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Abstract

For more than 20 years, we have known that the Universe is accelerating
in its expansion, which is caused by dark energy. The present theoretical
explanation behind this is the cosmological constant, �, which is part of
the current standard model of cosmology, known as the Benchmark model.
However, it is possible to imagine other theoretical explanations for dark
energy and the acceleration of the Universe. In this thesis we explore if it is
possible to describe the acceleration of the Universe, through some e�ects of
the movements of dark matter particles in dark matter halos. This model is
based on the velocity dispersion of the halos, that is created due to the indi-
vidual motions of the dark matter particles inside the halo. Through these
motions of dark matter particles, an e�ect might arise that mimics the ef-
fects of �, which should enable us to substitute the cosmological constant in
the Benchmark model. Using numerical simulations, we have tested possible
variations of the model, where we find that our model provides a reasonable
fit to the Benchmark model. This means that it is possible that our model
is able to describe the acceleration of the Universe without including the
cosmological constant.
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1 INTRODUCTION

1 Introduction

In this section we wish to go through the current understanding of the Universe
and the observations that have led us to our modern viewpoint, in order to equip
the reader with the needed background. We also present the idea behind our new
model for the acceleration of the Universe, which is the main essence of this thesis.

1.1 The current understanding of the Universe

Through observations we know that the Universe consists of radiation, baryonic
matter, dark matter and dark energy. The current common understanding of the
Universe is known as the Benchmark model or the standard model of Big Bang
cosmology. This describes a spatially flat universe containing radiation, baryonic
matter, cold dark matter and a cosmological constant, �, which is a theoretical
explanation of dark energy.1 These have been measured in di�erent ways and
the e�ects of them have been observed through methods we will describe further
on. When determining how much of our Universe is comprised of these di�erent
elements, we can describe them through the density parameter �, where these
values are given by2,3,

�r,0 = 9 · 10≠5
, �m,0 = 0.31, ��,0 = 0.69, (1.1.1)

where �r,0 is the density parameter of radiation, �m,0 is the density parameter of
matter and ��,0 is the density parameter of dark energy. The zero subset indicates
that these are the current values of the parameters. These parameters describe
the ratio of the observed densities of the given components, to the critical density
of the Universe, flc.

�x,0 = flx,0
flc,0

, (1.1.2)

where x can be either r, m or � and flc,0 describes the density of a flat universe
and can be found through,

flc,0 = 3H
2
0

8fiG
, (1.1.3)

where H0 is the Hubble constant with a value of H0 = 67.66 kms≠1Mpc≠1 4 and G

is Newton’s gravitational constant, G = 6.67 · 10≠11 m3kg≠1s≠2. flc,0 has also been
estimated through observations, where it is found by determining the density of a

1Coles, P. and Lucchin, F. 2002.
2Collaboration 2018.
3Ryden 2017.
4Collaboration 2018.
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1.1 The current understanding of the Universe 1 INTRODUCTION

representative volume of the Universe. Through this, the Universe is confirmed to
be flat with a critical density of about 8.7 · 10≠30 gm≠3.5.

When determining the density parameters of the components of the Universe, the
cosmic microwave background, CMB, is a useful tool. This is the electromagnetic
radiation that was emitted at the early stages of the Universe and can be observed
all over the sky. In Figure 1, a map of the density fluctuations in the CMB can
be seen. This map consists of several small dots that together make up regions
of either red or blue. These colors indicate the temperature and density of the
areas, where the blue spots are colder and more dense regions and the red spots
are warmer and less dense regions.6

Figure 1: A map of the cosmic microwave background, CMB.7

The density of the radiation in our Universe is comprised of CMB radiation and
is also thought to contain the theoretical cosmic neutrino background, CNB.8 The
density of the CMB radiation can be found directly from temperature measure-
ments of the CMB, through the following equation9,10,

flCMB,0 = 4‡

c3 T
4
0 , (1.1.4)

where ‡ is the Stefan-Boltzmann constant, ‡ = 5.67 · 10≠8 Jm≠2s≠1K≠4, c is the
5Ryden 2017.
6Freedman et al. 2014.
8Faessler et al. 2017.
9Dinculescu 2007.

10Fisenko, A. and Lemberg, V. 2014.
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1.1 The current understanding of the Universe 1 INTRODUCTION

speed of light and T0 is the temperature of the CMB today, T0 = 2.73 K.11 In order
to find the density parameter of radiation, �r,0, as it is given in Equation (1.1.1),
we use Equation (1.1.2), where we divide the density by the critical density of the
Universe,

�CMB,0 = flCMB,0
flc,0

= 5.36 · 10≠5
. (1.1.5)

The cosmic neutrino background corresponds to, �‹,0 = 0.681 · �CMB,0
12, which

means that the density of radiation in our Universe is,

�r,0 = 1.681 · �CMB,0 = 9.01 · 10≠5
. (1.1.6)

Contrary to radiation, the density parameter of matter and dark energy, cannot be
determined from analysing the CMB alone. From CMB it is possible to determine
the sum of the density parameters, �tot, which is another way to confirm the
geometry of the Universe. For a flat universe, this parameter should be equal to
1. In order to find this parameter, we look at the angular power spectrum of the
CMB temperature anisotropies, that can be seen in Figure 2.

Figure 2: The angular power spectrum of the CMB temperature anisotropies.13

11Fisenko, A. and Lemberg, V. 2014.
12Birrell, J., Yang, C. T., and Rafelski, J. 2015.
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1.1 The current understanding of the Universe 1 INTRODUCTION

In this figure, we see three large peaks centered at an angular scale of ◊ = 1¶,
◊ = 0.35¶ and ◊ = 0.25¶. The position of the peak tells us the apparent size
of the density fluctuations in degrees, while the height of the peak tells us how
many fluctuations are of this given size. From this, the position of the first peak
tells us that we have an abundance of density fluctuations with an apparent size of
◊ = 1¶. From theoretical calculations, it has been shown that in order to have a flat
universe, the average size of the density fluctuations, when CMB was emitted, had
to be ◊ = 1¶. Had the Universe been open or closed, this value would have been
di�erent from ◊ = 1¶. Since a flat universe has a density parameter of �tot = 1,
we know that the sum of the di�erent density parameters have to be equal to 1,
but we do not know the ratios of the individual parameters.14

From the power spectrum in Figure 2, we are able to find the ratio between the
total amount of matter and baryons. This can be found by dividing the relative
height of the first peak by the second peak, since the height of the first peak
contains information about the amount of total matter and the second peak holds
knowledge about the amount of baryons. If the two peaks were of an equal height,
the ratio would be one and this would indicate that the matter of the Universe was
only made up of baryons. There is a distinct di�erence in height between the two
and therefore our Universe also contains matter that is not baryons, but instead
dark matter. The ratio between the peaks reveals that there is 5 times more dark
matter than baryons in the Universe.15

In order to determine the value of �m,0, one of the possible methods is to determine
the total mass of matter of a certain area of the sky. Here, a representative region
is chosen and the mass of all the galaxies and clusters within this volume is found.
Since we now have a mass and volume, it is possible to find the density of matter
and from this find the value of �m.16

Another feature of the spectrum in Figure 2, is the rising of the curve in the far
left side, which indicates the presence of dark energy in the Universe. Had the
Universe been void of dark energy, this part of the curve would have been flat, in
fact if all perturbations in the early Universe had been distributed evenly size-wise,
the entire power spectrum would have been flat. However, as the perturbations
have evolved, an abundance of certain sizes has emerged, which we see through
the peaks of the spectrum. The large structures had not yet been created at the

14Freedman et al. 2014.
15de Bernardis et al. 2002.
16Allen et al. 2003.
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1.1 The current understanding of the Universe 1 INTRODUCTION

time of CMB emission and we would therefore expect the left part of the spectrum
to be flat. Instead we see that this part is slightly raised, which is caused by
the photons traveling through an accelerating universe, indicating the presence
of dark energy.17 However, when determining the density of dark energy, it is not
enough to only look at observations of the CMB and the power spectrum. Instead,
observations of both supernovae or baryonic acoustic oscillations are needed.

When scientists were analysing distant supernovae type Ia, they discovered a cor-
relation when looking at their redshifts and observed magnitudes, that can be seen
in Figure 3. By fitting models of di�erent universes to this correlation, e.g. an
empty universe and a universe with and without dark energy, they saw that the
best fit was a universe with the parameters �m,0 ƒ 0.3 and ��,0 ƒ 0.7, which
helps strengthen the theory that we live in an accelerating universe.18 However,
since the measurements of the supernovae contain uncertainties, it is necessary to
use observations of other parts of the Universe, before we can draw a conclusion
of these values.

Figure 3: A plot of observed magnitudes against redshifts of distant type Ia super-
novae.19

17Weller, J. and Lewis, A. M. 2003.
18Perlmutter 2000.
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1.1 The current understanding of the Universe 1 INTRODUCTION

Baryonic acoustic oscillations, BAO, are used for measuring how the expansion
rate of the Universe has changed over time and this in turn makes it possible to
constrain the values of the cosmological parameters even further. These oscillations
in the density of the visible baryonic matter stem from perturbations in the early
universe, which we also observed through the CMB. From the first peak of the CMB
power spectrum, a characteristic size of the fluctuations was revealed. By observing
galaxies and the distances between them at di�erent redshifts, we can examine
whether this size is consistent with the size found from the power spectrum. This
scale was determined by the fluctuations in the early Universe and by calculating
how this characteristic scale evolves over time, it is possible to see if the distances
between the galaxies at di�erent redshifts correspond with this size. By measuring
this scale during the accelerating expansion, as opposed to the time where the
CMB was emitted, we are able to determine the same characteristics through two
di�erent methods.20

Figure 4: Contours of the ranges of the values of the cosmological parameters for
matter and dark energy found through analysing supernovae, baryonic acoustic
oscillations and the cosmic microwave background.21

20
BAO.
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1.2 Structure formation 1 INTRODUCTION

Combining all these measurements, CMB, supernovae and BAO, we are able to
find a fairly precise estimate of the value of the cosmological parameters for matter
and dark energy. By looking at Figure 4, we see the range of the values for the
parameters found through the di�erent methods. The contours correspond to
confidence levels of 68.3%, 95.4% and 99.7%. By combining all three ranges, the
grey contour in the middle is found, which gives us a small and precise span
for the values of the cosmological parameters, corresponding to values of �m,0 =
0.285+0.022

≠0.022 and ��,0 = 0.713+0.045
≠0.041.22

1.2 Structure formation

During the lifetime of the Universe, its components have gathered and formed
in di�erent kinds of structures of varying sizes and physical traits. The Big Bang
theory suggests that shortly after the beginning, the Universe consisted of a smooth
distribution of dark matter in which quantum fluctuations caused the dark matter
to create potential wells into which the dark and visible matter could congregate.
These are the same fluctuations as those in the CMB map in Figure 1, where the
blue regions indicate the areas with higher density and deepest potential wells.23

The potential wells are also what underlie the weblike structure we see, when
looking at the distribution of matter in our Universe on large scales today, as can
be seen in Figure 5. Here, each black dot is a galaxy and as the redshift decreases
and the matter congregates, these galaxies are located primarily in clusters and
threads of galaxies connecting these clusters. In between them, in the white areas,
are voids of empty space.24

22Kowalski et al. 2008.
23Freedman et al. 2014.
24Sparke, L. S. and Gallagher III, J. S. 2007.
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1.3 Evolution of the Universe 1 INTRODUCTION

Figure 5: The distribution of galaxies in the Universe showing the Large Scale
Structure.25

The clusters of dark matter are known as dark matter halos in which galaxies can
be located in the centre. Over time, these dark matter halos grow by accreting mass
from nearby areas or merging with other dark matter halos, creating increasingly
bigger halos and structures. These dark matter halos are significant for the work
of our thesis and will be brought up again later on.

1.3 Evolution of the Universe

Many di�erent types of universes, with varying cosmological parameters, have been
explored in the pursuit of finding the true nature of our own. In Figure 6 some
of these models can be seen. These di�erent universes diverge in many directions,
which make the future and past of the Universe vary depending on which model
we look at. The blue, green and orange curves all show matter-only universes,
but the value of the density parameter varies. For the orange curve, the sum of
the density parameters is �tot > 1, which makes it a closed universe. This type
of universe will expand at first, but then at one point in its lifetime, it will reach
a maximum size and then start to contract. The blue curve shows the case of
an open universe where the sum of the density parameters is �tot < 1, and this
type of universe will keep expanding forever. The green curve is a flat universe
with �tot = 1, like our own. In this universe the expansion will slowly start to
slow down due to the gravitational pull of matter. Lastly, the purple curve shows
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1.4 Our proposed model 1 INTRODUCTION

a flat universe containing both matter and the cosmological constant, where the
expansion of the universe will accelerate and continue forever.26

Figure 6: The evolution of several types of universes with di�ering cosmological
parameters.27

Several observations have supported the existence of dark energy, and the theo-
retical model containing the cosmological constant, �, seems to be the best fit, as
shown in the previous section. The future of the evolution of the Universe, should
therefore follow the purple curve, according to this theory. However, there are
many unknown features of dark energy and it is possible to imagine other theo-
retical explanations for this and thereof the acceleration of the Universe, which do
not involve the cosmological constant.

