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"In an interview with Yale Environment 360, Wulf explains what enabled Humboldt to
arrive at conclusions that were astonishing for his time. “Most scientists who looked at
climate then, looked at weather. . . But Humboldt very much sees climate as an intercon-
nection of landmass, of altitude, of weather, of oceans. He puts all of this together."

Biographer Andrea Wulf about Geographer Alexander von Humboldt (1769-1859)

"If I have seen further it is by standing on the shoulders of Giants"

Isaac Newton, Letter to Robert Hooke, 1675

"Climate change is a threat to global security that can only be dealt with by global
cooperation. Through it, we may finally create a stable, healthy world where resources
are equally shared and where we thrive in balance with the rest of the natural world"

David Attenborough, UN climate security session, 2021
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Preface

"I want you to get scientific ideas of this project", said Jens on our weekly online

meeting. At that time, he was in Copenhagen, Denmark, while I was in Majorca,

Spain, experiencing 35ºC and thinking about all those potential empty beaches that I

could go to.

I was always fascinated by climate and weather patterns since I was young. I started

to look deep into all atmosphere-land-oceans features that could be the reason for all

climate and weather types that we observe every day. Being surrounded by profes-

sionals from the Spanish Meteorological Institute to my mentors at the Autonomous

University of Madrid and the University of Copenhagen, I find myself doing what I

like the most: investigating and sharing how science takes place over a mini-continent

called "The Iberian Peninsula". Indeed, we constantly face many difficulties and

unexpected code issues during the thesis. Still, with motivation and persistent support

from our mentors and friends, it is quite feasible to deal with it. It has been truly

an honour to work about my own country and research the climate challenges it is

currently facing and expected to do.

Please make yourself comfortable and let me share some scientific ideas I acquired

from this master’s thesis.
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Abstract

Overestimation of Spain’s summer temperatures due to regional climate models

non-stationary biases.

The Iberian Peninsula has been experiencing new temperature records in the last

few decades, making some parts of this region gradually less habitable, especially

during summer. To simulate present-day climate conditions accurately and determine

better estimates of extreme temperatures over the southwestern part of Europe, high-

resolution regional climate models (RCMs) have been applied. However, it is unknown

to which degree state-of-the-art RCMs may tend to overestimate regional amplification

of global warming, especially during the warmest months (Christensen et al., 2008;

Boberg and Christensen, 2012). Studies have revealed that RCMs have systematic

temperature dependence of biases increasing with temperature. The warmer the

month is, the stronger this tendency becomes. The project aims to analyse potential

non-stationary biases between climate simulations (EURO-CORDEX project) and

observational datasets over the Iberian Peninsula (Herrera et al., 2016). However,

such an analysis has not been done with the current high-resolution RCMs or relying

on a high-resolution observational dataset before. In addition, the analysis will also be

extended to address monthly means of daily maximum and minimum temperatures,

which has not been addressed before. A bias correction method will be then be

proposed to mend some of the model deficiencies.

Keywords: Regional climate models, temperature biases, monthly mean temperatures,

observational/reanalysis data, climate change, bias correction, regional warming.
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1Introduction

The representation of present-day climate conditions by regional climate models

(RCMs) remains imperfect. Despite the fact that there has been a remarkable process

in climate modelling in the last decades, scientific uncertainty regarding the regional-

local scale physical processes is still present (Stocker et al., 2014).

By taking a multi-model ensemble approach, this dissertation provides an analysis

of RCMs systematic behaviours and their effects on climate models simulations over

Southwestern Europe, in line with previous studies (Christensen et al., 2008; Boberg

and Christensen, 2012). Concretely, uncertainties in ensembles of climate reanalysis

simulations will be explored.

In particular, it has been demonstrated (Miralles et al., 2014; Hirschi et al., 2011;

Santanello Jr et al., 2007) that land-atmosphere processes can affect RCMs simulated

temperature, especially in hot and dry climate-areas during the summer season. As

a consequence, models tend to share systematic temperature dependence of biases

increasing with temperature. However, it is unknown to which degree state-of-the-art

RCMs may tend to overestimate regional amplification of global warming, espe-

cially during the warmest months (Christensen et al., 2008; Boberg and Christensen,

2012).

This dissertation provides a regional analysis of systematic behaviours for seasonal-

diurnal temperature, as well as an interpretation of regional to local climate change

signals for Spain.

1.1 Research question

Several studies have revealed that RCMs share systematic temperature dependence

of biases, especially during the summer season (Christensen et al., 2008; Boberg and

Christensen, 2012). In turn, this present dissertation provides a new analysis of the

2



current high-resolution RCMs relying on a high-resolution observational dataset for

the Spanish Iberian Peninsula and the Balearic Islands.

Furthermore, an unprecedented approach will be carried out addressing monthly

means of daily maximum and minimum temperatures, looking into this region’s

warm and cold bias. The case of Spain is relevant to examine as the country is

extremely affected by regional amplification of global warming (Stocker et al., 2014),

which appear to be overestimated by global and regional climate models (Boberg and

Christensen, 2012)

Warm and dry summer conditions directly affect climate simulations’ ability to match

up with the observed climate. Extreme weather and climate events -heatwaves

and droughts-, desertification, severe wildfires, and physical processes such as soil

desiccation and atmospheric heat accumulation (Miralles et al., 2014) could explain

the underlying temperature-dependent biases of climate simulations, especially during

warm seasons.

As the atmospheric and geographic characteristics over Southern Europe are consider-

ably complex, global climate models (GCMs) inadequately account for many regional

climate processes as listed before. However, much greater detail and more accurate

representation of mean, maximum and minimum temperatures will be provided by

regional climate downscaling over such a limited area.

The notion of using state-of-the-art RCMs driven by GCMs to represent better regional

scales, as well as the evaluation of its temperature dependence of biases, will be

explored to confirm their accuracy and fidelity compared to GCMs.

As such, the research question this dissertation aims at investigating is:

Do the most recent generation of high-resolution RCMs exhibit similar systematic biases
behaviour as did older coarser-resolution models?

1.2 Main objectives

This project follows previous climate studies conducted over the Mediterranean by

Christensen et al., 2008 and Boberg and Christensen, 2012. The study aimed to

confirm that summer temperature projections over this region were overestimated

due to model deficiencies. Christensen et al., 2008 and Buser et al., 2009 corroborated

the manifestation of systematic temperature-dependent biases on Regional Climate

Models (RCMs) compared to observations.

1.2 Main objectives 3



As analysed (Diffenbaugh et al., 2006; Miralles et al., 2014) and stated by (Christensen

and Boberg, 2012) particular physical processes between the atmosphere and land

surfaces may constrain RCMs climate projections in large parts of Europe, in particular

in scorching and dry regions.

For that reason, this project is motivated by the need for RCMs systematic behaviour

evaluation over the Iberian Peninsula, characterised by extreme climate conditions.

The objective of this present dissertation is to analyse potential non-stationary bi-

ases between state-of-the-art RCMs (EURO-CORDEX project) and high resolution

observational gridded datasets (Herrera et al., 2016) as a recent scientific approach in

the climate modelling area. The analysis will also be extended to address monthly

means of daily maximum and minimum temperatures, which has not been addressed

before.

As such, we seek to contribute to the existing literature on (1) analysing the agreement

between climate models and observations regarding temperature-dependent biases

and (2) their temperature-bias dependency (slopes) given by grid points, therefore

with enhanced geographical detail.

(1) It appears that significant limitations for representing not only temperature projec-

tions but also present-day climate conditions persist (Christensen et al., 2008; Boberg

and Christensen, 2012). Here we assess the uncertainties between current simulations

compared to observations on a monthly and annual time scale. Furthermore, partic-

ular attention will be paid to overestimated temperature biases for warmer months

compared to observations. The high-quality observational gridded dataset determines

the analysis of the agreement between individual models and observations. Therefore,

we also examine each model’s reliability to represent current climate conditions and

their implications for projecting future climate.

(2) Limitations in interpreting regional temperature present-day conditions may

affect future climate projections accuracy. The slopes of the systematic temperature-

dependent biases by grid points are analysed for all models on an annual timescale.

Here we aim to investigate if their temperature dependency (slopes) could exacerbate

global warming or, conversely, underestimate regional future temperatures for the

study area.

1.3 Contributions

In the last decades, model temperature biases have been studied by different authors

(Boberg and Christensen, 2012; Christensen et al., 2008; Nahar et al., 2017; Addor

1.3 Contributions 4



et al., 2016), demonstrating its limitations on interpreting current climate conditions

and climate change information (Matte et al., 2019)

This study is motivated by analysing potential non-stationary biases between state-of-

the-art RCMs and high-resolution observational gridded dataset as a brand new scien-

tific approach in the climate modelling area. To advance in Christensen et al., 2008

and Boberg and Christensen, 2012, we centre our attention onto two approaches:

(1) Monthly mean temperatures averaged for Spain, ranking simulated and observed

daily mean (Tmean), maximum (Tmax) and minimum (Tmin) temperatures for 1989-

2010.

(2) Monthly mean temperatures per grid points for model temperature biases for

1989-2010, and its annual and seasonal mean representation mapped per grid point

with enhanced geographic detail. Concretely, (2.1) warm and cold biases are plotted

for all models and variables per grid point over Spain. Besides, (2.2) temperature

slopes are tested per grid point and confront with approach (1) showing a clear

geographical of enhanced warming for most of the models and variables employed.

The fact that non-stationarity represents an additional source of uncertainty for

climate models outputs is introduced and explained with a special focus over the

Iberian Peninsula. Several studies have attempted to develop various bias adjustments

to compensate for this mismatch (Madani et al., 2020). Here, we introduce a bias

correction method that could minimise the temperatures biases between simulations

and observations in further investigations.

