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Abstract

The study of neutrino oscillations using low energy events from the
IceCube detector is dependant on reliable event selection and accurate
event reconstruction. The current methods are slow and computation-
ally expensive and are also hard to update and improve upon.

Machine learning methods are well suited for many of these tasks,
as they are fast and computationally inexpensive but require large
amounts of training data, of which there is plenty in the IceCube exper-
iment. While most machine learning methods struggle with the irreg-
ular IceCube data, graph neural networks (GNNs) – machine learning
algorithms based on mathematical graph theory – hold especially great
potential, as they take advantage of the sparse and non-Euclidean ge-
ometry of IceCube data and can tackle the great variation in signal
input size.

In this thesis, methods based on GNNs are applied for a series of
classification and reconstruction tasks on low energy IceCube events.

Reconstruction of the event interaction time is tested using differ-
ent methods of transformations of the target variable, finding that a
non-linear QuantileTransformer is necessary to obtain satisfying per-
formance on the irregularly distributed variable. Separation of events
by detector noise events and particle events and separation by track-
and cascade-like events is also implemented. The classifiers are com-
pared with the current event cleaning pipeline, finding that the GNN
approach produces samples of higher purity with higher efficiency.

Pulse level cleaning of the events from the noisier IceCube Upgrade
detector is demonstrated, showing that the sophisticated GNN outper-
forms competing methods and produces an event sample with satisfy-
ing purity and efficiency. The cleaned pulses are used for reconstruc-
tion of energy and direction, demonstrating that the pulse cleaning
counteracts the increased noise rates in all regimes except very low
energy events and some cascade-like events.

All these improvements should enable IceCube to take the lead in
precision on the measurements of θ23 and ∆m23 in the next half decade.
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Introduction

The goal of this thesis is to explore the possibilities of using Graph
Neural Networks (GNNs) for reconstruction of low energy neutrino
events in the IceCube detector. When neutrinos interact in the ice,
their charged particle products produce Cherenkov radiation which is
observed by the 5,160 Digital Optical Models (DOMs). Due to the ir-
regular geometry of the IceCube detector array and the sparse nature
of low-energy events, GNNs are believed to be suited for event analy-
sis, and previous works have already obtained results that are superior
to current methods for a variety of tasks. Additionally, with the cur-
rent methods, reconstructing all events recorded by IceCube takes 3

months using 1000 CPUs. With GNNs, this can be done in 8 hours
on a single CPU. Better and faster event reconstruction will allow for
better understanding of neutrinos and their behavior beyond the Stan-
dard Model of Particle Physics, such as the oscillation parameters.

The first chapter will give a brief overview of the Standard Model,
the history of neutrinos and the concept of neutrino oscillations, and
an introduction to other phenomena important to IceCube.

The second chapter describes the IceCube experiment, the current
and future detector array and the current reconstruction methods.

The third chapter introduces machine learning and GNNs, and also
introduces the IceCube GNN group, the GraphNeT group.

The fourth chapter is the first chapter of results and analysis. Here,
the pitfalls and possibilities of regressing the interaction time variable
using feature scaling is examined.

The fifth chapter shows how GNNs can be used to replace parts or
all of the OscNext event cleaning process.

The sixth chapter concerns the IceCube Upgrade detectors, and
training a GNN to separate noise from physics on a pulse level to
mitigate the increased noise associated with it.

In the seventh chapter, the cleaned Upgrade pulses from chapter six
are used to perform reconstruction, in order to properly quantify the
effect of the noise cleaning.

In the end, all of the above is discussed along with future ideas,
dreams and challenges.
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1 Challenges in Particle Physics

Contents

1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . 1

1.2 Neutrinos and Oscillations . . . . . . . . . . . . . . . . . . 3

1.2.1 The Mystery Particle . . . . . . . . . . . . . . . . . 3

1.2.2 Oscillating Neutrinos . . . . . . . . . . . . . . . . 4

1.2.3 Neutrino Mass and Sterile Neutrinos . . . . . . . 6

1.3 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Charged/Neutral Current Decays . . . . . . . . . . . . . 9

1.6 Energy Loss and Cherenkov Radiation . . . . . . . . . . 10

This thesis concerns the neutrinos, their fascinating behavior and the
study of them through the IceCube detector. To preface these investi-
gations, this sections provides and overview of the current landscape
of particle physics and some of the answered questions that occupy
particle physicist today, as well as an introduction to the phenomena
that makes it possible to study of neutrinos through the IceCube de-
tector array.

1.1 The Standard Model

Since the ancient Greeks and most likely earlier, scientists have sought
to understand the fundamental building blocks of the world we live in.
Through modern particle physics, a coherent description of matter and
the interactions that govern its behavior is presented in the Standard
Model of Particle Physics. In the Standard Model, the matter and
forces of our universe are reduced to combinations of 17 particles with
corresponding antiparticles and four fundamental forces. The particles
are arranged in two main groups, the fermions which have a spin of
1
2 and represent the building blocks of matter and the bosons which
have integer spin numbers and mediate the interactions through the
four fundamental forces.
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The fermions are further categorised in two subgroups, known as
the quarks which have an electric charge of either 2

3 or − 1
3

1 and bind1 With the corresponding antiquarks
having charges of − 2

3 and 1
3 , respec-

tively.
together through the strong force to form hadrons like protons and
neutrons (which are baryons) and pions and kaons (which are mesons)
and the leptons which again consist of the 3 "electon-like" particles
with an electric charge of −1, the electron, the muon and the tauon,
and the neutrally charged neutrinos of which there exist one for each
of the electron-like particles.

The three of the four fundamental forces are explained by the Stan-
dard model: The electromagnetic force mediated by the photon, the
weak force mediated by the Z and W± bosons, and strong force me-
diated by the gluon. The final boson, the Higgs boson H0 which
represent the field that gives mass to all the particles2 as part of the2 Except the neutrinos, which will be dis-

cussed in Section 1.2. electroweak symmetry breaking. The fourth fundamental force, grav-
ity is not included in the Standard Model3.3 It is not yet known, if a corresponding

particle (like a graviton) exists to me-
diate the gravitational force. If it was
found, it would mean the discovery of
quantum gravity.

All the matter fermions and force carrying bosons are shown in
Figure 1.1, with the quarks in green, the leptons in blue, the gauge
bosons in orange, and the Higgs in yellow. Thin outlines indicate
which fermions interact through which forces.

Figure 1.1: The Standard Model of Parti-
cle Physics.
Image made in Adobe Illustrator with inspi-
ration from [1]. mass
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The particles of the lepton family only interact through the the elec-
tromagnetic force and the weak force, while the quacks also interact
through the strong force[2]. This relationship is visualised in Figure
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1.2 with blue lines connecting particles that interact with each other.
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Figure 1.2: Schematic of the interactions
of the particles of the Standard Model.
Image made in Adobe Illustrator with inspi-
ration from [3].

1.2 Neutrinos and Oscillations

Perhaps the strangest and most elusive group of the 17 fundamental
particles are the neutrinos. Initially thought to be massless, these un-
charged leptons interact exclusively through gravitation and the weak
force, the first of which is very weak and the second of very short
range. The weakness of their interactions makes them virtually unde-
tectable despite them being among the most abundant particles in the
universe. About 100 trillion solar neutrinos pass through our bodies
every second.

Many neutrinos originate from nuclear fusion processes in the Sun,
while others are the product of radioactive decays, and others still are
created constantly in cosmic ray interactions in our atmosphere 4. On

4 See Section 1.3.Earth, high intensity neutrino beams are created and studied using
particle accelerators. While the neutrinos’ unwillingness to interact
makes them hard to study, it also makes them the excellent cosmic
messengers. As the trajectories of neutrinos are not disturbed by as-
trophysical magnetic fields and dust, reconstructing their paths can
allow us to trace their source and probe the farthest reaches of the
universe[4].

1.2.1 The Mystery Particle

The neutrinos were initially theorised as a solution to experiments in
the early nighteenhundreds that suggested that the energy spectra of
electrons and positrons produced in β+ and β− decays5 5 While Eq. 1.1 looks like proton decay,

but can only happen inside nuclei. A
free proton will never decay this way.p+ −→ n0 + e+ (1.1)

n0 −→ p+ + e− (1.2)

were continuous rather than discrete as would be expected with the
electron inheriting the bulk of the energy difference as kinetic en-
ergy[5].

In a lecture in Zürich in 1957, German physicist Wolfgang Ernst
Pauli suggested that the beta decays might not be two-body problems
at all, but that a third unseen particle was involved and responsible for
the distribution of electron energy. Conservation of charge and angular
momentum restricted this particle to neutral charge and spin 1

2 . In
addition, this mystery particle had to have no mass and to interact
only through the weak force[6].

This description fits that of the neutrinos in Section 1.16, and indeed 6 Except for not having any mass. This
controversy is a central part modern re-
search on neutrinos and the work done
by IceCube, and will be addressed in
Section 1.2.2.

the particle responsible for the continuous energy problem turned out
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to be what is today known as the neutrino. Its existence was con-
firmed for the first time in 1956 by Cowan and Reines, by studying
the hypothesised mechanism of the inverse beta decay in which an
electron antineutrino collides with a proton and form a positron and a
neutron

ν̄e + p+ −→ e+ + n (1.3)

Cowan and Reines used photomultiplier tubes (PMTs7) to detect7 These will be important later.

gamma rays from the interacting products of the inverse beta decay to
confirm that the decay had occurred and consequently that the electron
antineutrino had to have existed[7, 8].

1.2.2 Oscillating Neutrinos

In addition to the electron neutrino, the existence of the muon neutrino
was confirmed in 1962 by Lederman, Schwartz, and Steinberger. The
tau flavour was not theorised until 1975 when its charged counterpart,
the tau lepton, was discovered. The first hints of the existence of a third
neutrino flavour came from the now famous Homestake Experiment.
Officially named Brookhaven Solar Neutrino Experiment, the goal of the
experiment was to measure the flux of of neutrinos emitting from fu-
sion processes in the Sun, and indeed it was the first to successfully
do so. It was in continuous operation from 1970 until 1994 and was
headed by astrophysicists John N. Bahcall who performed the theo-
retical calculations prior to the experiment, and Raymond Davis, Jr.
who designed the experiment. When comparing the predicted rates
of neutrino detection to the experimental observations, only about a
third of the expected amount of neutrinos were detected. The deficit
was eventually established to be caused by the phenomenon of neu-
trino oscillations, which were first suggested by Bruno Pontecorvo in
1957[9, 10, 11].

Neutrino oscillations are, according to current understanding, a
consequence of the fact that the eigenstates of neutrino propagation
differ from the eigenstates of the weak neutrino interactions8 which8 Elaborated in Section 1.5.

are the associated with the flavour of the neutrino. We will represent
the flavour of a neutrino α as a superposition of mass eigenstates k:

|να⟩ = ∑
k∈1,2,3

U∗
αk |νk⟩ (1.4)

where Uαk are elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 , (1.5)
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a unitary9 matrix that specifies the mixing strength of each flavour 9 Under the assumptions of the Standard
Model. Unitarity is defined by U†U = I.and mass state combination. An n × n unitary matrix will have n2 free

parameters, which in the case of the PMNS matrix10 becomes 3 mixing 10 This is under the assumption that the
neutrino is a Dirac particle. Treating it
as a Majorana particle, where their mass
term is not invariant under rephasings
of the neutrino field, 2 additional CP
phases are needed.

angles and 6 complex phases, 5 of which can be absorbed as phases
of the lepton fields resulting in 4 free parameters. The most common
parameterisation of the PMNS matrix is the three mixing angles θ12, θ13

and θ23 and the complex phase δCP which should be zero if neutrino
oscillations are to obey charge-parity symmetry11. 11 This is theorised to not be the case. CP

violating neutrinos could help explain
the asymmetric distribution of matter
and antimatter in the universe[12].

Using the shorthand cij = cos
(
θij
)

and sij = sin
(
θij
)
, the resulting

matrix is

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

1 0 0
0 c23 s23

0 −s23 c23


 c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 (1.6)

The matrix has solutions on the form

|ψ(t)⟩ = e−iEt |ψ(0)⟩ (1.7)

with ψ being the quantum state and E the energy of the neutrino.
Adjusting Eq. 1.4 accordingly, the time evolution of neutrino of flavor
α can be written as

|να(t)⟩ = ∑
k∈1,2,3

U∗
αk |νk(t)⟩ (1.8)

To obtain the probabilities of oscillation, the mass eigenstates in Eq.
1.8 must be expanded in the weak eigenbasis, by inverting the PMNS
matrix using the unitary condition

|νk⟩ = ∑
β∈e,ν,τ

Uβk
∣∣νβ

〉
(1.9)

The probability of a neutrino oscillating from flavour α to flavour β

at time t, can be found by inserting Eq. 1.7 and Eq. 1.9 in Eq. 1.8

P(να −→ νβ) =
∣∣〈νβ

∣∣να

〉∣∣2
=

∣∣∣∣∣〈νβ

∣∣ ( ∑
k∈1,2,3

U∗
αke−iEkt ∑

λ∈e,ν,τ
Uλk

)
|νλ⟩

∣∣∣∣∣
2

=

∣∣∣∣∣ ∑
k∈1,2,3

U∗
αkUβke−iEkt

∣∣∣∣∣
2

= ∑
k,l∈1,2,3

U∗
αkUβkUαlU∗

βle
−i(Ek−El)t (1.10)

Instead of treating the neutrinos as a wave packet12, we assume that 12 Which has been done in [13] and is for-
tunately phenomenologically equivalent
to the result obtained here.
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that the neutrino states propagate as plane waves with equal momenta,
pk = pl = p. Using E2 = p2 + m2, we rewrite the energy difference

Ek − Ej = p

√1 +
m2

k
p2 −

√
1 +

m2
l

p2


≈

m2
k − m2

l
2p

(1.11)

where the square roots have been Taylor expanded keeping only the
first terms. Converting to units of the speed of light (and approximat-
ing that the neutrinos propagate a this speed, covering a distance L in
time t), we get t = L and E ≈ p, and using ∆m2

kl = m2
k − m2

l we can
rewrite the phase terms of 1.10

e−i(Ek−El)t ≈ 1 − 2 sin2

(
∆m2

kl L
4E

)
+ i sin2

(
∆m2

lkL
2E

)
(1.12)

which leaves the full oscillation probability

P(να −→ νβ) = δαβ − 2 ∑
k,l∈1,2,3

Re
(

U∗
αkUβkUαlU∗

βl

)
sin2

(
∆m2

kl L
4E

)

+ ∑
k,l∈1,2,3

Im
(

U∗
αkUβkUαlU∗

βl

)
sin2

(
∆m2

lkL
2E

)
(1.13)

From Eq. 1.13 it can be concluded that the probability of oscilla-
tion depends on the energy and the distance traveled by the neutrino,
the square of the mass differences between the flavour states, and the
elements of PMNS matrix. An example of this relation is shown in
Figure 1.3, where the probability of oscillation from νµ to ντ for νµ

neutrinos created in Earths atmosphere and detected in the IceCube
detector is plotted as a function of their energy and their zenith an-
gle θzenith, which corresponds to the distance traveled from the atmo-
sphere, L = 2R cos(θzenith), where R is the radius of the Earth. This
relation is why accurate reconstruction of energy and angle are of great
importance for determining the elements of the PMNS matrix[14, 15,
16].

Figure 1.3: The probability of a νµ neu-
trino created in Earth’s atmosphere and
detected in the IceCube detector oscillat-
ing to a ντ before reaching the detector
as a function of its energy and zenith an-
gle, which is is a proxy for distance trav-
eled.
Image from [17]

1.2.3 Neutrino Mass and Sterile Neutrinos

Since the neutrino oscillations require the flavour states to be linear
combinations of the mass states, a direct consequence of the discovery
of neutrino interactions is the indications that neutrinos must have
mass. As mentioned in Section 1.1, in the Standard Model, neutrinos
are described as massless point particles. In the current framework, all
fermions except for the neutrinos have been found to exist in both left-
handed and right-handed states, while the left-handed neutrino states



challenges in particle physics 7

has been observed. This lack of right-handed neutrino states means
that the neutrinos cannot be massive. One of the simplest extensions
of the Standard Model that would explain this13 is to add the missing 13 And other well-established observa-

tional phenomena such as the matter-
antimatter asymmetry of our Uni-
verse[18].

right-handed neutrino (and left-handed antineutrino) singlets. These
neutrino states would mix with the other three massive states, but not
interact through the weak interactions, earning them the name sterile
neutrinos. An additional theory, the see-saw mechanism describes
how the currently known neutrinos acquire their mass by mixing with
a very heavy iteration of the sterile neutrinos called as heavy neutral
leptons (HNLs)[18, 19].