1.4 Our proposed model

We are interested in exploring a universe like the Benchmark model, but without
the cosmological constant. In this universe, the e�ects of the acceleration of the
Universe would have to be explained by some new theory of the workings of dark

26Ryden 2017.
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1.4 Our proposed model 1 INTRODUCTION

matter. This would mean, that instead of having two fundamentally di�erent
components of the Universe, that we know very little about, we would now instead
have just one unknown component, but one which we would know the physics of
the forces behind. To understand our new force we start by looking at the physics
behind electromagnetic forces.

Figure 7: A simple drawing of the basics of electromagnetism.

In Figure 7, a simple drawing of the basics of electromagnetism is shown. In the
left side of the figure, two stationary electrically charged particles can be seen, q1
(blue) and q2 (red). Focusing on q2, this feels the electric force that arises between
the two particles, the Coulomb force, Fc, which depends on the charge of the
particles and the distance between them.28 In the right side of the figure the same
electrically charged particles are visible, but in this scenario the two particles move
with two di�erent velocities, v1 and v2. The Coulomb force is still present, and
due to the movement of the particles, a magnetic force appears called the Lorentz
force, FB, which, among others, depends on the velocity of the particles.29

Likewise, we can imagine a di�erent force also depending on the velocity, which is
illustrated in Figure 8. In the left side of this figure, two groups of stationary non-
charged particles, described through the yellow and the green dot, attract each
other due to their masses. Because of this, the yellow dot feels a gravitational
force, FG, from the green dot, and vice versa. If we then imagine that the green
dot has a velocity dispersion, ‡

2, since the particles within the group move around
in di�erent directions with varying velocities, we get the case in the right side of
the figure. Here, a new force could appear due to the velocity dispersion, like in the

28Gri�ths 2013.
29Ibid.

10 of 77



1.4 Our proposed model 1 INTRODUCTION

electromagnetic example, where the Lorentz force occurs because of the movement
of the charged particles. This new force, FNew, could be a repulsive force and
therefore be opposite of the gravitational force, FG, as shown in the figure.

Figure 8: A simple drawing of the idea behind our new force.

As mentioned above, we wish to look at a universe, without the cosmological
constant, �. In the left side of Figure 9, the Benchmark model is shown, where
the Universe contains both the cosmological constant and matter. Here, a group
of dark matter particles on the edge of a sphere will feel a gravitational force,
FG, from the matter within this sphere and a repulsive force, F�, due to the
acceleration of the Universe caused by the cosmological constant. In the right side
of the figure, a universe without the cosmological constant can be seen. Here, the
group of dark matter particles on the edge of the sphere still feel a gravitational
force from the other groups within the sphere, and like in the simple case from
Figure 8, we imagine that a new repulsive force, now called FDM , can arise due to
the velocity dispersion of the dark matter groups within the sphere. The subscript
DM in our new force, denotes that it stems from dark matter. This force could
in this scenario be the cause of the acceleration of the Universe.

11 of 77



1.4 Our proposed model 1 INTRODUCTION

Figure 9: A drawing of the forces of the Benchmark model (left) along with the
possible forces of a universe without the cosmological constant (right).

12 of 77



2 THEORY

2 Theory

In this section, we derive an equation for the acceleration of the Universe according
to the Benchmark model, using the Friedmann, fluid and acceleration equation.
This equation is later used as a comparison for our own model. We will also
describe the theory behind our new model, where we introduce a specific equation
for this. Lastly, we go over the theory of numerical simulations, along with an
introduction to the RAMSES project30 and MUSIC31, which were both used for
creating a simulation in this thesis.

2.1 Acceleration of the Universe

The expansion of the Universe can be described using the Friedmann equation,
which is a statement of energy conservation in a Newtonian approximation. Even
though the Friedmann equation is a very important equation in cosmology, we
also need other equations, such as the fluid equation, the acceleration equation
and the equation of state, in order to describe and understand the expansion of
the Universe. In the following sections the di�erent equations will be derived and
explained.

When deriving the Friedmann equation, the correct way is to do this using general
relativity. However, for the purpose of this thesis, we can simplify the case using a
Newtonian approximation. This is done in order to make it easier to understand
the physics behind the Friedmann equation and thereby making the theory behind
our proposed model more clear.

In the following subsections, the approach and derivations of Barbara Ryden in
Introduction to Cosmology32 are used for guidance.

2.1.1 The Friedmann equation

The Friedmann equation can be derived from Newtonian physics by looking at the
expansion or contraction of the Universe. We start from Newton’s law of gravity
and second law of motion, where we consider a homogeneous sphere of matter with
a total mass M , which is constant with time, as can be seen in Figure 10. The
sphere is expanding or contracting isotropically, so that its radius R(t) is increasing
or decreasing with time. If we place a test mass m on the surface of the sphere, the

30Teyssier 2002.
31Hahn, O. and Abel, T. 2011.
32Ryden 2017.
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2.1 Acceleration of the Universe 2 THEORY

gravitational force felt by the test mass will be given by Newtons’ law of gravity,

F = ≠GMm

R(t)2 . (2.1.1)

Figure 10: An expanding or contracting sphere with a radius R(t) and mass M ,
along with a test mass, m, on the surface of the sphere.

The gravitational acceleration at the surface of the sphere is given by Newton’s
second law of motion,

d
2
R

dt2 = ≠ GM

R(t)2 . (2.1.2)

Multiplying each side with dR/dt and integrating, we get,
⁄

dR

dt

d
2
R

dt2 = ≠
⁄

GM

R(t)2
dR

dt
…

⁄
dR

dt

d
2
R

dt2 dt = ≠GM

⁄ 1
R(t)2 dR …

1
2

A
dR

dt

B2

= GM

R(t) + U,

(2.1.3)

where U is a constant of integration.

From Equation (2.1.3), we can define the kinetic energy per unit mass, Ekin, and
the potential energy per unit mass, Epot, as,

Ekin = 1
2

A
dR

dt

B2

and Epot = ≠GM

R(t) . (2.1.4)
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2.1 Acceleration of the Universe 2 THEORY

Defining these two expressions for Ekin and Epot, Equation (2.1.3) now states that
the sum of the kinetic energy per unit mass, Ekin, and the potential energy per unit
mass, Epot, is constant at the surface of the sphere, while the sphere is expanding
or contracting due to self-gravity.

The mass of the sphere can be defined as,

M = 4
3fifl(t)R(t)3

, (2.1.5)

since the mass is constant.

Inserting the expression for M in Equation (2.1.3) we get,

1
2

A
dR

dt

B2

= 4fiG

3 fl(t)R(t)2 + U. (2.1.6)

Rewriting dR/dt as Ṙ, we get the Friedmann equation in its Newtonian form,

1
2

1
Ṙ

22
= 4fiG

3 fl(t)R(t)2 + U …
A

Ṙ

R

B2

= 8fiG

3 fl(t) + U

R(t)2 .

(2.1.7)

Usually one derives the Friedmann equation in terms of the dimensionless scale
factor, a, which is defined as R(t) = a(t) · r, where r is a comoving radius. But
since we are interested in physical units, we have chosen not to derive it in terms of
the scale factor, but instead in terms of the radius of the expanding or contracting
sphere, R.

Looking at an expanding sphere, Ṙ > 0, we can consider three possible cases,
depending on the sign of U . The first case is U > 0, where the right-hand side of
Equation (2.1.7) is always positive and therefore Ṙ is always positive. In this case
the expansion of the sphere will never stop, corresponding to an open universe.
The second case is U < 0, where the right-hand side of Equation (2.1.7) starts out
being positive, but will turn zero at a maximum radius, Rmax = ≠GM/U . After
this Ṙ will be negative, and the sphere will start to contract, as is the case for
a closed universe. The third case is U = 0, which is the boundary case in which
Ṙ æ 0, as t æ Œ and fl æ 0. This means that the expansion of the sphere will
eventually stop as the density of the matter decreases with time.
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2.1 Acceleration of the Universe 2 THEORY

We know from observations stated in Section 1.1, that our Universe is almost
spatially flat, which corresponds to the third case, where U = 0. The sphere
mentioned above only contains matter, but according to the Benchmark model,
the Universe also contains radiation and dark energy. Therefore, we wish to rewrite
the Friedmann equation, so that it fits with the components of the Universe. We
do this by writing the Friedmann equation in terms of energy density, Á, instead
of matter density, fl. The energy density is given by Á = flc

2. Inserting this in
Equation (2.1.7), we get the final edition of the Friedmann equation,

A
Ṙ

R

B2

= 8fiG

3c2 Á(t). (2.1.8)

2.1.2 The Fluid equation

In the Friedmann equation, given by Equation (2.1.8), we have two unknown
parameters, R(t) and Á. We therefore need to derive another equation which
contains these two parameters, in order to be able to find the value of these. This
equation is known as the fluid equation. Since the Friedmann equation describes
energy conservation, we start by looking at another case of energy conservation in
the first law of thermodynamics,

dQ = dE + PdV, (2.1.9)

where dQ is the heat flow in or out of a volume, dE is the change in internal
energy, P is the pressure and dV is the change in volume.

A perfectly homogeneous universe, where there is no heat flow, can be described
through an adiabatic process, which means that dQ = 0. This leads us to the
following version of the equation,

0 = Ė + PV̇ . (2.1.10)

When we derived the Friedmann equation, we took as a starting point, that we
were looking at a spherical section of the Universe, as seen in Figure 10. To
continue with this reference point, we can use the di�erentiated volume of the
given sphere to insert into Equation (2.1.10).

The volume of a sphere is given by,

V (t) = 4fi

3 R(t)3
. (2.1.11)
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The di�erentiated volume is then,

V̇ = 4fi

3 3R(t)2
Ṙ. (2.1.12)

If we decide to divide and multiply with R(t), the equation becomes,

V̇ = 4fi

3 3R(t)3 Ṙ

R(t) , (2.1.13)

where we recognise the expression for V (t). The final di�erentiated volume is then,

V̇ = V (t) · 3 Ṙ

R(t) . (2.1.14)

Next, we look at the expression for E(t), which was the internal energy. For a
sphere this is given as,

E(t) = V (t)Á(t), (2.1.15)
where Á(t) is the energy density.

In order to see the change in internal energy, we di�erentiate this,

Ė = V̇ Á(t) · V (t)Á̇ =
A

V (t) · 3 Ṙ

R(t)

B

Á(t) + V (t)Á̇. (2.1.16)

We can now insert Equation (2.1.14) and (2.1.16) into Equation (2.1.10).

0 = V (t) · 3 Ṙ

R(t)Á(t) + V (t)Á̇ + PV (t) · 3 Ṙ

R(t)

= V (t)
A

3 Ṙ

R(t)Á(t) + Á̇ + P · 3 Ṙ

R(t)

B

.

(2.1.17)

Since the volume of a sphere can’t be equal to zero, we know that the product of
the parenthesis must be zero in order for the equation to be true. In the following
equation we look only at the terms inside of the parenthesis.

0 = 3 Ṙ

R(t)Á(t) + Á̇ + P · 3 Ṙ

R(t) = 3 Ṙ

R(t)(Á(t) + P ) + Á̇. (2.1.18)

Rewriting this, we get the fluid equation,

Á̇
R(t)
Ṙ

= ≠3(Á(t) + P ). (2.1.19)
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2.1.3 The Acceleration equation

With both the Friedmann equation and the fluid equation, we are finally able to
find the acceleration equation. This describes the acceleration of the Universe and
is useful when looking at the evolution of it. To derive the acceleration equation,
we start by taking the time derivative of the Friedmann equation,

d

dt
Ṙ

2 = 8fiG

3c2
d

dt
Á(t)R2(t) …

R̈Ṙ + ṘR̈ = 8fiG

3c2

1
Á̇R(t)2 + Á(t)ṘR(t) + Á(t)R(t)Ṙ

2
.

(2.1.20)

By reducing this equation we get,

2R̈Ṙ = 8fiG

3c2

1
Á̇R(t)2 + 2Á(t)ṘR(t)

2
. (2.1.21)

We now decide to divide both sides of this equation with 2ṘR(t),

R̈

R(t) = 4fiG

3c2

A

Á̇
R(t)
Ṙ

+ 2Á(t)
B

. (2.1.22)

The first term in the parenthesis can be recognised as the fluid equation. When
inserting this, the equation then becomes,

R̈

R(t) = 4fiG

3c2 (≠3(Á(t) + P ) + 2Á(t))

= 4fiG

3c2 (≠Á(t) ≠ 3P ) = ≠4fiG

3c2 (Á(t) + 3P ) .

