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Teaser

If you are having your car fixed, you will expect the mechanic to know how your
car functions in order to repair it. If you go through surgery, you would expect
your surgeon to know how your body functions and the anesthesiologist to know
how the anesthesia influence your nerve system. The latter, however, is not the
case! While the auto mechanic knows every bolt and the surgeon every vein, the
anesthesiologist cannot give you a definite answer. Why? - Science simply has
not provided one yet.

This thesis investigates the properties of nerves under the influence of anes-
thetics, recaps theories of nerves and anesthetics, and tries to create a new
simulation method to test it all.

Abstract

This master thesis investigates the heat capacity, the shift in melting point,
the pressure relation, and compressibility of DPPC membranes under influence
of anesthetics. The results are applied onto a new theory of nerves proposed
by Heimburg and Jackson (2005) [1]. From this density waves in lipid mem-
branes are shown theoretically possible. The Hodgkin-Huxley theory of nerves
is also discussed within this context. And the experimental setup is proposed
as method to determine partition coefficients of anesthetics into membranes.

Furthermore a new coarse-grain simulation model is developed to lay the
foundation for better understanding key properties of membranes in the phase
transition and influence of anesthetics herein. But more time must be invested
to establish the parameters governing this computational model.
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Chapter 1

Introduction

The use of anesthetics can be traced as far back as ancient Egypt and the old
Chinese Dynasties, where lotus flowers, opium plant or cannabis were used. Up
through history new types of drugs have been developed to improve strength,
control, and fatality rate. Modern use of anesthetics is sophisticated to a degree
that implies a deep understanding of the action of these medicaments – This
is, however, not all true. Physicians may know a lot about when to use what
in which doses, but little is known about the actual microscopic effects of the
anesthetics – though much is speculated. The lack off a satisfactory model
on anesthesia should be taken as a clue that the predominant model of nerve
function, which is the scheme wherein anesthetics work, should be revised.

The incapability of the traditional nerve model to explain the action of
anesthetics in a satisfactory way, and along with other contradictory findings,
led Heimburg and Jackson [1] to suggest a new model for nerves in spring 2005.
Their model is based on thermodynamical properties of the nerve membrane and
assumes an adiabatic wave in the cell membrane – a soliton – to be the carrier
of the nerve signal. The soliton is a priori dependent of the physical properties
of the cell membrane in particular the sound speed and density. Mengel and
Christiansen [2] have shown that anesthetics change properties of the cell mem-
brane that will effect creation of solitons. It seems that the soliton model will
easily incorporate the effects of anesthetics. If so the Heimburg-Jackson model
will have to be accepted as a candidate for a new model on nerves.

The intend of this master thesis is to elaborate on the advantages of the
Soliton model.

Let’s get this thesis going on. . .

4



CHAPTER 1. INTRODUCTION 5

1.1 Anesthetic Action

Figure 1.1: Anesthetics are a very diverse group. (Left picture) Various in-
halation anesthetics. (Right picture) Intravenous anesthetics. (Bottom picture)
Atomic building blocks. By Urban [3].

Figure 1.1 displays a small collection of molecules. They vary from single atom
to complex molecules, but despite their obvious differences they all act as anes-
thetics. The common properties of these drugs were discovered more than a
hundred years ago by C.E. Overton [4]:

The dose needed to induce general anesthesia, is proportional to the solubil-
ity of the anesthetic in oil.

This is known as the Meyer-Overton relation. For his experiments Over-
ton used tadpoles as test subjects. And for tadpoles the anesthetic dose, ED50,
were defined as the concentration at which 50% of tadpoles had lost the ability
to right themselves after being tilted - the Loss of Righting Reflex (LRR). For
gaseous anesthetics the definition were anesthetic pressure, EP50, the partial
pressure of an anesthetic above the water, which caused 50% LRR - as depicted
in figure (1.2).

The broader implications of Overtons experiments were that: All substances
dissolvable in oil, act as anesthetics proportional to their solubility. Since all
living’s cells’ membranes are of oily substance, this finding were interpreted as:

The anesthetic dose of a given substance is proportional to its solubility in the
nerve membrane.

Which was confirmed by various groups in the 60s along with some correc-
tions and some limits [6]. One would assume that this old finding is easily
incorporated in the modern understanding of how nerves work, since nerves are
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Figure 1.2: The oil/gas partition coefficients of inhalation anesthetics display
correlation with anesthetic pressure, EP50. This relationship where discovered
by Meyer and Overton around year 1900. Data from republished book by Over-
ton [5]
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where anesthetics function. However, this is not the case!

1.2 Nerves

Are you ticklish?

The action of anesthetics is obviously closely connected to the function of nerves,
since nerves are the a priory site of action for the anesthetic. So to understand
how anesthesia function, it is important to have a clear idea of how nerves func-
tion.

Nerves are cells and as such share characteristics EXAMPLE OF NERVE

MEMBRANE BILAYER

with other cells. Nerves have an outer membrane
that confines the cell, inside are proteins, mito-
chondria, the nuclei which contains the DNA, and
other organelles.1

Nerve models explain how nerves transmit a
signal from one end to the other. For nerve mod-
els, the most important feature is the cell mem-
brane which is made of a lipid bilayer with embed-
ded and adhered proteins. The important ques-
tion is, whether it is the membrane or the pro-
teins embedded in the membrane, that are respon-
sible for the function of nerves - the nerve sig-
nal.

The membrane bilayer is made of lipids. These
lipids are characterized by a hydrophilic head group
and two hydrophobic carbon chains. In vivo there
is a large variety of head groups, and carbon chains
can be found of lengths 14-24 that are saturated to
various degrees. [7]

Membrane proteins are a large and diverse group of complex molecules, with
a variety of functions from maintaining the cells interior levels of water, ions
and molecules, to communicating with surrounding cells. Proteins in living cells
make up for 10-50% of the mass of the cell membrane, depending on the type
of cell.

There exist more than 10,000 different nerve types, ranging from meter long
spinal nerves to micro meter size in the brain and sensory system.

(Include a little more history of nerves and membranes.)

1Picture of nerve from: Nerve Cells and Neurotransmission. Retrieved 12. October, 2006,
from http://teens.drugabuse.gov/mom/tg nerves.asp. Picture of membrane by T. Heimburg
made with POV-Ray.
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1.3 The Nerve Signal

That the nerve signal is associated with electricity was discovered in 1791, and
directly led to the creation of the first batteries by A. Volta and L. Galvani.
They constructed these to perform experiments on frog nerves and electric eels.

The electric nerve pulse, which is often referred to as the ’action potential’,
was first measured by a German physicist Emil du Bois-Reymond in 1848. That
same year, Helmholtz started to measure the thermodynamic properties of a
stimulated nerve - he did so while he was still enlisted in the Prussian army [8].
It was also Helmholtz who two years later was the first to measure conductance
velocities of the nerve signal. Today it is known that the nerve signal travels at
speeds between 1 to 120 meters per second, depending on nerve type.

In the 1940s, measurements of ion concentration differences across the nerve
membrane, lead Hodgkin and Huxley [9] to propose an electrical model of the
nerve signal. This model of Huxley and Hodgkin was based on the electrical
properties of the membrane and movements of ions through the membrane. In
1963 Hodgkin and Huxley earned the Nobel Prize in Medicine for this theory.

Figure 1.3: The action potential / electric nerve pulse is a measured change of
electric potential across the membrane of approximately 100 mV. The ’thresh-
old’ value is the voltage it takes to initiate the pulse. If less than the threshold
value is applied, it results in a ’failed initiation’. Figure from Wikimedia Com-
mons reproduced under GNU License.

Today the Hodgkin-Huxley Model (HHM) is the predominant theory of the
action potential.

In the 1970s Neher and Sakmann [10] developed the patch-clamp technique
- which demonstrated ’single’ events in the electric potential across the nerve



CHAPTER 1. INTRODUCTION 9

membrane. These measurements of so-called ’single’ events were interpreted as
membrane proteins acting like ion channels. The HHM relies on a mechanism
that controls ion movement across the membrane, and so the results of Neher
and Sakmann were received as conclusive evidence of the HHM.

The patch-clamp method has since been one of the most popular methods
of measuring the activity of ion channels and the influence of different drugs on
their action.

Figure 1.4: The patch clamp technique. (Top) Example of measured current
during patch clamp experiment, can be interpreted as ion channels being open
or closed. (bottom) Visualization of patch clamp technique – A micropipette
with an electrode is attached by suction to a patch of membrane. However,
measurements of with similar results have been conducted on lipid membranes
without protein channels. Figure created by Theresa Knott used under Creative
Commons License.

The single events seen by Neher and Sakmann have later been reproduced in
lipid membranes without channels [11, 12], leaving some scientists to speculate
whether the correlated action of ion channels has been properly proven. Also,
the HHM does not include parameters such as temperature or pressure, which
has been shown to influence the action potential [13, 14]. These and other
disadvantages of the HHM lead Heimburg and Jackson [1] to present a new
model based on thermodynamic properties of nerves: The Soliton Model (SM).

In the Soliton model the nerve pulse is a density wave traveling along the
nerve. With the change in density two effects generates the measured action
potential: The first is that the membrane contains charged lipids, and chang-
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ing the area of the membrane changes the charge density thereby changing the
field across the membrane. Secondly - given that the inside and the outside of
the nerve cell contains ions of different concentration, the membrane acts as a
capacitor for these. Thus changing the thickness of the membrane changes the
capacitive properties of the membrane.

The thermodynamic qualities of the nerve membrane will be thoroughly in-
troduced in section (2.1), and the HHM and SM will be described in detailed in
sections (2.2) and (2.3).

In conlusion: The goal of this master thesis is to introduce the Soliton model
on nerve function. And experimentally test the influence of anesthetics on this
model, in a way that will incorporate the Overton data.

1.4 Simulating the Membrane

Well into the experimental work of this thesis, a desire to visualize the membrane
and the anesthetics was somehow forged into the mind of the author. The reason
being that no detailed pictures can be obtained of membranes in vivo, simply
because of the minuscule size of lipids and proteins. And assumptions were made
on the behavior of the anesthetics, and arguments against the HHM presented
with basis in small membrane events, which cannot be directly observed.

So it became an obsession to construct, a simulating environment that would
allow to visualize key components of the experimental setup. The purpose was
to further the intuitive understanding of this realm of ions and small molecules
usually far beyond our daily visual horizon. To do so was a mighty castle to
begin construction on, and it must be confessed that no towers will throne by
the end of this thesis. However, a foundation has been cast, and some interesting
initial results will be presented.

A more formal introduction to the simulation will be done in section 2.3.

Now let’s get ready to rumble, it’s: Hodgkin-Huxley vs. the Soliton!



Chapter 2

Theory

This section will go into detail with the properties of membranes and the action
of anesthetics in these. The Hodgkin-Huxley model will be presented and the
Soliton model derived. Furthermore, the new simulation model will be intro-
duced.

Figure 2.1: (Picture left) Meyer and C.E. Overton, who established the Meyer-
Overton relation. (Picture right) J.S. Russell, who discovered the solitary wave
– which lead to the discovery of solitons.

11
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2.1 Membrane properties

The Meyer-Overton rule establishes that the higher solubility of a drug into oil,
the lower is the dose needed to induce anesthesia. Obviously, all lipid soluble
drugs are miscible in the nerve membrane. The question is – what does this
matter to the properties of the membrane? This will be tested in this thesis.
And in this section, theoretical grounds to predict and explain the outcome of
these experiments are presented.

As it will be shown in the data section, the most profound effect of anesthetic
on the nerve membrane is a shift of melting temperature. In section (2.1.1), the
theoretical basis of melting point depression will be explained, and in section
(2.1.3) a simple way to reverse the anesthetic action is presented. But first an
introduction to membrane properties.

The primary property of concern for this thesis is the phase transition of the
membrane (PT). The lipid membrane phase can simplified be described by two
parameters, with each two options:

Membrane structure: [Solid / Liquid ] Below PT the lipids are arranged in a
crystalline structure - The membrane is solid. Above the PT lipids diffuse
around more freely in the membrane - They behave as a liquid.

Lipid phase: [Ordered / Disordered ] Below PT the lipid chains are stretched
out and immobile - They are ordered. Above PT the lipid chains fluc-
tuate within the rotational phase space of the carbon bonds - They are
disordered.

So below phase transition, the membrane is Solid-Ordered (SO) and above
it is Liquid-Disordered (LD), as seen in figure (2.2). Throughout this thesis the
SO phase will be referred to as the gel phase, and the LD phase as the fluid phase.

Now it is time to introduce the lipid of choice for this thesis: di- DPPC

palmitoyl-phosphatidyl-choline referred to as DPPC.1 This lipid
was chosen, since it is one of the most common lipids found in
nerve tissue [7]. It is easily attainable – even though it cost
twice as much as gold. And it has a phase transition region at
near human body temperature, which is a temperature regime
that is easy to reach with not to sophisticated laboratory equip-
ment.

The phase transition of lipid membranes does not happen at one temperature,
rather it stretches across approximately 10 K. It is the mixture of different lipid

1Picture of DPPC taken from: www.lce.hut.fi/research/polymer/membranes.shtml
Blue balls are carbon, reds are oxygen, brown is phosphor, and dark blue is nitrogen.
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∆∆∆∆H, ∆∆∆∆S, ∆∆∆∆A, ∆∆∆∆t

TTTTmmmm

Side viewSide viewSide viewSide view

Top viewTop viewTop viewTop view

Figure 2.2: Phase transition of the lipid membrane is a shift from a Solid-
Ordered state (left) to the Liquid-Disordered phase (right). The membrane
shifts from a solid crystalline structure to a liquid like structure, were lipids
diffuse around freely (bottom). The carbon chains of the lipids change from
ordered structure to an disordered (top). The phase transition is associated by
changes in enthalpy, entropy, area, and thickness.

types, that is the cause of this broad region of phase transition in vivo (Fig.
2.3). In the artificial DPPC membrane phase changes also occurs within a 10
K region, but these changes are related to conformal changes of the membrane
structure. The precise mechanics of this has not been definitely determined.
Nor whether the transition from Solid-Ordered to Liquid-Disordered are direct
or via Solid-Disordered or Liquid-Ordered.

But there are properties of the phase transition that are easily measured or
are deductable from measurements and therefore known. The primaries being
the change of enthalpy, ∆H, and change of volume and area, ∆V and ∆A, from
these it is possible to deduct the change in entropy, ∆S, heat capacity, ∆cP ,
density, ∆ρ, and compressibility, ∆κ, and some relations between these.

The phase transition is very broad but in this thesis it will defined by one
temperature, Tm. In the next section (2.1.1) ’regular solution theory’ will be
used to derive changes in the melting point of the membrane with anesthetic
added. To be consistent with these calculations, the melting temperature, Tm,
of all data obtained by calorimetry is defined by the ’upper phase boundary’,
which is the temperature where all lipids are of the fluid form. As an example,
for the bovine lung surfactant (figure 2.3) the upper phase boundary is at 37◦C.



CHAPTER 2. THEORY 14

Figure 2.3: Heat capacity of DPPC and bovine lung surfactant, display phase
transitions around body temperature. Grey area are protein unfolding. Picture
from Heimburg [1].

