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Abstract

The IceCube neutrino observatory is sensitive to measuring neutrinos in the O(1-100)
GeV regime, allowing for world-leading measurements of neutrino oscillation parame-
ters. An essential part of maximizing the sensitivity of the oscillation analyses is being
able to precisely and accurately reconstruct the parameters of the detected neutrinos. In
this work, a likelihood based reconstruction method utilizing direct simulation to gener-
ate hypotheses of neutrino events has been advanced. This is done by low level testing
of the generation of MC data, as well as an exploration of the quality of the likelihood
space.
The current method of generating MC data is shown to build on wrong assumptions of
constituents cancelling out. This issue has been resolved to create the optimal condi-
tions for reconstruction. Even when optimizing the conditions for the likelihood space,
the reconstruction method underperforms expectations when considering energy recon-
struction. With a precision of 10% on average and an accuracy comparable to the seeding
the energy reconstruction still remains an issue in low energy reconstruction. These is-
sues seem to stem from the minimizer’s ability to properly explore the likelihood space.
The reconstruction method is shown to be a viable method of reconstructing particle pa-
rameters albeit work needs to be done before the method is competitive when compared
to other current reconstruction methods. The reconstruction of the interaction vertex and
azimuthal direction show very promising results, especially the reconstruction of the Z
vertex is shown to perform extremely well. Here the direct simulation method recon-
structs within 61 cm on average.
Future work should include further testing of the energy likelihood space and the min-
imization method. A lot of hidden dependencies could still be hiding just beneath the
surface.
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Chapter 1

Introduction

In 1930 as an explanation for the apparent spectrum of the momentum of the electron
in β decays, Wolfgang Pauli proposed a third particle, which was later named neutrino
(little neutron, denoted ν) by Fermi. This explained the nonconservation of energy and
angular momentum in the previous theory of two-body decay. Pauli’s hypothesis wasn’t
confirmed until 25 years later when Reines and Cowan detected free neutrinos from β
decay [1].
Today many projects around the world, are detecting this elusive fundamental particle,
such as NOνA in the USA, the SuperKamiokande and T2K in Japan and many more.
The most important neutrino experiment, at least for this thesis, is the IceCube Neutrino
Observatory at the South Pole. So far the IceCube Collaboration has many important
results to show. This includes, the measurement of νµ (muon neutrino) between 10-100
GeV obtaining neutrino oscillation parameters comparable to other dedicated oscillation
experiments [2], improved in 2019 including the first tau neutrino appearance result in
IceCube [3]. The detection of the most energetic neutrino "Big Bird" [4]. Flux limit for
neutrinos from point sources [5]. In 2018, for the first time, an extremely high energy
neutrino was traced back to a blazar 5.7 billion light-years away [6] and most recently in
2020 Glashow resonance predicted 60 years ago, was confirmed [7].
The ability to reconstruct properties of the particles, arriving in the IceCube detector, such
as energy and incoming angle is essential for the analysis of the physics of neutrinos. The
work in this thesis is dedicated to studying and advancing new reconstruction techniques
for the IceCube neutrino detector. Besides the analysis of the work done, an outline of
what neutrinos are and how they behave, the detector and its components along with a
section on the methods used to test and advance the reconstruction of particles, including
generation of Monte Carlo (MC) simulated data, is presented.
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Chapter 2

Neutrinos

2.1 Properties of The Neutrino

The Standard Model of particle physics is at present the best theory that explains particle
physics in terms of the interaction and properties of elementary particles (particles with
no internal structure). The particles are classified by their mass, electric charge and spin
etc., where particles with half-integer spin are called fermions and particles of integer
spin are called bosons. The fermions are further split in two families consisting of leptons
in one family and quarks in the other.
The Standard Model also describes the interactions between the particles from 3 of the 4
fundamental forces of nature: The electromagnetic interaction which binds electrons to
atoms and is propagated by electric magnetic waves. The strong interaction that binds
quarks inside the nucleus and the weak interaction which is the force responsible for β-
decay mentioned in Chapter 1 with our beloved neutrino as a product.

FIGURE 2.1: The Standard Model of Elementary Particles. (MissMJ,
Wikipedia Commons)

As seen in Figure 2.1 the neutrino comes in three flavours. The electron neutrino νe, the
muon neutrino νµ and the tau neutrino ντ. They come in pairs with each generation of
the charged leptons, the electron, the muon and the tauon.(

νe

e−

)
,
(

νµ

µ−

)
,
(

ντ

τ−

)
. (2.1)
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Contrary to the charged leptons that interact via the electromagnetic and the weak force,
the neutral neutrinos have only been observed to interact via the weak force. This, and
the vanishing small mass of the neutrinos, makes them very elusive and difficult to de-
tect.

Name and symbol Mass Q Le Lµ Lτ Lifetime (s) Major decays

Electron e− 0.511 -1 1 0 0 Stable None
Electron neutrino νe <2 eV/c2 0 1 0 0 Stable None
Muon µ− 105.7 -1 0 1 0 2.197× 10−6 e−ν̄eνµ(∼ 100%)

e−ν̄eνµγ(1.4± 0.4%)
e−ν̄eνµe+e−(3.4± 0.4)× 10−5

e−νeν̄µ(< 1.2%)
Muon neutrino νµ <0.19 0 0 1 0 Stable None
Tau τ− 1777.0 -1 0 0 1 2.906× 10−13 µ−ν̄µντ(17.4%)

e−ν̄eντ(17.8%)
ντ + hadrons(∼ 64%)

Tau neutrino ντ <18.2 0 0 0 1 Stable None

TABLE 2.1: Table with properties of leptons. Masses are in units of
MeV/c2. The antiparticles aren’t shown and have the same mass as their
counterparticles but charge (Q) and lepton number (L) have opposite sign.
Neutrinos have a stable lifetime here, but neutrino oscillations are ex-

plained in Section 2.2. Table taken from [8] p.72.

In Table 2.1, properties of the leptons are shown. The neutrinos have no electric
charge and are assigned a quantity called the lepton number L which equals 1 (−1 for
the anti-neutrino). The lepton number is a conserved quantity and therefore needs to be
conserved in interactions involving leptons. For an interaction to be allowed, the lepton
number must be conserved, e.g. in nucleon-neutrino scattering

νl + N → l + N′, (2.2)

where νl is a neutrino of flavour l and N is a nucleon. The lepton number is however not
universally conserved, as neutrinos have been observed to change flavour when propa-
gating through space, known as neutrino oscillations.

FIGURE 2.2: Left, a left-handed neutrino with spin pointing opposite the
direction of momentum. Right, a right-handed antineutrino with spin

pointing along the direction of momentum. Illustration from [9].

When discussing neutrinos another property of importance is the helicity-states. Here
the spin of the particles is quantized along the direction of motion of the particle ie. par-
ticles with spin- 1

2 has the spin component along the direction of motion of either + h̄
2 or
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− h̄
2 . The helicity states are called right- and left-handed since the direction of the spin

corresponds to rotational motion in a right- or left-handed sense when viewed along the
direction of momentum. This is illustrated in Figure 2.2. Only reacting through the weak
force, an astonishing fact is that only left-handed neutrinos and right-handed antineu-
trinos are observed in nature. This fact violates C and P invariance individually but is
compatible with CP invariance as the CP operator converts a left-handed neutrino into a
right-handed antineutrino.

2.1.1 The Weak Force

The weak interaction, as well as the strong and electromagnetic interaction, is associated
with elementary spin-1 bosons. These act as force carriers between quarks and/or lep-
tons. The carriers of the weak force is the charged W± bosons with a charge of either
plus or minus one, and the neutral Z0 boson. Because of their charge, the W± bosons are
involved in so called charged current (CC) interactions. In neutrino-nucleon scattering
CC interactions is described as

νl + N → l + X, (2.3)

where the neutrino ν of flavour l scattering of the nucleus, give rise to a charged lepton
l and one or more hadrons X. The neutral Z0 boson is involved in neutral current (NC)
neutrino-nucleon scattering described as

νl + N → νl + X. (2.4)

As the name NC implies, no transfer of electric charge take part in these interactions.
These carriers of the weak force is know as virtual particles as they are spontaneously
created to mediate the force. With masses of MW = 80.4 GeV/c2 and MZ = 91.2 GeV/c2

the spontaneous appearance is violating the principle of energy conservation, and is only
allowed given a very short interaction time as stated in Heisenbergs uncertainty principle
∆t∆E ≥ h̄/2. This in turn makes the interaction length as short as (10−17 − 10−16 m) a
couple of magnitudes smaller than the charge radius of a proton.

2.2 Oscillations

In the Standard Model, the neutrinos are assumed to have zero mass albeit neutrinos have
been shown to have very small mass. When having mass a weird feature of the neutrinos
is neutrino oscillation where e.g. the νµ flavour state changes into one of the other flavour
states as it transverses distances. This is under the assumption of neutrino mixing where
the three neutrino flavours instead of having definite masses are linear combinations of
ν1, ν2 and ν3 with definitive masses meaning these states are mass eigenstates.