1.4 Thesis structure

The thesis is structured as follows: First, section 2 provides a background on the key

topics related to current climate conditions and climate change signal over Spain

with details on climate simulations and their systematic behaviours. Second, the

observational dataset and the climate models used in this study are presented along

the methods summarized in section 3. Section 4 analyses the EURO-CORDEX evalua-

tion simulations performance against Spain02 observational dataset displaying their

systematic behaviours and mapped temperature biases with its slopes and goodness

of fit. Finally, section 5 presents the main conclusions and discussions grown from

section 4. Lastly, section 6 offers an outlook of the study.

1.4 Thesis structure 5



2Background

2.1 Current climate conditions and climate change
in Spain

Spain exhibits a large spatial climate variability (Herrera et al., 2016). Concretely, it

is particularly vulnerable to desertification (Miao et al., 2003) and extreme weather

events, especially heat waves (Díaz et al., 2006).

The Iberian Peninsula (hereafter IP) and the Balearic Islands are located in the south-

western margin of Europe, surrounded by the Atlantic Ocean (West), the Mediter-

ranean Sea (East) and the African continent in the immediate south surroundings

(Figure 2.2). This region, situated between 36ºN and 45ºN, embodies a distinct

combination of land-atmosphere-ocean feedbacks that determines the well-extended

Mediterranean climate (Appendix figure 8.1). This climate is interposed between

the temperate maritime (northern Spain) and the arid subtropical desert climate

(southeastern areas), showing hot, dry summers and mild, relatively wet winters.

Controlled by the Westerlies in winter and the Azores subtropical anticyclone in

summer, the Mediterranean climate can be highly influenced by the configuration of

seas and peninsulas, producing a significant regional and local variety weather and

climate (Barry, Chorley, et al., 2003). Changes in Jet Stream’s variability and high-

pressure summer atmospheric patterns are responsible for the significant difference

between wet winters and dry summers (Bolle, 2012).

Droughts (Vicente-Serrano et al., 2017), wildfires (Alcasena et al., 2016), heat waves

(Fischer and Schär, 2010), severe rainfall (Corada-Fernández et al., 2017), floods

(Llasat et al., 2005), low-level inversions (Palarz et al., 2020), and even snowstorms

(e.g. "Storm Filomena", 2021) have been widely investigated in terms of severity,

duration, intensity and frequency, proving the increase of 1.5ºC average annual

temperatures vs pre-industrial times in the region (AA, 2020).

6



Extreme climate and weather events define this transitional and unique climate area

(Strahler, 1980). For instance, in the centre of the IP, Madrid experienced daily mean

maximum temperatures of 37ºC for three consecutive weeks in July of 2015 (ÁLVAREZ

et al., 2015). On top of that, those extreme temperature conditions were enhanced by

the local large-sized urban heat island (UHI), making Spain’s capital gradually less

habitable, especially during summers night-time (Rasilla et al., 2019).

Figure 2.1: Climate conditions in Spain from 1971-2000 (a) to 1981-2010 (b) by using the
Koeppen-Geiger System. The spread of light colours from one time scale to
another represent a warmer and drier climate. Furthermore, some coastal regions
climate is currently shifting from temperate to tropical conditions. (Reproduced
from César Rodriguez Ballesteros (2016))

Spain exhibits a complex topography being the second European highest country

after Switzerland. Vast plateaus and mountain ranges characterise the IP being less

prominent in the Balearic Islands. Topography plays an important role in representing

climate variables over Spain, where differences in temperature result from high tem-

perature gradient, coastal and continental air-masses, and regional land-atmosphere

feedbacks (Seneviratne et al., 2006, Gobiet et al., 2015, Vicente-Serrano et al., 2017).

According to Stocker et al., 2014, there is high confidence that the climate system has

been affected by human-induced global warming. The fact that the Mediterranean

basin is already entering the 1.5ºC warming era is confirmed by the CORDEX ensemble

(Zittis et al., 2019).

Summers will likely warm more than winters. Many extreme weather events are likely

to become more frequent and intense, especially heatwaves and high-temperature

events (Lionello and Scarascia, 2018). Concretely, Spain is one of the European

countries most exposed to extreme heatwaves, in which frequency, intensity and

duration are assumed to worsen. Also, future climate projections under all RCP

scenarios predict reduced rainfall in the coming decades for this specific region (Saadi

et al., 2015). Thus, the same trend is expected for precipitation and droughts events,

2.1 Current climate conditions and climate change in Spain 7



plus enhanced warming leads to greater soil-temperature feedbacks, especially for

those Mediterranean regions with complex topography (e.g. The Iberian Peninsula or

Anatolia in Turkey)(Stocker et al., 2014).

The	Iberian	Peninsula	
Southwestern	Europe	

Legend				
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Mountains
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N
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Figure 2.2: Satellite image of the southwestern part of Europe and surroundings by Landast
8)
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2.2 Regional feedback mechanisms between
topography and atmosphere

Figure 2.3: Regional physical mechanisms between land and the atmosphere boundary layer.
(Reproduced from Miralles et al., 2014))

The stronger the influence of the Azores subtropical high-pressure, the drier the

weather over the Iberian Peninsula. Thus, under prolonged atmospheric high-pressure

patterns, land-surface is increasingly desiccated, and the depletion of soil moisture

leads to a further escalation in air temperatures (Miralles et al., 2014). In other words,

successive reduction in evaporative cooling intensifies air temperatures. One of the

least known variables in climate modelling is soil moisture (Pan et al., 2001) and thus

far. Entin et al., 2000 presented how highly heterogeneous in space soil moisture could

be attributed to variability in soil type, landscape and precipitation. According to Pan

et al., 2001, soil moisture heterogeneity over land complicates its parameterisation in

numerical models. Their principal findings pointed out the need to improve predicting

precipitation and representation of biophysical processes to simulate soil moisture

correctly.

Recent climate modelling studies have postulated a connection between soil moisture

deficit and drought on hot extremes (Hirschi et al., 2011; Miralles et al., 2014).

Hirschi et al., 2011 found a relationship between soil moisture deficit and hot summer

extremes in southeastern Europe. Essentially, soil moisture controls partitioning

between sensible and latent heat flux at the land surface, modifying the atmospheric
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boundary layer (ABL) dynamics. As stated by Seneviratne et al., 2010, soil moisture

temperature feedbacks can significantly impact land-surface climates and are key to

trigger extreme hot temperatures and heat waves (Miralles et al., 2014, Fischer et al.,
2007, Seneviratne et al., 2006).

2.3 Climate model simulations and their
uncertainties

Climate models have improved over time allowing for more details to be explored

(Flato et al., 2014). From observational initial conditions to small-scale physical

processes, the realism of a model simulation can be severely affected. Climate models

facilitate the physical understanding of the Earth climate system and climate changes

over the past, current and future times. They aim to simulate the physics, chemistry

and biology of the atmosphere, oceans and land in great detail. Even though the

model performance of historical and future conditions has been constantly updated,

the agreement among different ensembles of global climate models (GCMs) and

regional climate models (RCMs) still differs.

Herrera et al., 2016; Herrera et al., 2019 confirm that the EURO-CORDEX RCMs are

able to express the variability and the spatial pattern observed over the IP. Furthermore,

a higher agreement can be seen between simulated and observed temperature than

precipitation; furthermore, failing in reproducing extremes (Herrera et al., 2019).

As documented by (Stott et al., 2003; Matte et al., 2019; Zittis et al., 2019) it is

worth noting the robustness that a large ensemble of climate models provide for

climate change signals and, also, systematic behaviours for temperature projections

(Boberg and Christensen, 2012). As carried out in Boberg and Christensen, 2012,

coordinated experiments facilitate a better knowledge of climate models strengths

and deficiencies. Despite the progress made, scientific uncertainty from small-scale

physical processes persists (Flato et al., 2014), limiting the interpretation of climate

variables (e.g. temperature). To better represent regional and local scales and deepen

our understanding of enhanced geographic detail, a coordinated experiment has been

employed driven by the reanalysis GCM ECMWF-ERAINT.

The EURO-CORDEX RCMs ensemble adds higher spatial resolution than coarser

models, apart from new physical processes and biochemical cycles. Therefore, RCMs

play a significant role by giving climate simulations and projections with much greater

detail and a more precise representation of localised extreme events.
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2.4 Regional climate models

Regional climate models (RCMs) downscale climate fields over a limited domain

produced by coarse resolution global climate models (GCMs). Also, RCMs are forced

at the lateral domain boundaries by values from GCMs (Maraun and Widmann, 2018).

To simulate present-day climate conditions at high resolution, regional models can

also be forced with boundary conditions from reanalysis data. For this study, the

European Centre Medium-Range Weather Forecasts (ECMWF) reanalysis provide the

possibility for comparing and analysing against observed temperatures. To better

simulate the Mediterranean climate (Somot et al., 2018), coupled ocean-atmosphere

RCMs have been used. In particular, state-of-the-art EURO-CORDEX RCMs have a

horizontal resolution of about 12 to 25 km. Even though most GCMs still share a

coarse resolution, this study’s reanalysis model looks at ∼12.5km over the European

domain (EUR-11).

As noted by Flato et al., 2014, regional and local climate over regions with complex

topography, such as mountain ranges or coastal areas, are not well represented.

Furthermore, RCMs may add considerable value when looking at the grid-scale

for regional processes such as land-atmosphere feedbacks, thermodynamical and

microphysical processes. PRUDENCE (Christensen et al., 2007), ENSEMBLES and

EURO-CORDEX projects have applied RCMs to downscale GCMs simulations for

Europe. Christensen et al., 2018 confirmed stronger robustness of state-of-the-art

climate change information for Europe along with the development of the projects

(from PRUDENCE to CORDEX-11).

2.5 Non-linear behaviour

Model imperfections or biases can be noticed by comparing climate model simulations

against real-world observations (Methods 3.3). A vast literature source (Matte et al.,
2019; Boberg and Christensen, 2012; Jacob et al., 2014; Cardoso et al., 2019) has

proved that model imperfections can be evaluated by assessing the credibility of

simulated future trends (Maraun and Widmann, 2018).

