may therefore happen that
we have the situation shown in fig. 8.2 (a).

- - -® L./ ®- - -
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Figure 8.2: Mixing of channels. a) A situation where entanglement connections on corres-
ponding segments have failed in one channel and succeeded in the other. b) The encircled
nodes are located on the same spatial location. We can therefore connect the entangled
pairs in each channel, to create a new pair of double length.

Instead of leaving the segments for which connection has succeeded idle, we
can combine pairs from parallel channels as illustrated in fig. 8.2 (b). This way
the communication rate may be improved.

It is not clear a priory how large the improvement in the communication rate
will be. On the one hand the number of possible ‘routes’ that lead to a final
entangled pair - i.e. the number of combinations of nodes which are connected to
create the pair - increases dramatically with the number of parallel channels for
large L. If we take account of the fact that fixing one route excludes all other
routes which have entanglement connections on nodes shared with the first one at
any level, then the number of different ways to prepare in parallel m final entangled
pairs is ~ (m!)2£/L0 On the other hand, the probability for any one of these routes
to occur must depend on the connection probabilities p;, and it is apparent that
in the case where p; = 1 for all levels [, there will be no improvement over the
independent parallel scheme because there is never need for any entangled pair to
be idle. When the p; depart from 1 we expect the improvement to increase.

To be able to make a quantitative analysis of channel mixing we need to specify
the details of the repeater system we look at. The features we choose for our system
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are as follows:
e There are m parallel channels of length L = 2V L.

e At each timestep the maximal number of entanglement connections are at-
tempted at each distance level in parallel.

e Inner nodes are freed for reuse after successful connections.

e Connections are always at every second station on a given level. What end
of a pair to connect is fixed.

e The nodes of final entangled pairs are freed for reuse after one timestep.

We assume the repeater to operate in discrete timesteps of duration 7 which
may be taken as the time spent on a single entanglement creation or connection
attempt. At each timestep and each distance level? we check for entangled pairs
in neighbouring segments which may be connected, and all possible connections
are attempted, if necessary by mixing channels as in fig. 8.2. This means that
an entangled pair in a given segment will never be idle, unless the neighbouring
segment has fewer or no pairs to connect with.

Fig. 8.3 shows a possible state of a

repeater with channel mixing. At each

Glue in 3D level the entangled pairs and the con-

figure here. nections that will be attempted are in-

dicated. Note that the repeater oper-

ates in parallel on all levels; 0-level seg-

ments of a channel which are ‘free’ - i.e.

Figure 8.3: Channel mixing repeater. At for which the nodes are not part of any

some fixed timestep the figures show each dis- entangled pair - will immediately be

tance level for a possible state of a simple used for new entanglement creation. In

channel mixing repeater with N = 3 and particular, whenever a connection at-

hence L = 2°Lo. tempt succeeds on a level higher than

1, the 0-level segments ending on the

nodes involved in that connection (i.e. those encircled in fig. 8.2 (a)) are freed.

Nodes at the channel ends which form a final entangled pair, are assumed to be

used for communication in the timestep following their creation. They are then
freed for reuse.

At a fixed level the stations along the repeater where entanglement connection
may be performed are fixed to be every second station on that level. One might
imagine a situation where an entangled pair could be extended by connecting it at
the end which is not at one of these stations, but in that case we choose rather to
leave the pair idle. The reason for not allowing this type of connection is, mainly
that it would imply a significant complication of the simulation algorithm - and
also of the repeater protocol itself.

?I.e at each level in fig. 3.4
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8.2 Algorithm

Now, having decided on the particulars of the repeater to work with, we are ready
for simulation. Here we outline the basic structure of the algorithm used. The
actual code is not included in the thesis. It can be found online, refer to app. F for
the reference. Note that because the entanglement creation and connections are
probabilistic events, the simulation is necessarily a stochastic process, i.e. a Monte
Carlo simulation. The inputs to the algorithm are m, N, a list of the success
probabilities p; for entanglement connection and generation and the number of
timesteps for which the repeater should be run, given by 7'/7.

