
Development and implementation of a

neural network based PBL turbulence

parameterization scheme

Master Thesis

Written by Kasper Tølløse

02.03.2020

Supervised by

Eigil Kaas

University of Copenhagen

Name of Institute: University of Copenhagen

Name of Department: Niels Bohr Institute

Author(s): Kasper Tølløse

Email: qrm173@alumni.ku.dk

Title and subtitle: Development and implementation of a neural network

based PBL turbulence parameterization scheme

Supervisor(s): Eigil Kaas

Handed in: 02.03.2020

Abstract

In the planetary boundary layer (PBL), turbulent dynamics on subgrid-scale are responsible for

the vertical transport of momentum, heat and moisture. Higher-order accuracy parameterization

schemes for subgrid-scale dynamics are computationally heavy and account for a substantial part

of the computation time in numerical weather prediction models. This study proposes and tests

a new type of turbulence closure model using artificial neural networks (ANN) to establish the

relation between the turbulent diffusivities and the known prognostic variables. The dataset

for training the neural networks, was generated using data from forecasts with the Weather

Research and Forecast model (WRF) with the relatively expensive Mellor-Yamanda-Nakanishi-

Niino level 2.5 PBL scheme (MYNN). After several theoretical and technical considerations and

tests, the final design of the ANN was established.

To evaluate the performance of the ANN based PBL scheme, the ANN was adapted to and

implemented into the Fortran code of WRF. The MYNN scheme was then compared to both

the ANN scheme and two other PBL scheme options in WRF, the YSU and MYJ schemes. This

comparison showed that, out of these three PBL schemes, the ANN scheme is the one that best

resembles the MYNN scheme: throughout the two 72-hour simulations selected for test cases,

the ANN scheme’s predictions of turbulent fluxes, temperature and wind near the surface have

both the lowest root mean square error and highest pattern correlation with the MYNN scheme.

Further, the part of the ANN scheme that predicts diffusivities is a factor of 10 faster than

the part of the MYNN scheme that was substituted. This thus suggests that a neural network

based PBL scheme has the potential of being a very efficient alternative to computationally

expensive second order PBL schemes such as MYNN.

The study indicates that neural networks are suitable for turbulence parameterization and

demonstrates a method, which can easily be generalized and potentially be used to develop a

new more accurate turbulence parameterization model by training on higher quality data from,

e.g., large-eddy simulation.

Acknowledgements

First, I would like to thank my supervisor Prof. Eigil Kaas for providing valuable supervision

throughout the process. Also thanks to rest of the Atmospheric Science group at the University

of Copenhagen for beneficial discussions at our weekly meetings. Additionally, I would like to

thank my fellow students with whom I shared the master students’ office, whose company made

this year a little easier, and my fellow student Frederik Faye for engaging in many enlightening

discussions and for his useful comments on my writing. A final remark of appreciation goes to

my family and friends, who have shown support throughout the entire process.

Contents

Introduction 1

1 Atmospheric turbulence 4

1.1 Governing equations for the PBL . 4

1.1.1 The fluid dynamical equations . 5

1.1.2 Including effects of water vapor and liquid water 9

1.1.3 Interpretation of Reynolds terms . 10

1.1.4 Turbulent kinetic energy . 10

1.2 Turbulence in the planetary boundary layer . 11

1.2.1 Surface layer . 12

1.2.2 Intermediate layer . 13

1.2.3 Interfacial layer . 15

1.3 Turbulence parameterization in NWP . 15

1.3.1 K-closure . 16

1.3.2 Similarity theory . 16

1.3.3 Monin-Obukhov similarity . 17

1.3.4 Second order closure models . 19

1.3.5 Mellor-Yamanda-Nakanishi-Niino model 23

2 The WRF model 26

2.1 WRF Preprocessing System . 27

2.2 Advanced Research WRF . 28

2.2.1 Physics parameterizations . 31

2.3 Model setup . 32

3 Artificial neural networks 34

3.1 The feedforward neural network . 34

3.2 Training the network . 38

3.2.1 Stochastic gradient descent . 39

4 Development and optimization of the model 42

4.1 Creating the dataset . 42

4.2 Determining model output . 45

4.3 Determining model input . 46

4.3.1 Results . 50

4.3.2 How to conclude based on the results . 51

4.4 Training and optimizing the model . 52

4.4.1 Learning rate and optimizer . 53

4.4.2 Categorizing the data . 56

4.4.3 Pre- and postprocessing . 56

4.4.4 Other hyperparameters . 61

4.4.5 Model optimization . 62

4.4.6 Developing a model with fewer input variables 68

4.4.7 Model comparison . 70

5 Implementation and test 74

5.1 Method for model comparison . 74

5.2 Implementing neural networks in WRF . 76

5.3 Comparison of the three ANN schemes . 77

5.4 Evaluation of the best ANN scheme . 83

5.5 Comparing computational efficiency . 92

6 Discussion and conclusion 95

6.1 Development of the ANN scheme . 96

6.2 Evaluation of the ANN scheme . 98

6.3 Conclusion and outlook . 99

Bibliography 100

A Namelist examples 105

B Simulations used for training data 108

C Additional variable distributions 111

D Additional examples of predictions by the neural networks 114

E Additional results 118

E.1 Extra plots comparing the three ANN schemes 118

E.2 Extra plots for evaluation of the best ANN scheme 120

E.3 Extra examples of Θ and wind speed profiles . 123

List of Figures 133

List of Tables 137

Introduction

One challenge in atmospheric modeling is dealing with turbulent micro-scale dynamics. The

characteristic spatial scales of atmospheric dynamics range from global structures to eddies

down to the order of 10−3m. The governing equations for the atmosphere are the Navier-Stokes

equation, the continuity equation, the thermodynamic equation and the equation of state [1,

Ch. 8]. Since there are no known analytical solutions to the equation system, the only option

is numerical solution. However, due to the enormous range in spatial scales, direct numerical

simulation is not possible. In addition, due to the turbulent nature of the micro-scale dynamics,

the atmosphere is essentially a chaotic system, meaning that it is only theoretically predictable

for time scales characteristic for the dynamics considered. For the micro-scale meteorology, these

time scales are typically much shorter than the time scales interesting for weather forecasting.

Therefore, pursuing an exact prediction of the micro-scale dynamics in meteorology is not only

difficult but also to some extend pointless, because the numerical solution will quickly diverge

from the truth, regardless of the resolution. Instead, the micro-scale dynamics are filtered out

by Reynolds averaging the equations. This way, only atmospheric dynamics on scales larger

than a certain spatial scale is handled by numerical solution, while the effects of dynamics on

smaller scales are parameterized.

In most of the atmosphere, the flow is essentially laminar and dynamics on scales smaller

than the resolution can be ignored without consequences. However, a laminar flow in contact

with a solid surface will have a region, in which the fluid transitions from being stationary

at the surface to moving with the laminar flow some distance away from the surface. In this

transition region, called the boundary layer, the flow is likely to become turbulent. Likewise,

most of the micro-scale dynamics in the atmosphere occurs in the planetary boundary layer,

PBL. Hence, parameterization models for subgrid-scale dynamics are traditionally called PBL

parameterizations, even though the same schemes are often used throughout the atmosphere so

that it is able to also handle the case of free air turbulence.

The Reynolds averaging introduces a set of new variables such that the equation system has

more variables than equations. There are different approaches to close the equation system.

Common for all approaches, however, is that data either from observations/experiments or from

1 of 137

INTRODUCTION

high resolution simulations is used to estimate closure constants. One example is the Mellor-

Yamanda-Nakanishi-Niino scheme, MYNN [10, 11, 12, 13], which has several closure constants,

which are estimated by fitting to large-eddy simulation data. Large-eddy simulation, or simply

LES, is a numerical method, which uses a resolution fine enough to resolve the energy-containing

eddies but typically much coarser than the length scale of the dissipative eddies [1, Ch. 6]. The

concepts of energy-containing eddies and dissipative eddies are explained in detail in Chapter 1.

Hence, it seems like a natural next step to use a more complex machine learning based regres-

sion model, where some of the (maybe inaccurate) assumptions applied in traditional turbulence

parameterizations can be avoided.

During recent years, machine learning algorithms have been tested and implemented in a wide

range of problems. Especially artificial neural networks, ANN, or simply neural networks, have

proven to be powerful in both classification and regression problems. To mention a few appli-

cations, neural networks have been successful in complex classification problems such as speech

recognition and computer vision including object and face recognition in images [32]. Also in

turbulence modeling, machine learning algorithms have been suggested as alternatives to tradi-

tional approaches. Ling et al. [36] successfully used deep neural networks to predict the stress

tensor elements for different types of turbulent pipe flows. This is a good example of usage

of neural networks for a regression problem, where no prior assumptions about the functional

relation is needed. In weather and climate modeling, machine learning has also been suggested

as an approach to parameterize subgrid-scale processes. Li et al. [37] did use neural networks

to predict the boundary layer height for stable boundary layers, but to our knowledge, machine

learning methods have not yet been used for turbulence parameterization models in weather and

climate modeling. Several other physical parameterization models have been developed, such as

models for parameterizing subgrid-scale clouds and deep convection [38, 39, 40].

This thesis proposes a neural network based PBL parameterization trained on synthetic data

from simulations performed with the Weather Research and Forecast model, WRF using the

MYNN PBL scheme. We focus on regional forecasts for Scandinavia, and therefore the training

data is based on six simulations using a small domain covering most of Scandinavia and the

British Islands. The main purpose is to show that neural networks are suitable for this type of

problem. The idea is that if a neural network can emulate the behavior of the MYNN scheme, it

would most likely be possible to train a neural network on data from high resolution simulations,

which could then potentially improve the quality of turbulence modeling in the future. Further,

the study aims to examine whether a neural network based PBL scheme can be an efficient

alternative to some of the computationally heavy PBL parameterizations such as the MYNN

scheme. To examine neural network based PBL scheme’s behavior in a numerical weather

2 of 137

INTRODUCTION

prediction model, the scheme has been implemented in the WRF model and tested against both

the MYNN scheme and two other PBL schemes available in WRF, the YSU scheme and the

MYJ scheme [15, 16].

The structure of the thesis is as follows: Chapter 1 describes the theoretical background for

atmospheric turbulence modeling. Chapter 2 describes the WRF model and the configurations

used for the different parts of the study. In Chapter 3, the theoretical background for neural

networks is described, and Chapter 4 describes the process of developing the neural network

based PBL scheme. Chapter 5 presents results of WRF simulations using the neural network

based PBL scheme and compares these with WRF simulations using existing PBL parameteri-

zations. Finally, a discussion of main key points as well as an overall conclusion is presented in

Chapter 6.

3 of 137

Chapter 1

Atmospheric turbulence

This Chapter will give a thorough description of the planetary boundary layer dynamics. The

derivations somewhat follow J. C. Wyngaard’s textbook on atmospheric turbulence [1, Ch. 8].

In addition, before starting this work, the present author made a project outside course scope1

on atmospheric turbulence. This study largely covered the theoretical background for the thesis,

and therefore, the description presented in this Chapter is somewhat modified from that pre-

liminary study [5]. This means that, in general, the text is similar to [5] with several identical

paragraphs. However, the sections 1.1.2 and 1.3.5 are new.

In Section 1.1, the Reynolds averaged equations for the PBL are derived. In Section 1.2, the

planetary boundary layer will be described, and in Section 1.3, we describe different approaches

to parameterizing the effects of turbulence in the PBL.

1.1 Governing equations for the PBL

To be able to properly describe the PBL, we first need to understand the underlying dynamics.

To obtain such understanding, Section 1.1.1 first briefly introduces the equations describing the

dynamics of the atmosphere. Next, Reynolds averaging is used to make the equations numeri-

cally solvable. In Section 1.1.3, an interpretation of the Reynolds terms is provided. In Section

1.1.4, the equation for turbulent kinetic energy, or TKE, will be derived. In addition to play an

important role in PBL parameterization, the TKE equation provides a way of understanding

the physical processes responsible for the turbulence in the PBL.

Similiar to [1], different mathematical notation will be used, depending on the purpose. In

most sections, index notation will be used because it simplifies the manipulations of vector

equations. However, when appropriate, the equations will be written in component form. In

index notation, if two vectors or matrices with a common index are multiplied together, it implies

1A 7.5 ECTS point project at the University of Copenhagen, supervised by Eigil Kaas.

4 of 137

1.1. GOVERNING EQUATIONS FOR THE PBL

a summation over that index. Thus, a dot product of two vectors ~v and ~w can be written as

~v · ~w =
∑

i viwi = viwi. Similarly, the matrix product of a two matrices A and B, C = AB can

be written as Cij = AikBkj [2, App. B].

1.1.1 The fluid dynamical equations

Following Wyngaard [1, Ch. 8], we start by deriving the equations for the dry atmospheric

boundary layer. At the end of the section, it is briefly described how the equations can be

extended to include effects of water vapor and liquid water. We will use a Lagrangian description,

where the changes of the physical variables are ”seen” from the perspective of a fluid parcel

following the flow. For this purpose, we introduce the total derivative

D

Dt
=
∂

∂t
+ ũi

∂

∂xi
,

where ũi is the wind vector describing the velocity of the fluid parcel. Each atmospheric variable

will be separated into a base state and the flow around it, where the base state is isentropic,

static, and in hydrostatic balance. The hydrostatic assumption simply states that the pressure

gradient force balances gravity

− 1

ρ0

∂p0

∂xi
+ gi = 0, (1.1)

where the nought denotes the base state variables. For any atmospheric variable, say ρ, we will

denote the full variable with a tilde and write ρ̃ = ρ0 + ρ̃′, where the prime then denotes the

variation from the base state. (x1, x2) = (x, y) are the horizontal coordinates, and x3 = z the

vertical, which implies gi = −gδ3i
2. Further, in the derivations we need the equation of state

and the definition of potential temperature

p̃ = ρ̃RdT̃ , (1.2)

θ̃ = T̃

(
p̃(0)

p̃(z)

)Rd/cp
, (1.3)

where Rd is the gas constant for dry air, and cp is the heat capacity for air at constant pressure.

We first consider mass conservation expressed by the continuity equation

Dρ̃

Dt
= −ρ̃∂ũi

∂xi
,

As discussed by Wyngaard, in most applications to the PBL, we can use the Boussinesq approx-

2Note that gi is the sum of the gravitational force and the fictive centrifugal force experienced by an air parcel
seen from the perspective of the rotating coordinate system.

5 of 137

1.1. GOVERNING EQUATIONS FOR THE PBL

imation, where the continuity equation simplifies to requiring the wind field to be divergence

free

∂ũi
∂xi

= 0, (1.4)

Next, we consider momentum conservation expressed by the Navier-Stokes equation

Dũi
Dt

= −1

ρ̃

∂p̃

∂xi
− gδ3i − 2εijkΩj ũk + ν∇2ũi,

where the terms on the right-hand side are, in order, pressure gradient force, gravity, Coriolis

force, and viscous forces. The tensor εijk, called the Levi-Civita symbol, is used to express

the cross product in index notation and has a value of either +1, −1 or 0 depending on the

permutation of i, j and k [2, App. B]. Assuming that density variations are small compared to

the base state value, ρ̃′/ρ0 � 1, we can write the pressure gradient force as

−1

ρ̃

∂p̃

∂xi
= −

(
1

1 + ρ̃′/ρ0

)
1

ρ0

∂p̃

∂xi
≈ gδ3i

(
1− ρ̃′

ρ0

)
− 1

ρ0

∂p̃′

∂xi
, (1.5)

where we Taylor expanded the factor (1+ρ̃′/ρ0)−1 to first order, used Equation (1.1) and ignored

second order terms. Expanding ρ̃′ to first order around the base state using (1.2), we get

ρ̃′ ≈ ∂ρ̃

∂T̃

∣∣∣∣
0

T̃ ′ +
∂ρ̃

∂p̃

∣∣∣∣
0

p̃′ = −ρ0

T0
T̃ ′ +

1

RdT0
p̃′ ≈ −ρ0

T̃ ′

T0
= −ρ0

θ̃′

θ0
, (1.6)

where, as discussed by Wyngaard [1, Ch. 8], the second term involving p̃′ can be neglected3. The

last rewriting simply uses (1.3). Finally, we can rewrite Navier-Stokes equation using Equation

(1.5) and (1.6)4

Dũ′i
Dt

= − 1

ρ0

∂p̃′

∂xi
+ gδ3i

θ̃′

θ0
− 2εijkΩj ũ

′
k + ν∇2ũ′i, (1.7)

where the second term on the right-hand side is called the buoyancy term. The effect of buoyancy

is that a fluid parcel with a temperature deviating from its surroundings, θ̃′ 6= 0, will feel an

upwards or downwards force.

To obtain an equation for potential temperature, we look at the first law of thermodynamics,

3Wyngaard shows that pressure anomalies are approximately of the order Mach2, so these should be negligible
for velocities u� c (speed of sound).

4Notice that primes have been added to the velocities here. Since the base state velocity is zero, this changes
nothing and is merely done for consistency.

6 of 137

1.1. GOVERNING EQUATIONS FOR THE PBL

expressed in terms of specific entropy 5

T̃
Ds̃

Dt
= cp

DT̃

Dt
− 1

ρ̃

Dp̃

Dt
⇔ Ds̃

Dt
=
cp

θ̃

Dθ̃

Dt
,

where the second form is obtained by using Equation (1.2) and (1.3). The change in specific

entropy can also be written as

Ds̃

Dt
=
Q̃

T̃
,

where Q̃ is the rate of total heat transfer to the air parcel. Neglecting viscous dissipation, this

can be written as minus the divergence of the heat fluxes due to conduction and radiation

Q̃ = −1

ρ̃

∂

∂xi

(
−k ∂T̃

∂xi
+ R̃i

)
,

where k is the thermal conductivity and R̃i is the radiation. Together with the first law of

thermodynamics, this finally leads to an equation for θ̃

Dθ̃

Dt
=
θ̃

T̃
α∇2T̃ − θ̃

ρ̃cpT̃

∂R̃i
∂xi
≈ α∇2θ̃ − θ̃

ρ̃cpT̃

∂R̃i
∂xi

,

where α = k/(ρ̃cp) is the thermal diffusivity. To get the second equality, we assume that

variations in θ̃/T̃ are negligible on the spatial scales, where thermal conductivity are important.

Due to this equation’s linearity in the variable θ̃, we can similarly write the governing equation

for the deviation from the base state as

Dθ̃′

Dt
= α∇2θ̃′ − θ̃′

ρ̃cpT̃

∂R̃i
∂xi

, (1.8)

The set of equations (1.2), (1.3), (1.4), (1.7) and (1.8) describes the atmosphere under the

Boussinesq approximation and are in principal numerically solvable. However, to numerically

solve these equations, we need an extremely fine grid to resolve eddies on all scales. In Section

1.3.2, we find that the smallest eddies are of the order of Kolmogorov micro-scale, which for

the atmosphere is typically η ∼ 10−3m [1, Ch. 1]. This makes direct numerical simulation

impossible in practice. Therefore, we average the equations to get rid of all the small-scale

turbulent motion. We rewrite all relevant variables as the sum of the slowly varying mean flow

5 Starting from dI = Q+W , where I is the internal energy, Q is the diabatic heating, and W = −pdV is the
work done on the fluid parcel by its surroundings. We then use that dS = Q/T and the definition of enthalpy
H = I + pV ⇒ dI = dH − d(pV) to write TdS = dI + pdV ⇒ TdS = dH − V dp. Dividing through by the mass
of the fluid parcel and using that the specific enthalpy is h = cpT , we get Tds = cpdT − dp/ρ.

7 of 137

1.1. GOVERNING EQUATIONS FOR THE PBL

and the turbulent fluctuations

p̃′ = P + p, ũi
′ = Ui + ui, θ̃′ = Θ + θ,

θ̃′

ρ̃cpT̃

∂R̃i
∂xi

= R+ r.

When averaging, we assume that the average of a mean flow variable is the variable itself, and

the average of a fluctuating variable is zero. In addition, the average of the product of a mean

variable and a fluctuating variable is also zero. These assumptions lead to following averaging

rules for the mean of a variable and the mean of a product of two variables, say A+a and B+ b

A+ a = A,

(A+ a)(B + b) = AB + ab. (1.9)

Using these averaging rules, we obtain the average of equations (1.4), (1.7) and (1.8)

∂Ui
∂xi

= 0, (1.10)

DUUi
Dt

= − ∂
∂xj

ujui −
1

ρ0

∂P

∂xi
+ gδ3i

Θ

θ0
− 2εijkΩjUk + ν∇2Ui, (1.11)

DUΘ

Dt
= − ∂

∂xj
ujθ −R+ α∇2Θ, (1.12)

where we defined total derivative of a fluid parcel following the mean flow

DU

Dt
=
∂

∂t
+ Ui

∂

∂xi
.

We will use this from now on instead of the real total derivative, since only the mean wind is

resolved in the model.

For completion, and for later use, we find the equations for the fluctuating parts simply by

subtracting Equation (1.10)-(1.12) from Equation (1.4), (1.7) and (1.8). We obtain

∂ui
∂xi

= 0, (1.13)

DUui
Dt

= − ∂
∂xj

(Ujui + ujui − ujui)−
1

ρ0

∂p

∂xi
+ gδ3i

θ

θ0
− 2εijkΩjuk + ν∇2ui, (1.14)

DU θ

Dt
= − ∂

∂xj
(uiΘ + Uiθ − ujθ) + α∇2θ, (1.15)

where, as discussed by Wyngaard [1, Ch. 8], the radiation fluctuations r can be neglected and

thus do not occur in (1.15).

8 of 137

1.1. GOVERNING EQUATIONS FOR THE PBL

1.1.2 Including effects of water vapor and liquid water

When the air contains water vapor, it changes the gas constant R in the equation of state (1.2).

The correct gas constant for moist air can be expressed as a combination of the gas constants

for dry air, Rd and for water vapor Rv

R =
MdRd +MvRv
Md +Mv

= Rd

(
1− q̃v +

Rv
Rd

q̃v

)
,

where Md and Mv are the masses of the dry air and the water vapor, respectively. Further, we

have introduced the specific humidity q̃v = Mv
Md+Mv

. However, instead of changing gas constant,

one can introduce a fictitious temperature, called the virtual temperature Tv, and redefine the

equation of state

p̃ = ρ̃RdT̃v, (1.16)

T̃v =

(
1 +

(
Rv
Rd
− 1

)
q̃v

)
T̃ ≈ (1 + 0.61q̃v) T̃ . (1.17)

The virtual temperature can be interpreted as the temperature a dry air parcel would need to

have the same density at the same pressure as the moist air parcel. By similarly defining the

virtual potential temperature

θ̃v = (1 + 0.61q̃v) θ̃. (1.18)

By repeating the derivations in this Section, it can be shown that the effects of water vapor

consist of substituting θ̃ with θ̃v in the buoyancy term in Equation (1.11). In addition, a new

prognostic equation for tracing qv is needed.

The effects of liquid water can be included in a similar way, however, one needs to take into

account the diabatic heating and as consequence of the condensation and evaporation. Also, the

prognostic equations for water vapor and liquid water will have source/sink terms as consequence

of condensation and evaporation. One approach, as suggested by Mellor and Yamanda [9], is

to introduce variables, which are conserved even when phase changes occur. Thus, Mellor and

Yamanda uses the total water content q̃w = q̃v+ q̃l, where the q̃v and q̃l are the specific humidity

and specific liquid-water content, respectively. Similarly, instead of θ̃, they use the liquid water

potential temperature defined as

θ̃l = θ̃ − θ̃

T̃

Lv
cp
Q̃l, (1.19)

where Lv is the latent heat of vaporization. The liquid water potential temperature is conserved

under condensation and evaporation and can be interpreted as the potential temperature an air

9 of 137

1.1. GOVERNING EQUATIONS FOR THE PBL

parcel would have, if all liquid water in the parcel evaporated. Thus, in addition to the equations

for mass and momentum conservation, Mellor and Yamanda introduces the following two mean

field equations

DUΘl

Dt
= − ∂

∂xj
ujθl −

Θ

T

(
1

ρcp

∂F

∂z
+
Lv
cp

∂G

∂z

)
, (1.20)

DUQw
Dt

= − ∂
∂xj

ujqw +
∂G

∂z
, (1.21)

where F is the net radiative flux, and G is the gravitational settling flux (positive downward),

i.e. the flux of the liquid water due to settling water droplets. Note that the molecular diffusion

terms have been neglected, which can be justified for all the mean field equations, since the

effects are generally very small compared to the remaining terms [1, Ch. 8].