Some research studies on climate change impact assessment assume that the bias

between simulated and observed climate is constant or stationary across the series

(Karlsson et al., 2016; Minville et al., 2010; Teutschbein and Seibert, 2012). However,

several authors (Christensen et al., 2008; Buser et al., 2009; Boberg and Christensen,

2012) have suggested that biases may be state-dependent, in other words, time-variant

in a changing climate. Maraun, 2012 state that temperatures and general properties
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of the air masses are likely to influence biases. Although, under regional warming

conditions, the air masses’ properties and temperatures are likely to fluctuate. Future

biases will depend on the actual values and, in particular, on the state of the climate

system (Maraun and Widmann, 2018). Furthermore, future biases associated with

extreme temperature values will differ from those in the current climate.

Currently, the sixth phase of CMIP (The Coupled Model Intercomparison Project)

is underway, and it will be released along with the IPCC’s Sixth Assessment Report

(AR6) in 2021. Stouffer et al., 2017 has contributed to the climate science research

community by identifying and extensively filling some scientific gaps from previous

CMIP phases. Particularly by facilitating the identification and interpretation of

systematic model biases. These remain to date as significant climate modelling

challenges.
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3Data and Methods

3.1 Data processing

3.1.1 Spain02 Observational gridded dataset

The updated version of the Spain02 observational gridded dataset is the primary source

of data for this study. It was built from a dense network of over 250 temperature

stations from the Spanish Meteorological Institute (AEMET) and is based on 3000

precipitation stations (Herrera et al., 2016).

The first procedure was to compare this high-resolution observational dataset with

state-of-the-art regional climate models from the EURO-CORDEX project (table 3.2).

Such proceeding could be performed since the Spain02 observational dataset is built on

the same standard grids as the EURO-CORDEX and ENSEMBLES projects. Concretely,

it is defined on the same 0.11º, 0.22º and 0.44º resolution grids, conducting the study

on the fine 12.5 km grid. As is stated by Herrera et al., 2016, the spatial distribution

of the station density and the temporal evolution of the average number of stations

per grid-box is relatively homogeneous and steady, respectively.

Dataset Variables Institution Covered period Frequency Resolution

Spain02_v5 Tmean, Tmax, Tmin
CSIC - University of Cantabria
(Herrera et al., 2016)

1950-2015* Monthly, daily* 0.11º(∼12.5km)

Table 3.1: Details of the observational gridded dataset. (*) The covered period is constrained
to 22 years (1989-2010), adjusted to the simulated series.(*) In this study, the
temperature variables analysed are: monthly mean daily mean temperature,
monthly mean daily maximum temperature, and monthly mean daily minimum
temperature.

3.1.2 EURO-CORDEX Regional Climate Models

This study selected from the framework EURO-CORDEX initiative an ensemble of 9

RCM simulations forced by the driving global climate model ECMWF-ERAINT. Precisely,

a European-wide reanalysis of high-resolution regional climate simulations on a 0.11º
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(∼12.5km) over the European domain (EUR-11) combining models with observations

covering both the Iberian Peninsula and the Balearic Islands. A total of 264 grid-cell

monthly mean temperature biases for 1989-2010 were computed using reanalysis

simulations and compared against the Spanish observational dataset Spain02. The

EURO-CORDEX project’s performance was considered to evaluate the model quality in

present-day climate simulations and compare monthly-to-monthly consistency among

the datasets at hand. Thus, to simulate present climate at high-resolution, RCMs

driven by reanalysis data were used.

The availability of the nine RCMs constrains the time period covering this study.

Therefore, it was decided to adopt 22 years as a standard reference for all models

and observations. Concretely, temperature reanalysis data was extracted from the

Earth System Grid Federation (ESGF archive, https://esgf-data.dkrz.de/search/cordex-

dkrz/) for the EUR-11 domain of the CORDEX experiment. Details of the RCMs used

are displayed in Table 3.2.

Model ID Regional Climate Model Acronym Institution Timeseries
RCM1 MOHC-HadREM3-GA7-05 MOHC Met Office Hadley Centre 1982-2012
RCM2 DMI-HIRHAM5 DMI Danish Meteorological Institute 1989-2011
RCM3 KNMI-RACMO22E KNMI Royal Netherlands Meteorological Institute 1979-2012
RCM4 CNRM-ALADIN63 CNRM Centre National de Recherches Météorologiques 1979-2018
RCM5 GERICS-REMO2015 GERICS Climate Service Center Germany 1979-2012
RCM6 ICTP-RegCM4-6 ICTP International Centre for Theoretical Physics 1980-2016
RCM7 CLMcom-ETH-COSMO-crCLIM ETH Climate Limited-area Modelling Community Zurich 1979-2010
RCM8 SMHI-RCA4 SMHI Swedish Meteorological and Hydrological Institute 1980-2010
RCM9 RMIB-UGent-ALARO-0 RMIB Royal Meteorological Institute of Belgium and Ghent University 1980-2010

Table 3.2: ERA-Interim-Driven EURO-CORDEX (EUR-11) Regional Climate Models consid-
ered.

Climate reanalysis combines models and observations (Bengtsson et al., 2007). It gives

a numerical description of the recent climate containing air temperature estimates,

wind, soil-moisture content, rainfall and pressure. Table 3.2 shows each RCMs time-

series length where they span from around 29 years, roughly. However, as mentioned

before, to include all 9 RCMs ensemble (e.g. RCM2 and RCM8), the period was

shortened to 22 years from 1989 to 2010. A 29-year series with just 8 RCMs were

examined to test any systematic temperature bias variability. It turned out that the

non-linear biases showed insignificant changes.

3.2 Linear regressions

Simple linear regressions were applied for all RCMs ensemble. This statistical method

allowed us to study the relationships between two continuous variables, concretely,

observed and simulated monthly data (Mudelsee, 2019).
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Christensen et al., 2008 used a polynomial fit while Boberg and Christensen, 2012

applied a linear regression to the 50 percent warmest months for their analysis. Here,

we are analyzing the full bias temperature dependence slightly different by using a

linear regression to all data points.

Therefore, simple linear regressions were conducted in two different ways to all

monthly means. On the one hand, subtraction of observed and simulated spatial

averaged points and their bests fits were performed (figure 4.1). On the other hand,

subtraction of observed and simulated grid-cells monthly data was fitted using linear

functions. In other words, an adjustment was made with a regression line to simplify

and facilitate the understanding of the monthly mean temperatures (points, Figure

4.4). The Ŷi is defined us:

Ŷi = β̂0 + β̂1Xi (3.1)

ε̂i = Ŷi − Yi (3.2)

where β̂0 is the constant associated with a structural bias and β̂1 is the slope of the

climate model. Xi represents the independent value (observations), and ε̂i constitutes

the error between the Ŷi and the climate model value. Moreover, a goodness of fit

was carried out to see if the simple linear regression is statistically significant and

representative (Methods 3.4)

3.3 Temperature biases

Observed and simulated regional climate constitute two multivariate probability

distributions with temporal, spatial, marginal and multi-variable aspects (Maraun and

Widmann, 2018). According to the World Meteorological Organization (WMO), a bias

is the correspondence between a mean forecast and mean observation averaged over

a certain domain and time. The Biasθ(t) is defined as:

Biasθ(t) = θm(t) − θo(t) (3.3)

Therefore, if the simulated (θm(t)) and real-world (θo(t)) distributions differ, the

model is biased (Maraun and Widmann, 2018). Linear and non-linear monthly data

behaviours are detected when summer and winter data is divided. Non-linear patterns

appear when summer and winter temperature biases show notable disagreement
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(figures 4.7 and 4.9). However, if biases remain with no significant changes be-

tween seasons, the behaviour would be linear. Therefore, no tendency is observed

(Background 2.5)

As such, biases in RCMs simulations can be reduced by performing a bias-adjustment

function that adjusts the model evaluation data to a set of observational data (Methods

3.5).

3.4 Goodness-of-fit and R-squared

Linear regression analysis is a statistical analysis that may have some error depending

on the data distribution. Therefore, a study of its goodness of fit was required to verify

that the results are statistically significant. R-squared was used among other methods

since it provides sufficient information about the goodness of fit of linear regressions

(Valbuena et al., 2019).

An R-squared method is a straightforward approach in which values perform between

0 and 1. If the R-squared value is close to 0, it indicates that the model explains none

of the response data’s variability around its mean. On the contrary, if R-squared is

close to 1, then the model explains all the response data’s variability around its mean.

The higher is the R-squared, the better the linear regression slope fits. In particular,

all models’ temperature bias slope tend to show the “goodness” of fit around 0.9

to 1. In this study, the value 0.80 was considered as an arbitrary threshold from

which the regression line fit is not statistically significant, where residuals increase

considerably.

3.5 Other methods

3.5.1 Bilinear interpolation

Bilinear interpolation was carried out for both the input data and the target grid.

This re-sampling method uses the nearest pixel values’ distance-weighted average to

estimate a new pixel value. Concretely, we used bilinear interpolation of the RCMs

output to the observations grid. This method ensured that the model outputs were

interpolated over the same grid as the observational dataset for all time-steps originally

in the EURO-CORDEX project. Only grid points covering the Spanish mainland and the

Balearic Islands were considered for the results, including reanalysis and observational

data.
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3.5.2 Standard deviation

The standard deviation is a useful measure of spread for normal distributions. Seasonal

standard deviation (SD) is presented for all 9 RMCs in Table 4.1. for Tmean, Tmax
and Tmin and for its cold and warm seasons. The SD calculates the distance between

monthly data and their means (equation 3.4). In this case, it tells the dispersion of

monthly temperatures distribution for each temperature variable.