(2.1.23)

This equation can be rewritten using the equation of state, P = wÁ, which is a
linear relation between the pressure and the energy density, where w is a dimen-
sionless number. Using this we get the acceleration equation in its final form,

R̈

R(t) = ≠4fiG

3c2 Á(t) (1 + 3w) . (2.1.24)

2.1.4 The Benchmark model

We can now describe the acceleration of the Universe using Equation (2.1.24) by
inserting the components of the Universe. According to the Benchmark model,
the Universe contains radiation, matter (both baryonic and cold dark matter) and
the cosmological constant, �. We can therefore rewrite the acceleration equation
by inserting the energy densities of these di�erent components.
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The energy density of matter and radiation is given by,

Ám = Ám,0a
≠3 = Ám,0(1 + z)3

,

Ár = Ár,0a
≠4 = Ár,0(1 + z)4

,
(2.1.25)

where Ám,0 and Ár,0 is the energy density of matter and radiation today. Rewriting
these in terms of physical units using R(t) = a(t) · r, we get,

Ám = Ám,0

3
R

r

4≠3
, Ár = Ár,0

3
R

r

4≠4
. (2.1.26)

The energy density of the cosmological constant, �, is constant, meaning that
Á� = Á�,0, where Á�,0 is the energy density of cosmological constant today. Each
component has a di�erent equation of state parameter, w. For matter the param-
eter is w = 0, for radiation it is w = 1

3 , and for the cosmological constant the
parameter is w = ≠1.

At first we rewrite the acceleration equation (2.1.24) in terms of the critical energy
density of the Universe today, Ác,0, and the Hubble constant, H0. The critical
energy density of the Universe today is given by,

Ác,0 = 3c
2

8fiG
H

2
0 . (2.1.27)

Inserting this in Equation (2.1.24) gives us,

R̈

R
= ≠4fiG

3c2 Á(1 + 3w) …

R̈

R
= ≠ H

2
0

2Ác,0
Á(1 + 3w).

(2.1.28)

Inserting the energy densities and the equation of state parameters of the di�erent
components we get,

R̈

R
= ≠ H

2
0

2Ác,0
(Ám(t) + 2Ár(t) ≠ 2Á�(t)) …

R̈

R
= ≠ H

2
0

2Ác,0

A

Ám,0

3
R

r

4≠3
+ 2Ár,0

3
R

r

4≠4
≠ 2Á�,0

B

.

(2.1.29)

19 of 77



2.1 Acceleration of the Universe 2 THEORY

We can rewrite Áx,0 in terms of the density parameter, �x,0, which is given by
�x,0 = Áx,0/Ác,0. Inserting this gives us,

R̈

R
= ≠H

2
0

2
1
�m,0r

3
R

≠3 + 2�r,0r
4
R

≠4 ≠ 2��,0
2

. (2.1.30)

Isolating the acceleration, R̈, we get,

R̈ = ≠H
2
0

2
1
�m,0r

3
R

≠2 + 2�r,0r
4
R

≠3 ≠ 2��,0R
2

. (2.1.31)

From this equation we are now able to describe the acceleration of the Universe
according to the Benchmark model and understand how the Universe evolves over
time. At di�erent times in the history of the Universe, the di�erent components
dominate, as can be seen in Figure 11, which shows the scale factor as a function of
time. In the early Universe, until z ƒ 3600, radiation dominated the acceleration
of the Universe, afterwards matter dominated the acceleration until z ƒ 0.6, and
now the cosmological constant, �, dominates the acceleration, leaving us with a
inflationary-like epoch. These di�erent epochs are contained in the acceleration
equation, which we know describes the seen evolution of the Universe.

Figure 11: The scale factor as a function of time for the Benchmark model. The
dashed lines indicate the transition between the di�erent epochs of the Universe.33
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In our thesis, we are interested in being able to describe the acceleration of the
Universe without �, but we still need for our model to support the expansion we
see today. The acceleration equation describes the acceleration of the Universe
as it is observed today, which makes it a good comparison model, when testing
whether our new model can be used as an alternative theory to describe the ac-
celeration of the Universe. In order to see deviations between our new model and
the acceleration equation, we look at the normalised acceleration, since it is easier
to see variations and small details. We get the normalised acceleration by dividing
the acceleration of the Universe, R̈, given by Equation (2.1.31), with the accelera-
tion of the Universe in the matter dominated epoch, R̈m,analytical. This component
is locked by the fact that there is a given amount of matter in the Universe, which
makes it a fixed variable to divide it by. The acceleration of the Universe in the
matter dominated epoch is given by,

R̈m,analytical = ≠H
2
0

2 �m,0r
3
R

≠2
. (2.1.32)

By dividing R̈ by R̈m,analytical, we get the normalised analytical acceleration, which
we will use as a comparison for our new model.

R̈norm = R̈

R̈m,analytical

= 1 + 2 �r,0
�m,0

r
1
R

≠1 ≠ 2 ��,0
�m,0

r
≠3

R
3
. (2.1.33)

2.2 The potential forces of dark matter

2.2.1 Possible scenario

According to the Benchmark model, we are currently in a phase where the cosmo-
logical constant, �, dominates, resulting in an accelerating and rapidly expanding
universe. We still know very little about � and the cause of this, but it is theo-
rised to be a kind of vacuum energy, meaning that the more space that arises in
between objects, the greater the e�ects of the cosmological constant we will see.34

The acceleration of the Universe will therefore only grow in the future, so if we
look at the normalised acceleration this should decrease as can be seen in Equation
(2.1.33).

In Figure 12 the normalised acceleration can be seen as the solid black line. At
the beginning, the curve depicts the matter dominated universe, making it start
at R̈/R̈m = 1. From there, the cosmological constant starts to dominate, making
the curve decrease rapidly due to the negative �-term in Equation (2.1.33).

34Kragh 2011.
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Figure 12: The normalised analytical acceleration as a function of 1/(1 + z) for
the Benchmark model (black), a matter-only universe (blue) and a matter-radiation
universe (orange) which follows the blue line after the rapid decrease.

In order to make the normalised acceleration more clear, the evolution of the
curve for a matter-only universe can be seen as the constant, blue line, where
R̈/R̈m = 1. The orange line shows the matter-radiation universe, where it starts
o� at R̈/R̈m > 1 and then decreases rapidly, after which it follows the blue line at
R̈/R̈m = 1. In reality the orange line is only slightly above one in the beginning.
It has been exaggerated in this figure, in order to make it more visible.

If the force responsible for the acceleration of the Universe was not due to vacuum
energy and the cosmological constant, but instead due to the movement of dark
matter particles, we would be looking at a di�erent cosmology, where the cosmolog-
ical constant is no longer needed. We propose a new explanation for dark energy
and the acceleration of the Universe, where we calculate this from the velocity
dispersions of dark matter halos. When dark matter particles are moving around
in their respective halos, a force can arise similar to the Lorentz force, as already
explained. As the halos grow bigger, their velocity dispersions increase, in turn
resulting in a greater force. During the evolution of the Universe, structures have
formed and grown, making the force increase over time. This could cause the ex-
pansion of the Universe to accelerate, as the force grows stronger. However, in the
future we will reach a point where structure formation stops, consequently making
the force constant.35 The Universe will then continue expanding at a constant rate.

35Ryden 2017.
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This scenario can be seen in Figure 13 as the green line.

Figure 13: The normalised analytical acceleration as a function of 1/(1 + z) for
the Benchmark model (black) along with a new possible scenario (green).

The evolution of structure formation depends on the small density perturbations
in matter, that were explained in Section 1.2, and how these have grown over time
in the di�erent epochs of the Universe. To see how the density perturbations grow
in an expanding universe, we can look at the following equation36,

”̈ + 2H ”̇ ≠ 3
2�mH

2
” = 0, (2.2.1)

where |”| π 1 and is the amplitude of the density perturbations in matter and
H is the Hubble parameter, given by H = ȧ/a. The second term of the equation
is known as the Hubble friction and this is the term that causes the slowing of
the growth of the density perturbations in an expanding universe, making the
structure formation slower.

In the radiation dominated epoch, the density parameter of matter is very small,
�m(z) = �m,0/(1 + z)3 π 1, which makes it negligible. The Hubble parameter in
this epoch is H = 1/(2t), so Equation (2.2.1) is reduced to the following equation
and its corresponding solution,

”̈ + 1
t
”̇ ¥ 0 ∆ ”(t) ¥ B1 + B2 ln(t), (2.2.2)

36Ryden 2017.
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where B1 and B2 depend on the initial conditions for ”(t). From this equation we
see, that the density perturbations grow at a logarithmic scale, which results in a
slow growth, as can be seen in Figure 14a.

(a) Radiation-epoch. (b) Matter-epoch.

(c) �-epoch.

Figure 14: Growth of density perturbations in matter in di�erent epochs.

In the matter dominated epoch, on the other hand, �m = 1 and H = 2/(3t), which
leads to the following version and solution of Equation (2.2.1),

”̈ + 2 2
3t

”̇ ≠ 2
3t

” = 0 ∆ ”(t) ¥ D1t
2/3 + D2t

≠1
, (2.2.3)

where D1 and D2 depend on the initial conditions for ”(t). This solution has two
modes, a decaying mode, t

≠1, and a growing mode, t
2/3. Over time the decaying

mode becomes negligible and the perturbations then grow at a rate of t
2/3, as can

be seen in Figure 14b. It is in this epoch, that the density perturbations in matter
grow significantly.
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In the current epoch, which is dominated by the cosmological constant, �m π 1
once again. This time, however, H = H�, leading Equation (2.2.1) to be,

”̈ + 2H�”̇ ¥ 0 ∆ ”(t) ¥ C1 + C2e
≠2H�t

, (2.2.4)

where C1 and C2 depend on the initial conditions for ”(t). For this solution, the
density perturbations grow as an exponentially decaying function, which can be
seen in Figure 14c. As time goes by, the growth goes to zero, making structure
formation stop.37

2.2.2 Our new model

Figure 15: A simple drawing of our proposed force.

The purpose of this thesis is to test whether we in some way can predict the current
acceleration through a new force generated by dark matter. As a reminder, we
once again have a simple drawing of how the new, proposed force should work in
Figure 15. The green and yellow dots are dark matter halos that attract each other
through gravitational forces, FG. When the dark matter particles within the green
halo move, a velocity dispersion arises, ‡

2, giving way for a new repulsive force,
FDM . In this scenario, we ignore the velocity of the halos due to the expansion of
the Universe, in order to keep the model simple.

37Ryden 2017.
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We are working on the basis of gravitational dynamics using Equation (2.1.2),
which is given by,

R̈m = ≠GM

R2 , (2.2.5)

where G is the gravitational constant, M is the mass of the dark matter halos and
R is the distance between the interacting dark matter halos. We can extend the
gravitational acceleration by adding a term that depends on the squared velocity
dispersion, ‡

2, of the dark matter halos. We should then be able to see a change
from the classic e�ects. The new, proposed acceleration becomes,

R̈DM = R̈m + ŸR̈‡, (2.2.6)

where R̈m is the classic gravitational acceleration given by Equation (2.2.5), and
R̈‡ is the new term dependent on the squared velocity dispersion, ‡

2, that we
introduce. In order to make the new term comparable to the classic gravitational
acceleration term, we multiply it with a dimensionless scaling factor, Ÿ.

We propose that the new term dependent on the squared velocity dispersion, ‡
2,

can be given by,
R̈‡ = ≠GM

R2

3
‡

c

42
, (2.2.7)

where G, M and R are the same as before, ‡ is the velocity dispersion of the dark
matter halos and c is the speed of light in vacuum, introduced to keep the equation
in units consistent with an acceleration. We have chosen to make the expression
for R̈‡ very similar to the classic gravitational acceleration, R̈m, in order to keep
the model simple and easy to assess. Like the classic case, the mass is weighted
linearly, such that heavier halos have a greater influence than the lighter halos.
Since the heavier halos contain more dark matter particles, their velocity dispersion
is also bigger than the velocity dispersions of the lighter halos, meaning that the
force from the big halos should have a stronger e�ect.

Inserting Equation (2.2.5) and (2.2.7), we can rewrite Equation (2.2.6) as,

R̈DM = ≠GM

R2

A

1 ≠ Ÿ

3
‡

c

42B

. (2.2.8)

Like we did in Section 2.1.4, we can divide the acceleration generated by dark
matter, R̈DM , by the classic gravitational acceleration, R̈m, to get the normalised
acceleration.