2.2.1 PMNS-Matrix

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [10], describes the relationship
between the flavour- and mass-eigenstates as:νe

νµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

ν1
ν2
ν3

 . (2.5)

Where the 3 × 3 matrix is the PMNS-matrix, UPMNS with each term representing the
mixing between the flavour ie. µ and the mass eigenstates 1,2,3. We can then write this
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up as a sum for a stationary neutrino:

|να〉 = ∑
j

U∗αj|νj〉, (2.6)

with α being one of the flavour states e, µ, τ and j the mass eigenstates 1, 2, 3. Adding in
time evolution in natural units (c = h̄ = 1) gives:

|νj, t〉 = e−iHt|νj, 0〉 = e−iEjt|νj, 0〉, (2.7)

where H is the hamiltonian and Ej can be written as the sum of quadratures in momen-

tum and mass. Ej =
√

p2
j + m2

j . This can then be simplified using the binomial expansion

such that terms
(m2

j

p2
j

)x with exponent x > 2 can be neglected since the mass is orders of

magnitude smaller than the momentum. Furthermore the momentum doesn’t need an
index for the mass eigenstates anymore and since neutrinos are travelling at relativistic
speed, set t ≈ L, and the r.h.s. of Equantion 2.7 can be written as:

e−iEjt|νj, 0〉 ⇒ e−ipLe−i
m2

j L

2p |νj, 0〉, (2.8)

and hence the time evolution as:

∑
j

U∗αj|νj〉 = ∑
j

U∗αje
−i

m2
j L

2E |νj, 0〉, (2.9)

where the relativistic approximation along with mj � p allow us to let p = E. The term
e−ipL is a constant and is dropped since it doesn’t interfere with the neutrino oscillations.
Assuming the mixing matrix U is unitary and summing over all possible final flavours β
the absolute square of the probability amplitude is gives the probability

∑
β

P(να → νβ) = ∑
β

|〈νβ, 0|να, t〉|2 = ∑
β

|∑
j

U∗αje
−i

m2
j L

2E Uβj|2, (2.10)

= ∑
β

∑
j

U∗αje
−i

m2
j L

2E Uβj ∑
i

Uαie−i
m2

i L
2E U∗βi, (2.11)

= ∑
j,i

U∗αje
−i

m2
j L

2E Uαie−i
m2

i L
2E δji, (2.12)

= ∑
j
|Uαj|2 = 1. (2.13)

The probability amplitude is normalized properly and the probability for να → νβ oscil-
lation is simply its absolute square.
The trick now is to expand the sum over the mass eigenstates using |a + b + c|2 =
|a|2 + |b|2 + |c|2 + 2<(ab∗) + 2<(ac∗) + 2<(bc∗), substituting in the mass squared dif-
ference ∆m2

ji = m2
j −m2

i and reducing using normalisation constraints ∑j U∗αjUαj = 1 and
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∑j,α 6=β U∗αjUβj = 0 the probability becomes:

P(να → νβ) = δαβ − 4 ∑
i<j
<(U∗αiUβiUαjU∗βj)sin2

(∆m2
jiL

4E

)
+ 2 ∑

i<j
=(U∗αiUβiUαjU∗βj)sin

(∆m2
ji

2E

)
.

(2.14)

Here the imaginary part doesn’t contribute to neutrino oscillations but the mass squared
difference in the real part is the term driving the oscillations. If ∆m2

ji = 0 this would
make the transition probability constant for all energies and lengths. Experiments have
confirmed neutrino oscillations and thereby evidence for a non-zero neutrino mass [11],
[12]. The magnitude of the oscillations are described by the norm of the PMNS-matrix
elements. By expanding the real part in Equation 2.14 further simplification can be made
for neutrino telescopes based on measurements of values, energy resolution and sensi-
tivity. The value of ∆m2

21 ∼ 7.6× 10−5 eV2 is about 30 times smaller than ∆m2
31 ∼ ∆m2

32 ∼
2.4× 10−3 eV2. This combined with baselines L of atmospheric neutrinos on the order
> O(1000− 10 000) km, an experimental energy sensitivity of the order > O(1) GeV and

energy resolution of > O(0.1) GeV, the sin2
(

∆m2
21L

4E

)
term becomes sub-leading and for

simplicity substitute ∆m2
31 → ∆m2

32. When keeping the leading terms of ∆m2
32, the result

using angles that are relevant for an atmospheric νµ flux is

P(νµ → νµ) = 1− 4sin2θ23cos2θ13(1− sin2θ23cos2θ13)sin2
(∆m2

32L
4E

)
, (2.15)

P(νµ → νe) = 4sin2θ23cos2θ13sin2θ13sin2
(∆m2

32L
4E

)
, (2.16)

P(νµ → ντ) = 4sin2θ23cos2θ13cos2θ23cos2θ13sin2
(∆m2

32L
4E

)
, (2.17)

under the assumption of 3 and only 3 flavours and mass-eigenstates.
The PMNS matrix can now be expressed asνe

νµ

ντ

 =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP c12s23 − s12s23s13eiδCP c23c13

ν1
ν2
ν3

 , (2.18)

where sij is sin(θij), cij is cos(θij) and δCP is the charge-parity violating phase factor. This
matrix can then be divided into 3 sub-matrices with a long baseline as:

Atmospheric︷ ︸︸ ︷1 0 0
0 c23 s23
0 −s23 c23


Reactor︷ ︸︸ ︷ c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13


Solar︷ ︸︸ ︷ c12 s12 0

−s12 c12 0
0 0 1

, (2.19)

giving a overview of the sources the neutrinos used to measure different parts of the mix-
ing matrix. The atmospheric neutrinos are used in the IceCube detector to measure the
νµ → ντ channel which is a direct probe of the τ-sector in the PMNS matrix and is impor-
tant when testing the unitarity of the matrix as well as being the currently only feasible
channel. The oscillation probability is dependent on both the energy E and the baseline
L of the neutrino and the ability of precisely and accurately reconstruct these parameters
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is of uttermost importance.

FIGURE 2.3: νµ oscillation probability from a 3-flavour oscillation calcu-
lation [13] and input oscillation values from [14]. The baselines are hori-
zontal (cos(θν) = 0.0),45◦ up-going (cos(θν) = −0.5 and straight up-going

(cos(θν) = −1.0)). Figure courtesy of D. Jason Koskinen.

In IceCube the baseline L directly translates into the zenith angle θν of the incoming
atmospheric neutrino and Figure 2.3 shows the the νµ oscillation probability for three
baselines of horizontal, 45◦ up-going and straight up-going neutrinos. This again under-
lines the importance of the ability of determining the energy and baseline to measure the
oscillations that is measurable with low energy neutrinos.

2.3 Detection

The neutrinos detected in IceCube are mainly atmospheric neutrinos. These come from
showers of particles produced when cosmic rays interact with atomic nuclei in Earth’s
atmosphere. Cosmic rays are high energetic particle, typically protons, coming from
sources such as supernovae and active galactic nuclei (AGN). Cosmic rays interacting
with the nuclei in Earth’s upper atmosphere, produces a lot of short-lived mesons such
as the Kaon and Pion, most of which are Pions. The mesons then rapidly decay into µ and
ν̄µ or their equivalent anti particles. For the Pion this happens in ∼ 99.9% of all decays.
The µ then decays into e−ν̄eνµ meaning that about 2/3 of atmospheric neutrinos are νµ

and ν̄µ and 1/3 is νe and ν̄e. Deviation from this ratio has provided evidence for neutrino
oscillations.
By measuring atmospheric neutrinos coming from all directions, the position of IceCube
at the South Pole makes it possible to detect neutrinos at a wide range of baselines. The
incoming angle θν directly translates into a baseline L to the point on the atmosphere
where the neutrino has intersected the Earth.
The illusive nature of neutrinos makes them impossible to detect directly and they don’t
give away any sign of presence unless they interact with something. They way to de-
tect neutrinos i.e. in IceCube is by recording the light from charged particles created
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by neutrinos interacting in ice, producing Čerenkov radiation. The IceCube detector is
immersed in glacial ice which is extremely clear at depths below 2100 m. The ice isn’t
complete homogeneous as ice properties has been found to vary with depth with high
concentrations of mineral dust, correlated with climatological history. The majority of
dust is found between depths of 2000-2100 m and is called the dust layer. The bottom
region of the detector has specifically been designed to avoid the highly scattering and
absorbing ice in the dust layer. The ice below 2100 m has been found to be 40%− 50%
more clear on average with an average effective scattering of 50 m and an average ab-
sorption length of 190 m. The values cited are measured using 400 nm light which is
the wavelength where absorption due to dust is weakest and the ice shows most trans-
parency. This is also the wavelength near the peak sensitivity of the detector [15].

2.3.1 Čerenkov Radiation

When a charged particle travels in a medium of refractive index n, it will polarize atoms
in the medium which will radiate coherent light. If the particle travels with a velocity
v greater than that of the speed of light in the medium the light is emitted at a charac-
teristic angle θ to the direction of motion of the particle and thus creates a characteristic
wavefront. This condition v > c/n and using Huygen’s principle can be shown that
cos(θ) = 1/βn, where β = v/n. The number of photons radiated per unit path length in
wavelength interval dλ is given by:

N(λ)dλ = 2πα
(
1− 1

β2n2

)dλ

λ2 < 2πα
(
1− 1

n2

)dλ

λ2 . (2.20)

The number of photons emitted decreases rapidly with refraction index approaching 1 so
a great number of events are needed in order to collect enough data.

FIGURE 2.4: Schematic of Čerenkov Radiation for a charged particle trav-
elling at v > c/n. Figure from [16].

2.3.2 Showertypes

When neutrinos interact with nuclei in the ice within the IceCube detector, the interaction
produces charged particles that produce the Čerenkov radiation that is detected. The
radiated light has wavelengths in the low energy spectrum of ultra-violet (UV) light into
visible blue light. The energy and momentum of these charged particles reflect the energy
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and momentum of the original neutrino i.e. the light produced by these showers are
maximal and has low variance and forms a natural unit of the energy of a reconstructed
shower. The neutrino energy resolution is then only limited by the detector resolution for
identified CC interactions. The events in IceCube have two distinct topologies. Tracks
that are formed mostly by muons from either cosmic ray showers or νµ CC interactions
and cascades which are events with no visible muon tracks. The latter is produced in νe
CC and in all flavour NC events.

Interaction Topology

νe + N → e + had. Cascade
νµ + N → µ + had. Track(+ Cascade)

ντ + N → τ + had.→ had. Cascade/Double Bang
ντ + N → τ + had.→ µ + had. Cascade + Track

νl + N → νl + had. Cascade

TABLE 2.2: Different interactions and signature of events in IceCube. Top
section shows CC interactions while NC are shown in the bottom line. Ta-

ble taken from [17] p.3.