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (3.4)

Thus, a high standard deviation indicates that monthly mean values are far from their

mean (linear fits). On the contrary, if monthly data are gathered around their linear

fits, the SD remains low.

3.5.3 Bias adjustment: Quantile mapping

A bias-adjustment function was carried out to adjust the current climate evaluation

data to a set of observational data to minimise temperature biases. Precisely, the de-

velopment of bias-correction or bias-adjustment techniques has been quite significant

(e.g. Piani et al., 2010; Dosio et al., 2012; Gobiet et al., 2015) to post-process climate

model simulations to match the observed climate. The cumulative distribution func-

tion (CDF) from the RCMs is mapped onto the observations’ distribution (Figure 4.11),

thus showing the agreement from both climate data. It has been demonstrated (Gob-

iet et al., 2015, Boberg and Christensen, 2012) that the value-dependent correction

function would not vary for climate change projections.

3.5 Other methods 17



4Results

This study is motivated by analysing potential non-stationary biases between state-of-

the-art RCMs and high-resolution observational gridded dataset Spain02. To advance

in Boberg and Christensen, 2012 and Christensen et al., 2008 research, we centre our

results section onto two approaches:

(4.1) Monthly mean temperatures averaged for Spain, ranking simulated and observed

daily mean (Tmean), maximum (Tmax) and minimum (Tmin) temperatures for 1989-

2010. Model temperature biases can be seen between the model’s best fits (slopes;

Methods 3.2) and their distance with respect to the diagonal Tm = To. As presented

throughout this section and discussed in the following, limitations are found using

this approach for interpreting and analysing systematic temperature-dependent biases

in this complex and extreme Mediterranean region.

(4.2) Monthly mean temperatures per grid points for model temperature biases

for 1989-2010, and its annual and seasonal mean representation mapped per grid

point with enhanced geographic detail. Concretely, (2.1) warm and cold biases

are plotted for all models and variables per grid point over Spain. Besides, (4.3,

4.4, 4.5) temperature slopes are tested per grid point and confront with approach

(4.1) showing a clear geographical of enhanced warming for most of the models

and variables employed. It is worth mentioning that this approach demonstrates

great representation and accuracy of non-stationarity patterns over each sub-region of

Spain. Furthermore, the overestimation of regional amplification of global warming is

captured by the majority of the multi-model ensemble in most of Spain’s sub-regions.

Procedures 4.1 and 4.2 take an ensemble approach providing a more robust interpre-

tation of all temperatures variables considered in this dissertation.
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4.1 Ranked simulated and observed temperatures

Figure 4.1: Ranked monthly mean temperatures modelled versus observed for Spain covering
the period 1989-2010. Points represent monthly EURO-CORDEX RCMs values
with respect to the Spain02 observational dataset and lines are best fits based on
these points.

Figure 4.1 ranks all monthly mean daily mean temperatures area-averaged for Spain

for 1989-2010. From 4ºC to 24ºC, dots represent the monthly means using Spain02

for 9 EURO-CORDEX RCM simulations and lines the best fits for those points with

respect to the diagonal Tm = To. Points and their simple linear regressions are being

represented in ascending order.

This figure facilitates the comparison between the simulated present-day conditions

and observed climate for Spain. Using area-averaged monthly data, all models tend to

exacerbate current mean temperature at both the lowest and highest temperatures of

the series compared to observations. However, different upward behaviours are found.

Boberg and Christensen, 2012 confirm that both GCMs and RCMs share the same

deficiencies in overestimating warming (64 GCM from CMIP3 and 13 RCM forced by

ERA-40).

The different behaviours of this sorted data are used for all temperature variables

(Tmean, Tmax, Tmin) and classified as follows:
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(A). Overall overshooting of temperatures. The ensemble of 9 RCMs tends to exacer-

bate warming for the whole area-averaged values with respect to the diagonal. Figure

4.1 clearly shows the majority of monthly mean data placed on the warm side in

reference to the diagonal as well as their own best fits. However, some individual

models register different patterns throughout the ascending representation of ranked

mean data.

(B). Overestimation of the lowest mean temperatures. Daily mean temperatures

corresponding to the winter season are well-affected by a high temperature-dependent

bias from all 9 RCMs. Therefore, simulated temperatures generally overshoot the

winter values with respect to the observed data.

(C). Warmer months with greater temperature biases. Area-averaged monthly mean

summer temperature manifests a particular warm bias using two RCMs: models 4

(CNRM) and 9 (RMIB) (table 4.2 shows the slope’s values of the 9 RCMs). Based on

their linear fits, summer temperature biases get warmer increasing with temperature.

Furthermore, suppose we were to extrapolate these values to a warmer end. In that

case, we could expect models 4 and 9 to exacerbate future regional temperature

warming since their slopes values are higher than 1ºC (table 4.2).

(D). Overshooting is reduced in the warmer months. Models slopes 1 (MOHC), 3

(KNMI), and (8) SMHI tend to be closer to the diagonal, increasing with temperatures.

The warmer are the temperatures, the more agreement lies between simulated and

observed data, reducing the overshoot during the warmest months.

(E). Underestimation of warmer months. As an exception, model 6 (ICTP) shows a

different temperature behaviour. Summer monthly data appears to be underestimated

in comparison with the observed data. In particular, this model’s behaviour insin-

uates a potential underestimation of warming if monthly mean temperatures were

extrapolated to a warmer end. As such, model 6 is the only individual simulation

that suffers from non-stationarity underestimating the warmer months, showing a

significant downsloping.
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Figure 4.2: Ranked monthly mean daily maximum temperatures modelled versus observed for
Spain covering the period 1989-2010. Points represent monthly EURO-CORDEX
RCMs values with respect to the Spain02 observational dataset and lines are best
fits based on these points.

Figure 4.2 ranks all monthly mean daily maximum temperatures area-averaged for

Spain for 1989-2010. From 8ºC to 32ºC, dots represent the monthly means using

Spain02 for 9 EURO-CORDEX RCM simulations and lines the best fits for those points

with respect to the diagonal Tm = To.

Maximum simulated and observed temperatures manifest a new tendency to increase

with temperatures. The higher the observed maximum temperature, the more under-

estimated is the simulated temperature (E). Collectively, the ensemble of RCMs shows

a more significant agreement for the lowest maximum temperatures (winters) with

respect to the highest values (summers). Models 4 (CNRM), 5 (GERICS), and 7 (CLM-

ETH) share the same tendency of ranked temperatures increasing their variability for

warmer monthly mean maximum temperatures (D). Warmer months show agreement

with respect to the observed climate. Furthermore, summer extreme temperatures and

positive anomalies might cause the widespread of the monthly data. However, models

1 (MOHC), 2 (DMI), 3 (KNMI), 6 (ICTP), and 8 (SMHI) will likely underestimate

the amplification of regional warming using this spatial-area averaged approach for

maximum temperatures over the Iberian Peninsula and the Balearic Islands.
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Here we also calculate the values of the linear fits (slopes) with respect to the diagonal

Tm = To. Unanimously, RCMs slopes mean values remain below 1, reaffirming the

potential underestimation of projected summer maximum temperatures (table 4.3).

Figure 4.3: Ranked monthly mean daily minimum temperatures modelled versus observed for
Spain covering the period 1989-2010. Points represent monthly EURO-CORDEX
RCMs values with respect to the Spain02 observational dataset and lines are best
fits based on these points.

Figure 4.3 ranks all monthly mean daily minimum temperatures area-averaged for

Spain for 1989-2010. From -2ºC to 17ºC, dots represent the monthly means using

Spain02 for 9 EURO-CORDEX RCM simulations and lines the best fits for those points

with respect to the diagonal Tm = To. Points and their simple linear regressions

are being represented in ascending order. For this night-time temperature variable,

the ensemble of 8 RCMs highly exacerbates warming for the whole area-averaged

values with respect to the diagonal. Figure 4.3 clearly shows all monthly mean data

placed on the warm side in reference to the diagonal as well as their own best fits.

However, one individual model registers different patterns throughout the ascending

representation of ranked mean data. Concretely, model 1 (MOHC) temperatures tend

to be closer to the diagonal, increasing with temperatures (D). Nevertheless, this

representation of ranked minimum temperatures reveals a high level of uncertainties

from both simulated and observed climate.
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4.2 Models temperature biases characteristics

Figure 4.4: Monthly mean model temperature biases versus observed monthly mean tem-
perature for Spain covering the period of 1989-2010. Points manifest monthly
EURO-CORDEX RCMs values and lines their simple linear regressions.

The 9 EURO-CORDEX models show different magnitude biases in simulating present-

day climate conditions over the Iberian Peninsula and the Balearic Islands. What

is primarily remarkable is that 8 out of 9 models exhibit a more significant bias for

warmer periods. The warmer the bias is, the stronger the tendency is.

In the GERICS (5), KNMI (3), and CLM-ETH model (7), the coldest months’ bias has

a stable behaviour, while as temperatures rise, the bias tends to increase. Boberg and

Christensen, 2012 research also found this specific pattern, where they operated with

KNMI RACMO RCM. This pattern should be kept in mind if climate change projections

are interpreted. Not as pronounced as those mentioned above, models 1 (MOHC), 2

(DMI), and 8 (SMHI) also detect a warmer temperature-dependent bias for warmer

months. Another noteworthy interpretation can be highlighted from the graph: the

colder the month is, the stronger the tendency is. This is the case for two models that

manifest a stronger tendency to increase and decrease with temperature. Both models

4 (CNRM) and 9 (RMIB) follow this hypothesis; the higher the temperature bias, the

coldest the month is, in absolute terms. Figure 5.1 plots cold and extraordinarily cold
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monthly mean temperature biases for the winter season using these two francophone

climate models.