1.3 Cosmic Rays

Every second, the atmosphere of the Earth is bombarded by charged
particles from the cosmos. Their origins range from relatively nearby
locations like the Sun and our own galaxy to distant galaxies. The
energy spans a large range from MeVs to EeVs and its distribution is
shown in Figure 1.4. Upon contact with the Earth’s atmosphere, the
particles interact with the with the atomic nuclei in the atmosphere
(e.g. 16O, 14N, and 40Ar) producing a shower of particles, consisting
mostly of light and unstable mesons that decay further into secondary
products. The radiation from these cosmic rays are detectable on the
surface of the earth[20, 21].

Figure 1.4: The energy distribution of
cosmic rays.
Image from [22]

Being the lightest of the family, the pions are by far the most nu-
merous of the mesons produced in the showers. They appear in both
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their neutral (π0) and charged (π+ and π−) variants, which primarily
undergo the decay processes

π0 −→ γ + γ (98.82% of the time) (1.14)

π+ −→ µ+ + νµ (99.99% of the time) (1.15)

π− −→ µ− + ν̄µ (99.99% of the time) (1.16)

and thus are the principal contributor to the flux of neutrinos in the
energy range relevant to the study of neutrino oscillations. In addi-
tion, the muons produced in these decays will also14 contribute to the14 Given that they don’t make it all the

way to the detector without decaying,
which they often will as explained in
Section 1.4.

neutrino flux as they decay into electrons

µ− −→ e− + ν̄e + νµ (100% of the time) (1.17)

Figure 1.5: Schematic of a cosmic ray
pion decay.
Image from [23]

A schematic of the pion decay chain is shown in Figure 1.5.
At larger energies, other mesons like the kaon (K+ and K−) become

increasingly prevalent. These are also of interest to neutrino studies as
they decay as

K+ −→ µ+ + νµ (63% of the time) (1.18)

K+ −→ π0 + e+ + νe (5% of the time) (1.19)

and similarly for the K− meson. The decay of Eq. 1.19 accounts of a
significant amount of electron neutrinos. At higher energies still, the
D mesons appear. These are of interest due to their large rest mass
which allows them to decay into tau leptons, which again produce tau
neutrinos during hadronic decay

τ− −→ µτ + (1 or more π)− (64% of the time) (1.20)

Figure 1.6: Distribution of cosmic ray
secondary products (mesons) and the re-
sulting muons and neutrinos. The D me-
son frequency is scaled up by 109 to il-
lustrate the negligibility of its contribu-
tion and explain the absence of the tau
neutrino.
Image from unpublished work by A. Fe-
dynitch and R. Engel [24]
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This means that the overall neutrino flux is also expected to contain
tau neutrinos. In practice though, the tau contribution to the atmo-
spheric neutrino flux is so many orders of magnitude lower than its
muon and electron counterparts, that it has never been measured. A
summary plot of the distributions of cosmic ray secondary products
and the resulting muon and neutrino flux is shown in Figure 1.6, with
the D meson flux scaled up by 109 and the tau neutrinos completely
absent[22, 25, 26].

1.4 Muons

Aside from the neutrino, the muon is a strong contender for most rel-
evant particle, to anyone involved with the IceCube detector. As seen
in Section 1.3, the atmospheric muons are the dominating byproduct
of almost every step of the meson decay process. These muons travel
through the atmosphere at relativistic speeds giving them a long de-
cay time that makes them abundant on the surface of the Earth and
allows them to travel several kilometers before stopping due to en-
ergy loss and decaying. This makes them the primary source of (non-
instrumental) noise in the IceCube detector, and a major target in the
efforts described in Section 2.6.1 as well as in this work. It also makes
them a possible calibration tool, especially muons that stop and de-
posit all their energy inside this detector15. 15 A possibility that will be explored in

efforts related to this work, but is left un-
treated in this thesis except for consider-
ation in the event selection process.

Their long decay time also make muons special as a product of
neutrino interactions. Its sibling, the τ lepton, has a lifetime ττ = 0.29 ·
10−12 s and will in the low energy regime have a characteristic travel
length of cττ ≈ 87 · 10−6 m16. The stable electron on the other hand, 16 Ignoring relativistic time-dilating ef-

fects.is too light to travel far in the detector array. Employing E = γm0, the
energy loss can be described as a function of particle mass using the
generalised Larmor formula descried in Section 1.6 in the relativistic
limit

dE
dx

∝ m−6 (1.21)

which results in the electron quickly depositing all of its energy as
Bremsstrahlung. Consequently, the muon has the perfect balance of
long decay time and mass to travel furthest in the detector, which – as
we shall see – provides the muon neutrino charged current interactions
with a unique event signature[27, 28].

1.5 Charged/Neutral Current Decays

As hinted in Sections 1.1 and 1.2, the neutrinos interact only through
the weak nuclear force17, mediated by the Z0 and W± bosons. The 17 And gravity, as all particles do.

two force carriers give rise to two different types of interaction, the
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charged current (CC) weak interaction and the neutral current (NC)
weak interaction. The interactions can be visualised with the use of
Feynman diagrams, a pictorial representation of the mathematical ex-
pressions that describe particle interactions. The interaction vertices
that hold the most interest in experimental particle physics are shown
in Figures 1.7 and 1.8.

Figure 1.7: Feynman diagram of the
interaction vertex of a charged current
weak interaction in which a neutrino is
transformed into a charged lepton of the
same flavour (α) through the exchange of
a charged W boson.

Figure 1.8: Feynman diagram of the
interaction vertex of a neutral current
weak interaction in which a neutrino is
transformed into a neutrino of the same
flavour through the exchange of a neu-
tral Z boson.

Figure 1.7 depicts a CC process, in which a neutrino is transformed
into a charged lepton of the same flavour (α) through the exchange of
a charged W-boson. The reverse process is also allowed, transform-
ing a lepton into a neutrino of the same flavour. Figure 1.8 shows the
interaction vertex of an NC interaction, in which a neutrino is trans-
formed into a neutrino of the same flavour through the exchange of
a neutral Z-boson, depositing about half of its energy in the Z-boson.
It is common to distinguish between CC and NC events in neutrino
experiments, as the primary lepton in the CC interaction is generally
detectable, while in the NC interaction the primary neutrino is gen-
erally not detectable, decreasing the total amount of detectable light
from the interaction by a factor 2[29].

1.6 Energy Loss and Cherenkov Radiation

Particles in the IceCube detector are not observed directly, but are
instead detected through the phenomenon of Cherenkov radiation,
which travels in their wake as a clue of their presence. When a charged
particle moves trough a dielectric medium, it loses energy as is trav-
els in the form of photons, due to the disruption in the polarised
surroundings caused by the displacement of the particle. Figure 1.9
shows the energy loss of a muon travelling in copper as a function of
its momentum. While relationship between energy loss and and en-
ergy depends on the medium, and the IceCube detector uses ice and
not copper as stopping medium, the two have similar stopping power
and can be used interchangeably for illustration purposes.

In the central part of Figure 1.9, below 100 GeV, is the Bethe (or
Bethe-Bloch) regime, where the primary source of energy loss is ioni-
sation, the energy loss is described by the Bethe relation〈

−dE
dx

〉
= Kz2 Z

A
1
v2

(
1
2

ln
2mev2γ2Wmax

I2 − v2
)

(1.22)

where z is the charge number of the particle, Z is the atomic number, A
the molar mass and I the mean excitation energy of the medium, Wmax

is the maximum energy loss of a single collision and K = 4πNAr2
e me.

Muons with energy below 50 GeV lose their energy quickly due to
Coulomb interactions and are thus rarely seen in the IceCube detector,
except when they are the product of neutrino interactions.
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Figure 1.9: The energy loss of a muon
travelling through copper as a function
of particle momentum, showing the ion-
isation (Bethe) regime in the central part
of the image (red) and the radiative
regime to the right (yellow).
Image from [30]

For energies greater than 100 GeV, the energy loss is dominated by
radiative effects such as Bremsstrahlung which, when derived classi-
cally, takes the form18 18 A generalisation of the Larmor for-

mula[31].
dE
dt

=
2
3

e2γ6
(

v̇2 − (v × v̇)2
)

(1.23)

where e is the elementary charge, λ is the Lorentz facor λ = (1 −
v2/c2)−1/2 and v̇ is the time derivative of the particle velocity. To
compare this to Eq. 1.22, which is position derived rather than time
derived, one must simply take the muons to be in the relativistic limit
(where t ≈ x in units of c)[30, 31].

Figure 1.10: Diagrammatic representa-
tion of the Cherenkov radiation, show-
ing the particle trajectory in red from left
to right and the direction of the propa-
gation of constructively interfering light
in orange. The angle theta can be calcu-
lated from the right triangle defined by
the travelling distances βct and cicet.
Image from [32]

When a charged superluminal19 particle travels through a dielectric 19 A particle travelling at a greater veloc-
ity than the speed of light in the medium
in question (v > cmedium). This does
not contradict special relativity, as v <
cvacuum.

medium, the photons emitted travel slower than the particle, leading to
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a buildup of constructively interfering wavefronts at a fixed angle with
respect to the trajectory of the particle as shown in Figure 1.10. From
the geometry of figure one can deduce the angle from the distance
travelled by the particle, βct20, and the distance propagated by the20 Where β is a common way of describ-

ing the particle velocity in the relativistic
regime, as a fraction of the speed of light
in vacuum β = vparticle/c.

wave with phase velocity cice
21 emitted at t = 0, which will be cicet.

21 Here denoted cice since ice is the
medium in question.

The angle θ is described by

cos θ =
cicet
βct

=
c
n

βc
=

1
nβ

(1.24)

where n = c
cice

relates the refractive index n to the speed of light in
vacuum and medium (ice).

Figure 1.11: Cross section of a cone of
Cherenkov radiation from a muon event
observed in the Super-Kamiokande ex-
periment, clearly showing the circular
shape.
Image from [33]

As the result, the light emitted will appear as a moving cone trav-
elling at the speed of the particle. When wieved in the plane perpen-
dicular to the particle trajectory, the light will be detectable as well-
defined circles as shown in Figure 1.11. This phenomenon is called
Cherenkov radiation22, and any particle physics experiment involv-

22 After Soviet scientist Pavel Cherenkov,
who received the 1958 Nobel Prize for
being the first to detect it experimen-
tally in 1934, although Marie Curie had
observed it in a highly concentrated ra-
dium solution in 1910[34, 35].

ing a transparent dielectric medium can use Cherenkov radiation to
observe and describe particle interactions. It is used in Imaging Atmo-
spheric Cherenkov Telescopes (IACTs) to detect high energy gamma
radiation with the atmosphere as detection medium, whereas neutrino
detectors like IceCube, as mentioned, use large volumes of water in
either frozen or liquid state to detect Cherenkov light from neutrino-
nucleus interactions[35, 32].
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As the name suggests, IceCube is shaped as a hexagonal cylinder.
Jespersen, Schauser, Severin & Vinther, 2021

The studies featured in this thesis concern the IceCube Neutrino Ob-
servatory, and the effort to study netrino oscillations through low en-
ergy IceCube neutrino events. This chapter describes the experiment
and the detector array with a focus on the current event cleaning and
reconstruction methods, event signatures, and the upcoming IceCube
Upgrade.

2.1 The Largest Neutrino Telescope in the World

Encompassing a cubic kilometer of the antarctic ice sheet near the
Amundsen–Scott South Pole Station, the IceCube Neutrino Observa-
tory is a one-of-a-kind detector, designed to study the universe through
the detection of neutrinos. With the first string being deployed in 2005

and construction finishing on December 17
th

2010, by 2013, IceCube
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had detected 28 neutrinos that likely originated outside our solar sys-
tem[36]. While the main target of IceCube is to study extreme as-
trophysical phenomena such as supernovae, gamma-ray bursts, black
holes and neutron stars, data from the detector also allows for study
of the neutrino itself[37, 38]. This is the exact purpose of the IceCube
OscNext group which this work is an extension of. With accurate
reconstruction of the energy, direction and flavour composition of at-
mospherics neutrinos, the oscillation parameters described in Section
1.2.2 can be calculated more precisely than ever[39]. A visualisation
of the IceCube detector array is shown in Figure A.2 in the Appendix,
and a more schematic overview is shown here in Figure 2.1.

Figure 2.1: Overview of the IceCube de-
tector array, depicting original IceCube
strings and DOMs (green), DeepCore
strings and DOMs (red) and the dust
layer (gray band).
Image from [40]
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2.2 DOMs

The original structure of IceCube consists of 5,160 spherical optical
sensors called Digital Optical Modules (DOMs, shown in Figure 2.2),
deployed evenly on 86 hexagonally distributed strings at depths be-
tween 1,450 and 2,450 meters as indicated by the green dots in Figure
2.1. Between the 2,000 and 2,100 meters lies the so-called dust layer,
a band of less pure ice that distorts the light passing through it more
than the rest of the ice sheet. The dust layer was unknown during the
inception of IceCube, but newer generations of DOMs are placed with
it in mind.

Each DOM is equipped with a photomultiplier tube (PMT) capable
of detecting the Cherenkov Radiation of the superluminal particles
travelling though the ice. When triggered, the DOM will record the
interaction for 0.43µs or 6.4µs depending on the internal digitiser and
transmit the digital data to the counting house on the surface above the
array. The current generation of DOMs are built with a single sensor
pointing down in order to primarily detect neutrinos[41].

Figure 2.2: Original IceCube Digital Op-
tical Module (DOM).
Image from [42]

Figure 2.3: IceCube Upgrade mDOM.
Image from [43]

2.3 Extensions

2.3.1 DeepCore

One of the major flaws discovered after comission of the IceCube
project, was the inadequacy of its hexagonal grid of sensors. The regu-
lar grid allows for specific angles where particles can tunnel unnoticed
down the rows of DOMs as indicated by the purple arrow in Figure
2.1. In an effort to remedy this, the first upgrade to IceCube, DeepCore
was constructed. Consisting of 480 new DOMS on 6 new strings in the
central part of the detector primarily below the dust layer, DeepCore
increases sensor density and breaks the discrete symmetry of the orig-
inal structure[44]. The DeepCore strings are represented as red dots in
Figure 2.1.

2.3.2 IceCube Upgrade

During the arctic summer of 2022/23, another 7 strings are scheduled
to be installed in the DeepCore region. Carrying around 700 detectors,
it will feature 2 new DOM types: The Multi-PMT Digital Optical Mod-
ule (mDOMs), and the Dual Optical Modules (D-Eggs). The mDOM
(shown in Figure 2.3) has 24 PMTs distributed evenly across its sur-
face, and as such provides more information on the direction of the
incoming signal. The D-Eggs have a PMT pointing down like the orig-
inal DOMs as well as PMT pointing directly up, and are expected to
shed more light on the properties of the hole ice, the new ice around
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the strings that is a result of the drilling process.
With the IceCube upgrade, noise is an increasingly large problem,

especially in the low energy regime. The main source of noise in Ice-
Cube is the decay of radioactive isotopes (40K and isotopes from decay
chains of 238K, 235K and 232T) present in the DOM pressure vessel or
the PMGs themselves. The decays both deposit energy in that glass
that produces scintillation photons, and produce electrons which emit
Cherenkov radiation, both of which trigger the PMTs. One of the tasks
of this thesis is to filter signal from noise at the individual PMT level,
to allow the upgrade data to be used for low energy reconstruction.

IceCube Upgrade is the forerunner of and even larger envisioned
extension of IceCube, IceCube Gen2, proposed to double the number
of DOMs over 8 cubic kilometers of ice[45].

2.4 Simulation

Similarly to many other fields of physics, IceCube uses simulations for
a lot of its studies. Simulation is is very useful in the field of particle
physics, which involves interactions where the outcome is based on
probabilities. Monte Carlo (MC) simulation describes the approach of
simulating chains of probabilistic events in order to gain knowledge of
the distribution of the final outcome.