R̈DM,norm = R̈DM

R̈m

= 1 + Ÿ
R̈‡

R̈m

. (2.2.9)
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In order to determine the value of Ÿ, we compare the normalised analytical ac-
celeration given by Equation (2.1.33) and the normalised acceleration generated
by dark matter, since these must be the same for the matter dominated epoch,
z > 0.6, before the cosmological constant, �, starts to dominate the acceleration
of the Universe.

R̈norm = R̈DM,norm = 1 + Ÿ
R̈‡

R̈m

… Ÿ = R̈norm ≠ 1
R̈‡/R̈m

. (2.2.10)

This leaves us with an expression for the scaling factor, Ÿ, which allows us to com-
pare the normalised analytical acceleration derived from the Friedmann equation
and the normalised acceleration generated by dark matter. This makes it possible
to test whether our model is applicable, as we will now explain.

Depending on the value of Ÿ, the evolution of the acceleration of the Universe
will look very di�erent. In Figure 16 the normalised analytical acceleration for
the Benchmark model (black) can be seen, along with our new model with three
di�erent Ÿ-values (colored).

Figure 16: The normalised analytical acceleration as a function of 1/(1 + z) for
the Benchmark model (black) and our new model with di�erent Ÿ-values (colored).

The bright green line in the figure shows a model with a positive value of Ÿ.
If this was the case, we would see a deceleration of the Universe, instead of the
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acceleration, that has been observed today through observations of supernovae and
baryonic acoustic oscillations, as described in Section 1.1. From this, it is possible
to conclude that the value of Ÿ should be negative, which is the case for the blue
and green curve, that both show the new model for an accelerating universe with
two di�erent Ÿ-values. The greater the absolute value of Ÿ is, the more time will
pass before we start seeing a deviation from the Benchmark model, meaning that
the green line has a larger absolute value of Ÿ than the blue. As shown above
in Equation (2.2.10), the value of Ÿ is determined based on the two normalised
accelerations, R̈DM,norm and R̈norm, and is therefore not a value we choose.

2.3 Using RAMSES for creating simulations

If one wishes to explore the dynamics of the Universe at di�erent times, it can be
di�cult to do so by using only analytical and empirical methods, since these have
many limitations. A numerical simulation can be very convenient to overcome
some of these constraints and this is a useful tool, since it gives us the opportunity
to create a smaller, contained version of the real situation, that can be analysed and
looked in-depth into. With numerical simulations we are able to look at structure
formation at di�erent times, which is needed for the purpose of our thesis. These
simulations can be very complicated to create, since they have to be able to take
into account complex formations and evolutions stemming from many di�erent
factors. However, these simulations also make it possible to simulate great periods
of time and get otherwise unknown information on what the past or future either
entailed or will entail.

In a numerical simulation of the Universe, initial conditions motivated by the Big
Bang theory are generated and these are then evolved over time to get snapshots
of a universe at di�erent times. The idea behind this can be seen in Figure 17.

Dark matter N-body simulations are well tested, and since baryons are not in-
cluded, the physics is simple. In these simulations, we have dark matter halos
which are self-gravitating systems, where the system is held together by its own
gravity. Furthermore cold dark matter is a collision-less fluid, which means that
we can also look at the dark matter halos as collision-less systems. If baryons are
included, the physics is more complex, since hydrodynamics now has to be added
to the computations as well. Therefore it is simpler to look at a dark matter only
simulation, and for the purpose of this thesis, baryons are not relevant, so we do
not need to include these.38

38Martizzi 2019.
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Figure 17: The idea behind a numerical simulation where initial conditions are
evolved to produce a snapshot of the Universe today. The CMB image is taken
from39 and the Hubble deep field image is taken from40.

In general, a code for N-body dynamics requires two di�erent things. An algorithm
to compute the force acting on each particle, and an algorithm to evolve parti-
cles forward in time. The initial conditions are created, where a certain amount
of particles are put inside a box with given positions and velocities. Since the
gravitational force in a given direction can be found by F̄ (x) = ≠Ò�(x), the first
algorithm calculates the gravitational force acting on each particle from all of the
surrounding particles by solving Poisson’s equation,

Ò2� = 4fiGfl, (2.3.1)

where � is the gravitational potential, G is the gravitational constant and fl is
the density. Once the code has calculated the gravitational force on each particle
for a given time, we then know in which direction the acceleration will force the
particle.41

The second algorithm is now applied, which uses a Kick-Drift-Kick (KDK) Leapfrog
integrator to update the positions after a given time-interval. The workings of this
can be seen in Figure 18.

41Martizzi 2019.
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Figure 18: An illustration of the KDK Leapfrog integrator.

For a KDK Leapfrog integrator, the positions and velocities are updated back-
to-back with a constant time interval. The positions are calculated for each time
point, where the velocities instead are computed in between these, so at the mid-
points of the time intervals. This means that while the positions of the particles
are being updated, the velocities, needed to find the next positions, are being com-
puted, creating this continuous cycle of parallel calculations. The advantages of
using a KDK Leapfrog integrator is that it is simple and time reversible, which
warrants the conservation of energy and angular momentum. This means, that
if we backstep the process, the results of previous steps will still be exactly the
same.42

In our thesis, we have used numerical simulations produced with The RAMSES
project43, which provides snapshots of the structure of the Universe at given red-
shifts. RAMSES is a Fortran written code, which uses Adaptive Mesh Refinement,
AMR. This means, that instead of using a pre-determined locked grid, the code
allows for the grid to have di�erent levels of refinement depending on the needed
resolution for each area. An illustration of this can be seen in Figure 19.

42Dehnen, W. and Read, J. I. 2011.
43Teyssier 2002.
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Figure 19: An illustration of Adaptive Mesh Refinement, AMR.

With AMR we are able to achieve a high resolution where needed, without ex-
pensive computational time, since the finer mesh is only applied to the areas of
interest. If we wanted a high resolution in the case of the pre-determined grid, we
would have to apply this fine mesh to the entire simulation wasting a lot of time
computing a high resolution of empty regions.44

RAMSES takes in initial conditions describing the kind of universe we are work-
ing with and can then evolve these conditions to show us the evolution of this
universe. The initial conditions have been produced using MUSIC (MUlti-Scale
Initial Conditions)45, which creates a statistical representation of a universe with
given cosmological parameters. In our case, it takes starting conditions equivalent
to the Universe at the time of CMB emission and propagates these linearly until
the desired redshift has been reached. With this, the initial conditions have been
produced and the simulation can then start.46

By using MUSIC, we can adjust the number of particles in the simulation, N , by
choosing a level, l, which is related to the number of particles through N = (2l)3.
The number of particles in a simulation can be seen in Table 1 for di�erent lev-
els. Among other things, we can also adjust the the final size of the simulated

44Berger, M. J. and Colella, P. 1989.
45Hahn, O. and Abel, T. 2011.
46Binney, J. and Tremaine, S. 2008.
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universe, boxlength, the redshift the simulation starts at, zstart, and the den-
sity parameters of the di�erent components in the Universe today, Omega_m and
Omega_L.

Level, l Number of particles, N

6 262144
7 2097152
8 16777216
9 134217728

Table 1: A given level, l, and the related number of particles, N , in a simulation.
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3 Method

In this section, we describe our simulation and the parameters used when gener-
ating this. We explain how we intend to test and analyse our simulation in order
to see whether our model can predict the acceleration of the Universe.

3.1 Acceleration of the Universe

In order to see if our model can describe what we see in the Universe today, we
need to know how the Universe evolves over time. We do this, by calculating the
normalised analytical acceleration of the Universe using Equation (2.1.33), which
is derived from the Friedmann equation,

R̈norm = 1 + 2 �r,0
�m,0

r
1
R

≠1 ≠ 2 ��,0
�m,0

r
≠3

R
3
,

where R is the radius of the sphere we looked at, in physical units, when deriving
the Friedmann equation, shown in Figure 10 in Section 2.1.1, and r is the comoving
radius of the sphere. Since the radius, R, depends on the scale factor, a, through
R = a · r, and the scale factor is related to the redshift through a = 1/(1 + z), we
can look at how the acceleration evolves as a function of redshift. In Table 2, the
values of the di�erent parameters used in the acceleration equation can be seen.
These are all corresponding with the Benchmark model.

Parameter Value
�m,0 0.3089
��,0 0.6911
�r,0 9 · 10≠5

H0 2.1951 · 10≠18 s≠1

r 5 Mpc

Table 2: Values of the di�erent parameters used in Equation (2.1.33).

3.2 Our Simulation

In our thesis we are interested in looking into a possible scenario that can explain
the already observed workings of the Universe, without the cosmological constant,
through numerical simulations. However, we still need for the e�ect of dark en-
ergy to be a part of the simulation and therefore we keep the �-component when
generating it, by letting �� = 0.69. We have created a simulation using RAMSES
with 2.1 · 106 particles, which is equivalent to level l = 7. This simulation does
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not contain any baryons and consists only of dark matter, since we are interested
in exploring the e�ects of this. In Figure 20 snapshots of our simulation at three
di�erent redshifts can be seen. Here it is possible to see the evolution of structures
and the large scale structure.

(a) Snapshot at z = 5.20. (b) Snapshot at z = 1.77. (c) Snapshot at z = 0.02.

Figure 20: Snapshots of our simulation at three di�erent redshifts.

The initial conditions for the simulation have been produced using MUSIC and
can be seen in Table 3. Since the density of the Universe is known, the mass of
the dark matter particles varies, depending on the volume and number of particles
that is chosen. For our simulation, the particle mass is 1.6 · 1010 kg.

Parameter Value
boxlength 96 Mpc

zstart 20
Omega_m 0.3089
Omega_L 0.6911

H0 67.74

Table 3: Initial conditions for our simulation.

3.2.1 Testing the Friedmann equation

Once the outputs containing the snapshots of the simulation at di�erent redshifts
have been given, we are able to examine the laws of physics and the evolution of
the Universe. To do this, we make sure that the Friedmann equation behaves as
expected in our simulated universe. In the matter dominated epoch, only matter
influences the acceleration of the Universe, making the acceleration of the Uni-
verse equal to the gravitational acceleration. We can calculate the gravitational
acceleration felt by the dark matter particles in our simulation, and compare this
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to the acceleration of the Universe in the matter dominated epoch, which is given
by Equation (2.1.32),

R̈m,analytical = ≠H
2
0

2 �m,0r
3
R

≠2
.

In order to calculate the gravitational acceleration, we find the acceleration that
would be felt by a dark matter particle, on the edge of a sphere with a given radius,
by all other particles located within the sphere, which can be seen in Figure 21. To
do this, we use Equation (2.2.5), which is the classic equation for the gravitational
acceleration and in this case is given by,

R̈m =
ÿ

i

≠GMi

R
2
i

, (3.2.1)

where G is still the gravitational constant, Mi is the mass of the particles within
the sphere and Ri is the distance in physical units from the particle on the edge
to a given particle within the sphere. Since we have a simulation of two million
particles, it would be very time consuming to find the acceleration through this
method for each particle, so instead, we select a certain number of particles to use
and then create an average based on what these chosen particles feel.

Figure 21: An illustration of a particle on the edge of the sphere (red) and the
particles within the sphere (blue) with mass, Mi, and distance to the particle on
the edge, Ri. Particles outside the sphere are colored green.
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Our simulated universe, unlike the actual universe, has a finite size and a square
shape, so we apply a grid of 5◊5◊5, meaning that we now have 125 grid points to
describe our simulation by. This is illustrated in Figure 22, where one of the grid
points have been circled. These grid points are used for deciding which particles
to use for our calculations.

Figure 22: An illustration of the 5◊5◊5 grid applied to the numerical simulation,
where one of the grid points have been circled.

Since we are interested in calculating the acceleration felt from a particle on the
edge of a sphere, we need the particle to be in an area, where there are enough
particles to draw a complete sphere around. The particles at the outer grid points
are limited by the ends of the simulation and are therefore dismissed, since our
simulation has periodic boundary conditions, PBCs. PBCs are used for simulating
infinite systems, by creating one small, representative system and then using this
system as its own neighbor on all sides47, as can be seen in Figure 23. Here, the
green square in the middle is our simulation box and the surrounding white squares
are copies of this universe. If we look at particle A, we see that it has a neighbor
outside of the simulation box, particle B. Due to the PBCs, particle B is exactly
the same particle as the one that is located on the opposite side of the simulation
box from particle A. If we were to draw a sphere with particle A on the edge,
this sphere would go outside of the simulation box and include particle B, which

47Kuzkin 2014.
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actually belongs to the other side of the simulated box.

Figure 23: A simple figure of periodic boundary conditions, PBCs.

Once we have dismissed the 61 outer gridpoints due to the PBCs, we are left with
64 inner grid points to use. Here, we locate the nearest particle to the grid point
and put this at the edge of a sphere with a radius of r = 5 Mpc in comoving
coordinates. We then calculate the acceleration that the particle at the edge of
the sphere feels from each of the particles within the sphere. We continue to do
this for all of the particles located at the grid points and then find an average of
these.