On the contrary, model 6 (ICTP) does not suffer from this systematic behaviour. In

other words, the well-spread non-stationary bias for all simulations appears not to

influence the ICTP model. In short, this finding suggests that not all the state-of-

the-art regional models show a systematic temperature-dependent bias increasing

with warmer or colder temperatures. However, the underestimation of temperature

remains unaltered for the entire series, displayed by regions over Spain for the summer,

winter and annual season (Figure 5.1). The agreement among the model’s systematic

behaviour is unquestionable. Nevertheless, it is important to stress that monthly mean

points manifest a clear concentration and spread concerning their best fits. For a more

profound analysis, a standard deviation is carried out in the next section (table 4.1).

Figure 4.5: Monthly maximum mean model temperature biases versus observed monthly
maximum mean temperature for Spain covering the period of 1989-2010. Points
manifest monthly EURO-CORDEX RCMs values and lines simple linear regres-
sions.

Figure 4.5 shows monthly mean daily maximum temperature biases for 1989-2010,

spatially averaged over land for Spain with the bias along the y-axis and the observed

temperature along the x-axis. As mentioned before, this approach has never been

applied for daily mean maximum and minimum temperatures.
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Overall, in simulating maximum temperatures, it can be noticed that models tend to

overestimate warm summers (GERICS (5); CNRM (4); CLM-ETH (7); MOHC (1)),

respectively. For these simulations, the coldest months’ bias has a stable behaviour,

while as temperatures rise, the bias tends to increase. Generally, showing a similar

systematic bias as the ones used for mean temperatures. Regarding models 3 (KNMI)

and 2 (DMI), no systematic temperature-dependence has been found, and if any,

it is not significant. As an exception, model 6 (ICTP) exhibits a shift of systematic

behaviour, decreasing temperature biases during the warmest months. This model

points out a new negative systematic pattern rare but greatly accentuated over the

south of Spain for the summer season (Figure 6.2, model ICTP).

Concerning the type of bias, most of the monthly mean data tend to be located

below the 0ºC x-axis, clearly underestimating the simulated maximum temperature

compared to observations. However, models (5,4,7,1) show a clear positive bias

increasing with temperature, in the same line as Boberg and Christensen, 2012 results

for mean temperature and for Tmean of this study. By representing averaged grid

point monthly data, it can be displayed the exact bias that remains between both

temperatures. In this case, biases extend from -5ºC to 5ºC, therefore showing a big

range for maximum temperature among different EURO-CORDEX RCMs.

For monthly mean daily maximum temperature biases, systematic behaviours remain

for more than half of the models. However, in general the non-linear pattern it is

attenuated, especially if we were to compare with the previous temperature variable

(Figure 4.4).
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Figure 4.6: Monthly minimum mean model temperature biases versus observed monthly
minimum mean temperature for Spain covering the period of 1989-2010. Points
manifest monthly EURO-CORDEX RCMs values and lines simple linear regres-
sions.

Figure 4.6 shows monthly mean daily minimum temperature biases for 1989-2010,

spatially averaged over land for Spain with the bias along the y-axis and the observed

temperature along the x-axis. Overall, as a difference with the mean and maximum

graphs, minimum temperature biases evidence higher intrinsic heterogeneity among

simulations.

Winter minimum temperatures (from -2ºC to 7ºC) and summer minimum tempera-

tures (13ºC - 18ºC) show substantial positive biases increasing with temperature for

some models (e.g. DMI (2); CNRM (4); and 3 (KNMI)). These simulations clearly

manifest an increase of temperature biases for summer minimum temperatures. Fur-

thermore, it could be expected an exacerbation of warming for future projections

under these models. However, no remarkable variability during colder months is

showed. The majority of the models suffer from high biases (0ºC to 5ºC), being less

notorious the presence of monthly data underestimated by simulations. However,

Models 1 (MOHC) and 8 (SMHI) manifest a shift of the general non-linear behaviour,

decreasing temperature biases during the warmest months. Also, non-linear or time-

variant biases not always influence the realism of the models. RCMs 5 (GERICS), 6

(ICTP) and 7 (CLM-ETH) slightly suffer from the well-spread systematic behaviour
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(Figure 4.6). Nevertheless, results support the argument that models undoubtedly

overshoot minimum temperatures for all seasons, with some exceptions (MOHC (1)

and KNMI (3)).

Predominantly, discrepancies among different models for mean, maximum and min-

imum temperature are substantial. Ultimately, the three temperature variables are

analysed by an ensemble of 8 to 9 RCMs, which allow a robust interpretation on

temperature biases systematic behaviours. Furthermore, models collectively register

similar non-linear patterns suggesting potential regional climate processes on a small

scale that affect the models’ interpretation of Spain’s climate.

4.3 Mapped summer and winter maximum
temperature biases

In this section, annual monthly mean temperature biases values are plotted by each

model and each grid point over the Spanish mainland and the Balearic Islands.

Concretely, temperature biases of maximum temperatures are divided into three

columns: summer biases (left), winter biases (center) and annual biases (right)

covering the period 1989-2010. In the following enhanced geographical detail maps,

we explore the value of the bias (θm(t) - θo(t)) of individual models that belong to

EURO-CORDEX multimodel ensemble (figure 4.7). Taking an ensemble approach

provides a more robust interpretation, enhancing the understanding of models’ general

aspects (Boberg and Christensen, 2012).

Overall, summer and winter seasons manifest differences among their temperature

bias values, as it is presented in Figure 4.5. In the case of annual temperature biases,

they tend to have a smoother behaviour. Models 1 (MOHC), 3 (GERICS), 5 (CNRM),

7 (CLM-ETH), and 8 (SMHI), have more geographically varying bias between summer

and winter, apart from showing a strong warm bias (exceeding 4ºC) in some southern

and eastern mainland regions. However, models 2 (DMI) and 4 (KNMI) exhibit same

negative biases for both seasons, indicating that these two models actually show

no systematic behaviour, that is, no changes in biases values between seasons. As

an exception, model 6 (ICTP) has a systematic behaviour increasing with minimum

temperatures. Underestimation of monthly temperatures is enhanced for the warmer

season (Figure 4.7).

Model temperature biases are displayed over Spain’s grid points with an enhanced

geographic detail. Systematic spatial variations widely extend throughout the country

and most abrupt changes are mainly imposed by topography and missing physical
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processes on regional and local scales (Lundquist and Cayan, 2007, Maraun and

Widmann, 2018).
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Figure 4.7: Summer (left), winter (center) and annual (right) temperature biases per grid
points covering the series 1989-2010 for Tmax. The cold period covers December
to April (DJFM) and the warm period June to September (JJAS).

The representation of temperature in complex terrain likely show systematic variations

with topography (Maraun and Widmann, 2018). Figure 4.7 depicts well-defined

narrow alpine valleys in the Pyrenees mountain range and in northern downsloping

areas (Cantabrian range, Appendix Figure 8.4). Local air flows, the topography

shading, the presence of snow or the phenomenon "cold-air pooling" could explain

the underestimation of temperatures in these complex terrain regions (Pagès et al.,
2017, Lundquist and Cayan, 2007).

Moreover, models 1 (MOHC), 3 (GERICS), 5 (CNRM), and 7 (CLM-ETH) display

a non-linear warm summer bias that aligns with the prominent Ebro Depression

(northeastern, see Appendix Figure 8.4). As widely investigated in dry and hot

climates (Seneviratne et al., 2006, Fischer et al., 2007, Jaeger and Seneviratne, 2011),

large precipitation deficit in Spain’s central and eastern regions often contributes

to rapid loss of soil moisture, therefore lack of evaporation to cool down the land

surface. Collectively, high-resolution maximum temperature biases greatly describes

the isolated warm summer bias which overestimates maximum temperatures in

uplands areas of Sierra Nevada (southeastern).
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4.4 Mapped summer and winter mean temperature
biases

Temperature biases of mean temperatures are divided into three columns: summer

biases (left), winter biases (center) and annual biases (right) covering the period

1989-2010. Again, here we explore the value of the bias (θm(t) - θo(t)) of individual

models that belong to EURO-CORDEX multimodel ensemble (Figure 4.8). Overall,

summer and winter seasons manifest vast differences among their temperature bias

values, as it is presented in Figure 4.4.

Models 5 (CNRM) and 9 (RMIB) evidence distinguished non-linear patterns between

warm and cold seasons. Simulations 3 (GERICS), 5 (CNRM), 7 (CLM-ETH), and

8 (SMHI) also show substantial geographically varying bias between summer and

winter, apart from showing a robust and warm bias (exceeding 3-4ºC) in some

central and eastern mainland regions. Another remarkable interpretation is that

mapping non-stationary biases per grid points allows to test models slopes credibility

(see Figure 4.4). Apparently, model 6 (ICTP) slope do not exhibit any systematic

temperature-dependent biases. However, summer mean temperature biases with

respect to the winter ones clearly exacerbate warming in certain central areas of Spain

(North-Subplateau).
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Figure 4.8: Summer (left), winter (center) and annual(right) temperature biases per grid
points covering the series 1989-2010 for Tmean. The cold period covers December
to April (DJFM) and the warm period June to September (JJAS).

The ensemble of RCMs tends to underestimate winter mean temperatures with respect

to observed temperatures throughout Spain, especially in northern and southern areas.

On the contrary, the exacerbation of warming mainly occurs during summers for cen-

tral and eastern regions (Models 2, 3, 5, 6, 8). Limestone and clay soils regions share

a hot bias in contrast with siliceous areas in the west and north of mainland Spain.

Furthermore, lack of evapotranspiration and soil moisture-temperature feedbacks

could provoke the overshooting of mean temperatures in inland regions (Jaeger and

Seneviratne, 2011, Miralles et al., 2014).

4.5 Mapped summer and winter minimum
temperature biases

In this section, monthly minimum temperature biases are plotted by each model

and each grid point over the Spanish mainland and the Balearic Islands. Concretely,

temperature biases are divided into three columns: summer biases (left), winter biases

(center) and annual biases (right) covering the period 1989-2010.