Since the actual data from the IceCube detector is unlabeled, and
the supervised reconstruction algorithms used in this work requires
large amounts of labeled data for training, the approach is to train of
MC simulated examples and reconstruct the real data using the trained
model. Consequently, it is crucial that the MC simulation accurately
represents the complex interactions of neutrinos and other particles
inside the detector.

The simulation of events in DeepCore and IceCube upgrade are di-
vided into separate stages covering the full chain of interactions from
cosmic rays generating showers in the atmosphere, to photons pro-
duced by neutrino interactions in the ice sheet. The library of algo-
rithms is rather extensive, but in the field of low energy neutrinos
reconstruction, the following three are the most important.

2.4.1 CORSIKA

The COsmic Ray SImulation for KAscade, or CORSIKA, is a relatively
old algorithm that simulates background muons from from cosmic
ray interactions in the atmosphere. It performs detailed simulations
of primary particles including protons, light nuclei and photons and
their interactions with the atmosphere which is represented in five lay-
ers with different densities and seasonal variations. The products of
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the interactions are then propagated to the surface of the earth, tak-
ing into account the energy losses, scattering, and deflection in Earth’s
magnetic field. The interactions of these secondary particles and their
products make of the final part of the air shower. IceCube uses COR-
SIKA by selecting muons with a direction that causes them to travel
though the IceCube detector. It could be used to simulate neutrinos in
the same way, but due to the small cross-section of neutrinos, this is
extremely inefficient[46].

2.4.2 MuonGun

While detailed and accurate, the simulations of CORSIKA are com-
putationally expensive and not very flexible. MuonGun is developed
based on the results of CORSIKA simulations and bypasses the the
simulation of the full shower. Instead, it starts the simulation on the
very edge of the detector and has the ability to create large samples of
data at low computational cost[47].

2.4.3 GENIE

The GENIE generator is used in IceCube to simulate neutrinos in the
1 GeV to 1 TeV energy range. The events are generated from a power
law spectrum and forced to interact with electrons or nuclei inside the
detector. Interactions are simulated with respect to neutrino flavour
and energy, and covers elastic scattering, quasi-elastic scattering, res-
onance production, and deep inelastic scattering with deep inelastic
scattering being the dominant interaction type for energies > 10 GeV.
The results are propagated out of the nucleus while allowing hadrons
to re-interact before exiting the nucleus[48].

2.5 Events in Data

Regardless of origin in Monte Carlo simulation or real data, or of pass-
ing level 2 or level 7, IceCube events are recorded and stored in .i3
files, a highly flexible (and consequently quite complex) file format
unique to the IceCube collaboration. Each event in IceCube becomes
a frame in an .i3 file, and each frames holds all recorded features of
the event, information on whether the event has passed certain crite-
ria, and information on its origins if known. It is common within the
oscillation group to perform work directly on .i3 files, but owing to the
predecessors of this work, the standard practice within the GraphNet
group1 is to extract the desired features from .i3 files and save them 1 See Section 3.4.

in SQLite2 databases for faster access. For each event, any number of 2 A fast and (very) popular SQL database
engine written in C[49].DOMs may record a signal, so the observed features are saved for each

DOM, making for a feature matrix of fixed length (number of features)
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and variable height (number of DOM pulses). The most common fea-
tures extracted and used for training of neural networks in this work
are shown in Table 2.1[50].

Table 2.1: Important event features used
for GNN reconstruction divided into
currently available features and features
that is only be available in Upgrade data.

Feature Variable Description Data Type

dom_x The x coordinate of the DOM position float
dom_y The y coordinate of the DOM position float
dom_z The z coordinate of the DOM position float
dom_time The time of recording of the event float
dom_charge The charge recorded by the DOM float
rde Relative dom efficiency float
pmt_area The PMT surface area float

Upgrade only features

string Index unique to each string integer
pmt_number Index unique to each PMT on a given DOM integer
dom_number Index unique to each DOM on a given string integer
pmt_x The x unit vector of the PMT direction float
pmt_y The y unit vector of the PMT direction float
pmt_z The z unit vector of the PMT direction float
pmt_type The type of DOM integer

Most of the features should be self-explanatory, but the DOM charge
and relative DOM efficiency are somewhat specific to the IceCube data
collection process:

DOM charge describes the total charge recorded by the DOM, and
is determined by integrating the whole waveform measured in the in-
terval defined by the leading and tailing edges. The leading edge is
the slope between the bins where 10 and 90% of the first measured
peak are reached extrapolated to the baseline. The trailing edge is the
point where the waveform drops below 10% of the first peak for the
final time. An illustration of the calculations can be seen in Figure
A.3 in the Appendix. The figure is borrowed from the IceCube Fea-
tureExtractor documentation[51] where a detailed explanation of the
calculation can also be found.

Relative DOM efficiency is a measure of the DOM’s electrical sen-
sitivity to light, decribed by the quantum efficiency relative to the rest
of the DOMs. The quantum efficiency is the ratio between the number
of charge carriers collected at the PMT terminal and the number of
photons hitting the PMT’s photoreactive surface[52, 41].

2.6 Current Methods

The cleaning and reconstruction methods currently employed in Ice-
Cube are complex, reliable, thought-through and often based directly
physical observations and models. Many of them are also slow, and
with room for improvement in performance as well as speed. Based
on previous work on this subject, this work is based on the hypothe-
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sis that Neural Networks can improve or outperform several of these
routines. This section describes what we are trying to beat.

2.6.1 Cleaning

Multiple levels of both hardware software filtering exist within the Ice-
Cube data stream to filter out noise and eventually unwanted particle
such as muons. The data selection pipeline developed and utilised
by the Oscillation Group which is also used in this work, is split into
seven layers of cleaning from inital trigger to final selection. The rate
of events at levels 2-7 are shown in Figure 2.4.

Level 1, Initial Trigger: When a DOM records a photoelectric sig-
nal above its baseline, the first limiter of what gets recorded is the
Hard Local Coincidence (HCL), a pairwise comparison of the DOM
and each of its neighbours. If two neighbouring DOMs report a signal
within ±1µs, it is likely that the light detected stems from a physical
event in the ice, such as Cherenkov radiation from a neutrino interac-
tion. This process is common for the entire collaboration. For neutrino
events, the Single Multiplicity Trigger (SMT) filter is used to keep all
events with at least 8 instances of local coincidence.

Level 2, DeepCore Filter: The part of the selection process spe-
cific to the Oscillation Group begins with the Level 2 DeepCore filter.
This filter is specifically designed to select events that have the po-
tential to come from low-energy neutrino interactions, by looking for
events with more than three single multiplicity triggers (SMT3). Then,
the Seeded Radius-Time SRT cleaning algorithm, which is based on
special relativity, is applied as well as a veto that eliminates events
associated with atmospheric muons.

Level 3, Simple Muon & Noise Cuts: At this level, a number of
predetermined cuts on low-level variables are applied to efficiently re-
move noise and muons. The cuts take into account mainly the number
of hits and a pusle series and their distributions and time and space.

Level 4, BDTs: At this stage, the data is classified as either pure
noise, muons or neutrino candidates using Boosted Decision Trees
(BDTs). BDTs are a simple type ML classification algorithm, and it is
possible to use machine learning at this stage because the cuts at level
3 ensure good agreement between data and MC.

Level 5, Muon Corridor Cuts: By this point, almost all of the noise
and the majority of the muons will have been eliminated from the
sample. The remaining muons are difficult to identify, because they
usually the ones that pass through the corridors of IceCube described
in Section 2.3.1 and indicated by the purple arrow in Figure 2.1. For
this reason, a corridor cut module provides directional cuts that elim-
inate 97% of the muons at Level 4 at the cost of 48%of the neutrinos.
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Figure 2.4: The event rate of each par-
ticle type and noise at each level of the
OscNext data cleaning process.
Image from [25]

Level 6, Event Reconstruction: At Level 6, the data rates are finally
low enough for reconstruction software to be applied. The current
method for high-quality reconstruction is RetroReco and is described
in Section 2.6.2.

Level 7, Final Selection: Using the reconstructed event features
from level 7, the remaining muons are removed using another BDT[25].

2.6.2 RetroReco
*As seen from a spherical coordinate
transformation of its interaction vertex.

Table 2.2: Important reconstructed vari-
ables in the OscNext analysis. Truth Variable Description Data Type

energy The energy of the particle float
position_x The x coordinate of the interaction vertex float
position_y The y coordinate of the interaction vertex float
position_z The z coordinate of the interaction vertex float
azimuth The azimuth angle of the particle’s interaction vertex* float
zenith The zenith angle of the particle’s interaction vertex* float
pid The type the particle using the convention from [53] integer
interaction_type The type of interaction (charged of neutral current) integer
interaction_time The time of the interaction float

Pulse level variables

truth_flag Pulse level noise/physics flag integer

The current implemented method for event reconstruction is RetroReco,
an algorithm based on reconstruction tables, large multidimensional
tables constructed by simulating a particular light source at many loca-
tions and orientations in the array and running each simulation many
times. A given event hypothesis can be compared to the tables by inter-
polating them to obtain a probability density function (pdf) of photon
observation time for each individual DOM. This is summarised in the
likelihood function that sums the probabilities of observing a number
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Figure 2.5: Left: Track-like event sig-
nature in the IceCube detector. Right:
Cascade-like event signature in the Ice-
Cube detector.
Image from [55]

of photons in a certain time bin, given a corresponding photon expec-
tation which is derived from the event hypothesis. Maximising this
likelihood provides the most likely parameters describing the event.
The most relevant variables reconstructed by RetroReco that also fea-
ture in this work, are shown in Table 2.2[54].

2.7 Event Signatures

It is common within IceCube to distinguish neutrino events by the
physical shape of the trace their interactions make in the detector array,
sometimes known as the event signature. The two major neutrino
event signatures observed in IceCube are track-like and cascade-like
events3. The event signature of a neutrino interaction is determined 3 Other, more complex signatures exist,

but are not relevant to this work.by the flavour of the neutrino and the type of interaction (charged or
neutral current).

Track-like event signatures are left by the charged current interac-
tions of muon neutrinos and a small fraction of tau neutrinos. In the
νµ charged current interaction, a muon is created, and as discussed in
Section 1.4, muons have a long enough lifetime to not decay immedi-
ately and sufficient mass to travel a significant distance in the detec-
tor before losing all of its energy to Bremsstrahlung. As a result, the
Cherenkov radiation of the muon product can be observed along its
trajectory in the detector following the interaction as a cylindrical light
beam. The tau lepton produced in the tau neutrino charged current
decay is massive enough to decay as

Figure 2.6: Decay modes of the tau lep-
ton decay. Several pions may be created
(as combinations of u’s and d’s) but here
only the µ− ν̄mu mode is of interest.
Image from [56]

τ− −→ ντ + µ− + ν̄µ (17.39% of the time) (2.1)

as shown in Figure 2.6, producing a muon with enough energy to leave
a track-like signature. An example of the track-like event signature is
displayed on the left in Figure 2.5[30, 57].

Cascade-like events include all neutral current interactions as well
as the charged current interactions of electron neutrinos and the ma-
jority of tau neutrinos. These decays are very localised in the detec-
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Figure 2.7: Overview of the possi-
ble neutrino interaction types and their
event signatures.
Image from [25]

tor and produce hadronic and electromagnetic showers that appear as
spherical light pattern in the detector. These are generally harder to
reconstruct as they lack the clear directional asymmetry of track-like
events[58]. A summary of the possible neutrino interactions and their
signatures is shown in Figure 2.7.
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The tools used in this work to improve the reconstruction of IceCube
events is a part of the vast field of data analysis methods known as ma-
chine learning, which concerns models that are able learn from data,
make decisions and discover patterns with minimal human interfer-
ence. Not at all a knew scientific field1, it has gained a lot of traction in 1 The term was coined in 1959 by IBM re-

searcher and computer science pioneer
Arthur Samuel[59], and by 1963 a rein-
forcement learning machine had learned
to play Tic-Tac-Toe[60].

recent years – with an estimated 100 articles per day on the on the pop-
ular public repository of research papers, Arxiv[61]. As many of the
tools involve mainly matrix operations, machine learning also emerg-
ing within in the field of high energy physics, where data rates are
ever increasing and the need for novel GPU based methods increasing
with them[62].

Like many other types of algorithms, machine learning algorithms
are designed to accept some input and produce an answer. The in-
put could be an image, and the answer could be whether or not the
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image contains a car, or it could be a history of the stock market and
probability of a certain stock rising or falling in value. What separates
machine learning from other algorithms, is that instead of being pro-
grammed to produce the correct answer the machine learning model
is programmed with a flexible architecture and allowed to learn how to
treat data by exposure to examples. The foundation of machine learn-
ing is the process of feeding a model a sufficient amount of examples
with corresponding correct answers – 10.000 images with and without
cars and a label for each image – and allowing the computer to learn
how to arrive at the correct answer from the examples alone. There
are numerous ways to got about this, but one of the most common
methods – and the one applied in this thesis – is neural networks[63].

Figure 3.1: Representation of a simple
neural network showing neurons as cir-
cles and connection as lines, with the in-
put layer on the far right and the feed-
forward direction from left to right.
Image made in Adobe Illustrator.

3.1 Neural Networks

The complex and very powerful world of neural networks begins with
a neuron. Simply put, a neuron is just a number. What makes it a neu-
ron, is its relation to other numbers – other neurons in the network2. In2 It is also common to refer to a neuron

as a node, but here the term neuron is
employed to avoid confusion with the
nodes of graph theory.

neural networks, neurons are arranged in layers. Each layers represent
a step through the machine learning algorithm from input to answer.
In a simple neural network (an MLP, multi-layer-perceptron) each neu-
ron in a layer, is connected to each neuron in the next layer. This con-
nection is represented by another number a weight, with which the
number from the neuron in question will be multiplied to obtain its
contribution to the neuron in the next layer. The value of the neuron
in the next layer, will consequently be a weighted sum of the neu-
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rons in the previous layer. Sometimes, another number called a bias is
added to the sum, and often, an activation function – a function that
constrains the value as shown in Figures 3.2, 3.3 and 3.4 – is applied
before assigning to next neuron its new value. The expression for the
value a of the ith neuron in the kth layer will be

a(k)
(i) = f

(
N−1

∑
j=0

(
w(k)
(i,j) · a(k−1)

(j)

)
+ b(k)

(i)

)
(3.1)

with w being the weights, b the biases, f the activation function and N
being the number of neurons in the (k − 1)th layer.

Figure 3.2: A sigmoid activation func-
tion

f (x) =
1

1 + e−x

which keeps the output between 0 and 1.

Figure 3.3: A Rectified Linear Unit
(ReLU) activation function

f (x) = max(0, x)

which sets values below 0 to 0.

Figure 3.4: A Leaky ReLU activation
function

f (x) = max(0.05x, x)

which linearly scales values below 0.

With each neuron in one layer connected to each neuron in the next,
and each connecting having its own unique weight, in a layer with 4

neurons connected to another layers with 4 neurons, each neuron will
have 4 connections, giving 16 total connections and weights, as shown
between the layers a(1) and a(2) in Figure 3.1. The first layers is called
the input layer, and as the name suggest, is where the network receives
the input, and its dimensions are defined by the input data structure.
The last layer is the output layer, which is interpreted as the answer,
and its dimensions are constrained by the type of answer desired. The
layers between the input and output are the hidden layers, and there
can be any number of these (modern deep learning methods us hun-
dreds of layers) and they can have any number of neurons. When
applying the algorithm to an input, the neurons in each layers receives
a value based on the neurons in the previous layer, and the answer
is determined from the values of the output layer. The weights and
biases are the variable components of the model, and it is by changing
their values that the network learns to produce correct answers. This
process is addressed in Section 3.3[64].

3.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a sub-type of neural networks
based on the mathematical theory of graphs. It has arisen from a desire
to incorporate information about the structure of, and relationships be-
tween components of data into machine learning. For problems where
the data has clear non-euclidian structure, such as social networks, in-
frastructure models and molecular structures, the relational informa-
tion has been shown to be an valuable asset for accurate predictions[65,
66].