2.1.1 Melting point depression

From the experiments later on, it is seen that anesthetics change the melting
temperature of the lipid membrane. This is commonly referred to as a ’melting
point depression’. To explain the melting point depression of the lipids with
added anesthetics, one assumes a simple eutectic model of phase behavior. [15]

The eutectic model assumes that the lipids only exist in a gel and a fluid
state, that the anesthetic does not have a phase-change, and that anesthetic is
only miscible in the fluid phase. Then using the basic thermodynamic equation,
which states that the chemical potential of an solution is dependent on concen-
tration, the following equations appear:

For the anesthetic in the membrane there is only one phase:

µAM = µ0
AM +RTln(cAM ) =⇒

= µ̃0
AM +RTln(xAM ) (2.1.1)

The subscript AM refers to Anesthetic in the Membrane. Where µ is the chem-
ical potential, µ0 is the zero point chemical potential, RT is the gas constant
and temperature, c is the concentration, x is the fraction of the substance in
the state given by the subscript. And µ̃0 is a renormalized zero point chemical
potential, that includes the volume from the logarithmic term, so amount can
be expressed in fraction.

For the lipid membrane, there is exactly two phases, and it is only the fluid
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phase that interact with the anesthetic:

µf
M = µ̃0,f

M +RTln(xf
M ) fluid state (2.1.2)

µg
M = µ̃0,g

M gel state (2.1.3)

The superscripts f and g refers to the fluid and gel state, and the subscript M
reveals that the properties are of the membrane.

The chemical potentials has the boundary condition, which also states that
the anesthetic only is miscible in the fluid phase:

xAM + xf
M = 1 (2.1.4)

In the equilibrium state, when there is no net change of the number of lipids
in the fluid or gel state, the chemical potential of the fluid and gel state of the
lipid will be equal (Gibbs-Duhem). Equating (2.1.2) and (2.1.3) and using the
boundary condition (2.1.4).

µ̃0,g
M = µ̃0,f

M +RTln(xf
M ) ⇐⇒

ln(1− xAM ) = −∆µ
RT

, ∆µ = µ̃0,f
M − µ̃0,g

M (2.1.5)

Then assuming a low fraction of anesthetic in the membrane to approximate the
logarithmic term2. And given that ∆µ = ∆G = ∆H − T∆S, where the change
in Gibbs free energy, ∆G, must be in units of [J/mol]. ∆H is the enthalpy
change, and ∆S the entropy change of the phase transition. Where it is used
that for the melting point, Tm, of the membrane without anesthetics the fraction
of lipids is xf

M = 1, which gives ∆µ = 0, thus ∆S = ∆H/Tm:

xAM ≈ −∆H − T∆S
RT

, ∆S =
∆H
Tm

= −∆H
R

(
1
T
− 1
Tm

)
= −∆H

R

(
Tm − T

T Tm

)
, T Tm ≈ T 2

m

≈ −∆H
R

(
Tm − T

T 2
m

)
⇐⇒

∆T = Tm − T = −RT
2
m

∆H
xAM (2.1.6)

From equation (2.1.6), it is seen that the melting point depression, ∆T , is
linearly dependent on the amount of anesthetic in the lipid membrane.

2.1.2 Partition coefficient

How well does it penetrate?

2for x � 1 holds ln(1− x) ≈ x
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If the melting point depression is indeed the mechanism for anesthesia, it is
important to determine this amount of anesthetic in the membrane. The ex-
perimental setup in this thesis utilizes membranes dissolved in a buffer. It must
then be established how much of the anesthetic is in the aquatic buffer, and how
much in the fatty membrane - this is defined by the partition coefficient, P :

P ≡ cAM

cAS
(2.1.7)

Where cAM is the concentration of anesthetic in the membrane and cAS is the
concentration of anesthetic in the solution/buffer. What needs to be known is
the molar fraction of anesthetics in the membrane xAM = nAM/nM , obtained
in known quantities. From the definition, it is easily seen that:

P =
nAM

nAS

VS

VM
=
nAM

nAS

ρMmS

ρSmM
(2.1.8)

Where n, V , ρ, m defines moles, volume, density, and mass with the subscripts
M , S to indicate whether it is membrane or solution properties. It is then used,
that the total molar amount of anesthetics is given by the combined amount in
membrane and solution nA = nAM + nAS :

P =
nAM

nA − nAM

ρMmS

ρSmM
⇐⇒

nAM = nA

(
1 +

ρMmS

ρSmM

1
P

)−1

=⇒

xAM =
nA

nM

(
1 +

ρMmS

ρSmM

1
P

)−1

(2.1.9)

Most of these quantities are known from the experimental setup, i.e. it is known
how much anesthetics, membrane and buffer is used. The only exception is P .
This parameter proved somewhat difficult to establish since it very dependent
on the type of lipids used, the type of buffer, and also for many anesthetics P
has a strong pH dependency.

The intention for this project was to combine equations (2.1.6) and (2.1.9),
and to experimentally verify that anesthetics change the melting point of the
membrane as a linear function of their added concentration, cA, - and thereby
render plausible the eutectic assumption. This was reasonable well achieved
(Sec. 4.1.2). The Meyer-Overton relation then implies that changes of the melt-
ing point must be given by the amount of anesthetic in the membrane - no
matter the anesthetic used. So from equation (2.1.6) it is seen, that plotting
∆T as a function of xAM should fall on the same line, regardless of anesthetic.
This collapse of data could not be achieved.

There is no reason to assume that the extensive collection of data by Overton
is not valid. Therefore there must be a culprit responsible for the missing
collapse in data. This culprit must be the partition coefficient, P , since it is the
only variable not given from the experimental setup. Only one of the anesthetics
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used had any partition coefficient given specific for DPPC. Therefore P s, for
all other anesthetics, were taken from the available system most like DPPC.
However, determining P from literature proved difficult, as it vary with more
than an order of magnitude between references (See table 5.1, page 84).

To try to determine the partition coefficient for the individual anesthetics,
photo-spectroscopy experiments were conducted (Sec. 3.2), though without con-
clusion.

If the eutectic assumption is good, and Overton’s data applies to the anes-
thetics in this thesis, partition coefficients can be calculated from data obtained
in these experiments. So in order to determine P , equations (2.1.6) and (2.1.9)
were combined while noticing nA/nM = xA

− ∆H
RT 2

∆T = xA

(
1 +

ρMmS

ρSmM

1
P

)−1

⇐⇒

1 +
ρMmS

ρSmM

1
P

= −RT
2

∆H

(
∆T
∆xA

)−1

⇐⇒

P = −ρMmS

ρSmM

(
RT 2

∆H

(
∆T
∆xA

)−1

+ 1

)−1

(2.1.10)

deduces P , when noticing that ∆T/∆xA is the slope of the line fitted from
plotting the melting temperature as a function of the fraction of anesthetics,
xA.

2.1.3 Pressure reversal

Push it.

Interestingly pressure shifts the melting temperature in the opposite direction
of anesthetic:

∆T = γV ∆p Tm (2.1.11)

With the pressure dependence γV Tm ' 0.025 [K/bar]. This result is valid for
most lipid, lipid mixtures, and biological membranes [22]. In section (4.1.3) it
will be experimentally shown, how pressure can also shift the phase transition
in lipids with anesthetics.

So anesthetic action can be reversed by adding pressure. The amount can
be determined using (2.1.11) with (2.1.6):

∆Tpressure = −∆Tanesthetic

γV ∆p Tm =
RT 2

m

∆H
xAM ⇐⇒

∆p =
RTm

γV ∆H
xAM (2.1.12)
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Where xAM can be determined from (2.1.9), or for experiments with large bulks
of water3, the partition coefficient, P , can be approximated as:

P ≡ cAM

cAS

≈ cAM

cA
=
nAM

nA

VW

VM
= xAM

nM

nA

VW

VM
=
xAM

cA

nM

VM
⇐⇒

xAM ≈ P
VM

nM
cA (2.1.13)

2.1.4 The Meyer-Overton Relation

From equation (2.1.13) the theoretical slope of the straight line in the Overton
data (Fig. 1.2) can be derived. Assuming again that it is a shift in melting point
that causes anesthesia, we have from equation (2.1.6) that this shift is linearly
proportional to xAM . Therefore, the left side of equation (2.1.13) is a constant
for the anesthetic condition and:

cA ∝ P−1 (2.1.14)

Which gives that the slope of partition coefficient as a function of anesthetic
concentration in a log-log-plot should be -1. This is indeed the slope found in
Overton’s data. And this relation is commonly known as the Meyer-Overton
Relation. The same proportionality can also be derived from equation (2.1.9),
only adding a very small constant.

There has now been presented a lot of theory that predicts and describes the
behavior of the the lipid membrane. Experiments which support and/or is ex-
plained by the theory derived are presented in chapter 4.

Now it is time to present the Nerve models.

3From equation 2.1.9 it can be seen that the exact requirement is that mS � mM · P .
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2.2 The Hodgkin-Huxley model

It is a fact that the nerve signal is associated with an electrical pulse. Classi-
cal experiments such as the contraction of frog muscles by applying voltage, to
modern measurements of electrical pulses in the brain (EEG) rely on this fact.
The Hodgkin-Huxley model (HHM) is a mathematical model based on electrical
assumptions [9]. The HHM was developed in the early 50s, and has since the 60s
been regarded as the model by a majority of the science community, especially
the medical.4

The basic concept of the HHM is that proteins embedded in the nerve mem-
brane act as channels, which transport ions from one side of the membrane to
the other, as seen on figure (2.4).
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Figure 2.4: The equivalent circuit representation of the Hodgkin-Huxley Model:
Gated protein channels in the biological membrane (picture left) represented
as an electric circuit (picture right). Difference in ion concentration across the
membrane generates a potential, EX . Opening of channels allows for conduc-
tance, gX , and flow of ions/current, IX . Ions not allowed through the membrane
act as capacitive current, IC , as the membrane act as a capacitor, CM .

There are specific channels for specific ions, and it is the ion concentration
on each side of the membrane that determines, if the transport flows from inside
the cell to outside or visa versa. The flow of ions, which have electrical charges,
is treated as an electric circuit. The electric pathways across the membrane
are the potassium channel, the sodium channel, and a leak current, the latter
being ions from other channels (e.g. calcium) or ions diffusing through the
membrane. The membrane is otherwise regarded electrically impenetrable and
as such functions as a capacitor. To generate the electric nerve signal, the ion
channels open and close according to the voltage across the membrane and with
respect to time.

The electric circuit (Fig. 2.5) is described by ten coupled differential equa-
tions, the primary one describing the circuit:

I = Cm
dV

dt
+ gK(t, V ) (V −EK) + gNa(t, V ) (V −ENa) + gL(V −EL) (2.2.1)

4All pictures of the HHM in this sections are adapted from the original article [9] by
Hodgkin & Huxley.
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Figure 2.5: The combined electric circuit of the Hodgkin-Huxley Model is made
from single circuits displayed in figure (2.4). Ions are sodium and potassium. L
represents ions leaking through the membrane.

I being the total current through and CM the capacitance of the membrane, V
the total voltage across the membrane, with EX representing the equilibrium
potential, generated by the difference in X-ion5 concentration from the inner
to the outer of the membrane, and gX the conductance of the associated ion
channel. The gK and gNa are functions of time and voltage in order to make
equation (2.2.1) match a measured nerve pulse. The gK and gNa are governed
by a total of nine differential equations that represent ’gating mechanics’ in the
proteins.

Evidently, for the nerve signal to be sent, billions of sodium and potassium
channels along the nerve will have to open and close in a correlated fashion [20].
And afterwards, a similar amount of ion pumps will have to work to restore
the ion concentrations on each side of the membrane in order for the nerve to
be ready for the next signal. This entire process must happen at tremendous
speed, since nerves can send signals up to around 120 m/s and up to hundreds
of times per second.

In the HHM, anesthetics act by binding to ion channels, thereby blocking the
channels and the nerve pulse [18]. The binding to the channels is suggested to
be aided by proteins surrounding the channels, but nevertheless binding sites
for all anesthetics are required to explain the sedative action! Even if binding
sites existed for all anesthetics, it would still be necessary to explain how these
can have binding affinities that are proportional to the solubility in oil, as the
Overton data imply.

The difficulties in explaining the action of anesthetics in the HHM is not even
the most serious problem for the model. Experiments conducted in the 80s sug-
gest that many assumptions on which the model rely, are not very accurate. For
one, Iwasa & Tasaki [19] measured that when a nerve signal pass a measuring
point, it is not only electrical but also accompanied by a thickening of the mem-

5L being not an ion, but the leak current.



CHAPTER 2. THEORY 21

brane. This contradicts the assumption in the HHM that the membrane has
a constant capacitance, since capacitance is reversely proportional to distance
of capacitor plates – the membrane boundaries. Even worse, Ritchie & Keynes
[20] measured that the nerve signal is accompanied by a heat release shortly
followed by a heat uptake of roughly the same size, as seen in figure (2.6).

Figure 2.6: The action potential is associated with heat uptake and release
(graph left, [19]) and thickness change of the nerve (graph right, [20]). Data
adapted by Heimburg [1].

The rapid energy release and uptake is a clear indication that the nerve sig-
nal is a reversible process and therefore consumes (ideally) no energy. This is
in conflict with HHM, which uses energy both to sustain the electric pulse, as
electric conductors produces heat, and to ’reset’ the system by re-establishing
the ion concentration difference across the membrane.

To sum up – The Hodgkin-Huxley Model (HHM) is an intricate mathematical
model which only depends on voltage and ion concentration difference across
the membrane. It does not describe temperature, pressure, thickness changes,
heat release and uptake, or anesthetic action in the membrane. Therefore it is
time to introduce the Soliton Model.
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2.3 The Soliton Model

60 km of electrical wiring, or 60 km of soft fatty springs -
what are ’the human nerves’?

This section will present the Soliton model as proposed by Heimburg and Jack-
son (2005) [1].

Their motivation for proposing this new model stems from the evident in-
ability of the Hodgkin-Huxley model to explain key features of the nerve pulse,
as mentioned in Sec. (2.2)

The intention of the soliton model is to create an adiabatic wave theory, given
that Ritchie and Keynes showed in 1985 [20] that the nerve pulse is isentropic,
and Iwasa and Tasaki showed in 1980 that the nerve pulse is accompanied by a
density pulse [19]. Taking this approach, the first obvious step is to consider a
wave equation.

∂2f

∂t2
=
∂f

∂x

(
1
c2

∂f

∂x

)
(2.3.1)

The medium that caries this wave can only be the cellular membrane. The func-
tion, f , in (2.3.1) is then recognized as the area-density, ρA, of the membrane.
The sound speed is related to the density and compressibility of a medium by
c = (κA

S ρ
A)−

1
2 :

∂2

∂t2
∆ρA =

∂ ∆ρA

∂x

(
1

κA
S ρ

A

∂ ∆ρA

∂x

)
(2.3.2)

The introduced κA
S is the area-compressibility of the membrane, which is also

dependent on the density of the membrane. The S subscript on κ indicates
that it is the adiabatic compressibility. How density and compressibility cou-
ples to each other and to the experiments conducted within this thesis, will
be explained a little later. Firstly, it should be noted that the wave-equation
is 1D, but is containing area-density and area-compressibility. This becomes
valid if assuming that the soliton propagates uniformly along the nerve - like
a ring along a cylinder. Secondly, the propagation velocity of waves is depen-
dent of their frequencies, this will also be discussed more in-depth later, but a
consequence is that a dispersion term must be added to the wave-equation [1]:

∂2

∂t2
∆ρA =

∂ ∆ρA

∂x

(
1

κA
S ρ

A

∂ ∆ρA

∂x

)
− h

∂4

∂x4
∆ρA (2.3.3)

It is then advantageous to change to a co-moving coordinate system by substi-
tuting z = x− vt, with v as the propagation velocity.

v2 ∂
2

∂z2
∆ρA =

∂ ∆ρA

∂z

(
1

κA
S ρ

A

∂ ∆ρA

∂z

)
− h

∂4

∂z4
∆ρA (2.3.4)

This is the Soliton equation on which the Soliton Model is based.
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As evident from equation (2.3.4), a soliton is dependent on the compressibility of
the membrane, and it can be shown by means of thermodynamic equations and
Maxwell’s equations (Appendix A.1, [25]) that the isentropic compressibility of
the lipid membrane is given by:

κA
S = κA

T,0 +
γ2

AT

〈A〉
∆cP −

T

〈A〉 cP (ω)

(
dA

dT

)2 ∣∣∣∣
PA

(2.3.5)

where κA
T,0 are the isothermal compression not associated with the phase transi-

tion. γA is the proportionality factor between the change of area and the change
of enthalpy, ∆A(T ) = γA∆H(T ). 〈A〉 is the mean area. ∆cP is the excess heat
capacity. cP (ω) is the frequency dependent heat capacity. And (dA/dT )2PA

is
the derivative of area with respect to temperature, at constant lateral pressure.