Overall, summer and winter seasons manifest differences among their temperature

bias values, as it is presented in Figure 4.9. In the case of annual temperature biases,

they tend to have a smoother behaviour. Models DMI (2), GERICS (3), CNRM (5),

ICTP (6) and CLM-ETH (7) display a significant warm summer bias exceeding 4ºC

in vast areas of central Spain. It seems that these simulations struggle capturing

important regional feedbacks and dealing with a complex terrain. Seneviratne et al.,
2006 emphasised the role of soil moisture-temperature feedbacks in influencing

summer climate variability in Central and Eastern Europe. In the case of Spain’s

summers, strong positive radiative anomalies and a large precipitation deficit often

contributes to rapid loss of soil moisture, therefore lack of evaporation to cool down

the land surface. However, northern coastal areas influenced by a temperate climate

(Cfb) are dominated by a colder bias with respect to Mediterranean climate areas

(Csa). The presence of soil moisture and lower influence of high-pressure systems
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could determine a moderated systematic bias. Also, the ensemble of RCMs for Tmin
show the highest heterogeneity among all temperatures. That being said, if the model

struggles capturing land-atmosphere feedbacks, then the resulting climate change

signal might not be plausible (Maraun and Widmann, 2018). Also, we stress the non-

stationary conditions between warm and cold seasons, were biases clearly increase

with temperatures. Accumulated heat and lack of soil moisture in the majority of the

region in the summer, might be the reason of this systematic temperature-dependent

biases.
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Figure 4.9: Summer(left), winter(center) and annual(right) temperature biases per grid
points covering the series 1989-2010 for Tmin. The cold period covers December
to April (DJFM) and the warm period June to September (JJAS).

On balance, an explicit non-linear behaviour appears comparing mean seasonal

temperature biases of all individual models. Also, the use of Tmean, Tmax, and Tmin
variables confirms that, in general, some models tend to overestimate or underestimate

the temperature variable. In particular, simulated minimum temperature shows an

inherent warm summer bias significantly intensified in central-northern plateaus and

mountainous regions. Furthermore, mapping gridded temperature dependence of

biases indicates limitations in interpreting regional present-day climate conditions,

especially minimum temperatures. Lastly, systematic spatial variations in certain

northern abrupt mountains and southern areas around the Strait of Gibraltar could

come from uncertainties in the Spain02 observational dataset.
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4.6 Temperature Models Biases Standard Deviation
Mean temperature Maximum temperature Minimum temperature

Regional Climate Models Summer Winter Annual Summer Winter Annual Summer Winter Annual
MOHC-HadREM3-GA7-05 0.68 0.59 0.64 0.87 0.62 0.80 0.82 0.63 0.72
DMI-HIRHAM5 0.76 0.62 0.74 0.91 0.66 0.78 0.76 0.77 0.86
KNMI-RACMOE22 0.77 0.61 0.77 0.98 0.67 0.77 0.77 0.69 0.92
CNRM-ALADIN63 0.92 0.52 1.06 1.10 0.65 1.08 0.81 0.66 0.99
GERICS-REMO2015 0.78 0.54 0.75 1.09 0.68 0.99 0.72 0.70 0.72
ICTP-RegCM4-6 0.65 0.77 0.66 0.75 0.92 0.99 0.69 0.78 0.84
CLMcom-ETH-COSMO-crCLIM 1.10 0.64 0.96 1.34 0.62 1.26 1.13 0.88 1.00
SMHI-RCA4 0.76 0.77 0.82 1.00 0.97 1.06 0.65 0.75 0.71
RMBI-UGent-ALARO-O 0.84 0.83 1.16 - - - - - -

Table 4.1: Seasonal and annual standard deviation for each model and its mean, maximum
and minimum variable for 1989-2010. Highlighted summers standard deviation
in bold

Temperature model biases for each season exhibit a particular behaviour, being

summer biases the most enhanced (figure 4.9). This warm pattern is primarily

present in all summer temperatures. However, the winter season tends to suffer from

a moderate bias temperature, which regional values indicate low bias, except for

the minimum temperatures (Figure 4.9). Table 4.1 shows the seasonal and annual

standard deviation for each temperature variable. A Standard Deviation (SD) has

been carried out to evaluate the distance between monthly data and their means

(Methods 3.5.2). The central idea behind SD is to test state-dependent biases between

cold and warm seasons. Tmean, Tmax and Tmin variables show higher SD model

values for the warm season than the cold season. The higher is the value, the more

distant the monthly means lie from their best fits (Figure 4.4). It can be proved

that warmer temperatures tend to significantly spread on their values with respect

to winter monthly means, which remains more congregated. Extreme temperature

values that mainly occur in the summer season may be the cause of such high SD

variability. However, the agreement on lower SD values may suggest that monthly

mean winter temperatures show less spatial climate variability due to Mediterranean

wet and mild winter conditions (Background 2.1). Christensen et al., 2008; Boberg

and Christensen, 2012; have demonstrated that biases may not be time-invariant

(Maraun, 2012). Significant differences in summer and winter SD temperature

biases corroborate systematic behaviours for most RCMs, especially for the maximum

temperature. Furthermore, time-variant or state-dependent biases may be linked to

processes at all spatial scales and credibility issues (Maraun and Widmann, 2018).
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4.7 Climate change signal by regions

It is likely that climate models overshoot regional amplification of global warming

due to systematic biases in warm and dry climates (Boberg and Christensen, 2012).

This section covers our second approach (Results 4.2) which consist on testing if

the temperature slopes per grid points are representative or not. That being said,

a goodness of fit was carried out (Methods 3.4) and confirmed that all models’

temperature slopes values tend to show a “goodness” of fit around 0.9 to 1, that is,

statistically significant.

Figure 4.10 represents slopes for Tmax (left), Tmean (center) and Tmin (right)

over each Spanish grid point. The "cool-warm" colour scale indicates the value of the

slope which is defined as Tm(t)
To(t) where Tm(t) is the simulated temperature and To(t)

the observed temperature.
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Figure 4.10: Slopes per grid points of the 9 EURO-CORDEX RCMs showing exacerbation of
warming by region. First column (left) represents slopes of maximum temper-
ature; second (center) slopes of mean temperature; and third (right) slopes
of minimum temperature. Hatching indicates areas with r2-score < 0.8. The
temperature slope is here defined as the slope Tmodel/Tobs covering the period
1989-2010 for Spain.

The following equations explain the three different slopes (A,B,C) that come out

from the slopes maps:

(A) if
Tm(t)
To(t)

> 1 (4.1)

(B) if
Tm(t)
To(t)

= 1 (4.2)

(C) if
Tm(t)
To(t)

< 1 (4.3)

Equation 4.1 indicates the exacerbation of warming. If this is the prominent case,

the simulated temperature is set to increase more than the observed temperature,

thus exaggerating warming. Equation 4.2 shows agreement between models and

observations slopes. Simulated temperatures show no signals of cooling or warming.

Equation 4.3 reflects a cooling of temperatures. For some areas and, notably affecting

minimum temperatures, simulated temperature increases less than the observed

temperature. Averaged grid-cells slopes for the study area can be found in table 4.3

for each variable and model.

It is likely that RCMs that overshoot regional warming amplification will ex-

acerbate warming patterns for future projections, as demonstrated in Boberg and

Christensen, 2012. From a climate change signal approach, state-of-the-art RCMs will

likely project warm and very hot temperatures during the day and night for Spain,

especially in mainland areas. Concretely, the majority of the simulations show an

exacerbation of warming up to 0.6 degrees for central and southern areas such as

the North Subplateau and Guadalquivir Depression (Appendix Figure 8.4). Boberg

and Christensen, 2012 found on average a substantial exacerbated warming of 0.8

to 1 degree for the Mediterranean region. It is therefore worth noting the relevance

of representing the values of the slope per grid points over Spain. Grid-cell slopes

markedly give regional warming and cooling patterns over mainland Spain and the

Balearic Islands. Complex topography and noise coming from different unknown

sources are well identified using the applied arbitrary threshold (see Methods 3.4),

especially for monthly mean minimum temperatures.
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Uncertainties that lie on the observational dataset are mostly found in the mini-

mum temperature observed climate for areas of Andalusia in the south, and central

and northern uplands areas, influenced by a complex topography. To mend the uncer-

tainties related to complex terrain, Herrera et al., 2016 has suggested employing an

interpolation approach AA-3D for temperature.

Models
Slope (ºC) tas
TRCM=Tobs

Slope (ºC) tasmax
TRCM=Tobs

Slope (ºC) tasmin
TRCM=Tobs

Slope of tas_bias
value

Slope of
tasmax_bias

Slope of
tasmin_bias

MOHC-HadREM3 0.917 0.953 0.838 0.022 0.086 -0.104
DMI-HIRHAM5 0.946 0.901 0.988 0.047 0.013 0.073
KNMI-RACMO22E 0.962 0.894 1.013 0.062 -0.001 0.099
CNRM-ALADIN63 1.012 0.963 1.026 0.124 0.083 0.109
GERICS-REMO2015 0.959 0.945 0.949 0.056 0.065 0.011
ICTP-RegCM4-6 0.906 0.860 0.940 -0.002 -0.035 0.014
CLMcom-ETH-COSMO-crCLIM 0.984 0.992 0.965 0.072 0.113 0.012
SMHI-RCA4 0.965 0.943 0.931 0.056 0.060 -0.026
RMBI-UGent-ALARO-O 1.025 - 0.147

Table 4.2: Values of the slope from the simulated and observed spatial average temperatures
(first 3 columns) and the annual biases slopes of each model with respect to the
observations for mean, maximum and minimum temperatures

Regional Climate Models Mean temperature Maximum temperature Minimum temperature
MOHC-HadREM3-GA7-05 1.01 1.07 0.85
DMI-HIRHAM5 1.06 1.00 1.07
KNMI-RACMOE22 1.06 0.98 1.08
CNRM-ALADIN63 1.13 1.06 1.09
GERICS-REMO2015 1.05 1.04 0.99
ICTP-RegCM4-6 1.00 0.95 1.00
CLMcom-ETH-COSMO-crCLIM 1.06 1.09 0.98
SMHI-RCA4 1.05 1.04 0.94
RMBI-UGent-ALARO-O 1.15 - -

Table 4.3: Slope mean values per grid points computing the ensemble of RCMs considered.