In Table 2.2 the 4 top rows show the CC interactions and the bottom row shows the
NC interaction in IceCube. In CC interactions almost all of the primary neutrino energy
is deposited into the lepton and in the hadronic shower while in the NC interaction a lot
of the deposited energy is transferred to the outgoing neutrino.

FIGURE 2.5: Energy deposited in charged particles by νe scattering in ice.
Left plot shows the linear relationship in CC interactions with very little
variance. Right plot is for NC interactions that show a huge variance from

energy losses. Figure from [17].

Fig 2.5 shows the relation between the neutrino energy and the deposited energy in
charged particles in ice [17].
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Chapter 3

IceCube Neutrino Observatory

In December 2010, the largest particle detector the world has seen, was finished after
many years of preparation by the IceCube Collaboration, which consists of more than 300
scientists from 49 institutions and 12 countries. The detector is embedded in one cubic
kilometre of ice at the geographical South Pole and thousands of digital optical modules
(DOMs) are located between 1450-2450 meters beneath the surface. The detector consists
of 86 strings each with 60 DOMs attached 17 meters apart [18]. The center of the bottom
part (2100-2450 meters) of the detector, called DeepCore consists of DOMs attached only
7 meters apart [15].

FIGURE 3.1: Left Layout of the IceCube Neutrino Observatory. Right The
detector seen from the top. Figure from [19].

An illustration of the observaroty is seen in Figure 3.1. The majority of the DOMs in
DeepCore are high quantum efficiency (HQE) DOMs, all other DOMs are referred to
as normal quantum efficiency (NQE) DOMs. This more dense region of the detector is
sensitive to neutrinos with energies lower than 100 GeV. In the near future, work will
begin to deploy more strings with new types of DOMs at lesser spacing to improve the
sensitivity even further. The events IceCube detects come from air showers of particles
in IceTop and penetrating µ detection in DeepCore where the events are dominated by
cosmic ray µ by a factor of ≈ 106 for every neutrino. An event in IceCube lingo is a
particle interacting with the ice and leaving a detectable trace in the detector.
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3.1 The DOM

The DOMs used by IceCube each contain a photo-multiplier tube (PMT) for detecting
Čerenkov radiation, a mu metal grid to shield the PMT from the magnetic field of the
earth, a gel layer that optically couples the glass of the PMT to the glass pressure hous-
ing, a mainboard containing all the onboard processor and electronics, a light emitting
diode (LED) flasher board used for calibration and a high voltage (HV) divider that sup-
plies the PMT with the correct voltages.

(A) Components of a
DOM

(B) Picture of a DOM

FIGURE 3.2: (A) Shows the schematic of a DOM [20]. (B) Shows an actual
image of a DOM [21].

These components can be seen in Figure 3.2a. The spherical pressure housing is well
known in other lines of research where reliability against implosion must be ensured.
The DOMs are 13" in diameter and the borosilicate glass used in the DOMs has a trans-
mission limit ∼ 350 nm low enough to let the Čerenkov radiation through. Each DOM
is connected to the IceCube Laboratory at the surface through a single cable and also
has two wire pairs connecting each DOM to it’s two neighboring DOMs. This is done to
observe local coincidence described in Section 3.1.3.

3.1.1 PMT

To convert the received light into an electric signal, DOMs are equipped with a halfspher-
ical 10” PMT. HQE DOMs are equipped with high quantum efficiency (HQE) PMTs.
Measurements done in laboratory show a 39% higher optical sensitivity compared to
NQE DOMs at a wavelength of 405 nm. In situ measurements show an improvement
of 35% smaller than what was measured in the laboratory possibly due to the Čerenkov
spectrum not being monochromatic and optical properties of the ice surrounding the
DOMs. HQE DOMs has an average noise rate higher by a factor of 1.33, at −45◦C, com-
pared to NQE DOMs. Simulations demonstrate the added efficiency to increase the effec-
tive area of DeepCore triggering on low energy neutrino events by 30% [15]. A schematic
of a general PMT is shown in Figure 3.3. When light hits the photocathode, an exited
eletron called photoelectron (PE), is emitted by the photoelectric effect. Focusing elec-
trodes will guide the accelerated electron into the electron multiplier. This is made of
a series of dynodes where the electron generates multiple secondary electrons which in



Chapter 3. IceCube Neutrino Observatory 12

FIGURE 3.3: General Schematic of a PMT. IceCube PMTs consists of 10
dynodes, has a wavelength range of 300− 550 nm, a transit time of 60± 3

ns and a cathode area of 470− 530 cm2[22].

turn are accelerated onto the next dynode. Finally an anode will collect the amplified
signal from the electron cascade yielding a gain of ∼ 107.
Beside photoelectrons the PMT is subject to prepulsing, afterpulsing and latepulsing. Pre-
pulses are small amplitude pulses from photons entering the PMT producing PEs from
the first dynode. Prepulses appear before the main body of PE pulses. Afterpulses occur
when PEs ionize residual gas atoms, in the PMT, which due to their positive charge drift
back to the photocathode and dislodge several electrons. Latepulses happen when an
electron scatters back from the first dynode. It takes some time for it to reach the dynode
again and produce what is called a latepulse.

3.1.2 Data Aquisition

The DOM mainboard contains the electronics to amplify and digitize the signal gained
from the PMT. The waveform digitization starts when the signal of the PMT exceeds a
discriminator threshold of 0.25 PE using an analog transient waveform digitizer (ATWD).
The readout window for the ATWD is 427 ns. The digitization process takes ∼ 29 µsec
during which another waveform can’t be digitized. To overcome this issue 2 ATWD
chips (A and B) are used sequentially i.e. after a waveform has been captured on chip
A, chip B will capture the next waveform and so forth. By applying this method there is
virtually no deadtime in the data aquisition. The ATWD chips have 4 10-bit resolution
read-out channels where the 3 first are used for different gain and the fourth is used
internally for calibration. Each channel captures 128 samples before trigger conditions
determine to digitize the signal or not. A typical PE has a charge of 5− 8 mV. In addition
to the ATWDs, the mainboard also contains a fast analog to digital converter FADC. This
pipelined output is capable of capturing signals that outlast the timespan of the ATWDs.
The FADC continuously samples an PMT output signal and has 6 µs readout window.
[23].
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3.1.3 Local Coincidence

When the PMT signal exceeds the discriminator threshold the waveform captured by the
ATWD will only be digitized if a neighboring og next to nearest neighbor DOM registers
a signal which also exceeds the 0.25 PE threshold within ±1 µsec. This is called "local

(A) HLC (B) SLC and HLC

FIGURE 3.4: (A) Example of an event with HLC only . (B) Example of an
event with both SLC and HLC [24].

coincidence" (LC). Furthermore there a two types of readouts illustrated in Figure 3.4.
Hard local coincidence (HLC) requires every signal to have a LC tag thereby discarding
all PMT triggers without a tag and heavily reducing the data input. HLC signals are
collected using both the ATWD and the FADC chip, and contains a lot of information
making up for the worse time resolution of the FADC. Soft local coincidence (SLC) is
signals that aren’t HLC. SLC only uses the FADC as readout, which is possible from the
near zero deadtime, from the fast digitization of FADC. SLC signals will then contain less
information of the features of the pulse received, however still useful. [23].

3.2 Neutrino Oscillations in IceCube

Neutrino oscillations are measured in IceCube by probing the |Uτ3|2 matrix element of
the PMNS-matrix described in section 2.2.1. In principle one can use the νe → ντ,ντ → ντ

and the νµ → ντ channels. The two first are undesirable. The first because of the low
magnitude of oscillation and νe and ντ produce a similar signature experimentally. The
second is challenging as it requires an unrealized high-stats focused ντ beam. The most
feasible channel in practice is the νµ → ντ channel which probes both |Uµ3|2 and |Uτ3|2.

A benefit of the location of the IceCube detector is the ability to measure atmospheric
neutrinos generated at all zenith angles, θν at a range of baselines L, ranging from ∼
10 km to the diameter of the earth. From directly down going from above the detector
(cos(θν) = 1) to directly up going from the opposite side of the earth (cos(θν) = −1). This
gives a wide range a combinations of base length and energy (L/E) to study neutrino
oscillations. As seen in fig 3.5, the first peak of maximal P(νµ → ντ) is around 25 GeV for
directly up going neutrinos [3]. Neutrinos at these energies do not disperse much energy
in the detector and makes it even harder to reconstruct the parameters of the incoming
neutrinos in the detector.
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FIGURE 3.5: Plot showing the oscillation probability of a νµ reaching Ice-
Cube. A neutrino produced in particle shower will travel along different
baselines of the earth depending on it’s zenith angle. The oscillation prob-
ability therefore depends on it’s energy and effective travel length. Figure

from [25].
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Chapter 4

Direct Reconstruction

Finding the energy, position, direction and type of neutrino, is hard for low energy events.
They don’t leave much information in the detector as less DOMs see photons from low
energy interactions in the ice.

(A) (B) (C)

FIGURE 4.1: The figures shown examples of cascade events in DeepCore.
Each grey dot is a DOM and the size is proportional to the amount of
charge received. The color indicate the time of triggering range from early
time in red to late time in blue. The grey arrow is the interaction vertex
and direction. (A) Is a 14 GeV e− simulated in the center of DeepCore. (B)
Is a 26 GeV e− simulated in the ceneter of DeepCore. (C) Is a high energy

cascade taken from [19].