Since the simulation is supposed to be a description of our Universe, the 3D box
that is our simulation is expanding, ending with a boxsize of 96 Mpc, as stated in
Table 3. All of the coordinate dependent values that are given from the simulation
are given in terms of code lengths, which describe their location compared to the
relative size of the box at the given snapshot. In order to prevent confusion, all
of the values are converted from code lengths to physical units by multiplying the
values with a length unit, L, which is the boxsize at the given snapshot in physical
coordinates,

xphysical = xcodelength · L = xcodelength · boxsize ·
3 1

1 + z

4
(3.2.2)
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3.2.2 Analysing the simulation

We wish to identify structures, such as dark matter halos in our simulation. For
this, we use the HOP Halofinder in The yt Project48. In Figure 24 an illustration
of the HOP Halofinder can be seen, where each dot corresponds to a particle. This
method works by calculating the local density of each particle and then for each
particle locating its densest neighbor with a higher density than itself. These are
then connected, which is illustrated through the dotted lines. The code continues
by looking for the densest neighbor of this new particle and continues on until a
particle is its own densest neighbor, meaning that the surrounding particles all
have lower densities. When this has been found, all of the previous particles are
connected to this in a chain, with the densest particle (the filled dots in the figure)
as the end link of the chain. The chains with the same end links are then connected
to form a halo, which is illustrated by the particles having the same color.49

Figure 24: A simple illustration of the HOP Halofinder method.

From the HOP Halofinder, we find that the amount of halos in the simulation
increase from 10 to 1600, as the redshift decreases and we get closer to today.
From the Halofinder we are also given the values of the halos, that we need for our

48Turk et al. 2010.
49Eisenstein, D. J. and Hut, P. 1998.
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analysis, such as velocity dispersions, ‡, masses, M , virial radii and coordinates
for all halos.50

By looking at the number of particles in our halos, found from the Halofinder,
we conclude that the halos only contain about 1/3 of the total particles of our
simulation. The rest of these particles are instead part of smaller structures that
are not big enough for the HOP Halofinder to identify them as halos or else they
lie in the void between the structures. It is therefore necessary to also evaluate
whether there might be smaller sub-structures, that need to be included when
we want to analyse our simulation further. In order to check this, we locate all
particles not part of a halo and find the ones with the deepest mass potentials.

In order to find the possible structure surrounding a deep potential particle, we
analyse the neighborhood of the given particle. We know from the halos found
using the Halofinder that the average density of a halo is flhalo = 8.0 ·10≠25 kgm≠3.
By dividing this value by the he critical density of the Universe, flc,0 = 8.7 · 10≠27

kgm≠3 51, we are able to find the typical density within a virial radius of the center
of the halos,

flhalo

flc,0
= 8.0 · 10≠25 kgm≠3

8.7 · 10≠27 kgm≠3 = 92.7. (3.2.3)

From this we find that the virial radius for the substructure surrounding the par-
ticles needs to have a density of 93 ± 10 times the critical density, to include
structures close to this density. To avoid the substructures becoming too large, we
put in a maximum size of the virial radius. If we did not have an upper limit for
the virial radius, the code would just keep increasing the radius in order to find
a density within the virial radius big enough for the wanted relationship. If the
maximum size of the virial radius is surpassed, the particle is dismissed.

We found at most about 20 substructures for low redshifts and no structures at
all for the higher redshifts, which means that compared to the numerous amount
of structures found using the Halofinder, these are rather insignificant on the big
scale and can be dismissed entirely.

3.2.3 Our new model

Now that we have located the dark matter halos in our simulation, we can use these
for testing whether we can predict the acceleration of the Universe through a new
acceleration generated by dark matter. We use the same procedure as applied

50Halo Finding and Analysis n.d.
51Ryden 2017.
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in Section 3.2.1, but instead of looking at the acceleration felt by the individual
particles, we consider the acceleration felt by the dark matter halos.

We create an average acceleration based on the halos selected by applying a 5◊5◊5
grid again. Due to the periodic boundary conditions, we find the halos located
close to the 64 inner grid points. Each of these halos are put at the edge of a
sphere, as it can be seen in Figure 25, and the acceleration that one halo (cyan)
feels from all halos within the sphere (purple) is then calculated. We want the
spheres to have a radius of r = 9.8 Mpc in comoving coordinates, in order to
prevent the spheres from overlapping and including the same halos twice.

Figure 25: An illustration of a halo on the edge of the sphere (cyan) and the halos
within the sphere (purple) with velocity dispersion, ‡i, and distance to the halo on
the edge, Ri. Halos outside the sphere are colored orange.

In Section 2.2 we introduced a new acceleration that arises when two dark matter
halos interact with each other, due to the velocity dispersion of one halo. Since we
are now looking at a scenario where we have an interaction of several dark matter
halos, we want to find the acceleration that the halo on the edge of the sphere feels
from the force created by the velocity dispersions of all of the halos within. By
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adding a summation symbol to Equation (2.2.8), we find the following formula,

R̈DM =
ÿ

i

≠GMi

R
2
i

A

1 ≠ Ÿ

3
‡i

c

42B

, (3.2.4)

where Mi is the mass of the halos within the sphere, Ri is the distance in physical
units from the halo on the edge to a given halo within the sphere and ‡i is the
velocity dispersion of the halos within the sphere. This equation describes our new
model that we wish to explore using our simulation. This will be used in Section
4.3.
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4 Results

In this section, we start o� by making sure that our simulation agrees with the
Benchmark model and verify that our simulation is a reliable representation of the
Universe. We then present the results of the analysis of our model, along with
the results of an extension of the model. This is done in order to have di�erent
variations of our model, in case one might be a better fit than the others.

4.1 Acceleration of the Universe

We are interested in comparing our model to the Universe we observe today. In
order to make this an easier task, we compare our new model to the normalised
analytical acceleration of the Universe, given by the Benchmark model. In Figure
26 the normalised analytical acceleration as a function of 1/(1 + z), is shown in
order to see how this evolves over time. This acceleration is given by Equation
(2.1.33),

R̈norm = R̈

R̈m,analytical

= 1 + 2 �r,0
�m,0

r
1
R

≠1 ≠ 2 ��,0
�m,0

r
≠3

R
3
.

The values for this equation can be seen in Table 2.

Figure 26: The normalised analytical acceleration of the Universe as a function of
1/(1 + z) given by the Benchmark model.

The dashed line in Figure 26 indicates the beginning of the � dominated epoch at
1/(1 + z) ƒ 0.6, which means that the matter dominated epoch is on the left-hand
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side of the dashed line, and the � dominated epoch is on the right-hand side of
the line. In the matter dominated epoch the normalised acceleration is 1 in the
beginning, since matter only influences the acceleration, but in the � dominated
epoch the cosmological constant takes over and the normalised acceleration drops
dramatically.

If we take a closer look at the matter dominated epoch in the left-hand side of
Figure 26, we can verify that our simulation agrees with the Friedmann equation
and the Benchmark model for this epoch. Following Section 3.2.1, we calculate
the gravitational acceleration that applies in our simulation in this period, which
can be seen as the numerical acceleration (blue) in Figure 27.

Figure 27: The numerical acceleration for our simulation (blue) and the analytical
acceleration as a function of 1/(1 + z) for the Benchmark model (red).

Here we have chosen to plot R̈/R on a loglog scale as a function of 1/(1 + z),
since this gives us a straight line. It is therefore easier to compare the gravita-
tional acceleration calculated from our simulation and the analytical acceleration
corresponding to the Benchmark model in the matter dominated epoch. We see
that the numerical acceleration (blue) fits well with the analytical acceleration
(red), which means that our simulation is consistent with the Benchmark model.
Towards the end, we see the numerical acceleration starting to deviate from the
predicted model. This happens, as we approach the epoch where the cosmological
constant starts dominating, which forces the acceleration of the universe to diverge
from the evolution of the matter dominated epoch.
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4.2 Verifying our simulation

We have just shown that our simulation agrees with the Benchmark model for the
matter dominated epoch, however we want to explore how reliable this simulation
actually is and whether this is a good representation of the Universe. One way
of doing this, is by looking at the distribution of halos according to their masses.
In Figure 28, a theoretical model of a halo mass function can be seen for redshift,
z = 0, where the masses range from 108 M§ to 1016 M§. A halo mass function
describes the number density of dark matter halos for the mass range.52

Figure 28: The mass function of halos in the standard �CDM model for redshift,
z = 0 (solid line). The symbols show a galaxy luminosity function, which is not
relevant in our thesis.53

From this figure we see that we have a great number of small halos and that the
number of halos falls quickly as the masses of the halos increase. This agrees with
the nature of structure formation, since the creation of the smaller structures only
take a short while compared to the bigger structures that are just now being created
today.54 In Figure 29 the halo mass distribution can be seen for our simulation as
a comparison to the theoretical graph in Figure 28. However, instead of plotting a
halo mass function, we have chosen to just plot a distribution showing the number

52Binney, J. and Tremaine, S. 2008.
54Baugh 2006.
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of halos as a function of mass. This is done in order to get a simple and intuitive
understanding of the distribution of halos, since the halo mass function requires
complicated calculations.

Figure 29: The halo mass distribution of our simulation for redshift, z = 0.02.

This halo distribution has been found by binning the halo masses of our simulation
for our latest redshift at z = 0.02. We see that our distribution spans a much
smaller mass range, but overall follows the same characteristics of the halo mass
function in Figure 28, where we see an abundance of smaller mass structures.

When looking at the tails of the halo mass distribution in Figure 29, we see that
there are some fluctuations, which makes our simulation uncertain for masses lower
than 1012 M§ and higher than 1014 M§. Due to this, our reliable mass range is
only a small fraction of the theoretical range, that spans from 108 M§ to 1016 M§.
As explained in Section 3.2.2, our halos only contain 1/3 of the total number of
particles of our simulation, meaning that the smaller halos, that might make up
for the masses lower than 1012 M§, are lost.

4.2.1 Creating additional simulations

In order to improve our limited mass range, we create two new simulations. These
are produced in the same way that our original simulation has been created, with
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the same cosmological parameters that were shown in Table 3. These new simula-
tions contain a larger amount of particles, where the volume has been kept intact
for one simulation and has been increased for the other. To easily distinguish
between them, we will refer to them as Universe A, B and C, where Universe A is
our original simulation. Universe B and C are the two new simulations and their
parameters can be seen in Table 4.

Uni A Uni B Uni C
Level 7 8 8

N 2.1 · 106 16.8 · 106 16.8 · 106

boxlength 96 Mpc 96 Mpc 191 Mpc
Particle mass 1.6 · 1010 2.1 · 109 1.6 · 1010

Table 4: The size, number of particles and particle mass for our three di�erent
simulations.

For Universe B, we have kept the size of the box and thereby the volume of the
simulated universe the same as for our original simulation, Universe A. Instead,
we have increased the number of particles by a factor of eight, in order to see
how this combination a�ects the resolution of the simulation. Both the amount of
particles and the boxsize has been multiplied by eight in Universe C, making this
simulation similar to Universe A. Since the density of the Universe is known and
kept intact in our simulations, the mass of the dark matter particles in Universe
B is smaller than Universe A and C.

With these new simulations, we can once again produce a graph showing the halo
mass distribution for Universe A, B and C, in order to see if our mass range has
been improved by creating these additional simulations. The halo mass distribu-
tion for all three simulations can be seen in Figure 30.
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Figure 30: The halo mass distribution of our three universes.

The figure shows that Universe A and Universe C follows the same shape, but
since Universe C contains eight times the number of particles as Universe A, the
distribution is shifted upwards by a factor of eight. Universe B contains a larger
amount of small structures than Universe A and C, because it contains more
particles on a smaller volume, giving it a much better resolution on small scales.
This happens since the particle mass is smaller for Universe B, compared to the
other two universes, such that the particles take longer to congregate.

Universe A and Universe B are both a�ected by their small volumes, which means
that they become uncertain when looking at masses higher than 1014 M§. Since
Universe C has a larger volume, it is more accurate at higher masses, such that we
can evaluate masses up to 1015 M§. At lower masses, on the other hand, Universe
C along with Universe A start to become inaccurate. For these two simulations,
the masses below 1012 M§ are unreliable. For these low masses, we can instead
look at Universe B, where we can look at masses close to 1011 M§. From this
we see, that by creating these two additional simulations, we have increased our
original mass range from 1012 M§ to 1014 M§ and can now consider halos ranging
from 1011 M§ to 1015 M§.

However, this range is still far from the theoretical mass range of 108 M§ to 1016

M§ in Figure 28. We are therefore interested in finding out if this will a�ect the
analysis of our new model. Our proposed acceleration generated by dark matter
depends on the velocity dispersion of dark matter halos and we can therefore look
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at the correlation between the mass and the velocity dispersion of these halos. In
Figure 31 this relation can be seen for each of the three universes at their latest
redshifts.