Slopes mean values of approaches (4.1) and (4.2) are displayed in tables 4.2

and 4.3, respectively. The first three columns of table 4.2 represent the value of

the slope (best fits) of each model for simulated and observed spatial-area averaged

temperatures with respect to the diagonal Tm = To. Table 4.3 also displays the mean

slope values but per grid points over Spain.

(1) Overall, spatial averaged temperatures experience difficulties in identifying

systematic temperature-dependent biases increasing with temperatures. While mean

slope values per grid points manifest a clear non-stationary behaviour increasing with

temperature, spatial averaged slope values underestimate all RCMs’ exacerbation of

warming in summers. Following the previous section’s equations (climate change

signal), if the mean value of the slope is below 1, then the model will likely undervalue

regional amplification of global warming. This is the prominent scenario for all spatial

averaged slope mean values except for some models that will likely overshoot present-

day and projected climate conditions.
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(2) However, widespread warming with regional hot spots throughout Spain has

been found for most RCMs due to slope values per grid points. Mapped temperatures

slopes per grid points show the best performance of current regional warming over

Spain. Furthermore, most non-stationary behaviours are well represented by the slope

value per grid point since it includes all temperatures over Spain rather than a spatial

averaged value. The use of approach 4.2 has provided temperature information at the

actual grid point level (∼12.5km).
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4.8 Quantile mapping

This study applies a quantile mapping approach since both observations, and

state-of-the-art RCMs show similar resolution (∼12.5km grid-cells size). To reduce

regional climate models’ systematic biases, several techniques and methods are built

to compensate for this inconsistency (Mehrotra et al., 2018; Teutschbein and Seibert,

2012). To assess the performance of each temperature variable, a simple empirical

quantile mapping has been applied. Namely, a non-parametric estimator called em-

pirical cumulative distribution function (CDF). Figures 4.11, 4.12, and 4.13 show

monthly mean temperatures sorted from smallest to largest in value. This is done by

assigning a probability of 1/n to each monthly data and calculating the sum of the

assigned probabilities up to and including all monthly mean data. Observed mean

temperatures (black) manifest "how fast" the CDF increases to 1 (y-axis, likelihood of

occurrence). For monthly mean and minimum temperatures, the likelihood of occur-

rence of simulated warm temperatures is considerably higher than for the observed

warm temperatures, being Tmin the most affected (Figure 4.13). However, CDF’s for

simulated maximum temperature show better agreement with the observed likelihood

of occurrence. In short, these three plots compare simulated and observed CDF’s

representing the gap or bias that lies in between at each monthly mean temperature

value. Boberg and Christensen, 2012 also used a bias correction method. Concretely,

model biases deficiencies were reduced up to 1 degree.

Figure 4.11: Empirical quantile mapping for mean temperature. Simulated cumulative distri-
bution function (RCMs) is mapped onto the observed cumulative distribution
function (observations). X-axis shows the temperature and y-axis the likelihood
of occurrence.
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Figure 4.12: Empirical quantile mapping for maximum temperature. Simulated cumulative
distribution function (RCMs) is mapped onto the observed cumulative distribu-
tion function (observations).

Figure 4.13: Empirical quantile mapping for minimum temperature. Simulated cumulative
distribution function (RCMs) is mapped onto the observed cumulative distribu-
tion function (observations).
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5Discussion and Conclusions

This dissertation has investigated the temperature biases between state-of-the-art

regional climate models (RCMs) and the new gridded observational dataset called

Spain02 for the Iberian Peninsula and the Balearic Islands. Furthermore, this study

has examined how present-day climate simulations show a significant systematic

behaviour affecting their ability to represent Spain’s climate, especially summers.

5.1 Systematic temperature-dependent biases
present in RCMs

Regional climate models share systematic temperature-dependent biases for

present-day climate conditions over Spain. State-dependent biases are higher, in-

creasing with temperature. There is a robust, increasing temperature trend under

dry and hot weather and climate conditions (Christensen et al., 2008; Boberg and

Christensen, 2012; Christensen and Boberg, 2012). Previous research demonstrated

non-linear behaviours in high-resolution climate models using monthly mean temper-

atures. In addition, this dissertation has also detected non-linear biases adding two

more temperature variables: minimum and maximum temperatures. We have used a

high-resolution ensemble of RCMs for the Iberian Peninsula by taking a different and

straightforward approach, accounting for mean, maximum and minimum temperature

biases.

Taking an ensemble approach (Boberg and Christensen, 2012) has provided a

more robust interpretation, enhancing the understanding of models’ general aspects.

As stated by Giorgi et al., 2009, in order to better sample and explore all relevant

uncertainty dimensions -in this case, non-linear patterns-, we aim to analyse the larger

ensemble of reanalysis models available. Employing up to 9 different EURO-CORDEX

RCMs simulations has provided a vast range of non-stationary behaviours for the

entire series (1989-2010). Even though the time series has been shortened from 29

to 22 years due to models availability, non-stationary behaviours show no changes

with less monthly data points. However, we presume that it could have a warmer
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temperature bias trend if hot and dry summer monthly means from 2010-2015 were

also covered. Furthermore, the use of both high-resolution observational datasets and

model simulations (∼12.5km grid-cells size) establishes an accurate representation of

the origins and consequences of potential biases.

Ultimately, in the same line as Christensen et al., 2008 and Boberg and Christensen

2012, this dissertation has uncovered that state-of-the-art RCMs seem to have limita-

tions to simulate accurately present-day climate conditions over the Iberian Peninsula

and the Balearic Islands. Non-linear patterns indicate to which degree climate models

simulations disagree with the observed climate and, more importantly, point out

potential climate processes that might not have received the required attention to

understand the non-linear behaviours’ origins (Stouffer et al., 2017).

5.2 Overestimation of summer temperatures

The majority of the EURO-CORDEX multi-model ensemble overshoot summer

temperatures, minimum temperatures being the most affected. As demonstrated

by Christensen et al., 2008; Boberg and Christensen, 2012, climate models tend to

overestimate regional amplification of global warming in dry and warm areas. In

the same line, this dissertation has also confirmed an overestimation of present-day

climate conditions in Spain, characterised by warm and dry summers. Spain’s summer

simulated temperatures manifest an apparent overestimation when compared to wet

and cold winters. Collectively, regional climate models simulate warmer diurnal and

night-time temperatures, enhancing significant warming in Spain’s central and eastern

regions. As postulated by Gonzalez-Hidalgo et al., 2016, regional amplification of

warming over Spain appears to be more dependent on night-time temperatures than

day-time.

This dissertation has corroborated the significant spread of warm biases over

main river basins and plateaus for summer minimum temperatures. From a climate

change signal approach, we presume that RCMs will likely project warm and scorching

summer temperatures, especially night-time conditions in Spain’s central areas. The

results section displays two different approaches for the purpose of analysing and

evaluating model temperature biases. It can be concluded that grid point temperatures

represent better the overshooting and underestimation of simulated climate since

extreme temperatures grid-cells are better assimilated. As well, a more robust climate

change signal can be interpreted from grid-cell slopes over the study area, where

most areas are likely to suffer from projected warmer temperatures. Concretely,

some mainland central and southern regions could experience up to 0.6 degrees

of exacerbated warming, affecting future climate projections accuracy. Boberg and
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Christensen, 2012 findings detected up to 1 degree of intensifying warming for the

Mediterranean region, especially main river basins and North Africa.

Therefore, it is worth asking whether the next generation of climate models will

collectively continue overestimating present-day climate conditions over Mediter-

ranean areas. Conversely, mechanisms underlying climate variability and other mis-

representations will be significantly accounted for by climate models.

5.3 Physical processes conditioning climate models
quality

Non-linear temperature biases are likely linked to soil moisture-temperature

feedbacks. Namely, systematic summer temperature-dependent biases may appear

due to regional climate processes that current climate models do not account for

properly.

Indeed, RCMs temperature biases and temperature biases slopes seem to be highly

affected by soil desiccation and heat accumulation in many central areas marked by

dry and hot summer conditions (Miralles et al., 2014). In general, models exacerbate

current present-day warming in areas dominated by a Mediterranean-like climate with

an enhanced dry and extreme summer season. Jaeger and Seneviratne, 2011, Miralles

et al., 2014, Fischer et al., 2007 demonstrated that land-atmospheric interactions

have a strong impact on the European summer climate, especially during extreme

weather events. Accordingly, the results have found out that state-of-the-art RCMs will

likely project warm and scorching temperatures during the day and night for Spain,

especially in mainland areas such as North Subplateau and Guadalquivir and Tajo

Depression.

There is a robust, increasing uncertainty concerning small-scale physical processes

(IPCC, 2014), limiting the interpretation of climate temperature variables in some dry

and hot areas of Spain highly affected by soil moisture-temperature feedbacks (Miralles

et al., 2014, Miao et al., 2003, Hirschi et al., 2011). Thus, we highly encourage

exploring in great detail potential links behind warm temperature biases over the

Iberian Peninsula and soil moisture-temperature feedbacks that mainly take place

in the summer season. This suggests the need to revisit the climate models inputs

regarding soil moisture-temperature feedbacks during hot and dry climate conditions.