Figure 4.1 shows three examples of the amount of information in the detector. (A) and
(B) is a simulated e− in the center of DeepCore with energies 14 and 26 GeV respectively
while (C) shows a high energy νe or ντ CC event. These examples points out the dif-
ference in information in the detector when working with low energy events. The goal
of DirectReco (Direct Reconstruction) is to replace the current method of table lookup
which is pre-generated tables that describe the probability of detecting photons for cas-
cades or muons and characterizing the propagation of photons through the ice. The tables
are created using a 1 GeV hypothesis and then scaled accordingly when reconstructing.
The downsides of table lookup include the computational time producing and verifying
them. Currently when using some of the best methods for low energy reconstruction,
the table lookup is a dominant factor in memory usage and reconstruction time. Another
issue is that the tables are specific to individual icemodels. IceCube always wants to use
the most recent icemodel and generating and verifying new tables is a multi-year pro-
cess, making publishing impossible in that time window. DirectReco sees to this issue
by performing realtime photon propagation and directly simulates the hypothesis events
(Schematic in Figure 4.2a) and then utilize the millipede reconstruction framework. This
makes DirectReco very flexible and it is easy to implement different ice-models, vary the
minimizer used and its settings, determine which oversampling is used and to use differ-
ent likelihood calculations etc. The time of reconstruction in DirectReco is hence limited
by photon propagation time.
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(A) DirectReco Schematic (B) DirectReco Oversampling

FIGURE 4.2: (A) Schematic of event hypotheses in DirectReco. A particle is
simulated and an expected charge is calculated. The grey circles represents
DOMs. The black line is a charged particle transversing the ice producing
Čerenkov photons represented by the blue lines. The squares show the
waveform of the pulses received by the DOMs with the black points being
the observed charge and the blue histograms the expected charge from
the hypothesis. (B) Schematic of oversampling. The particle is simulated
n times and normalized to get an expected average charge and minimize

statistical fluctuations. Source: Sarah Nowicki, IceCube Internal Talk.

Specifically the oversampling is important in DirectReco. Here each particle is propa-
gated n times and the expected charge is the normalized to minimize the statistical fluc-
tuations as described in 4.2b. This is all handled in the framework Millipede where the
best values of the reconstructed parameters are found by estimating the negative log like-
lihood space. The returned values are the parameters giving the minimum of the nega-
tive 7-D log likelihood landscape. The parameters being reconstructed are energy, zenith
angle, azimuthal angle, position of the interaction vertex (x,y,z) and time of interaction.

4.1 Millipede

Millipede is a toolkit for reconstruction developed by IceCube. Usually Millipede is re-
constructing µ tracks in the detector by dividing the track into segments hence the name
Millipede. In this work a segment of Millipede called Monopod is used. Monopod is
useful when reconstructing cascades and is basically a single tracksegment of Millipede
but still uses the Millipede framework. Millipede includes a wide range of different min-
imizers to be used in reconstruction as well as handling the time binning of the input
from the event that is to be reconstructed.

4.1.1 Likelihood Model

The energy reconstruction in IceCube is based on the linearity of the light yielded in CC
and NC events along with the calculation of expected energy losses. This scaling makes it
possible to use EM and hadronic showers as fundamental units of energy reconstruction.
This is done by scaling the expected light yield of a template (simulated event) to match
the observed data. The deposited energy is then estimated by comparing the number of
photons in a photon multiplier tube (PMT), which is described in Section 3.1.1, k to the
expected light yield Λ for a template event that is either tabulated or directly simulated
(templates such as the SPE template are described in chapter 4). The number of photons
observed follows a Poisson distribution with a mean of λ = ΛE and the likelihood L for
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a given energy E to result in k detected photons from an event that produces Λ photons
per unit energy is:

L =
λk

k!
· e−λ, (4.1)

λ→ EΛ, (4.2)

=
(EΛ)k

k!
· e−EΛ, (4.3)

lnL = k ln(EΛ)− EΛ− ln . (4.4)

Then by adding contributions from all digital optical modules (DOMs) j, and maximizing
the expression wrt. E gives:

0 =
∂ ∑ lnL

∂E
= ∑

j
(k jΛj/EΛj −Λj), (4.5)

= ∑ k j/E−∑ Λj, (4.6)

→ E = ∑ k j/ ∑ Λj. (4.7)

In reality there will also be noise photons such as PMT noise. Noise is the added in by
letting λ = EΛ → λ = EΛ + ρ where ρ is the expected noise photons. Substituting in
noise gives the log likelihood:

lnL = k ln(EΛ + ρ)− (EΛ + ρ)− ln(k!), (4.8)

and again maximizing wrt. E gives:

∑ Λj = ∑ k jΛj/(EΛj + ρj). (4.9)

When adding noise the expected light yield doesn’t cancel out and it is not possible to get
a solution for E. This can be obtained by using numerical minimization algoritms [17].
Millipede is able to use two different likelihood models. The default is a Poisson Likeli-
hood:

lnL = ∑
Nbins

di ln(si)− si − ln Γ(di + 1), (4.10)

where di is the charge in the i’th bin and si is the expected charge from the hypothesis
and ln Γ is the natural log of the gamma function. The default Poisson likelihood is used
by table reconstruction whereas DirectReco uses the Dima likelihood that accounts for
model errors and weighted simulation † and is named after its creator [26]. For large
oversampling the Dima likelihood is expected to converge towards the Poisson likeli-
hood. The only weighting available in DirectReco is the oversampling factor which is the
same for each bin and not a distribution. The Dima likelihood for DirectReco is defined
as:

lnLDima = nssi ln(µi/si) + nddi ln(µi/di),

µi =
nssi + nddi

ns + nd
,

(4.11)

†Model errors relates to simplifications when performing finite element model analysis e.g. geometry
approximations, boundary conditions etc. and is a measure of the amount of disagreement between data
ans simulation.
Weighted simulation refers to multiple simulation points within the same bin being weighted.
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where di and si are respectively the observed and the expected charge in the i’th bin, nd
is the number of "data trials" which is 1 for DirectReco and ns is the number of "simula-
tion trials" i.e. the oversampling factor. As mentioned above the computational time of a
reconstruction depends on the oversampling and it is therefore necessary to find a com-
promise between computational time and accuracy and precision of the reconstructed
parameters.

4.1.2 Millipede Binning

The input data from the event given to Millipede, consists of a set of pulses, each with
a varying width and charge (amplitude) for each DOM. Millipede then bins the data
based on several user inputs. Options are available to put all pulses in a single time bin,
dynamic binning, choosing a maximum number of pulses in each time bin and uniform
time binning where the width of the bins is the same for all bins and set by the user.

FIGURE 4.3: Simple Millipede binning example where two pulses of
widths w2 and w4 is binned. Figure from [27].

Figure 4.3 shows an example of dynamic binning. It shows two pulses of widths w2 and
w4 being binned into 5 bins. The empty bins of width w1 and w5 will typically be much
larger because the readout window is much larger than the pulse series.

4.1.3 Simplex algorithm

The minimum of the negative loglikelihood landscape for a given event will give the
most likely parameters for that event. The default minimization algorithm in Millipede
is the simplex algorithm [28]. This algorithm is a part of the Minuit package developed
by people at CERN. It performs minimization using the simplex method developed by
Nelder and Mead. This direct search method is designed to minimize a given nonlinear
function f : Rn → R. It only uses function values at some points in the n-dimensional
likelihoodspace Rn and does not approximate any gradient at any of said points. A sim-
plex is defined as the convex hull of n+ 1 vertices, ie. in 2D the simplex is a triangle, in 3D
a tetrahedron and so forth. The simplex performs a sequence of transformations trying
to minimize the function values at the vertices determining the transformation at each
step of the sequence by comparing the current function values with values at a sample
of one or more test points. The algorithm terminates after it has reached approximately
a number of maximum function calls, given by user or when the simplex gets small in
some sense or the computed function values are close enough using a tolerance input.
One of the advantages of the simplex method is its ability to converge fast, typically only
requiring a few function evaluations at each iteration. A caveat is that it also can take a
huge number of iterations with no, to little improvement, in the function value despite
being no way near the true minimum [29].
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Chapter 5

Generating MC Data

5.1 MC Simulation

FIGURE 5.1: Visual from the event viewer of one of the events of the simu-
lated 50 GeV e−. The grey arrow shows the direction of the event. The
coloured balls are hit DOMs with size corresponding to the number of
pulses received. The colouring shows the time of the hits ranging from

green to red.

The MC data used in this work to be able to perform low-level testing of the hypoth-
esis generation in Millipede is made by simulating an ideal event of a 50 GeV electron
cascade in the middle of DeepCore, approximately 10 000 times. Figure 5.1 shows a ex-
ample of one of the simulated events. Simulating the same electron for each event (same
vertex, angle and energy) will cancel out any randomness from the individual events
when analysing the average behavior. The truth seed is then used to generate a hypoth-
esis in millipede which is compared to the averaged event.

5.1.1 Simulation Chain

The simulation chain used to generate the MC data is divided into 5 parts.

Step 1

• An 50 GeV e− is created at vertex = (37 m,-73 m,-380 m), θzenith = 143.13 deg,
φazimuth = 0 deg, 10 000 times.
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Step 2
to the detector and the photons from the resulting Čerenkov radiation are
propagated in the ice until either absorbed or at a DOM.

Step 3

• The photon hits on a DOM are converted into MCPE (Monte Carlo Photo Elec-
trons).

• Noise is added using the Vuvuzuela module.

• The photo electrons are given a charge using Rosencrantz (PMTSimulator) and
Guildenstern (DOMLauncher).

Level 1

• Triggering.

Level 2

• Filtering.

5.1.2 Step 1

In general, when creating particles in step 1, one uses a dedicated generator like GENIE
[30]. In this work, a toy MC has been used to perform testing at lower levels of Direc-
tReco. Here the 50 GeV e−, is added as a primary particle for each event.