The cP (ω) is the source of dispersion in the membrane, as it is dependent
on frequency, ω. However, measurements of cP (ω) has only been carried out
in the megahertz regime, an order of magnitude higher than the frequencies
of solitons. For very low frequencies, where timescales are on the order of the
relaxation time of the membrane, the water surrounding the membrane will
absorb heat. When the water acts as heat reservoir, the heat capacity becomes
large and equation (2.3.5) can be approximated by:

κA
S ≈ κA

T,0 +
γ2

AT

〈A〉
∆cP (2.3.6)

This approximation is used when calculating compressibility of the membrane,
the frequency dependence is expressed in the dispersion term h ∂4∆ρA/∂z4.

It is seen from equation (2.3.6) that the nonlinearity of κA
S is only accessible

in the phase transition. Curiously, a lot of biological membranes have melting
points just around the ’body’ temperature of the animal hosting them [15], as
for example the bovine lung surfactant in figure (2.3).

This project has focused on numerical integration of equation (2.3.4), using
data obtained from differential scanning calorimetry measurements (presented
in section 3.1). From these calorimetry measurements ∆cP is obtained, and
compressibility calculated from equation (2.3.6). κA

T,0, γA, and 〈A〉 are taken
from literature. The key feature is that κA

S displays nonlinear properties around
the phase transition of a bio-membrane, this enable solitons to propagate. (Fig-
ure 2.7)

2.3.1 The analytical solution

The SM-equation (2.3.4) can be solved analytically [1, 26] if the speed of sound
in the membrane is approximated by:

c2 =
1

κA
S ρ

A
= c20 + p ∆ρA + q (∆ρA)2 + . . . (2.3.7)
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Figure 2.7: Sound speed, c2 = (ρAκA)−1, is dependent on density, ρA, area
compressibility, κA, and frequency (picture left). In effect: Non-linear properties
of the nerve membrane in phase transition regime sustain stable density waves
–Solitons– (picture right) given by equation (2.3.4). From Heimburg, Jackson
[1]

So substituting (2.3.7) to second order into (2.3.4) and integrating on both sides.

v2 ∂

∂z
∆ρA =

(
c20 + p ∆ρA + q (∆ρA)2

) ∂ ∆ρA

∂z
− h

∂3

∂z3
∆ρA

Integrating once more:

v2 ∆ρA = c20 ∆ρA +
1
2
p (∆ρA)2 +

1
3
q (∆ρA)3 − h

∂2

∂z2
∆ρA (2.3.8)

Multiplying each side with ∂(∆ρA)/∂z and integrating:

h

(
∂∆ρA

∂z

)2

= (c20 − v2) (∆ρA)2 +
1
3
p (∆ρA)3 +

1
6
q (∆ρA)4 (2.3.9)

If ∆ρA(z) is to have any localized solutions, it must display a maximum, which
is equivalent to ∂(∆ρA)/∂z = 0. Equation (2.3.9) gives some limits of the
solutions. While there is a natural upper limit on the velocity of the solitons,
given by the sound speed in the membrane c0 ≥ v. The lower limit of v is given
when there is only one solution of quadratic equation from the right side of eq.
(2.3.9)

v2
limit = c20 −

p2

6q
(2.3.10)

which also yields a maximum amplitude of the soliton

∆ρA
max,limit = −p

q
(2.3.11)
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An analytical solution for solitons was found by Lautrup [26]:

∆ρA(z)
ρA
0

=
2a+a−

(a+ + a−) + (a+ − a−) cosh
(

z
h

√
c20 − v2

) (2.3.12)

a± = −p
q

(
c20 ±

√
v2 − v2

limit

c20 − v2
limit

)

The analytical solution and the polynomial approximation are compared to the
numerical method used throughout this thesis in section (3.4).

Because the energy to change phase of the membrane is known, the energy of
compression is handedly calculated. The soliton presses the membrane through
the phase transition, the amount given by the change in area density. The total
compression is the integral of ∆ρA(z)/∆ρA

PT over dz. Where ∆ρA
PT is the total

change in area density of the membrane when going through phase transition,
for DPPC ∆ρA

PT /ρ0 is ≈ 24%. The integral is then multiplied with the total
change in enthalpy, ∆H, as measured by calorimetry. This gives the energy
to compress the membrane into a soliton, but does not include the kinetic or
capacitive energy.

Heimburg and Jackson calculated the mechanical energies by a Lagrangian
formalism [1] and concluded that these are at least an order of magnitude larger
than the capacitive energy, but two orders of magnitude less than the heat en-
ergy produced by compression.

The Soliton theory might at a first glance seem a bit exotic. But solitons are
found in many physical systems, and have been of interest to many up through
history. Therefore the next section is a short introduction to solitons in general.

2.3.2 A little soliton history

The term ’Soliton’ was coined by Zabusky & Kruskal in 1965 [27] as a stable,
localized wave with non-linear interactions in the Korteweg-de Vries equations,
which originated in 1895 [28]. Korteweg and de Vries themselves, having derived
the equation with the purpose of showing these solitary waves, had named them
’cnoidal’ waves, but it was the soliton name that stuck. The soliton equation of
Heimburg and Jackson is however of the Boussinesq type, which originated in
1871 [29]. And thus having name dropped back through history, we will start
from the beginning. . .

On a beautiful August day in the year 1834, the 26 year old Professor of Nat-
ural Science at the Edinburgh University - Mr. John Scott Russell came riding
along the English Canal in Edinburgh. That day he was riding along a towboat
drawn by horses, when suddenly the cables between horses and boat snapped
and the boat slowed quickly to a halt. Mr. Russell took notice of the bow wave
of the boat, which seemed to release itself from the bow and continued on its
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own down the canal. By his own accord, he followed this wave for nearly three
kilometers down the canal, without it changing size or speed [30]. Russell was
so fascinated by this event that he devised and carried out a number of exper-
iments with regard to this wave before initially reporting on it in 1837, where
he named it: ”The Great Wave of Translation”.

Professor Russell claimed that this ”solitary shallow water wave” that he
had observed and experimentally verified could not be explained by the ordinary
wave equation

∂2f

∂t2
= ω2 ∂

2f

∂x2
(2.3.13)

where the speed of a stable wave is only determined by the width of the wave,
as opposed to Russell’s experiments that required dependence on the amplitude
as well.

It should be more than 30 years before Russell’s wave would get a mathe-
matical description.

∂2h
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∂2h

∂x2
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∂2
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[
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2H
+
H2

3
∂2h

∂x2

]
(2.3.14)

is the Boussinesq equation [29] from 1871, which describes how the displacement
of the watersurface, h(x, t), in a shallow canal of constant depth, H, under the
influence of earth gravitational field, g, behaves. This equation has solutions of
type that describes solitary waves.

In 1895 Diederek Korteweg and Gustav de Vries derived an equation (KdV)
[28] for shallow water waves which included viscosity and surface tension. This
equation showed solutions of the same form as the Boussinesq equation. It was
in the normalized KdV equation

∂φ

∂t
+
∂3φ

∂x3
+ φ

∂φ

∂x
= 0 (2.3.15)

that Zabusky & Kruskal in 1965 discovered stable solitary solutions for colli-
sionless plasma and named them ”Solitons” [27].

This also marks the starting point of a verbal conflict, since nowadays the
term ’soliton’ is used by many as a reference only to a stable localized wave,
like in the original paper on the Soliton model [1]. However, already in the
1965 paper Zabusky & Kruskal imposed some extra conditions which have been
further expanded by other modern mathematical physicists.

The mathematical definitions are without specific importance for this thesis;
nevertheless, it should be noted that the stable and localized properties of the
SM-equation has been shown by B. Lautrup [26] and some additional solitonic
behaviors by A. Ludu [31]. Therefore the ’solitons’ of the SM are very plausible
to be solitons - also according to the strict mathematical definition.

It was earlier loosely stated that the SM-equation is of the Boussinesq type.
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That statement is precisely valid for the parabolic approximation of the com-
pressibility. Which was expressed in a normalized form

∂2ψ

∂t2
=

∂

∂t

((
1 + αψ + βψ2

) ∂ψ
∂x

)
− ∂4ψ

∂x4
(2.3.16)

that lead to the analytic solutions, as solved by Benny Lautrup [26]. Equation
(2.3.16) can then be compared to the normalized Boussinesq equation:

∂2ψ

∂t2
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∂

∂t

(
(1 + αψ)

∂ψ

∂x

)
− ∂4ψ

∂x4
(2.3.17)

The addition of a higher order term in the SM is the only difference. There
exist more than 30 recognized equations of Boussinesq-type, characterized by
additions or small modifications of the original one. To add a higher order term
could be termed ’close’ family between Boussinesq and SM. Especially since the
Boussinesq were derived using low order terms of Taylor-expansions6.

Soliton equations in general are wave equations with nonlinear terms. These
nonlinearities might be entirely mathematical but some can be constructed in
physical systems. In 1973 it was discovered that these nonlinearities could be
incorporated in optic fibers [32]. To send stable localized light waves over long
distances was very helpful to the information industry - sometimes referred to
as the ’World Wide Web’.

Soliton has also be proposed to exist in tidal waves, tsunamis, vortices in
water as well as in the fabric of space, cloud formation, quantum physics and
many more systems.

6in the velocity field and stream function - the full derivation is rather lengthy and beyond
the scope of this thesis.
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2.4 Computer Simulations

Where I’m the God of little colored balls!

Computer simulations have for a long time been important for practically all
branches of science. Membrane physics is certainly no exception. A wide va-
riety of techniques are implemented to simulate every thinkable property of
membranes and proteins integrated in or adhered to membranes.

This section will shortly review a few methods of simulation both to empha-
size the power of computer simulation, but even more to give an idea of why I
chose to create a bastard model.

The ultimate way of simulating is to mimic reality. This is done by many groups
in various ways. They deploy a multitude of algorithms commonly referred to
as Molecular Dynamics Simulations (MDS). MDS includes every atom an every
bond in the lipids of the membrane, and it also includes water surrounding the
membrane. When having these basic things in place, they can then add ions to
the water phase or proteins to the membrane or put an electrical field across
the membrane. These simulations are a rich source of information, as well as
extremely beautiful (Fig. 2.8). The drawback is that it take months on su-
percomputers to calculate nanoseconds of time with only a few hundred lipids.
That this method is unfeasible for exploring the phase transition is shown by the
research of Seeger [33], who showed that relaxation times of the phase transition
is of the order of milliseconds.

The other extreme, and the simplest way of simulating lipids, is the Ising
two-state model. This is a often used model, as it has a wide range of applica-
bility, and can just as well represent spin states in metals as lipids states in
membranes. The principals of such a model is to place ’lipids’ in a triangular
grid, allowing them only to be fluid or gel-state and only to interact with their
nearest neighbors. This may sound incredibly simple and uninteresting, but
there is lots of information retrievable from such systems, as will be demon-
strated in the next section. The advantage of such simulation is that they are
fast and can be carried out with a large numbers of lipids. In addition, it is very
easy to switch between lipid types and to apply external fields.

In between MDS and the Ising-model there is a large variety of simulations
of different complexity to be found. One example would be pressure simula-
tions by Cantor [34], who simulates the pressure profile in the lipid membrane,
to demonstrate how channels might open and close, according to how added
anesthetics change the internal pressure.

Many questions about the membrane and the action of anesthetics therein
are unanswered - Like how does size or chirality influence function of anesthetics,
where the anesthetics adhere, and do they induce holes in the membrane and
so on. Therefore the intend of this author was to create a model somewhere
in between MDS and the Ising model. To construct an environment where all
these questions could be answered. And to take use of the simplicity of the Ising
model, and then expand it with free movement, with variable size lipids, with
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Figure 2.8: Molecular Dynamic Simulation of a DPPC (grey) and Cholesterol
(green) bilayer in water. Parts of the membrane have been removed to improve
visibility. By Helmut Heller, LRZ Munich.

anesthetics of different sizes and chirality.
The resulting Bastard model is conceptually based on the ”Random-lattice

model for phase equilibria in two-dimensional condensed systems of particles
with coupled internal and translational degrees of freedom” by Nielsen [35] which
is based on the theory of Doniach [36]. Nielsen et al have successfully simulated
nearly free-moving lipids and thereby been able to show and conceptualize the
pre-phase transition in simulated systems. The Nielsen-model, however, did
not present parameters that would make possible comparison of their model
to real lipid systems. The model was not based on true free motion, and the
lipid interaction was basically still a discrete interaction. The intention of the
bastard approach was to create a model with completely free-moving lipids,
with continuously change of size, that would replicate the characteristics of
experiments. Then one can target the questions mentioned above and maybe
also show some results on how anesthetics influence the pre-transition, as this
is also an area in which many theories have their say [25, 37]. In hindsight this
task was probably to big for a master thesis, but some goals were nevertheless
achieved, and the future prospect of this approach should not be neglected.

2.4.1 Monte Carlo Simulations

When simulating membranes it is important to notice that the size of the mem-
brane system is so small that brownian motion is a noticeable effect. So when
simulating, the endstate is not one static solution, but a dynamic equilibrium
where everything fluctuates around the most likely state. In fact many of the
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results of the simulations are extracted from these fluctuations. To ensure that
fluctuations are present in the simulations, it is necessary to use a technique
that does not rigorously lead the system towards an energy minimum or en-
tropy maximum. Such a technique is a Monte Carlo Simulation (MCS) with a
Metropolis Algorithm (MA) [38] or Glauber Algorithm (GA) [39].

A Monte Carlo Simulation is carried out by starting with a random selection
of a chosen specimen. In the simple 2-state case this is equivalent to starting
with placing a number of lipids on a 2D triangular lattice. These lipids are
randomly assigned to be either in a gel or a fluid state. This is then portraying
a monolayer membrane.

Next a series of Monte Carlo steps are taken. A Monte Carlo step is to
randomly select objects and evaluate if they can change according to internal and
external parameters. Within the framework of lipid membranes this corresponds
to: Randomly selecting a lipid. Then, given parameters such as temperature,
pressure, and neighbors state, is the lipid then likely to change from gel to fluid
or visa versa - this is the ’melting step’. The likelihood of a change to happen
is decided by the Metropolis or Glauber Algorithm.

Most MCSs of lipids also include a ’switch step’. This step is to randomly
select two lipids and evaluate if switching position of these two lipids is favorable.

The Bastard model also includes an ’area step’, which tests if a random
change of the area available to the lipids is desirable. And a ’move step’ that
moves lipids relative to each other.

The length of a Monte Carlo Simulation is in this thesis referred to as Monte
Carlo Cycles per Temperature step (MCCT), as depicted in Fig (2.9). In a
system of N lipids, 1 Monte Carlo Cycle (MCC) is equal to N melt steps, N
move steps7, and in case of the Bastard model also 10 area steps.