In the most direct approach an algorithm can keep track of every single node
in the repeater, storing information about whether the node is entangled and with
what other node. It can then loop through all nodes to check whether entanglement
connection or creation can be attempted and perform the attempts where possible.
Such an approach would need to allocate an array of length m2" (the total number
of nodes) and the runtime complexity for a single timestep would be at least
O(m2Y). We can do somewhat better than this with a less direct approach. The
algorithm we use is outlined in fig. 8.5.

Instead of keeping track of individual nodes, we store the population of en-
tangled pairs for each segment of the repeater at each level. On level [ there are
2N=! segments - the disentangled level has 2V - and so we need to store an array
of

N
A AR AR AR AR (8.2.1)
=0

integers. This is O(3 - 2"V) independent of m and is an improvement over the
approach above when m > 3. For each timestep on each level N > [ > 0 we then
loop through all pairs of segments between which connection is allowed. There are
2N=I=1 segment pairs on level I. Thus, including 2% iterations for entanglement
creation on the disentangled level and one iteration for freeing end-point pairs, the
total runtime complexity per timestep becomes

N-1
A D AR A B AR e A (8.2.2)
=0

which is O(2-2"). Again this is independent of m and is an improvement over the
direct approach when m > 2.

The purpose of the loop over segment pairs is to perform entanglement connec-
tions. This is done as follows. We start by finding the lowest population number n
in the two segments. This is the number of connections which can be attempted.
If it is nonzero, we draw a number at random according to a binomial distribution
b(n,pr+1), where p;11 is the probability for connection of two level [ pairs to suc-
ceed. This random number is the number of successful connection attempts; the
rest fail. The successful connections add to the population of the corresponding
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segment on level [+ 1. The ones which fail add to the free pairs on the disentangled
level. Finally n is subtracted from the populations of the two segments in the pair.

After running the algorithm for the specified number of timesteps we find the
rate in units of 77! by dividing the total number of entangled state generated on
level N by the number of timesteps 1'/7.

8.3 Preliminary Results

To analyse the effect of channel mixing, we should run the algorithm for various
settings of the parameters in the model, i.e. the channel length determined by N,
the number m of parallel channels, and the connection and creation probabilities
p;. The communication rates obtained this way should then be compared with the
corresponding rates for independent channels which can be found by scaling the
rate found when m = 1 with m.

We have used the algorithm, with m = 1, to compute the communication rates
given in sections 6.2.2, 6.3.2 and 6.4.2. We have also made one simulation of the
m-~dependence of the rate with and without channel mixing. The result is shown
in fig. 8.4. The plot was obtained with connection probabilities of half the value

of those corresponding to the rate for the repeater with two-pass larmor rotating
memory (tab. 6.2).
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Figure 8.4: Rates with and without channel mixing. Circles show the rate with mixing,

triangles without mixing. Dotted lines bound the error in linear extrapolation from the
simulated m = 1 rate.

We observe an increase in communication rate of about a factor two for each
m > 1. The rate with mixing appears to have a slightly superlinear scaling with
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m, but the deviation is not significantly outside the errors. To test for such a devi-
ation the rate should be plotted for a larger range of m-values. Whether or not the
rate with channel mixing is really superlinear, the improvement over independent
parallel channels is not big. In our calculations we have completely neglected the
increase in classical communication which is necessary for channel mixing. For a
single channel each node need only communicate with two other nodes at each
timestep. With channel mixing each node needs to communicate with 2m other
nodes. Hence the amount of classical information exchange needed for channel
mixing scales linearly in m, and if the improvement in rate over independent chan-
nels is close to constant (as suggested by fig. 8.4) then the gain in rate by mixing
might well be cancelled by the time spent on classical communication. A more
thorough analysis of the effect of classical communication on the rate is needed to
determine how much, if anything, can be gained by parallel channel mixing.
As a conclusion on the preliminary results above, we make two hypotheses:

1) When mixing channels according to the model described in sec. 8.1
the scaling of the communication rate with m is superlinear.