3.2.1 Graphs

In the context of graph theory, a graph consist of a set of nodes and
edges that connect two nodes. A graph is often denoted by G = V, E,
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where V is the set of nodes3 and E is the set of edges. An edge eij =3 V for verticies, since N will be used for
neighbourhood. (vi, vj) has two endpoints vi ∈ V and vj ∈ V. vi and vj are then said to

be joined by eij or that the two nodes are adjacent. Additionally, vi and
vj are called each others neighbours. Generally, the neighbourhood
of v is written as N(v) = {k ∈ V|(v, k) ∈ E}. One can also define the
adjacency matrix A as a matrix where Aij = 1 if eij ∈ E and Aij = 0
if eij /∈ E. An edge in a graph can be directed or undirected. An
directed graph is a graph where all edges are directed, and similarly,
an undirected graph is a graph where all edges are undirected.

Additionally, a graph can be equipped with a set of nodes features
X associated with each node, and possibly also a set of edge features
X associated with each edge. An example of such a graph could be
a collection of employees, with the edges features being variables like
their salary and the time they been employed, and the criteria for a
connecting being if the employees are collaborating on a project, with
the edges features being how long the project has been going on or the
amount of time the employees spend together working on it. Such a
graph is often called an attributed graph. Figure 3.5 shows a schematic
of an undirected graph on the left, a directed graph in the center, and
an attributed graph on the right[67, 68].
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Figure 3.5: Schematics of different types
of graphs. Left: An undirected graph.
Center: A directed graph. Right: An
attributed graph.
Image made with Adobe Illustrator.

As the world is not made up of nodes and edges, before one can
use a GNN, one must first turn the data at hand into a graph. This
can be done in a number of ways, for the examples used aboce, the
choice a quite natural, but for IceCube events it is non-trivial since
no DOMs are inherently more connected than others, and since there
exists both spatial and temporal hierarchies among the pulses. In this
work, the choice has been to use a simple k-nearest-neighbours (KNN)
method, connecting each pulse to its 8 nearest neighbours in space-
time. The number 8 is chosen as it has been found to work well in
previous work on the subject, and while a few attempts at alternative
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connection schemes have been explored within the group during the
duration of this work, no compelling arguments have been found for
switching from the 8 KNN method.

3.2.2 Message Passing

Instead of having multiple layers with different numbers of nodes, the
layers of a GNN are typically new representations of the original graph
with the same number of nodes. The nodes can have a different num-
ber of features and – as we will see later – the connections between the
nodes may also change. Between each layer, the nodes are updated
depending on the values of their neighbours, through the principle of
message passing. Here, a node receives a message from each of its
neighbours in the form of an array numbers, that has a length corre-
sponding to the number of features in the new layer. When consider-
ing a node vi that receives a message mj from each of its neighbours
vj ∈ N(vi), the message can be written as

mj = f (vj)W (3.2)

where W are a matrix of learnable weights just like in a regular neural
network, and f is a function specific to the message passing, which is
often its own small neural network. The new value of each feature of
the node is then found using chosen aggregation (like the sum) of the
messages

m̃i = Aggr
j∈N(i)

(mj) (3.3)

and updated using another function G specific to the message passing
scheme

ṽi = G(m̃i) (3.4)

A variety of complex operations can be applied to reach the mes-
sage. The message passing operator used in this thesis, EdgeConv[69],
uses a small neural network (here an MLP) to arrive at the message

ṽi = ∑
j∈N(i)

MLP(vi||vj − vi) (3.5)

where ṽi denotes the new features of i, N(i) are the neighbours of i
and (vi||vj − vi) means a concatenation of the vectors vi and vj − vi.
This means the weights of the network are concealed in the MLP inside
the operator.

3.2.3 GNNs as a Generalisation of CNNs

Convolutional neural networks (CNNs) are another subset of neural
networks that are widely used in image recognition and processing.
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They are specifically for processing pixel data and use a mathematical
operation called a convolution in some of the layers in place of regular
matrix multiplication as described in Section 3.1. A convolution is
defined as an operation on two functions f and g that expresses how
the shape of one is modified by the other. In CNNs, a filter4 is applied4 Sometimes known as a kernel.

to the data. The filter – smaller in dimensions than the input data –
is applied to all regions of the input. It can be thought of as sliding
across an input image and picking up important features along to way.
This process is shown in Figure 3.6. On the left is shown a 3 × 3-
filter operating on the top left region, and on the right is shown an
example of features picked up by different filters operating on the
same image[70].

Figure 3.6: Left: A 3 × 3-filter operating
on the top left region of a 2D array.
Image from [71]
Right: An example of features picked up
by different CNN filters operating on the
same images.
Image from [72]

GNNs can be viewed as generalisations of CNNs in two aspects.
Firstly, the CNNs require data to have a rigid grid structure. In the
world of image recognition, this is natural, but for data of different
kinds, like the IceCube events used in this thesis, a lot of constraints
need to be applied a lot of choices need to be made on how to treat
irregularities, pad empty areas and so on5. The GNNs do not require5 This has been done for high energy

events in IceCube with good results[73]. this structure but can still utilise the relational information of nodes
that are adjacent in the graph space. Secondly, the many possible
ways of performing message passing between nodes at each layer66 Which is naturally known as a graph

convolution. can be viewed as a generalisation of CNN filters. Choices in message
passing scheme and the use of edge features provide great flexibility
on the passing of information between neighbouring nodes.

3.3 Training Neural Networks

Sections 3.1 and 3.2 describe the structure of neural networks, and how
they process data to produce an answer. But this is only the machine,
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this section will describe the learning. As mentioned earlier, machine
learning works by supplying the models with training examples, data
with the correct answer attached, and allows the model to gradually
update its weights and biases to fit the training data.

3.3.1 Loss Function

Figure 3.7: The behaviors of Mean Ab-
solute Error (MAE), Mean Square Error,
(MSE) and LogCosh Loss near zero.

The first building block of this process is the loss function. When a
training example is fed through the model, the result it produces is
compared to the correct result using a loss function, a function that
assigns a value – also known as a cost – to how wrong the model’s
prediction is. The choice in loss functions can shift the focus during
training between examples where the prediction is very wrong and
ones where it is almost correct. The Mean Absolute Error (MAE) Loss
has a linear relation between loss and difference from the truth and
may focus too much on already decent predictions, while the Mean
Square Error (MSE) Loss has produces a loss that is the square of the
difference between truth and prediction and may punish outliers too
heavily. The LogCosh Loss is a mixture between the two approaches,
approximating a power of two near zero and a linear relation further
away. The behaviors of the three loss functions are shown in Figure
3.7.

Two additional loss functions are used extensively throughout this
work, the Binary Cross Entropy Loss and the von Mises-Fisher Loss.
These are important and complex enough to require individual expla-
nation.

ID Truth Predicted Probability Corrected Probability Log

0 1 0.78 0.78 -0.1079

1 1 0.90 0.90 -0.0458

2 0 0.10 0.90 -0.0458

3 1 0.47 0.47 -0.3279

4 0 0.51 0.49 -0.3098

Table 3.1: Examples of true and pre-
dicted values for Binary Cross Entropy
Loss, and the corresponding corrected
probabilities.

Binary Cross Entropy Loss: As the name suggests, the BCE loss
is used for binary classification7. The formal definition of the BCE 7 A generalised version for multi-label

classification exists, but will not be cov-
ered here[74].

loss is that it is the negative average of the log8 of corrected predicted
8 Log here is the natural logarithm.probabilities. The term predicted probabilities can be explained using

Table 3.1 which show a selection of example truths and predictions for
an imaginary classifier. The table shows how the corrected probability
is equal to the predicted probability of a given event belonging to the
correct group, or more precisely, when the truth is one, the corrected
probability is equal to the predicted probability, and when the truth
is zero, it is one minus the predicted probability. The total loss then
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becomes

L =
1
N

N−1

∑
i=0

log(pi) (3.6)

where N is the number of training examples and pi is the corrected
probability[75, 76].

Von Mises-Fisher Loss: The VMF loss is used for angles, and can in
principle be used to regress direction in a space of any dimension. It is
based on the von Mises-Fisher distribution, a probability distribution
on a (n-1)-sphere9 in Rn. For a predicted direction x and true direction9 For mathematical definitions of n-

spheres, see [77]. µ, denoted the mean direction of the probability distribution, the PDF
is given by

pn(x|µ, κ) = Cn(κ) exp
(

κµTx
)

(3.7)

where κ is called the concentration parameter, which is analogous the
term 1

σ2 in a normal distribution: When κ is zero, the distribution is
uniform, and when it is large the distribution is concentrated around
µ. Multiple ways exists of estimating if the full underlying distribu-
tion is known κ[78, 79], but this work employs the trick of allowing of
allowing the model to output an estimation of κ alongside the predic-
tions, which has been found to work well. Figure 3.8 shows samples
drawn from distributions with different values of κ on a sphere. C is a
normalisation constant, given by[80, 81]

Figure 3.8: Samples from 3 different von
Mises-Fisher distributions with κ = 1, 10

and 50, respectively on a 3D sphere (2-
sphere).
Image from [82].

Cn(κ) =
κn/2−1

(2π)n/2 In/2−1(κ)
(3.8)

where Iv is the modified Bessel function of the first kind at order v.
In 3 dimensions, this reduces to

Cn(κ) =
κn

4π sinh(κ)
(3.9)

In this work, only one angle of direction is regressed at a time, and
thus the 2 dimensional distribution is used. This is sometimes known
just as the von Mises distribution or the circular normal distribution,
and the normalisation constant becomes

Cn(κ) =
1

2π I0(κ)
(3.10)

The probability distribution can be used to create a log function by
taking the negative log likelihood of Eq. 3.7, using the 2D normalisa-
tion from Eq. 3.10

L = − log pn(x|µ, κ) = − log(κ) + log(2π) + log(I0(κ)) (3.11)

The final term of Eq. 3.11 is non-trivial but has been treated in [83]
and [79].
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3.3.2 Optimising

With a definite measure of the error of its prediction, the model can use
this information to update its weights (and biases if present) through
the process of backpropagation. If the neural network is be describes
as a function f of its weights θ

f (x, θ) = ŷ (3.12)

mapping from data x to prediction ŷ, and the loss is L(y, ŷ), then the
objective is to fit θ to minimise L over all data in the training sample

θ̃ = argminθ ∑
data

L( f (x, θ), y) (3.13)

Because all operations of the neural network can be expressed as
matrix operations, the derivative of all the individual layer weights
can be calculated using the chain rule. For each training example,
these gradients are used by the optimiser along with the loss and the
parameter called the learning rate to update each weight.

The optimiser used in this thesis is called Adam[84]. It uses stochas-
tic gradient descent to navigate the highly non-convex loss landscape
to find the optimal values for θ. Among the hyper-parameters of
ADAM, the learning rate is crucial to the outcome of the gradient
descent. This is a common parameter of most optimisers, and can be
viewed as the step size of the gradient descent. High learning rates
result in quicker descent while lower learning rates may lead to the
discovery of minima that might otherwise have been skipped. This
learning rate is usually kept quite low (≈ 0.001) as to not overfit the
model to a single data point. For this reason, it is common to present
to model with the same training sample any number of times when
training. The process of training on the entire data sample exactly
once is called an epoch, and training a complex model will usually re-
quire several epochs. The work done in this thesis uses a learning rate
scheduler which varies the learning rate with each epoch as shown in
Figure 3.9[85, 86].

The optimal choice for optimiser and learning rate scheduler has
been investigated in previous studies, and during the work on this
thesis, no reason have been found to question their results. Loss func-
tions are task specific, and will be addressed separately for each task
in Chapters 4 to 7.

Figure 3.9: The general behavior of the
learning rate scheduler. The range of
epochs and learning rate can be adjusted
as needed.

3.3.3 Training, Validation and Testing

In theory, one can train a neural network forever and with a large
enough network eventually be able to perfectly regress or classify each
example in the dataset and produce a loss of zero. This is however not
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desirable, since the network has learned learn patterns specific to the
training dataset which may not be generalisable to the task the network
is meant to perform. When presented with new a new sample of data,
this overtrained network will underperform on the new data, looking
for features that do not exist. A principal concern in Machine Learn-
ing therefore, is to find the sweet spot where the model has learned
the general structure of the data but not the individual traits of each
example10. To obtain this, the model is presented with a validation10 This is a simplification of a com-

plex mathematical subject, the debate
of which is ongoing[87]. In this work,
validation and early stopping is imple-
mented as it has been found to work
well.

sample after each epoch for which the loss is calculated. When the
loss of the validation sample stops decreasing with every epoch, the
model is assumed to have converged to a loss minimum. It is common
to implement early stopping which terminates the training process af-
ter a set number of epochs with no improvement in validation loss. To
obtain a measure of the performance of the model after training, it is
generally presented with a third unknown dataset called the testing
sample for which the loss is calculated and used to benchmark the
model[88].

Figure 3.10: Example of the behavior
of the training and validation loss with
each epoch of training. Early stopping
kicks in after epoch 25 following five
epochs without improvement in the val-
idation loss.

3.3.4 Batching

The most common way to train on a large dataset, is to present the
model with a batch of training samples at the same time, and calculate
the average loss of the batch and use this for backpropagation. This
has two major advantages: Firstly, it further prevents overfitting to a
single outlier in the dataset, and makes the gradient descent smooth
and gradual. Secondly, one of the major strengths of machine learning
is that most of the calculations are matrix operations that can carried
out in parallel on GPUs, feeding the GPU multiple training examples
simultaneously results in a significant increase in training speed.
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3.4 GraphNeT

As of April 2021, the collected GNN reconstruction efforts of the Ice-
Cube research groups in the Nielsh Bohr Institute (NBI) the Technische
Universität München (TUM) have been congregated in the Graph neu-
ral networks for Neutrino event Reconstruction group (GraphNeT).
GraphNeT both is a toolkit designed for IceCube data but with the
intent of being generally applicable to data from other neutrino detec-
tors and the group responsible for its development and deployment
within IceCube. The work in this thesis uses the GraphNeT frame-
work for graph creation and model training, and subsequently, some
time has gone into aiding development of the framework and imple-
mentation of features necessary for the following investigations. Full
documentation of GraphNeT can be found on the GraphNeT github
page[89].

3.4.1 DynEdge

EdgeConv

State Graph 1

State Graph 2

[n, 256]

[n, 256]

Min Max
Mean Sum

[n,6]
MLP Prediction

[1,n_outputs]

MLP

[1,1035]

Node Aggregation

EdgeConv

Global
Statistics

EdgeConv

State Graph 3

EdgeConv

[n, 256]

State Graph 4

[n, 256]

[1,5]

k-nn 

for j in range(num_nodes):

[n,256][n,h]

EdgeConv

[n, 1030]

Input Graph

Figure 3.11: Schematic overview of
DynEdge with data flowing from top left
to top right. Left side shows the mes-
sage passing and reconnection of nodes,
lower right shows the EdgeConv opera-
tor, and upper right shows the concate-
nation and aggregation step.
Figure from soon-to-be published work by the
GraphNeT group.

The primary ML model used in within the GraphNeT group is
called DynEdge, and its architecture is shown in the schematic in Fig-
ure 3.11. DynEdge was developed during a previous masters project in
this group and uses the EdgeConv message passing scheme described
in Section 3.2.2, but they key feature that distinguishes DynEdge from
other GNN architectures is that between every convulution layer, a
new state of the graph is generated. After each convolution, new edges
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calculated using a KNN[90] algorithm replace the existing ones, and
the following message passing is based on these new edges. The KNN
algorithm takes the first 3 features of the graph as input, which dur-
ing the first convolution represent the physical position (x,y,z) of the
DOM hit, but which represent features in an increasingly complex la-
tent space with each convolution.

The features of each graph state are saved and eventually concate-
nated together to form the basis for generation of the output. Since the
model accepts 6 input features, and each graph state after the initial
(of which there are 4) are chosen to have 256 features, the intermediate
result of feeding a single event into the model is a matrix with dimen-
sions N × 1030 (as 1030 = 6+ 4 · 256), where N is the number of pulses
(DOM hits) in the given event. The number N raises a computational
issue, since this number varies with each event, and turning a matrix
of variable dimensions into a single number for the output is a non-
trivial task. In DynEdge, this is solved by aggregating the pulses using
minimum and maximum values, mean and sum, illustrated by the cir-
cular object in Figure 3.11, which forces the first dimension to always
have length 4. Before and after aggregation, the data is fed through
simple MLPs, the last of which can accept some global features calcu-
lated from the initial graph state as additional features, and casts the
data to the desired output shape.

The work done over the course of this project has included a few
attempts at improving on or producing an alternative to DynEdge, but
not much seems to be gained from changes to the architecture. The
general consensus in the GraphNeT group is that time is better spent
contributing to the framework around DynEdge as well as studies of
the performance of loss functions and data processing. As such, the
DynEdge architecture is employed for the following studies.