1.1.3 Interpretation of Reynolds terms

The averaging procedure used above is called Reynolds averaging, and as we see in Equation

(1.11) and (1.12), it introduces new so-called Reynolds terms. Mathematically, the Reynolds

terms are simply the variances and covariances of all the turbulent fluctuating variables. To

be able to interpret these physically, we will start by considering the kinematic flux6 of some

quantity λ that may or may not be a vector quantity. The kinematic flux of this quantity

is simply, the product with the velocity vector, uiλ. Taking, for example, λ as the potential

temperature λ = θ, we see that the kinematic flux is uiθ. Similarly, for λ = uj , we get the

kinematic flux of momentum per unit mass, uiuj .

From the above, we can see that terms of the form ∂
∂xi
uiuj can be interpreted as the diver-

gence of the average turbulent flux of momentum uj . Similarly, ∂
∂xi
uiθ is the divergence of the

average turbulent flux of potential temperature.

The turbulent fluctuations are expected to be random, however, the variances and covariances

are not random. This means that if we can determine the statistics of the average turbulent

fluxes, we can estimate the effects of the turbulence without directly resolving it. The idea is

that the turbulent statistics will depend on the mean field variables and can be parameterized

based on these. Different approaches for this is described in Section 1.3.

1.1.4 Turbulent kinetic energy

The process of obtaining the governing equation for TKE includes several steps and is a bit

cumbersome, and therefore some details are left out. The idea behind the derivation is, however,

not conceptually complicated and will be outlined below.

6The dynamic flux divided by ρ.

10 of 137

1.2. TURBULENCE IN THE PLANETARY BOUNDARY LAYER

First, we specify that by TKE we denote the average turbulent kinetic energy 1/2uiui. To

obtain a prognostic equation, we start by writing an expression for the unaveraged quantity,

and then we can simply use the averaging rules of Equation (1.9). We use that

DU

Dt

(
1

2
uiui

)
= ui

DU

Dt
ui,

Inserting the expression for
D
U
Dt ui from Equation (1.14) in the equation above, and using the zero-

divergence requirement (1.13), then averaging and rewriting, we obtain the governing equation

for TKE

DU

Dt
TKE = −uiuk

∂Ui
∂xk

+
1

θ0
gδ3iθui −

∂uiuiuk
∂xk

− 1

ρ0

∂pui
∂xi

,−ε,

where the viscous terms are represented by ε, which is the viscous dissipation rate. Note that

the Foriolis term, before averaging, is −ui2εikmΩkum, or in vector notation −2u ·Ω× u. Thus,

the term vanishes, since the vector Ω×u is perpendicular to u. It is common to assume for the

PBL that the fields are horizontally homogeneous and mean vertical velocity is zero. Hence, the

TKE equation becomes

DU

Dt
TKE = −uw∂U

∂z
− vw∂V

∂z
+

g

θ0
wθ − ∂uiuiw

∂z
− 1

ρ0

∂pw

∂z
− ε, (1.22)

The first and second terms are shear production related to the vertical gradients of the wind

components. The third term is buoyant production of TKE. The fourth term is the rate of

change in TKE due to turbulent transport, i.e. transport of TKE by the turbulent fluctuating

components of the wind. The fifth term is the rate of change in TKE due to pressure transport,

and the sixth term is the viscous dissipation rate.

1.2 Turbulence in the planetary boundary layer

In fluid dynamics, a non-dimentionalized version of the Navier-Stokes equation is often used to

characterize the flow of a fluid. In this non-dimentionalized version, we can characterize the

flow solely by its Reynolds number, which combines information about the spatial and velocity

scales with the viscosity into one single number. The Reynolds number is defined as

Re =
UL

ν
,

where U and L are the characteristic velocity and length scales of the flow, and ν is the kinematic

viscosity. Mathematically, the Reynolds number is approximately the ratio of the inertia forces

and viscous forces of the flow [2, Ch. 15]. While the inertia forces try to keep the flow moving,

11 of 137

1.2. TURBULENCE IN THE PLANETARY BOUNDARY LAYER

the viscous forces are internal friction forces, which try to slow down the flow. Thus, for low

Reynolds numbers, viscous forces are strong enough to make the flow sluggish and laminar,

whereas for high Reynolds numbers, typically larger than ∼ 2000, the inertia forces will be

strong enough to keep the flow lively [1, Ch. 1]. The viscosity will in this case result in shear

forces that will cause the flow to become turbulent in certain regions. When a fluid with a low

viscosity, such as atmospheric air moves in contact with a stationary, solid surface, there will

always be a region, the boundary layer, where turbulence can occur.

One important characteristic of turbulence is that it is chaotic. This means that even in-

finitely small differences in initial conditions of two physical systems will, after some time, grow

exponentially large and make the solutions diverge. This makes chaotic systems, and hence

turbulent flows, impossible to predict for longer than the time scale, τ characteristic for the tur-

bulence. Turbulence can be thought of as the fluid’s tendency to create vortices, and turbulent

flows are therefore dominated by rotation on all spatial scales. The larger eddies are also called

the energy-containing eddies, since they contain most of the turbulent kinetic energy. However,

the smaller eddies are important, because they drain kinetic energy from the larger eddies. This

drainage of energy by smaller eddies continues at all spatial scales until turbulence cannot exist

any longer, and the kinetic energy dissipates to heat due to viscous friction. This key property

of turbulence is called energy cascade. It implies that, from eddies of any spatial scale, energy

gets transferred to smaller scales at a rate that must be equal to the viscous dissipation rate ε.

If this is not at least statistically true, kinetic energy would accumulate at certain spatial scales

[1, Ch. 3]. In the PBL, the size of the largest eddies is typically of the order l ∼ 103m with

corresponding wind speeds u ∼ 1ms−1. This gives a characteristic time scale, also called the

eddy turnover time, of approximately τ ∼ l/u ∼ 103s ∼ 20 minutes.

To gain better understanding of turbulence in the PBL, it is useful to further divide it into

sublayers, which can then be analyzed individually. In the following sections, these layers will

be described one by one.

1.2.1 Surface layer

Immediately above the surface is a viscous sublayer, where no turbulence can exist, because all

velocities must vanish at the boundary. This sublayer is very thin, typically of the order of

Kolmogorov microscale η ∼ 10−3m, since this is the length scale of the smallest possible eddies,

see Section 1.3.2. There will in general be large gradients in this viscous sublayer, which causes

molecular diffusion of momentum, temperature and moisture to be important here. However,

above the viscous sublayer, where turbulent fluctuations are nonzero, eddy diffusion starts to

dominate, and molecular diffusion can generally be ignored, see Section 1.3.1.

Near the surface, the turbulent shear stress points in the direction of the mean surface wind.

12 of 137

1.2. TURBULENCE IN THE PLANETARY BOUNDARY LAYER

It is conventional in PBL applications to use a coordinate system, where the x-axis is aligned

with the surface wind, such that V = 0, and the shear stress is τ0 = −ρ0wu.

Further, we define the friction velocity, u∗ as a measure of the strength of the kinematic

surface stress (equivalent to the turbulent fluxes from 1.1.3) τ0/ρ0

u∗ =

√
τ0

ρ0
. (1.23)

It can be shown that the turbulent fluxes are, to a good approximation, independent of height

in the lowest part of the PBL, [1, Ch. 10]. This region, where the turbulent fluxes are constant,

is called the surface layer, or sometimes the constant-flux layer. The surface layer is typically

the lowest ∼ 10% of the PBL, [1, Ch. 11].

1.2.2 Intermediate layer

Above the surface layer is an intermediate layer, in which the turbulent fluxes are no longer

independent of height. The structure of this intermediate layer strongly depends on the static

stability of the PBL, [1, Ch. 11-12]. The stability of the PBL is determined, most importantly, by

the surface flux of virtual potential temperature, but it also depends on entrainment of warmer

air from the top of the PBL. We denote the surface flux of virtual potential temperature
(
wθv

)
0
.

The sign of
(
wθv

)
0

determines whether the atmosphere is heated or cooled by the surface, and

therefore determines the slope of the Θ-profile.

From the TKE equation (1.22), we see that turbulent kinetic energy is balanced by produc-

tion due to mean velocity shear, production/destruction due to buoyancy, transport associated

with turbulent fluctuations, transport associated with the pressure gradient, and viscous dissi-

pation. The sign of buoyancy term depends on the sign of θv, which in general depends on the

temperature profile. Assume a stable atmosphere ∂Θv
∂z > 0, then if a fluid parcel is displaced

upwards, it will be colder than its surroundings, θv < 0, and the parcel will be subject to a

downward force. Likewise, if it is displaced downwards, θv > 0, it will be subject to an upwards

force. We say the PBL is stable, because it dampens vertical motion. As a natural consequence

of this damping, in the stable boundary layer, SBL, the buoyancy term in Equation (1.22) acts

as a TKE drain. In an unstable atmosphere, where ∂Θv
∂z < 0, the opposite arguments are appli-

cable. Hence, a fluid parcel that is vertically displaced, will be subject to a force in the same

direction as the initial displacement. It follows that in an unstable/convective boundary layer,

CBL, the buoyancy term in Equation (1.22) acts as a TKE production term.

13 of 137

1.2. TURBULENCE IN THE PLANETARY BOUNDARY LAYER

Figure 1.1: Shows observed surface temperature flux from the Kansas experiment. The values
are 1-hour averages obtained from data collected over 3 weeks. Figure source: [1].

Figure 1.2: Shows typical vertical profiles for Θ and wθ. h0 is the height of the surface layer,
h1 the top of the mixed layer, and h2 the top of the interfacial layer. zi is the average physical
height of the mixed layer, and ∆h is the thickness of the interfacial layer when averaging.
Figure source: [1].

Due to the diurnal cycle in incoming short wave radiation from the sun, there is a corresponding

diurnal cycle in the surface temperature flux. During the day, the atmosphere is typically heated

from the surface, whereas it is cooled during night, see Figure 1.1. This means that during the

day, the PBL is typically unstable and dominated by vertical movements, where buoyancy is

the main TKE production term. Due to the vertical motion, there will be efficient mixing of

the air, which leads to a nearly neutral temperature profile in this intermediate layer, see Figure

1.2. Therefore, it is generally referred to as the mixed layer in the CBL case. From the figure,

we also see a typical profile for θw, where we see that due to the warmer air above the PBL,

14 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

the sign of the flux changes in the interfacial layer described in the following section. The

measurements shown in Figure 1.1 are from the 1968 Kansas experiment, where the surface

temperature flux has been measured over a dry prairie. But as described in the beginning of

this section, when moisture is present, the surface flux of virtual potential temperature should

be considered instead [1, Ch. 9].

During night, when vertical motion is damped, there is less vertical mixing, and the slope of

the temperature profile is positive throughout SBL. Normally, no individual name is provided

for the intermediate layer in the stable case, however, it is still important to distinguish it from

the surface layer, since the turbulent fluxes cannot necessarily be assumed constant. In general,

the TKE balance is much more fragile in the SBL, since the shear production term may not be

sufficient to sustain turbulence in very stable conditions [1, Ch. 11].

1.2.3 Interfacial layer

At last, there is a thin interfacial layer, which forms the boundary between the turbulent

boundary layer and the free laminar atmosphere above. The instantaneous thickness of this

interfacial layer is down to the scale of Kolmogorov microscale, η, but when averaged over time,

space or ensembles, the thickness can be a substantial fraction of the height of the PBL [1,

Ch. 9]. This is also evident from the sketch of a CBL temperature profile in Figure 1.2.

1.3 Turbulence parameterization in NWP

In Section 1.1, we saw that averaging the variables introduced Reynolds terms, which are es-

sentially average turbulent fluxes of the mean field variables. While this averaging makes it

possible to solve the equations on a much courser grid7, it introduces several new variables. To

close the equation system, we therefore need to introduce a new set of equations, so that the

number of equations matches the number of variables. A simple way of doing this, described

and motivated in Section 1.3.1, is by using the concept of eddy diffusion and determine an

eddy diffusion coefficient, K for each turbulent flux at each point in space. Sections 1.3.2 and

1.3.3 describe the concept of similarity theory and how this was used by Monin and Obukhov

to make a parameterization of the surface fluxes. Both of these methods are examples of so-

called first order models. Another type of models, described in Section 1.3.4, use the prognostic

equations for all or some of the turbulent fluxes. This approach is called second order closure,

because second order terms are determined from the prognostic equations, while third order

terms are parameterized. As an example of a second order closure model, the Mellor-Yamanda

model [7, 8, 9] is described in Section 1.3.4. Finally, Section 1.3.5 describes the MYNN scheme,

7The characteristic spatial scales of the mean fields are much larger than of the turbulent fluctuations.

15 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

which is an improved version of the Mllor-Yamanda model, developed by Nakanishi and Niino

[10, 11, 12, 13].

1.3.1 K-closure

K-closure is based on the concept of eddy diffusion, which is the idea that turbulent fluxes

works like a macroscopic version of molecular diffusion. To motivate this idea, we will start

by presenting the mixing-length hypothesis presented by Ludwig Prandtl [1, Ch. 4.5]. Prandtl

hypothesized that the turbulent fluctuations could be linked to the gradient of the mean field

variables and a mixing length, d. This mixing length is a measure of the characteristic distance a

fluid parcel is displaced by the turbulent velocity field, before it interacts with its surroundings.

This assumption seems quite reasonable, since the fluid parcel will carry its properties of heat,

momentum and moisture until it mixes with the ”new” surrounding air. Considering the vertical

displacement ∆z of a fluid parcel, the deviation of potential temperature of this fluid parcel from

the surrounding air is

θ = Θ(z)−Θ(z + ∆z) ≈ −∆z
∂Θ

∂z
.

Since vertical variations in Θ are generally much larger than horizontal variations, we ignore

the horizontal components of the gradient, and we let d denote the length scale related to the

turbulent fluid displacements in the vertical. It then follows that

θ ∼ −d∂Θ

∂z
⇒ θw ∼ −dw∂Θ

∂z
⇒ θw ∼ −K∂Θ

∂z
,

where K = dw, the eddy diffusivity, is similar to the molecular diffusion coefficient in the

diffusion equation. K generally has a vertical profile depending on the local properties, since

d potentially depends on these. We can write similar equations for fluxes of momentum and

moisture, each with potentially different eddy diffusivities. In principal, if we can empirically

determine the functions for these eddy diffusivities, we can then solve the averaged equations

(1.10)-(1.12).

1.3.2 Similarity theory

Similarity theory is a method to determine a universal relationship between a number of non-

dimensionalized variables, which are characteristic for a physical system. These dimensionless

variables can be determined using the Buckingham Pi theorem, which states:

• If a physical quantity qm, which is functionally related to another m − 1 independent

physical quantities qi, for i = 1, 2, ...,m − 1, and the system has n physical dimensions,

16 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

then we can form k = m− n independent dimensionless variables πi for i = 1, 2, ..., k.

• These k variables can be chosen arbitrarily and are functionally related. In other words,

any physically meaningful function f(q1, q2, ..., qm) = 0 has an equivalent dimensionless

function F (π1, π2, ..., πk) = 0, where k = m−n, and n is the dimensionality of the system.

Note that the theorem gives no information about the functional form of F (πi) so, generally,

it must be determined empirically. Since the dimensionless variables can be chosen arbitrarily,

there will be more than one way to do this. However, there will most likely be one choice that

leads to a more obvious physical interpretation.

As we shall see in the following examples, this dimension analysis simplifies the problem by

lowering the number of variables in the system. First, we will look at two simple examples that

demonstrate how the theorem can be used, and in Section 1.3.3, we will look at the applications

of this theorem by Monin and Obukhov.

Kolmogorov hypothesized that the length and velocity scales of the dissipative eddies in a

turbulent fluid, denoted η and υ, depend only on the energy dissipation rate ε and the kinematic

viscosity ν. Our physical equations are thus

η = η(ε, ν) and υ = υ(ε, ν).

In both cases, we have m = 3. The units of the variables are [ε] = m2s−3, [ν] = m2s−1,

[η] = m and [υ] = ms−1, which implies that system is described by n = 2 dimensions, length

and time. Hence, for both η and υ we have k = m − n = 1 independent variable. Since

there are no other variables it can depend on, it must be a constant. For η, we’ll choose the

dimensionless variable to be the variable itself non-dimensionalized with ε and ν. The only

way to combine these variables to give the dimension of length is η∗ =
(
ν3/ε

)1/4
, and therefore

we have η/η∗ = constant. Following a similar approach for υ, we get υ/υ∗ = constant, with

υ∗ = (νε)1/4. Taking these constants to be 1, we get Kolmogorov’s famous scaling laws

η =

(
ν3

ε

)1/4

and υ = (νε)1/4 .

Although, this is a simple case of dimensional analysis, it allows us to say something very

general about the dissipative scale of turbulent flows, based solely on a physical intuition of

which parameters should be of importance.

1.3.3 Monin-Obukhov similarity

Alexander Monin and Andrei S. Obukhov assumed that the surface layer structures for momen-

tum and temperature depend only on the variables u, l,
(
wθv

)
0

and g/θ0. The velocity scale of

17 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

the turbulence is taken to be the friction velocity, u = u∗. The length scale of the turbulence, is

taken to be the height above the surface, l = z.
(
wθv

)
0

is again the surface flux of virtual poten-

tial temperature, and g/θ0 is the buoyancy parameter. The surface layer structure denotes the

mean vertical gradients as well as the turbulent fluxes. According to the assumptions by Monin

and Obukhov, we can write ∂U
∂z = ∂U

∂z (u∗, z,
(
wθv

)
0
, g/θ0) and ∂Θ

∂z = ∂Θ
∂z (u∗, z,

(
wθv

)
0
, g/θ0). In

each case we have m = 5 and n = 3, namely length, time and temperature. Using the Buck-

ingham Pi theorem, we can form k = m− n = 2 independent dimensionless quantities. In each

case, we will take the dependent variable and make it dimensionless with u∗, z and
(
wθv

)
0
. The

second dimensionless quantity is taken to be z/LM , where LM is the Monin-Obukhov length

defined as

LM = − u3
∗θ0

κg
(
wθv

)
0

, (1.24)

with the von Kármán constant, determined experimentally, κ ≈ 0.4. As discussed in Section

1.2.2, the sign of
(
wθv

)
0

is important for determining the stability of the PBL. If
(
wθv

)
0
> 0, the

air at the surface is heated, and the PBL is unstable, whereas if
(
wθv

)
0
< 0, the PBL is stable

because the air is cooled at the surface. Thus, it is apparent that the sign of the Monin-Obukhov

length, LM depends on the stability as well. If L > 0, the PBL is stable, and if LM < 0, the

PBL is unstable.

We know that the dimensionless quantities are functionally related, so we can write

κz

u∗

∂U

∂z
= φm

(
z

LM

)
and − κzu∗(

wθv
)

0

∂Θ

∂z
= φh

(
z

LM

)
, (1.25)

where φm and φh are unknown functions. The negative sign on the left-hand side of the definition

of φh is chosen to make the function positive. Using data from the Kansas experiment, Hogstrom

proposed following functional forms of φm and φh

stable : φm = 1.0 + 4.8
z

LM
, φh = 1.0 + 7.8

z

LM
,

unstable : φm =

(
1.0− 19.3

z

LM

)−1/4

, φh =

(
1.0− 12.0

z

LM

)−1/2

. (1.26)

In Figure 1.3 the functions, Equation (1.26) are plotted together with the experimental data.

Since the fluxes are approximately constant in the surface layer, we can integrate (1.25) from

the surface to the height z by inserting (1.26). In the stable case, we get

U(z) =
u∗
κ

[
ln
z

z0
+ 4.8

z

LM

]
, Θ(z) = Θ(zr) +

(
wθv

)
0

κu∗

[
ln
z

zr
+ 7.8

z

LM

]
, (1.27)

18 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

where z0 is the average height where the velocity vanishes, and is thus a measure of the roughness

of the surface. Similarly, zr is the lower limit of the integral of φh. We have from the definition of

the friction velocity (1.23) that u∗ =
√
−wu, and therefore the surface fluxes can be determined

directly from Equation (1.27). By evaluating (1.27) at some reference height zref , the surface

fluxes can be predicted from the variables z0, zr, U(zref), Θ(zr) and Θ(zref).

Figure 1.3: Shows plot of the functions φm (left) and φh (right), from Equation (1.26) together
with data from the Kansas experiment. Figure source: [1].

1.3.4 Second order closure models

As discussed briefly in the introductory text of this section, models that use prognostic equations

for all or some of the turbulent fluxes are called second order closure models. This term, however,

does not imply, for which of the fluxes we include second order terms. To distinguish between

different second order models, Mellor and Yamanda developed a new system for classifying

turbulence parameterization models [8]. They denote a model that uses prognostic equations

for all the turbulent fluxes in Equation (1.10)-(1.12) a Level 4 model. The Level 3, Level 2 and

Level 1 models then uses different degrees of approximations. Below, the turbulent flux budgets

are shown, and at the end of this section, we briefly describe the Level 4 model and discuss the

main implications of the different approximations leading to the lower level models.

Turbulent flux budgets

The process of getting the turbulent flux budgets is similar to determining the TKE equation

in Section 1.1.4. Again, the derivations are quite cumbersome, so details are left out, but the

19 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

main steps are explained. To determine the budget of uiuj , θuj and θ2, we use the relations

DU

Dt
uiuj = uj

DUui
Dt

+ ui
DUuj
Dt

,
DU

Dt
θui = θ

DUui
Dt

+ ui
DU θ

Dt
,

DU

Dt
θ2 = 2θ

DU θ

Dt
.

We insert the expressions for
D
U
Dt ui and

D
U
Dt θ from Equation (1.14) and (1.15) in the equations

above and use the zero-divergence requirement (1.13). By averaging, we obtain, after quite a

bit of rewriting

DU

Dt
uiuj =− ujuk

∂Ui
∂xk
− uiuk

∂Uj
∂xk
− 2(εikmΩkumuj + εjkmΩkumui)

+
1

θ0
(gδ3iθuj + gjθui) + ν∇2uiuj

− ∂uiujuk
∂xk

+
1

ρ0
p

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

ρ0

(
∂pui
∂xj

+
∂puj
∂xi

)
− 2ν

∂ui
∂xk

∂uj
∂xk

, (1.28)

DU

Dt
θui =− θuj

∂Ui
∂xj
− uiuj

∂Θ

∂xj
− 2εijkΩjθuk +

1

θ0
gδ3iθ2

− ∂θuiuj
∂xj

+
1

ρ0
p
∂θ

∂xi
− 1

ρ0

∂pθ

∂xi
+

∂

∂xj

(
νθ
∂ui
∂xj

+ αui
∂θ

∂xj

)
− (α+ ν)

∂θ

∂xj

∂ui
∂xj

, (1.29)

DU

Dt
θ2 =− 2uiθ

∂Θ

∂xi
+ α∇2θ2 − ∂θ2ui

∂xi
− 2α

∂θ

∂xi

∂θ

∂xi
. (1.30)

All viscosity terms and the pressure gradient terms have been separated into two parts. The

reason for this is that different parameterization assumptions will apply to them, see the de-

scription of the Mellor-Yamanda model later in this section. The interpretation of the terms on

the right-hand side in Equation (1.28) is as follows: first and second terms are mean gradient

production, third term is Coriolis production, fourth term is buoyant production, fifth and ninth

term are viscous dissipation, sixth term is turbulent transport, and seventh and eighth terms

are pressure gradient interaction. The interpretation of the terms in (1.29) and (1.30) is similar.

Note that the terms in Equation (1.28) and (1.29) are arranged so that the last line contains all

the terms that need to be parameterized, and the same goes for the last two terms in Equation

(1.30).

Mellor-Yamanda model

The model description here is based on two articles by George L. Mellor [7] and by Mellor and

Yamanda [8]. The model considers only a dry atmosphere, but was later generalized to take

into account water vapor and liquid water [9]. Later, Nakanishi and Niino have made further

developments on this model, and created the MYNN model, which will be described briefly in

the following section.

20 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

The equations for the mean flow are essentially and the Reynolds averaged equations (1.10)-

(1.12), except that Mellor and Yamanda does not consider radiation, so R = 0. In the Level

4 model, the equations (1.28)-(1.30) are used as prognostic equations for the turbulent fluxes.