5.1.3 Step 2

The photon propagation in step 2 is done using CLSim that utilizes GEANT4 which is
a toolkit for simulating particles transversing matter. Here GEANT4 handles the trans-
port of the non-photon particles while CLSim propagates the Čerenkov photons from the
charged e−. No light propagation is started if it is more than 300 meters way from a DOM.
The Čerenkov photons are created with a bias in photon wavelength, added to reflect the
wavelength spectrum of the Čerenkov radiation. If a photon hits a DOM it is saved with
attributes Time,Weight,Wavelength,Direction,Position,Group Velocity and Particle ID.
Figure 5.2 shows the distribution of weights given to photons compared to the DOM

wavelength acceptance curve. In order to match the acceptance curve to the photon
weights, it is calculated using an efficiency of the product between the unshadowed frac-
tion = 1, the maximum angular acceptance of the angsens/as.h2-50cm hole ice parameteri-
zation, the relative DOM efficiency (RDE) and a compensation factor from the SPE tem-
plate (SPE templates are described below in section on PMT simulation). When DOMs
are embedded in the ice by drilling holes with hot water, the column of refrozen ice is
referred to as the hole ice. It is believed that the hole ice contains air bubbles from the
refreezing that makes this ice more scattering. This modifies the angular sensitivity of
the DOM by increasing the probability for downgoing photons which would otherwise
pass the DOM to scatter into the PMT.
The RDE stems from the HQE DOMs effectively seeing more charge than the NQE DOMs.
SPE templates effectively change the amount of charge per photo electron and hence
shifts the DOM efficiency, and the compensation factor is brought in to compensate for
this shift. The hole ice, RDE, compensation factor and the unshadowed fraction, don’t
change the shape of the distribution, but merely work as a scaling factor, combined. It is
worth noticing the extreme fluctuation around 300 nm on the left plot of Figure 5.2. The
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FIGURE 5.2: Figure showing the relationship between the DOM wave-
length acceptance curve and the distribution of weights given to photons
in simulation. Left shows the distribution of the photon weights coloured
by density (yellow high density, blue low density) overlaid by the inverse
the DOM acceptance curve (purple dashed line). Right shows the DOM

acceptance curve (red dashed line) with the inverse photon weights.

weights are expected to get higher below 300 nm but in a smooth transition to approx-
imately 10 000. This is a consequence of the extrapolation made to smooth out the low
wavelength end of the DOM acceptance curve. This looks fine until using the inverse as
is the case here.

5.1.4 Step 3

Photon Conversion

The photons saved in step 2 are given to the CLSim module I3CLSimMakeHitsFromPhotons.
This module calculates the wavelength acceptance (domAcceptance) with efficiency of
icemodel_e f f iciency_ f actor×UnshadowedFraction using the spice-3.2.1 ice model and an
unshadowed fraction of 1. The angular acceptance (domAngularSensitivity) is calculated
using the Hole Ice Parameterization from angsens/as.flasher_p1_0.30_p2_-1 hole ice. These
are then used in the module I3PhotonToMCPEConverter which then determines whether a
photon, γ, is accepted as a hit in the DOM and converts it into a PE pulse. The probability
of being converted into a hit is given as:

P(γ→ hit) = weightγ · domAcceptance(λγ) · domAngularSensitivity(θγ) · scalar, (5.1)

where the weight of the photon effectively cancel out the domAcceptance as they are the
inverse of one another except for a scaling factor as described in 5.1.3. The scalar used is
the product between the RDE and the compensation factor from the SPE template. The
photon is then saved as a MCPE if the hit probability is higher than a number drawn
from a uniform distribution between 0 and 1. In Figure 5.3 this canceling out is more
clearly seen. The figure shows a scatter plot of photon wavelength vs. cosine of the
zenith angle relative to the DOM. This translates into cos(θγ) = 1 is photons that hit
directly in the center of the PMT while cos(θγ) = −1 is photons hitting on top of the
DOM. All the photons colored by their probability of being a hit before the hit decision
criteria. Furthermore, the DOM wavelength acceptance is on the x-axis and the angular
acceptance is on the y-axis. The hit probability clearly follows the angular acceptance
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shown on the left. The density of points seem by eye to follow the wavelength acceptance
curve.

FIGURE 5.3: Scatterplot of photon wavelength vs. cosine of incoming an-
gle relative to the PMT. The color indicates the probability of being a hit
from Equation 5.1 . The sideplot on the x-axis has the DOM wavelength

acceptance and the sideplot on y-axis the DOM angular sensitivity.

PMT Simulation

The next step is simulating the response of the PMT. This is the first step in the DOM-
Launcher simulation designed to simulate the electronics of the PMT. The second part of
DOMLauncher is responsible for simulating the data read-out from the DOMs. Here the
MCPE from the photon conversion is given a charge from a SPE (Single Photo Electron)
Charge Distribution. This is a probability density function that describes the charge dis-
tributions for each DOM. It is from this distribution the charge given to each MCPE is
drawn, hence creating a MC pulse series of times and charges.

Besides simulating the photoelectrons (PEs), PAL (pre-, after-, late-)-pulses are also
added in the simulation.
The prepulses are from photons entering the PMT about 30 ns before the normal photo-
electron pulses and have a 10-20 times smaller amplitude. The probability of a hit being
a prepulse is set to 0.3% along with a time shift of -31.8 ns and a weighted charge of 1/20
PE.
Afterpulses occur when photoelectrons transversing the PMT ionize residual gas atoms
which drift back to the photocathode due to their positive charge. Electrons are then
dislodged and pass through the dynode chain. The afterpulse probability is set to 5.9%
weighted by the SPE charge distribution. Early afterpulsing is also observed at two peaks
∼ 500 and 540 ns from the main peak of the SPE-template. The charge distribution used
for early afterpulses is a Gumbel distribution with β = −3.386 and µ = 13.31. The peak
of this charge distribution is approximately 13 SPE equivalents.
Late pulsing occurs when a PE scatters back of the first dynode taking some time to turn
back and reach the dynode chain. Late pulses are simulated with a probability of 3.5%
with about 4% of that around 25-65 ns, most around 71 ns and approximately 0.2% at 85-
160 ns. These are basically single PEs with a time delay and weighted as normal pulses.
Everything else is PE pulses with a probability of 1 − P(after pulse) − P(late pulse) −
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FIGURE 5.4: SPE fit Example from [31].

P(prepulse) = 90.3%.
The time it takes for a PE to traverse the PMT to the first dynode and for the shower to
build up in the dynode chain can vary and is referred to as the "PMT jitter" a time offset
of approximately 2 ns is applied using a Gumbel distribution with β = 1.92 and mean
µ = 0.15. An example of a SPE template is shown in Figure 5.4.
Finally some pulse merging is done, even though not being a physical effect, to reduce
data size and improve computation time without affecting the physics. Hits within 0.2
ns of each other are merged and weighted to account for all hits merged.

The PMT Simulation fails to reproduce the percentage of pulsetypes expected from
the probabilities mentioned above as the distance between the interaction vertex and the
hit DOM decreases.

Pulsetype % received % expected

Photoelectron 54.58 85.25 87.7 89.26 90.39 90.3
Prepulse 1.32 0.45 0.36 0.32 0.26 0.3

Afterpulse 28.96 9.26 7.64 6.64 6.01 5.9
Late pulse 15.15 5.04 4.3 3.79 3.32 3.5

Distance from vertex 6.78 m 12.07 m 18.53 m 25.29 m 51.33 m

TABLE 5.1: Table with the distribution of pulse types in DOMs at differ-
ent distances from the interaction vertex from the PMT simulation. At dis-
tances from∼ 25 m and further the distribution of pulses starts to resemble

the expected values.

In Table 5.1 the percentage of the pulse type received by a DOM at different distances
from the interaction vertex is shown. At some distance the photons and PEs start to satu-
rate the PMT. This indicates a caveat of the 50 GeV e− being simulated to close to a DOM.
The percentages converge to what is expected at distances ∼ 25 m and more, while at
closer distances it is clear that the amount of PEs dramatically falls off between ∼ 12 and
∼ 6 meters. At the closest distance an excess of 1% prepulses, 12% late pulses and 22%
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after pulses is received by the DOM.

FIGURE 5.5: The normalized charge vs. time distribution of the pulse types
received by DOM 42 on string 79, located 6.78 m from the interaction ver-
tex. The excess of late pulses cause a minor distribution at 9950 ns in the
tail of the red dashed line. The red dashed line shows the combined distri-

bution of weighted pulses received by the DOM.

FIGURE 5.6: ]
The normalized charge vs. time distribution of the pulse types received by DOM 40 on

string 85 located 51.33 m from the interaction vertex. The red dotted line shows the
combined distribution of weighted pulses received by the DOM which follows the PE

pulse types (purple line).

In Figure 5.5 histograms of the time distribution of the pulse types weighted by charge
at a distance of 6.78 m corresponding to the column with the minimum distance in Table
5.1 is shown. The red dashed line in Figure 5.5 is the weighted charge vs. time distribu-
tion of all collected pulses. Around 9950 ns there is a small distribution from the excess
of late pulses whilst the excess of pre- and afterpulses doesn’t show irregularities in the
weighted combined distribution by eye but intensive zooming will show a small rise in
the afterpulse area of the tail. This is an artefact from the normalization of the individual
histograms and the normalization of the combined histograms. Comparing this to Fig-
ure 5.6 that corresponds to the column with the maximal distance it is clear that the small
distribution of afterpulses in the tail of the collected pulses has vanished along with the
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excess of latepulses. Early afterpulses are almost non existing while afterpulses unex-
pectedly appear at earlier times than the PE and latepulses. The charge distributions

FIGURE 5.7: Charge distributions of the different pulse types in a DOM,
close to the interaction vertex, from the PMT simulation. The distribution
of the PE pulses in the top left plot deviates from the expected SPE template
distribution. The tail isn’t flattening out as fast as expected but extends to
higher charges. The pre-pulses, afterpulses and late pulses all have the

expected distribution, though having a larger count than expected.