3.5 Preprocessing

3.5.1 Data Selection

When performing a task such as binary classification, where one of the
outcomes is significantly more prevalent than the other – such as iden-
tifying rare signals in an abundance of noise, training the model on
a dataset that represents the true distribution is often not the optimal
approach. The probability of being rewarded with a low loss score
by classifying each event as noise will be very high, and the model
will typically learn to classify all events as noise while still obtaining
a satisfactory average loss. The common solution to this problem is to
select the training sample such that each outcome is equally prevalent.

In some cases the option of selecting a training sample with equal
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distributions of outcomes may not be available. In the study per-
formed in Chapter 6, models are trained on a pulse level with varying
amounts of noise in each event, which means that one cannot con-
trol noise distribution by re-weighting events. One could modify each
pulse either before or during cleaning, but since the pulses are both the
input data and the classification targets, this is undesirable. Another
choice is to use loss function that approximates minimising a parame-
ter that is robust to changes in the distributions, such as the F1-score
or area under PR Curve. Several attempts at creating differentiable ap-
proximations to these quantities have been made already[91, 92], but
since the implementations are written in TensorFlow and would have
to be adapted to PyTorch and since the performance in Chapter 6 is
already satisfying, this has not been investigated further.

3.5.2 Feature Transformation

Due to the nature of loss functions and backpropagation, the training
of neural networks behaves the best when the input features share the
same order of magnitude, and even better when that order of mag-
nitude is around 1. A common choice when dealing with data that
approximates a uniform distribution11, is to scale the data to be be- 11 For example an image recognition

problem where each colour intensity is
equally likely[93].

tween 0 and 1. When the data is normally distributed or has a more
complex shape, this might not be the optimal choice, as outliers may
force the majority of the data to lie within a limited range. In this
case, more advanced scaling methods can be used to obtain a suitable
distribution of the data[94, 95]. The following describes two transfor-
mation methods included in the scikit-learn[96] data science package
for Python:

Robust Scaler is designed to be robust to outliers. Where the sim-
pler Standard Scaler subtracts the mean and divides by the standard
deviation, this transformation scales the data by

x̂i =
xi − median(x)

IQR(x)
(3.14)

where IQR(x) is the Interquantile Range12 of x. Since the transforma- 12 Defined as the difference between the
75th and 25th percentiles of x. Other per-
centiles may be used if desired.

tion is based on percentiles, outliers have no effect regardless of their
difference from the bulk of the data.

Quantile Transformer is a non-linear method which transforms the
features the follow a normal or uniform distribution. It allows for
more direct comparison of data that span different scales by spreading
out more frequent values, but distorts the linear correlation between
values on the same scale.

Both of these methods have been applied in the early stages of this
work. Both of them however, require fitting of the transformation to
a representative subset of the data before they can be applied. Over
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the course of this work it was agreed within the GraphNeT group,
that the transformations could be substituted for simpler predefined
transformations, without a decrease in performance. These transfor-
mations are determined with the knowledge of the approximate shape
and range of the data, and since the data from the current IceCube and
DeepCore arrays differ from the (simulated) Upgrade data, the appro-
priate transformations are different as well. The transformations used
on Upgrade data are shown in Table 3.2 along with an example range
from a sample of the OscNext simulation, and the original IceCube
and DeepCore transformations can be found on the GraphNeT github
page[89].

Table 3.2: Transformations of event fea-
tures from Upgrade data used for GNN
reconstruction, with an example range
from a sample of the OscNext simula-
tion.

Feature Variable Range Mean Transformation (x̂i)

dom_x −579.0 ≤ x ≤ 576.3 36.8 = xi/500
dom_y −521.1 ≤ x ≤ 509.5 −45.3 = xi/500
dom_z −647.1 ≤ x ≤ 573.2 −249.2 = xi/500
dom_time 5.71 · 103 ≤ x ≤ 4.48 · 104 1.20 · 104 = −xi/(2 · 104)
dom_charge 8.71 · 10−3 ≤ x ≤ 6.24 · 103 1.00 = log10(xi)/2
pmt_area 8.17 · 10−3 ≤ x ≤ 4.44 · 10−2 1.87 · 10−2 = xi/0.05

Upgrade only features

string 1 ≤ x ≤ 93 = (xi − 50)/50
pmt_number 0 ≤ x ≤ 23 = xi/20
dom_number 1 ≤ x ≤ 113 = (xi − 60)/60
pmt_x −0.96 ≤ x ≤ 0.91 −1.5 · 10−3 = xi
pmt_y −1.96 ≤ x ≤ 0.96 −1.5 · 10−3 = xi
pmt_z −1.0 ≤ x ≤ 1.0 −6.7 · 10−1 = xi
pmt_type 20 ≤ x ≤ 130 = xi/130

While these transformations have been sufficient for the input vari-
ables used in this work, they have not always performed well when
applied to the target variables. In Chapters 4 to 7, transformation of
target variables will be addressed when relevant.

3.6 Performance Measures

For classification tasks, the performance metrics used in this work are
generally simple and will be addressed when relevant. For regression
tasks, the evaluation of performance on diverse data with complex dis-
tributions is non-trivial. The general evaluation scheme is common to
all regression tasks, with minor variations for each regressed variable.

For a reconstructed variable, the residual distribution, R, is calcu-
lated. The residual is generally the difference between true and recon-
structed values, but the calculation varies for a few of the target vari-
ables. For zenith angle and interaction time, the residuals are simply
Rzenith = zenithreco − zenithtrue and Rt = treco − ttrue respectively. For
energy (which is approximately exponentially distributed) the residu-
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als are calculated as fractions of the true energy: RE = Ereco−Etrue
Etrue

and
shown in percentages. For azimuth angle, which is circular such that
a prediction of 359 degrees is actually close a truth value of 1 degree,
the residual is calculated as the shortest angular distance, keeping the
correct sign of rotation, which mathematically become is calculated as

Razimuth = (azimuthreco − azimuthtrue) mod 360 (3.15)

R̃azimuth =

Razimuth if Razimuth ≤ 180

Razimuth − 360 if Razimuth > 180
(3.16)

where the angles are in degrees and R̃azimuth is the final residual score
for the azimuth angle. Figure 3.12 shows an example of the distribu-
tion of R, indicating the mean of the distribution R, the 16th and 84th
percentiles, and the Interquantile Range IQR(R).

R

IQR(R)

P84P16

Figure 3.12: Example of residual distri-
bution R, showing the mean of the distri-
bution R, the 16th and 84th percentiles,
and the Interquantile Range IQR(R).

As a summary metric for the residual distribution, the width of the
distribution, W, is calculated as

W(R) =
IQR(R)

1.349
(3.17)

where the constant 1.349 ensures that the width corresponds to one
standard deviation, assuming that residual distribution is gaussian13. 13 As in Section 3.5.2, the Interquantile

Range, IQR(R), is the difference be-
tween the 75th and 25th percentiles of
R.

Since quantiles are used, W is robust to outliers and can be used to
describe the performance of the model with a single number where
lower is better and 0 describes perfect reconstruction.

To obtain an uncertainty on W, order statistics are employed. The
derivation can be found in Section B.1 and yields the estimation of the
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standard error on the width W

σW =
1

1.349

√
0.25 · (1 − 0.25)

n

(
1

f (R0.25)2 +
1

f (R0.75)2

)
(3.18)

where n is the sample size, f is a pdf (usually a gaussian) that matches
the distribution of W and R0.25 and R0.75 are the 25h and 75th per-
centiles of R, respectively[97].



4 Interaction Time Reconstruction

Contents

4.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 RobustScaler . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 QuantileTransformer . . . . . . . . . . . . . . . . . 43

4.1 Task

The following describes a task that was undertaken about halfway
through the work on this Master’s thesis. By that point, it was al-
ready established that the GraphNeT framework and DynEdge archi-
tecture performed well on most of the target variables shown in Table
2.2. However, no model seemed to produce satisfying results on the
interaction time variable when compared to the Retro reconstruction.
Figure 4.1 shows the distributions of the predicted (x-axis) and true
(y-axis) interaction time as a 2D histogram on the right and a scatter
plot on the left for the retro reconstruction. A black line across the
diagonal indicates perfect reconstruction. Figure 4.2 shows the same
plot for an initial attempt at reconstruction with DynEdge.

Figure 4.3 shows a 1D histogram of the distributions for each model
on top of one another with the truth in the background. At first glance
the reconstructions look very similar in the scatter plot and both fol-
low the diagonal line reasonably well, and for the 1D distributions, the
GNN reconstruction seems to follow the truth more closely than the
Retro reconstruction. But Figure 4.3 is slightly misleading, since firstly,
the y-axis is on a base 10 log scale because of the irregular distribution
of the time variable, which makes it hard to interpret the differences,
and secondly, the plot only shows the distribution of truth and re-
construction independently, and says nothing about the accuracy of
individual events. A clearer image of the performance can be gained
by looking to the 2D histograms from which it is apparent that the
distribution is wider for the GNN reconstruction and as such diverges
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Figure 4.1: Distribution of the true
and reconstructed interaction time, re-
construction by RetroReco as a 2D his-
togram on the left and a scatter plot on
the right. The diagonal black line indi-
cates perfect reconstruction.

Figure 4.2: Distribution of the true and
reconstructed interaction time, recon-
struction by DynEdge with no transfor-
mation as a 2D histogram on the left and
a scatter plot on the right. The diagonal
black line indicates perfect reconstruc-
tion.
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more from the optimal reconstruction.

Figure 4.3: Distribution of the true and
reconstructed interaction time, recon-
struction by RetroReco and DynEdge
with no transformation as a 1D his-
togram.

Figure 4.4: Width W of the error distri-
bution of reconstruction interaction time
by by RetroReco and DynEdge with
no transformation separated by energy.
gray histogram in the background indi-
cates the amount of events in each en-
ergy bin. Bottom of the figure shows
relative improvement from RetroReco to
DynEdge.

This difference becomes more pronounced when looking at the er-
ror distribution. Figure 4.4 shows the width of the error distribution
as described in Section 3.6 divided into energy bins to show the per-
formance across different energy ranges. A histogram of the events in
each energy bin is shown as gray bars in the background to indicate
the amount of the available to the model in each energy range. At
the bottom of the figure is shown the relative improvement in perfor-
mance (or decrease in this case) between the two reconstructions. For
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a few of the energy ranges (around 0.5 - 1.5 log10 GeV) the GNN is on
par with Retro, but for all others it is significantly outperformed.

The poor performance of the GNN was believed to be caused by
the irregular distribution of the interaction time variable, so I set out
to apply various transformations to the target variable with to hope of
improving the reconstruction1.1 For the training of the models in this

section, a pure sample of simulated
muon neutrino events from the Osc-
Next Level 7 data was used, and each
model was trained using the LogCosh
loss function.

4.2 Results

Two different transformations were applied to the interaction time
variables, the RobustScaler and the QuantileTransformer, both de-
scribed in Section 3.5.2. For each transformation, the model was re-
trained on the data with the scaled target, and the performance of
each model is described in the following.

4.2.1 RobustScaler

Figure 4.5 shows the distribution of the true and reconstruction inter-
action time in the same way as Figure 4.2 but this time for a model
trained using the RobustScaler. Figure 4.6 shows the 1D distribution.
I many regards, the distributions look very similar to the distributions
of the unscaled reconstructions.

Figure 4.5: Distribution of the true and
reconstructed interaction time, recon-
struction by DynEdge with RobustScaler
transformation as a 2D histogram on the
left and a scatter plot on the right. The
diagonal black line indicates perfect re-
construction.

From the 2D distribution, it does seems that the distribution is slight
offset from the black tine towards the top left corner of the plot. When
looking at the width of the errors distribution in Figure 4.7, the GNN
seemed to have gained some ground on the Retro reconstruction, espe-
cially in the low energy regime (in which we are the most interested)
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and in the bins with more data (from which we expect better perfor-
mance).

Evidently, the model seems to gain some improvement in perfor-
mance, but seems to be sacrificing some events in order to obtain op-
timal average performance.

Figure 4.6: Distribution of the true and
reconstructed interaction time, recon-
struction by RetroReco and DynEdge
with RobustScaler transformation as a
1D histogram.

Figure 4.7: Width W of the error distri-
bution of reconstruction interaction time
by by RetroReco and DynEdge with Ro-
bustScaler transformation separated by
energy. gray histogram in the back-
ground indicates the amount of events
in each energy bin. Bottom of the fig-
ure shows relative improvement from
RetroReco to DynEdge.

4.2.2 QuantileTransformer

As mentioned in Section 3.5.2, the QuantileTransformer is a non-linear
transformation which scales various ranges of the distribution differ-
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ently, such that the transformed distribution is approximates a normal
distribution. To illustrate this, Figure 4.8 shows the unscaled interac-
tion time distribution as well as the distributions after applying the
RobustScaler and QuantileTransformer, respectively.

Figure 4.8: The distribution of the
interaction variable before transforma-
tion and after transformation with Ro-
bustScaler and QuantileTransformer re-
spectively. The left side of the figure
shows an enlarged version of the range
from -25 to 10.

On the left of the figure, an enlarged version of the range from
-25 to 10 shows how the RobustScaler – being a linear transforma-
tion – precisely follows the shape of the original distribution, while
the QuantileTransformer produces a bell shaped distribution. In both
plots, a small but significant amount of events form an irregular island
of outliers near 7000 for the unscaled distribution and -20 for the Ro-
bustScaler. These outliers may be hard for the LogCosh loss function
to handle, and are not present in the QuantileTransformer distribution.

When looking at the distribution of reconstructions using the Quan-
tileTransformer, it initially looks even more irregular than before the
transformation. The scatter plot in Figure 4.9 displays an irregular
shape that is quite different from the unscaled and Retro distributions,
and in the 1D histogram in Figure 4.10, the reconstruction looks signif-
icantly worse than the previous results. But as mentioned previously,
the 1D histogram does not show the full truth, and when looking on
the left of Figure 4.10, the distribution actually lies closer the optimal
black line than in the previous cases.

When looking at the width of the error distribution in Figure 4.11,
this result is confirmed. The error distribution is narrower for the
GNN reconstruction than for the Retro reconstruction in each energy
bin from 0 to around 1.7 log10 GeV and several bins show between 10

and 20 % relative improvement.
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Figure 4.9: Distribution of the true and
reconstructed interaction time, recon-
struction by DynEdge with Quantile-
Transformer transformation as a 2D his-
togram on the left and a scatter plot on
the right. The diagonal black line indi-
cates perfect reconstruction.

Figure 4.10: Distribution of the true
and reconstructed interaction time, re-
construction by RetroReco and DynEdge
with QuantileTransformer transforma-
tion as a 1D histogram.
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Figure 4.11: Width W of the error dis-
tribution of reconstruction interaction
time by by RetroReco and DynEdge
with QuantileTransformer transforma-
tion separated by energy. gray his-
togram in the background indicates the
amount of events in each energy bin.
Bottom of the figure shows relative im-
provement from RetroReco to DynEdge.

With these results I feel confident in concluding that a non-linear
scaler is the best choice for the interaction time variable, and may be in
other cases as well. This can cause problems in the context of machine
learning, since it is not possible to take the derivative of a non-linear
transformation, which means that backwards propagation of the loss
function is not possible. And indeed this has lead to me implementing
this transformation in a more permanent way in the GraphNeT frame-
work, an effort which will not be documented here as it has been
deemed to code-specific and would take too long to write up.



5 Event Level Classification

Contents

5.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Noise/Particle Classification . . . . . . . . . . . . 48

5.2.2 Track/Cascade Classification . . . . . . . . . . . . 49

5.2.3 Full Cleaning Pipeline . . . . . . . . . . . . . . . . 51

Note: The following work was made in collaboration with my fellow
student Leon Bozianu. I was in charge of training and benchmarking
the classifiers for noise/particles events and for track/cascade events.
My fellow student was in charge of the classifiers for neutrino/muon
events and for stopped/through-going muon events, which is not de-
scribed here. I then used the first 3 classifiers to make the full cleaning
pipeline described in Section 5.2.3, while my fellow student worked
on muon events. The following plots and results are a product of my
contributions to the project, with the exception of the borrowed neu-
trino/muon classifier.