2) With a moderate number of parallel channels m ~ O(10) no signi-
ficant gain in communication rate is obtained by channel mixing.

3Note though that a linear increase in the total number of classical messages sent does not
necessarily imply a linear increase in communication time.
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Initialisation

Populations at all but the
disentangled level are set to 0.
All populations on the
disentangled level are m.

Timestep loop

Loop over T/t timesteps

A

Final ent. Pairs

Record the population off
final entangled pairs
(levelN). Record the
number of freed nodes.

non-sn-on-s
Record nodes off n - s

A

A

segment pairs freed.

}

Level loop

Segment loop

Loop over /= N-1,...,0in
that order.

Loop over segment
pairs on level /

Ent. Creation

Attempt creation for all
segments on the
disentangled level.
Add successful pairs to
level 0. Add segments
freed from final pairs
and ent. connection to
the disentangled level.

v

Draw randomly:
s ~b(n,p)

Figure 8.5: Layout of algorithm for simulation of a channel mixing repeater.

Compute the rate as the total
population generated on level
N divided by T4,

Populations in the Find minimum:
current pair: n', n" L yn=min{n',n"}
A
Termination
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Appendix A

Quantum Teleportation

In this appendix we justify the results shown in tab. 2.1. Please refer to sec. 2.2.3
for the setup.

Let the initial state of qubit 1 be given by [¢)) = a|0) + b|1) where a,b € C
and |a|? + [b|* = 1. The joint initial state is |1)); ® |®1)a3. To find the state of the
qubits after the measurement we have to act on this state with Upg,y; followed by
one of the projection operators

[00)1200]  [01)12(01] [10)12(10] [11)12(11| (A1)

We will do the calculation for the second of these, corresponding to the measure-
ment outcome 01.

Since Upg,y is the transformation from the Bell to the computational basis,
acting to the left it turns computational basis states into Bell states. Hence we
find:

101)12(01]|Upe | [¥0)1 @ [®7F )23 (A.2)
oot |00 1702

o0y 120071] [0 & [0

[0l o0t [eld)s + Hr0h
N V2 V2
= 1100012 @ [al0)s ~ b11)s]

a|01>12 +b|11>12
V2

®[0)3 + ®[1)3

From this output we see that the probability of obtaining the measurement
outcome 00 is % independent of the coefficients a, b since this is the square of the
normalisation factor for the state (we could also have found this by the standard
route of taking the trace of the projection operator with the reduced density matrix
for the measured system).

What is more, we see that the final state of qubit 3 is precisely Z|¢) as claimed

in tab. 2.1. The calculations for the three other measurement outcomes are similar.
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Appendix B

Many-mode Generating Function

In this appendix we state expressions for the generating function of a Bogoliubov
transformation on an arbitrary (countable) number of modes. We have built on
and extended an idea due to A. S. Sgrensen. Before we proceed, we prove the
following

Lemma

dpdx _ (2.2 T+ ip
|'UCLC><’UCLC| :/76 (@ +p )/4D(W) (Bl)

where |vac) is the vacuum state for the mode on which D acts.

Proof

The quadrature operators are defined by X = (a +a)/v/2 and P = i(a’ —a)/v/2.
The eigenstates of X form a complete set and are denoted by |z), where z € R (up
to a factor, X is the position operator of the simple harmonic oscillator). Since the
commutator is [X, P] = i, the translation operator for the X-eigenstates is given
by e AT (see e.g. [27] p. 44ff). We may therefore write:

—(@at _&)z'_—z x—a

7 = )elD(*

iP(z'—x

|z)(] = |a)(zle ) = o) (zle ) (B.2)

Now for any z' € R we have:

27 27
= (2’ - z)lz) = |z)(z|2") (B.3)

/@eip(X—x)|$/> _ /@ez’p(x/_m)|$/> _ (S($/ N $)|$l>
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and hence the operator |x)(z| equals the integral expression on the left. Inserting
this into (B.2) we obtain:

dp in(X—a) a T — ' dp ip(alsa_p) ara=s’ _ge-s
)| = /%ep(x D ) - /27r p(258 ) ateg azs

A]Lz—z,-‘—ip Az—z,—i

_ [ Bt et ip(ata) 2

!