MCS is the basis of all the simulation methods mentioned in Sec. (2.4),
only the number of accessible states and according steps vary. For instance the
Molecular Dynamics Simulations would include state/steps to describe e.g. the
interaction of atoms in the molecules8.

There are two formal requirements on MCS being:

Ergodicity: Every configuration of the system must be accessible. In the 2-
state lipid membrane model this determines that any ratio of gel to fluid lipids
must be able to be produced by the simulation. This requirement says nothing
about the probability. That the membrane might be fully made up of gel far
above the melting temperature must be possible, albeit unlikely.

Detailed balance: The likelihood, LA, of being in a given state A, times the
probability of switching to a different given state, PA→B , must be equal to the

7The ’move’ step does in some of the simulations also include a ’switch’ step.
8Not fully expressed by quantum mechanics, but approximated by Hookian springs.
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Figure 2.9: Monte Carlo Simulation flowchart for one temperature step of the
continuous attached model.

likelihood of being in state B times the probability of switching back, PB→A:

LA PA→B = LB PB→A (2.4.1)

If this requirement is not fulfilled, the system will ’drift’ towards a non-equilibrium
state.

Just having a system of hundreds of lipids moving around changing phases
and so on, is slightly less than required to mimic the membrane [40]. In order
to get some information from the system, it is imposed on the system to be
a Boltzmann distribution as a function of Gibbs free energy. Such that the
obtained results are among the likely that would occur, if this was a real system.
This is obtained when:

LA

LB
= e−(GA−GB)/RT (2.4.2)

Hence, the probability of changing state must be a function of the Boltzmann
factor PA→B = f

(
e−∆G/RT

)
and while fulfilling detailed balance:

LA

LB
=
PB→A

PA→B
= e−(GA−GB)/RT (2.4.3)

which yields for f(x) where x = e−∆G/RT :

f(x)
f(x−1)

= x (2.4.4)
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The method, f , which decides the probability to change state is optional as long
as it fulfils the requirements above. The most widely used are the Metropolis
Algorithm [38] and the Glauber Algorithm [39].

Metropolis f(x) = min{1, x}, f chooses whatever is the lowest value: 1 or x.
This algorithm sets the probability of going from higher to lower Gibbs
free energy equal to one, which drive the system fast towards equilibrium,
but increases the risk of ’trapping’ the system in a false energy minimum.

Glauber f(x) = x
1+x . This algorithm determines that the system to go from

high to low energy or visa versa with equal possibility.

for this project the Metropolis Algorithm was the most used, since simulations
were on the timescale of days, a high drive towards equilibrium was favorable.

Collecting data from the simulations is primarily to record the fluctuations
around equilibrium. The heat capacity profile is obtained by recording the en-
thalpy, H, after each MCC, and then use:

cP =
d〈H〉
dT

∣∣∣∣
P

=
〈H2〉 − 〈H〉2

RT 2
(2.4.5)

when all MCCT is done to determine the cP of the given temperature step (2.4.5
derived in Appendix A.1). The entalpy, H, used to calculate the heat capacity
includes all non-entropic terms of the Gibbs free energy equations describing
the systems.

To obtain good statistics, simulations always run approximately 10% ex-
tra MCCT in the beginning, to let systems equilibrate, before recording data.
Snapshots of the lipids are easily produced as the simulation knows the place
of every lipid at all times - in principle films could be made of the building up
and fluctuations of domains.

2.4.2 Static grid Ising model

The traditional way of simulating lipid membranes invokes placing the lipids on
a static 2D triangular lattice.

Lipids are only found in their gel or fluid state, this is an interpretation of
the spin-Ising model, with an energy function given by Sugar [40]:

∆G = ∆H − T∆S + ∆Nω (2.4.6)

Where ∆G is the change in Gibbs free energy, ∆H and ∆S are respectively the
change of enthalpy and entropy of the phase transition, T is the temperature,
and ∆N are the change in the number of interactions between gel and fluid lipids
where ω is the interaction energy (Fig. 2.11). Gibbs free energy is chosen since
it is by definition is at minimum when temperature and pressure are constant.

The thermodynamic variables, ∆H and ∆S, can be derived from calorimetric
measurements. H is measured directly by the calorimeter as the added thermal
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Figure 2.10: 2-state Ising static grid simulation at melting point, Tm = 41◦C.
Red balls represent gels, green balls represent fluids.

Figure 2.11: Arrows indicate interactions between lipids of different state. Here
the number of interactions are N = 7. If the red gel in the lower right corner is
changed to a green fluid, then ∆N = 1 given that two interactions are removed
and one is created.
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enthalpy, and ∆H is determined as the enthalpy difference between the gel and
fluid state of the system, equivalent to the total excess heat capacity of the phase
transition.9 In order to determine ∆S, the following will have to be established
for the energy equation, when at a specific temperature, Tm:

∆G = ∆H − Tm∆S ≡ 0 =⇒ (2.4.7)

∆S =
∆H
Tm

(2.4.8)

The Tm is specified to be the temperature where it is equally possible to be in
the gel as the fluid state. ∆G, when given in units of [J/mol], is equal to ∆µ, the
chemical potential. ∆µ is per definition equal to zero at Tm. Therefore ∆G ≡ 0
in equation (2.4.7). At melting temperature, Tm, ∆N must also be zero. Since
it is equally possible to change lipids from fluid to gel, it is also equally possible
to change from more to less gel-fluid interactions, and on average the change
will be zero. To put it in mathematical terms: It can be noticed that in both a
total fluid and a total gel state of the system has N(Tg, Tf ) = 0, there are no
interactions between gel and fluids. And N(Tm) = max, the maximum numbers
of interactions, must be where there is a maximum of different lipids. Hence
N(T ) is a function with an extremum at Tm and limT→Tm

∆N
∆T = 0. Thus ∆S

can be expressed by ∆H and Tm as given by (2.4.8).

The size of ω determines the cooperativity of the membrane. That is, the
higher ω the more favorable it is for lipids of same phase to be next to each
other. The result is a narrowing of the temperature range wherein the change
from gel to fluid state takes place, which ensures a narrower heat capacity pro-
file. Thus, ω is adjusted so the simulated heat capacity mimics experiments.
The cooperativity parameter for the static grid was adjusted to 1326 J/mol.

A high cooperativity of the membrane also induces formation of gel and fluid
domains as seen on figure (2.10).

That the lipids are confined to a static grid does not mean that they can-
not move. The move step of the Monte Carlo Cycle is in the static grid model
equivalent to switching position of two random lipids. This might seem obsolete,
since it is either the same as two phase changes - if the two selected lipids are of
different phases. Or status quo - if the lipids are of the same phase. However,
this move step decreases the simulation time needed to reach equilibrium, with
nearly a factor of 10.

When visualizing the simulation ’lipids’, what is shown is a square box of
lipids like in figure (2.10). The lipids do not ’feel’ this box as the program
emulates periodicity – that is, lipids on the right edge of the ’box’, have the
lipids of the left side of the ’box’ as neighbors. The same happens at the top
and bottom of the ’box’. Implementing periodicity is to avoid ’edge effects’ – if
4
√
n of n lipids in a simulation have a different amount of neighbors than the

9excess meaning that it exceeds the enthalpy of simply heating, and only being the heat
capacity of the actual phase transition.



CHAPTER 2. THEORY 35

rest, it would have a profound influence on the outcome.

Adding anesthetics to the simulation is done with the assumptions of the eu-
tectic model, see Sec. (2.1.1), which is assuming that anesthetics are miscible
only in the fluid phase of the lipids. The simplest way to achieve this is to let
lipids act as anesthetics by only allowing them to be in their fluid phase. This
method is very easy to implement and the results follow nicely the predicted
melting point depression given by Eq. (2.1.6). Anesthetics can be added as a
separate species in the simulations, but this will not change the phase transition
noticeably, only induce domain formations of anesthetics.

In Static grid Ising models introducing an external pressure is done by adding a
pressure term γV p Tm,∆p=0 ∆S to the energy equation (2.4.6). Where γV is a
experimentally derived constant, and Tm,∆p=0 is the melting temperature with
zero added pressure.

∆G = ∆H − T∆S + ∆Nω + γV p Tm,∆p=0 ∆S
= ∆H + (γV p Tm,∆p=0 − T ) ∆S + ∆Nω (2.4.9)

Wherefrom it can be seen, that the pressure term is mathematically equivalent
to nothing else than a shift in T . This means that all results obtained with
pressure are identical to those obtained without pressure, except for the shift in
temperature.

2.4.3 The Bastard model

I did it my way. (- And I really tried coming up with a better name.)

In creating a new simulation model there was an idea of wanting to address
some questions regarding the membrane and the role of anesthetics in the mem-
brane, like: Can the change of permeability during phase transition be seen in
simulation? Can diffusion times be replicated? What is the influence of the
size of anesthetics? How to explain the different potencies of chiral anesthetics?
Does anesthetics have preferred sites of attachment? How do anesthetics affect
permeability and compressibility? These are just a few question that would be
very interesting to answer.

To answer these questions, a long programming period was spent on estab-
lishing the basic concepts of what was needed in this expanded Nielsen-model.
And even more time on fitting the new parameters introduced. Firstly, the
lipids needed to be able to move around freely and to change size according to
their phase. This prompted an interaction formula for the lipids and that the
size of the system needed to be able to change. Inspiration was taken from the
Nielsen-model [35]. The resulting Gibbs free energy equation consists of con-
tributions from the lipids melting, ∆Gmelting, interaction between neighboring
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lipids, ∆Ginteraction, and energy of area change, ∆Garea:

∆Gtotal = ∆Gmelting + ∆Ginteraction + ∆Garea (2.4.10)
∆Gmelting = ∆Hmelting − T∆Smelting

∆Ginteraction = ∆Nω + ∆
∑

γfLJ(a, r)

∆Garea = pA∆A−RT∆ ln(A)

∆Hmelting and ∆Smelting describes the melting enthalpy and entropy not as-
sociated with movement and area change - that is primarily the melting of the
lipid chains. N is the numbers of interactions between neighboring gel and flu-
ids, where ω denotes the interaction of neighbors not associated with moving
and melting. γfLJ(a, r) represent the in plane interaction between lipids, to be
described in detail later, pA is the lateral hydrophobic pressure in the membrane
and ∆A is the change of area of the system.

The Bastard model can be though of as little cylinders representing the lipids,
as it is depicted in figure (2.12).

gel fluid

Figure 2.12: In the bastard model lipids are represented in the simulation by
little cylinders. These ’artificial lipids’ change their area during phase transition
to mimic real lipids.

When ’melting’ the cylinders change area with the same ratio as DPPC.
These ’artificial lipids’ are then let loose to move around and interact with each
other according to the Gibbs free energy equation (2.4.10).

The ∆Gmelting is in the cylinder picture equivalent to the free energy needed
to change from a tall thin cylinder to a small wide, if it had no neighbors. The
∆Ginteraction are divided into two interactions: ∆

∑
γfLJ(a, r) is the way the

cylinders ’feel’ the distance between them. And ∆Nω is how they ’see’ the
height difference. ∆Garea regulates the size of ’the playground’ for the cylin-
ders.
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The Bastard model is as before mentioned loosely based on the Nielsen-model,
which represents the interaction of nearly free moving lipids with a two-step
model that approximates a Lennard-Jones potential. The Bastard model uses
a full Lennard-Jones potential to evaluate interaction of freely moving lipids.
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Figure 2.13: Lennard-Jones potential and 2-step approximation of same. These
potentials ensures that the favorable position of ’lipids’ in the simulation, is
right next to their neighbors – thus mimicking the lipophilic behavior of lipids.
When a lipid move, this interaction potential will be evaluated for each of its
neighbors. γ is the strength of the potential. r is the distance between the
centers of lipids. And a is the combined radius of the two neighboring lipids,
a = r1 + r2. Fractured line represent cut-off in the Nielsen-model.

The reason for choosing the Lennard-Jones potential is its simplicity:

fLJ(a, r) =
((a

r

)12

− 2
(a
r

)6
)

(2.4.11)

where r is the variable and a is a parameter that gives the location of the mini-
mum. The lipids interact by means of this potential, i.e. two lipids approaching
each other will have their distance between centers, r, and their combined ra-
dius, r1 + r2 = a, evaluated. With this approach the favored position of two
lipids will be exactly next to each other. The proximity of the lipids mimics
their natural lipophilic behavior; however, if the strength of fLJ given by the
parameter γ is too strong, the membrane will attain crystalline structure above,
as well as below the melting temperature. A crystalline structure above the
melting point is not desirable, since it is well known that the diffusion constant
in gel compared to fluid state vary by orders of magnitude [57].

The introduction of moving lipids leads to some grave considerations on their in-
teractions. In the simple statical grid simulation the interaction energy, ω, is the
only unknown variable. This interaction energy is equivalent to the hydrophobic
pressure felt by lipids, which have not fully screened their hydrophobic parts.
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The free movement in the Bastard model introduces two new parameters
namely the strength of the Lennard-Jones-potential and a lateral pressure in
the system - γ and pA. These two unknown and presumably not theoreti-
cally deductable variables make up for the total lateral hydrophobic pressure.
Whereas ω represent the remaining interactions with neighboring lipids, pri-
marily consisting of the vertical hydrophobic pressure, see figure (2.14).

gelgelgelgel fluidfluidfluidfluid
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hydrophobic hydrophobic hydrophobic hydrophobic 
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hydrophilic hydrophilic hydrophilic hydrophilic 

regionregionregionregion

hydrophilic hydrophilic hydrophilic hydrophilic 

regionregionregionregion

gelgelgelgel fluidfluidfluidfluid
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energy by:energy by:energy by:energy by:
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Figure 2.14: When neighboring lipids are of different state, or not situated
next to each other, they expose hydrophobic regions to the water surrounding
the membrane. The lipids can reduce this exposure by moving closer to each
other and/or changing state. Reducing exposed regions in the simulations is to
minimize Gibbs free energy, represented by ∆Ginteraction in equation (2.4.10).
The horizontal interaction is represented by a Leonard-Jones potential depicted
in figure (2.13). The remaining interactions are represented by the interaction
energy ω, these are primarily the vertical exposed regions.

The lateral pressure, pA, serves an extra purpose, namely to prevent the
system from exploding. That the membrane tends to expand if no pressure
is present is an entropic effect, represented by the term RT∆ ln(A). A larger
system makes more space/states available for the lipids thus increasing entropy.
In vivo the membrane does not explode, again because of the lipophilic na-
ture of the lipids. In the Gibbs free energy equation the lipophilic behavior is
given by the hydrophobic pressure term, pA∆A, which prevents the system from
uncontrollable expansion. And γ which keeps lipid neighbors close.

In effect: γ together with pA are parameters to adjust the ’tightness’ of the
membrane - the larger pA and γ the less movement of the lipids.

In equation (2.4.10), ∆Gmelting resembles the first two terms of the static grid
model (Eq. 2.4.6), but since the translational energy and the energy of area
change have been expressed explicitly, the relations of these parameters at Tm
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are

∆H = ∆Hmelting + ∆
∑

γfLJ(a, r) + pA∆A (2.4.12)

∆S =
∆H
Tm

= ∆Smelting +R∆ ln(A) (2.4.13)

with ∆H, and ∆A being experimentally determined, ∆Smelting can be derived
from (2.4.13), and (2.4.12) sets boundary conditions for the unknown parame-
ters ∆Hmelting, pA and γ. That ∆Nω is omitted from eq. (2.4.12) is given the
same arguments for omitting it in eq. (2.4.7).

When lipids melt, they change their size, as mentioned in Sec. (1.2). The influ-
ence on this size-change on the simulated system was of great concern. There-
fore, as the program developed, two different approaches emerged which com-
binatorial gave rise to four different program behaviors. The first was whether
to use a 2-state or a continuous melting behavior of the lipids. The second was
whether size should influence melting or not - a decoupling of the parameters.