(a) Universe A (b) Universe B

(c) Universe C

Figure 31: The velocity dispersion of dark matter halos, ‡
2, as a function of halo

masses for our three universes at their latests redshifts.

In the figure, we see a clear correlation where the small halos likewise have small
velocity dispersions and the big halos have correspondingly big velocity dispersions.
Most halos follow this correlation, though some of the smaller halos have greater
velocity dispersions, than would be expected, due to the halos not yet being in
dynamic equilibrium. From the halo mass distribution in Figure 30, we saw that
we have an abundance of smaller structures, but since their velocity dispersions
are equivalently small, their impact on the acceleration generated by dark matter
is negligible. This means, that even though we are missing structures with masses
less than 1011 M§, we will not see a significant di�erence. We should expect
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to see a great impact of the bigger halos, due to their big velocity dispersions,
however since these are so few in numbers, we will not see a noticeable change
when excluding the halos with masses larger than 1015 M§.

A remaining concern might be the accuracy of our simulations and their ability
to describe our Universe. To account for statistical fluctuations, we have created
four extra simulations for each of the three universes. These new simulations
are created with the same parameters as Universe A, B and C, respectively, but
each have di�erent random seeds that create specific initial conditions for each
simulation. This gives us 15 simulations in total; five simulations of Universe A,
five simulations of Universe B and five simulations of Universe C.

To check that the simulations are in agreement with each other and thereby can
be used to make our future results more accurate, we have once again plotted the
halo mass distribution. This can be seen in Figure 32, where all five simulations
of Universe A can be seen as the blue data points, the five simulations of Universe
B are the red data points and the green data points show the five simulations
of Universe C. From this figure we see that all simulations of each universe are
consistent with each other.

Figure 32: The halo mass distribution of all five simulations for each of the three
universes.
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4.3 The e�ects of our new model

Now that we have created additional simulations and tested them, we know that
we are able to use them as a reliable sample of our Universe. This makes it
possible for us to use them for testing the theory of our new model. We want to
see whether it is possible for us to predict the acceleration of the Universe, through
the movement of dark matter particles.

Figure 33 shows the normalised acceleration, R̈DM,norm generated by dark matter
for the three universes, given by Equation (2.2.9),

R̈DM,norm = R̈DM

R̈m

,

where R̈DM and R̈m are given by Equation (3.2.4) and Equation (3.2.1) respec-
tively,

R̈DM =
ÿ

i

≠GMi

R
2
i

A

1 ≠ Ÿ

3
‡i

c

42B

, R̈m =
ÿ

i

≠GMi

R
2
i

.

We have chosen to show only one of the five simulations for each universe in Figure
33, since the simulations for each are very similar.

Figure 33a, 33b and 33c show our numerical model for the normalised acceleration
generated by dark matter for Universe A, B and C respectively (blue) along with
the analytical acceleration for the Benchmark model (black). The bold data points
and their errorbars represent the mean value of each of five bins that the data points
have been divided into. This will be explained in the following section.
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(a) Universe A, Simulation 3. (b) Universe B, Simulation 2.

(c) Universe C, Simulation 4.

Figure 33: Our numerical model for the normalised acceleration generated by dark
matter of our three universes (blue) and the normalised analytical acceleration for
the Benchmark model (black).

The data points in Figure 33 seem to follow the tendency of the analytical curve
well, and we see that every mean value fits the analytical model with its errorbar.
We do however see, that Universe A and C have a few outliers. This could be
due to the fact that Universe A contains eight times fewer particles than the other
universes, which makes it a less accurate model of our actual Universe. Universe
B and Universe C contain the same number of particles, but Universe C has an
eight times larger volume than Universe B, which gives it the same configuration
as Universe A. From looking at Figure 33b, we see that the normalised acceler-
ation generated by dark matter in Universe B follows the normalised analytical
acceleration with almost no outliers. This could be a consequence of Universe B
containing a large amount of particles in a small volume.
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To confirm that our limited mass range is su�cient in the evaluation of our model,
we have examined our model for Universe B for masses higher than 1012 M§, since
this is the only simulation that contains masses lower than 1012 M§. This can
be seen in Figure 34a. Similarly, we have looked at our model for Universe C for
masses lower than 1014 M§, since this simulation is the only simulation of the three
with masses higher than 1014 M§. This is shown in Figure 34b.

(a) Universe B for M > 1012 M§. (b) Universe C for M < 1014 M§.

Figure 34: Our numerical model for the normalised acceleration generated by dark
matter of our three universes (blue) and the normalised analytical acceleration for
the Benchmark model (black).

From Figure 34 we that there is no apparent di�erence between these altered
graphs, compared to the entirety of them in Figure 33b and 33c. This means that
our mass interval is a reliable sample range.

The Ÿ-values have been calculated with Equation (2.2.10),

Ÿ = R̈norm ≠ 1
R̈‡/R̈m

,

for z > 0.6, since we want to make sure that our data points fit the normalised
analytical acceleration in this region. These values can be seen in Table 5 along
with the ‰

2- and p-values. Here, the ‰
2 and p-values tell us how well the simulation

fits the analytical, expected model. For calculating the ‰
2-value, we have assumed

that our data points are independent. Unfortunately, our data points are strongly
correlated in reality, since the previous snapshot of the universe determines the
evolution of the next snapshot. This means that the ‰

2-test technically cannot be
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used in our case, however the ‰
2-value can still be a good indicator of whether

the dependency fits our analytical model well. In the case of correlated data, the
‰

2-value is expected to be, ‰
2

< 1.

Ÿ ‰
2

p

Uni A, Sim 3 ≠6.80 · 105 0.77 0.94
Uni B, Sim 2 ≠1.84 · 106 0.12 1
Uni C, Sim 4 ≠1.57 · 106 0.47 0.98

Table 5: The Ÿ-values for Universe A, B and C along with the corresponding ‰
2-

and p-values.

From the table, we see that all three universes in general have good p-values, which
indicate that our model is a good fit to the acceleration of the Universe, as we also
stated above. We see that the p-value for Universe B is actually 1. This is normally
a warning that the errorbars are overestimated and since we see that every mean
value fits the analytical model with their errorbars, this could be a reason for the
exceptionally high p-value.

4.3.1 Calculating the errorbars

The errorbars seen in Figure 33 have been estimated by calculating the standard
deviation of the acceleration generated by dark matter for all five simulations of
each universe. Since it is easier to assess the deviation of a distribution located
around zero, we subtract the normalised analytical acceleration from the data
points, since this follows the overall distribution well. This can be seen in Figure
35a for Universe A, where the di�erent colors show the five simulations, with five
individual Ÿ-values and the black curve is the analytical acceleration calculated
from the Benchmark model. We divide the normalised acceleration generated by
dark matter into five equally large bins, which are illustrated by the dashed black
lines in Figure 35b. Here, the analytical acceleration has been subtracted from the
data points, such that the distribution is located around zero.
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(a) The distribution of the acceleration generated by
dark matter for Universe A.

(b) The binning of the acceleration generated by dark
matter for Universe A.

Figure 35: The distribution of the acceleration generated by dark matter for Uni-
verse A along with the binning.

From Figure 35b it is possible to see that the di�erent simulations lie close to
0 from 1/(1 + z) = 0.1 to 1/(1 + z) = 0.45, but beyond this the simulations
start to deviate from the expected line. We calculate the mean and the standard
deviation within each bin, and this value is then the uncertainty on the mean value
within that bin. The errorbars for all five simulations for Universe A can be seen
in Figure 36, where the bold black points represent the mean values of the data
points in the bins. Since the scatter increases as the value of 1/(1 + z) grows in
Figure 35b, the standard deviation in the last two bins are larger than the first
two. The uncertainties of the first two mean values in Figure 36 are therefore
substantially smaller than the last two. The significant deviation that we see
between the di�erent simulations result in our large errorbars and our equivalently
high p-values.
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Figure 36: The normalised acceleration generated by dark matter for all five sim-
ulations for Universe A and the bold mean values within each bin with errorbars.

The errorbars for Universe B and C are found using the same procedure as just
described.

4.4 Other possible models

Above we have shown, that we might be able to explain the acceleration of the
Universe through our new model, which calculates the acceleration from Equation
(3.2.4),

R̈DM =
ÿ

i

≠GMi

R
2
i

A

1 ≠ Ÿ

3
‡i

c

42B

,

where the acceleration depends on the squared velocity dispersion, ‡
2. However,

it might be possible to imagine other ways for the acceleration to depend on
the velocity dispersion. Below we explore two new varying expressions for the
acceleration generated by dark matter and see whether these might be better at
explaining the acceleration of the Universe, than our original model.

4.4.1 A simple modification of our model

A simple adjustment of our model could be to vary the power of which the ac-
celeration depends on the velocity dispersion. This new exponent could be any
number and because of this, we choose to denote it by x. We can therefore rewrite
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Equation (3.2.4), where the velocity dispersion is now raised to the power of x,

R̈DM =
ÿ
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≠GMi
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3
1 ≠ Ÿ

3
‡i

c

4
x
4

. (4.4.1)

The rest of the equation remains the same as before.

Since we saw that ‡
2 was a reasonable fit to the Benchmark model, we look at

values of x that are close to two. In Figure 37 we have plotted the acceleration
generated by dark matter based on Equation (4.4.1) with x = 1, 2, 3.

(a) Universe A, Simulation 3. (b) Universe B, Simulation 2.

(c) Universe C, Simulation 4.

Figure 37: Our new model with x = 1, 2, 3 for our three universes and the nor-
malised analytical acceleration for the Benchmark model.

The figures 37a, 37b and 37c show the ‡
1- (red), ‡

2- (blue) and ‡
3-dependency

(green) for Universe A, B and C, respectively. The bold data points and their
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errorbars once again represent the mean value of each of five bins that the data
points have been divided into. The Ÿ-values have been calculated in the same way
as above in Section 4.3, through Equation (2.2.10), and can be seen in Table 6
along with the ‰

2- and p-values of these five mean values.

Common to all three ‡
1-dependencies is that they have a p-value of zero. This

is due to the fact that they all lie above the normalised analytical acceleration
and have small errorbars, making these a poor fit to the Benchmark model. The
‡

3-dependencies lie below the analytical model, but since these have very large
errorbars compared to the other dependencies, the p-values are above zero, unlike
what we saw for the ‡

1-dependencies. For Universe B the p-value is 0.69, even
though we clearly see a much steeper evolution compared to the analytical com-
parison model. This could be because of the significantly large errorbars, making
it seem like a decent fit. These large errorbars could be due to the fact that the
data points are heavily correlated, which also influences the ‰

2- and p-values as
mentioned in Section 4.3.

x = 1 x = 3
Uni A, Ÿ ≠5.04 · 102 ≠1.08 · 109

Sim 3 ‰
2 727.92 14.17

p 0 0.01
Uni B, Ÿ ≠7.79 · 102 ≠5.65 · 109

Sim 2 ‰
2 548.26 2.27

p 0 0.69
Uni C, Ÿ ≠7.67 · 102 ≠3.93 · 109

Sim 4 ‰
2 369.89 7.46

p 0 0.11

Table 6: The Ÿ-values for Universe A, B and C along with the corresponding ‰
2-

and p-values for x = 1 and x = 3.

As mentioned, the Ÿ-values are found by making sure that our numerical model
fits the Benchmark model for z > 0.6, where z = 0.6 is the redshift at which
�m = ��. This means that for redshifts higher than z = 0.6 our models with
x = 1, 2, 3 should be tolerable fits to the Benchmark model and it is only for
low redshifts, that we are able to see which models should be able to describe
the acceleration of the Universe. However, as can be seen in Figure 38, the data
points already start to deviate from the Benchmark model at 1/(1 + z) ƒ 0.4,
corresponding to a redshift of z = 1.5. This indicates that we should have chosen
to fit our models to a smaller range of the Benchmark model, by selecting a limit,
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where the influence of � was still negligible, which is at redshifts higher than the
current value of z = 0.6.

Figure 38: Our new model with x = 1, 2, 3 for our three universes and the nor-
malised analytical acceleration for the Benchmark model for high redshifts.

The errorbars for the acceleration generated by dark matter depending on the
velocity dispersion to a power of x = 1 and x = 3 have been calculated in the
same way as for x = 2, which is explained in Section 4.3.1. This is done by finding
the standard deviation for all five simulations of each universe in five equally large
bins. For x = 2 we subtracted the Benchmark model from our data points in order
to get a distribution located around zero. However, to obtain a similar distribution
for x = 1, we have instead subtracted a straight line that fits the distribution of
the data points across all five bins. This can be seen in Figure 39a. For x = 3 we
find five straight lines that fit the distributions within each bin and subtract these
from the respective data points, which can be seen in Figure 39b.
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(a) x = 1 (b) x = 3

Figure 39: The distribution of the acceleration generated by dark matter with x = 1
and x = 3 for Universe A.