5.1 Task

This chapter describes an attempt at showing how the current OscNext
event cleaning pipeline described in Section 2.6.1 could be replaced by
GNN event classification models. At the inception of this project, it
was already established that the GNNs are able to classify IceCube
events with very high accuracy, but it was unclear how implement-
ing these classifiers would impact the OscNext event selection and
what signal rate and purity would result from it. This work uses three
GNNs trained to separate noise from particles, muons from neutrinos
and track-like events from cascade-like events respectively, such that
events that receive model scores above a chosen threshold for all clas-
sifiers make it to the final sample. The following sections describe the
performance of the classifiers for noise/particles and track/cascade-
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like events and the implementation of the full cleaning pipeline1.1 For the training of the noise mod-
els in this sections, a sample of simu-
lated events consisting of 50% noise and
12.5% each of muons, electron neutri-
nos, muon neutrinos and tau neutrinos
from the appropriate OscNext level was
used. And for the training of the noise
models in this sections, a sample of sim-
ulated events consisting of 50% muon
neutrino CC and 33 1

3 % each of muon
neutrino NC, electron neutrinos CC +
NC and tau neutrinos CC + NC was
used. Each model was trained using the
Binary Cross Entropy loss function.

5.2 Results

5.2.1 Noise/Particle Classification

The noise/particle classifier aims to separate events caused by noise
from the radioactive decay in the detectors from events involving neu-
trinos or atmospheric muons. Figure 5.1 shows the distribution of
model scores for the classifier, and shows a very clear separation be-
tween noise and particles. For a more detailed picture, the same dis-
tribution is shown with a base 10 log scale on the y-axis in Figure A.4
in the Appendix.

Figure 5.1: Distribution of model scores
for noise/particle event classification for
the GNN.

Figure 5.2 shows the ROC curve for the classifier, with the plot on
the rights side using a base 10 log scale on the y-axis to show the finer
details of the separation and confirms that the model does a good job
at separating noise from particles. Selected thresholds are marked, for
noise reduction factors of 104, 105 and 106, showing that the model
allows for more than 90% of the particle events to be preserved when
allowing only 10−6 of the noise events to make it into the final sample,
and even more particle at still reasonable false positive rates.

Some important points to mention about these figures (that are also
valid for the figures in the subsequent section) is that firstly, since the
OscNext analysis usually does not select events in this way, no alter-
native model or method is shown alongside the GNN for comparison,
making the results somewhat invalid without context. This will be
remedied in Section 5.2.3. Secondly, since the desired outcome of the
classifier is to have a pure sample with most of the physics remaining,
one could have shown i precision-recall curve alongside these figures.
But such a plot will vary if the composition of the initial sample varies,
and as this will be relevant in the following sections, the ROC has been
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chosen as the initial performance metric.

Figure 5.2: ROC curve for the
noise/particle event classification
model, with base 10 logarithmic x-axis
on the right. Thresholds indicated for
FPR = 10−3, 10−4 and 10−5.

5.2.2 Track/Cascade Classification

Figure 5.3: Distribution of model scores
for track-like/cascade-like event classifi-
cation for the GNN.

The track/cascade classifier aims to separate neutrino events into
track-like events and cascade-like events. Figure 5.3 shows the distri-
bution of model scores for the classifier, and illustrates how track/cascade
classification is a significantly harder task for the model than noise/particle
classification. A significant amount of both event types receive model
scores around 0.5, which can be interpreted as the model being unsure
about their type. However, the bins near each of the figure, have are
significantly dominated by events of either the track or cascade type,
meaning that it will be possible to obtain a reasonably pure sample at
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the cost of some of the harder-to-classify events. For a more detailed
picture, the same distribution is shown with a base 10 log scale on the
y-axis in Figure A.5 in the Appendix.

Figure 5.4: ROC curve for the
track/cascade event classification
model when selecting for track-like
events (top) and cascade-like events
(bottom), with base 10 logarithmic x-
axes on the right. Thresholds indicated
for FPR = 10−2 and 10−3 (top) and 10−2

(bottom).

Figure 5.4 shows ROC curves for the classifier. The top of the figure
shows the ROC curve when desiring a pure sample of track-like events,
and the bottom of the figure shows it from the perspective of desiring
a sample of cascade-like events. In both cases, it is indeed possible to
get rid of most events of the undesired type while keeping a significant
portion of the desired events. The indicated thresholds show that one
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Figure 5.5: Distribution of events at
different steps of the IceCube OscNext
cleaning process (top) and the GNN
cleaning process (bottom). To the right
of each plot is indicated the resulting ef-
ficiency (nneutrinos,end/nneutrinos,start) and
purity (nneutrinos,end/nall,end).

can keep ∼18% of the track events or ∼16% of the track events and
remove 99% of the other type. With the high event rates of IceCube,
losing ∼84% of the data is no catastrophe, as long as the sample is
reasonably pure.

5.2.3 Full Cleaning Pipeline

This sections covers the discoveries found, choices made, and results
obtained when attempting to replace the OscNext event cleaning pipeline
with GNN classifiers. Figure 5.5 shows the current cleaning levels at
the top and the initial attempt at the bottom, and is meant to serve as
a baseline or proof-of-concept2. 2 The top plot is functionally identical to

Figure 2.7, differing only in style.
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Figure 5.6: Distribution of events at dif-
ferent steps of the GNN cleaning process
using data from OscNext Level 2 (top),
Level 2 with DeepCore filter (center)
and Level 3 (bottom). To the right of
each plot is indicated the resulting ef-
ficiency (nneutrinos,end/nneutrinos,start) and
purity (nneutrinos,end/nall,end).
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From left to right is shown the different cleaning steps, (with the
chosen model score threshold in the case of the GNNs), and on the
y-axis is shown the amount of events that passes to a certain level,
with the event types shown in different colours. On the right is shown
the efficiency and the purity at the final cleaning level. The rates are
scaled to match the rates of the data stream in IceCube at Level 2.
Comparing to the ROC curves of the previous chapter, these num-
bers significantly worse, but this is due to the high rates of noise and
muons in IceCube which means that removing ∼ 99.9999% of noise
and muons only results in ∼ 99.5% purity. Still however, the GNNs
preserve more neutrinos and remove more of the other events than the
current method.

The next leg of this investigation is to compare the found rates to
the rates of real data, an endeavour that yields some interesting re-
sults. Figure 5.6 shows the same type of plots as Figure 5.5, but only
for the GNNs and with 3 different starting data. Like Figure 5.5, the
top plot uses data from OscNext Level 2, while the bottom plot uses
OscNext Level 3 data. The middle plot also uses Level 2 data, but with
the DeepCore filter described in Section 2.6.1. Additionally, the rates
of data that passes through the two cleaning models is shown in black,
and the total rate of MC data is shown in dashed gray. The reason
for this choice in data is that the cuts made at Level 3 are specifically
aimed at agreement between real data and MC simulation. The Level
2 DeepCore is shown both because it can be viewed as the middle
ground between Levels 2 and 3, and because it is actually where the
OscNext pipeline illustrated in Figure 2.7 starts. And indeed, the plots
show increasingly better agreement between real data and simulation
from top to bottom, with the real data (solid black) following the sim-
ulation (dashed gray) closer with each figure. This is admittedly a
simple way to evaluate data/MC agreement, and more rigorous test-
ing (like regression of key variables) can be performed to quantify the
agreement, but the results shown here are enough to support the de-
cision use Level 3 data in the final part of this section. The models
applied at Level 3 also exhibit the best performance, with an efficiency
of 25.1% yielding a purity of 99.7%.

In this final part of this section, the track/cascade classifier de-
scribed in Section 5.2.2 is added to the GNN cleaning pipeline. Figure
5.7 shows similar plots to Figures 5.5 and 5.6, including the real data
and total simulation, but this time with the additional track/cascade
classifier applied at the end. As both track and cascade-like events
can be of use in IceCube and the value lies in separating the two, the
top plot of Figure 5.7 shows the results when selecting for track-like
events, and the bottom plot of Figure 5.7 shows the results when se-
lecting for cascade-like events. As would be expected from the results
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in Section 5.2.2, this makes for a harder task than the noise/particle
and muon/neutrino separation. For track-like events, this is remedied
somewhat by these events being the most common type, allowing for a
purity of 99.7% at the cost of keeping only 7.3% of the events, which as
mentioned earlier is not necessarily as bad as it sounds. The downside
of the high rate of track-like events is that this also makes obtained a
pure sample of cascade-like events quite hard. Here it is shown that
when keeping 1.5% of events, one can get a purity of 64.9%. Higher
purity will come at the cost of even lower event rates.

Figure 5.7: Distribution of events at dif-
ferent steps of the GNN cleaning pro-
cess using data from OscNext Level 3

including the track/cascade classifier se-
lecting for track-like events (top) and
cascade-like events (top). To the right
of each plot is indicated the resulting ef-
ficiency (nneutrinos,end/nneutrinos,start) and
purity (nneutrinos,end/nall,end).

It is also worth noting, that for cascade-like events, the agreement
between data and simulation is not very convincing at the final clean-
ing level. With knowledge of the underlying data however, this is not
as alarming as it looks. As mentioned earlier, the real data is a full day
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of IceCube events of which 1.42 million pass the deepcore filter, and
only 54170 events make it to Level 3. Using the expected rates from
the OscNext analysis3, the average number of track and cascade-like 3 See [25].

events in one day of events would be 326 and 139 respectively. And as
the efficiency of the pipeline including the cascade selection is 1.5%,
only 2 muon neutrino CC events will on average make it to the final
sample. With amount of statistics, the real data at the track/cascade
level is very susceptible to fluctuations in the neutrino event rate, and
does not have any practical value.

Regardless it is clear from these plots that GNNs have the poten-
tial to replace the current OscNext data cleaning levels. In addition to
increased efficiency and purity, using neural networks will, as men-
tioned earlier, provide an increase in processing speed. Implementing
GNN cleaning at Level 3 instead of Level 2, should not impact the
performance speed significantly, as the cuts used are not the computa-
tionally demanding parts of the OscNext cleaning process.
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Note: The following work was made in collaboration with my fellow
student Morten Holm. I was in charge of implementing the functional-
ity in the GraphNeT repository that made it possible to do node-level
classification, and produced the first naive attempt at pulse cleaning.
My fellow student then took over further improvement and develop-
ment of the pulse cleaning while I used the initial cleaned events to
make an attempt at event reconstruction as described in Section 7. Un-
less otherwise stated, the following plots and results are a product of
my contributions to the project.

6.1 Task

Figure 6.1: Left: Noise and physics rates
in the old and new noise model for each
DOM type in the IceCube Upgrade.
Figure from [98]
Right: Attempt at reconstructing the
zenith angle of noisy simulated Upgrade
events.

IceCube Upgrade, the upcoming expansion of the IceCube detector
array described in Section 2.3.2 will be born with a significant birth
defect. Due to a change in the production methods at Hamamatsu
Photonics – The company that manufactures the IceCube PMTs – the
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PMTs are contaminated with radioactive isotopes during production,
the decays of which result in significantly higher noise rates than in
the original IceCube array[99].

On the left of Figure 6.1 is shown the difference in noise rates be-
tween the old noise model and the new noise model (simulations with-
out and with the high noise rates of the new PMTs, respectively) on a
dataset level. These new noise pulses completely dominate each event,
and have a significant negative impact on the reconstruction perfor-
mance. On the right side of Figure 6.1, an attempt at reconstructing
the zenith angle from these new noisy pulses is shown. Evidently, the
model predicts all events to have a zenith angle around 90 degrees1. 1 This is the most common zenith angle,

and indicates that the model gains no
information from the pulse information
and learns to predict the most likely an-
gle for all events to get optimal perfor-
mance.

Several attempts have already been made at a more rigorous clean-
ing of these noise pulses, using either changes to the current recon-
struction algorithms[100] or a rudimentary GNN[98]. The following
describes my efforts to improve pasts results by using the more so-
phisticated DynEdge architecture to clean the Upgrade pulses. This
has been done on a simulation of only muon neutrinos using the new
noise model2. 2 For the training of the model in this sec-

tion, a pure sample of simulated muon
neutrino events from Step 4 of the Up-
grade event selection chain (which corre-
sponds to Level 2 in the OscNext analy-
sis chain described in Section 2.6.1)[101]
was used, and the model was trained us-
ing the Binary Cross Entropy loss func-
tion.

6.2 Results

Figure 6.2 shows the the distributions of model decision scores for
noise and physics for both the GraphNeT pulse cleaning (this attempt)
and GraphSAGE pulse cleaning which is the simple GNN used in
[98].

Figure 6.2: Distribution of model scores
for noise and physics pulses for the
GraphNeT and GraphSAGE pulse clean-
ing models.

Both cleaning models are very confident in their predictions, but the
GraphNeT model is slightly more precise for both noise and physics
as evident by areas bounded by the dashed lines to the right of 0.0 and
the left of 0.1. For further illustration of the differences, Figure A.6 in
the Appendix shows the same figure but with a base 10 log scale on
the y-axis.
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Figure 6.3 shows the ROC curves of the GraphNet and GraphSAGE
noise classifiers. The ROC curves on the left shows a significant im-
provement from the GraphSAGE to the GraphNeT model, which have
an AUC of 0.9755 and 0.9974, respectively.

Figure 6.3: ROC curve for the GraphNeT
and GraphSAGE pulse cleaning models,
with base 10 logarithmic x-axis on the
right. Thresholds indicated for FPR =
10−2 and FPR = 10−3.

On the right is shown the same ROC curves but with a base 10

log scale on the x-axis which illustrates how 99% of the noise can be
removed (FPR = 10−2) while keeping ∼95% of the physics pulses, or
99.9% of the noise can be removed (FPR = 10−3) while keeping ∼68%
of the physics pulses.

Figure 6.4: Precision and recall scores
of the GraphNeT and GraphSAGE pulse
cleaning models as a function of the
model score cut for each DOM type in
the IceCube Upgrade.

Scoring the model performance according to the prior distributions



upgrade pulse level noise cleaning 59

(which is what the FPR does), however, may not be suitable, when
the amount of noise pulses is so much greater than the amount of
physics pulses. Here the precision-recall curve is used instead as a
better metric that gives an idea of the amount of noise in the final
sample.

Figure 6.4 shows the precision and recall score of both the GraphNet
and GraphSAGE models for each of the different DOM types. While
both models struggle with classifying both the mDOMs and the origi-
nal IceCube pDOMs, the GraphNet model seems to reach a satisfying
equilibrium around 0.6 for all DOM types.

Figure 6.5: Precision-recall curves for the
GraphNeT and GraphSAGE pulse clean-
ing models. The table on the right indi-
cates the purity (precision) scores result-
ing from different choices in efficiency
(recall).

Figure 6.5 shows the total precision-recall curves for both models,
and illustrates how different target efficiencies (recalls) lead to higher
purities (precisions) with GraphNeT than GraphSAGE. For the follow-
ing work, the data has been cleaned using a model score cut of 0.439

which yields a sample with 95.8% physics while keeping 95.0% of the
original physics pulses.

To investigate the composition of this final sample and the effect
of the pulse cleaning on each event, the distribution of the number of
physics and noise pulses in each event in the original sample (called
SplitInIcePulses) and the sample created in this work (called Graph-
NeTPulses) is shown on the left in Figure 6.6. The figure shows that
the distribution of physics remains intact from uncleaned to cleaned,
save for a selection of events with a lower number of pulses (below 10)
seemingly disappearing into the bin closest to zero. Meanwhile, the
noise pulses go from a wide bell curve distribution centered around
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∼100 in the uncleaned sample to a narrower bell curve distribution
centered around zero in the cleaned sample3.3 Notice that the plot cuts at y = 1.5 · 106

to better show the less populated bins.

Figure 6.6: Left: Distribution of the
number of physics and noise pulses in
each event the original sample and the
cleaned sample. Right: Ratio of events
with zero and more than zero physics
pulses in each event the original sample
and the cleaned sample.

Both noise and physics have most of the events in the bin closest
to zero, indicating that for a lot of events, all pulses may be removed
in the cleaning. Thus, on the right of Figure 6.6 is shown the ratio of
events with zero physics pulses in the cleaned and uncleaned sample,
showing that many of the events in the leftmost bin to indeed contain
zero physics pulses.

Figure 6.7: Left: Distribution of physics
pulses in each event in the original sam-
ple the has zero physics events in the
cleaned sample. Right: Distribution of
physics pulses in each event in the orig-
inal and cleaned samples.