2m
dp v —x +ip, i imra

where the disentangling theorem was used in the second line. With the help of
(B.4) and (4.1.14) we can express the projection on the vacuum in the following
manner (note that the vacuum state is not the same as z = 0):

lvac)(vac| = /dmdw’\@<x]vac><vac]a:'>(x’\

= /da:dw’|a:>(x'|<vac|x’><x|vac>

. ' i 12

_ / d$d$ld];dp/D($ -2’ + Zp)e—z'p(z+x’)/2e—% - \/%— 8 e~ (x+a")/2
(2m) V2

_ / dxdm’d];dp’D(a; -2’ + ip)e—i(p+p’)(x+z/)/2e—i[(m—r’)2+P’2]
2n) vz

_ / dydy dpdp’ o Y+ D ity 12020 4
20mz VU

dydpdp’ | y+ip. o —p =P\ (242
— D y*+p"?)/4
/ s D e

dydp _(24p2)/a Y TP
= — D(=——— B.

relabelling the variable ‘y> — ‘@’ concludes the proof of the lemmag

Now we generalise the generating function of sec. 4.1 to many modes. Asin that
section we have a collection of harmonic oscillator modes {a;} and a Bogoliubov
transformation given by (4.1.11). At first we consider the case without measure-
ments. We let index o run over the output modes, while ¢ runs over all modes.
The generating function is defined by:

Troo [out@aci (H e“ﬂ) U (H el ) jvac) {vac] (H) Ut (H ) |vac>m]

-t ([0 (100 Y (1
= e2¥ x (vac| (HD )UT (HD Y6)[0)6 (0| Dy (— > (HD (8:) ) lvac) (B.6)

F
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where ¥ = Y. (a? + 82) + Y., (72 + 62). All the parameters of F are real; differ-
entiation w.r.t. «a;, 3; determine the input matrix element, while ~,, d, determine
the output. ,

We define w, = (2, +ip,)/V2, dW =[], Ci/%”: =1L, % and 3, = Y Jw,|*

Making use of the above lemma and the transformation rule (4.1.12) we then obtain
the form of F' which is implemented in our programs:

with the kernel:

K = (vac] (H Di(—ai)> U T] Do(Vo) Do(wo) Do(—00)U (H Di(ﬁi)> lvac)
= (vac| (H Di(—ai)>

H Di(70b3i — YoCoi) Di(wobg; — w5coi) Di(—00by; + doCoi)

0,1

(H Di(ﬂi)> lvac) (B.8)

Now we should like to extend this formula to also include measurements. We
consider a setup in which the measured modes are distinct from the output modes
and where the only measurement outcomes we condition on are the ones corres-
ponding to (4.1.17), i.e. the presence or absence of a click in the detector. All
measurements are on a single mode. More general cases can be treated with gener-
ating functions, but this will suffice for our purposes. Introducing two more indices
[, d to index respectively the subsets of modes for which measurement yields a click
and the subsets of modes for which measurement yields no click, (B.7) is modified
to become (B.9).
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F = (vac| HDi(—ai)]

D; (’Yobzkn' - ’Yocoi)
11

0,1

d2’UJ0 1 lw |2
T [ e st Dt - i)
| 0,1 \/57[-

d2
II / C =5 lwal® Dy (wbyy — wiicar)
dui V2

[ d2wl 1 2
Tt [ C et T Dyt — wien)
L V2r i

[ Di(=60b5; + Socoi)

HDi(ﬁz‘)] |vac) (B.9)

This is the expression which has been implemented in the programs. In the im-
plementation the expression is always expanded out. The integral in each term
is pulled out so that the vacuum expectation is evaluated first and the resulting
quadratic function is integrated afterwards, as described in steps 1-3 of sec. 4.1.