The tensor uiuj is symmetric and thus has six independent components. Further, uiθ has three

components, whereas θ2 is a scalar. Thus, this model consists of a total of 10 coupled differential

equations in addition to the basic equations. To solve the equation system, however, one needs

to parameterize the last 4 terms in Equation (1.28), the last 5 terms in Equation (1.29) and the

last 2 terms in Equation (1.30). Below, we will go through the assumptions made by Mellor and

Yamanda one by one.

It is assumed that pressure diffusional terms can be ignored, though, Mellor argues that this

is questionable [7]

pui = pθ = 0.

Mellor argues that Kolmogorov’s small-scale isotropy hypothesis can be used to make following

assumption about the viscous terms

2ν
∂ui
∂xk

∂uj
∂xk

=
2

3

q3

Λ1
δij , (α+ ν)

∂θ

∂xj

∂ui
∂xj

= 0, 2α
∂θ

∂xi

∂θ

∂xi
= 2

qθ2

Λ2
.

The idea is that the anisotropy associated with turbulence will vanish on smaller scales. Thus,

each term is made proportional to an isotropic tensor, and the proportionality constant is formed

by the quantities q = uiui, θ2, and the length scales Λ1 and Λ2. Mellor argues that since a first

order tensor cannot be isotropic, the right-hand side of the second equation above vanishes.

Further assumption is made without noticeable mention8

∂

∂xj

(
νθ
∂ui
∂xj

+ αui
∂θ

∂xj

)
= 0.

8In [7] Mellor carries the terms along until the final set of equations, but in [8] the terms have been neglected
from the beginning, without reference to any assumption.

21 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

The third order terms are parameterized as follows9

uiujuk = −qλ1

(
∂uiuj
∂xk

+
∂uiuk
∂xj

+
∂ujuk
∂xi

)
,

θuiuj = −qλ2

(
∂θuj
∂xi

+
∂θui
∂xj

)
,

θ2ui = −qλ3
∂θ2

∂xi
.

Mellor assumed that these terms are proportional to the gradients of the second order terms,

much in analogy to the concept of eddy diffusion, where the second order terms are proportional

to gradients of first order terms. The proportionality constant is in each case the product of q

and a length scale λ1, λ2 and λ3, respectively.

The remaining two terms are parameterized as follows

1

ρ0
p

(
∂ui
∂xj

+
∂uj
∂xi

)
= − 1

3l1

(
uiuj −

δij
3
q2

)
+ Cq2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
,

1

ρ0
p
∂θ

∂xi

1

ρ0
= − q

3l2
θui,

where l1 and l2 are length scales, and C is a dimensionless constant. Inserting these parameteri-

zations in Equation (1.28)-(1.30), the equation system is closed. We then need to determine the

constants l1, l2, Λ1, Λ2, λ1, λ2, λ3 and C. Mellor assumed that all length scales are proportional

to one single master length scale, L. A discussion of the interpretation of this length scale and

of several different proposals for functional forms of L is presented by Mellor and Yamanda [8],

[9]. Without going further into detail, the form they use is presented here

L =
κz

1 + κz/l0
, with l0 = 0.10

∫∞
0 zqdz∫∞
0 qdz

, (1.31)

where κ is the von Kármán constant. Referring to the results of yet another article, Mellor

and Yamanda sets λ1 = λ2 = λ3 = 0.23L. For the rest of the length scales, they define

l1, l2,Λ1,Λ2 = (A1, A2, B1, B2)L, where the dimensionless proportionality constants then need

to be determined. To determine the constants, Mellor restricts the analysis to the surface layer,

where all fluxes are constant. From laboratory measurements of the turbulent fluxes, Mellor

was then able to estimate the constants [7]

(A1, A2, B1, B2, C) = (0.92, 0.74, 16.6, 10.1, 0.08) (1.32)

9It should be noted that there is a slight inconsistency in the notation between the articles. Therefore, the
notation used here is a mixture of those.

22 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

Finally, we can write the equations for the Level 4 model by Mellor and Yamanda

DU

Dt
uiuj =− ujuk

∂Ui
∂xk
− uiuk

∂Uj
∂xk
− 2(εikmΩkumuj + εjkmΩkumui) +

1

θ0
(gδ3iθuj + gδ3jθui)

+ ν∇2uiuj +
∂

∂xk

[
0.23qL

(
∂uiuj
∂xk

+
∂uiuk
∂xj

+
∂ujuk
∂xi

)]
− 1

3A1L

(
uiuj −

δij
3
q2

)
+ Cq2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3

q3

B1L
δij , (1.33)

DU

Dt
θui =− θuj

∂Ui
∂xj
− uiuj

∂Θ

∂xj
− 2εijkΩjθuk +

1

θ0
gδ3iθ2

+
∂

∂xi

[
0.23qL

(
∂θuj
∂xk

+
∂θuk
∂xj

)]
− q

3A2L
θui, (1.34)

DU

Dt
θ2 =− 2uiθ

∂Θ

∂xi
+ α∇2θ2 +

∂

∂xi

[
0.23qL

∂θ2

∂xi

]
− 2

qθ2

B2L
, (1.35)

where again q = uiui, the constants are given by (1.32) and L is defined by (1.31). The process

of deriving the Level 3, Level 2 and Level 1 model includes a scale analysis of all the terms

in Equation (26)-(28), [8]. The approximations used in the Level 3 model leads to having only

prognostic equations left for the variance terms q2 and θ2, whereas diagnostic equations are used

for all the covariances. Both the Level 2 and Level 1 models uses diagnostic equations for all

variances and covariance and are thus first order closure models.

The conclusion made by Mellor and Yamanda was that the Level 3 model perform nearly as

good as the Level 4 model, but it is much more efficient, since only 2 instead of 10 additional

differential equations are needed. Therefore, it is the Level 3 model that was further developed

to include water vapor and liquid water [9]. As described in Section 1.1.2, this generalization

involves the use of liquid water potential temperature θl instead of θ and a prognostic equation for

the total water content qw. The Level 3 version then needs additional prognostic equations for

the variance term q2
w and the covariance term θlqw. However, Mellor and Yamanda introduced

a new Level 2.5 version, where only q2, i.e. TKE, is predicted with a prognostic equation, while

all other second order terms are parameterized.

1.3.5 Mellor-Yamanda-Nakanishi-Niino model

Nakanishi and Niino has further improved the Mellor-Yamanda model, and their main contribu-

tions are estimating the closure constants based on large eddy simulation data and suggesting a

new diagnostic expression for the turbulent length scale, L [10, 11]. The model has been tested

against the original Mellor-Yamanda model and showed improved results [13]. The new master

23 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

length scale introduced by Nakanishi and Niino is defined as

1

L
=

1

LS
+

1

LT
+

1

LB
, (1.36)

LS =


κz/3.7, ζ ≥ 1

κz(1 + 2.7ζ)−1, 0 ≤ ζ < 1

κz(1− 100ζ)0.2, ζ < 0

,

LT = 0.23

∫∞
0 zqdz∫∞
0 qdz

,

LB =


q/N, ∂Θv/∂z > 0 and ζ ≥ 0(
1 + 5(qc/(LTN))1/2

)
q/N, ∂Θv/∂z > 0 and ζ < 0

∞, ∂Θv/∂z ≤ 0

,

where ζ = z/LM , and LM is the Monin-Obukhov length defined in Equation (1.24). N =

((g/Θ0)∂Θv/∂z)
1/2 is the Brunt–Väisälä frequency, which is the frequency of the oscillation due

to an air parcel being displaced from its equilibrium [4, Ch. 3]. qc =
(
(g/Θ0)

(
wθv

)
0
LT
)1/3

.

The velocity scale qc is similar to the convective length scale w∗, which is the typical vertical

velocity related to convection in the PBL [1, Ch. 10].

This new turbulent length scale is constructed such that the shortest out of the three LS ,

LT and LB will be dominant. LS is the length scale in the surface layer and will only dominate

close to the surface, since it scales with z. LT depends on the turbulent structure of the PBL

and is very similar to the master length scale in the original Mellor-Yamanda model. LB is the

length scale limited by buoyancy and is controlled by a combination of the local gradient of

virtual potential temperature and the surface stability.

As well as with the Mellor-Yamanda model, the MYNN model exists in a Level 2.5 and a

Level 3 version. Both are available in WRF, and both could therefore have been used in this

study. However, it was difficult to find studies using the MYNN3 scheme, whereas there are

several studies comparing the MYNN2.5 scheme to other PBL schemes in WRF [17, 18, 19]. The

conclusions in these studies are similar; no PBL scheme is ideal for all scenarios. The MYNN2.5

scheme is, however, one of the best performing schemes in all these three studies. Therefore, the

MYNN2.5 scheme has been selected to create the training data for this study, see Section 4.1.

Below, we show the parts of the MYNN2.5 PBL scheme, which are necessary to understand

the development of the neural network based scheme described in Chapter 4. First, in addition

to the mean field equations (1.10), (1.11), (1.20), (1.21), we define the TKE equation as it

appears in the MYNN model [13]

∂q2

∂t
= − ∂

∂z

(
wq2 + 2

wp

ρ0

)
− 2

(
wu+

∂U

∂z
wv

∂V

∂z

)
+ 2

g

Θ0
wθv − 2ε, (1.37)

24 of 137

1.3. TURBULENCE PARAMETERIZATION IN NWP

where q =
√
u2 + v2 + w2 is the square root of twice the TKE. The first term on the right-hand

side contain both turbulent transport and pressure transport of TKE, the second term is shear

production, the third term is buoyant production, and the fourth term is the viscous dissipation

rate. The turbulent fluxes are parameterized as

wu = −Km
∂U

∂z
, wθl = −Kh

∂Θl

∂z
,

wv = −Km
∂V

∂z
, wqw = −Kh

∂Qw
∂z

,

wq2 + 2
wp

ρ0
= −3Km

∂q2

∂z
, wθv = βθwθl + βqwqw, (1.38)

where Km and Kh are the turbulent diffusivities for momentum and scalar quantities, respec-

tively, and βθ and βq are functions related to condensation and evaporation processes, which

links the flux of virtual potential temperature to the flux of conserved quantities. The reason

why the flux of virtual potential temperature is not simply parameterized as wθv = −Kh
∂Θv
∂z ,

is that virtual potential temperature is not conserved under condensation and evaporation. For

further details, see the formulation of the partial-condensation scheme by Sommeria and Dear-

dorff [14]. Km and Kh are both functions that depend on q, L, βθ, βq as well as variables related

to local stability and wind shear. For a complete description, the reader is referred to either of

[11, 13], but two of the variables, which the diffusivities depend on, are worth mentioning

Gm =
L2

q2

((
∂U

∂z

)2

+

(
∂U

∂z

)2
)
, Gh = −L

2

q2

g

Θ0

(
βθ
∂Θl

∂z
+ βq

∂Qw
∂z

)
. (1.39)

In addition, the dissipation term in the TKE equation is parameterized as

ε =
q3

B1L
, (1.40)

where L is the master length scale from Equation (1.36), and B1 = 24 is a closure constant.

25 of 137

Chapter 2

The WRF model

The Weather Research and Forecast model, WRF, is an open source regional numerical weather

prediction model widely used for research and weather forecasting. The description here is based

on the official WRF user guides [20, 21]. The overall structure of the model is illustrated in

Figure 2.1.

RAW OUTPUT

Figure 2.1: Flow chart illustrating the different elements of WRF. The flow chart shows ele-
ments that are not used in this study, so the relevant parts have been highlighted with the red
arrows. Figure source: [20].

26 of 137

2.1. WRF PREPROCESSING SYSTEM

The red arrows in Figure 2.1 indicate which parts of the WRF system are used in this study. The

WRF Preprocessing System, WPS prepares the data and interpolates it to a specified horizontal

grid. REAL then interpolates the data to specified vertical levels, before it is fed to Advanced

Research WRF, ARW as initial and boundary conditions.

The sections 2.1 and 2.2 describe the main components of WRF. The latter will go briefly

through the main features of the ARW system and then describe how the PBL parameterization

is implemented. Section 2.3 describes the model configurations used for the simulations.

2.1 WRF Preprocessing System

WRF comes with its own data preprocessing system WPS, which takes meteorological and

terrestrial data as input and interpolates it to the horizontal grid points.

Figure 2.2: Flow chart illustrating the different elements of WPS. Figure source: [20].

Figure 2.2 show the different elements of WPS. First, one must provide files containing gridded

meteorological data for initial and boundary conditions. For this purpose, we use operational

final analyses from The Global Forecast System, GFS, produced by the National Center for

Environmental Prediction, NCEP [25]. This dataset provides global tropospheric analyses and

forecasts on 0.25°× 0.25° grids for every sixth hour starting from 2015-07-08.

Next, the physical domain must be defined, which involves specifying the type of map projection.

Several different types of projection are available in WPS, which are suitable for different areas

on the globe. Here, we concentrate on the Lambert Conformal mapping, which is specifically

developed for mid-latitudes.

27 of 137

2.2. ADVANCED RESEARCH WRF

Figure 2.3: Illustration of Lambert conformal mapping. Figure source: [20].

The idea of Lambert conformal mapping is to project the surface of the earth onto a cone, which

aligns with the rotation axis of the earth, as illustrated in Figure 2.3 (left). The specified true

latitude(s) determine, where the cone intersects with the surface of the earth. If only one true

latitude is specified, the cone will be a tangent to the earth at this latitude. The resulting grid

is illustrated in Figure 2.3 (right).

The type of projection as well as the size and resolution of the horizontal grid are specified

in the file Namelist.wps. In this file, one must also specify the dates and times corresponding

to the reanalysis files used. The geogrid.exe program then uses the information from the

Namelist.wps file together with files containing information about terrestrial data to create

the simulation domain. The ungrib.exe program takes the reanalysis data, provided in GRIB

format, unpacks it and writes it to an intermediate file format. Finally, the metgrid.exe

program interpolates the data from the intermediate files to the simulation domain and creates

NetCDF files, as input for the WRF real.exe program.

2.2 Advanced Research WRF

The Advanced Research WRF, ARW provides a range of idealized test cases as well as simu-

lations using real weather data. For the latter, the program real.exe takes the NetCDF files

created by the metgrid.exe program and interpolates the meteorological data to the vertical

model levels used. The 3D grid is specified in the Namelist.input file, and this must correspond

to the horizontal grid specified in the Namelist.wps file, i.e. the number of grid points and the

spatial resolution must be the same. For the vertical model levels, WRF uses a terrain following

vertical coordinate, η, defined as

η =
ph − pht

µ
, where µ = phs − pht, (2.1)

28 of 137

2.2. ADVANCED RESEARCH WRF

where ph is the hydrostatic component of the pressure and phs and pht are the pressures along

the surface and the top boundaries. η thus varies from 1 to 0, with η = 1 following the surface

of the earth and η = 0 following a fixed top pressure surface, see illustration in Figure 2.4.

Figure 2.4: Illustration of the terrain following vertical coordinate, η. Figure source: [21].

The variable µ(x, y) represents the mass in an air column per unit area at location (x, y). WRF

uses the flux form of the variables

V = µv = (U, V,W), Ω = µω = µ
∂η

∂t
, Θ = µθ, (2.2)

where v = (u, v, w) and θ denote the mean field velocity and temperature fields, respectively.

Similarly, ω is the vertical ”velocity” parameter in η coordinates. The capital letter variables

V, Ω and Θ denote the flux form variables. Note that the notation used here should not be

confused with the notation for the PBL equations derived Chapter 1, which will be used in the

remaining chapters of the thesis.

ARW uses an Eulerian solver meaning that changes are computed for fixed positions in a

stationary grid, instead of for air parcels following the mean flow (as the equations derived in

Chapter 1). Further, the model is non-hydrostatic and fully compressible. The first means that

vertical velocity is a prognostic variable instead of assuming hydrostatic balance (as in Equation

(1.1)). The latter means that the ”full” continuity equation describes the mass conservation

instead of using the Boussinesq approximation (as in Equation (1.4)). The equations include

forcing terms arising from physics parameterizations, which will be described 2.2.1.

29 of 137

2.2. ADVANCED RESEARCH WRF

Figure 2.5: Spatial discretization, horizontal (left) and vertical (right). Figure source: [21].

For the spatial discretization, ARW uses an Arakawa C grid, which means that the velocity

fields are defined staggered compared to the remaining physical variables, see Figure 2.5. Each

velocity component is staggered only in the dimension of the component itself. The points where

θ is defined are referred to as mass points, whereas the points where the velocities are defined

are referred to as u, v and w points, respectively. In the horizontal dimensions, the grids are

staggered regularly in both dimensions, while in the vertical, the distances between η surfaces

are not constant throughout the atmosphere. The mass points in the vertical are also called

half η levels, and are located halfway between the two neighboring full η levels. The ”distance”

between two η surfaces is measured in the η coordinate and should not be interpreted as the

physical distance. The full η surfaces must be specified by the user in the Namelist.input file.

ARW uses a third-order Runge-Kutta time integration scheme for low-frequency modes, i.e.

those important for meteorology. To ensure numerical stability, the faster modes such as acous-

tic waves are integrated over smaller time steps. Generally, for Eulerian models, there is a strong

constraint on the duration of the time step. To avoid extrapolation, an air parcel, or a propa-

gating wave, should not be allowed to travel longer than the distance between two neighboring

grid points. In practice, the time step for the low-frequency modes, ∆t, is constrained by the

advective Courant number C = u∆t/∆x, where u is the advection speed, and ∆x is the distance

between two neighboring gridpoints. The maximum stable Courant number for the third-order

Runge-Kutta scheme, depends on the order of the spatial discretization. The numerical stability,

however, depends on the vertical resolution and the magnitude of the vertical velocity as well.

The latter depends on the horizontal resolution, since finer resolutions permitting convective

cells, typically x ≤ 5 km, will generally produce larger vertical velocities. As a rule of thomb,

the time step for the low-frequency modes, ∆t, should not exceed 6 × ∆x seconds, where ∆x

is the spatial resolution measured in km. For a horizontal resolution of ∆x = 10 km, this gives

∆t = 60 seconds. This time step must be specified in the Namelist.input file, while the time

30 of 137

2.2. ADVANCED RESEARCH WRF

step for the fast modes is set automatically to a fraction of ∆t. For further details on the

stability constraint, as well as generally about the temporal and spatial discretization, see [21,

Ch. 3].

In general, when interpolating weather data to a discrete grid, the fields will not be balanced. To

reduce this initial imbalance, ARW provides a digital filtering initialization, DFI [21, Ch. 5.3].

The ARW DFI works by assuming that all noise from initial imbalance is of higher frequency

than the important, meteorological modes. Therefore, in principal, it just works as a low-pass

filter removing all frequencies higher than a certain cutoff frequency, however, in practice, the

DFI involves forward and backward integration around the initial time. Configurations related

to the digital filter must be specified in the Namelist.input file.

2.2.1 Physics parameterizations

In addition to the dynamical model, ARW provides parameterization models for all non-resolved

physics [21, Ch. 8]. This includes PBL parameterization, surface-land interaction, radiation, cu-

mulus parameterization and microphysics. For each of the physics parameterizations, ARW

provides a range of different schemes allowing for many different setup. One option is to use

a pre-defined ”physics suite”, where the different physics parameterizations have been selected

to be suitable for a specific weather problem. An example is the CONUS suite, which is de-

signed to work well for forecasts covering the contiguous United States. One can easily com-

bine parts of the physics suite with explicitly defined physics parameterizations. As mentioned

earlier, the dynamical equations include forcing terms, which arise from the physics parame-

terization. In practice, each physics parameterization computes the tendencies for all relevant

physical variables, e.g. the tendency for potential temperature due to turbulence is of the form

∂Θ/∂t|PBL = −Kh∂
2Θ/∂2z, where the expression for Kh of course depends on the PBL scheme

used.

Section 1.3 described how the equations for different approaches to parameterizing the turbulent

fluxes. However, it was not described how such a parameterization is implemented in discrete

numerical model. Here is therefore a brief description of how the PBL parameterization is

implemented in the WRF setup. Before the PBL scheme is called, the horizontal velocities are

interpolated to the θ points. Hence, all physical variables, except vertical velocity, are defined

in the θ points, i.e. the half η levels. To compute the tendencies in the θ points, however, we

need to know the turbulent fluxes in and out of each grid box, i.e. the fluxes at the grid box

walls (full η levels). Since the lowest full η level is following the surface, this needs to be treated

differently from the remaining levels. Therefore, in practice, ARW first calls a separate surface

flux scheme, which computes the surface fluxes and passes them as input the PBL scheme. The

31 of 137

2.3. MODEL SETUP

PBL scheme then computes the turbulent diffusivities in all remaining full η levels, except the

top level, where they are assumed to be zero (this is illustrated in Figure 4.2 in Section 4.3).

Finally, the PBL scheme solves the diffusion equation for each relevant physical variable and

then outputs the tendencies.

2.3 Model setup

As mentioned in the introduction, this study focuses on regional forecasts for Scandinavia, and

a small domain covering most of Scandinavia and the British Islands are used for the creating

the training dataset, see Section 4.1. A larger model domain covering most of Europe is used

for testing the neural network based PBL scheme, see Section 5.1. It is assumed that the

physics parameterizations in the CONUS physics suite, will be suitable for the weather in these

domains, since they cover latitudes similar to contiguous United States. The CONUS physics

suite is therefore used for physics parameterizations, except the surface flux scheme and the

PBL scheme for which the MYNN schemes are used.

We use a 10-km horizontal resolution. One argument for this relatively coarse resolution is

to avoid the necessity of nesting. The model domain is already nested into its lateral boundary

data, meaning that is ”fed” with information about the physical variables at the boundaries.

But ARW provides the option of additional nesting, where a smaller domain with a higher

resolution can be nested in the parent domain. The point of nesting is both to avoid noise from

interpolating coarse lateral boundary conditions to a fine grid and to save some computations

by only using the high resolution grid for the region of interest [20, Ch. 7]. The resolution of the

reanalysis data used for initial and boundary conditions is 0.25° × 0.25°, which approximately

corresponds to ∼ 28km×28km. Thus, with a 10-km horizontal resolution we avoid a large ratio

between the resolutions of the lateral boundary conditions and the horizontal domain grid.

The vertical resolution, on the other hand, is important for resolving the boundary layer

dynamics. Therefore, we specifically use a high vertical resolution in the lowest part of the

atmosphere and a relatively coarse resolution far away from the surface. One can either manually

specify all the η levels or use ARW’s built-in algorithm to automatically generate the vertical

levels based on configurations specified in the Namelist.input file. The latter option was used

in this study. We use a total of 41 full η levels, the distance between the two lowest levels was

set to 10 m, and the maximum allowed thickness was set to 1000 m. Additionally, a stretching

factor needs to be specified, which determines how ”quickly” the distance between the η levels

grow. For details, see [20, Ch. 5]. With these configurations, the first full η level above the

ground is located at ∼ 10m, and 14 out of the 41 levels are located within the lowest kilometer

of the atmosphere.

In the Namelist.input file, it is also possible to specify, which variables one wishes to extract

32 of 137

2.3. MODEL SETUP

from WRF and how often they should be written to the output NetCDF file. Examples of the

files Namelist.wps and Namelist.input, corresponding to the configurations described above,

are shown in Appendix A.

33 of 137

Chapter 3

Artificial neural networks

A neural network is a specific type of machine learning model, which, as the name suggests,

can be thought of as a (very simplified) mathematical representation of information processing

in the brain. Today, neural networks exist in many different forms developed to solve different

types of problems. Here, the description is restricted to the specific type of network architecture

used in the study, the feedforward neural network. This is the simplest type of neural network,

but it is well suited for a wide range of regression problems. The descriptions in this chapter

are mainly based on following textbooks on the subject [28, 26] and [27, Ch. 5]. First, Section

3.1 presents a mathematical description of the feedforward neural network, and then Section 3.2

describes the basic theory of training neural networks.

3.1 The feedforward neural network

The feedforward neural network is essentially a sequence of layers, each consisting of a number

of neurons or nodes. The layers are fully connected, meaning that each node is connected to all

the nodes in the neighboring layers. Neural networks are called deep, if they consist of two or

more hidden layers. An illustration of a simple deep neural network is shown in Figure 3.1.