The reason for extending our original model to include other exponents of the
velocity dispersion, was to explore whether there might be some values of x that
could make the acceleration generated by dark matter a better fit to the Benchmark
model. However, in Figure 37 we saw that the acceleration with x = 2 was still
the best fit. We therefore wish to examine values of x closer to two, by varying it
slightly such that we now try x = 7/4 and x = 9/4.

Figure 40: Our new model with x = 7/4, x = 2 and x = 9/4 for our three universes
and the normalised analytical acceleration for the Benchmark model. The mean
values of the model with x = 7/4 and x = 9/4 have been shifted slightly to the left
and right, respectively.
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Figure 40 shows the acceleration generated by dark matter with x = 7/4 (orange),
x = 2 (blue) and x = 9/4 (dark green) for Universe B, Simulation 2. The mean
values of the ‡

7/4- and ‡
9/4-dependency have been shifted slightly to the left and

right, respectively, in order to distinguish the errorbars from each other. The Ÿ-
values and the belonging ‰

2- and p-values of the data points can be seen in Table
7. The errorbars for the x = 7/4 and x = 9/4 models have been found in the same
way as the errorbars for the x = 3 model with five straight lines.

We see, that the ‡
7/4-dependency lies above the analytical model and has small

errorbars, which leads to a p-value of 0.31. On the other hand, the ‡
9/4-dependency

lies below the expected curve, but because of the large errorbars, it still has a p-
value of 0.88. Had we not shifted the mean values, we would see that the di�erent
models would overlap, which means that we cannot distinguish these from each
other, making us unable to determine the value of x more accurately. This means,
that an acceleration generated by dark matter with x = 2 is our best prediction
for a model to explain the acceleration of the Universe, at this point in time.

x = 7/4 x = 2 x = 9/4
Ÿ ≠2.59 · 105 ≠1.84 · 106 ≠1.32 · 107

‰
2 4.82 0.12 1.18

p 0.31 1 0.88

Table 7: The Ÿ-values for Universe B, Simulation 2 with x = 7/4, x = 2 and
x = 9/4 along with the corresponding ‰

2- and p-values.

4.4.2 Extending our model further

By additionally expanding our model, we can imagine that the acceleration gener-
ated by dark matter does not only depend on the velocity dispersion of the halos
within the sphere, but also the halo on the edge of the sphere. This scenario can
be seen in Figure 41, where the velocity dispersion of the halo on the edge of the
sphere (cyan) is also taken into account.
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Figure 41: An illustration of a halo on the edge of the sphere (cyan) with velocity
dispersion, ‡edge, and the halos within the sphere (purple) with velocity dispersion,
‡i, and distance to the halo on the edge, Ri. Halos outside the sphere are colored
orange.

By considering two di�erent velocity dispersion, we can now have two di�erent
exponents, such that the velocity dispersion of the halos within the sphere, ‡i, is
raised to the power of x and the velocity dispersion of the halo on the edge of
the sphere, ‡edge is raised to the power of y. This allows us to explore even more
complicated versions of our model to see if this is a better fit to the acceleration of
the Universe. The simple model only depending on ‡i is given by Equation (4.4.1),

R̈DM =
ÿ

i

≠GMi

R
2
i

3
1 ≠ Ÿ

3
‡i

c

4
x
4

.

If we include both the velocity dispersions of the halos inside of the sphere, ‡i and
the halo on the edge of the sphere, ‡edge, the extended model becomes,

R̈DM =
ÿ

i

≠GMi

R
2
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A

1 ≠ Ÿ

A
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x

i
‡

y

edge

c(x+y)

BB

, (4.4.2)

where x is the power of ‡i and y is the power of ‡edge. In order to make this term
dimensionless, we divide by c

(x+y).
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If we look at di�erent values of x and y, we see that when x, y = 0, the model
describing the acceleration generated by dark matter reduces to the classic gravi-
tational acceleration from Equation (3.2.1),

R̈m =
ÿ

i

≠GMi

R
2
i

.

Keeping y = 0 but letting x > 0, it describes the simple model explained through
Equation (4.4.1), since ‡edge becomes one. If we instead put x, y = 1, we get a
case similar to the Lorentz force, since this depends on two di�erent velocities.

Setting x, y > 0 we can test the extended model both by letting x = y and x ”= y

and see if any of these can create a better fit to the Benchmark model. In Figure
42 the extended model for the acceleration generated by dark matter with x, y = 1
(red), x, y = 3/2 (blue) and x, y = 2 (green) can be seen along with the Benchmark
model (black). The Ÿ-values and their belonging ‰

2- and p-values can be seen in
Table 8.
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(a) Universe A, Simulation 3. (b) Universe B, Simulation 2.

(c) Universe C, Simulation 4.

Figure 42: Our extended model with x, y = 1, x, y = 2 and x, y = 3/2 for our three
universes and the normalised analytical acceleration for the Benchmark model.

For Universe A and B the x, y = 1 model is a poor fit, since the data points all lie
above the expected line and the mean values have small errorbars. This unsuitable
fit can also be seen from the low p-values. The dependency for Universe C, has
a much better p-value, on the other hand, since it lies closer to the anticipated
model than the other two universes.
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x, y = 1 x, y = 3/2 x, y = 2
Uni A, Ÿ ≠1.40 · 106 ≠7.05 · 1012 ≠2.17 · 109

Sim 3 ‰
2 24.50 0.22 2.42

p 6.33 · 10≠5 0.99 0.66
Uni B, Ÿ ≠4.15 · 106 ≠1.70 · 1010 ≠9.06 · 1013

Sim 2 ‰
2 16.30 0.39 1.01

p 2.65 · 10≠3 0.98 0.91
Uni C, Ÿ ≠2.96 · 106 ≠9.00 · 1013 ≠3.15 · 106

Sim 4 ‰
2 3.11 2.30 3.09

p 0.54 0.68 0.54

Table 8: The Ÿ-values for Universe A, B and C along with the corresponding ‰
2-

and p-values for x, y = 1, x, y = 3/2 and x, y = 2.

Looking at the p-values for the model with x, y = 2, we see that they all lie above
0.50, indicating that this model should be a good candidate for the fit. However,
these high values are caused by the large errorbars on the mean values and by eye,
it is possible to determine that the x, y = 2 model in general is a poor fit to the
Benchmark model. The p-values for the model with x, y = 3/2 also lie above 0.5,
but opposite to the model with x, y = 2, it is di�cult to determine whether the
x, y = 3/2 model is a good fit by just looking at the figure and we instead show it
by itself in Figure 43.
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(a) Universe A, Simulation 3. (b) Universe B, Simulation 2.

(c) Universe C, Simulation 4.

Figure 43: Our extended model with x, y = 3/2 for our three universes and the
normalised analytical acceleration for the Benchmark model.

By looking at Figure 43 we see that the model for the acceleration generated by
dark matter with x, y = 3/2 seems to be a reasonable fit when looking at Universe
A and B, but the tail end of the graph showing the model for Universe C diverges
from the Benchmark model. This can also be seen from the p-value, which is much
less than the p-value of the models for the other two universes.

We now try looking at the case where x ”= y and Figure 44 shows the extended
model for the acceleration generated by dark matter with x = 2, y = 1 (purple)
and x = 1, y = 2 (orange) along with the Benchmark model (black). The Ÿ-values
and their belonging ‰

2- and p-values can be seen in Table 9.
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(a) Universe A, Simulation 3. (b) Universe B, Simulation 2.

(c) Universe C, Simulation 4.

Figure 44: Our extended model with x = 2, y = 1 and x = 1, y = 2 for our three
universes and the normalised analytical acceleration for the Benchmark model.

From looking at Figure 44, it would seem as if the data points follow the tendency
of the Benchmark model, but there is no clear pattern between the three universes,
and it is therefore di�cult to conclude anything that applies to all simulations.
This could be due to the fact that this extended model is more complicated than the
simple model, that only contains one velocity dispersion, and we would therefore
need better statistics in order to determine how well the data fits the expected
model.
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x = 1, y = 2 x = 2, y = 1
Uni A, Ÿ ≠3.87 · 109 ≠2.98 · 109

Sim 3 ‰
2 1.58 0.15

p 0.81 0.99
Uni B, Ÿ ≠1.27 · 1010 ≠2.12 · 1010

Sim 2 ‰
2 0.93 0.17

p 0.92 1
Uni C, Ÿ ≠7.05 · 109 ≠1.08 · 1010

Sim 4 ‰
2 3.34 1.79

p 0.50 0.77

Table 9: The Ÿ-values for Universe A, B and C along with the corresponding ‰
2-

and p-values for x = 1, y = 2 and x = 2, y = 1.

The errorbars, used in the figures in this section, have been calculated in the
same way as the errorbars for Section 4.3.1 involving only one velocity dispersion
dependency. Here, the errorbars for the x, y = 1 model was found from fitting
a single straight line across the five bins, while the errorbars for the other four
models was found by fitting five straight lines to each of the five bins.

The simulations, that have not been shown throughout this Results-section, can
be seen in the Appendix.
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5 Discussion

In this section, we wish to discuss the results of our work and the limitations
involved in the finding of these. Potential ways of improving the results, and
actions that could be taken in the future are also looked into, along with a possible
explanation for our proposed model.

5.1 Our results

The acceleration of the Universe has been observed through measurements of
supernovae and baryonic acoustic oscillations, as described in Section 1.1. The
Benchmark model is a generally accepted theory that allows us to describe the
physics and observations of our Universe. By looking at all of our simulations,
we see that the acceleration generated by dark matter follows the tendency of the
analytical acceleration of the Benchmark model, which means that our new model
might be a possible candidate to explain the acceleration of the Universe, without
the cosmological constant, �. As a reminder, our new general model is given by
Equation (4.4.2),
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ÿ
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From analysing our results, we see that in general, it is easier to asses the graphs
showing the acceleration generated by dark matter only depending on a single
velocity dispersion, where y = 0. For the models with x = 1, 2, 3, it is clear to
see which are close to the Benchmark model and which vary to a greater or lesser
extent. The p-values of the model with x = 1 are all zero, as stated in Table 6 in
Section 4.4.1, and based on the clearly poor fits and small errorbars, as can be seen
in Figure 37 in Section 4.4.1, we are able to dismiss this as a possible explanation
for the acceleration of the Universe. We also saw that the model with x = 3 was
a poor fit, but unfortunately due to misleading statistics and p-values above zero,
as shown in Table 6, we are not able to outright reject this model. However, by
eye it is possible to see, that this model is not a good candidate as a fit to the
acceleration of the Universe.

The most promising model seems to be our original model with x = 2, since these
data points follow the tendency of the Benchmark model and the p-values are
close to one, which is shown in Table 5 in Section 4.3. When looking at values of
x close to x = 2, like x = 7/4 and x = 9/4, we are unable to distinguish between
any of these models as the best fit, since these overlap, as can be seen in Figure
40 in Section 4.4.1. Had we produced several, additional simulations of our three
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universes, we would have been able to minimize the size of the errorbars, which
would make it easier to tell the di�erence between the three models. By doing
this we could possibly find a more accurate value of x that enables our model to
potentially explain the acceleration of the Universe.

In contrast, the plots showcasing the model for the acceleration containing two
di�erent velocity dispersions, where y ”= 0, are much more di�cult to determine
anything useful from. Based on the p-values from Table 8 and 9 in Section 4.4.2 and
the appearance of the models in Figure 42 and 44 in Section 4.4.2, we are unable
to reject any of the models. A way of possibly getting around this, could be to
create even more simulations of the universes we have already generated, along
with making additional universes with other parameters. This would improve the
statistics of our simulations and might make it possible for us to see a general
tendency.

5.2 Limitations of our simulations

Working with a simulated model of our Universe, we are limited by the capability
of computers. The Universe is infinitely large with an extreme amount of particles,
which is beyond the scope of any computer. However, as stated in Section 2.3, a
small, contained version of the Universe can be a useful replica for determining the
physics of the Universe. We are still interested in creating a simulation as close
to the actual Universe as possible, which means that large amounts of particles
and overall bigger simulations are preferred. It would have been possible to create
much bigger simulations than what we have produced, since we have access to
a cluster of computers that is able to generate the simulations in a reasonable
amount of time. However, when we wish to analyse these simulations, we are
limited by the program used for executing our code, meaning that the analysis of
a large simulation would take an unreasonable amount of time. We therefore chose
to quantify our results by making several smaller simulations instead of qualifying
a single big simulation.