The reason for creating these different variants was to explore how the inter-
action parameters influence especially the melting point and the equilibration
time. Decoupling parameters in practice is to evaluate parts of the energy equa-
tion in separate turns.

The first behavioral type is the most similar to the regular 2-state static grid
Ising model, in the sense that it is 2-state and that melting is only dependent
on neighboring lipids state. Movement of the lipids is evaluated only on basis
of the distance to neighboring lipids.

The second behavioral type is 2-state with coupled area and melting, that
is the full free energy equation (2.4.10) is evaluated for every state change.

The third and fourth behavioral types are similar to the first two except that
the lipids may change state in a continuous manner, which is done by multiplying
the ∆Gmelting term with a fluidization parameter, f , ranging from 0, gel state,
to 1, fluid state. And also letting the radius a lipid being proportional with this
parameter, rlipid = rgel(1 + f∆rgel→fluid), as seen in figure (2.15).

It seems obvious that a 2-state system should equilibrate faster due to the
fewer possible states. However, this advantage might be offset if lipids of gel
state have no space to expand into fluids. If membrane surrounding a lipid is
in relative equilibrium – fitting tightly around the lipid – then expanding fully
at once becomes less plausible. In this case it might reduce simulation time to
decouple the phase change from the spatial interactions.

When lipids can change continuously to any size, it might however speed up
the simulation to couple size and melting. When the overall area changed by
small amounts, the system will be driven towards equilibrium much faster by
added incitement from the coupled interactions.

In the data section (4.2) results will be presented for the 2-state with de-
tached energy of movement and the continuous melting with attached energy of
movement model.
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gel fluid

Figure 2.15: In the bastard model lipids are represented in the simulation by
little cylinders. These ’artificial lipids’ change their area during phase transition
to mimic real lipids. This can be done as a 2-state model depicted in figure
(2.12), or continuously as in this figure.

If diffusion of single lipids is not desired to track, introducing a switch move
similar to the one used in static grid simulation drastically lower simulation
times. If fluctuations have been measured in previous simulations, information
on fluctuations may be used to introduce a multiple switch mode to further
decrease simulation time.

A multiple switch mode could be defined as follows: For a given temperature,
T1, the fluctuations in the number of particles in a given state is known from
previous simulations, NF (T1). When running a similar simulation let the pro-
gram find a random number, 1 ≤ x ≤ 1

2NF (T1), of lipids to switch. The upper
limit of 1

2NF (T1) is an estimation, and should be optimized by experiment.
The ideal use for a multiple switch algorithm is to run an initial simulation

with few temperature steps and then interpolate a fluctuation function, NF (T ).
Then the simulation can be repeated in greater detail and fast by implementing
the algorithm. Another use may be when observing a shift in the phase transi-
tion, either by anesthetics or pressure. After one simulation, a predicted shift
can be calculated, which may be more rapidly verified by using the multiple
shift algorithm.

Since the multiple shift algorithm is only proposed and was never imple-
mented, the effectiveness can only be estimated. Based on the experience that
the single switch mode speed up simulation by an approximate factor 10, a cau-
tious estimation is that the multiple switch algorithm may reduce simulation
time by a factor of 2-10.

The program is structured to easily implement rotational freedom and thus
explore effects of chirality, in particular domain formation of lipids and potency
of stereo-isomer drugs. This extra degree of freedom was never activated due to
time issues. Also one extra degree of freedom would further slow the program,
which was already no less than a factor of ten slower than the traditional 2-state
static grid.
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Experiments have shown [12] that the membrane becomes more permeable to
ions during the phase transition. It is speculated that this is due to structural
defects (holes) that arise around domain boundaries, because of the different
sizes of the gel and fluid lipids. This should be readily observed from the fully
developed bastard model, but no area analysis was done on the preliminary
results of this thesis.

Implementing anesthetics of different size and tracking them in the mem-
brane is also a build-in feature of the program that was never activated. It was
speculated that anesthetics would adhere in the region around domain bound-
aries due to the structural defects.

Upon a fine tuning of the parameters there is possible even more information
retrievable by this bastard model. This is to be seen in future experiments.



Interlude

In summary, this master thesis intends to contribute to the literature by show-
ing a possible new path of nerve research. So far, theoretical and experimental
arguments for dismissing the old theory of Hodgkin and Huxley have been pre-
sented, along with reasons to adapt a membrane and thermodynamical model of
nerves. Since much data has already been shown against the Hodgkin-Huxley
Model, no more will be produced within this master project. The goal is to
show how anesthetics will be fitted into a membrane model, and therefore data
has been produced to investigate this claim.

The experimental setup will be thoroughly explained in the next chapter,
but in short experiments are conducted on artificial nerve membranes and the
bastard simulation model is set loose.

(During this thesis an idea of testing anesthetics on flowers came up. Anesthetics
should by principle affect all kind of movement, and flowers also moves. It was
intended to anesthetize tulips, since they open as a response to heat. However,
no previous experiments has been done on this, so the anesthetic dose needed
was not known. The experiments on flowers resulted either in dead flowers or
a happy girl friend. So if anyone tries to replicate these experiment: Placing
tulips in 2mM concentration of Octanol in tab water – does not influence the
life of tulips, and they can afterward be happily handed over to acquaintance
of appropriate sex. Injecting more than .01 cc Propofol into the neck of tulips
- results in dead of the tulips, seemingly by dehydration.

During the writing of this thesis an idea of putting pretty flowers in an
Interlude came up. . .)
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Chapter 3

Methods and Materials

All experiments were carried out at the membrane laboratory rooms Kk4 and
PK5-6 at NBI. All equipment where carefully cleaned no less than one time be-
fore and after experiment with milliQ water (>18 MΩ) and 99% ethanol, then
dried with gaseous nitrogen.

. . .let us remember that chloroform does not act solely on the nerve tissues.
Far from that, it has an action on all the tissues and attacks each one at a time
which is a function of its susceptibility. . . An anesthetic is not a special poison
for the nervous system. It anesthetizes all the cells, benumbing all the tissues,
and stopping temporarily their irritability. . . We can study elsewhere than in the
central nerve cells the phenomenon which causes this stoppage of action and. . .
It is permissible to assume that something similar happens in the nerve cell.

Claude Bernard
Leçons sur les anesthésiques et sur l’asphyxie, 1875 [16]
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3.1 Differential Scanning Calorimetry

Turn up the heat.

The thermodynamical properties of DPPC vesicles was investigated on a differ-
ential scanning calorimeter (DSC).

The DSC used was a MicroCal Inc. VP-

VP-DSC

DSC. The differential scanning calorimeter
function by controlling and thereby measur-
ing thermal energy. As seen on figure (3.1),
the DSC consist of two chambers, which holds
a sample and a reference liquid solution. When
the sample is DPPC in buffer, the reference
will be the buffer.

The two chambers are individually heated
and connected by a thermocouple. When
heating the thermocouple controls the effect
of the heaters, P1,2, so that the temperatures of the two chambers are the same.
The difference in added heat, ∆Q, can then be determined:

∆Q = ∆P ∆t , ∆P = P1 − P2

Where ∆t is the time of the heating. The chambers are kept under constant
pressure, ∆p = 0. So from the differential form of enthalpy, ∆H:

∆H = ∆Q− V∆p
= ∆Q

And since ∆Q is known from measurements, the heat capacity, cP , can be
derived from its definition:

cP ≡
∆H
∆T

=
∆Q
∆T

(3.1.1)

Where T is the temperature.

The samples for the DSC is prepared as explained in the following paragraphs.

3.1.1 DPPC vesicles

The primary target of investigation is DPPC vesicles. These are produced from
pure DPPC lipids (Avanti Lipids, avantilipids.com) according to the following
recipe.

1. DPPC is thawed in unopened container, to room temperature.

2. Thawed DPPC is dissolved in buffer (10 mM Hepes, 1 mM EDTA buffer
with pH = 7.0) at app. 45◦C, until no visible clumps.
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Figure 3.1: Interpretation of the inside of the Differential Scanning Calorimeter
(DSC), with heat capacity profile obtained from DPPC. The DSC consist of
a sample and a reference chamber, who are individually heated to the same
temperature. Since experiments are conducted at constant pressure, difference
in effect from heating, ∆P , can be used to derive heat capacity.
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3. The dissolved DPPC is extruded at 50◦C at least 30 times.

4. Extruded DPPC is kept at 5◦C when not used, and have a duration period
of approximate two weeks.

Thawing DPPC before opening is to prevent it from absorbing water from the
air, which would cause it to change molecular mass and clump.

The buffer contains Hepes, which act as a pH-buffer, and EDTA, which acts
as a Ca2+ buffer. The pH-value is adjusted in the buffer to 7.0, the buffer
is important since melting points in charged lipids are heavily influenced by
ions. The buffer can to great advantage be produced in bulk amounts since it
is durable for at least one year.

Without extrusion the above recipe will produce multi-lamellar vesicles (MLV),
where membrane layer upon membrane layer form onion like structures with to-
tal size of order 1-10 µm, they are characteristic by a large cooperativity in the
melting region - and therefore have a very narrow heat capacity profile.

All of the experiments conducted during this project were done on large
uni-lamellar vesicles (LUV), which are vesicles of one bilayer. Extruding is
the means by which this cell-like structure is achieved. Extruding the DPPC-
vesicles are basically pressing them repeatedly through a filter with pores of
100 nm (purchased from Avestin Europe, Mannheim Germany), this is repeated
at least 30 times by a homebuild machine in our lab, as seen on figure (3.2).

The duration period of the DPPC-LUV lipids is given by an aggregation
time, the small vesicles will fuse back together to MLV and thereby loosing the
special characteristics of a single bilayer which are of concern in this thesis.

3.1.2 Anesthetics

The anesthetics were added to DPPC in two distinct ways. One was simply
dissolving the anesthetic in the buffer and then follow the recipe given above.
This method has the advantage that the small concentrations needed could
be easily obtained by dissolving in large amounts of buffer and then further
dilute by addition of pure buffer. The anesthetics who were prepared with
this method was: Octanol, Bupivacaine, and Pentobarbital. (All anesthetics
supplied by Sigma-Aldrich, sigma-aldrich.com) The disadvantage of this method
is that many of the anesthetics are so hydrophobic that even small amounts are
impossible to dissolve.

The second method of adding anesthetic to the DPPC is a little more intri-
cate, and the procedure is as following:

1. Make a 2:1 solution of methanol:di-chloro-methane.

2. Add anesthetic and dilute to desired concentration.

3. Mix with thawed DPPC and carefully heat to evaporate liquids.

4. Desiccate over night to fully extract methanol and di-chloro-methane.

5. Rehydrate with buffer.
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Figure 3.2: DPPC mixed in buffer self organize into multi lamellar vesicles. To
obtain uni lamellar structure of the vesicles, they are extruded. This process
is to repeatedly pressing the sample through a filter (bottom picture). The
extrusion process is best done around phase transition temperature, therefore
the sample and filter is placed within a brass housing connected to a heat bath
(top picture). Plunger heads are placed in holders which are electronically
controlled, they move with a frequency of 1 cycle per minute.
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6. Extrude

This method was used only with anesthetics with low evaporation pressures,
as to avoid evaporation during exsiccation. The anesthetics who were prepared
with this method were: Lidocaine and Propofol.

Figure 3.3: Molecular structure of the anesthetics. (From top left) Propofol,
pentobarbital, bupivacaine, lidocaine, 1-octanol. Diagrams from Wikimedia
used under GNU License.

Anesthetics were chosen with following argumentations:

Octanol is used in many experiments with regarding to anesthetics and parti-
tion coefficients. The isomer used throughout the thesis is 1-octanol, as it
is both the most common and most used in literature.

Propofol is a general anesthetic in daily use at most hospitals. Was introduced
in the late 1970s.

Pentobarbital is part of the barbiturate group, which is a large group of widely
used anesthetics. Pentobarbital is also an often used drug for euthanasia.

Lidocaine is a local anesthetic the active ingredient in a multiple of medical
cremes, and used in combination with general anesthetics in full body
narcose, as many general anesthetics induce local pain. First synthesized
in 1943.

Bupivacaine A stereo-isomer, originally it was intended to examine chirality
importance of anesthetics. Bupivacaine has been replaced in human medi-
cine, but is still widely used by veterinarians, it was used widely as spinal
block at labors.
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3.1.3 Pressure cell

The pressure cell is an addition to the MicroCalorimeter. It is a single capillary
which is inserted into the sample cell of the calorimeter. The sample cell is
previously filled with water to improve thermal contact with the pressure cell.
The pressure is achieved with pure gaseous nitrogen. When using this setup

Figure 3.4: The pressure cell used in pressure experiments. To the right is the
capillary which holds the sample. To the left is the head which is attached to
pressurized nitrogen.

the introduction of a ’large’ metal container in the calorimeter naturally affects
the measurements. The pressure cell having a heat capacity of its own, is as
best as possible deducted from presented data, and should be just a part of the
baseline, since no phase transition occurs in the metal. However data indicates
a much lower ∆H for these measurements, this is not of vital importance, since
∆H was established by other measurements and the property of interest is the
shift of melting point. The presumed reason for the ’missing’ enthalpy is that
on regular scans as much as 95% of the sample is in the sample cell chamber,
whereas this number may be as low as 30% for the pressure setup. The leftover
percentages are in the capillary leading down to the chamber. The pressure cell
is one long capillary, and as such only exposes approximately 30% of its surface
in the sample cell chamber - thus leading to the lower measured ∆H.
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3.2 Photo-spectrometry

Shine a light on me.

In order to determine the partition-coefficients of the selected anesthetics in
DPPC a series of experiments where conducted on a Perkin-Elmer Lambda
5 UV/VIS Photospectrometer. The Photospectrometer functions by sending
electromagnetic waves through solutions at varying or fixed wavelengths, the
intensity of the light is measured after passing the solution, and is compared to
a reference solution.

Reference

Sample

DetectorLight source

Emitted light

Emitted light

Detected light

Detected light

Scattered light

Figure 3.5: Schematic of Photospectrometer. Light is send through a reference
and a sample solution. Concentration difference between solutions can then be
determined by using Guilan-Berret law, as higher concentrations scatter more
light.

The idea was to measure the light-absorbance of varying concentration of
the anesthetics in the buffer. From this experiment it should be possible to
determine the concentration of anesthetics as a function of absorbance.

Then various concentrations of DPPC-LUV would be added and absorb part
of the anesthetic, whereafter the sample would be centrifuged and the solution
decanted and thus re-separated from the lipids. The solution would again be
measured in the photospectrometer, and the amount of absorbed anesthetics
could be deduced.

Note: When using the term ”absorbed light” it refers to all light not reaching
the detector, regardless of whether this light is absorbed by the medium, and
then remitted in random directions, or being scattered by the physical proper-
ties of the molecules in the samples.

Unfortunately no results came of these experiments. For one group of anes-
thetics this was due to the fact that they are not dissolvable in the buffer in
quantities that could be detected.
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The rest of the anesthetics were measured but gave no clear results. There
seemed to be no change in absorbance, no matter the amount of lipid added to
the system. The absence of any result may be due to the separation process,
the lighter density anesthetics might have been pulled from the lipids and back
into the solution during the centrifuging, this is especially a problem since cen-
trifuging could not be done while heating, so lipids might have cooled to below
melting point thereby releasing anesthetics back into the solution. A suggestion
to improve this experiment might be trying different separation methods such
as filtering, or use a heated centrifuge.

In the appendix A.2 can be found a more thorough experimental guide and
a theoretically calculated example on how to determine the partition coefficient
if having good results.