Appendix C

Entanglement Connection and
Creation with Beam Splitters

Here we give short derivations to put on firm ground the procedure for entangle-
ment connection of sec. 5.1 and the entanglement generation of sec. 6.2.1.

Connection

We consider the setup of fig. C.1 and require a single click in one detector only for
successful connection.

1 2 3 4
@ ®
(0 Yy

Figure C.1: Entanglement connection or creation. Modes 1,2 and 3,4, are initially en-
tangled.

For simplicity let us assume that the left detector clicks. The projection op-
erator corresponding to this outcome is &;,|vac) <Uac|&;,. Now the beam splitter
takes vacuum to vacuum (it is passive) and transforms as — %(&2/ + ay) and

as — % (ay —ag ). Taking the inverse of this transformation, we see that our meas-

urement is equivalent to a projection onto the state %(&; + &;ﬁ,)]vac) = |U)gs.

If the initial state of modes 1234 is U)o ® [UT)34 we then obtain the unnor-
malised final state from:
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1 R o TN R
23<w+|[\w+>12®|w+>34] = L tvad] [(a2 + ) (@] + by (@) + a})] jaca

2v2

renormalising, this state is exactly [ )14 as desired.
In the case where the right detector clicks, the output state of modes 1,4 will
be |¥~) which can be transformed to |¥*) by a local phase shift of mode 1.

Generation

Now consider the entanglement generation setup in fig. 6.1b. After interaction
between the input pulse and the atoms, the joint state of atomic ensemble and
Stokes output light is a two-mode squeezed state. When the excitation probability
is small p. < 1 the state is:

1€) = (v/1 = pe + v/pealyal ) |vac) (C.2)
The conditioning scheme is the same as in fig. C.1 with modes 1,4 being the atomic
modes and modes 2,3 being the Stokes light modes. Hence, as before, a click in
the left detector corresponds to projection onto |¥*)s3. To find the output state
of the atomic modes, we repeat the calculation (C.1) with modes 1,2 and 3,4 in
the new input state given by (C.2). We get:

2112 @ €

- %ngac] [(&2 +a3) (/1 = pe+ /Pealad) (/T = pe + \/p—ca;&jl)} vac) o
= \/g(a{ +a})|vac) (C.3)

to lowest order in p.. Renormalising gives |¥1)14 as desired.

Note from (C.3) that the probability for the left detector to click is p./2. Thus
the total probability to get a single click — and therefore for the generation to
succeed — is p.. On the other hand, we made the assumption that p. < 1. If
this condition is relaxed, errors of order O(p.) will appear in the output state of
modes 1,4 and the state will no longer be a perfect Bell state. In fact, if we expand
the generated entangled state (found by the generating function method) to lowest
order in p., we obtain:

0 0 0 0

0 1_B Ll_p
271 271 (C.4)
]. C 1 C

0 3-% 3-% 0

0 0 0k



Appendix D

Solutions for Perturbation

Referring to sec. 5.3 in this appendix we give the parametrisations of the density
matrix at each distance level for perturbation in the coefficients c1,co and c3 of
(5.2.2). We state the recurrence relations for each parameter and give the solutions.
It happens that only the phase of ¢l enters into the solutions. It will be enough
for our purposes to know the solution when this phase is zero, and hence we do
not find the general solution for an arbitrary phase of ¢;.
Proceeding along the lines of sec. 5.3 we find:

Perturbation in ¢

Assuming that ¢; < 1, when the phase is zero, we find the following parametrisa-
tion of the density matrix:

1—2f; + (2f; — 1+ 2g;)c3 0 0 (1—2f)c1
0 fi— g fi—gc 0
i = D.1
P 0 fi— g fi— 9 0 (B
(1—2f)e1 0 0 (1—2f)c2