As stated above, bigger simulations are generally preferred when looking at the
large scale structure of the Universe. However, when choosing a large amount
of particles and a big volume, it compromises the resolution on smaller scales,
such as when looking at the inner workings of a galaxy. A better resolution on
these scales can be obtained by creating smaller simulations, where the particle
amount is kept the same but the volume is much smaller. It is therefore necessary
to consider the kind of simulation needed for the given analysis and the results
one wishes to produce. In our case, knowledge about the galaxies on their own is
not interesting, and we are instead looking for information about the dark matter
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halos and the large scale structure. This makes a big simulation preferable to us,
as already mentioned. If one wishes to explore both the small and large scales of
the Universe at the same time, it could be necessary to combine two or several
simulations with di�erent conditions.

In our simulations we have kept the �-component intact, by letting �� = 0.69,
even though this component should be absent according to our new model. This is
done since we still need the e�ect of dark energy to influence the evolution of the
simulations. In an ideal scenario, we would have to calculate �� for each redshift
and let this determine the evolution of the next snapshot. In this case, we would let
�� = 0.69 for the initial snapshot. Once this has been produced, we can calculate
the acceleration generated by dark matter, R̈DM , and from this determine the new
value of �� needed for producing the next snapshot. Even though calculating ��
for each redshift is fairly straightforward, implementing this in the code, used for
creating the next timestep, is not trivial. Due to the complexity of changing this
component, we have not explored this further. This could be an interesting task
to look into in the future.

5.3 Observations in the future

The only way of definitively confirming whether our model could be a possible
explanation for the acceleration of the Universe, is by comparing our new model
with actual observations of the Universe, instead of just the theoretical Benchmark
model. We have described how dark energy and the acceleration of the Universe
has been observed through observations of CMB, supernovae and baryonic acoustic
oscillations. We want our model to be able to describe the Universe as it has
already been observed, which we have tried to do by making sure that our model
is in agreement with the Benchmark model. However, in the future we expect that
there should be a clear distinction between the Benchmark model and our model,
as it was shown in Figure 13, which can be seen again below.
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In the figure, the normalised acceleration of the Universe according to the Bench-
mark model can be seen as the black line. The green line indicates where our
model will deviate from the analytical Benchmark model. At the moment, we are
not able to see a di�erence between the two models, which is why we have created
our model such that it fits the Benchmark model. But as time passes, it should
be possible to tell the two apart, since our model depends on structure formation,
which evidently will stop, as we saw through the equations of Section 2.2.1. When
structure formation ends, the velocity dispersion of the dark matter halos, ‡, stop
increasing, which in turn makes our new force and thereby acceleration constant.

In order to be able to properly measure this distinction in the future, we need
actual observations to confirm our model. One way of observing this di�erence,
is through observations of type Ia supernovae. In Section 1.1 we described how
observation of supernovae have helped confirm that we live in an accelerating
universe, through Figure 3. Below, a rough sketch, based on this figure, can be
seen in Figure 45.
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Figure 45: A sketch of the apparent magnitude, m, of type Ia supernovae as a
function of redshift, z. The blue solid line is a model of a universe with dark
energy, whereas the red line describes a universe without. The blue dashed line
illustrates the continuation of the model with dark energy in the future and the
green line shows what we expect the observations to look like in the future, if our
model is true.

This figure shows a model of how observed magnitudes of supernovae depend on
their redshift, where the solid blue line describes a model with dark energy, while
the red line shows a model without. Both of these models end at today’s redshift
of z = 0. In a universe where the cosmological constant describes dark energy,
the relationship between observed magnitudes and redshift should continue on
as the dashed blue line. However, if our model is correct, the relationship will
change, since the di�erence between the observed magnitudes becomes less for
each redshift, as the acceleration of the Universe slows down. At this point, we do
not know at what redshift we should be able to see a distinction between the two
models. This could just as well be at z = ≠1, as it could be at z = ≠10. Only
time will tell.

Since the simulations we are working with show the evolution of the Universe from
z = 20 to z = 0, we have not been able to see this clear di�erence between our new
model and the Benchmark model. It would therefore be ideal to create a simulation
that could show the future of the Universe, to see whether the simulated data will
follow our new model or the Benchmark model. However, since the observable
distinction between the two models in the future remains a speculation, we have
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chosen not to look further into creating these simulations and have instead chosen
to find the best model for describing the current Universe. This could be an
interesting path to go down in future work.

5.4 Possible explanation

At large scales we see structures such as galaxies and galaxy clusters moving away
from each other due to the acceleration of the Universe being larger than the
gravitational acceleration. Therefore we need the newly proposed force created by
the movement of dark matter particles in dark matter halos to be larger than the
gravitational acceleration as well. For this to work, the dark matter particles in
a galaxy should move around and create this new force, which should repel other
galaxies, leaving us with a larger repulsive force than the attractive force. However,
the e�ects of this force should only be seen on large scales. When looking at small
scales, such as the components of a galaxy or a solar system, we see that these are
held together by gravity and are not a�ected by this repulsion. If the force was
greater than the gravitational acceleration on small scales too, structures such as
dwarf galaxies would not be able to exist, since these are dark matter dominated,
such that the repulsive force would make it impossible for them to gather. The
new force must for that reason only work on large scales, where we see galaxies
with great distances between them being pulled from each other as well as galaxy
clusters being separated further.

In order to make this happen, we can introduce a screening-term, like the one
known from electromagnetism. Contrary to the e�ect we want to see, the screening
term in electromagnetism causes an e�ect on small scales that disappears as the
distance grows, which can be seen in Figure 46a. We are instead interested in
seeing an e�ect on large scales that fades when looking at small distances, as is
shown in Figure 46b.
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(a) Electromagnetic case. (b) Our case.

Figure 46: A sketch of how the e�ect depends on the distance.

To account for this e�ect and make sure that the new force only applies on large
scales, we can introduce two new exchange forces and their related particles. We
already know that dark matter creates a gravitational field, due to the observed
gravitational acceleration. Aside from this, we might also be able to imagine that
dark matter could produce two other fields, similar to that of the gravitational one.
These two fields can be seen in Figure 47, depicted by the blue and red arrows
surrounding the halo in the center (black dot).

Figure 47: A sketch of two opposite force-fields surrounding a dark matter halo
(black dot), where the blue field cancels out the red field on small scales.
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These two fields in the figure should work, such that on small scales the two fields
work exactly opposite each other and thereby cancel each other out. On large
scales on the other hand, we need for one of the fields to disappear. If the blue
field fades, it leaves only the red field behind, which creates the outward force, that
might be the cause of the acceleration that we can observe today. In order for this
to happen, the blue field must produce a force-carrying particle with a mass. Since
the particle has a mass, it hinders the particle from working on infinite distances,
resulting in the disappearance of the blue field. In the normal case of exchange
forces in electromagnetism, the particles that are produced are massless, resulting
in a force that theoretically should work on infinite distances. Since this describes
the kind of force we are interested in finding, we imagine that the non-fading field,
the red field, should be of this kind. The scale at which the blue field should
disappear is unsure, but we know that it should be greater than the radius of a
galaxy cluster of a few Mpc55, since these are kept together by gravity.

55Sparke, L. S. and Gallagher III, J. S. 2007.
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6 Conclusion

With our thesis, we have found that it could be possible to describe the accel-
eration of the Universe through forces generated by dark matter, excluding the
theoretical cosmological constant, �. Our model is based on the movement of
dark matter particles in dark matter halos, where a velocity dispersion arises due
to the individual motions of the particles. This force should work such that on
small scales, gravity dominates and allows for the structures to be kept together,
whereas on large scales, the new, repulsive force should drag the Universe apart,
giving us an accelerating universe.

The acceleration, R̈DM , has been thought out as an extension of the classic grav-
itational acceleration, such that for a dark matter halo, located on the edge of a
sphere containing a number of halos, the acceleration is of the form,

R̈DM =
ÿ

i

≠GMi

R
2
i

A

1 ≠ Ÿ

A
‡

x

i
‡

y

edge

c(x+y)

BB

,

where Mi is the mass of the halos within the sphere, Ri is the distance from the
halo on the edge of the sphere to a given halo within, Ÿ is a dimensionless scaling
factor, c is the speed of light, ‡i is the velocity dispersion of the halos within the
sphere and ‡edge is the velocity dispersion of the halo on the edge of the sphere. x

and y are exponents of the velocity dispersions and can be of any value.

We have tested models with di�erent values of x and y, allowing us to examine
models with varying velocity dispersion dependencies, to see if they can explain the
acceleration of the Universe. Since the generally accepted theory that explains this
acceleration is the Benchmark model, we use this model as a comparison for our
own proposed model. We have used the acceleration equation, derived from the
Friedmann equation, with cosmological parameters according to the Benchmark
model, �r,0 = 9 · 10≠5, �m,0 = 0.31 and ��,0 = 0.6956,57. In order for us to test
our model we have created several numerical simulations of a universe with the
parameters just stated.

With the numerical simulations we have examined di�erent models of the accel-
eration generated by dark matter, in order to see if any of these can explain the
acceleration of the Universe. It was di�cult to draw a conclusion from the models
with x, y ”= 0, since the di�erent models did not follow an overall tendency. With
better statistics, it could be possible to see a general trend and conclude which

56Collaboration 2018.
57Ryden 2017.
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6 CONCLUSION

models can explain the acceleration of the Universe. Because of the poor fit to
the Benchmark model and the p-values of zero, the model with x = 1, y = 0 can
be easily rejected. Similarly, the model with x = 3, y = 0 was also a bad fit to
the Benchmark model, but since the p-values are above zero, due to the large er-
rorbars, this model cannot be rejected. We found that the best model to describe
the acceleration of the Universe, according to the Benchmark model, is the model
with x = 2, y = 0. However, we discovered that we were not able to distinguish
values of x close to x = 2, and therefore it is possible that the true value of x

di�ers slightly from this value.
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A Appendix

A.1 Our new model

A.1.1 Universe A

(a) Universe A, Simulation 1. (b) Universe A, Simulation 2.

(c) Universe A, Simulation 4. (d) Universe A, Simulation 5.

Figure 48: Our new model with x = 1, 2, 3 for Universe A and the normalised
analytical acceleration for the Benchmark model.
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(a) Universe A, Simulation 1. (b) Universe A, Simulation 2.

(c) Universe A, Simulation 4. (d) Universe A, Simulation 5.

Figure 49: Our extended model with x, y = 1, x, y = 2 and x, y = 3/2 for Universe
A and the normalised analytical acceleration for the Benchmark model.
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(a) Universe A, Simulation 1. (b) Universe A, Simulation 2.

(c) Universe A, Simulation 4. (d) Universe A, Simulation 5.

Figure 50: Our extended model with x = 2, y = 1 and x = 1, y = 2 for Universe A
and the normalised analytical acceleration for the Benchmark model.
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A.1.2 Universe B

Figure 51: The numerical acceleration for Universe B and the analytical accelera-
tion as a function of 1/(1 + z) for the Benchmark model.
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(a) Universe B, Simulation 1. (b) Universe B, Simulation 3.

(c) Universe B, Simulation 4. (d) Universe B, Simulation 5.

Figure 52: Our new model with x = 1, 2, 3 for Universe B and the normalised
analytical acceleration for the Benchmark model.
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(a) Universe B, Simulation 1. (b) Universe B, Simulation 3.

(c) Universe B, Simulation 4. (d) Universe B, Simulation 5.

Figure 53: Our extended model with x, y = 1, x, y = 2 and x, y = 3/2 for Universe
B and the normalised analytical acceleration for the Benchmark model.
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(a) Universe B, Simulation 1. (b) Universe B, Simulation 3.

(c) Universe B, Simulation 4. (d) Universe B, Simulation 5.

Figure 54: Our extended model with x = 2, y = 1 and x = 1, y = 2 for Universe B
and the normalised analytical acceleration for the Benchmark model.
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A.1.3 Universe C

Figure 55: The numerical acceleration for Universe C and the analytical accelera-
tion as a function of 1/(1 + z) for the Benchmark model.
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(a) Universe C, Simulation 1. (b) Universe C, Simulation 3.

(c) Universe C, Simulation 4. (d) Universe C, Simulation 5.

Figure 56: Our new model with x = 1, 2, 3 for Universe C and the normalised
analytical acceleration for the Benchmark model.
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(a) Universe C, Simulation 1. (b) Universe C, Simulation 2.

(c) Universe C, Simulation 3. (d) Universe C, Simulation 5.

Figure 57: Our extended model with x, y = 1, x, y = 2 and x, y = 3/2 for Universe
C and the normalised analytical acceleration for the Benchmark model.
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(a) Universe C, Simulation 1. (b) Universe C, Simulation 2.

(c) Universe C, Simulation 3. (d) Universe C, Simulation 5.

Figure 58: Our extended model with x = 2, y = 1 and x = 1, y = 2 for Universe C
and the normalised analytical acceleration for the Benchmark model.
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