Input layer Hidden layer 1 Hidden layer 2 Output layer

x1

x2

z
(1)
1

z
(1)
2

z
(1)
3

z
(2)
1

z
(2)
2

z
(2)
3

y1

y2

Figure 3.1: Simple feedforward neural network with two input variables, two output variables,
and two hidden layers, each with three nodes. The arrows show which nodes are connected
and the direction of the information flow in the network.

34 of 137

3.1. THE FEEDFORWARD NEURAL NETWORK

Each node is represented by a number, which depends on the values of the nodes in the previous

layer. Thus, the information is only fed forward to the next layer. The very first layer of nodes

contains the input variables arranged in a vector z
(0)
i , and the nodes in all subsequent layers are

computed as

z
(n)
j = h

(
a

(n)
j

)
, where (3.1)

a
(n)
j = w

(n)
ji z

(n−1)
i + b

(n)
j .

The superscript (n) implies that the vector z
(n)
i , n = 1, 2, 3, ..., N contains the values of the

nodes in the n’th layer. The elements of the vector a
(n)
i are linear functions of the nodes in the

preceding layer, where the constants w
(n)
ji are called the weights, and the constant b

(n)
j is called

the bias. The subscript ji implies that w
(n)
ji is the constant we multiply with z

(n−1)
i to compute

z
(n)
j .

The function h(·) is called the activation and is a nonlinear and differentiable function. The

role of the activation is to allow the neural network to learn nonlinearities, since if the activations

were linear functions, the neural network, regardless of number of layers and neurons, would

reduce to a linear regression model. The activation does not have to be the same for all layers,

and often the activation for the output layer will differ from the one used in the remaining layers.

If the purpose is to make a classification model, the activation function is typically constructed

so that the output vector consists of positive numbers summing up to 1. Hence, each element

of the output vector can be interpreted as the probability of a given output. A typical example

of this is a model for classifying handwritten digits. Given a dataset of labelled examples of

handwritten digits, the neural network then predicts the probability of the digit belonging to

each of the ten classes 0, 1, 2, ..., 9.

For regression models, on the other hand, the activation function for the output layer is

typically the identity function h(ai) = ai, allowing the output variables to vary freely. The

problem studied in this project is an example of a regression problem, where a set of turbulent

quantities are assumed to depend on the mean field variables. The strength of a neural network

is that it does not assume the functional form but can in principal emulate any function. Hence,

for regression problems, a neural network with N − 1 hidden layers1, the output values are

zNj = w
(N)
ji z

(N−1)
i + b

(N)
j . Combining this relation with Equation (3.1), and denoting the input

and output vectors xi and ŷi, the complete feedforward neural network can be written as the

1The reason for using N − 1 instead of N hidden layers is that the output layer then is the Nth layer.

35 of 137

3.1. THE FEEDFORWARD NEURAL NETWORK

following recurrence relation

ŷj = w
(N)
ji z

(N−1)
i + b

(N)
j , (3.2)

z
(n)
j = h

(
a

(n)
j

)
for n = 1, 2, ..., N − 1 , where

a
(n)
j = w

(n)
ji z

(n−1)
i + b

(n)
j ,

z
(0)
i = xi.

From Equation (3.2), we see that the number of biases grow linearly with the total number of

nodes in the network. On the other hand, the number weights needed to predict the values of a

layer is the number of elements in the weight matrix, i.e. the product of the number of nodes in

the layer itself and the preceding layer. As an example, the network in Figure 3.1 has 27 model

parameters. However, if the number of nodes in the hidden layers is increased by a factor of 10,

then the total number of model parameters becomes 1080, which is an increase by a factor of

40. It can be deduced that for deep neural networks, where hidden layers are much larger than

the input and output layers, the total number of weights is approximately proportional to the

square of the number of nodes per layer in the hidden layers.

As mentioned, the activation is what enables the neural network to learn nonlinearities, and

therefore it is important to discuss its role and interpretation in greater detail. As an example,

consider an activation that is simply a step function

h(a) =

{
0 if a < 0

1 if a ≥ 0
.

This is somewhat similar to a very simple conceptual model of a brain, where a neuron can

either send an impulse or be silent. This example, although not of much practical use, leads to a

nice interpretation of the weights and biases. Since all neurons can only send signals of the same

strength, the role of the weights is then to determine the importance of the signal from each of

the neurons in the preceding layer. The bias, on the other hand, affect the overall sensitivity of

the neuron, determining how likely it is to send an impulse to the subsequent layer. In practice,

the step function is impractical to use, since its derivative is zero everywhere except at a = 0,

where it is not defined. This can make optimization in a large parameter space very inefficient.

A typical activation function is the logistic sigmoid function

h(a) =
1

1 + e−a
. (3.3)

The sigmoid function also varies between 0 and 1, but it has a derivative that is different from

36 of 137

3.1. THE FEEDFORWARD NEURAL NETWORK

zero. Thus, the interpretation of the weights and biases are almost the same as with the step

function, but the weights and biases can be optimized using gradient descent, which eases the

training. However, a disadvantage of the sigmoid function is that it ”saturates” for large numeric

values of a, i.e. it converges to a constant value. This means that the derivatives go to zero

when the weights become large, and this can potentially slow down the training significantly.

This makes it harder to train deep neural networks in particular [28]. Therefore, a popular

alternative activation is the ReLU function (rectified linear unit)

h(a) =

{
0 if a < 0

a if a ≥ 0
. (3.4)

The sigmoid and ReLU activations described above are shown in Figure 3.2, together with two

other popular activation functions, the hyperbolic tangent function, tanh and the leakyReLU.

−10 −5 5 10

0.2

0.4

0.6

0.8

1

a

h(a)

sigmoid

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

a

h(a)

ReLU

−4 −2 2 4

−1

−0.5

0.5

1

a

h(a)

tanh

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

a

h(a)

leakyReLU

Figure 3.2: Four different activation functions.

The leakyReLU is very similar to the normal ReLU function, but instead of having a constant

value for a < 0, it has a slightly positive slope. This is supposed to prevent problems related to

the ReLU function’s gradient being zero for a < 0. However, generally the activation function,

as well as the number of layers, and number of nodes in each layer are hyperparameters, which

need to be optimized to best solve the specific problem.

37 of 137

3.2. TRAINING THE NETWORK

3.2 Training the network

Assume, we have a training set of M input vectors {xm} with corresponding target vectors

{ym}, for m = 1, 2, ...,M . Note that M is the number of data points and thus unrelated to the

dimensions of the input and output vectors. xm and ym are the m’th input and output vectors,

which respectively contain the relevant input and output variables for the m’th data point. To

exemplify this, consider the specific case of a turbulence parameterization model: One could

imagine a training dataset consisting of a large number of samples, e.g. M ∼ 106. Each target

vector could then consist of the diffusivities Km and Kh for a point in the 3D grid of the model

domain at a specific time, and the input vector could contain variables related to stability and

wind shear, e.g. ∂Θv/∂z and (∂U/∂z)2 + (∂V/∂z)2.

We now denote the neural network from Equation (3.2) as

ŷm = f(xm,W),

where all the weights and biases, w
(n)
ij and b

(n)
i , are stacked in the vector W for compact notation.

We then define the loss function, which is a measure of the distance between the target values

and the predictions of a neural network with model parameters W

E(W) =
1

M

∑
m

e(ym, ŷm),

where e(·) is some function measuring the error of a single prediction. For regression problems,

common loss functions are the mean squared error or the mean absolute error

E(W) =
1

M

∑
m

‖ym − ŷm‖2 , (3.5)

E(W) =
1

M

∑
m

‖ym − ŷm‖ . (3.6)

Since both Equation (3.5) and (3.6) are differentiable and the neural network consists only of dif-

ferentiable functions, we can analytically compute the derivative of the loss function with respect

to each of the model parameters. Hence, the model can be optimized using gradient descent by

computing ∂E
∂Wi

and then iteratively adding a small adjustment to the model parameters

Wnew
i = Wi − ε

∂E

∂Wi
, (3.7)

where the learning rate ε is a positive real number2. The algorithm used for computing the

2The actual size of ε depends on the choice of optimization algorithm, the method of data normalization, and
the problem in general.

38 of 137

3.2. TRAINING THE NETWORK

gradient is called back-propagation and is essentially just application of the chain rule for partial

differentiation [28]. In the following section, we will discuss some challenges with using gradient

descent and describe a popular alternative approach stochastic gradient descent, or simply SGD.

3.2.1 Stochastic gradient descent

Intuitively, using gradient descent to iteratively update the weights and biases using Equation

(3.7) may seem like a good approach. However, in practice the method has several limitations.

For a large data set, it is generally computationally demanding to compute the gradient of

the loss function, since it depends on all data points. Therefore, this method can be very

slow. In addition, since the loss function is generally nonlinear and non-convex, optimizing a

neural network is a complex task and the gradient-based learning will often benefit from some

stochastic element allowing it to more easily escape local minima and saddle points. For these

reasons, stochastic gradient descent is a popular alternative to the standard gradient descent

based learning. It essentially means that only a subset, or mini-batch, of the training data is

used, when the gradients are computed. This diminishes the computational cost of each iteration

while introducing a stochastic element, since the gradient is estimated based on a random subset

of the data. The SGD algorithm thus updates the weights

Wnew
i = Wi − ε

∂EB
∂Wi

, (3.8)

where EB is the loss computed based on the mini-batch of size B

EB(W) =
1

B

B∑
m=1

e(ym, ŷm).

The SGD algorithm then iterates over all the mini-batches, until the model has seen all the data

points. We call the number of iterations needed to encounter all data points exactly one time

an epoch. The number of epochs needed to find a sufficiently good minimum of the loss function

depends on the specific problem and is therefore yet another hyperparameter. Typically, the

easiest way to evaluate whether a model has trained for long enough, is to look at the learning

curve and visually determine if the model is still learning. In Figure 3.3, a sketch shows examples

of how learning curves for two different models might look. The example shows how the losses

decrease as function of number of epochs but also illustrates how two different models can learn

at different rates. In practice, this could of course be related to the learning rate parameter ε,

but it could just as well be due to different choices of other hyperparameters. The thick solid

lines show the loss on the training data, while the thin solid lines show the loss on an independent

validation dataset. It is common practice to evaluate the validation loss continuously and plot

39 of 137

3.2. TRAINING THE NETWORK

it together with the loss on the training data. This makes it easy to visualize whether the

model overfits to the training dataset. In the case of overfitting, the training loss will continue

decreasing, while the validation loss stabilizes or even starts increasing again. In the sketch

in Figure 3.3, model 2 is clearly still learning, while the learning curve for model 1 is close to

convergence.

20 40 60 80 100

Epoch

Loss

Model 1
Model 2

Figure 3.3: Sketch of learning curves for two different models. The thick solid lines show the
loss on the training data for each of the two models, while the thin solid lines show the loss on
the validation data.

The validation data is thus used to evaluate the model during training, and it is also common

practice to select the ”best” model as the model that performs best on the validation dataset,

rather than selecting the model after the last update of the weights. Therefore, it is a good idea

to introduce a third independent test dataset for estimating the error on the predictions of the

selected ”best” model. This is necessary because the model is selected based on the performance

on the validation dataset, and, hence, this can no longer be used to give an independent and

unbiased estimate of the performance [26].

The SGD algorithm is the basis of a range of different optimization algorithms, which combine

the concepts of stochastic gradient-based learning with other elements, such as a momentum pa-

rameter and adaptive learning rates. The momentum algorithm introduces a velocity parameter

v and a new hyperparameter α ∈ [0, 1[, which determine how quickly the contributions of the

previous gradients will decrease. In other words, α determines how easy it is for the gradient to

40 of 137

3.2. TRAINING THE NETWORK

change direction from iteration to iteration.

Wnew
i = Wi + v, (3.9)

v = αvold − ε∂EB
∂Wi

.

Note that if α = 0, Equation (3.9) reduces to (3.8). The point of the momentum is to reduce

some of the noise related to the stochastic gradients. Different variations of Equation (3.9)

combined with different approaches to make an adaptive learning rate, has resulted in many

different optimization algorithms. An example is the Adaptive Moment Estimation, or simply

the Adam optimizer [29]. Any optimizer introduces a new set of constants that must be tuned

by the user to get the best result. This means that the efficiency of an optimization algorithm

partly depends on the user’s familiarity with the specific algorithm and its hyperparameters.

The Adam optimizer, however, is considered an all-round good choice, because it is fairly robust

when just using the default hyperparameters, except for the initial learning rate [26, Ch. 8]. If

this assumption is accepted, Adam is quite easy to work with, since it only requires tuning of

one hyperparameter, namely the learning rate.

Worth mentioning is also the concept of learning rate scheduling, meaning that the learning

rate is manually set to vary in some way during the training. One approach is to decrease

the learning rate when the model is getting close to a sufficiently good minimum. In that

case, a smaller learning rate will help fine-tune the model parameters [26, Ch. 8]. A different

approach is to let the learning rate varies periodically throughout the training. Smith suggests a

cyclic triangular learning rate schedule, where the learning rate vary periodically in a triangular

pattern [30]. The motivation for this idea is that occasional high learning rates will help the

model ”escape” from local minima and saddle points.

As indicated in this chapter, optimizing a neural network is more than just determining

the values of the model parameters. More importantly, it consists of determining the optimal

combination of hyperparameters. For some hyperparameters, one may rely on the experience

of other studies, but, generally, testing the different options is best, since it may differ from

problem to problem.

All neural networks have been trained in Python [33] using the Keras library [35], which is a

high-level neural networks API3, using Tensorflow as backend [34].

3Application programming interface

41 of 137

Chapter 4

Development and optimization of

the model

When solving physical problems using machine learning, there are often many different possible

approaches, and in the beginning one will likely test many different ideas, and this trial and

error can be important to get onto the right track. Therefore, it is also impossible to give a

comprehensive description and documentation of all the ideas, which have been tested during

this study. Instead, some of the different possible approaches will be described, and we will try

to discuss their pros and cons to motivate some of the choices made. Other parts of the process

will of course be described in greater detail.

In Section 4.1, we briefly describe how the training dataset was generated. In Section 4.2,

we discuss different options for the overall model construction, especially in terms of choice of

model output. Next, in Section 4.3, we describe the process of determining the input variables

for the model. Finally, in Section 4.4 the model training and hyperparameter optimization are

described.

4.1 Creating the dataset

The datasets for training the neural networks was generated using the WRF model with the

configurations described in Section 2.3. The MYNN scheme was used for both the surface layer

scheme and the PBL scheme [13]. To extract the relevant variables from WRF, it was necessary

to introduce a set of new variables in the WRF Registry and add each of these to the argument

lists of all relevant Fortran subroutines. For a description of the WRF Registry, see [20, Ch. 8].

These new variables were assigned their values directly in the MYNN module just before and

after the computation of the diffusivities. For details on the MYNN Fortran module and how

this is implemented in the WRF code, see [22]. The relevant variables are described in the

42 of 137

4.1. CREATING THE DATASET

Sections 4.2 and 4.3.

The domain, shown in Figure 4.1, is covering most of the British islands and Scandinavia,

and the area covers a range of different surface types, ensuring large variation in surface con-

ditions for the PBL scheme and surface flux scheme, see Appendix B. The combination of a

relatively small geographical area and a horizontal resolution of 10 km allows for efficient data

generation. However, since a proper computer resource for training the neural networks has not

been available for this project1, it is not necessarily of much use to create large amounts of data,

since this means the training of the neural networks becomes slow.

Figure 4.1: Domain used for generation of training data.

How to sample the dataset is not trivial and requires knowledge about both the specific problem

and the type of machine learning model used. Essentially, a machine learning model learns to

emulate the statistics of the training data, and therefore the dataset should be constructed in

a way such that its variability resembles that of the actual physical system. One way to ensure

natural variability in the dataset, is to randomly sample the data points from simulations with

randomly chosen initial times. However, randomly sampling the dataset might require many

different simulations before the weather extremes are represented. So, to limit the amount of

1All the neural networks have been trained using a standard laptop.

43 of 137

4.1. CREATING THE DATASET

data, a pseudo-random data sampling was used to maximize variability in the dataset with only

a few simulations. Six days were chosen, two in summer months, two in winter months and two

transitional. The specific days were not analyzed in detail but some were chosen specifically

from periods with extreme hot or cold weather. This way of sampling, of course, means that

the variability in the dataset might not be a realistic representation of the physical system.

However, if it is necessary to limit the size of the dataset, one would imagine that it is more

important to have the extremes well represented. For further details about the simulations, see

Appendix B.

To make sure that the diurnal cycle is covered, for every simulation, we sample from a 24-

hour period. Since the model is run with 60-second time steps and a domain size of 200× 150,

this gives us potentially 200 × 150 × 24 × 60 ≈ 4 · 107 profiles, and with a vertical resolution

of 41 full η levels, we have more than one and a half billion data points from each simulation.

However, some data points are most likely highly correlated and might not contribute with new

information. Therefore, only a small subsample from each simulation is used for the training

dataset. Data is exported from WRF once each hour, and for each of these time steps, 500

randomly selected profiles are added to the training dataset. It is common practice to reserve

somewhere between 10% and 50% dataset for validation, depending on the complexity of the

problem and the amount of data available [28]. And as described in Section 3.2.1, it is a good

idea to have a third independent test dataset for estimating the error on the final model.

Since in this study, the final test will be implementing the model in WRF, one could argue

that this additional test dataset, might not be necessary. However, in Section 4.4.5 we shall

see that it does provide some useful information. And since in this case, the problem is not

lack of data, two additional datasets of same size as the training dataset are subsampled from

the simulated data. These will serve as validation data and test data, respectively. The choice

of 500 profiles may seem arbitrary, however, tests suggested that fewer data points lead to

poor representation of some of the rarer cases, such as the statically unstable model levels,

and more data points did not seem to contribute significantly to the quality of the final model.

From each of the 6 simulations, the data was sampled as described above, giving a total of

6 × 500 × 24 × 39 = 2808000 data samples for both training, validation and test. 39 is the

number of model levels, where the PBL scheme predicts the turbulent quantities. This is the

number or full η levels minus two, because a different scheme is used for the lowest level, and

the diffusivities at the top level are assumed to be zero. For an illustration, see Figure 4.2 in

Section 4.3.

To avoid effects from the boundaries, no data is sampled from the first 100 km from the

boundaries. Likewise, to avoid unphysical behavior due to the model spinning up, we run each

simulation for 30 hours and start sampling after 6 hours. To shorten the spin-up time and

minimize noise from unbalanced initialization, WRF’s digital filter is applied in each of the

44 of 137

4.2. DETERMINING MODEL OUTPUT

simulations as described in Section 2.3.

4.2 Determining model output

Since neural networks are essentially able to emulate any nonlinear function, there are several

different options to consider, when constructing this new PBL scheme. In particular, one need

to decide what the model should predict. An obvious option is the tendencies due to turbu-

lence for all relevant physical variables. In this case, the PBL scheme would consist solely of

the neural network, and there would be no need for combining it with other methods. Alter-

natively, the neural network could predict the turbulent fluxes for each physical variable, or

the turbulent diffusivities, just like most traditional PBL schemes. In these two latter cases,

the neural network would need to be combined with other methods for computing the tendencies.

We start by considering a model that predicts the tendencies directly. First, note that the

tendencies are the result of a combination of turbulent transport and a conversion to/from

energy associated with the mean field variables. This means that somehow, one needs to keep

track of the energy to make sure general conservation laws are respected. This could be done by

using turbulent kinetic energy as an additional prognostic variable, and then constraining the

total loss of energy from the mean fields to correspond to the imbalance in the TKE budget. This

is, although not impossible, not a trivial task. Since the tendencies are also results of transport,

the local tendencies are not necessarily directly related to the local TKE budget terms.

Therefore, a model predicting the tendencies directly needs some non-local variables as input,

i.e. from a number of neighboring model levels. One easy way to ensure that all the necessary

information is available would be to make a model that takes the whole vertical column as input

and predicts the whole column of tendencies. However, this will make the input and output

parameter spaces very large and thus the problem will be much more complex than with a local

approach. Hence, we believe a better option is a model that takes local atmospheric variables

as input and predicts local turbulent fluxes or diffusivities.

Further, we believe there are several advantages predicting the diffusivities instead of the

fluxes. First, only two diffusivities are needed, one for momentum flux, and one for the flux of

all scalar quantities. Hence, all information about the local effects of turbulence is contained in

those two variables, whereas if the model should predict the fluxes (or even tendencies), it would

need to be predicted explicitly for all the relevant physical variables. Predicting the diffusivities

also makes it easy to compare the scheme to existing PBL parameterization schemes, since these

are all essentially based on some form of eddy diffusivity. It also enables us to keep the implicit

solver for the diffusion equation. This is particularly interesting, since this Crank-Nicholson

type solver is unconditionally stable [6], and thus it will reduce the risk of numerical instability,

45 of 137

4.3. DETERMINING MODEL INPUT

when the parameterization is implemented in WRF. Actually, we deemed it highly risky, from a

numerical stability point of view, to build a machine learning model, which predicted the turbu-

lent fluxes or the tendencies directly. Finally, early experiments suggested that the diffusivities

were easier for the neural network to learn.

In addition to the diffusivities Kh and Km, a couple more outputs are needed, if TKE should

be kept as prognostic variable. Recall from Section 1.3.5 that the dissipation term in the TKE

equation is parameterized as

ε =
q3

B1L
,

where q is the square root of twice the TKE, just like it is defined in the MYNN scheme, B1 = 24

is a closure constant, and L is the turbulent length scale. Similarly, the buoyant production

term depends on the flux of virtual potential temperature, which is computed as

wθv = βθwθl + βqwqw,

where the βθ and βq are variables computed by the partial-condensation scheme, which is part

of the MYNN PBL scheme, θl is the liquid-water potential temperature, and qw is total water

content.

To solve the TKE equation, these terms need to be estimated somehow. For the latter, one

could of course approximate the buoyant production term as −wθv = Km
∂Θv
∂z . However, if we

want the neural network to emulate the MYNN scheme, the correction to the buoyancy term

should be taken into account. Thus, to be able to solve the TKE equation, our neural network

also predicts the turbulent length scale L and the buoyant production term Bp defined as

Bp = − g

Θ0
wθv = − g

Θ0

(
βθwθl + βqwqw

)
.

4.3 Determining model input

Determining the correct input variables is of course crucial for getting the best model, so before

we start tuning the hyperparameters, it is a good idea to determine which inputs the model

needs. As described in Section 1, turbulence depend strongly on the wind shear and the static

stability. Hence, the neural network as a minimum needs some information about the wind and

temperature fields. In addition, since the MYNN scheme has TKE as a prognostic variable,

this is of course an obvious choice as an additional variable. In the original MYNN scheme,

the variables related to shear and stability are Gm and Gh as defined in Equation (1.39). The

variable Gh, however, depend on the variables βθ and βq, so this requires the use of the partial-

46 of 137

4.3. DETERMINING MODEL INPUT

condensation scheme. In addition, both Gm and Gh scale with L2/q2. Since L is an output

from the neural network, we can of course not give it as an input. Therefore, we define two new

variables B and S, which are inspired by Gm and Gh but depend only on known mean field

variables. Together with q, these are inputs to what we define as the base model

q =
√
uu+ vv + ww, B =− g

Θ0

∂Θv

∂z
, S =

(
∂U

∂z

)2

+

(
∂V

∂z

)2

, (4.1)

where q is the square root of twice of the TKE, while B and S are related to the buoyancy and

wind shear, respectively. We then define the base model

Kh,Km, L,Bp = fb (q,B, S) , (4.2)

where fb is a not yet further defined neural network, that takes q, B and S as inputs and predicts

Kh, Km, L and Bp. All variables are defined in the same horizontal grid point and same model

level.