FIGURE 5.8: Charge distributions of the different pulse types in a DOM,
far from the interaction vertex, from the PMT simulation. The distribution
of the PE pulses in the top left plot follows the expected SPE template dis-
tribution. The pre-pulses, afterpulses and late pulses all have the expected

distribution and count as well.
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for the pulse types in the two DOMs are shown in Figures 5.7 and 5.8. In both cases the
late- and afterpulses follow the SPE charge distribution, the early afterpulses follow the
Gumbel distribution mentioned above (though difficult to see for the DOM at 51.33 m
from the interaction vertex due to low statistics at greater distances) and the prepulses
have a charge of 1/20 = 0.05 PE, all as expected. The width of the prepulses is a binning
artefact as the charge for this pulsetype is a constant. When comparing the regular PE
pulses in the top left of the figures, the distribution from the DOM close to the interac-
tion vertex deviates from the expected charge distribution. Instead of falling off after the
peak at 1.0 PE, the DOM receives many pulses with a charge above 1 PE. In the DOM
further away the PE distribution exactly follows the SPE charge distribution. Further
investigation into what is causing this issue in DOMs close to the interaction vertex has
been out of scope for this thesis, but a clear incentive to pursue this in the future is given
here. A natural starting point would be to dig into the pulse merging algorithm and the
saturation parameter in the PMT simulation module.

DOMLauncher

The DOMLauncher module is responsible for simulating the raw detector response. By
using the weighted pulses given by the PMT simulation, it transforms the pulses based on
discriminator thresholds, LC conditions and fills the FADC and the ATWD waveforms.
When developing the SPE templates a disagreement between data and MC was found
below 0.25 PE. The discriminator threshold is the set to trigger at this value to obtain a
better data/MC agreement.

5.1.5 Level 1 and 2

The triggering and filtering steps of the simulation are beyond the scope of this work and
will not be described in detail. On the short side, these steps do event selection based
on a numerous amount of criteria, from boundaries on parameters to uncertainty in the
FADC and ATWD readouts.
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Chapter 6

Analysis

When trying to advance the reconstruction methods of low energy particles, the first step
in this work is to test how the Millipede module described in Section 4.1 behaves at low
level, before testing an actual reconstruction of events. The testing at low level is done by
extracting hypotheses from Millipede given the simulated data described in Section 5.1
where the same 50 GeV e− cascade was simulated 10 000 times. The reasoning behind
simulating an electron and not a neutrino (since it is neutrinos we wish to reconstruct)
stems from the fact that we only reconstruct the light emission from the products of neu-
trino interactions in the ice. In general we reconstruct a combination of cascades and
tracks, but for this work we ignore tracks and focus on cascades in the detector. This is
valid for νe and ντ CC interactions and all NC events. Currently, in IceCube, it is not
possible to distinguish between EM and hadronic cascades, so this is simply represented
as a EM cascade in the simulation used in the work.

6.1 Testing the Millipede Hypothesis

When re-simulating the same event multiple times effectively canceling out the statistical
randomness from single events makes it possible to test and analyse the average behavior
of the hypotheses generated in Millipede. Millipede takes the input data from each event
in terms of a series of pulses in each DOM. This is then binned in Millipede and minimizer
is searching the likelihood landscape for an optimal hypothesis given the event data. The
minimizer is given a seed which is a first guess for the attributes of the particle being
reconstructed (think of it as a starting point in the likelihood landscape).

This low level testing is done by extracting the hypothesis using the true particle at-
tributes as the seed and not doing any minimizing. This means that it is possible to
compare the optimal scenario hypothesis and compare it to the truth (input data wave-
form). The data and the hypothesis waveforms are averaged over all the events and
compared. The average of the MC data cancels out statistical randomness and is why
the average behavior is analyzed opposed to event-by-event comparison. DOM 37 on
string 79 has been selected as an example in this work showing a representative picture
of all the DOMs. The binning used has a binwidth of 8 ns in a range from 9800 ns to
10500 ns. Figure 6.1 shows the comparison between averaged MC data and averaged hy-
potheses along with the ratio between the averaged MC data and averaged hypotheses.
On average the hypotheses underestimates the amount of charge in each bin and many
fluctuations are seen in the ratio plot from bin to bin. The fall off after the main peak also
shows a mismatch in timing between the hypothesis and MC data. It is the assumption
when using DirectReco that effects from PMT simulation and noise effectively will cancel
out. This is not the case here and changing around parameters in Millipede doesn’t make
the hypothesis match better with the MC data.
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FIGURE 6.1: Plot of the average charge vs. time waveform using uniform
time binning. Purple line is the average MC data using detector simu-
lation. Yellow dashed line shows the average hypothesis extracted from

Millipede at the truth seed. Red line is the ratio MC data/Hypothesis.

FIGURE 6.2: Plot of the average charge vs. time waveform using uniform
time binning. Purple line is the average MC data using no detector sim-
ulation. Yellow dashed line shows the average hypothesis extracted from

Millipede at the truth seed. Red line is the ratio MC data/Hypothesis.

By removing noise, PMT simulation, and DOMlauncher from step 3 of the simulation
along with the level 1 and 2 filtering and triggering makes it possible to test the hypothe-
ses against MC data at an even lower level of simulation. A module that converts at
photon hit, on a DOM, 1-to-1 to a MCPE, effectively meaning that each and every photon
gets a charge of exactly 1 PE, is instead used in step 3. When extracting the hypothesis,
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FIGURE 6.3: Plot of the average charge vs. time waveform using logarith-
mic time binning. Purple line is the average MC data using no detector
simulation. Yellow dashed line shows the average hypothesis extracted
from Millipede at the truth seed. Red line is the ratio MC data/Hypothesis.

the expected charge in each bin needs to be scaled accordingly by RDE and the compen-
sation factor, described in Section 5.1.3, to make up for the excess of light simulated in
CLSim. In Figure 6.2 is a comparison of the averaged hypotheses from Millipede and MC
Data when the is no detector simulation. A clear improvement is seen especially at the
rise and main part of the waveform that almost matches perfectly when looking at the
ratio. The tail of the distribution still shows many fluctuations which could be an issue
when summing up the charge in all DOMs. The shift in time on the x-axis is an artefact of
removing any trigger time from the simulation and the time starts at zero when the sim-
ulated e− appears in the detector. The binning has just been shifted from 9800-10500 ns
to 0-700 ns. In the master thesis by Thomas Halberg [32], issues concerning time binning
methods in Millipede was found. This leads to exploring a different binning method
than what is currently available in Millipede. The Millipede hypothesis and MC data
is ultimately a set of charge vs. time histograms. In DirectReco oversampling is used
where the event is resimulated N times and averaged. Using low oversampling (N) re-
sults in limited statistics in each bin of the hypothesis which in turn can create statistical
fluctuations in the likelihood landscape, complicating things for the minimizer. Limited
statistics in the bins can be avoided by using larger bins. Using a logarithmic binning
gives smaller bins in the beginning of the readout window where most photons are de-
tected, and larger bins in the tail where less photons are detected. The smaller bins in the
beginning of the readout window also conserves some time information about the event.
An algorithm providing logarithmic binning has therefore been added in Millipede ‡. In
Figure 6.3 is the comparison of averaged MC data and averaged Millipede hypothesis
using logarithmic binning. Using the logarithmic binning make the hypothesis almost
perfectly match up with the MC data. All in all this shows that the assumption of PMT
simulation and noise effectively cancel out in DirectReco isn’t true. Only when removing
noise and the detector from the simulation, it is possible to make the optimal hypothesis
from Millepede to match the MC data. Using logarithmic binning prevents low statistics

‡For now hardcoded but definitely possible to make this a persistent option.
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in bins at lower oversampling while maintaining the time information.
The next step in the analysis will be examining how the likelihood landscape behaves at
different values of oversampling, to create a smooth likelihood landscape, minimizing
fluctuations creating local minima, that potentially gets the minimizer stuck.

6.2 Choosing Oversampling

The reconstruction of the energy in low energy events is an issue in DirectReco. The fol-
lowing sections will therefore use the energy likelihood landscape as a measure for de-
ciding on which oversampling to use when moving on to run a full reconstruction. The
likelihood landscape in energy is studied using the no detector simulation using uniform
time binning and logarithmic binning at oversampling values 100 and 1000.

(A) (B)

(C) (D)

FIGURE 6.4: The log likelihood landscape in energy for event 0. All other
parameters are fixed at truth and energy is scanned from 40-60 GeV in
steps of 1 GeV. (A) and (B) Energy LLH landscape at respectively over-
sampling 100 and 1000 using uniform binning. (C) and (D) Energy LLH
landscape at respectively oversampling 100 and 1000 using logarithmic

binning

Fig 6.4 shows the LLH landscape at different binning methods and oversamplings.
The top row, (A) and (B), show the scans using uniform time binning at oversampling
100 and 1000 respectively. At oversampling 100 the fluctuations in the LLH landscape
are dominating and a clear global minimum at the truth of 50 GeV isn’t present. Going to
oversampling 1000 in (B) smoothens out the fluctuations seen in (A). A more clear mini-
mum around 50 GeV is present but there are still fluctuations creating local minima. The
bottom row (C) and (D) show the scans using the logarithmic binning method. A clear
improvement is seen from uniform time binning and when moving to oversampling 1000
in (D) the energy LLH landscape seems smooth around the global minimum compared
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to uniform time binning at the same oversampling. This again confirms the choice of
logarithmic binning while an oversampling of 1000 is chosen for further analysis.