Concretely, complex and irregular regions that could be influenced by multiple physical

processes.
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5.4 The significance of analysing grid point by grid
point

Non-linear behaviours or time-variant biases are significantly better represented

by model temperature biases per grid points than ranked spatial area-averaged tem-

peratures for Spain. Unlike other European regions, the Iberian Peninsula exhibits a

large spatial climate variability that interacts with a very complex terrain leading to

extreme temperature values, among other weather phenomena. Therefore, simulated

Mediterranean climate displayed by grid points could be comprehensibly used for

further bias adjustments or corrections.

Mapped model temperature biases over Spain’s grid points show an enhanced

geographical detail for the country. Seasonal model biases for each model and tem-

perature variables have confirmed a non-linear behaviour between seasons, which is

intensified in certain dry and hot Spain’s areas by 4 to 5 degrees. Therefore, regional

patterns can be seen throughout the Iberian Peninsula, where topography factors and

physical processes become widely evident all over the country. Analysing grid point by

grid point, the effect of the temperature-dependent bias could follow an exacerbation

of the projected warming, in line with earlier studies (Boberg and Christensen, 2012).

Here we confirm that a remarkably warming signal comes out from mapped grid

points slopes. If the climate model overestimates current present-day conditions, the

resulting climate change signal would likely be overshot (Christensen et al., 2008;

Boberg and Christensen, 2012). Collectively, RCMs tend to overshoot warming in

areas where summers are mainly dry and hot, which slope is higher than 1.2 degrees.

Underestimated climate change signal significantly appears for some models when

slopes per grid points are analysed. Even though a few models tend to underestimate

simulated and projected climate, it could not be interpreted using the ranking tem-

peratures approach. Also, mapping non-stationary biases per grid points has allowed

testing whether models temperature biases slopes are representative or not. While

some models’ slopes seem not to suffer from non-linear patterns, gridded temperature

biases results have confirmed the systematic exacerbation of warming in some central

regions of the Iberian Peninsula.

Another significant pattern is that warming signals are less significant in northern

areas of Spain compared to central and southern regions. One explanation could

be that non-Mediterranean like climates might not suffer to a high degree models

non-linear biases since soil moisture is available due to coastal and moderate climate

conditions. However, the exacerbation of warming is not always well represented on

the grid points. One reason could be the lack of consistency of some observations

influenced by Spain’s complex terrain, among other factors. Mountain ranges and the
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Strait of Gibraltar are highly affected by the complex topography, resulting in a limited

representation of temperatures. Moreover, isolated central and northern upland areas

seem also to suffer from the observations’ uncertainties.

Limitations are found using spatial area-averaged temperatures for interpreting

and analysing systematic temperature-dependent biases in this complex and extreme

Mediterranean region. Thus, extreme temperature values tend to be smoothed when

a spatial area-averaged of the simulated data is carried out. All monthly mean

temperatures tend to be overestimated when ranking the spatial area-averaged data

from the lowest to highest mean temperature values. However, temperature slopes

per grid points and its means clearly manifest an exacerbation of warming, leading

to a warmer projected climate. These values are considerably more representative

than those coming out from Spain’s spatial average temperatures, which tend to be

smoothed. This fact is fundamental since positive or negative monthly anomalies can

be account for when representing the temperatures slopes per grid points and way less

by making the spatial averaged of Spain’s temperatures. Furthermore, this method

demonstrates higher credibility since extreme maximum, and minimum temperatures

are significantly incorporated.

5.5 Scalability considerations

This study could be narrowed down to daily maximum, minimum and mean

temperature, contributing to a more detailed analysis of local-scale psychical processes.

The Mediterranean region is currently and expected to suffer most from climate

change consequences, projecting new extremes above present-day conditions (Stocker

et al., 2014). There is a great need to scale down the project to daily data and test

RCMs behaviour against local atmospheric-land feedbacks, mainly during summer

conditions. For the correct representation of physical processes, RCMs will need to be

constrained by high-resolution observational data to reproduce present-day climate

conditions accurately. This approach could also lead to investigate in greater detail

certain weather phenomena taking place over vast Mediterranean alpine regions.

Furthermore, extreme weather events from mega-heatwaves to prolonged droughts

are likely to increase over the next decades (Stocker et al., 2014). As discussed by

Miralles et al., 2014, persistent synoptic patterns can lead to clear skies and advection

of dry continental tropical air, resulting in strong surface sensible heat flux.
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5.6 The need for bias adjustment

Boberg and Christensen, 2012 demonstrated that regional simulated warming

can be lowered when correcting from systematic temperature-dependent biases. Sug-

gested by Boberg and Christensen, 2012 and Gobiet et al., 2015, a quantile mapping

technique could be utilized if the simulated climate change signal is unlikely to happen.

Therefore, a bias correction assuming time-variant biases (Maraun and Widmann,

2018). In this dissertation, we have carried out a quantile mapping bias-adjustment

technique that might be suitable to mend part of the systematic behaviours. However,

it would be highly appropriate to carry out this technique using different global climate

models instead, confronting cold, warm months as done by Boberg and Christensen,

2012.

5.7 The need to extrapolate the analysis to other
extreme-climate areas

The Iberian Peninsula and the Balearic Islands might not be the only Mediter-

ranean regions that suffer from models deficiencies. The potential for analysing

climate model’s systematic behaviours for Mediterranean-like climates areas show

promise. Boberg and Christensen, 2012 demonstrated a clear geographical pattern

for most Mediterranean countries of enhanced warming during summer months,

especially in North Africa and main river basins of European Mediterranean countries.

Moberg and Jones, 2004 also concluded that warm biases during warmer months for

southeastern Europe were often associated with dry soils. Also, non-linear behaviours

have been detected in this dissertation, particularly in inland areas that are likely

to be influenced by typical physical processes of dry and hot climates. Therefore,

this study could guide complex climate and terrain areas to investigate soil moisture

temperature feedbacks and appeals for the analysis of other weather patterns (e.g.

thermal lows or temperature inversions) that might be behind some models’ deficien-

cies. Furthermore, new extremes and enhanced dry and hot conditions in the last

years over non-Mediterranean-like climates (e.g. Central or Eastern Europe) could

potentially alter models ability to capture new weather and climate conditions.
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6Outlook

Non-linear climate simulated time-series produces unreliable and overshoot present-

day simulations during the summer season in Mediterranean regions. Accordingly,

there are reasons to believe that future climate conditions could also be exacerbated

in most Spain’s regions.

Over the Iberian Peninsula and the Balearic Islands, no study has addressed

before the analysis of potential non-stationary biases between state-of-the-art RCMs

simulations and high-resolution observational datasets for all monthly mean daily

temperature variables. In particular, systematic model biases require increasing

attention to better understand their origins and consequences. Land-atmosphere

feedbacks induced by Mediterranean-like weather and climate patterns may be the

key to mend most of RCMs deficiencies. Because hot and dry conditions are severely

intensified by global warming, non-common and extreme physical processes could also

affect other temperate climate areas, sharing similar non-linear behaviours currently

present in the Iberian Peninsula.

Despite the complexity underlying the climate system and its forcings -altered by

the amplification of global warming- current high-resolution climate models proffer

an adequate representation of the real world growing the range of regional climate

investigations and improving the knowledge of the mechanisms underlying internal

climate variability. However, the climate modelling community needs to continue

addressing some scientific gaps concerning the origins of non-linear temperature

biases.
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Figure 8.1: Annual mean temperature using individual models from EURO-CORDEX for
maximum(left), minimum(center), and mean(right) temperatures covering the
period 1989-2010 for the Iberian Peninsula and the Balearic Islands.
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Figure 9.1 displays observations and all RCMs annual means of monthly maximum,

minimum and mean temperature from the left to the right. The observed climate

is represented in the first line which is used as a baseline to compared with EURO-

CORDEX simulated climate.

Figure 8.2: Range of temperatures against mean temperatures. Dots represent monthly mean
temperatures and lines their best fits. Observations (black) and EURO-CORDEX
RCMs in different colours.

Model ID Regional Climate Model timeseries tas tasmin tasmax
RCM1 MOHC-HadREM3 1982-2012 X X X
RCM2 DMI-HIRHAM5 1989-2011 X X X
RCM3 KNMI-RACMOE22 1979-2012 X X X
RCM4 CNRM-ALADIN63 1979-2018 X X X
RCM5 GERICS-REMO2015 1979-2012 X X X
RCM6 ICTP-RegCM4-6 1980-2016 X X X
RCM7 CLMcom-ETH-COSMO-crCLIM 1979-2010 X X X
RCM8 SMHI-RCA4 1980-2010 X X X
RCM9 RMBI-UGent-ALARO-O 1980-2010 X - -
Total Baseline 1989-2010 9 8 8

Table 8.1: ERA-Interim-Driven EURO-CORDEX (EUR-11) Regional Climate Models consid-
ered. RCM RMBI-UGent-ALARO-O only includes monthly mean daily mean tem-
peratures.
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Figure 9.12 shows observed and simulated ranked range temperatures increasing

in the warmer months. Spain’s climate and weather variability between winter and

summer seasons is greatly represented by the spread of monthly mean simulated and

observed temperatures. On the one hand, low-pressure and atmospheric blocking

systems regulate winter temperatures. On the other hand, persistent high-pressure

atmospheric conditions motivate subsidence and, thus the presence of clear skies.

Figure 8.3: Temperature change of South Europe/Mediterranean region and Sahara for 2016-
2035; 2046-2065 and 2081-2100 under scenario RCP8.5 (Reproduced from the
IPCC, 2014)
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Figure 8.4: The physical geography of Spain with prominent upland areas all over the country.
Main geographical features are displayed from river basins to mountainous areas
and its highest peaks (Reproduced from ANAYA)
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Figure 8.5: Spanish physical features represented in Spanish and with a cross-section from
northern to southern latitudes. Reproduced from ANAYA. The cross-section and
the below first topographic profile goes together.

Figure 8.6: Two Topographic profiles from north to south crossing the complex and vast
Iberian Peninsula. Reproduced from IGN (Instituto Geográfico Nacional).
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