Several other variables are considered as possible inputs: Surface sensible heat flux Q0,

surface friction velocity u∗, height above the surface z, potential temperature Θ, temperature

T , water vapor content Qv and cloud water content Qc. Except for the surface fluxes, all these

input variables are also defined in the same model levels as the outputs. The surface fluxes and

the height above the surface are important for the turbulent length scale close to the surface,

as discussed in Section 1.3.5. The reason for considering Θ, T , Qv and Qc, as inputs is that

the buoyant production term Bp is affected by condensation processes. The Clausius-Clapeyron

relation implies that the saturation vapor pressure es is dependent on the temperature T , while

the actual water vapor pressure e is linked to Qv via the equation of state [4, Ch. 3]. Together

these two variables indicate how close the air parcel is to saturation. The presence of liquid

water Qc is of course also relevant due to the possibility evaporation. It is less intuitive, why the

potential temperature should be relevant. However, as mentioned earlier, the MYNN scheme

uses a partial-condensation scheme [14] to compute βθ and βq, which determines the flux of

virtual potential temperature. In [14], Deardorff and Sommeria derives the expressions for βθ

and βq using the variables Θl and Qw, and they end up with expressions dependent on both

these variables. Hence, referring to the definition of Θl in Equation (1.19), we see that the

buoyancy production term, as it is defined in the MYNN model, must depend on both Θ, T , Qv

and Qc. Table 4.1 below, shows an overview of the variables tested.

47 of 137

4.3. DETERMINING MODEL INPUT

Table 4.1: The variables for the base model as well as the 7 additional variables tested on top
of the base model.

Variable Explanation Unit

Base model q Square root of twice 2TKE, Eq. (4.1) [m/s]
variables B Buoyancy parameter, Eq. (4.1) [s−2]

S Shear parameter, Eq. (4.1) [s−2]

Additional z Height above surface [m]
variables Q0 Surface sensible heat flux [W/m2]

u∗ Friction velocity [m/s]
Θ Potential temperature [K]
T Temperature [K]
Qv Water vapor mixing ratio [kg/kg]
Qc Liquid water mixing ratio [kg/kg]

There could potentially be other relevant input variables. For example, it could be interesting

to test the effect of surface latent heat flux, since as described in Chapter 1, the flux of virtual

potential temperature is the important quantity for the overall static stability of the PBL. The

turbulent flux of virtual potential temperature at the surface can be estimated as

(
wθv

)
0
≈ 1

ρcp
Q0 +

0.61Θ

ρLwater
QLH ≈

1

ρcp
(Q0 + 0.07QLH) ,

where Q0 and QLH denote the surface fluxes of sensible and latent heat, respectively, and Lwater

is the specific latent heat for condensation. Thus, even when the latent heat flux is large, its

contribution to the flux of virtual potential temperature would probably be insignificant in most

cases. Further, one could add information from the neighboring model levels. This, however,

will make it necessary to treat the boundaries to the surface and at the top level differently and

was therefore not considered in this study.

Recall from Section 2.2 that all physical mean field variables in WRF, except vertical velocity,

are defined in the mass midpoints of the grid boxes, i.e. the half η levels. However, the turbulent

diffusivities Kh and Km as well as the turbulent length scale L and the buoyant production Bp

should be computed in the full η levels, i.e. the interfaces between grid boxes. The lowest full η

level is the interface between the ground and the lowest grid box and the turbulent fluxes there

are computed by an independent surface flux scheme, while the turbulent fluxes at all other η

levels are computed by the PBL scheme. An illustration of this is shown in Figure 4.2

The importance of the different variables was tested by adding each of them as input to

the base model, training each model until the value of the loss function converged, and then

comparing the loss values to determine which variable improved the result the most. That

variable is then added to the inputs, and this model becomes the new benchmark, when adding

48 of 137

4.3. DETERMINING MODEL INPUT

η = 1.0

η = 0.75

η = 0.25

η = 0.0

Raw input
variables

q,Θv, U, V, ...

q,Θv, U, V, ...

q,Θv, U, V, ...

Compute gradients
and interpolate

computed by
surface scheme

Q0, u∗, ...

q, B, S, ...

q, B, S, ...

Predictions by the
neural networks

Q0, u∗, ...

Kh,Km, L,Bp

Kh,Km, L,Bp

Kh,Km, L,Bp = 0

Used for
further
computations
in MYNN2.5

Figure 4.2: Illustration how the neural network scheme will interact with the WRF model. The
sketch shows a WRF domain with 4 η levels (the solid lines) and three half η levels (the dashed
lines). The half η levels are the mass midpoints of the grid boxes, while the full η levels are the
interfaces between grid boxes. The three different columns show at which levels, the different
variables are defined, and the arrows indicate, which variables are used to compute the next
variables in the next column. Above each column, the title indicates, how the variables are
obtained.

the next variable. The process is then repeated, such that all the remaining variables are added

one at the time, and the best model is chosen. After each iteration, the improvement is thus

expected to be smaller and after some time, we might even see that adding more variables does

not have any effect. Since the relevant input variables might not be the same in different physical

scenarios, we do this for two separate cases, namely statically stable and unstable model levels.

The stability criterion used is simply the sign of the buoyancy parameter B, which is positive

for unstable conditions and negative for stable conditions.

Large amounts of data can cause the training to be slow and thus the convergence time to be

long, so this can be a very inefficient approach. Therefore, we train only on a subset consisting

of 100000 randomly selected samples from the training dataset. Similarly, 100000 randomly

selected samples are used for validation, so that we only compare the model performances on

data that were not part of the training dataset.

Further, we need to design a model appropriate for this problem, and since we have not yet

discussed the design of the neural network, this may seem arbitrary. Some of the choices of hy-

perparameters, such as optimizer and activation are based on what is generally accepted to work

well. The remaining hyperparameters are chosen based on initial trial and error. Only the learn-

ing rate is manually tuned to avoid inefficient learning. The method for this described in Section

4.4.1 2. The hyperparameters for this setup are shown in Table 4.2, however, explanations for

some of them are not presented until later in this chapter.

2Here, only the linear learning rate scanner is used and not the learning rate schedule, see Section 4.4.1.

49 of 137

4.3. DETERMINING MODEL INPUT

Table 4.2: The model setup for determining input variables.

Pre- and Loss Batch Model
Optimizer Activation postprocessing function size size

Adam ReLU Logarithmic Mean 1024 2 layers with
scaling squared error 50 nodes in each.

The same model architecture and hyperparameters are used for the stable and unstable case.

Each model is trained for 200 epochs, since this seemed to be sufficient to see, which model

converges to the lower value of the loss function.

4.3.1 Results

Figure 4.3 shows the loss on the validation data during the training of 200 epochs for eight

different models. As described above, a total of 7 variables are tested on top of the base model,

and the process is done iteratively, so that each time a new variable is added, all the candidates

are tested, and only the one with the lowest loss in the validation set is accepted. In Figure 4.3,

only the models with the new accepted variables are shown. Note that the y-axis is logarithmic

to make it easy to see the different convergence values.

We see that especially adding liquid water Qc and height above the ground z seems to reduce

the errors significantly. Also the remaining variables do seem to have some impact on the model

performance, except the temperature, i.e. the two bottom curves (pink and gray) converge to

roughly the same value.

0 25 50 75 100 125 150 175 200
Epoch

2×10−1

3×10−1

4×10−1

6×10−1

V
al

id
at

io
n

lo
ss

Base model
Adding Qc

Adding z
Adding Q0

Adding u∗
Adding Θ
Adding Qv

Adding T

Figure 4.3: Learning curves showing validation loss for models for stable samples with different
input variables. The base model has q, B and S as inputs, and the remaining models each add
a new variable in addition to the input variables of the previous model (the model above in
the legend). Thus, the last learning curve correspond to the model using all input variables.

50 of 137

4.3. DETERMINING MODEL INPUT

Figure 4.4 is similar to Figure 4.3 but for the unstable samples. It is interesting to note that the

order of which variables has the largest impact is not the same as for the stable case. However,

the conclusion is the same: all variables do seem to improve the result, except the temperature.

0 25 50 75 100 125 150 175 200
Epoch

10−2V
al

id
at

io
n

lo
ss

Base model
Adding z
Adding u∗
Adding Qc

Adding Q0

Adding Qv

Adding Θ
Adding T

Figure 4.4: Similar to Figure 4.3 but for unstable samples. The color of each learning curve is
selected such that it matches the learning curve for the same variable in Figure 4.3.

4.3.2 How to conclude based on the results

First, based on the two figures, we conclude that there is no reason to differentiate between

stable and unstable model levels when it comes to the choice of input variables. Further, the

analysis show that all the tested input variables, except for temperature, do seem to contribute

with valuable information. Therefore, a natural first approach was to include all these variables

as inputs for the neural networks.

However, the predictions of a neural network are generally only useful, when it is exposed to

examples, which are within the variability of the training dataset. As described in Section 4.1, the

dataset is based on only six simulations, and is constructed to have the extremes well represented

rather than covering all types of weather. The hope was of course that the neural networks would

be able to interpolate between the extremes, but it cannot be ruled out that the network learns

to falsely correlate certain boundary layer dynamics with the specific weather scenarios in the

training data. If this is the case, then the model might behave in an unexpected way when

encountering different weather situations. Especially the potential temperature and the mixing

ratios for water vapor and liquid water depend on the specific weather situation. Further, we

mainly expect these variables to contribute to a correction to the buoyancy production term,

which should only be relevant in situations when condensation or evaporation occur. Hence,

51 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

these variables should mainly contain information, which is irrelevant for the majority of the

samples. Therefore, it is not unlikely that these variables lead to overfitting.

As described in Section 3.2.1, monitoring of the learning curves is a good way to make sure

that a model does not overfit to features in the training data, which are not present in the vali-

dation data. Here, however, the risk is a different type of overfitting, where the model can overfit

to features present in both the training data and validation data. This is an indication that the

two datasets are not independent, which is of course true since both datasets are sampled from

the same simulations. This will be discussed further in Chapter 6.

As mentioned, the first approach was to include all variables except temperature just as the re-

sults above suggested. The following Sections 4.4.1-4.4.5 describe how this model was optimized.

However, when the model was implemented in WRF, the results were far from satisfying, and

this lead to the hypothesis that the neural networks had overfitted. Therefore, as an attempt

to improve the results of the model, a new model was constructed without the input variables,

which were believed to cause the overfitting. This model, described in detail in Section 4.4.6,

only takes q, B, S, z, u∗ and Q0 as inputs. Several of the results obtained in the sections

4.4.1-4.4.5 are assumed to be valid for this model, but some adjustments are made.

4.4 Training and optimizing the model

Hyperparameter optimization is a complex task, since, generally, the hyperparameters are in-

terdependent. However, varying too many hyperparameters at once, can make the process both

inefficient and intransparent, while varying too few, one might not find the optimal combination.

As described in Chapter 3, common hyperparameters are learning rate, batch size, optimization

algorithm, activation function, loss function, as well as the size and architecture of the neural

network. Some of these hyperparameters are strongly interdependent, such as learning rate,

batch size, optimization algorithm and loss function. Therefore, the task of finding the best

hyperparameters involves finding a minimum in a high dimensional parameter space.

Generally, there are two approaches to this optimization process: grid search and Bayesian

optimization. The latter covers a range of different optimization algorithms, which estimate a

functional relation between the values of the hyperparameters and model performance. This

so-called object function is unknown and initially assumed uniform but is then gradually altered

as different models are tested [31].

To compare two models with different hyperparameters, in principal, both models need

to be trained until their losses have converged to a minimum value. Therefore, no matter

which method is used, this will be a time-consuming process. To ease this process, the model

optimization was separated into three steps, which will be assumed mutually independent

52 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

• Finding the optimal data processing, data categorization and loss function.

• Examining the relation between model performance and network size.

• Optimizing activation and batch size.

In addition, the learning rate is manually tuned to each combination of hyperparameters as

described in Section 4.4.1. For all three steps, grid search is used to find the optimal hyperpa-

rameter combination. While using an intelligent algorithm to find the best model seem tempting,

one problem with the Bayesian optimization algorithms is that they often require many itera-

tions to find the best combination of hyperparameters. Since this may require many hours of

training on a standard laptop, it was not feasible in this project. In addition, sometimes we

are not only interested in the best model, but rather the relation between model performance

and efficiency. In this case, grid search in the specific parameters related to model size is more

interesting.

Section 4.4.1 describes a quick method for estimating the optimal learning rate for any

given combination of hyperparameters. The Sections 4.4.2 and 4.4.3 explains what is meant by

data categorization and data processing. In Section 4.4.4, the remaining hyperparameters are

described, and in Section 4.4.5 the results of the optimization are shown. The model optimization

is repeated for the model using fewer input variables in Section 4.4.6, and finally in Section 4.4.7,

the best models from each optimization process are compared.

4.4.1 Learning rate and optimizer

It is generally accepted that the learning rate is one of the most important hyperparameters,

since a too small learning rate means that the model risks to get stuck in local minima, and with

a too large learning rate the model will never learn anything. Using an optimization algorithm

with an adaptive learning rate such as Adam should, in theory, help, but even Adam does

depend on the start value of the learning rate as discussed in Section 3.2.1.

As suggested by Smith [30], a linear learning rate scanner is used to estimate the optimal

learning rate for each model run. With this method, only a few epochs are needed to estimate

the optimal learning rate, which means that the learning rate can be optimized without training

the model to convergence. This is very useful, since it allows to quickly determine the optimal

learning rate for any combination of hyperparameters to ensure efficient training. The idea is

to linearly increase the learning rate after the training on each mini-batch and then obtain a

relation between learning rate and loss. The optimal learning rate is then assumed to be located,

where the slope of the learning curve is steepest.

However, as discussed in Section 3.2.1, there is not necessarily one optimal learning rate

and one might consider using a learning rate schedule to make the training more efficient. To

53 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

demonstrate the effect of the learning rate schedule, two different models are trained. The

first model is trained with Adam using the optimal learning rate found using the learning rate

scanner, and the second is trained with Adam using a triangular cyclic learning rate schedule.

The models are trained on the entire training dataset, both stable and unstable samples.

Aside from the learning rate, the remaining hyperparameters are kept constant, and they are

the same as those described for model 1 in Section 4.4.5.

The optimal learning rate is found by using the linear learning rate scanner for one epoch,

varying the learning rate from 10−6 to 10−2. Figure 4.5 shows the loss as function of the learning

rate, and here we clearly see that there is a range of learning rates, ∼ 4 · 10−5 to ∼ 2 · 10−4, for

which the loss decreases significantly. However, using learning rates far outside of this interval

seem to be inefficient. Thus, the optimal learning rate should be located somewhere in that

interval. A simple algorithm is used to estimate lropt, by finding the learning rate corresponding

to the mean value of the highest and lowest loss. Using this mid-point might not find the steepest

part of the slope, but it ensures that the learning rate chosen is well inside the steep part of the

learning curve and has turned out to be the most robust way of estimating lropt.

10−6 10−5 10−4 10−3 10−2

Learning rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

L
os

s

E (lr)

(E(lropt), lropt)

Figure 4.5: Loss as function of learning rate. The relation is obtained using a linear learning
rate scanner and is used to estimate the optimal learning rate.

The cyclic learning rate schedule makes the learning rate vary between lrbase and γilrmax, where

i is the iteration number, i.e. the training of the i’th mini-batch, and hence γi is an exponentially

decaying factor. lrbase, lrmax and γ are constants that need to be specified. In addition, one

must specify a stepsize δ, which is the number of iterations it takes to increase from lrbase to

lrmax. The stepsize is recommended to be somewhere between 2 and 10 epochs [30], and for this

problem, 5 epochs seemed appropriate. The maximum value is suggested, as a rule of thumb,

not to be more than a factor of two away from the ”optimal” learning rate, or alternatively, one

can estimate lrbase and lrmax from Figure 4.5 as the learning rates, where the efficient learning

54 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

seem to start and stop, for example lrbase = 4 · 10−5 and lrmax = 2 · 10−4. However, in our

case, a much higher maximum value makes the model converge even faster. The constants are

thus set to lrbase = 1/2lropt and lrmax = 10γilropt, respectively. From Figure 4.6, we see that

the learning rate schedule, makes the loss value oscillate quite heavily, but the low values are

significantly lower than when using Adam with lropt. γ is set based on visually estimating when

the learning curve to has flattened significantly. After about 500 epochs, corresponding to 50

cycles, the slope of the learning curve is almost flat, and γ is set so that, at this point, the

amplitude will be 10% of its initial amplitude. Since the stepsize δ is the number of iterations

corresponding to half a cycle, it follows that

γ2·50δ10lrmax = lrmax ⇐⇒ γ = 10
−1
100δ ,

Using a batch size of 1024 and having 2808000 data points, we get δ = 5 ·2808000/1024 ≈ 13711

iterations, which, using the above relation, gives γ ≈ 0.999998.

0 200 400 600 800 1000
Epoch

10−4

L
os

s

Training loss, lr = lropt

Validation loss, lr = lropt

Training loss, lr = clr
Validation loss, lr = clr

4×10−5

Figure 4.6: Learning curves for two identical models trained using different learning rate
strategies. The orange curve show the loss of a model trained with Adam using the learning
rate lropt, whereas the blue curve show the loss of a model trained with Adam using a cyclic
learning rate schedule, clr.

From Figure 4.6, we see that after the 1000 epochs, the model trained with Adam using lropt

is still learning, whereas the model trained with Adam using the cyclic learning rate seems to

have converged. Thus, this method seems to speed up the training significantly. All models

described in the following sections have been trained using Adam with the cyclic learning rate

schedule, clr, where the lrbase and lrmax are found as described above.

55 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

4.4.2 Categorizing the data

The main idea is to categorize the samples in the training dataset based on some physical

condition, and then use a different model for each category. If one of these categories is clearly

underrepresented in the dataset, a model trained on all samples may have difficulties learning

how to ”handle” the underrepresented samples. In addition, if the data can be separated in

a way that makes the problem mathematically less complicated, it will require a less complex

neural network to learn the problem. Thus, this could benefit both accuracy and efficiency.

As described in Section 1, the physical behavior of an unstable atmosphere is fundamentally

different from that of a stable atmosphere, due to the changing role of buoyancy forces. In

addition, out of the ∼ 2.8 · 106 samples in the training dataset, only ∼ 3.4 · 105, about 12%,

are unstable. Therefore, it seems natural to categorize the data depending on the sign of the

buoyancy parameter B.

Further, only ∼ 7.3 · 105 out of the ∼ 2.5 · 106 stable samples, about 29%, has a TKE value

above the minimum value. This is of course due to the fact that most of the free atmosphere

is stable and non-turbulent, however, one can question the importance of the two thirds of the

dataset, where no turbulence is present. Therefore, we suggest to further separate the stable

samples into two categories depending on the presence of turbulence. For the samples with TKE,

a neural network will be trained to predict the turbulent quantities, and for those without, the

turbulent quantities will be set to some minimum values, except the buoyancy production term

that will be parameterized using the vertical gradient of the virtual potential temperature, as

described in Section 4.2.

4.4.3 Pre- and postprocessing

Preprocessing the data is generally necessary to ensure efficient training of neural networks. If

the values of the different input variables differ by orders of magnitude, the gradient of the loss

function becomes highly non-uniform, which can slow down or even completely stop the training

[28]. Therefore, it is generally advised that all input variables are scaled to be mean-centered, i.e.

the mean value is subtracted from all data points. Further, if the distributions of the variables

are approximately normally distributed, then all data points should be divided by the standard

deviation of the variable, and otherwise it should be divided by the maximum absolute value,

such that all data points are in the interval [−1, 1] [28]. In addition, one can imagine that if

the values of the output variables differ by orders of magnitude, the loss functions in Equations

(3.5) and (3.6) will ”focus” mainly on the variables with large values. For that reason, it is

a good idea also to scale the outputs to have values in similar ranges. Thus, a typical data

56 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

normalization would be

xscaled,i =
(xi − xmean)

max(|x|) (4.3)

yscaled,i =
yi

max(|y|) (4.4)

In the Equations (4.3) and (4.4), xi and yi denote one of the input and output variables,

respectively, while the index i runs over all the samples in the training dataset. The scaling

is performed independently for each of the input and output variables. Note that the mean

value is not subtracted before scaling the outputs. This is because the scaling of the outputs

is merely to ensure that all variables are of the same order of magnitude, such that they are

equally weighted when the loss is computed. In the Figures 4.7 and 4.8, respectively, the scaled

input and output variables described in the sections 4.2 and 4.3 are shown.

0.0 0.5 1.0

102

104

106

q

−1.0 −0.5 0.0

102

105

B

0.0 0.5 1.0

102

105

S

−0.5 0.0 0.5 1.0

106

z

0.0 0.5 1.0

103

105

u∗

−1 0 1

103

105

Q0

0.0 0.5 1.0

105

106

Θ

0.0 0.5 1.0

104

105

106

Qv

0.0 0.5 1.0

102

105

Qc

Figure 4.7: Distributions of all the input variables, after the linear scaling from Equation (4.3)
is applied. The histograms are based on all, both the stable and unstable, samples from the
training dataset.

57 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

0.0 0.5 1.0

102

105

Kh

0.0 0.5 1.0

102

105

Km

0.0 0.5 1.0

102

104

106

L

−1.0 −0.5 0.0

102

105

Bp

Figure 4.8: Distributions of all the output variables, after the linear scaling from Equation
(4.4) is applied. The histograms are based on all, both the stable and unstable, samples from
the training dataset.

From the Figures 4.7 and 4.8, we see that for several of both the input and output variables,

the majority of the data points are located in a relatively narrow interval, while a small fraction

of the data points is spread out in a long tail. Note the logarithmic y-axes on both figures.

Thus, referring to the discussion above, this large difference in orders of magnitude may cause

the learning to be inefficient. One solution is to use a nonlinear scaling such as a logarithmic

function. The logarithm does have the properties we are looking for; however, it only allows

scaling of positive values. Hence, for variables with both negative and positive values such as

Q0, B and Bp, the scaling cannot be applied directly. The Q0 distribution, however, does not

have nearly as long tails as the other variables, so for Q0 we will simply omit the logarithmic

scaling. Similarly, we will not use the logarithmic scaling on the Θ. Although, all temperature

values are positive, the temperature values do not cover several orders of magnitude, so there

would be no point in using a nonlinear scaling.

In Section 4.4.2, we discussed separating the dataset in stable/unstable samples depending

on the sign of the buoyancy parameter B. In this case, the logarithmic scaling can be applied

directly for B by using the absolute value. One would imagine that the output variable Bp, i.e.

the buoyant production term in the TKE equation, had the same sign as the buoyancy parameter

B, but this is not the case for all samples. In Figure 4.9, the output variable distributions are

shown for the two different cases. Although these cases with the ”wrong” sign are rare, they

prevent the use of logarithmic scaling. For the stable samples, ∼ 1.7 · 104 out of the ∼ 2.5 · 106,

or ∼ 0.7% of the samples has Bp values with the ”wrong” sign, while for the unstable case it

is only 91 samples out of the ∼ 3.4 · 105, or ∼ 0.03%. Since the fraction of these samples is

58 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

so small, and because the numerical values of these production terms are also relatively small,

these values are simply to set to a ”minimum” value with the ”correct sign”, such that the

logarithmic scaling can be applied.

0.0 0.5 1.0

102

105

Kh

0.0 0.5 1.0

102

105

Km

0.0 0.5 1.0

102

104

106

L

−1.0 −0.5 0.0

102

105

Bp

0.0 0.5 1.0

101

103

105

Kh

0.0 0.5 1.0

101

103

105

Km

0.0 0.5 1.0

102

104

L

0.0 0.5 1.0

102

104

Bp

Figure 4.9: Distributions of output variables for all stable samples (left) and unstable samples
(right), after the linear scaling from Equation (4.4) is applied. Note that each of the datasets
are divided by its own maximum absolute value. The histograms are based on all samples from
the training dataset.

To demonstrate the effect of the logarithmic scaling, the distributions for the unstable samples

are shown in the Figures 4.10 and 4.11, while the distributions for the stable samples are shown

in Appendix C.

After the logarithmic scaling of the inputs, the scaling from (4.3) is applied, while for the

outputs the logarithmic scaling is applied after (4.4) is applied. Now, one might notice that

several of the variable distributions still has relatively long tails. However, before the tails

represented extreme values, where turbulence is typically important, whereas now the tails

represent physical values very close to zero. Thus, these ”outliers” are cases where the exact

physical value is not really of importance.

59 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

−1.0 −0.5 0.0

103

105

q

−1.0 −0.5 0.0 0.5

103

105
B

−1 0
102

103

104

105
S

−0.5 0.0 0.5 1.0

101

103

105
z

−1.0 −0.5 0.0 0.5

103

105

u∗

−1 0 1

103

105

Q0

−0.5 0.0 0.5 1.0

102

104

Θ

−1.0 −0.5 0.0 0.5

103

104

105
Qv

0.0 0.5 1.0

103

104

105

Qc

Figure 4.10: Distributions of all the input variables. First the logarithmic scaling is applied
and then the linear scaling from Equation (4.3). The histograms are based on all unstable
samples from the training dataset. Similar histograms for the stable samples are shown in
Appendix C.