To make certain that the events that end up with zero physics pulses
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are only events that have a few physics pulses to begin with, the plot
on the left of Figure 6.7 is produced. It shows the distribution of
physics pulses in the uncleaned sample for all events that that have
zero physics pulses in the cleaned sample. Fortunately, the vast ma-
jority of these events have less than 5 physics pulses in the uncleaned
sample.

In addition, the plot on the right of Figure 6.7 shows a more gen-
eralised study of the behavior of physics pulses in the sample. With
number of physics pulses in the uncleaned sample on the x-axis and
number of physics pulses in the cleaned sample on the y-axis, it shows
how the majority of events retain a number of physics pulses close the
original amount, and that no bins see a significantly greater change
than others. The black diagonal line indicates no change in physics
distribution.

Figure 6.8: Left: Distribution of noise
pulses in events in the cleaned sample
with 0, 1, 2, or 3 physics pulses. Right:
Distribution of purity of events in the
cleaned sample.

Finally, to make sure that the number of events in the cleaned sam-
ple with few physics pulses but more noise pulses is low, the plots in
Figure 6.8 are produced. The plot on the left shows the distribution
of the amount of noise pulses in events in the cleaned sample with 0,
1, 2, or 3 physics pulses. Aside from the interesting observation the
events with 0 and 3 physics pulses are more frequent than 1 and 2,
the distributions show that the majority of the low physics events have
very little noise as well. The plot on the right shows the distribution of
purity of events in the cleaned sample, which is also reassuringly cen-
tered around 1, with very few events below 0.5. The relatively large
bin at 0.0 can be interpreted as all events with zero physics pulses,
which from the left of the figure is known to consist mostly of events
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with one or a few noise pulses, which would likely be discarded when
applying a simple event cleaning step.

To summarise, the GraphNeT pulse cleaning method performs bet-
ter than the GraphSAGE model, and the resulting events display promis-
ing distributions of noise and physics. The relatively large amount of
zero-physics pulses in Figure 6.6 should not be a concern as the major-
ity contain very few pulses in total. The real test of the method is the
reconstruction performance, which will be addressed in the upcoming
section.
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7.1 Task

Having obtained satisfying results for the pulse cleaning model, the
real test of the cleaning method was to see if it actually impacts the re-
construction performance. In the context of Machine Learning, this is
actually a quite interesting question. In theory, a sufficiently sophisti-
cated model could be able to learn which pulses to trust and which to
disregard. In practice however, in most cases the models benefit from
some amount of human guidance or decision-making, in this case in
the form of the choice to train a model to clean out the noise first, and
then training a separate model for regression1. 1 This should provide some comfort to

those who fear becoming subjects of AI
overlords.

Three separate models were trained to regress three of the most
commonly reconstructed variables used for benchmarking within the
OscNext group: the energy, and the zenith and azimuth angles. The
models were trained for 50 epochs with and converged between 20

and 30 epochs. The energy, the LogCosh loss of the log10 of the target
and predictions was used, and for the zenith and azimuth, the 2D Von
Mises-Fischer loss with error estimation was used.

7.2 Results

The models described in the following are trained and tested on three
different datasets all containing muon neutrino simulations for the Up-
grade detector:
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Figure 7.1: Distributions of the re-
constructed energy by the models
trained on the GraphNeTPulses (top),
SplitInIcePulses (center) and SplitInI-
cePulses_oldnoise (bottom) datasets as
2D histograms (left) and scatter plots
(right).
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GraphNeTPulses: Simulations made using the new noise model
(simulated with the more noisy PMTs) cleaned using the pulse GNN
pulse cleaning described in Chapter 6,

SplitInIcePulses: The same simulations with no pulse cleaning to
investigate the immediate effect of pulse cleaning on reconstruction
performance

SplitInIcePulses_oldnoise: Corresponding simulations made using
the old noise model to test if pulse cleaning makes reconstruction
match the expected performance of Upgrade reconstruction.

All datasets are initially drawn from Step 4 of the Upgrade event
selection chain, which corresponds to Level 2 in the OscNext analysis
chain described in Section 2.6.1[101]2. 2 For the training of energy models, the

LogCosh Loss function was used, and
for the azimuth and zenith angles, the
von Mises-Fisher 2D loss function was
used.7.2.1 Energy

Figure 7.1 shows the reconstructed energy for GraphNeTPulses (top),
SplitInIcePulses (center) and SplitInIcePulses_oldnoise (bottom) as a
2D histogram on the left and a scatter plot on the right with recon-
structed energy on the x-axis and true energy on the y-axis. While
each model predicts at least a fraction of the events within an ac-
ceptable range of the correct values (the ones that follow the diagonal
black line in the scatter plots), both the SplitInIcePulses and SplitInI-
cePulses_oldnoise models predict the majority of the events to have
the same energy (∼ 0.6 log10 GeV), with the former showing this ten-
dency the clearest. This value can be interpreted as the rough mean of
the energy distribution, for which the model will receive the smallest
punishing during training if it is unable to make conclusions based on
the input data.

Figure 7.2: Distributions of the re-
constructed energy by models trained
on the GraphNeTPulses and SplitInI-
cePulses datasets with the true distribu-
tion in gray in the background.
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Additionally, the 2D histogram shows a clear band structure in the
true energy values. These values are caused by a bug in the simula-
tion of the Upgrade events, which at the time of writing has recently
been found and removed. During the final stages of this project, new
Upgrade simulations without the bug were in progress, but they did
not finish in time to make it into this thesis. The irregularities in the
simulations will undeniably impact the finer points of training and
comparison, but as it is not completely skewed, the conclusions made
in the following are still valid.

In Figures 7.2 and 7.3, the GraphNeTPulses and SplitInIcePulses
reconstructions are compared. Figure 7.2 shows a regular histogram
of the reconstructed energy distributions with the truth in the back-
ground in gray, and confirms that the uncleaned pulse reconstructions
has a spike around the mean of the distribution while the cleaned
pulse reconstruction follow the true distribution more closely. The
figure also clearly shows bands in true energy from the bugged simu-
lation.

Figure 7.3: Mean of the error distribu-
tion of reconstructed energy by mod-
els trained on the GraphNeTPulses and
SplitInIcePulses datasets separated by
energy and split by track and cascade-
like events. Gray histogram in the back-
ground indicates the amount of events
in each energy bin. Bottom of the figure
shows relative improvement from Spli-
tInIcePulses to GraphNeTPulses.

Figure 7.3 shows the mean of the residual distribution ( true−reco
true )

of the energy in percent for different energy ranges, and separated in
track- and cascade-like events. This makes for a quite complex plot,
so a version without the track/cascade separation is shown in Figure
A.7 in the Appendix. On the bottom of the plot is shown the relative
increase in performance, indicating a significant improvement in all
energy ranges except close to the ∼ 0.6 log10 GeV range where the
naive SplitInIcePulses model has an advantage (and a few bins in the
high energy range which are not important to the OscNext analysis).
Since the uncleaned model predicts roughly the same energy value
for the majority of the events, the width of the error distribution is
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not a good performance metric for this model and is not plotted in a
separate figure.

Figures 7.4 to 7.6 compare reconstruction performance between the
cleaned new noise model dataset and the uncleaned old noise model.
Figure 7.4 shows the same energy peak for SplitInIcePulses_oldnoise
as observed for SplitInIcePulses, but otherwise follows the true energy
distribution.

Figure 7.4: Distributions of the re-
constructed energy by models trained
on the GraphNeTPulses and SplitInI-
cePulses_oldnoise datasets with the true
distribution in gray in the background.

Figure 7.5: Mean of the error distribu-
tion of reconstructed energy by mod-
els trained on the GraphNeTPulses and
SplitInIcePulses_oldnoise datasets sepa-
rated by energy and split by track and
cascade-like events. Gray histogram in
the background indicates the amount of
events in each energy bin. The bottom
of the figure shows relative improve-
ment from SplitInIcePulses_oldnoise to
GraphNeTPulses.

Figure 7.5 shows the residual means, and in this case, the peak
is not significant enough the produce an advantage in performance
for the old noise model predictions.3 Instead, the old noise model 3 Again, a simpler figure without

track/cascade separation is shown in
Figure A.8 in the Appendix.

performs better in the low energy range, where – as can be observed
by inspection Figure 7.1 more closely – the cleaned pulse model has a
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tendency to predict to large values of energy. This is interesting, and
may be explained by the fact that the pulse cleaning algorithm can
have a more difficult time classifying low energy events which have
fewer pulses, meaning that the low energy pulses will be less pure and
lose more physics than the rest. This precipitates further investigations
of the pulse cleaning with focus on the low energy regime, which is
addressed in Section 7.3.

As these two models both perform reasonably well, the width of
the residuals are plotted in Figure 7.12. The figures shows the same
pattern as Figure 7.5, with the cleaned new noise model performing
better in all energy ranges except the very low energy region.

Figure 7.6: Width W of the error distri-
bution of reconstructed energy by mod-
els trained on the GraphNeTPulses and
SplitInIcePulses_oldnoise datasets sepa-
rated by energy and split by track and
cascade-like events. Gray histogram in
the background indicates the amount of
events in each energy bin. Bottom of the
figure shows relative improvement from
SplitInIcePulses_oldnoise to GraphNeT-
Pulses.

7.2.2 Azimuth

Figure 7.1 shows the reconstructed azimuth angle for GraphNeTPulses
(top), SplitInIcePulses (center) and SplitInIcePulses_oldnoise (bottom)
as a 2D histogram on the left and a scatter plot on the right with recon-
structed energy on the x-axis and true energy on the y-axis. From the
histograms, it is observed that each of the models are predicting the
azimuth angle within an reasonable range of the truth for the majority
of the events. The model trained on GraphNeTPulses seems to have
more clearly defined white space between the green diagonal line and
the corners, a observation that is reinforced when looking at the scat-
ter plots, but direct comparisons will be needed to know how much
this performance gain actually amounts to, and are carried out the
following plots.

The comparison between azimuth reconstruction of the GraphNeT-
Pulses and SplitInIcePulses models are illustrated in Figure 7.8 which
shows a histogram of the reconstructed values and Figure 7.9 which
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Figure 7.7: Distributions of the recon-
structed azimuth angle by the models
trained on the GraphNeTPulses (top),
SplitInIcePulses (center) and SplitInI-
cePulses_oldnoise (bottom) datasets as
2D histograms (left) and scatter plots
(right).
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shows the means of residuals separated by energy bins4. In Figure4 Again, a simpler figure without
track/cascade separation is shown in
Figure A.9 in the Appendix.

7.8, the two distributions actually looks quite similar in performance,
with a characteristic and opposite sine wave shape, while the true val-
ues follow an approximately uniform distribution, showing that the
GraphNeTPulses model predicts too many events in the range around
90 deg and too few in the 270 deg range, with the SplitInIcePulses do-
ing the opposite. On the right side, near 300 deg, the uncleaned model
actually looks to outperform the cleaned model.

Figure 7.8: Distributions of the re-
constructed azimuth angle by models
trained on the GraphNeTPulses and
SplitInIcePulses datasets with the true
distribution in gray in the background.

Figure 7.9: Mean of the error distri-
bution of reconstructed azimuth angle
by models trained on the GraphNeT-
Pulses and SplitInIcePulses datasets sep-
arated by energy and split by track and
cascade-like events. Gray histogram in
the background indicates the amount of
events in each energy bin. Bottom of the
figure shows relative improvement from
SplitInIcePulses to GraphNeTPulses.

But similar to the previous sections, the histogram can be mislead-
ing, and indeed Figure 7.9 shows an improvement in performance in
all energy bins for both track- and cascade-like events. An interesting
observation is that the reconstruction of cleaned cascade-like events



upgrade reconstruction 71

– while outperforming uncleaned cascade events – is never improved
beyond the performance of uncleaned track-like events. As mentioned
earlier, the models are expected to reconstruct track-like events better
than cascade-like events, especially regarding the angles, but this dis-
crepancy may indicate more serious shortcomings of the pulse clean-
ing model.

In Figures 7.10 to 7.12, the performances of the GraphNeTPulses
and SplitInIcePulses_oldnoise models are compared. The histogram
of reconstructed angles in Figure 7.10 shows that the models now ap-
proximately agree on which range to predict for too many events and
which range to predict for too few, with the uncleaned old noise model
seemingly lying closer to the correct range.

Figure 7.10: Distributions of the re-
constructed azimuth angle by models
trained on the GraphNeTPulses and
SplitInIcePulses_oldnoise datasets with
the true distribution in gray in the back-
ground.

Figure 7.11: Mean of the error distribu-
tion of reconstructed azimuth angle by
models trained on the GraphNeTPulses
and SplitInIcePulses_oldnoise datasets
separated by energy and split by track
and cascade-like events. Gray histogram
in the background indicates the amount
of events in each energy bin. Bottom
of the figure shows relative improve-
ment from SplitInIcePulses_oldnoise to
GraphNeTPulses.
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When looking at the means of the residuals in Figure 7.11, the per-
formance of the old noise model is constant over the energy bins while
the performance of the cleaned model improves with higher energy5.5 Again, a simpler figure without

track/cascade separation is shown in
Figure A.10 in the Appendix.

Just like for energy reconstruction, this may be an indication that lower
energy makes is harder to distinguish physics pulses from noise, re-
sulting in noisier datasets which in turn makes reconstruction harder.
Another interesting observation is that the cleaned cascade reconstruc-
tion is actually worse than the old noise cascade reconstruction at all
but a few energy ranges, a find that is confirmed when looking at the
width of the residuals in Figure 7.12. A possible explanation for this
behavior, is that it can be harder for the pulse cleaning model to sepa-
rate noise from physics for the diffuse cascade-like events than for the
more clearly asymmetric track-like events.

Figure 7.12: Width W of the error distri-
bution of reconstructed azimuth angle
by models trained on the GraphNeT-
Pulses and SplitInIcePulses_oldnoise
datasets separated by energy and
split by track and cascade-like events.
Gray histogram in the background
indicates the amount of events in each
energy bin. Bottom of the figure shows
relative improvement from SplitInI-
cePulses_oldnoise to GraphNeTPulses.

7.2.3 Zenith

The reconstruction of the final variable, the zenith angle, is described
in this section. At this point two questions are of particular inter-
est: Will the cleaned pulses continue to improve reconstruction per-
formance in the high-energy range while lacking in the low-energy
range? And will the models continue to struggle with regression the
cascade-like events using the cleaned dataset?

Figure 7.13 shows the reconstructed zenith angle for GraphNeT-
Pulses (top), SplitInIcePulses (center) and SplitInIcePulses_oldnoise
(bottom) as a 2D histogram on the left and a scatter plot on the right
with reconstructed energy on the x-axis and true energy on the y-
axis. For the zenith angle, the cleaned dataset appears to produce a
clear improvement in reconstruction. The models trained on both the
SplitInIcePulses and the SplitInIcePulses_oldnoise datasets assign the
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Figure 7.13: Distributions of the recon-
structed zenuith angle by the models
trained on the GraphNeTPulses (top),
SplitInIcePulses (center) and SplitInI-
cePulses_oldnoise (bottom) datasets as
2D histograms (left) and scatter plots
(right).
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same zenith angle the majority of events. As the zenith angle is not
uniformly distributed like the azimuth6, this can again be interpreted6 The reason for this is purely geometric:

If one views IceCube as a point detector
and imagines a sphere centered on the
detector and divides the sphere into in-
finitesimal horizontal bands defined by
infinitesimal zenith angles, one can eas-
ily infer that angles closer to horizon-
tal cover a larger portion of the sphere
than angles closer to vertical, due to the
greater circumference of the associated
bands.

as the models being rewarded for predicting the mean of the distribu-
tion.

Figure 7.14: Distributions of the recon-
structed zenith angle by models trained
on the GraphNeTPulses and SplitInI-
cePulses datasets with the true distribu-
tion in gray in the background.

Figure 7.15: Mean of the error dis-
tribution of reconstructed zenith angle
by models trained on the GraphNeT-
Pulses and SplitInIcePulses datasets sep-
arated by energy and split by track and
cascade-like events. Gray histogram in
the background indicates the amount of
events in each energy bin. Bottom of the
figure shows relative improvement from
SplitInIcePulses to GraphNeTPulses.