3.3 Simulations

All simulations where written in Fortran 90 code by the author of this thesis.
Source code can be obtained by mail. Runtime were provided by the Niels
Bohr Institute - Machines were IBM with Intel processors running Linux. The
compiler used was ’ifort’ with the ’-arch SSE2’ specification. Total simulation
time was no less than 8000 CPU-hours.

3.4 Data processing

Data was handled in Igor Pro ver. 5.03 using modules written by T. Heimburg
and the author of this thesis.

T. Heimburg had written modules to determine baseline of DSC data, and
calculate elastic properties. I have expanded these modules to locate melting
temperatures and calculate solitons and their properties as function of velocity.

Unless other is specified all graphs in this thesis are produced using Igor.

As previously mentioned this thesis uses a numerical method to solve for solitons
directly from data.

To solve the Soliton equation (2.3.4), compressibility was derived from data
using equation (2.3.5) in the module build by T. Heimburg. Then integration
was performed twice by the Runge-Kutta 4th order method.

Previous results by Jackson [1] were solved numerically for a polynomial
fit of c2. And analytical solutions of a polynomial fit of the sound speed can
be derived, as shown by Lautrup and Ludu [26, 31]. To test the numerical
solution routine and compare it to the analytical solution, following test was
carried out: A data set was chosen. Data were polynomially fitted as required
in equation (2.3.7), and then solved both numerically and analytically. Then
resulting solitons can be compared as in figure (3.6).

From figure (3.6) it is evident that the numerical routine is strong - since
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Figure 3.6: Comparison of half solitons calculated from same DPPC data by
different methods. Sound speed is derived from heat capacity by equation (??),
then numerically integrated directly from equation (2.3.4) (red solid line). Or
derived sound speed is polynomially fitted, and then numerically integrated from
equation (2.3.9) (dashed green line). Or analytically solved from the polyno-
mial fit (dotted blue line) from equation (2.3.12). This comparison shows that
solitons calculated by these three methods do not differ significantly. To obtain
maximum amplitude the velocity used was v = 1.01 vlimit.

it reproduces the analytical solution from the polynomial fit. And that the
polynomial approximation is acceptable - since the produced solitons do not
differ from solitons generated directly from data.

3.5 Visualization

Many figures in this thesis have been produced by POV-ray. This is the ’Per-
sistence of Vision Ray Tracer’TM , which is a powerful visualization tool. That
allows precise placement of objects. All snapshots of lipid simulations are made
with POV-Ray. As figures can be generated from text files produced automat-
ically by the Fortran program. Other figures made by POV-Ray are identified
as such in their captions.

Figures not produced by Igor, POV-Ray or taken from others are made in
Microsoft Office PowerPoint.



Chapter 4

Results

Presenting data is the most important part of any experimental thesis. However
the most valuable data is often not presented. . . Choosing data is like only picking
your prettiest children to participate on Sunday dinner - eventhough bad data
are the offspring of your shortcomings, and the driving force to do better, make
you learn more and be a greater scientist.

53
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4.1 Calorimetry Data

This section will present the data obtained by differential scanning calorimetry.
All mentioning of DPPC refers to 10 mM extruded DPPC - large unilamellar

vesicles in buffer prepared as described in Sec. (3.1).

The presented heat capacity profiles are not raw data, they represent the excess
heat capacity of the phase transition - They show only the heat associated with
the changing of phase in the lipids. The heat of ’heating’ the lipids from prior
till after the phase transition has been subtracted from the portrayed data. All
theoretical considerations are done on the basis of excess heat capacity, therefore
all data are presented as such, and all referring to heat capacity is implicitly to
excess heat capacity.

The making of one heat capacity profile is referred to as a ’scan’, since the
calorimeter scans a given temperature range. The DSC can either start from a
low temperature and scan up to a high temperature, this is called an ’up-scan’,
or start at a high temperature slowly cooling the sample - a ’down-scan’.

The reason to differ up- and down-scans is that a certain amount of hys-
teresis occurs in the measurements - the melting temperature is not the same
for the two different scans. This is a time problem. Hysteresis can be avoided
if scans are done slow enough, however since the DSC is valuable equipment,
slow scans were not an attainable luxury. Scans were done at 5 K/h, to avoid
hysteresis they need to be done at less than 1 K/h.

- Scan time is money!

Calorimetry scans and results are presented without error bars. In pure DPPC
measurements the mayor systematic error is the extrusion process, in which the
filter most likely retains some lipid, the amount in no way consistent, but data
indicate that as much as 5% may have been lost in the filtering process. However
a near similar percentage of anesthetics were most likely lost. Due to the small
amounts being weighed off 3-5% is estimated to have retained on the weighing
boat.

In effect the systematic errors are larger than any other errors. Results are
given with only two deciding digits, since this was the precision of the weighing
of primarily the small amounts of anesthetics. Systemic and other errors are
mostly contained within the deciding digits.
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4.1.1 DPPC

- A first look
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Figure 4.1: Excess specific heat capacity of the phase transition in DPPC-LUV.
Heat capacity profiles varies, even for scans of the same sample, because of long
relaxation times and hysteresis. Presented are eight scans of two samples.

As mentioned in section (2.1) the phase transition stretches over 10 K, this is
not entirely evident from Fig. (4.1), so next figures zooms in on the features of
the transition:
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Figure 4.2: Zoom of fig. (4.1). Around 32-36◦C a small bump is seen on the up-
scans, this is the pre-transition. This feature of the phase transition is caused
by a structural reorganization of the membrane.

The pre-transition, zoomed into on figure (4.2), is caused by a so-called
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’ripple-phase’, where the membrane displays ripple formation. The specific
arrangement of the lipids are not known, but there are a least three differ-
ent theories to explain it. One speculates that the solid phase has two states,
one of which the head groups displays a ’kink’, which favors repeated tilts in the
membrane. Another explains the ripples by assuming that domain formation
happens in a cooperative way between the inner and outer layer of the lipid
bilayer, which would give rise to ripples. And a third suggest that in the phase
transition it might be favorable for the lipid chains of the inner and outer lipid
layer to pack, effectively nearly reducing the thickness of some of the membrane
to half, causing the ripple phase. What is also remarkable of the pre-transition,
is that at this scan rate it is only visible on up-scans. Which indicates that the
organization that goes on is very slow, as it cannot happen on down-scans even
within the 12 minutes it takes to scan across it. Therefore it must be primarily
connected with the gel state, as it is only appears when going from gel to fluid
state.
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Figure 4.3: Zoom onto main-transition of fig. (4.1). The Upper Phase Boundary
(UPB) is determined by extrapolating the slope of the heat capacity profile to
intersect with 0. UPBs on this figure ranges between 41.25 and 41.50 degrees
Celsius. From the displacement between up-scans and down-scans hysteresis is
estimated to 0.25K.

The large peak between 40 and 41◦C is the main-transition, which marks
the upper boundary of the phase transition and also makes up for more than
95% of the energy. It is therefore the prime investigated target in this thesis,
and no further will be said of the pre-transition.

As derived in section (3.1) the total heat necessary to take the membrane
through the phase transition can be expressed by the total change in enthalpy,
∆H. The average value of ∆H for the whole transition is determined to be 36
kJ/mol. This number is obtained by integrating heat capacity between 30 and
45◦C.

From figure (4.3) hysteresis can be observed to be approximately 0.25K.
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4.1.2 Anesthetics

Calorimetric scans of 10 mM DPPC with anesthetics. Anesthetic samples are
referred only by their molar concentration the presence of DPPC is implied.
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Figure 4.4: Heat capacity profiles of 10 mM DDPC with octanol. Solid lines
are up-scans, dotted lines are down-scans. The anesthetic shifts the melting
temperature and broadens the phase transition.
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Figure 4.5: Melting temperatures of octanol from figure (4.4). The Upper Phase
Boundary (UPB) is shifted linearly as derived in section (2.1.1). The broadening
of the heat capacity profile is represented in the split of the different melting
temperatures, as the Peak and the Half Enthalpy (HE) shift more than the
UPB. Abbreviations are explained on page 58.



CHAPTER 4. RESULTS 58

The legend in Fig. (4.5) and coming figures of melting temperatures refers to:

UPB Upper Phase Boundary: The temperature which is shifted according to
regular solution theory, as derived in section (2.1.1).

Peak the temperature at maximum of the heat capacity profile.

HE Half Enthalpy: Halfway through the phase transition by measure of en-
thalpy, also the temperature were it for pure DPPC is equally likely for a
lipid to be in gel or fluid state.

fit UPB Linear fit of Upper Phase Boundary.

As mentioned in Sec. (2.1.2) the fitted slope determines the partition coefficient
of the anesthetic by equation (2.1.10). The results are displayed in Table (4.1).

-[K] R2 P
Octanol 12 .991 150
Bupivacaine 5.1 .956 39
Lidocaine 0.79-3.1 .155-.978 4.9-21
Pentobarbital 5.4 .970 42
Propofol 3.0-6.7 .680-.888 20-49

Table 4.1: The first data column contains the fitted slopes of upper phase
boundary from data presented in this section. With R2 being the square of
the correlation coefficient, R2 = 1 denotes perfect linear behavior. Partition
coefficients, P , are calculated from equation (2.1.10), where cAnesthetic/cDPPC =
xA. For calculating P the found ∆H of 36 kJ/mol was used.

In table (4.1) the calculated partition coefficients as derived from data, P , are
displayed. Some anesthetics have more than one, this is due to different fits of
the data, which will be commentated over the next pages, as data is presented.

From data on the following pages it can be noted that the anesthetic frac-
tion xA = cAnesthetic / cDPPC is as high as 1. In the section on melting point
depression (Sec. 2.1.1), a low fraction of anesthetic in the membrane was used
to approximate the logarithmic term. However, the approximation done in eq.
(2.1.6) is on the mol% of anesthetics in the membrane, xAM . Assuming 10 mol%
anesthetic in the membrane, which gives an error of 5%1, results in ∆T = 2.3K.
None of the anesthetics have data fitted for more than a 3K shift in melting
temperature.2

1ln(1− 0.100) = −0.105
2which gives a 7% error in the approximation.
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Figure 4.6: Heat capacity profiles of DDPC with bupivacaine. Solid lines are
up-scans, dotted lines are down-scans. The anesthetic shifts the melting tem-
perature and broadens the phase transition.
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Figure 4.7: Melting temperatures of bupivacaine from figure (4.6). Anesthetic
fractions of 0.8 and 1.2 are omitted from this graph and not fitted, because they
exceed a shift in melting temperature of 3 Kelvin, thereby nearing the limit of
the approximation made to make a linear prediction. (And indeed they do not
fall on the fitted line.) Abbreviations are explained on page 58.
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Figure 4.8: Heat capacity profiles of DDPC with pentobarbital. Solid lines
are up-scans, dotted lines are down-scans. The anesthetic shifts the melting
temperature. Pentobarbital also broadens the phase transition but not as much
as octanol (Fig. 4.4 ).
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Figure 4.9: Melting temperatures of pentobarbital from figure (4.8). Only data
within a shift of 3 Kelvin is fitted, because of approximations to derive equation
(2.1.6). Abbreviations are explained on page 58.
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Previous data sets of octanol, bupivacaine and pentobarbital were produced
by making the highest concentration of anesthetic in buffer and then thinning
before mixing with pure DPPC (See Sec 3.1.2). This ensures that even if some
of the anesthetic is lost during weighing and mixing a linear dependence of
concentration will still be revealed. The samples for propofol and lidocaine
were made individually for each concentration, this gives less linear correlation.
For this reason a minimum and a maximum slope were fitted on the data from
propofol and lidocaine.

50x10
3

40

30

20

10

0

 T
 [

°C
]

42.041.541.040.540.039.539.0
 Temperature [°C]

   Propofol:
    0 mM
 0.5 mM
 1.0 mM
 1.5 mM
 2.5 mM

Figure 4.10: Heat capacity profiles of DDPC with propofol. Solid lines are
up-scans, dotted lines are down-scans. The anesthetic shifts the melting tem-
perature and broadens the phase transition, but seemingly only until a certain
concentration is reached.
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Figure 4.11: Melting points of propofol from figure (4.10). This data does not
display a clear linear behavior, so multiple fits are made of the upper phase
boundary (UPB). Abbreviations are explained on page 58.
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Figure 4.12: Heat capacity profiles of DDPC with lidocaine. Solid lines are
up-scans, dotted lines are down-scans. Lidocaine shifts the melting tempera-
ture of the phase transition. But does not broadens the heat capacity profile
significantly.
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Figure 4.13: Melting temperatures of lidocaine from figure (4.12). The maxi-
mum and minimum slope linear fits are depicted. Abbreviations are explained
on page 58.



CHAPTER 4. RESULTS 63

4.1.3 Pressure

Oh, the pressure.
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Figure 4.14: Heat capacity for DPPC as a function of pressure. Solid lines are
up-scans, dotted lines are down-scans. Pressure shifts the melting temperature
upwards without changing the shape of the profile.
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Figure 4.15: Melting points for DPPC as a function of pressure. Abbreviations
are explained on page 58.
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As mentioned in section (2.1.3) pressure moves the melting point of the phase
transition in the opposite direction of anesthetics. Experiments were done for
both pure DPPC and DPPC with added anesthetics, and in all cases the the
result gave perfect linear behavior as seen in table (4.2).

The slope of the fitted data is given inversely, as this is gives the ’natural’
way of thinking - becoming the ’amount of pressure [bar] to move the phase
transition 1K’.

mM [K/bar]−1 R2

DPPC 10 39 .989
+ Bupivacaine 12 39 .985
+ Lidocaine 8.0 43 .998
+ Pentobarbital 8.0 40 .997
+ Propofol 2.5 42 .986

Table 4.2: DPPC and DPPC + the referred anesthetic were subjected to added
pressures of 0-40-80-160 bar. This results in a shift in upper phase boundary
of the phase transition. Column three shows that the pressure influence is
independent of added anesthetics. And column four displays R2 which is the
square of the correlation coefficient. As R2 = 1 denotes perfect linear behavior,
these results are very close to being perfectly linear.

That the peak value and total size of the heat capacity profiles obtained with
pressure differ from those without, is due to the experimental setup as described
in section (3.1.3).
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For Propofol:
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Figure 4.16: Heat capacity of 10 mM DPPC + 2.5 mM propofol with added
pressure. Solid lines are up-scans, dotted lines are down-scans. Pressure shifts
the melting temperature upwards without changing the shape of the profile.
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Figure 4.17: Melting points of DPPC and propofol as function of pressure from
figure (4.16). Abbreviations are explained on page 58.

As evident from table 4.2 all pressure reversal behaves beautifully and there-
fore is a little repetitive, so the rest of the anesthetics can be found in appendix
A.3.
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4.2 Simulation Data

To compare the information retrieved from simulations, ordinary 2-state static
grid simulation results will be presented before results from the Bastard model.

4.2.1 Static grid Ising-model

Since many of the membrane’s most significant features is proportional to the
heat capacity, see Sec. (2.3), The foremost result of the simulations is the heat
capacity profile:
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Figure 4.18: Heat capacity profile obtained with static grid model. 10,000 lipids
100,000 MCCT.
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Figure 4.19: Heat capacity profile of DPPC obtained by calorimetric measure-
ment (main transition).

Simulations have been adjusted so that the half width at half height and the
integrated value of the heat capacity profile of the simulation is the same as
the measurement. As seen from Fig. (4.18) and (4.19) this gives a slightly
smaller max value, and a slightly larger base width of the simulated result,
this discrepancy is caused by the simulation being inherently symmetric (See
Appendix A.4).