−10 −5 0

102

104

Kh

−10 −5 0

103

105

Km

−4 −2 0

103

105
L

−10 −5 0

103

105

Bp

Figure 4.11: Distributions of all the output variables. First the linear scaling from Equation
(4.4) is applied, and then the logarithmic scaling. The histograms are based on all unstable
samples from the training dataset. Similar histograms for the stable samples are shown in
Appendix C.

60 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

4.4.4 Other hyperparameters

Once the optimal data processing is found, we are ready to optimize the remaining hyperpa-

rameters.

Loss function

The first thing tested is the loss function, since we want to make sure that the optimal metric is

used to compare the models in the further optimization process. Generally, mean squared error

or mean absolute error, Equations (3.5) and (3.6), work well for regression problems. But when

we use a nonlinear scaling of the outputs, we have a new choice to make: should we minimize

the error on the scaled values or should we compute the physical values first and minimize the

error on those?

Network size

The optimization of the network size might involve a trade-off between accuracy and compu-

tational cost, since the smaller the network gets, the less it will be able to learn, while on the

other hand a very large network might be computationally heavy. Larger network, however, are

also more likely to overfit.

We want to examine this relation between model performance and network size and maybe

find an ”upper limit”, where adding more model parameters either leads to overfitting or just

does not improve the model performance. 9 different models are trained: with 1, 2 and 3 hidden

layers, and with 25, 50 and 100 nodes in each layer.

Batch size

The batch size is the number of samples that are used to compute the gradient of the loss

function. Thus, the smaller the batch size, the more noise is introduced in each iteration as

consequence of incorrect estimation of the gradient. The batch size also changes the number of

iterations per epoch, and therefore different batch sizes most likely result in different numbers

of epochs before convergence. In this study, batch size did not seem to play an important role

for the model performance, which is why the first part of the optimization was done with a fixed

batch size. However, to make sure that as many options as possible are tested, we here compare

4 models trained with different batch sizes.

Activation

The activation function is, as described in Section 3, what enables the network to learn nonlin-

earities. Therefore, one would imagine that the choice of activation function is important for

61 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

the model performance. To test this, we train four models with different activation functions.

The different activation functions tested are ReLU, leakyReLU, sigmoid and tanh.

It should be noted that all activations are tested in a model setup, that has been found in

the optimization process described above, using the activation function ReLU. Hence, it cannot

be excluded that a model with another activation function would perform better in a network

of different size, and we can therefore only conclude which of the activation functions that work

best in combination with this specific network architecture.

4.4.5 Model optimization

As described, the model optimization will be done in three steps. However, for all combinations

of hyperparameters, the learning rate will be tuned to the specific model, before the training

begins, and the cyclic learning rate schedule will be used to ensure efficient training.

Step 1: Finding the optimal data processing, data categorization and loss function.

To test the effects of the data categorization, the different pre- and postprocessing approaches

and the impact of the loss function, six different models are trained. In Table 4.3, the model

setups are listed. The models are constructed such that model 1 is based on the simplest, most

”naive” approach. For model 2, 3, etc., different features are then gradually added.

Table 4.3: First column is the model number. Second column tells us, how the data is cat-
egorized: None means one model is used for all samples. Stability means that two different
models are used for stable/unstable samples. Stability and TKE means stable samples are
further divided into samples with/without TKE. Third column shows the data processing, and
the fourth column shows the loss function used. mse is mean squared error, while mae is mean
absolute error.

Data categorization Pre- and postprocessing Loss function

Model 1 None Linear scaling mse on physical values

Model 2 Stability Linear scaling mse on physical values

Model 3 Stability Logarithmic scaling mse on log-scaled values

Model 4 Stability and TKE Logarithmic scaling mse on log-scaled values

Model 5 Stability and TKE Logarithmic scaling mse on physical values

Model 6 Stability and TKE Logarithmic scaling mae on physical values

For the remaining hyperparameters, i.e. network size, batch size and activation, we use what

initial trial and error suggested works well for this specific problem. This is a batch size of 1024

samples, a network with 2 layers with 50 nodes in each, and the ReLU activation function. The

number of epochs was estimated visually from the slope of the learning curves. All models in

62 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

both step 1, 2 and 3 are trained for 1500 epochs. However, the ”best” model is not considered

the final model but instead the model out of the 1500, which has the lowest validation loss.

In Section 4.3, we compared the convergence values of the validation loss to determine, which

model had the lowest error on the prediction. Now, the actual loss values cannot be compared,

since the models use different scaling of the output variables and are optimized using different

loss functions. Therefore, to compare the performance of the models, all outputs are rescaled to

the physical values, and a set of statistical error measures is computed

l1 =

∑M
m=1

∣∣∣ψ̂m − ψm∣∣∣∑M
m=1 |ψm|

,

l2 =

√√√√√∑M
m=1

(
ψ̂m − ψm

)2

∑M
m=1 ψ

2
m

,

r =

∑M
m=1

(
ψ̂m − ψ̂

) (
ψm − ψ

)√∑M
m=1

(
ψ̂m − ψ̂

)2
√∑M

m=1

(
ψm − ψ

)2 . (4.5)

Note that the sum is not over the input and output vectors ym and ŷm as in Equation (3.5)

and (3.6). Instead, Equation (4.5) computes the statistics of each individual output variable,

denoted ψ. The hat still denotes the predicted value, and the overbar means the average value of

the variable. The l1 and l2 measures are essentially the normalized mean absolute error and root

mean square error, rmse, which allows for easier comparison between the different variables. r

is the Pearson correlation coefficient.

Since the physical quantities of interest are the fluxes rather than the diffusivities, the heat

and momentum fluxes are estimated by multiplying the diffusivities with the gradients. Instead

of computing the turbulent fluxes for each of the wind components, the magnitude of the kine-

matic momentum flux is considered Km

√
S = Km

√
(∂U/∂z)2 + (∂V/∂z)2. And instead of the

actual heat flux, we consider the flux of virtual potential temperature by computing KhB ∝ wθv.
In addition, the diffusion term from the TKE Equation, ε ∝ q3/L is computed. In Table 4.4,

the evaluation of the models from Table 4.3 is shown. The independent test dataset is used for

the comparison.

In Table 4.4, we see that each new ”feature” added from model 1 to model 4 improves the

performance of the model, and by far the largest improvement is applying the logarithmic scaling

(from model 2 to 3). It is very interesting to note the difference between the performance of

model 3 and model 4. Whereas model 3 uses one neural network for all the stable samples,

model 4 only uses a neural network for the stable samples with non-zero TKE, while for the

remaining samples Kh, Km, and L are set equal to some minimum values. These minimum

63 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

values are set to the mean values of the variables in the part of the data set with no TKE. The

buoyant production term is parameterized as Bp = KhB. The two models use the exact same

neural network for the unstable samples. To understand why the result is better when not using

a model for the zero-TKE samples, we should examine the performances of model 3 and model

4 on the stable samples with/without TKE. In Table 4.5, the rmse for model 3 and 4 on these

two datasets are shown.

Table 4.4: Performance of the models tested in the first step of the model optimization. The
model specifications are explained in Table 4.3. For each variable and each error measure, the
best performance is highlighted with red color, and the worst is highlighted with blue.

Stat Kh Km L Bp −KhB Km

√
S q3/L

Model 1 l1 0.2713 0.2861 0.1261 0.2835 0.4481 0.9068 0.2849
l2 0.2986 0.3154 0.1598 0.2303 1.011 5.289 4.877
r 0.9508 0.9438 0.9841 0.9733 0.6927 0.1277 0.3667

Model 2 l1 0.2275 0.3206 0.1120 0.2261 0.5495 1.218 0.2263
l2 0.2250 0.2762 0.1476 0.1915 0.6040 8.798 0.7186
r 0.9727 0.9580 0.9864 0.9820 0.8598 0.2382 0.8736

Model 3 l1 0.06222 0.04390 0.1168 0.05586 0.07348 0.02881 0.07455
l2 0.1188 0.1136 0.1843 0.1082 0.1712 0.06836 0.1198
r 0.9924 0.9930 0.9793 0.9943 0.9853 0.9978 0.9927

Model 4 l1 0.05847 0.04058 0.1124 0.04618 0.06845 0.02351 0.05988
l2 0.1096 0.08420 0.1555 0.06163 0.1595 0.03453 0.1123
r 0.9935 0.9962 0.9850 0.9981 0.9872 0.9994 0.9939

Model 5 l1 0.08943 0.07602 0.1212 0.09739 0.1960 0.4034 0.1119
l2 0.1191 0.09794 0.1545 0.1364 0.2993 0.7136 0.1742
r 0.9924 0.9948 0.9851 0.9907 0.9627 0.9837 0.9844

Model 6 l1 0.04779 0.03089 0.09572 0.03554 0.05976 0.01854 0.05179
l2 0.1053 0.06758 0.1360 0.05390 0.1589 0.01868 0.09625
r 0.9941 0.9975 0.9887 0.9985 0.9873 0.9999 0.9954

Table 4.5: Performance of model 3 and model 4 on two different subsets of the data: stable
samples without TKE, and stable samples with TKE. Instead of the statistical measures from
Equation (4.5), the rmse is compared here, since the order of magnitude of the error is very
different on the two datasets.

Kh Km L Bp −KhB Km

√
S q3/L

Model 3, TKE ∼ 0 7.09E-4 9.07E-4 8.11E-2 3.47E-8 4.44E-8 1.74E-8 1.95E-6
Model 4, TKE ∼ 0 1.64E-3 4.84E-3 0.299 3.28E-7 3.34E-7 3.29E-7 1.23E-5
Model 3, TKE > 0 3.02 2.37 6.69 1.00E-4 1.73E-4 1.52E-3 4.31E-2
Model 4, TKE > 0 2.65 1.63 5.37 5.22E-5 1.61E-4 7.37E-4 4.03E-2

As expected, we see from Table 4.5 that model 3 of course performs significantly better on the

samples without TKE, as the rmse is almost an order of magnitude larger for all variables for

64 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

model 4. However, the errors are of very small magnitude in both cases, since the variables are

essentially just very close to zero. For the samples with TKE, on the other hand, model 4 is

significantly better than model 3. Thus, the benefit from separating the dataset according to

TKE value is larger than the loss in accuracy by setting the low values to constants. And if one

takes into account the computational saving by only using a neural network for about a third

of the model levels, model 4 is clearly preferable.

Comparing the last three models in 4.4, which differ only in choice of loss function, we see

that model 6 performs best for all variables, regardless of which statistical measure we look at.

Thus, the mean absolute error of the physical values is the loss function that give the best model

performance.

Step 2: Examining the relation between model performance and network size.

To optimize the network size, 9 different models are tested. Except for the model size, all 9

models are identical model 6 in step 1. Since the same datasets, scaling and loss function are

used for all models, the convergence values of the losses can now be compared directly. In

Figure 4.12, the learning curves for all 9 models are plotted together for stable samples (left)

and unstable samples (right). Both the loss on the training set and validation set are shown.

For both the stable and unstable samples, we clearly see that the performance improves, when

more layers or nodes are added to the network. Note, however, that for the largest networks,

0 200 400 600 800 1000 1200 1400
Epoch

2×10−3

3×10−3

4×10−3

6×10−3

L
os

s

Stable

1 layer, 25 nodes
1 layer, 50 nodes
1 layer, 100 nodes
2 layers, 25 nodes
2 layers, 50 nodes
2 layers, 100 nodes
3 layers, 25 nodes
3 layers, 50 nodes
3 layers, 100 nodes

0 200 400 600 800 1000 1200 1400
Epoch

10−2

L
os

s

Unstable

1 layer, 25 nodes
1 layer, 50 nodes
1 layer, 100 nodes
2 layers, 25 nodes
2 layers, 50 nodes
2 layers, 100 nodes
3 layers, 25 nodes
3 layers, 50 nodes
3 layers, 100 nodes

Figure 4.12: Learning curves for models with different numbers of layers and nodes, trained on
stable samples (left) and unstable samples (right). The losses on the training set is drawn as
the thick solid lines, and the legends show the corresponding model setup. The thinner dashed
lines show the loss on the validation set.

65 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

the training loss continues to decrease, while the validation loss stabilizes, e.g. the networks

with 2− 3 layers and 100 nodes per layer. This is a sign of overfitting, since the networks start

learning patterns that are present only in the training data. Although the larger networks do

perform better on the validation data, overfitting should of course be avoided.

The model with 3 layers and 25 nodes and the model with 2 layers and 50 nodes both seem to

be good choices for a well performing model that does not overfit to the training data.

The number of layers and number of nodes, however, does not directly indicate the number

of computations needed to make a prediction. Therefore, in Figure 4.13, the loss is plotted as

function of the number of model parameters. The exact time it takes to make a prediction will

depend on how the model is implemented. The computations needed depend on the structure

of the network as well, since the weights are multiplied with the nodes, whereas the biases are

added to the nodes. In addition, vectorization might not be equally efficient for different matrix

sizes. However, as a rough approximation, the prediction time is assumed to scale with the

number of model parameters. The losses are computed on the test dataset, and the exact values

therefore might differ from those in Figure 4.12. The models compared in Figure 4.13 are those

that performed best on the validation set. Hence, the risk of overfitting to the training data

should be reduced.

0 5000 10000 15000 20000
Number of model parameters

0.0015

0.0020

0.0025

Te
st

lo
ss

Stable

1 layer
2 layers
3 layers

0 5000 10000 15000 20000
Number of model parameters

0.004

0.005

0.006

Te
st

lo
ss

Unstable

1 layer
2 layers
3 layers

Figure 4.13: Loss as function of the number of model parameters, for stable samples (left) and
unstable samples (right). The colors indicate the number of layers in the model.

It looks like the models with only 1 layer does not perform as well as those with 2 and 3 layers,

even when they have a comparable number of model parameters. When evaluated on the test

data, the largest models actually perform either similar to or slightly worse than the smaller

models, although they performed better on both the training and validation datasets. This is a

very interesting result: it means that when the model starts to overfit to the training data, it is

not sufficient to choose the model that performs best on the validation data to avoid overfitting.

We will return to the discussion in Chapter 6. Regardless what the explanation is, it is clear

66 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

that the large networks are not suitable for the problem.

The models with 3 layers and 25 nodes and the model with 2 layers and 50 nodes perform

quite similarly, so the model with 3 layers and 25 nodes is a good compromise between efficiency

and accuracy for both the stable and unstable samples.

Step 3: Optimizing batch size and activation.

Before the model is implemented, different batch sizes are tested to examine, whether this has

an impact for the model performance. In Figure 4.14, four models with different batch sizes are

tested. In addition to 1024, which has been used so far, the batch sizes 256, 512 and 2048 are

tested.

0 200 400 600 800 1000 1200 1400
Epoch

2×10−3

3×10−3

4×10−3

6×10−3

L
os

s

Stable

Batch size = 256
Batch size = 512
Batch size = 1024
Batch size = 2048

0 200 400 600 800 1000 1200 1400
Epoch

10−2

4×10−3

6×10−3

L
os

s

Unstable

Batch size = 256
Batch size = 512
Batch size = 1024
Batch size = 2048

Figure 4.14: Learning curves for models trained with different batch sizes, for stable samples
(left) and unstable samples (right). The losses on the training set is drawn as the thick solid
lines, and the legends show the corresponding batch size. The thinner dashed lines show the
loss on the validation set.

From Figure 4.14, we see that all models converge to roughly the same loss values. Zooming

in, however, we do see a small difference, and in both cases the model trained with batch size

of 2048, does not seem to perform as well as the others. For the unstable samples (right), the

spread is a bit larger, but it does not seem to be systematic. Hence, nothing indicates that a

different batch size will improve the result significantly.

Similarly, in Figure 4.15, we show the results of four models trained with different activation

functions. We see that the ReLU and leakyReLU activations perform slightly better than the

sigmoid and tanh activations. The leakyReLU may perform slightly better than the regular

ReLU function, however, the difference is very small, and since the model training cannot be

expected to be identical every time, nothing definitive can be concluded.

67 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

0 200 400 600 800 1000 1200 1400
Epoch

10−2

L
os

s

Stable

relu
sigmoid
tanh
leakyrelu

0 200 400 600 800 1000 1200 1400
Epoch

10−2

10−1

L
os

s

Unstable

relu
sigmoid
tanh
leakyrelu

Figure 4.15: Learning curves for models with different activation functions, for stable samples
(left) and unstable samples (right). The losses on the training set is drawn as the thick solid
lines, and the legends show the corresponding activation. The thinner dashed lines show the
loss on the validation set.

To sum up, the optimal model for both stable and unstable samples is a neural network consisting

of 3 layers with 25 nodes in each layer. The activation function is the ReLU function, and the

loss function is the mean absolute error evaluated on the physical values, i.e. not the direct

output from the network but the exponential function of the output. In addition, the model was

trained using Adam with the cyclic learning rate schedule and a batch size of 1024 samples.

4.4.6 Developing a model with fewer input variables

As discussed earlier, a model using fewer input variables is developed as an attempt to avoid

potential overfitting to poorly represented input variables. Therefore, for this model, Θ, Qv

and Qc are omitted from the input variables. Since the physical problem is unchanged, it will

be assumed that most of the results obtained in Section 4.4.5 are applicable for this model,

too. Thus, we use the same data categorization, data processing, loss function, batch size and

activation function. However, since the model has fewer input variables, the overall complexity

of the problem is reduced, and the relation between model performance and network size must

be expected to be different. Therefore, the model is tested with the same 9 network sizes as

described in step 2 in Section 4.4.5.

In Figure 4.16, the learning curves for all 9 models are plotted together for stable samples

(left) and unstable samples (right). Both the loss on the training set and validation set are

shown. Again, the number of epochs necessary was estimated visually, but now 1000 epochs

seemed appropriate. The best model is still considered the one that performs best on the

validation data. The result is very similar to that shown in Figure 4.12 for the model including

68 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

more input variables. Note again that the largest networks tend to overfit.

0 200 400 600 800 1000
Epoch

2×10−3

3×10−3

4×10−3

6×10−3

L
os

s

Stable

1 layer, 25 nodes
1 layer, 50 nodes
1 layer, 100 nodes
2 layers, 25 nodes
2 layers, 50 nodes
2 layers, 100 nodes
3 layers, 25 nodes
3 layers, 50 nodes
3 layers, 100 nodes

0 200 400 600 800 1000
Epoch

10−2

3×10−3

4×10−3

6×10−3

2×10−2

L
os

s

Unstable

1 layer, 25 nodes
1 layer, 50 nodes
1 layer, 100 nodes
2 layers, 25 nodes
2 layers, 50 nodes
2 layers, 100 nodes
3 layers, 25 nodes
3 layers, 50 nodes
3 layers, 100 nodes

Figure 4.16: Learning curves for models with different numbers of layers and nodes, trained on
stable samples (left) and unstable samples (right). The losses on the training set is drawn as
the thick solid lines, and the legends show the corresponding model setup. The thinner dashed
lines show the loss on the validation set. Despite the similarity with Figure 4.12, note that the
models here use fewer input variables.

For both the stable and unstable samples, the models with 3 layers and 25 nodes and with 2

layers and 50 nodes again converge to lower loss values than the smaller models. However, for

the stable samples, both models seem to overfit slightly to the training data.

0 5000 10000 15000 20000
Number of model parameters

0.0030

0.0035

0.0040

Te
st

lo
ss

Stable

1 layer
2 layers
3 layers

0 5000 10000 15000 20000
Number of model parameters

0.004

0.005

0.006

Te
st

lo
ss

Unstable

1 layer
2 layers
3 layers

Figure 4.17: Loss as function of the number of model parameters, for stable samples (left) and
unstable samples (right). The colors indicate the number of layers in the model. Despite the
similarity with Figure 4.13, note that the models here use fewer input variables.

69 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

In Figure 4.17, the test loss for each model is plotted as function of the number of model

parameters, which we will use as a measure of the prediction time. Again, we see that the largest

models perform worse on the test data compared to some of the smaller models, suggesting that

these are not suitable for the problem.

Based on the results shown in Figure 4.17, the best model for the stable samples seems to

be the network with 1 layer and 100 nodes, whereas the best model for the unstable samples

seems to be the network with 3 layers and 50 nodes. The latter, however, overfits to the training

data indicating that it might not be the best choice. This is seen from Figure 4.16, where the

training loss (gray solid line) converges to a lower value than the validation loss (gray dashed

line). Instead, the model with 3 layers and 25 nodes is chosen for the unstable samples as a

good compromise between efficiency and accuracy, while avoiding overfit.

For comparison, a smaller model is chosen as well, where the network with 1 layer and 50

nodes is used for the stable samples, and the network with 2 layers and 25 nodes is used for the

unstable samples.

4.4.7 Model comparison

The three models that has been selected as the ”optimal” models in the preceding sections

are compared here, before they are implemented in WRF. Table 4.6 lists the different model

specifications. Note that the names: model 1, 2 and 3 has nothing to do with the earlier

numbering in of the models. The models are compared using the test dataset and the error

measures from Equation (4.5). The results are shown in Table 4.7.

Table 4.6: The table show different model setups for the three ”best” models described in the
preceding sections.

Model size for Model size for
Input variables stable samples unstable samples

Model 1 q, B, S, z, u∗, 3 layers with 3 layers with
Q0, Θ, Qv, Qc 25 nodes in each. 25 nodes in each.

Model 2 q, B, S, z, u∗, Q0 1 layers with 2 layers with
50 nodes in each. 25 nodes in each.

Model 3 q, B, S, z, u∗, Q0 1 layers with 3 layers with
100 nodes in each. 25 nodes in each.

70 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

Table 4.7: Performance of the models described in Table 4.6. For each variable and each error
measure, the best performance is highlighted with red color, and the worst is highlighted with
blue.

Stat Kh Km L Bp −KhB Km

√
S q3/L

Model 1 l1 0.04880 0.03095 0.09773 0.03650 0.06123 0.02009 0.05082
l2 0.1060 0.06904 0.1458 0.05529 0.1614 0.05026 0.09857
r 0.9940 0.9974 0.9868 0.9985 0.9869 0.9987 0.9953

Model 2 l1 0.06696 0.04308 0.1474 0.07612 0.09900 0.03718 0.1118
l2 0.1317 0.08510 0.1946 0.09490 0.2183 0.1232 0.1612
r 0.9906 0.9960 0.9762 0.9956 0.9760 0.9933 0.9874

Model 3 l1 0.06659 0.04091 0.1448 0.07704 0.1034 0.03888 0.1097
l2 0.1287 0.08459 0.1922 0.1001 0.2064 0.09866 0.1450
r 0.9911 0.9961 0.9769 0.9952 0.9785 0.9961 0.9894

Not surprisingly, the model including Θ, Qv and Qc as inputs performs significantly better than

the two other models. Further, model 3 performs better than model 2 for most variables, which

is expected since model 3 had a lower loss values on the test data.

In addition, in Figure 4.18 and 4.19, examples of predictions of the neural networks are

plotted. The two examples selected, are those in test dataset with the most extreme surface

stability conditions. Figure 4.18 thus shows an example with statically stable surface conditions,

while Figure 4.19 shows an example with unstable surface conditions. Note, however, that in

the first case, the shear production near the surface is more than a magnitude larger than in

the second case.

0.0 2.5
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.001 0.000
B [s−2]

0.0 0.1
S [s−2]

Inputs

0 50
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 25
Km [m2s−1]

0 50
L [m]

−0.002 0.000
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure 4.18: Example of predictions by the three neural networks. The three plots to the left
show the profiles of the three inputs, q, B and S, while the four plots to the right show the
output variables Kh, Km, L and Bp. Both the ”true” values and the predictions by the three
networks are shown. The specific example shown, is the air column from the test dataset with
the smallest value of the surface sensible heat flux, Q0 ≈ −140W/m2, i.e. most statically
stable surface conditions. The value of the friction velocity for this case is u∗ ≈ 1m/s. The
planetary boundary layer height, pblh, is showed as well. The location is 64°31’N10°41’E (over
the ocean very close to Norway’s west coast), and the time is 2017.01.07 06 UTC.