The comparison between the GraphNeTPulses and SplitInIcePulses
models shown in Figures 7.14 and 7.15 exhibits the same patterns as
observed for the other variables. In all energy ranges in Figure 7.15, the
cleaned model outperforms the uncleaned model for both track-like
and cascade-like events, even though the cascade reconstruction does
not improve with higher energy the same way the track reconstruction
does7.7 Again, a simpler figure without

track/cascade separation is shown in
Figure A.11 in the Appendix.

When comparing the cleaned GraphNeTPulses to the uncleaned
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SplitInIcePulses_oldnoise reconstruction, the previously observed pat-
terns repeat as well. The cascade reconstruction residual mean of the
cleaned model in Figure 7.17 flattens out after approximately 0.6 log10

GeV and never reaches the performance of the uncleaned old noise
model8. And for the reconstructions at low energy the uncleaned old 8 Again, a simpler figure without

track/cascade separation is shown in
Figure A.12 in the Appendix.

noise model is also better than the cleaned new noise model.

Figure 7.16: Distributions of the recon-
structed zenith angle by models trained
on the GraphNeTPulses and SplitInI-
cePulses_oldnoise datasets with the true
distribution in gray in the background.

Figure 7.17: Mean of the error distri-
bution of reconstructed zenith angle by
models trained on the GraphNeTPulses
and SplitInIcePulses_oldnoise datasets
separated by energy and split by track
and cascade-like events. Gray histogram
in the background indicates the amount
of events in each energy bin. The bottom
of the figure shows relative improve-
ment from SplitInIcePulses_oldnoise to
GraphNeTPulses.

When looking at the means of the residual distributions in Fig-
ure 7.18, the same patterns show even more clearly, indicated by a
steep decrease in width from the cleaned model within the fist few
bins, which continues for the track-like event regression. From this
it is apparent that the performance of the cleaned new noise model
matches and often surpasses the performance of the old noise model,
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there are some areas where performance can be improved, mainly the
low energy range and the cascade-like events. An immediate question
that arises is whether this drop in reconstruction performance is also
present in the pulse classification model in the same critical areas.

Figure 7.18: Width W of the error distri-
bution of reconstructed zenith angle by
models trained on the GraphNeTPulses
and SplitInIcePulses_oldnoise datasets
separated by energy and split by track
and cascade-like events. Gray histogram
in the background indicates the amount
of events in each energy bin. The bottom
of the figure shows relative improve-
ment from SplitInIcePulses_oldnoise to
GraphNeTPulses.

7.3 Revisiting Pulse Cleaning

This section addresses the apparent shortcomings of the event recon-
struction using the cleaned pulses pertaining to the regime of low en-
ergy. Performance metrics and pulse distributions are shown with a
focus on variations with energy, and the low energy regime in partic-
ular.

Figure 7.19: Area under precision-recall
curve for events separated by energy for
the GraphNeT and GraphSAGE models.
The distribution of events are shown in
the background as gray bars.
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Figure 7.19 shows the performance of the GraphNeT and Graph-
SAGE models quantified by the area under the precision-recall curve,
separated into bins according to the energy of the events associated
with each pulse. As expected, the models exhibits significantly worse
performance for both model in the low energy regime. A similar fig-
ure for the ROC AUC is shown in the Appendix, exhibiting similar
behavior.

Figure 7.20: Average purity (precision)
and efficiency (recall) when applying the
model score threshold of 0.439 for the
GraphNeT model on events separated
by energy. The distribution of events are
shown in the background as gray bars.

Figure 7.21: Area under precision-recall
curve for events separated by energy for
the GraphNeT and GraphSAGE models.
The distribution of events are shown in
the background as gray bars.

Figure 7.20 shows the average precision and efficiency of the pulses
in each energy bin, when cleaning the pulses using the GraphNeT
model with a threshold of 0.439 (the same cut used for the previous
results). It shows the same behavior as in Figure 7.19, but in a more
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readily interpretable manner. Using this cut, the events in the lowest
energy bin retain on average ∼ 87% of the physics pulses and obtain
a final purity of a little over 88%, while most events of higher energies
retain above 90% of physics pulses and are 90% pure or more. While
these differences are relatively small, they may have a significant im-
pact on reconstruction.

Figure 7.21 shows the impact of the inferior cleaning on the events
in the lowest energy bin. The on the left of the figure is shown the
distribution of physics pulses pr. event (similar to Figure 6.6) of the
cleaned (GraphSagePulses) and uncleaned (SplitInIcePulses) dataset.
Many of the events end up with zero physics pulses (pulses with a
total of zero pulses in the final dataset are not included in this plot),
and the number of events with fewer than seven pulses grow signif-
icantly as well. On the right of the Figure is shown the distribution
of the purity of each event in the lowest energy bin, compared to the
distribution of all bins (the counts are normalised for comparison). At
first glace it looks like the lowest energy bin is performing well, with
the vast majority of events having 100% purity. But this bin includes
all events 0 noise and can have any number of physics pulses, and
can therefore be ignored for this comparison (still, they are left in for
clarity). If the final bin is discarded, the plot resembles two normal
distributions, the low energy distribution centered around 0.9 and the
total distribution centered closer two 1.0. This tells the same story as
the other plots, and it is worse noting that the lowest energy bin ends
up with a significantly higher number of events with purity close to
zero (which likely means zero physics and any amount of noise).

It is worth noting that this does not necessarily signify bad perfor-
mance for the pulse cleaning model, but rather suggestions on how to
improve it. Many ideas spring to mind from the knowledge gained
from these plots, which are unfortunately outside the scope of this
thesis. Perhaps a secondary model could be trained to focus on on the
low energy regime, and the most confident model would decide the
fate of each pulse. Or maybe one could get away with relaxing the cut
with a lower threshold value (like the most efficient threshold in Fig-
ure 6.5) to retain more physics. Or perhaps some of the events should
be discarded – as they would if this was to be implemented early in the
OscNext pipeline – either by straight cuts at a given number of pulses
or by a more sophisticated model like a GNN. Additionally, with more
time, one could make the same investigations regarding the inferior re-
construction performance for cascade-like events also observed in the
previous sections. And lastly, since the Upgrade arrays will have dif-
ferent types of DOMs than the original arrays, with multiple PMTs on
each DOM, it might be beneficial to come up with a graph representa-
tion of Upgrade that includes this hierarchy between PMTs.
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8.1 Interaction Time Reconstruction

For the reconstruction of interaction_time variable, which has a very
irregular distribution, the GNN model has been found to perform bet-
ter when the target is scaled using the QuantileTransformer function
than when using the RobustScaler or using no scaling of the target. For
the QuantileTransformer, the width of the error distribution is lower
than that of the RetroReco reconstruction for all energy bins except
the high energy range (in which we are not interested and have less
training data). This makes it comparable in performance to the GNN
reconstruction of other variables.

Not much is left to desire from the interaction_time reconstruction,
except of course even better performance when IceCube Upgrade is
fully available. It is however worth keeping these results in mind when
regressing other variables with irregular distribution. Therefore, I am
satisfied to have spent the time implementing non-linear target trans-
formation in the GraphNeT framework for future studies.

8.2 Event Level Classification

Generally, it is concluded that the GNN event selection surpasses that
of the current OscNext cleaning pipeline in terms of final purity and
efficiency. The model does however appear to benefit from being im-
plemented on simulated data from Level 3, where the purity and effi-
ciency is 99.7% and 25.1%, respectively, compared to 99.5% and 20.6%
for Level 2 + DeepCore, 99.5% and 20.0% for Level 2, and 94.9% and



80 characterisation of icecube neutrino events using graph neural networks

12.8% for the OscNext cleaning alone. This pairs well with the obser-
vation that using Level 3 data (as expected) yields better agreement
between simulations and real data.

The real data is also where the greatest improvement or extensions
of this study can be made. With a month or even a year of real data,
the final sample should contain enough neutrinos to perform more
rigorous tests like feature summaries of measures and reconstructed
variables to gain more information about the agreement between sim-
ulated and real data. And again, this would be great study to perform
again once IceCube Upgrade is installed and a adequate pulse cleaning
algorithm has been implemented.

8.3 Upgrade Pulse Level Cleaning

The GNN also shows very promising results for the task of pulse
level cleaning. The GraphNeT model does significantly better than
the GraphSAGE model: When choosing an efficiency of 95%, the re-
sulting purities are 95.8% for the GraphNeT model and 60.6% for the
GraphSAGE model. These is a significant amount of events that have
all or most of both their physics and noise pulses removed. This is not
expected to be a concern in the a true cleaning pipeline where events
with too few pulses would be removed.

With more time, I would like to further investigate the results ob-
tained after performing the reconstruction of the cleaned pulses con-
cerning the pulse cleaning performance on low energy events. Addi-
tionally, investigating and benchmarking pulse cleaning separate for
track-like and cascade-like events seems to have a lot of potential.
Since neither the energy nor the interaction type is known as the pulse-
cleaning stage, the implementation of this is non-trivial. Training a
separate classifier on low energy events and allowing the most certain
classifier to determine the outcome could be an interesting solution,
but with more investigation one might find other more sophisticated
methods for this task.

8.4 Upgrade Reconstruction

There is no doubt that the pulse cleaning has a positive effect on re-
construction performance. For energy, the cleaned pulses allow the
reconstruct to match and often even outperform that of the old noise
model – effectively nullifying the increased noise rates of the Upgrade
PMTs – in all energy ranges except for the very lowest range, where
the pulse cleaning is expected (and later found) to perform poorly. For
azimuth and zenith, the model matches or outperforms the old noise
model in the same energy ranges for track-like events, but displays
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worse performance for track-like events. This precipitates the investi-
gation of pulse cleaning performance mentioned above.

In addition to improvements of the pulse cleaning, choices in the
event selection could also be of value for the reconstruction perfor-
mance. With more time, I would like to try and imitate the SRT-
cleaning process or other low level cleaning algorithm, to sort out
noisy events and events unfit for reconstruction after pulse cleaning.
This would emulate match how a the cleaned pulses would be treated
in a true reconstruction pipeline. Additionally, I would like to compare
these results to IceCube + DeepCore reconstructions, as the purpose of
Upgrade is to allow for better reconstruction that the current detector
array.

Finally, I think it would be worth-wile to come up with a new
graph representation of IceCube including IceCube upgrade which
takes into account the multiple PMTs pr DOM to create a hierachy
between DOMs. This would require deeper forays into graph theory
than have been made in this work and would likely be both fun and
instructive.



A Supporting Figures

A.1 Particle Physics

Figure A.1: The composition and energy
distribution of cosmic ray primary nu-
clei. Top right shows hydrogen and he-
lium cores a fraction of particle rigidity,
which is related to particle momentum.
Image from [30]
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A.2 IceCube

Figure A.2: Illustration of the IceCube
detector array.
Image from [102]
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Figure A.3: Schematic of the calculation
of DOM pulse features.
Image from the IceCube FeatureExtractor
documentation [51]
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A.3 Event Level Classification

Figure A.4: Distribution of model scores
for noise/particle event classification for
the GNN with base 10 logarithmic y-
axis.

Figure A.5: Distribution of model scores
for track/cascade event classification for
the GNN with base 10 logarithmic y-
axis.
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A.4 Upgrade Pulse Level Noise Cleaning

Figure A.6: Distribution of model scores
for noise and physics pulses for the
GraphNeT and GraphSAGE pulse clean-
ing models with base 10 logarithmic y-
axis.
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A.5 Upgrade Reconstruction

Figure A.7: Mean of the error distribu-
tion of reconstructed energy angle by
models trained on the GraphNeTPulses
and SplitInIcePulses datasets separated
by energy with no split by track and
cascade-like events. Gray histogram in
the background indicates the amount of
events in each energy bin. Bottom of the
figure shows relative improvement from
SplitInIcePulses to GraphNeTPulses.

Figure A.8: Mean of the error distribu-
tion of reconstructed energy angle by
models trained on the GraphNeTPulses
and SplitInIcePulses_oldnoise datasets
separated by energy with no split by
track and cascade-like events. Gray
histogram in the background indicates
the amount of events in each en-
ergy bin. The bottom of the fig-
ure shows relative improvement from
SplitInIcePulses_oldnoise to GraphNeT-
Pulses.
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Figure A.9: Mean of the error distribu-
tion of reconstructed azimuth angle by
models trained on the GraphNeTPulses
and SplitInIcePulses datasets separated
by energy with no split by track and
cascade-like events. Gray histogram in
the background indicates the amount of
events in each energy bin. Bottom of the
figure shows relative improvement from
SplitInIcePulses to GraphNeTPulses.

Figure A.10: Mean of the error distribu-
tion of reconstructed azimuth angle by
models trained on the GraphNeTPulses
and SplitInIcePulses_oldnoise datasets
separated by energy with no split by
track and cascade-like events. Gray
histogram in the background indicates
the amount of events in each en-
ergy bin. The bottom of the fig-
ure shows relative improvement from
SplitInIcePulses_oldnoise to GraphNeT-
Pulses.
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Figure A.11: Mean of the error distri-
bution of reconstructed zenith angle by
models trained on the GraphNeTPulses
and SplitInIcePulses datasets separated
by energy with no split by track and
cascade-like events. Gray histogram in
the background indicates the amount of
events in each energy bin. Bottom of the
figure shows relative improvement from
SplitInIcePulses to GraphNeTPulses.

Figure A.12: Mean of the error distri-
bution of reconstructed zenith angle by
models trained on the GraphNeTPulses
and SplitInIcePulses_oldnoise datasets
separated by energy with no split by
track and cascade-like events. Gray
histogram in the background indicates
the amount of events in each en-
ergy bin. The bottom of the fig-
ure shows relative improvement from
SplitInIcePulses_oldnoise to GraphNeT-
Pulses.



B Derivations

B.1 Uncertainty σW of the residual distribution W

This derivation is based on the introduction to order statistics in [97]
and uses the theorems on normal distributions of order statistics from
[103].

B.1.1 On order statistics

Let X1, ..., Xn be n independent and identically distributed continu-
ous random variables with the density f and distribution function F.
Then the order statistic X(j) is then the jth smallest value of X1, ..., Xn,
such that X(1) is the smallest value and X(n) is the largest.

The joint density function of the order statistics, meaning the den-
sity function of X(1), ..., X(n) equalling the values x1 ≤ ... ≤ xn is given
by

fX(1),...,X(n)
(x1, ..., x2) = n! f (x1)... f (xn) (B.1)

This is taken from Equation 6.1 in [97], and can easily be explained
by noting that in order for the order statistics X(1), ..., X(n) to equal the
values (x1, ..., x2), is it sufficient for the values X1, ..., Xn to equal any
permutation of (x1, ..., x2). There are n! of these and their probability
(density) equals f (x1)... f (xn), and this leads to Equation B.1.

In order for the jth order statistic X(j) to equal a number x, the
follow conditions must apply

There are j-1 values smaller than x. Probability density: F(x)j−1

There are n-j values greater than x. Probability density: [1 − F(x)]n−j

There is 1 value equal to x. Probability density: f (x)

Combining the above statements yields the probability density:

F(x)j−1[1 − F(x)]n−j f (x) (B.2)

but since this holds for any set of j − 1 being smaller than any set of
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n − j, among the n! permutations, there are(
n

j − 1, n − j, 1

)
=

n!
(n − j)!(j − 1)!

(B.3)

different partitions that fulfill the criteria, resulting in the density func-
tion

fX(j)
(x) =

n!
(n − j)!(j − 1)!

F(x)j−1[1 − F(x)]n−j f (x) (B.4)

which approaches a normal distribution as n −→ ∞.

B.1.2 Calculating σW

The definitions and calculations above are useful since W is calculated
from percentiles, and the kth percentile is exactly the order statistic
X(np), where p = k/100.

From the theorem of Pearson and Smirnoff in [103], the order statis-
tic X(np) is distributed according to the normal distribution with means
µp given by ∫ µp

−∞
f (x)dx = p (B.5)

and variances:

σ2
p =

p(1 − p)
n f (µp)2 (B.6)

Isolating µp in Equation B.5 yields

µp = F−1(p) (B.7)

and using the law of error propagation

σ2
f = ∑

i

δ f 2

δxi
σ2

xi
(B.8)

while ignoring correlations gives the estimated error on W:

σW =
1

1.349

√
0.25 · (1 − 0.25)

n

(
1

f (R0.25)2 +
1

f (R0.75)2

)
(B.9)
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