6.3 The Ever Changing Loglikelihood Energy Landscape

The loglikelihood landscape in energy in a perfect scenario should have a parabolic shape
with a minimum at the true energy. Exploring the landscape, however, shows an incon-
venient truth. The energy landscape tells a much different story, when scanning it at
reconstructed parameter values, rather than scanning at the truth. To be able to make a
likelihood scan at the reconstructed parameters it is necessary to run a quick reconstruc-
tion of the 50 GeV e− no detector simulation. When reconstructing using real data it is
not possible to used the truth as seeding. Instead of using the truth as the seed a more
realistic scenario seeding is chosen. The seeding for the position of the interaction vertex
center of gravity (COG) is used. The COG is defined as the mean position of photons that
hit DOMs, weighted by the charge received by the DOMs. For the directional seeding a
line-fit is performed and then used as a seed in a single photon electron reconstruction
(SPE-fit). The line-fit produces an initial track based on the hit times and locations of the
hit PMTs using a least squares minimization. The SPE-fit uses the line-fit and the event
data in a likelihood maximization algorithm to reconstruct an estimate of the zenith and
azimuth angle. The energy seed is specialized for the 50 GeV event by multiplying the
total amount of pulses recorded in the event with a factor only usable for the 50 GeV
event. The oversampling has been set to 1000, the minimizer tolerance to 0.01 and the
step size in energy is set to 2 GeV with everything else kept at default.

(A) (B)

(C) (D)

FIGURE 6.5: (A) and (B) show the LLH space in energy extracted at the
true parameters for event 0 and 1 respectively. (C) and (D) show the LLH
space in energy extracted at the reconstructed parameters for event 0 and
1 respectively. The purple line is the seed value, the green line is the first

step of the minimizer and the red line is the reconstructed value.
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Fig 6.5 shows the scans of the energy loglikelihood landscape. Top row (A) and (B)
show event 0 and event 1 from the simulation respectively. Here the energy landscape
is scanned while fixing all other parameters at the true values. Bottom row (C) and (D)
show the same scans extracted at the reconstructed parameters of the respective events.
In each plot the purple dashed line is the seeded value, the green line is the first step of
the minimizer under the assumption that it always takes the first step towards higher
energy § and the red line is the reconstructed value. For event 0 the reconstructed value
is closer to the true value compared to the seed while the opposite is true for event 1. In
either case the log likelihood landscape changes from a parabolic shape to almost straight
line shape. From the scans one would expect the minimizer to perform worse than what
is actually happening. The minimizer in (D) seems to get stuck in a local minimum at
∼ 47 GeV where as in (C) the minimizer would be expected to move to an energy value
even yet lower. The scale of the negative log likelihood value on the y-axis is about 10
GeV per scan point which means that an even finer scan could reveal large fluctuations
and local minima here as well. The scale in (D) is only a few GeV per scan point even
though at much higher values than in any of (A), (B) and (C).
This is an interesting, however not promising, feature in the loglikelihood landscape.
The 50 GeV e− simulated here has shown unexpected features mentioned in Section 5.1.4
and it is unsure whether this feature in the likelihood landscape is a consequence of an
unfortunate choice of interacting vertex in the simulation. From here moving to a full
reconstruction with a more realistic simulation needs to be done. This is to see how
well DirectReco is at reconstructing events after removing parts of the simulation and
changing the binning. The same likelihood scans can then be done on a more realistically
simulated scenario.

6.4 Running A Full Reconstruction

To run the full reconstruction a new simulation is made to reflect a more physical sce-
nario. The no detector simulation described in Section 6.1 is used but instead of simulat-
ing the same event over and over again, a distribution is chosen for each parameter. One
thousand e− are simulated over a uniform energy range of 10-50 GeV. The interaction x
and y vertices are placed within 33 meters of String 36 and the z vertex is simulated in a
range from -230 to -430 meters which is inside the DeepCore region of the detector. The
distribution in azimuth is uniform from 0 to 2π while only simulating upgoing electrons
in the detector using a uniform distribution in cos(θzenith) from -1 to 0.
The seeding used is COG for x,y,z and a linefit with an SPE fit for direction in azimuth (φ)
while time and zenith angle (θ) have been chosen to be fixed at the truth. By fixing time
at the truth, it is ensured that it doesn’t seed at late enough times to be in a somewhat flat
part of the likelihood landscape and can’t be recovered by the reconstruction.

The zenith angle reconstruction is having problems reconstructing unimodally to the
truth. Figure 6.6a shows the zenith reconstruction performance when only fixing time
to truth. The performance shows two separate distributions. One centered around 0 as
expected and a bias centered around -1.6 which is approximately−π/2. This bias is most
likely caused by more horizontal events with θtrue ∼ π/2 reconstructing as downgoing
with θreco = 0, which is unwanted since only upgoing events are simulated. Figure 6.6b
shows a scatter plot of the ratio |θreco−θtrue|

|θseed−θtrue| vs. θtrue. The ratio is a measure of how the
reconstruction performs against the seed as a function of the true value. Points below the
dashed 1.0 line on the y-axis mean that the events reconstruct closer to the truth than the

§The simplex algorithm used in the minimization process, uses the initial seed point and the first step
value to evaluate which direction to move from here.
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(A)

(B)

FIGURE 6.6: (A) Reconstruction performance for the zenith angle when
fixing the time parameter at truth. (B) Performance of the ratio between
reconstruction and seed of zenith against the truth. In both plots the red
line shows the median and the dashed red lines are the 1σ on either side of

the median.

initial seed. A PDF of the density of the ratio points is shown on the right. The majority
of the events reconstruct worse than the initial seed and the scaling on the y-axis cuts off
almost 40% of the points which lie above a ratio value of 3. Turning to the x-axis with
θtrue there is a clear bias, where upgoing events reconstruct better than horizontal events
which confirms the −π/2 bias in Figure 6.6a. The focus in this work is on improving the
energy reconstruction that has caused issues in DirectReco at low energies which along
the above issue leads to running a reconstruction where fixing both the time and zenith
angle to the truth applies [32].

6.4.1 The Reconstruction

FIGURE 6.7: Unimodal distribution of the amount of simplex minimiza-
tions pr event in the reconstruction.
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Studies done using the no detector simulation mentioned in Section 6.1 show a bi-
modal distribution in the number of minimizations done in Millipede where the events
with a low amount of minimizations perform worse than the distribution with a larger
amount. This is also seen in studies done by fellow MSC. student at NBI, Jonathan
Jegstrup, using the D-Egg, a DOM type, with an up-facing and down-facing 8" PMT,
that will be used in the IceCube Upgrade [33].

In this study the no detector simulation for testing the Millipede hypothesis also
showed unexpected behavior when analysing the simulation in Section 5.1. The 50 GeV
e− in that simulation was unfortunately placed nearby and pointing almost directly into
a DOM thereby shadowing other DOMs that otherwise would have received light as seen
in Figure 5.1. Using the simulation with a more realistic scenario strongly reduces this
caveat and the distribution of minimizations pr. event follow a uni-modal distribution as
expected and is seen in Figure 6.7. All performance plots of position and azimuth recon-
struction can been seen in Appendix A.

FIGURE 6.8: The performance of energy reconstruction in terms of the frac-
tional error. The distribution is show in purple. The red line is the median

and the dashed red lines show the ±1σ from the median.

The performance of the energy reconstruction is shown in Figure 6.8. The distribution of
the fractional error has a peak around zero and features a long tail, with a bias towards
an overestimate of the energy. Energy overestimates from 100-550% (!!!) are seen. The
median (red line) is 0.1 so within 10% of to optimal value at zero. The accuracy is of
more concern with a 1σ width of 85% combined with the majority of 62% higher than the
median. If the bias in the tail could be eliminated the performance in energy would look
somewhat promising.

By comparing the fractional error on the energy reconstruction against the fractional
error on the energy seed it is possible to get an idea of how the reconstruction performs
when seeding on either side of the true energy seen in Figure 6.9.

If a scatter point is on the grey 1:1 line, means that hasn’t moved away from the seed
at all. More interesting is the bias that almost all events reconstruct to a higher value than
the seed. Only few shift to lower values. Another feature exposed in this plot is the bias at
seeding lower than the truth. Here the reconstruction is still higher than the seed but the
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FIGURE 6.9: Scatterplot of the fractional error on the reconstructed values
vs. the fractional error on the seeded values. The grey dashed line is the

1 : 1 line where the fractional errors match.

minimizer seems to be exploring a wider range of the likelihood landscape, compared to
all points above zero on the x-axis, where the minimizer only explores a range somewhat
closer to the seeding. The optimal scenario would show the points centering on the black
horizontal line where the fractional error on the reconstruction is zero. This illuminates
the possibility of the minimizer not performing optimal. The simplex is known to take its
first step towards higher energies, making it a possibility that it gets stuck in small local
minima and why Figure 6.9 shows a tendency to reconstruct at higher values than the
seed no matter if the seed is lower or higher than the truth.

FIGURE 6.10: Scatterplot of the ratio of the reconstruction and seed per-
formance vs. true energy. Events below the black dashed line reconstructs
closer to the truth than the seeded energy and vice versa. On the right the

distribution of the ratio is shown.

By analysing the ratio |Ereco−Etrue|
|Eseed−Etrue| against the true energy it’s is possible to see if there
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would be any bias of the reconstruction doing better than the seeding at certain energies.
A ratio below one, means that the reconstruction has moved closer to the true value com-
pared to the seed. We want the reconstruction to do a better job than the seed otherwise
the entire reconstruction would be purposeless. In Figure 6.10 the ratio is plotted against
the true energy for each event. The right plot of the figure shows a PDF of the distribu-
tion of the ratio points. The optimal scenario would have the entire distribution beneath
the 1.0 line which is not the case. Because of scaling on the y-axis, about 13% of the ratio
points lie above 3.0 and are not seen in the plot. The median (red line) and the width (red
dashed lines) are calculated using the entire distribution. The median is below 1 but only
slightly at 0.95. This means that just above 50% of events reconstruct to a value better
than the initial seed, which is terrible when trying to obtain a reasonable resolution in
the reconstruction. This leads back to this most likely being an minimizer issue with the
minimizer mainly moving towards better reconstruction when seeded at values lower
than truth. There is also a higher density of events reconstructing slightly better than the
seed between 30-50 GeV.