71 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

0 2
q [ms−1]

0

500

1000

1500

2000

z
[m

]

0.000 0.002
B [s−2]

0.00000.0025
S [s−2]

Inputs

0 50
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 50
Km [m2s−1]

0 50
L [m]

0.000 0.005
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure 4.19: Example of predictions by the three neural networks. Similar to Figure 4.18, but
the example shown here is the one from the test dataset with the largest value of surface sensible
heat flux Q0 ≈ 254W/m2. The value of the friction velocity for this case is u∗ ≈ 0.59m/s. The
location is 53°71’N9°65’E (over Northern Germany), and the time is 2018.07.26 11 UTC.

The Figures 4.18 and 4.19 indicate that model 1 perform best, especially for the stable case,

where model 2 and 3 underestimate the diffusivities and L. For the unstable case, all three

models predict a profile very similar to the ”true” values (the MYNN predictions). It should

be stressed that nothing general can be concluded based on the two examples. When selecting

only two examples from a large dataset, there is a considerable risk of selecting examples that

does show something general. The point of showing the examples, however, is not to conclude

which scheme performs best but merely to visually demonstrate abilities of the neural network

models. A few additional randomly selected examples are shown in Appendix D.

Finally, in Figure 4.20, the predicted values are plotted as function of the true values for

all three models. The plots are based on the independent test dataset. Note the logarithmic

axis on the colorbar. For Kh, the correlation plots and the r2 values are quite similar for the

three models, however, there seem to be a cluster of data points, for which all three models

underestimate the values. For Km, the correlation plots and the r2 values look quite good for all

three models. However, for the predictions of L, we see a much larger variance, indicating that

the neural networks might not have all the necessary information available. Although, the r2

values are somewhat higher for model 1, the correlation plots for L have almost the same ”shape”

for the three models. This suggests that the three models have problems with same categories of

data points. Hence, the large deviations do not seem to be related to the presence of the input

variables Θ, Qc and Qv. Instead, this could be because only local variables are selected as inputs

to the model. Recall from the expression of the turbulent length scale in Equation (1.36), that

L also depends on the turbulent structure of the vertical profile, suggesting that some non-local

information would be useful. For Bp, all three models seem to give good predictions for the

72 of 137

4.4. TRAINING AND OPTIMIZING THE MODEL

statically unstable samples (positive values), while for the stable samples, model 2 and model

3 does appear to give slightly worse predictions. This may very well be related to the missing

input variables Θ, Qc and Qv. However, the Bp predictions of model 2 and 3 still look reasonable

and both have r2 values exceeding 0.99.

0 250 500
True

0

200

400

600

Pr
ed

ic
tio

n

Kh

0 250 500 750
True

0

200

400

600

800

Km

0 100 200
True

0

50

100

150

200

L

−0.02 0.00
True

−0.02

−0.01

0.00

Bp

100

101

102

103

104

105

106r2 = 0.9880 r2 = 0.9948 r2 = 0.9738 r2 = 0.9970

0 250 500
True

0

200

400

600

Pr
ed

ic
tio

n

Kh

0 250 500 750
True

0

200

400

600

800

Km

0 100 200
True

0

50

100

150

200

L

−0.02 −0.01 0.00
True

−0.01

0.00

0.01

Bp

100

101

102

103

104

105

106r2 = 0.9813 r2 = 0.9920 r2 = 0.9529 r2 = 0.9912

0 250 500
True

0

200

400

600

Pr
ed

ic
tio

n

Kh

0 250 500 750
True

0

200

400

600

800
Km

0 100 200
True

0

50

100

150

200

L

−0.02 −0.01 0.00
True

−0.01

0.00

0.01
Bp

100

101

102

103

104

105

106r2 = 0.9823 r2 = 0.9922 r2 = 0.9543 r2 = 0.9904

Figure 4.20: Correlation plots showing predictions as function of true values. The plots are constructed
as 2D histograms to be able to see the density of data points in different locations (note that the colorbar
axis is logarithmic). The first row are predictions by model 1, the second row by model 2, and the third
row by model 3. The plots are based on predictions on the independent test dataset, and the errors and
correlation values therefore correspond to those shown in Table 4.7.

73 of 137

Chapter 5

Implementation and test

To evaluate the performance of the neural networks, it is not enough to test them on an inde-

pendent dataset sampled from new simulations with WRF. This would only give an estimate of

the errors after one time step, but if the neural networks have systematic errors, it may cause

feedback mechanisms and induce model drift. We will discuss this further in Chapter 6. There-

fore, the three neural network based PBL schemes have been implemented in WRF and tested

against some of the existing PBL scheme options in WRF.

In Section 5.1, we will describe the methods used to compare the different PBL schemes.

Next, Section 5.2 briefly describes how the neural network based schemes are implemented in

WRF. In Section 5.3, all three neural network based PBL schemes are compared to simulations

made with the MYNN scheme. The predictions of the scheme that performs best are then

compared to both the MYNN scheme and to two other PBL schemes in Section 5.4. Finally, in

Section 5.5, we compare the computational cost of the different PBL schemes.

5.1 Method for model comparison

We will use the term ANN PBL schemes (artificial neural networks) for the neural network

based parameterizations. Two simulations have been performed with each of the ANN schemes

as well as with the MYNN scheme. Assuming that the MYNN scheme predicts the truth, we

can estimate the ”error” of the predictions for each scheme. Although this assumption might

generally not be true, it is justified in our case, since the neural networks try to imitate the

MYNN scheme.

The simulations were performed with the same setup as for the data generation described

in Section 2.3. The domain, however, was extended to cover most of Europe, to examine the

limitations of the ANN schemes, see Figure 5.1. Two different weather scenarios were selected

as test cases, one during summer and the other during winter (initial times: 2017.01.11 and

2018.08.02 at 06 UTC). None of these dates were used for the generation of training data, since

we want to get a truly independent estimate of the performance.

74 of 137

5.1. METHOD FOR MODEL COMPARISON

Figure 5.1: Domain used for testing the neural network based PBL schemes.

The PBL scheme is particularly important for the prediction of surface energy balance, and

therefore we will look at the surface fluxes of sensible heat and latent heat as indicators of each

scheme’s performance. Also the friction velocity u∗ and the planetary boundary layer height,

pblh, will be considered, since the friction velocity is the square root of the kinematic surface

momentum flux, and the pblh indicate whether the scheme captures the overall boundary layer

dynamics (described further in Section 5.4). In addition, we will look at the 2m temperature

and the 10m wind, since these depend on the accumulated effects of the surface fluxes

In Section 5.3 and 5.4, we will visually compare the predictions by showing maps of the

different variables described above. In addition, we compute the root mean square error, rmse,

and the pattern correlation coefficient, r

rmse =

√∑
i

∑
j

(
ψ̂ij − ψij

)2
, r =

∑
i

∑
j

(
ψ̂ij − ψ̂

) (
ψij − ψ

)√∑
i

∑
j

(
ψ̂ij − ψ̂

)2√∑
i

∑
j

(
ψij − ψ

)2 , (5.1)

where ψij and ψ̂ij are the ”true” value and the predicted value of some variable, valid at the

location with horizontal indexes i, j. The rmse is a measure of the magnitude of the average

”error”, whereas r indicates how similar the overall features in the two fields are, i.e. it considers

the spatial pattern of the anomalies rather than the magnitude. However, one must be careful

when interpreting rmse and r. Running two different numeric models for a chaotic system will

inevitably give different results. So, how do we evaluate the model, when we know that its

75 of 137

5.2. IMPLEMENTING NEURAL NETWORKS IN WRF

prediction will eventually diverge from the ”target” field? In addition to visually evaluating

whether the predictions look physically realistic, one can try to determine whether the solutions

diverge too fast. For this purpose, the same simulations are also performed with two different

PBL scheme options in WRF. By comparing the MYNN scheme to these two other PBL schemes,

we get an estimate of the general ”level of agreement” between the already existing PBL scheme

options. The two additional PBL schemes used are the MYJ scheme [16], which is similar to the

MYNN scheme in the sense that it is based on the original Mellor-Yamanda papers and has TKE

as a prognostic variable, and the YSU scheme [15], which is a first order closure model. Further,

in Section 5.4, a few examples of profiles of temperature and wind speed will be compared

visually to examine whether the ANN scheme produces physically realistic profiles.

It should be noted that several of the PBL scheme options in WRF are only compatible with

specific surface flux schemes. Therefore, the simulations performed with the MYJ and YSU

schemes each uses a different surface flux scheme, which is compatible with the specific PBL

scheme.

5.2 Implementing neural networks in WRF

In Chapter 4, we developed three models that use neural networks to predict the diffusivi-

ties. However, to construct a complete PBL scheme, the tendencies also need to be computed.

Further, the neural networks need turbulence kinetic energy as input, and this variable is not

described in the initial state. However, the original Fortran module for the MYNN scheme1

already contains subroutines for computing the tendencies and estimating the TKE for the first

time step. Thus, the easiest way to construct the ANN scheme was to use the Fortran module for

the MYNN scheme as the basis and then substitute the relevant subroutines with new subrou-

tines making predictions with the neural networks. In the original MYNN module, there is one

subroutine computing the diffusivities and the turbulent length scale, and another subroutine

computing βθ and βq (the partial-condensation scheme). Thus, in the ANN scheme, the neural

networks substitute both of these subroutines, while the remaining code is kept as the original

with a few minor changes.

As described in Section 3.1, making predictions with a neural network simply consists of a

sequence of matrix products followed by activations. Thus, the weight matrices and bias vectors

must be defined in the Fortran module, and then they need to be assigned the specific values

found during training of the neural networks. We test two different functions for computing

matrix products in Fortran; the first is Fortran’s intrinsic matmul() function, and second is

the sgemm() function from the OpenBLAS library (Basic Linear Algebra Subprograms). This

library provides optimized functions for linear algebra operations [23].

1The source code can be found on WRF’s official GitHub-page [22]

76 of 137

5.3. COMPARISON OF THE THREE ANN SCHEMES

5.3 Comparison of the three ANN schemes

First, we want to find the best of the three models found in the previous Chapter. The neural

network based PBL schemes will be denoted ANN1, ANN2 and ANN3, where the numbers

corresponds to the model numbers 1, 2 and 3 in Section 4.4.7.

As described in Section 5.1, two simulations are performed for each PBL scheme, with initial

times 2017.01.11 06 UTC and 2018.08.02 06 UTC, respectively. Each simulation is runs for 24

hours. Figure 5.2 shows plots of predictions (from the first simulation) of the surface fluxes

of sensible heat and latent heat, the friction velocity and the planetary boundary layer height.

The predictions are valid at 2017.01.12 06 UTC, i.e. 24 hours after the initial time. The left

column shows the predictions of the MYNN scheme, while the three other columns show the

difference between the prediction and the ”true” value (predictions by the MYNN scheme). The

differences are computed as predANN − predMYNN , such that positive anomalies mean that the

scheme predicts too high values.

From Figure 5.2, we see that the predictions of the ANN1 scheme differs much more from the

MYNN scheme, than the two other ANN schemes. Recall from Section 4.4.7 that model 1 was the

model using Θ, Qv and Qc as additional input variables. Thus, the results support the hypothesis

that model 1 have overfitted to the training dataset and therefore behaves unexpectedly in a

new weather scenario. The sign of the anomalies indicate that the surface fluxes are generally

underestimated. It should of course be noted that the surface fluxes are not computed by

the neural networks directly, but by the surface flux scheme, which is identical in the four

simulations. However, the surface fluxes depend on the atmospheric state near the surface, and

therefore the surface fluxes do depend strongly on the PBL scheme as well. The anomaly fields

of ANN2 and ANN3 are quite similar, and it looks like the errors are of approximately the same

magnitude.

One can imagine that systematically underestimating the surface fluxes will lead to large

anomalies in the surface fields of temperature, moisture and wind. In Figure 5.3, the 2m

temperature and 10m wind fields are shown, also 24 hours after the initial time. For the wind

fields, both wind speed and direction are shown. As expected, the predictions of the ANN1

scheme show large anomalies in the temperature and wind fields, especially in the areas where

the surface fluxes have large anomalies. In Figure 5.3, the anomaly plots for ANN2 and ANN3

are also noticeably different. The latter definitely have larger anomalies after the 24 hours,

which is quite interesting, since model 3 (using the largest neural networks) performed better

on the test dataset than model 2, see Section 4.4.7. Thus, these results suggest that the larger

neural networks in model 3 have somewhat overfitted to the training dataset, although to much

lesser extent than model 1. This of course raises the question of whether the neural networks

in model 2 might also to some extent have overfitted? We will return to this question in the

discussion in Chapter 6.

77 of 137

5.3. COMPARISON OF THE THREE ANN SCHEMES

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

-671
-494
-317
-141
36
213
390
566

-427
-313
-199
-85
28
142
256
370

surface sensible heat flux, 2017.01.12 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

-77
25
126
228
329
431
532
634

-464
-340
-216
-93
31
155
278
402

surface latent heat flux, 2017.01.12 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

0
0
1
1
1
1
2
2

-2
-1
-1
-0
0
1
1
2

surface friction velocity, 2017.01.12 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

0
393
785
1178
1570
1963
2356
2748

-2918
-2140
-1362
-584
195
973
1751
2529

PBL height, 2017.01.12 06 UTC

Figure 5.2: Predictions of surface sensible heat flux (first row), surface latent heat flux (second
row), surface friction velocity (third row) and pblh (fourth row). First column show plots of
the predictions of the MYNN scheme, while the three next columns shows the anomaly fields
for the three ANN schemes, computed as pred

ANN
− pred

MYNN
. All predictions are valid at

2017.01.12 06 UTC, i.e. 24 hours after the initial time. The names ANN1, ANN2, ANN3
correspond to the model numbers in Section 4.4.7.

78 of 137

5.3. COMPARISON OF THE THREE ANN SCHEMES

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

241
250
258
267
275
284
292
301

-15
-11
-6
-1
4
8
13
18

2m temperature, 2017.01.12 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

0
4
7
11
15
18
22
26

-20
-15
-9
-4
1
7
12
17

10m wind, 2017.01.12 06 UTC

Figure 5.3: Similar to Figure 5.2, except that first row shows predictions of 2m temperature,
and second row shows predictions of 10m wind.

As described in Section 5.1, the rmse and r of the predictions are computed for all three ANN

schemes, for all time steps. In Figure 5.4, these measures are shown as function of number of

hours after initial time. As expected, the predictions of the ANN1 scheme have much higher

rmse and lower r values compared to the other schemes. However, notice that the errors

are large (and the correlations are low) already from the beginning and then almost constant

throughout the simulation. This is not the case for the other schemes, where the errors increase

(and the correlations decrease) as time goes. The ANN2 scheme performs slightly better than

the ANN3 scheme for most variables, having both lower rmse and higher correlation with the

MYNN scheme’s prediction. For the 2m temperature and the 10m wind, WRF also outputs the

initial fields, and Figure 5.4 shows that the errors of the predictions are non-zero even before

the simulation begins, for all three ANN schemes. This is because of WRF’s digital filtering

initialization, DFI, which is applied before the simulation is started.

For the second test case, initiated at 2018.08.02 06 UTC, the simulation with the ANN1

scheme was interrupted/crashed within the first 3 hours of simulation. Figure 5.5 show the 2m

temperature for the initial time and the predictions after 1 and 2 hours for the MYNN scheme

and all three neural networks. As before, the first column show the predictions of the MYNN

scheme, while the other columns show anomalies. Here, we clearly see that the ANN1 scheme

causes the surface temperatures to grow to unphysical values, and 2 hours into the simulations

79 of 137

5.3. COMPARISON OF THE THREE ANN SCHEMES

0 5 10 15 20

0.7

0.8

0.9

1.0

Pa
tte

rn
 c

or
re

la
tio

n

surface sensible heat flux

0 5 10 15 20
Time since simulation start [hours]

0

20

40

60

rm
se

 [W
/m

2]

ANN1
ANN2
ANN3

0 5 10 15 20
0.4

0.6

0.8

1.0

Pa
tte

rn
 c

or
re

la
tio

n

surface latent heat flux

0 5 10 15 20
Time since simulation start [hours]

0

50

100

rm
se

 [W
/m

2]

ANN1
ANN2
ANN3

0 5 10 15 20

0.6

0.8

1.0

Pa
tte

rn
 c

or
re

la
tio

n

surface friction velocity

0 5 10 15 20
Time since simulation start [hours]

0.1

0.2

0.3

0.4

rm
se

 [m
/s

] ANN1
ANN2
ANN3

0 5 10 15 20
0.0

0.5

1.0

Pa
tte

rn
 c

or
re

la
tio

n

PBL height

0 5 10 15 20
Time since simulation start [hours]

200

400

600

rm
se

 [m
]

ANN1
ANN2
ANN3

0 5 10 15 20
0.925

0.950

0.975

1.000

Pa
tte

rn
 c

or
re

la
tio

n

2m temperature

0 5 10 15 20
Time since simulation start [hours]

1

2

3

rm
se

 [K
]

ANN1
ANN2
ANN3

0 5 10 15 20

0.7

0.8

0.9

1.0

Pa
tte

rn
 c

or
re

la
tio

n

10m wind

0 5 10 15 20
Time since simulation start [hours]

2

4

6

rm
se

 [m
/s

] ANN1
ANN2
ANN3

Figure 5.4: The plots in show the root mean square error, rmse and the pattern correlation,
r as function of number of hours since the initial time. The titles indicate for which variable
the measures are computed, and the legends show for which PBL scheme. Each title applies
to the two plots below, showing r and rmse, respectively. The plots in this figure are based
on the simulations initiated at 2017.01.12 06 UTC.

80 of 137

5.3. COMPARISON OF THE THREE ANN SCHEMES

it is locally up to 49K higher than the true temperature. It is not difficult to imagine that when

the increasing temperatures are fed as input to the neural networks, it will gradually cause a

higher degree of extrapolation, which might result in some unpredictable positive feedback loop.

This is discussed further in Chapter 6. Note again that even the initial temperature fields are

significantly different because of the DFI.

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

266
277
288
300
311
322
334
345

-43
-30
-16
-3
10
23
36
49

2m temperature, 2018.08.02 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

266
277
288
300
311
322
334
345

-43
-30
-16
-3
10
23
36
49

2m temperature, 2018.08.02 07 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN1

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

266
277
288
300
311
322
334
345

-43
-30
-16
-3
10
23
36
49

2m temperature, 2018.08.02 08 UTC

Figure 5.5: Predictions of surface sensible heat flux (first row), surface latent heat flux (second
row), surface friction velocity (third row) and pblh (fourth row). First column shows plots of
the predictions of the MYNN scheme, while the three next columns show the anomaly fields
for the three ANN schemes, computed as pred

ANN
− pred

MYNN
. All predictions are valid at

2017.01.12 06 UTC, i.e. 24 hours after the initial time. The names ANN1, ANN2, ANN3

correspond to the model numbers in Section 4.4.7.

81 of 137

5.3. COMPARISON OF THE THREE ANN SCHEMES

0 5 10 15 20

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface sensible heat flux

0 5 10 15 20
Time since simulation start [hours]

10

20

rm
se

 [W
/m

2] ANN1
ANN2

0 5 10 15 20

0.98

0.99

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface latent heat flux

0 5 10 15 20
Time since simulation start [hours]

5

10

15

20

rm
se

 [W
/m

2]

ANN1
ANN2

0 5 10 15 20
0.94

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface friction velocity

0 5 10 15 20
Time since simulation start [hours]

0.02

0.03

0.04

rm
se

 [m
/s

$]

ANN2
ANN3

0 5 10 15 20

0.925

0.950

0.975

1.000

Pa
tte

rn
 c

or
re

la
tio

n

PBL height

0 5 10 15 20
Time since simulation start [hours]

100

200

rm
se

 [m
]

ANN2
ANN3

0 5 10 15 20
0.9925

0.9950

0.9975

1.0000

Pa
tte

rn
 c

or
re

la
tio

n

2m temperature

0 5 10 15 20
Time since simulation start [hours]

0.2

0.4

rm
se

 [K
]

ANN2
ANN3

0 5 10 15 20

0.96

0.98

Pa
tte

rn
 c

or
re

la
tio

n

10m wind

0 5 10 15 20
Time since simulation start [hours]

0.3

0.4

0.5

0.6

rm
se

 [m
/s

] ANN2
ANN3

Figure 5.6: Similar to 5.4, except that the plots are based on the simulations initiated at
2018.08.02 06 UTC.

For the ANN2 and ANN3 schemes, plots of the predicted variables after 24 hours are shown in

Appendix E, but the results are quite similar to those shown in the Figures 5.2 and 5.3. Figures

5.6 show the rmse and r as function of time for the second simulation for ANN2 and ANN3

scheme.

82 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

From both of the Figures 5.4 and 5.6, we see that the ANN2 scheme performs slightly better

than the ANN3 scheme. As expected, the predictions of both schemes have high correlations and

low errors in the beginning, and as time goes, the errors increase, and the correlations decrease.

However, there is a clear dependency on the diurnal cycle as well, especially apparent for the

surface heat fluxes in Figure 5.6. This is natural, since the surface heat fluxes in the summer

are much higher during daytime than during night. Thus, the magnitude of the rmse must be

expected to be larger during daytime as well. Based on the two test cases, we conclude that the

ANN2 scheme is the best performing. Therefore, this is the scheme chosen for further tests in

the following section.

5.4 Evaluation of the best ANN scheme

Now, we show the results of the additional simulations performed with the YSU scheme and the

MYJ scheme. The same test cases as in the previous section are used, but the simulations are

extended to run for 72 hours. The Figures 5.7-5.12 show plots of the predictions of the variables

described in Section 5.1 after 12 and 72 hours. The figures are similar to those in the previous

section, except now each figure show the predictions of just one variable. The plots show the

predictions for the simulations initiated at 2017.01.11 06 UTC, while the predictions for the

simulations initiated at 2018.08.02 06 UTC are shown in Appendix E.

From the Figures 5.7-5.12, we see that the predictions of the ANN scheme generally have

smaller anomalies than the two other schemes. The predictions of MYJ scheme have the largest

anomalies, and especially for the surface heat fluxes it differs quite significantly from the MYNN

scheme. The results for the second simulation, shown in the Figures E.3-E.8 in Appendix E,

show similar tendencies. It must be stressed that we cannot know, which of the PBL schemes is

closest to the actual ”truth”. Therefore, we repeat that the anomalies of the predictions of the

YSU scheme and the MYJ scheme cannot be interpreted as errors. The predictions of the these

schemes are merely used to investigate, whether the anomalies of the predictions of the ANN

scheme are of ”reasonable” magnitude.

Further, in the Figures 5.13 and 5.14, we show the values of rmse and r as function of time,

for the two different test cases. These results show that the predictions of the ANN scheme

have both higher pattern correlation and lower rmse for all the variables, which corresponds

well with the results in the Figures 5.7-5.12.

Thus, we have shown that the ANN scheme’s predictions of fluxes and mean field variables

close the surface are very similar to those obtained by using the existing PBL scheme options

in WRF. Further, when comparing the ANN scheme to the YSU and MYJ schemes, it is the

one that give predictions closest to the MYNN scheme, proving that the neural networks have

learned to emulate the behavior of the scheme quite well.

83 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-670
-492
-314
-137
41
219
397
575

-544
-399
-254
-109
36
181
327
472

surface sensible heat flux, 2017.01.11 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-670
-492
-314
-137
41
219
397
575

-544
-399
-254
-109
36
181
327
472

surface sensible heat flux, 2017.01.14 06 UTC

Figure 5.7: Predictions of surface sensible heat flux after 12 hours (first row), and after 72
hours (second row). First column shows plots of the predictions of the MYNN scheme, while
the three next columns show the anomaly fields for the ANN scheme, YSU scheme and the
MYJ scheme.

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-93
11
116
221
325
430
535
640

-474
-347
-221
-95
32
158
284
411

surface latent heat flux, 2017.01.11 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-93
11
116
221
325
430
535
640

-474
-347
-221
-95
32
158
284
411

surface latent heat flux, 2017.01.14 06 UTC

Figure 5.8: Predictions of surface sensible latent flux after 12 hours (first row), and after 72
hours (second row). Otherwise similar to Figure 5.7.