The parameter f; does not come from the perturbation. It is present because
we are using non-counting detectors, as discussed in sec. 5.4, and obeys the same
recurrence relation regardless of which coefficient we are performing the perturb-
ation in. The recurrence for f; was stated and solved in sec. 5.3; for completeness
we give the solution again below. For the parameter g; we find:

0 CAfi(4+g) + 113 —20f7 —4
i 2fi(fi - 2)°
4(1 4 21+i + 221)9Z _ 22+3i 4 22+2i +3

- 2(21+i 4 1)2 (D-2)
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After a change of variable to §; = 2(1 + 2¢)2g; this recurrence may be solved in
Mathematica, given the initial conditions (we start from a perfect entanglement
generation step, i.e. from the Bell state |[¥)). The solutions for f;, g; are:

1
= — D.
fi= g (D-32)
_21+3i +3. 21+2i +5- 27, —9
P = . D.3b
g 3202 +1)2 (D-3b)
Perturbation in ¢,
Assuming that co < 1, the parametrisation is:
1-— in + (2gi + kZ)C% 0 0 0
0 fi—g9ic5 fi—hics 0
i = DA4
P 0 fi—hic3  fi — gic 0 (D-4)
0 0 0 —k;c3
with f; as before and the other recurrence relations:
2k — fi)  2(2" + 1)k — 2
bl =57 9T 11 (D-52)
g — —2f3 + fi(—2+ 2g; — 5k;) + 2k; + 3fH(2 + k;)
i+1 =
* filfi —2)?
2(227L + 2l+i + 1)91 _ 22+3i + 22+2i +92
- I+i 2 (D.5b)
21+ 4+ 1)
L 200+ f2 —gi +2h; — ki + fi(—2+gi — hi + k;))
e (fi —2)?
_2-3(2" + 1)h; 4 211 (D.50)
- 3(2i+1 + 1) :

The recurrence relations are solved in Mathematica after changing variables to
ki= (2" + ki, §; = (20 + 1)%g; and h; = 3 - (2° + 1)h;. The solutions are:

1

— D.
fi= 5 (D-62)
2923 _3.2% _92i4 3
;= —= : D.6b
R TN )P (D-6b)
2i+l(2i _ 1)
hi==>—— "/ D.
3(21+1_|_2) ( 60)
20— 1
k, = —2= (D.6d)

241
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Perturbation in c;

The parametrisation for perturbation in c3 is identical to the parametrisation when
expanding in cs.

Remark on uniqueness of solutions

For all the recursion relations above the solutions are unique since, when they
are rewritten with the given variables changes they become linear inhomogeneous
difference equations with constant coefficients and a form of the inhomogeneity
which yields unique solutions. For example for perturbation in c¢s:

g’H—l — 2§’L . 22+3’i + 22+2’i +92 (D7)

There is a one to one correspondence between the original and the new variables,
and so the initial recurrence relations have unique solutions.

Although we have solved the recurrences in Mathematica, solutions can be
obtained by hand by the method of undetermined coefficients.
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Appendix E

Additional Figures

In this appendix we collect figures in which the conditional fidelity obtained from
simulation is compared with the conditional fidelity from our pertubative calcula-
tions.

The first four figures show simulations of the two-pass protocol of sec. 6.3. The
parameters, are kK = 2, = 0.1 (except for the top left n = 0), and from top left
to bottom right: » =0, r = 0.01, » = 0.05, r = 0.1.
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E. ADDITIONAL FIGURES

Conditional fidelity

Conditional fidelity F

The next five figures show simulations of the one-pass protocol of sec. 6.4. From
top left to bottom the parameters [s, ,g] are: [10°,1.00,1.00], [10°,1.00,1.00],
[10%,1.00,1.00], [10,1.01,0.96], [1,1.17,0.83].
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Appendix F

List of Programs

In this appendix we list the Mathematica programs that were used in obtaining the
analytical and numerical results presented in the thesis. The total amount of code
is considerable, and therefore we do not to print it. Within two month from the
submission date of this thesis, the source will be available online, for the benefit
of the examiners, at http://www.fys.ku.dk/ jona/speciale/.