Figure 4.20: Snapshots of static grid simulation from figure (4.18) at 39, 41,
and 43◦C. Red circles represent gels, green fluids.
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Very apparent from Figure (4.20) is also formation of domains in the phase
transition. These domains are observed in vivo (Fig. 4.21) and if the simulations
did not produce domains, they would be in fact worthless.

Figure 4.21: (left) Simulated lipids in the phase transition. (right) Atomic force
microscopy of domains in DMPC membrane during phase transition by Nielsen
[49]

Simulation were also done with anesthetics:
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Figure 4.22: Heat capacity profile with 10 mol% anesthetic. 10,000 lipids 10,000
MCCT. Notice the shift in melting temperature from figure (4.18).
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Figure 4.23: Heat capacity profile of DPPC obtained by calorimetric measure-
ment with 1.98 mM octanol correspondent to ≈12 mol%. The difference be-
tween simulation (figure 4.22) and measurement is particularly the asymmetry
and width af the heat capacity profile.

Notice the increased widening of the profile in calorimetric measurement,
Fig. (4.23), is not fully replicated by simulation Fig. (4.22), also the asymmetry
is more pronounced in calorimetric measurements. The theoretic shift in melting
point as calculated by regular solution theory, Sec. (2.1.6), is for 10% anesthetic
∆T = 2.3K.

Figure 4.24: Snapshots of simulation with 10 mol% anesthetics at 37, 39, and 41
degrees Celsius. Red circles represent gels, green fluids. The picture to the left
displays an artefact, where anesthetics help induce a fluid domain. A domain
of this size is not stable for very long below the melting point.

These are the fundamental results gained from traditional Monte Carlo sim-
ulations of lipid membrane. From these it was learned that the cooperativity of
the membrane can be attributed to the interaction of the single lipid with its
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neighbors. And that this cooperativity is also the source of large scale domain
formation. Furthermore, when assuming the eutectic model of phase behavior,
the shift in melting temperature when adding anesthetics could be replicated,
which indicates the validity of these model assumptions. For more in depth
analysis of similar results see e.g. Blicher 2007 [47].

And so it is time for the results of the new model. . .

4.2.2 Bastard results
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Figure 4.25: Heat capacity profile for 2-state with detached melting. 2340 lipids
150,000 MCCT. pA = 0.16 N/m, γ = 6.5 kJ/mol, ω = 1.3 kJ/mol

From figures (4.25) and (4.26) it is seen that the 2-state detached sub-model
reproduces something very similar to the results of the static grid simulation.
The heat capacity profile is roughly the same width, it is symmetric and within
a factor 2 of ∆H. There is domain formation of the expected scale. Furthermore
an amount of holes and cracks can be identified.
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Figure 4.26: Snapshot from simulation on figure (4.25). (Bottom left) at 39◦C.
(Bottom right) at 43◦C. (top) at 41◦C. Notice domain and hole formation in
the phase transition.
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Figure 4.27: Heat capacity profile for continuous attached melting. 418 lipids
3,000,000 MCCT. pA = 0.061 N/m, γ = 14.2 kJ/mol, ω = 78 kJ/mol

The results of the continuous attached model (figures 4.27 and 4.28) are
somewhat similar to those of the 2-state detached model. The heat capacity
profile are though not as smooth due to the extreme long relaxation times -
the CA model required 20 times the MCCT to present this much more ragged
heat capacity profile than the 2S model. It should be noted how p, γ, and
ω differs between models. A deviation of approximative 10% or more on any
of these parameters will cause simulations not to produce gel/fluid domains or
heat capacity profiles similar in width, size, or melting temperature to those of
experiments.

The interaction energy ω is the same for static grid and for the 2-state
detached model. This is because the melting and moving have been detached
from each other in this model, and the melting and domain formation of lipids
are governed by a part of the energy equation similar to that of static grid. The
ω of the continuous attached model is nearly two orders of magnitude larger
than in the other simulations. If the interaction energy is not set that high the
simulation will not produce domains. And in the phase transition lipids will not
fluctuate all the way from gel to fluid and back, rather a little around halfway
between and snapshots of the simulation will show nearly all lipids in shades of
brown.

Compare the pressure, pA, and the the strength of Lennard-Jones interaction
potential, γ, in the two Bastard sub-models. It is observed that pA is twice as
high in the 2-state detached model as the continuous attached model. But γ
half the size. This reverse proportionality between pA and γ is given by the
boundary condition of equation (2.4.12). There are, however, in the two models
different limits of this relation. But for both goes that if pA is to low the area
of ’the membrane’ will expand until it ruptures and lipids will clump in little
patches. If pressure is to high movement of lipids will cease.
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Figure 4.28: Snapshot from simulation on figure (4.27). (Bottom left) at 39◦C.
(Bottom right) at 43◦C. (top) at 41◦C. Notice domain and hole formation in
the phase transition.
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Simulations of the bastard model with anesthetics were also carried out,
figures (4.29) and (4.30). These figures reveals that the parameters two sub-
models are not properly normalized, in that the melting points are moved to
much by the addition of anesthetics.
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Figure 4.29: Heat capacity for 2-state, detached melting with 5 mol% anes-
thetics. 2340 lipids 60,000 MCCT. pA = 0.16 N/m, γ = 6.5 kJ/mol, ω = 1.3
kJ/mol. Notice the shift in melting temperature of ≈ 2K.
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Figure 4.30: Heat capacity for continuous, attached melting with 1 mol% anes-
thetics. 418 lipids 200,000 MCCT. pA = 0.061 N/m, γ = 14.2 kJ/mol, ω = 78
kJ/mol. Notice the extreme shift in peak melting temperature of ≈ 30K.

The profiles display asymmetries which was desired, however it seems that
only the 2S model is asymmetric in a way comparable to DPPC. Further inves-
tigation should be done of this. It is to be noted that the anesthetic simulations
were done with a switch move (Sec. 2.4.3), which has brought down simulation
times with at least a factor 10.
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Simulations of added lateral pressure were conducted in the continuous attached
model. These initial results shows perfect linearity, and bodes well for the model
as such. If the parameters can be properly normalized, such pressure scans could
tell a lot about lateral pressure in the membrane. If pressure in the simulation
is lowered by approximately 5%, the area will increase towards infinity – The
membrane explodes.
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Figure 4.31: Heat capacity profile for continuous, attached melting. 418 lipids
300,000 MCCT. p0 = 0.061 N/m, γ = 14.2 kJ/mol, ω = 78 kJ/mol.
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Figure 4.32: Peak melting points for Fig. (4.31). Fitted slope: 56 [K m/N]. R2:
.999.
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4.3 Solitons

As mentioned in Sec. (2.3) solitons are very stable, but their shape is very
sensitive and differs clearly with changes in initial conditions - which are the
shape of the heat capacity profile, choice of initial density, ρA

0 , and velocity,
v. For all solitons the initial density was ρA

0 = 40.35 g/m2 of fluid DPPC,
and velocity 1% over the limit velocity for the given system, v = 1.01vlimit, to
produce solitons of maximum amplitude

As evident from equation (2.3.9) solitons are symmetric around z = 0. This
allows for depicting only half the soliton, as will be done throughout this section.
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Figure 4.33: Solitons calculated from heat capacity profiles obtained by repeated
calorimetric scans of DPPC. The difference in shape reflects the sensitivity of
solitons on the shape of heat capacity profiles.
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Figure 4.34: DPPC: Maximum compression of solitons as functions of soliton
velocity. The upper limit is the sound velocity in DPPC. The lower limit is
calculated from data. The spread in data reflects sensitivity to initial conditions
of the equations.
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Figure 4.35: DPPC: Half Width at Half Height of solitons as functions of soliton
velocity. The upper limit is the sound velocity in DPPC. The lower limit is
calculated from data. The spread in data reflects sensitivity to initial conditions
of the equations.

Figures (4.34) and (4.35) show compression and half width at half height
(HWHH) of solitons as a function of velocity, here ’height’ is equal to compres-
sion. Showing that solitons trend toward infinite width as the go towards limit
velocity. which was predicted theoretically by A. Jackson [1].
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Solitons for octanol of different concentrations:
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Figure 4.36: Solitons calculated from the heat capacity profiles of DPPC with
octanol presented in figure (4.4).
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Figure 4.37: Octanol: Maximum compression of solitons as functions of soliton
velocity.
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Figure 4.38: Octanol: Half Width at Half Height of solitons as function of
soliton velocity.

From solitons calculated from DPPC with added octanol, it can be noticed
how the addition of anesthetic does not change the shape of solitons. However,
the broadening of the heat capacity profile, brings a shift in the limit velocity.
The shift in melting temperature does not influence the shape of solitons, as
they are only dependent on density and functions thereof.

These results are so typical that similar results for the other anesthetics have
been located in Appendix A.5.
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Solitons were also produced for the heat capacity profiles produced by simula-
tions:
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Figure 4.39: Solitons produced from heat capacity profiles obtained by experi-
ments and simulations.
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Figure 4.40: Sound velocity squared as a function of density from heat capacity
profiles obtained by experiments and simulations.

Sound velocity squared in figure (4.40) is a function of compressibility and den-
sity, c2 = (ρAκA)−1. Where κA is given by equation (2.3.6). Data from sim-
ulations are obtained by first interpolating the heat capacity profiles in figures
(4.25) and (4.27) using cubic splines. However, the smoothness of (4.27) was not
enough to produce solitons in the high velocity limit, as seen on figure (4.42).
Nevertheless, that solitons were produced for all types of data sets obtained
experimental of simulated indicates that the solitons are generally achievable,
not just a special mathematical occurrence in the equations.
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Figure 4.41: Maximum compression as a function of velocity from data and
simulations.
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Figure 4.42: Half Width at Half Height as a function of velocity from data and
simulations.



Chapter 5

Résumé, Discussion, and
Conclusion

5.1 Résumé

It was the intention of this thesis to investigate how anesthetics influence the
nerve membrane and the nerve pulse.

The nerves where represented by a pure lipid membrane of DPPC, and in
computer simulations by small moving cylinders. The old model on the nerve
signal – the Hodgkin-Huxley model – was discarded by its inability to explain
physical features of the nerve pulse and anesthetic action. And Solitary waves
– Solitons – in the wave equation for membranes at melting temperature, where
identified as the nerve pulse.

Experiments and simulations showed that anesthetics shift the melting tem-
perature of a lipid membrane towards lower temperature. And that pressure
shifts it back towards higher temperatures. From these results partition coef-
ficients of anesthetics into the lipid membrane where calculated. And it was
shown that anesthetics do not change the influence of pressure on the melting
temperature.

Finally, it was shown that solitons can be regularly produced from heat
capacity profiles both with and without anesthetics.

5.2 Discussion

This thesis started out with presenting the Meyer-Overton relation. Which
states that the potency of anesthetics is proportional to the solubility of anes-
thetics in oil. The Soliton model proposes that anesthesia is caused by change in
melting temperature of the membrane. The experiments within this thesis ver-
ifies a change in melting temperature caused by anesthetics. In 2001 Kharakoz
[23] showed that for alcohols of carbon-chain length 1-10, the anesthetic dose

82
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for tadpoles equals a shift in melting point of ∆Tanesthesia = −0.6± 0.2K.

10
1

10
2

10
3

10
4

 -
 ∆

T
m

 /
 ∆

C

10
-4

10
-3

10
-2

10
-1

 EC50 [M]

ethanol
butanol

propanol

hexanol

heptanol

pentanol

octanol

decanol

nonanol

Figure 5.1: Correlation between the anesthetic concentration, EC50, of alcohols
in tadpoles, and potencies of the alcohols to change transition temperature in
DPPC. The fitted line gives the shift in melting point caused by anesthetic dose,
∆Tanesthesia = −0.6± 0.2K = EC50 ·∆Tm/∆C.

The experiment of Kharakoz depicted in figure (5.1) is wonderfully simple.
The anesthetics concentration, EC50, is measured in tadpoles and displayed
against ∆Tm/∆C, the shift in melting temperature per shift in concentration in
solution of DPPC membrane. The shift in melting point caused by anesthetic
dose, ∆Tanesthesia = −0.6± 0.2K, is fitted from the data given ∆Tanesthesia =
EC50 ·∆Tm/∆C.

The connection between Kharakoz’s and Overton’s data is that the shift in
melting temperature, ∆T , is directly proportional to the amount of anesthetics
in the membrane, xAM , as derived in section (2.1.1) equation (2.1.6) on page
15. And for tadpole experiments with large bulks of water, the xAM is directly
proportional to the partition coefficient, P , as derived in section (2.1.3) equation
(2.1.13) page 18. These proportionalities gives that Kharakoz’s data is showing
the same as Overton’s, only with different units.

Experiments done for this thesis were not bulk water. Therefore the parti-
tion coefficient were calculated from the shift in melting temperature caused by
anesthetics. The theory were derived in section (2.1.2) and results presented in
table (4.1). In table (5.1) The partition coefficients obtained by experiments,
Pdata, are compared to partition coefficients found in literature, Pliterature, in
comparable systems.

What is immediately noticeable from table (5.1) is that the experimentally
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Pdata Pliterature ’membrane’ in literature Ref.
Octanol 150 200-387 DPPC / Egg PC (PO/PLPC) [58, 42]
Bupivacaine 39 69 Octanol/5 [43]
Lidocaine 4.9-21 27-50 synth. membrane / Octanol/5 [44, 45]
Pentobarbital 42 56-200 PC-chol. pH 7 / PC acid [42]
Propofol 20-49 113-4700 Brain / Oil [46]

Table 5.1: Partition coefficients from data, Pdata, compared to partition coeffi-
cients from literature, Pliterature. Column three displays the substance in which
Pliterature are measured. Except for propofol, all Pdata are an approximate fac-
tor two lower than Pliterature. Some of Pliterature are given by ’Octanol/5’, this
is the partition coefficient of octanol divided by five, which is a standard way of
estimating partition coefficient in lipids.

derived partition coefficients are, with the exception of propofol, approximately
a factor of two lower than the partition coefficients from literature. This can be
considered as a good result, as the spread in literature data is often more than
a factor of two. Also, data from literature never refers to systems 100% compa-
rable to those in this thesis, and often do not refer to pH or temperature, which
are, for many of the anesthetics, very important for the partition coefficient.
For octanol, bupivacaine, and pentobarbital, the Pdata obtained in this thesis
seems more valid for the anesthetic into DPPC in a Hepes/EDTA buffer with
pH-value 7.0. Lidocaine and propofol were no good fits, lidocaine because of
the bad fit to data. While propofol had a value way too low, probably because
it was not mixed properly with the buffer. Propofol is a pale liquid at room
temperature, and it can be difficult to determine if it has been well mixed into
the buffer - the results indicates that it has not.

It was the proclaimed goal of this thesis to obtain data to be compared with the
Overton data. Hence, it was intended to reproduce the partition coefficient ver-
sus anesthetic dose to match Overton. However, it became clear that compiling
data for anesthetics strength was even more challenging than for partition coef-
ficients. This because the simple experiments done by Overton on tadpoles, has
nowadays been replaced by numerous different kind of experiments with each
their different definition on anesthetic dose. An often done experiment is the
dose to inject into mice or rats, to make them oblivious to heat changes - that
they do not remove their tales from a heating plate. Another popular study
is to remove nerves from rat/frog/cat/animal-of-choice and measure different
responses to electric stimuli with and without anesthetics. This host of experi-
ments has as mentioned given rise to numerous definitions on anesthesia. EC50

is the anesthetic concentration needed to anesthetize 50% of a sample popula-
tion. This definition is used primarily when having bulk amount of water, like
in tadpoles experiment or dissected nerves which can be soaked in anesthetics.
However some papers refer to EC50 as ED50 which is short for anesthetic dose
of 50% population. ED50 is mostly found in experiments where anesthetics are
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injected into the lab-animal, and it can be given in units of concentration, or
total moles, or most often as mg per kg bodyweight. Some papers uses EC50 to
describe the concentration of the dose they have injected into lab-animals. For
inhalation anesthetics the most common used measure of anesthetic strength
is Minimal Alveolar Concentration (MAC) which is given in units of pressure,
and used as a standard in medical procedures. Another definition with unit of
pressure is EP50, the anesthetic pressure, used for inhalation anesthetics. Then
there is IC50 Inhibitory Concentration, that is the concentration of which 50%
of nerve signals are inhibited. And the list goes on and on, making a comparison
of data not strictly coherent.