The Return Of The Ever Changing Likelihood Landscape

Once again likelihood scans in energy are performed fixing all other parameters at the
truth and at the reconstructed values only this time for the reconstruction using the more
realistic simulation.

(A) (B)

(C) (D)

FIGURE 6.11: (A) and (B) show the LLH space in energy extracted at the
true parameters for event 4 and 0 respectively. (C) and (D) show the LLH
space in energy extracted at the reconstructed parameters for event 4 and 0
respectively. The purple line is the seed value, the green line is the first step
of the minimizer. The red line is the reconstructed value and the yellow

line is place at the true enegy of the event
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The scans are done on event 4 and 0 and are shown in Figure 6.11. For event 4 the
reconstruction is doing better than the seed with |Ereco−Etrue|

|Eseed−Etrue| = 0.85 and for event 0 the

reconstruction is doing mush worse with |Ereco−Etrue|
|Eseed−Etrue| = 4.71 . The left column plots (A)

and (C) show event 4 that has a high true energy of 46 GeV. (A) is scanned at the truth
and shows a wide global minimum around the true value whereas the reconstructed
value seem to be stuck in a local minimum at 24 GeV even though making it’s way from
the seed towards the global minimum. When comparing to (C) that is the same event
but scanned at the reconstructed value it is clear that the minimizer believes that it has
found the global minimum. Unfortunately the minimum is almost 50% away from the
truth. The minimum in (A) has a lower -LLH value than the minimum in (C) and could
have possibly been found assuming the minimizer had been exploring a wider range of
the likelihood landscape. The right column plots (B) and (D) show event 0 which has a
true energy of 14.5 GeV. Here the landscapes, when scanning at the truth (B) and at the
reconstructed values (D), are very similar. The global minimum is at higher energy than
the actual truth and even though the seed is very close to the truth, it moves past the truth
at the first step, and the minimizer reconstructs at the start of the global minimum. Again
the issues concerning low energy reconstruction is in non smooth likelihood landscapes
that has global minimums that isn’t near the truth along with a minimizer having trouble
navigating the energy likelihood landscape. On the positive side, the other parameters
x,y,z and azimuth looks predominantly good, especially the z vertex.

6.4.2 Z Performance

In this section the performance of the z vertex reconstruction is analyzed. This is from
the same reconstruction used above when analysing the energy performance.

FIGURE 6.12: The performance of reconstruction of the Z vertex. The dis-
tribution is show in purple. The red line is the median and the dashed red

lines show the ±1σ from the median.

The performance in z stands in sharp contrast to the energy reconstruction performance.
Figure 6.12 shows the performance of the z reconstruction. The distribution of Zreco −
Ztrue nicely centers around 0, with a median of -0.61. This tells us that on average the z



Chapter 6. Analysis 38

vertex reconstructs a mere 61 cm too low. The total width is 7.12 meters with a slight bias
towards reconstructing a but lower than the truth.

FIGURE 6.13: Scatterplot of the error on the reconstructed values vs. the
error on the seeded values. The grey dashed line is the 1 : 1 line where the

errors match.

When analysing at the scatter plot in Figure 6.13 showing the reconstruction error vs.
the seed error, the reconstruction performs amazingly independent of the seed error. The
vast majority of scatter points end up on and nearby the horizontal black dashed line that
signifies zero error on the reconstruction. No matter the error on the seed, the minimizer
seem to be able to reconstruct a value reminiscent of the truth.

FIGURE 6.14: Scatterplot of the ratio of the absolute distance between the
reconstructed energy and truth and the absolute distance between seed
and truth vs. true energy. Events below the black dashed line reconstructs
closer to the truth than the seeded energy and vice versa. On the right the

distribution of the ratio is shown.

Figure 6.14 show the absolute error ratio between the reconstruction and the seed and a
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function of the truth. This is almost an optimal scenario. The PDF on the right hand side
plot shows the distribution of the points where only 2.7% is outside the y-range. With a
median of 0.12 and a σ+ of 0.6 tells us that ∼ 84% of the points reconstruct 40% or more
closer to the truth compared to the seed and 50% reconstructs 88% or more closer to the
truth. The density reveals a bias when the truth is in the bottom of DeepCore. Here the
minimizer is reconstructing better than the seed compared to above -325 meters.

(A) (B)

(C) (D)

FIGURE 6.15: (A) and (B) show the LLH space in energy extracted at the
true parameters for event 0 and 1 respectively. (C) and (D) show the LLH
space in energy extracted at the reeconstructed parameters for event 0 and
1 respectively. The purple line is the seed value, the green line is the first

step of the minimizer and the red line is the reconstructed value.

A visualization of the likelihood landscape in z using the true and the reconstructed
values, of the other parameters, respectively is shown in Figure 6.15. The plots shows
the same events that was used in the energy analysis, event 4 and event 0. In energy
event 4 had better reconstruction than the seed and event 0 had a worse reconstruction
than the seed. In z, event 4 has a ratio of |Zreco−Ztrue|

|Zseed−Ztrue| = 0.33 and event 0 has a ratio of
|Zreco−Ztrue|
|Zseed−Ztrue| = 0.13 so the z reconstruction is better than the seed in both events. The left
column (A) and (C) show the likelihood scan for event 4 using the truth and reconstruc-
tion as fixed parameters respectively. The landscape has the same shape but shows much
larger fluctuations in (C) as well as a higher -LLH. Despite the fluctuations and the "poor"
seed, the minimizer is able to reconstruct a value close to the truth. The right column (B)
and (D) show the likelihood scan for event 0 using the truth and reconstruction as fixed
parameters respectively. Here the landscape i z looks really great and even though the
seed is a bit worse than for event 4, the minimizer is able to reconstruct z even better. The
-LLH value is also the same for the minimum in both (B) and (D). This is the textbook
example that would be amazing to see in all parameters.
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Conclusion

It has in this work been shown that the reconstruction method, DirectReco, is a viable
method to reconstruct the physical parameters of simulated events in the IceCube Detec-
tor. There are however still some fundamental issues that need to be studied thoroughly
before being a competitive reconstruction method compared to table look-up.
The investigation of the lower level simulation showed the assumption of noise- and
PMT-simulation effectively canceling out in DirectReco to be false. The PMT simulation
also showed issues with saturation in DOMs receiving an overflow of photons. This is
the first time we’ve seen that here at NBI. Extremely weird behaviour in the PMT sim-
ulation as well, showed afterpulses occurring before prepulses. By removing this from
the simulation along with addressing the known time binning issues in Millipede made
the optimal Millipede hypothesis match the MC simulated data. The time binning was
resolved by using logarithmic binning. This binning method preserves higher statistics
in the tails of the waveforms, while maintaining time resolution at the waveforms, im-
portant for reconstruction of some of the parameters.
Scans of the likelihood landscape in energy showed a large improvement in reaching a
smooth likelihood landscape at an oversampling value as low as one thousand. This
was achieved by changing the time binning method from uniform to logarithmic time
binning. However, scans of the likelihood landscape done by fixing the parameters not
being scanned. to their true and reconstructed value respectively showed some strong
disagreement. This is a concern as the reconstruction relies on the minimizer’s ability to
navigate the likelihood landscape properly before optimally end up finding the global
minimum at the true value.
The focus in this work was on improving the performance of the energy reconstruction.
The reconstruction method still shows a bias reconstructing towards energies higher than
the truth. Analysis of the reconstruction performance and seed only showed a slight im-
provement from the seed to the reconstruction. In the energy reconstruction ∼ 50% of
the reconstructed events failed to improve the seed value. Further analysis showed the
minimizer to have a bias towards reconstructing a value higher than the initial seed. This
is especially problematic when the seed value is higher that the truth. This was seen even
after fixing the parameters, time and θzenith to their respective truth values thereby pro-
viding the optimal condition for a good energy reconstruction.
The remaining parameters, x,y,z and φazimuth was showed to reconstruct very well. Espe-
cially the z reconstruction was a prime example.

Much of the analysis on the energy reconstruction shows issues concerning the likeli-
hood landscape and the minimizer’s ability to navigate this landscape properly. These
are the main steps that should be taken into account when further development, on re-
constructing low energy events in DirectReco, starts.
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Appendix A

Reconstruction of X,Y,Z,φ

FIGURE A.1: The performance of reconstruction of X,Y,Z and azimuth an-
gle. The distributions are show in purple. The red lines are the medians

and the dashed red lines show the ±1σ from the medians.
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FIGURE A.2: Scatterplots of the error on the reconstructed values vs. the
error on the seeded values. The grey dashed lines are the 1 : 1 lines where

the errors match.

FIGURE A.3: Scatterplot of the ratio of the absolute distance between the
reconstructed values and truth and the absolute distance between seed and
truth vs. true energy. Events below the black dashed line reconstructs
closer to the truth than the seeded value and vice versa. On the right of

each plot the distribution of the ratio is shown.
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Appendix B

Energy Seed

FIGURE B.1: Purple points are the mean number of pulses for 999 events
at the corresponding energy. Red line is a 1D polynomial fit given the
linear relationship between number of pulses and energy deposited is the

detector.

The energy seeding is made by exploiting the linear relationship between the energy
deposited and the amount of pulses in a given event. Inverting a 1D polynomial fit gives
the energy used as seeding. To make the fit, 999 e− was simulated using the distributions
described above at energies of 10, 30, 50, 70 and 90 GeV. For each energy the mean amount
of pulses pr event (#pulses) was used a point and a straight line fit was done giving:

#pulses = m · energy + c→ energy = (#pulses− c)/m (B.1)

where the RHS of Equation B.1 is used as the energy seed after extracting the number of
pulses the event the needs to be reconstructed. The fitted parameters are m = 2.3899 and
c = 0.7. The fit and data points are shown in Figure B.1.
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