We give a list of the Mathematica notebook files containing the most important
procedures and calculation which were used in obtaining the results presented in
this work. Online, the files are organised in folders according to the headlines
below.

Code should always be well commented. Uncommeted code is largely illegible
to anyone but the author, and will be so also for the programmer after short time.
We have attempted to comment all code thoroughly.

Subroutines

generatingFct.nb : Provides modules to compute the generating function
for a given Bogoliubov including measurements with non-resolving de-
tectors transformation.

outputMatriz.nb : Provides modules to compute the output density matrix
from a Bogoliubov transformation, given the generating function for the
transformation and the input state.

replteration.nb : Provides modules for obtaining the density matrix at each
level of a repeater, given the initial state after entanglement generation
and the generating function for the entanglement connection.

parallelReps.nb : Provides modules for simulation of channel mixing, to
obtain the communication rate.

DLCZ-repeater

dlczEntGen.nb : Computes the generating function and output matrix from
entanglement generation.
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dlczGenFct.nb : Computes the generating function for entanglement con-
nection.

dlczlter.nb : Simulates the DLCZ-repeater.

dlczRates.nb : Computes communication rates for the DLCZ-repeater.
Two-pass repeater
twopasslarmModeRedux.nb : Computes the mode reduction of the full state

transfer Bogoliubov transformation.

twopasslarmGenFct.nb : Computes the generating function for entangle-
ment connection.

twopasslarmlIter.nb : Simulates the two-pass repeater.

twopasslarmRate.nb : Computes communication rates for the two-pass re-
peater.

twopasslarmAnalytic.nb : Implements the pertubative approach to the two-
pass repeater, using the general solution for pertubation.
One-pass repeater
onepassfeedGenFct.nb : Computes the generating function for entanglement
connection.
onepassfeedIter.nb : Simulates the one-pass repeater.

onepassfeedRate.nb : Computes communication rates for the one-pass re-
peater.

onepassfeedAnalytic.nb : Implements the pertubative approach to the one-
pass repeater, using the general solution for pertubation.

Perturbation

pertGenFct_general.nb : Computes the generating function for entangle-
ment connection using the mode reduced general full state transfer
Bogoliubov transformation.

pertFidel general.nb : Derives and solves the recurrence relations in each
of the parameters in the perturbation, hence obtaining the full solution
to the perturbation.

The numerical precision which was used in calculations was $MachinePrecision
~ 16 digits.
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Bell states, 9

bipartite entanglement, 8

bit flip, 15

Bogoliubov transformation, 13
Bujumbura, 22

bunching, 43

coherent state, 11
computational basis, 14
conditional fidelity, 42
controlled-NOT, 16

dark count, 76

decoherence, 20

density matrix, 5

density operator, 5
disentangling theorem, 32
displacement operator, 11
DLCZ-type repeater, 24
double excitation, 50, 62, 69

entangled state, 8
entanglement, 8

maximal, 10

test for, 10
entanglement connection, 23
entanglement purification, 23

fidelity, 7, see also conditional fidelity

gate, 15
generating function, 31

Holstein-Primakoff approximation, 56

local operation, 15

105

maximally mixed state, 19
measurement, 6

mixed state, 6

mode, 13

mode operator, 13

no-cloning theorem, 16
noise, 19

non-local operation, 15
non-separable state, 8
number state, 11

phase flip, 15

projective measurement, 6

pure state, 6

purification, see entanglement puri-
fication

quadrature operator, 12
quantum information, 14
quantum noise, see noise
quantum repeater, 22
quantum teleportation, 17
qubit, 14

reduced density operator, 6
repeater, see quantum repeater

separable state, 8
squeezed state, 12
squeezing operator, 12
state transfer, 37
Stokes operator, 56

two-mode squeezing, 13

uncertainty, 49
numerical, 49