The potencies of the anesthetics used in this thesis were not determined by
explicitly comparable experiments, so a spread of these are presented in table
(5.2).1

ED50 EC50

[µM ] experiment [µM ] experiment
Octanol — — 57-122 tadpole/DRG
Bupivacaine 6600 tail flick — —
Lidocaine 2,500-28,200 tail flicks 3,800 Frog sciatic nerve
Pentobarbital — — 50-334 NSC/DRG
Propofol — — 0.4-1.9-12.9 NSC/tadpole/DRG

Table 5.2: Anesthetic dose, ED50, and anesthetic concentration, EC50. NSC
and DRG are both section of rat nerve respectively: Neocortical Slice Cultures
and Dorsal Root Ganglion. References are for Octanol: [50, 51]. Bupivacaine:
[52]. Lidocaine: [53, 52, 6]. Pentobarbital: [54, 51]. Propofol: [54, 55, 51].

Which can then be plotted versus the partition coefficients from table (5.1).
Figure (5.2) is this thesis’ equivalent to Overton’s (Fig. 1.2) and propor-

tional to Kharakoz’s (Fig. 5.1). The data does show the same tendencies as the
literature, but no good fit could be made with so scarce and so imprecise data.
It was derived in section (2.1.4) that the slope should be -1, while the fitted
slopes of this data is ≈-0.5.

From figure (5.2), it can also be noted that the anesthetics usually known
as local is found in the right end of the figure, that is, they are characterized
by a low partition coefficient and a high anesthetic dose. If this is a general
trend among local anesthetics, they may be local due to a need of high local
concentration to penetrate into the membrane. They do not display a general
anesthetic effect since the administered dose will be thinned as the anesthetic
spread through the body, and then not be able to penetrate into the membrane.

To further validate this theory, a comprehensive list of comparable values for
anesthetic strength and partition coefficient of both general and local anesthet-
ics would have to be compiled. Much like the compilation of Overton done on
tadpoles. But there needs to be established an experiment which can determine

1The Sakura paper [52] claims to have measured EC50 but since it is the dose injected into
the lab-rat, as opposed to rat nerve in bath of anesthetic, it is here referenced as ED50
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the anesthetic concentration also for anesthetics that are not easily dissolvable
in water. Or alternatively determining anesthetic dose for a multitude of anes-
thetics in comparable experiments.

The clearest results of this thesis, were those of pressure reversal (Sec. 4.1.3). For
DPPC and all types of anesthetics, the shifting of melting temperature showed
remarkable linearity. The experiments show that pressure shifts the melting
temperature 1 degree upwards per 40 bars. This result allows for calculating
the pressure needed to reverse anesthesia from Kharakoz’s experiment. If anes-
thetic dose is equivalent to shifting the melting temperature -0.6 K, then the
pressure to reverse it is 24 bar. in 1950 Johnson and Flagler demonstrated that
for ethanol the pressure to reverse anesthesia in tadpoles was approximately 50
bars [21]. This result is as good an indication for the validity of the SM model as
the Overton data, and it shows -again- how anesthesia is connected to melting
point depression.

As a small side note, it can be mentioned that a lowering of pH also shifts
the melting point in the opposite direction of anesthetics [25]. It is known that
inflammation lowers pH, and it is common medical practice to heighten the
anesthetic dose in inflammatory tissue. This is another indication, that anes-
thesia is related to a change in melting temperature.

This thesis also succeeded in producing solitons from real as well as simulated
heat capacity profiles (Sec. 4.3). It was qualitatively demonstrated how sta-
ble the equations are, and how soliton shape depends of the shape of the heat
capacity profile.

Solitons could also be produced from heat capacity profiles of DPPC with
anesthetics. This might seem surprising, but in experiments by Büyükakilli [24],
it was observed that anesthetic dose in frog nerves only weakens the nerve pulse
with approximately 20%. The soliton equation in itself contains no predictions
on whether there is enough energy to obtain maximum solitons, but only if it
is possible for solitons to exist. That soliton amplitude is lowered when adding
anesthetics, can be seen by shifting the temperature in figure (5.3).

There are some features of the nerve signal that the Soliton Model has no a
priory answers for. That does not mean that answers cannot be found, as the
model is still young and many question have not had the chance to be addressed.
Following two examples are questions that supporters of Hodgkin and Huxley
often present to our group. I will try to point at a direction in which the answer
might lay.

The first example is: When nerves are triggered to fire, they cannot fire
again before a given time has passed - the retention time - the mathematical
soliton wave are theoretically ready to go at any moment. This might, however,
be explained by relaxation times of the membrane. Pressure jump experiments
where DPPC is pushed through the phase transition by pressure, which is sub-
sequently removed, revealed that membranes need a certain relaxation time to
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regain the original configuration [33]. Thus, a soliton density wave might need
some retention time.

Also, not yet explained by the Soliton model is the ’all-or-none’ principle -
when nerves are artificially stimulated, one must pass a certain threshold for
them to fire, and when this threshold is reached at approximately 15 mV, the
nerve will release the action potential of ∼100 mV, as seen on figure (1.3). The
SM can deliver solitons of continuous sizes - it has no threshold. The ’none’ part
of the ’all-or-none’ principle is, however, not entirely correct. Nerves experience
’failed initiations’ - equal to very weak signals - before reaching the threshold.
The Soliton model can explain this easily, but not quite the discontinuous jump
in excitation when reaching the threshold. However, as figure (5.3) shows, the
soliton model produces solitons of continuous amplitude in area density, and the
change from small to large amplitude may happen fast.

Simulation of membranes was an exciting experience (Sec. 4.2). The pro-
duced heat capacity profiles and pictures of domain formation were of similar
quality as traditional solid grid simulations. Unfortunately the simulation times
were much longer, and adding anesthetics revealed that the bastard models’ pa-
rameters were not properly normalized. Nevertheless, the brighter prospects
are that if parameters can be fine tuned; the simulation might be able to repli-
cate permeability results, the asymmetric heat capacity profile, and exposure
to pressure – which were all seen in the preliminary results. Furthermore, these
simulations are prepared for tracking of molecules lipids or anesthetics, inves-
tigating site of anesthetics action, and possible explain the pre-transition. All
done within reasonable time scale on normal desktop computers.

5.3 Conclusion

Anesthetics influence the nerve membrane by changing properties of the gel-
fluid phase transition. Thereby changing the conditions for the nerve pulse to
be created, if it is assumed that the nerve pulse is described by a density pulse
– as claimed by the Soliton model.

This thesis has presented a wide range of results, all in support of the Soli-
ton model as the framework for the function of nerves.
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Figure 5.3: If a ’body temperature’ of 44◦C is assumed for a lab-animal with
nerves of pure DPPC. The energy needed to initiate a nerve pulse of a certain size
can be expressed by a change in temperature or pressure. For small stimulation
only very small solitons are produced. Then, around ∆T = 2K and ∆p = 80 bar
solitons goes from an amplitude of less than 10% of maximum possible amplitude
to ≈ 80% within a very small energy interval. Thus displaying a ’continuous’
threshold. Adding anesthetics or additional pressure will shift the graph right
or left respectively. If the energy available to create a density pulse is equivalent
to ∆T = 3K, then adding anesthetic in amounts to shift the temperature 1K,
reduces soliton amplitude from 0.8 to 0.2 ∆ρA/∆ρA

max. This graph is produced
by a integral −dT over the heat capacity of DPPC cP (T )/∆H. Starting at
44◦C. The threshold seen on this graph is therefore a result of the narrow heat
capacity profile in DPPC. For real nerves with a broader phase transition this
’threshold’ will not be as pronounced.
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A.1 Compressibility

For the phase transition many properties like cP , V , A, and κ can be divided
into a part stemming from just the heating of the membrane and a part for
the actual phase transition - that is going from the solid ordered to the fluid
disordered state. The following derivation concerns only the second part of these
properties - the excess stemming from the phase transition.

In order to calculate the compressibility three relations is stated:

For heat capacity:

cP =
d〈H〉
dT

∣∣∣∣
P

=
〈H2〉 − 〈H〉2

RT 2
(A.1.1)

The area compressibility:

κV
T = − 1

〈V 〉
d〈V 〉
dp

∣∣∣∣
T

=
〈V 2〉 − 〈V 〉2

V RT 2
(A.1.2)

The area compressibility:

κA
T = − 1

〈A〉
d〈A〉
dpA

∣∣∣∣
T

=
〈A2〉 − 〈A〉2

A RT 2
(A.1.3)

These relation have all be calculated by substituting them for X in the
following classic statistical equation:

〈X〉 =
1
Z

∑
i

Xi Ωi exp
(
Hi

RT

)
(A.1.4)

With Z being the Guggenheim partitionfunction:

Z =
∑

i

Ωi exp
(
Xi

RT

)
(A.1.5)

By using Maxwell’s equations [48]. The isentropic volume compressibility
can be expressed:

κV
S = κV

T −
T

〈V 〉 cP (ω)

(
dV

dT

)2 ∣∣∣∣
P

(A.1.6)

where cP (ω) is the frequency dependent heat capacity. It can then be deduced
that the isentropic area compressibility are given as:

κA
S = κA

T −
T

〈A〉 cP (ω)

(
dA

dT

)2 ∣∣∣∣
PA

(A.1.7)

From experiments [25] it was determined that:

V = γV H (A.1.8)
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and assuming this goes for any substate Vi = γV Hi, gives by again using equa-
tions (A.1.4) and (A.1.5):

κV
T =

γ2
V T

V
cP (A.1.9)

Which is then assumed to be valid for area as well:

κA
T =

γ2
AT

A
cP (A.1.10)

Hence the compressibility can be expressed by means of experimentally retriev-
able quantities - Eq. (2.3.5).
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A.2 Spectrophotometry

The procedure for achieving a correlation between absorbance and anesthetics
concentration using the Perkin-Elmer Lambda 5 UV/VIS Photospectrometer:

1. Prepare a suitable amount of solutions of varying anesthetics concentra-
tions in buffer.

2. Turn on the Spectrometer and follow calibration procedure from manual.

3. Use buffer as reference and insert the highest concentration anesthetic as
sample. Then scan over all wavelengths.

4. From the full scan select the wavelength with the highest absorbance to
ensure maximum signal.

5. At the selected wavelength measure the absorbance of anesthetics at dif-
ferent concentrations. Make sure to use the same crystal container and
facing it the same way in the apparatus for every measurement.

The data from above mentioned procedure should give the concentration of
anesthetics in the solution, cAS , as a function1 of absorbance, A.

cAS = f(A) (A.2.1)

Then the partition coefficient, P , is derived given that it is defined by the con-
centration of anesthetics in the membrane, cAM , and concentration of anesthetic
in the solution, cAS :

P =
cAM

cAS
definition

=
1

f(A)
nAM

VM
A.2.1

=
1

f(A)
ρM (nA − nAS)

mM
nA = nAM + nAS

=
(cA − f(A))

f(A)
ρMV

mM

Where V is the total volume, and nA, cA the initial molar amount and molar
concentration of anesthetic in the sample, and with subscript AM , AS it is
refereing to anesthetics in the membrane or the solution. ρM , mM is referring
to the density and the mass of membrane i.e. the DPPC. In the calculation it
is approximated that the volume of the entire sample is the same as the liquid
solution, since the density of the membrane is near water this approximation
gives an error of less than one percent with an solution of 10 mM DPPC.

1This function should theoretically be given by the Beer-Lambert Law, but it is not nec-
essary to know f specifically. A fit of data points is sufficient.
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A.3 Pressurized anesthetics

Results summarized in Table (4.2)

A.3.1 Bupivacaine
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Figure A.1: Heat capacity profiles of Bupivacaine with added pressure. Solid
lines are up-scans, dotted lines are down-scans.
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Figure A.2: Melting temperatures for Bupivacaine as function of pressure. Ab-
breviations are explained on page 58.
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A.3.2 Lidocaine
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Figure A.3: Heat capacity profiles of Lidocaine with added pressure. Solid lines
are up-scans, dotted lines are down-scans.
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Figure A.4: Melting temperatures for Lidocaine as function of pressure. Abbre-
viations are explained on page 58.
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A.3.3 Pentobarbital
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Figure A.5: Heat capacity profiles of Pentobarbital with added pressure. Solid
lines are up-scans, dotted lines are down-scans.
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Figure A.6: Melting temperatures for Pentobarbital as function of pressure.
Abbreviations are explained on page 58.
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A.4 Symmetry of simulated phase transitions

The symmetry of the solid grid deviates only slightly given that the relative
probability of changing states around the melting point are:

Pf→g(Tm + ∆T )
Pg→f (Tm −∆T )

=
exp

(
∆G(Tm+∆T )
R(Tm+∆T )

)
exp

(
−∆G(Tm−∆T )

R(Tm−∆T )

)
≈

exp
(

∆H−∆S(Tm+∆T )
R(Tm+∆T )

)
exp

(
−∆H−∆S(Tm−∆T )

R(Tm−∆T )

)
= exp

(
−∆S∆T

R(Tm + ∆T )
+

∆S∆T
R(Tm −∆T )

)
= exp

(
2∆S(∆T )2

R(T 2
m − (∆T )2)

)

This gives a deviation from symmetry of 0.03% for ∆T = 1K and 3% for
∆T = 10K. The approximation from step one to two is that ∆N(Tm −∆T ) ≈
∆N(Tm + ∆T ) and that ∆Nω � ∆ST . The first approximation is selfevident
in that the transition is nearly symmetric, the second approximation is true as
long as T is close to or far from Tm where ∆N = 0 as argued in Sec. (2.4.2).
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A.5 Solitons of anesthetics
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0.20

0.15

0.10

0.05

0.00

∆
ρ

A

/ρ
A 0

100x10
-3

806040200
 z [m]

 Lidocaine:
 0.5 mM
 5.0 mM
 10  mM

Figure A.7: Solitons from DPPC with Lidocaine.
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Figure A.8: Lidocaine: Compression of solitons as functions of soliton velocity.
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Figure A.9: Lidocaine: Half Width at Half Height of solitons as function of
soliton velocity.

A.5.2 Bupivacaine
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Figure A.10: Solitons from DPPC with bupivacaine.
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Figure A.11: Bupivacaine: Compression of solitons as functions of soliton ve-
locity.
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Figure A.12: Bupivacaine: Half Width at Half Height of solitons as function of
soliton velocity.
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A.5.3 Propofol
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Figure A.13: Solitons from DPPC with propofol.
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Figure A.14: Propofol: Compression of solitons as functions of soliton velocity.
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Figure A.15: Propofol: Half Width at Half Height of solitons as function of
soliton velocity.

A.5.4 Pentobarbital
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Figure A.16: Solitons from DPPC with pentobarbital
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Figure A.17: Pentobarbital: Compression of solitons as functions of soliton
velocity.
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Figure A.18: Pentobarbital: Half Width at Half Height of solitons as function
of soliton velocity.



The End

This is the end
The only end, my friend.

- In no way like the song made famous by ’The Doors’.

xxi
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