84 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
0
1
1
2
2
2
3

-2
-2
-1
-0
0
1
1
2

surface friction velocity, 2017.01.11 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
0
1
1
2
2
2
3

-2
-2
-1
-0
0
1
1
2

surface friction velocity, 2017.01.14 06 UTC

Figure 5.9: Predictions of surface friction velocity after 12 hours (first row), and after 72 hours
(second row). Otherwise similar to Figure 5.7.

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
517
1035
1552
2069
2587
3104
3622

-7146
-5241
-3335
-1429
476
2382
4288
6194

PBL height, 2017.01.11 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
517
1035
1552
2069
2587
3104
3622

-7146
-5241
-3335
-1429
476
2382
4288
6194

PBL height, 2017.01.14 06 UTC

Figure 5.10: Predictions of pblh after 12 hours (first row), and after 72 hours (second row).
Otherwise similar to Figure 5.7.

85 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

241
248
255
262
268
275
282
289

-23
-17
-11
-5
2
8
14
20

2m temperature, 2017.01.11 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

241
248
255
262
268
275
282
289

-23
-17
-11
-5
2
8
14
20

2m temperature, 2017.01.14 06 UTC

Figure 5.11: Predictions of 2m temperature after 12 hours (first row), and after 72 hours
(second row). Otherwise similar to Figure 5.7.

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
4
8
11
15
19
23
26

-19
-13
-7
-1
4
10
16
22

10m wind, 2017.01.11 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
4
8
11
15
19
23
26

-19
-13
-7
-1
4
10
16
22

10m wind, 2017.01.14 06 UTC

Figure 5.12: Predictions of 10m wind after 12 hours (first row), and after 72 hours (second
row). Otherwise similar to Figure 5.7.

86 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

0 10 20 30 40 50 60 70

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface sensible heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

10

20

30

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface latent heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

20

40

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.90

0.95

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface friction velocity

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.025

0.050

0.075

0.100

rm
se

 [m
/s

]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.6

0.8

1.0

Pa
tte

rn
 c

or
re

la
tio

n

PBL height

0 10 20 30 40 50 60 70
Time since simulation start [hours]

200

400

rm
se

 [m
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.97

0.98

0.99

1.00

Pa
tte

rn
 c

or
re

la
tio

n

2m temperature

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.5

1.0

1.5

rm
se

 [K
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.925

0.950

0.975

1.000

Pa
tte

rn
 c

or
re

la
tio

n

10m wind

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.5

1.0

1.5

rm
se

 [m
/s

]

ANN
YSU
MYJ

Figure 5.13: The plots in show the root mean square error, rmse and the pattern correlation,
r as function of number of hours since the initial time. The titles indicate for which variable
the measures are computed, and the legends show for which PBL scheme. Each title applies
to the two plots below, showing r and rmse, respectively. The plots in this figure are based
on the simulations initiated at 2017.01.12 06 UTC.

87 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

0 10 20 30 40 50 60 70

0.925

0.950

0.975

1.000

Pa
tte

rn
 c

or
re

la
tio

n

surface sensible heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0

20

40

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.94

0.96

0.98

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface latent heat flux

0 10 20 30 40 50 60 70
Time since simulation start [hours]

20

40

rm
se

 [W
/m

2] ANN
YSU
MYJ

0 10 20 30 40 50 60 70

0.90

0.95

1.00

Pa
tte

rn
 c

or
re

la
tio

n

surface friction velocity

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.02

0.04

0.06

rm
se

 [m
/s

]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.25

0.50

0.75

1.00
Pa

tte
rn

 c
or

re
la

tio
n

PBL height

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0

200

400

600

rm
se

 [m
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.98

0.99

1.00

Pa
tte

rn
 c

or
re

la
tio

n

2m temperature

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.0

0.5

1.0

rm
se

 [K
]

ANN
YSU
MYJ

0 10 20 30 40 50 60 70
0.90

0.95

Pa
tte

rn
 c

or
re

la
tio

n

10m wind

0 10 20 30 40 50 60 70
Time since simulation start [hours]

0.25

0.50

0.75

1.00

rm
se

 [m
/s

]

ANN
YSU
MYJ

Figure 5.14: Similar to 5.13, except that the plots are based on the simulations initiated at
2018.08.02 06 UTC.

88 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

Since the PBL scheme is used to compute the turbulent fluxes throughout the atmosphere, it

is not enough to only consider the surface energy balance and the surface temperature and

wind fields. The pblh depend on both the structure of the TKE-profile and the Θv-profile. For

details, the reader is referred to the source code, available on the official WRF GitHub-page [22].

Thus, the plots of the pblh anomaly in Figure 5.10 indicate that the ANN scheme captures the

overall features of the atmospheric structure within the boundary layer. This is also supported

by Figure E.6 in Appendix E and the plots of rmse and r as function of time in Figure 5.13 and

5.14.

In addition, we will examine two examples of profiles of potential temperature Θ and wind

speed. The Figures 5.16 and 5.18 show the evolution of these profiles during the first 12 hours of

the simulation. Figure 5.16 shows an example with statically stable surface conditions from the

first simulation (winter), while Figure 5.18 shows an example with statically unstable surface

conditions from the second simulation (summer). The examples are selected based on the average

value of the surface sensible heat flux Q0 (predicted by the MYNN scheme). The statically stable

example is the one with the lowest average value of Q0 during these first 12 hours, and opposite

for the statically unstable example. Predictions of all four PBL schemes are shown.

As discussed at the end of the previous Chapter, no final conclusion can be based on two

examples, especially when these two examples are the most extreme cases. However, we can still

learn much from this qualitative comparison. Especially, because it can be difficult to quantify

features such as structure of temperature and wind profiles. In addition, a few randomly selected

examples are shown in Appendix D.

Since the two examples are selected based on the values of surface sensible heat flux Q0 the

Figures 5.15 and 5.17 show plots of Q0 valid at the same time steps as the profiles (except at

the initial time, since this is not an output from WRF).

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 18 UTC

-200
-93
13
120
227
333
440
547

Figure 5.15: Surface sensible heat fluxes for the location of the profiles shown in Figure 5.16.
The plots are based on the simulation initiated at 2017.01.11 06 UTC. The times thus corre-
spond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in the
output file from WRF). The location for the profiles, an island in north western Scotland, is
marked with the red ×.

89 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

280 285
 [K]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

2017.01.11 06 UTC

0 20 40
Wind speed [m/s]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

280 285
 [K]

2017.01.11 09 UTC

0 20 40
Wind speed [m/s]

280 285
 [K]

2017.01.11 12 UTC

0 20 40
Wind speed [m/s]

280 285
 [K]

2017.01.11 15 UTC

0 20 40
Wind speed [m/s]

280 285
 [K]

2017.01.11 18 UTC

0 20 40
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure 5.16: Profiles of Θ and wind speed for the location shown in Figure 5.15. This is the
location with the lowest average value of surface sensible heat flux, Q0, during the first 12
hours of simulation. The profiles are from the simulation initiated at 2017.01.11 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

From Figure 5.16, we see that the schemes do not predict identical values, but the structures of

the profiles are similar for all four schemes. In this example, although the surface sensible heat

flux is small, the Θ profile is almost neutral throughout a large part of the lower atmosphere.

The boundary layer even grows until 15 UTC, suggesting that substantial turbulent mixing is

present, probably induced by a combination the wind shear near the surface and rough surface

topography.

90 of 137

5.4. EVALUATION OF THE BEST ANN SCHEME

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 18 UTC

-200
-93
13
120
227
333
440
547

Figure 5.17: Surface sensible heat fluxes for the location of the profiles shown in Figure 5.18.
The plots are based on the simulation initiated at 2018.08.02 06 UTC. The times thus corre-
spond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in the
output file from WRF). The location for the profiles, somewhere in southern France, is marked
with the black ×.

300 305 310
 [K]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

2018.08.02 06 UTC

0 5 10
Wind speed [m/s]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

300 305 310
 [K]

2018.08.02 09 UTC

0 5 10
Wind speed [m/s]

300 305 310
 [K]

2018.08.02 12 UTC

0 5 10
Wind speed [m/s]

300 305 310
 [K]

2018.08.02 15 UTC

0 5 10
Wind speed [m/s]

300 305 310
 [K]

2018.08.02 18 UTC

0 5 10
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure 5.18: Profiles of Θ and wind speed for the location shown in Figure 5.17. This is the
location with the highest average value of surface sensible heat flux, Q0, during the first 12
hours of simulation. The profiles are from the simulation initiated at 2018.08.02 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

91 of 137

5.5. COMPARING COMPUTATIONAL EFFICIENCY

From Figure 5.18, we see that the Θ profile predicted by the ANN scheme behaves a somewhat

differently compared the remaining schemes around 9-15 UTC. Whereas the other PBL schemes

produce a well-mixed almost neutral profile, the ANN scheme produces a Θ profile with a

quite different characteristic. With very high surface sensible heat fluxes, one would expect the

boundary layer to be well-mixed with respect to Θ, so the behavior of the ANN scheme does not

seem physically plausible. The wind speed profile produced by the ANN scheme, on the other

hand, does not have a particularly different structure than the remaining wind speed profiles.

This example indicates that the ANN scheme might underestimate the turbulent thermal

diffusivity for extremely statically unstable cases. This means that the turbulent mixing will be

too small, which again means that the negative gradient will be enhanced as heating continues

to occur at the surface. The negative Θ gradient above the surface has the largest magnitude

at 12 UTC, after which the profile starts to ”straighten out” and look more and more like the

other profiles. This might be explained either by the decreasing surface sensible heat flux, or

by the ”too large” negative gradients that extend 3− 400m into the boundary layer, which will

likely result in larger mixing, or possibly a combination of the two. Thus, this behavior of the

ANN scheme seems to affect the Θ profiles temporarily (while large surface sensible heat flux

occurs), while it does not seem to affect the overall surface energy balance.

Nothing certain can be concluded based on this one example, but one could suspect that the

ANN scheme generally has difficulties predicting the deep mixing associated with large surface

sensible heat flux. The extra examples shown in the Figures E.9-E.28 in Appendix D indicate

that the ANN scheme generally produce Θ and wind speed profiles similar those of the other

PBL schemes. This suggests that the behavior seen in Figure 5.18 could be a ”rare” example. If

this is the case, a plausible explanation is that the extremely high values of Q0 are outside the

variable distribution for Q0 in the training dataset. We will return to this discussion in Chapter

6.

5.5 Comparing computational efficiency

In this section, we compare the efficiency of the four PBL schemes from the previous section.

For this purpose, we use the profiling tool gprof [24], which measures the time spend inside

each subroutine during execution of the code. For each PBL scheme, a 30-minute simulation is

performed for the small model domain, i.e. the domain used for the generation of training data.

Since the domain has 200× 150 = 3 · 104 horizontal grid points, the PBL scheme is called 9 · 105

times, which should be sufficient to obtain a realistic estimate of the computation time.

In Table 5.1, we show both the actual time spend on the PBL scheme, and what percentage of

the total run time this corresponds to. As described in Section 5.2, two different versions of the

ANN scheme are implemented: the first uses Fortran’s intrinsic matmul() function, and the sec-

92 of 137

5.5. COMPARING COMPUTATIONAL EFFICIENCY

ond uses the sgemm() function. Table 5.1 show the computation time for both implementations

of the ANN scheme and for the three other PBL schemes.

Table 5.1: Results of profiling 30-minute simulations with each of the PBL schemes.

Time spend on % of total
Scheme the PBL scheme run time

MYNN 19.50 s 16.9%

ANN (matmul) 10.89 s 10.1%

ANN (sgemm) 9.49 s 9.1%

YSU 3.61 s 3.7%

MYJ 6.44 s 6.1%

From Table 5.1, we see that the ANN scheme is about twice as fast as the MYNN scheme,

slightly faster with sgemm() than with matmul(). However, both the MYJ scheme and the YSU

scheme are significantly faster.

Further, Table 5.2 show the computation times for selected subroutines of the MYNN scheme

and the two implementations of the ANN scheme.

Table 5.2: Results of profiling 30-minute simulations with each of the PBL schemes. Conden-
sations scheme denotes the partial-condensation scheme used to compute βθ and βq, and the
category Other includes computation of pblh and assignment of 3D-grid variables to local 1D
variables.

Time spend on % of total
Scheme Subroutine the PBL scheme run time

MYNN Computing Km, Kh and L 5.53 s 4.8%
Condensation scheme 4.31 s 3.7%
Computing tendencies 4.09 s 3.6%
Solving TKE equation 0.70 s 0.6%
Other 4.87 s 4.2%

ANN (matmul) Neural network prediction 1.58 s 1.5%
Computing tendencies 3.77 s 3.5%
Solving TKE equation 0.55 s 0.5%
Other 4.99 s 4.6%

ANN (sgemm) Neural network prediction 0.85 s 0.8%
Computing tendencies 3.72 s 3.6%
Solving TKE equation 0.64 s 0.6%
Other 4.28 s 4.1%

From Table 5.2, we see that the ANN scheme using sgemm() is almost twice as fast as the ANN

scheme using matmul(). As described in Section 5.1, the neural networks substitute both the

subroutine computing the diffusivities and the turbulent scale and the subroutine related to the

partial-condensation scheme. Together, these two subroutines account for 9.84 s, about half of

93 of 137

5.5. COMPARING COMPUTATIONAL EFFICIENCY

the total computation time of the MYNN scheme. Thus, the computational cost is effectively

reduced by more than a factor of 10 (when using sgemm()).

Notice that there are differences in the computation time of the remaining subroutines as well.

The MYNN scheme is generally a bit slower, which may be partly explained by minor changes

made to other parts of the code2. However, there is even a small difference in the computation

time of identical subroutines of the two ANN schemes. This suggests that the estimates of the

computation times have some uncertainty, which, however, has not been quantified.

Despite this uncertainty, there is no question that the subroutine computing the predictions

of the neural networks only account for a small fraction of the computation time. Since, the

ANN scheme is still three times slower than the YSU scheme, this cannot be explained by

the neural network related subroutines alone. Instead, this may be due to overall different

structuring of the code and possibly lack of optimization of the MYNN module. Consider the

fact that computing the tendencies and the category ”other” together account for 8.00-8.76 s of

the computation time (for the two ANN schemes). The category ”other” represent the prediction

of the pblh (which is negligible) and assignment of variables from the 3D domain grid to local

1D variables. For comparison, the total computation time of the YSU and MYJ schemes are

3.61 s and 6.44 s, respectively. These schemes use the same 3D variables as input, and they also

compute both the tendencies and the pblh. Thus, this strongly indicates that, at least parts

of the MYNN code, could be optimized substantially. We speculate that if the neural network

related subroutines were implemented in a different, more optimized code, the computational

cost of the ANN scheme would be comparable to the cost of the fast PBL scheme options in

WRF, such as the YSU scheme.

2These minor changes mostly consist of removing un-used variables and if statements.

94 of 137

Chapter 6

Discussion and conclusion

This Chapter will first briefly summarize some of the key points of the first few chapters. Then,

in the Sections 6.1 and 6.2, we go through the findings of the Chapters 4 and 5 and follow up

on the important discussions we encountered along the way. The Chapter will be wrapped up

in Section 6.3 with an overall conclusion and suggestions for further work in this field.

The aim of the thesis was to examine the possibilities of using neural networks for PBL turbu-

lence parameterization. In Chapter 1, we saw how some traditional turbulence parameterization

models, exemplified by the Mellor-Yamanda and the MYNN models, make use of additional prog-

nostic equations to parameterize the turbulent fluxes to second order accuracy. The MYNN2.5

and MYNN3 models introduce 1 and 4 extra prognostic equations, respectively. Going to sec-

ond order accuracy, however, introduces third order terms that need to be parameterized, which

means that even more assumptions are needed. Thus, the quality of the model depends both

on the closure assumptions and the quality of the data used to tune the closure constants. This

motivates the idea of using a more general machine learning based regression method such as

neural networks, i.e. general in the sense that it can emulate any functional form. For this type

of model, only the input and output variables need to be specified, which effectively eliminates

the need for many of the closure assumptions applied in traditional turbulence modeling.

One challenge when using neural networks is that they may require large amounts of data,

and it is essential that the dataset covers all scenarios that can occur in the physical system.

However, data from high resolution models such as large-eddy simulations is computationally

expensive to acquire, and therefore, as a first attempt, it was natural to use a computationally

cheaper alternative. Thus, the training dataset was generated from six weather simulations

performed with WRF using the MYNN2.5 scheme. This allows us to gain experience on the

subject without the need of expensive data generation.

95 of 137

6.1. DEVELOPMENT OF THE ANN SCHEME

6.1 Development of the ANN scheme

In Chapter 4, we discussed different approaches to constructing a neural network based model.

We motivated why the diffusivities are appropriate output variables due to considerations regard-

ing numerical stability. This of course imposes the assumption that the effects of subgrid-scale

dynamics reduce to a diffusion-like phenomenon. Although this assumption might not be en-

tirely correct, it is a very well-established parameterization method and has an intuitive physical

interpretation, see Section 1.3.1. Further, the assumption implies that the turbulent mixing of

all physical quantities depends on the same two diffusion coefficients, which are related mainly

to the static stability, the gradients of the wind field, and the potential presence of turbulence.

On the other hand, the turbulent flux for each physical quantity depends on the specific vertical

profile of that variable. Thus, if the fluxes were the direct output of the neural network, it would

require a much more diverse dataset.

Several different variables were considered as potential inputs of the neural networks, and

we found that, in addition to q (square root of twice the TKE) and the variables B and S

(related to buoyance and shear), following variables contributed positively to the performance

of the neural networks: the height above the surface z, the surface sensible heat flux Q0, the

friction velocity u∗, the potential temperature Θ, and the mixing ratios for water vapor and

liquid water, Qv and Qc. Except for the surface fluxes, these are all defined in the same model

level as the output variables. We saw that the neural networks tended to overfit, especially when

the latter three variables were used as input variables. As we discussed briefly in Section 4.3, the

primary justification for adding these variables is to be able to account for the buoyancy effects

related to condensation and evaporation. Thus, these variables are only relevant as inputs when

phase changes occur. The hypothesis is, therefore, that the training dataset is too small to

correctly represent all possible weather situations1, and therefore the neural networks instead

falsely correlate certain boundary layer dynamics with certain values of Θ, Qv and Qc.

To avoid overfitting, a simpler model was developed as well, where these three input variables

were omitted. Although some of the remaining variables may contain redundant information as

well, e.g. the height above the surface and the surface fluxes of heat and momentum are only

relevant close to the surface, these variables are more essential for the boundary layer dynamics

and are therefore not omitted.

In addition, Chapter 4 presented several important findings: the most important feature was the

logarithmic scaling, which solves the problem of variable distributions covering several orders

of magnitude. We saw that using different models for statically stable/unstable samples also

1It should be redundant to justify this statement. Obviously more than six 24-hour weather simulations are
necessary to fully describe the variability of this system.

96 of 137

6.1. DEVELOPMENT OF THE ANN SCHEME

improved the results quite significantly, and of course this was necessary for being able to apply

the logarithmic scaling to the buoyancy parameter B. Further, the logarithmic scaling gave a

new choice regarding the loss function: either to apply the loss function directly to the outputs

of the neural networks or first compute the physical values and then apply the loss function. We

saw that applying the mae loss function to the physical values gave the best results. Applying

the mse loss function directly to the log-scaled values also gave reasonable results, while applying

the mse loss function the physical values gave significantly worse results.

Further, we showed that the choices of the hyperparameters batch size and activation function

seem to have little or no impact for the model performance. The ReLU and leakyReLU did

give slightly better results than the sigmoid and tanh activations and therefore seem to be

preferable. However, the differences in performance were small compared to the effects of the

features described above.

Regarding the model size, it is difficult to conclude anything based this study. From the

Figures 4.12 and 4.16, we got the impression that the model size was quite important for the

model performance, since the loss values decreased significantly when increasing the number of

layer and nodes in the networks. However, when the models were implemented in WRF, we found

that the best performing model, was the one using the smallest networks, which had performed

worst when evaluated off-line on the ”independent” test dataset. As already discussed, this of

course indicates that the independent test dataset was not really independent after all (and the

same is true for the validation dataset). Recall that the ”best” model from every training was

selected as the model that performed best on the validation dataset. If this dataset was truly

independent this should ensure that the selected model is the one that generalizes best, but we

cannot assume that in our case. In other words, we cannot be certain that model, which was

implemented and evaluated, was the optimal model. On the contrary, it is quite likely that a

better model exists.

In hindsight, the solution to this issue seems embarrassingly simple: the training, validation

and test datasets should be sampled from different simulations using different initial times,

and maybe even different model domains. Although having pointed out this weakness of the

method used, it must be stressed that the other findings should still be generally applicable.

The logarithmic scaling of the input and output variables had a clear theoretical motivation

and solved a problem unrelated to whether the training and validation datasets are mutually

independent. The choice of loss function determines which metric is used when comparing the

predictions to the target values, and therefore the optimal loss function should depend solely on

the problem the networks are solving.

97 of 137

6.2. EVALUATION OF THE ANN SCHEME

6.2 Evaluation of the ANN scheme

We have already discussed the overfitting of the models and, therefore, here the focus will be

on the evaluation of the best ANN scheme. We saw in Section 5.4 that the ANN scheme gave

results very similar to the existing PBL scheme options in WRF. For the surface fluxes, 2m

temperature, 10m wind and pblh, it gave results significantly closer to the MYNN scheme than

the MYJ and the YSU schemes. This can be seen from the Figures 5.7-5.14 as well as the

Figures E.3-E.8 in Appendix E. Especially interesting are the Figures 5.13 and 5.14 showing the

rmse and r values for all 6 variables as function of time for the ANN, YSU and MYJ schemes.

In both simulations, throughout the 72 hours, the ANN scheme has both the lowest rmse values

and highest r values for all variables.

When we examined the profiles of Θ and wind speed produced by the four PBL schemes, we saw

indications that the ANN scheme is not capable of predicting the deep mixing associated with

very high surface sensible heat flux Q0. However, recall that the domain used for evaluating

the ANN scheme is significantly larger than the domain used for generation of the training

dataset. The idea behind this was to test, how well the ANN scheme could be generalized to

weather conditions in different climate zones. The specific profile in this example was located

in Southern France, far south of the boundary of the domain used for generating the training

dataset. This may very well explain why the ANN scheme underestimates the thermal diffusivity

when encountering extreme Q0 values: the value is simply outside the probability distribution

of Q0 in the training dataset. In the training dataset, the largest value of Q0 does not exceed

∼ 260 W/m2, whereas Q0 in this example exceeds at least ∼ 400 W/m2 when at its maximum,

see Figure 5.17. Thus, the neural networks extrapolate, and we cannot expect the result to

be reliable. This, however, also suggests that including examples with higher Q0 values in the

training dataset will solve the problem.

The true physical equations have ”embedded” negative feedbacks, which prevent unphysical

”run-away” effects, but this is not the case for a neural network based model. Since neural

networks are highly nonlinear functions, the consequences of extrapolation are unpredictable,

and one cannot expect physically realistic behavior. Therefore, it is actually surprising that the

predictions of the ANN scheme are still quite accurate, and it indicates that the ANN scheme

is robust and do not have problems with positive feedback loops. The opposite seems to be

the case with the ANN scheme using Θ, Qv and Qc as additional inputs, as we saw from the

comparison of the three ANN schemes, e.g. Figure 5.5.

Finally, we profiled two different ANN scheme implementations, using the matmul() and sgemm()

functions for the matrix products, respectively. The fastest of these resulted in a PBL scheme

98 of 137

6.3. CONCLUSION AND OUTLOOK

that was about twice as fast as the MYNN scheme. However, comparing only the neural network

related subroutines to the subroutines they have substituted, the computational cost is reduced

by more than a factor of 10. Further, in Section 5.5, we argued that if the neural networks were

implemented in a more optimized code, the ANN scheme might be comparable in speed with

the faster PBL scheme options in WRF, such as the YSU scheme.

6.3 Conclusion and outlook

This thesis has demonstrated that it is possible to create an accurate and robust turbulence

closure model using neural networks to compute the turbulent diffusivities. Further, it was

shown that this type of model has the potential of being an efficient alternative to expensive

second order PBL schemes such as the MYNN scheme while retaining the second order accuracy.

Further, we saw that if one wishes to exploit the information in the variables T , Θ, Qc and

Qv, the results indicate that a larger dataset is needed. However, it seems that this introduces

a risk of a positive feedback loops, if the neural networks start extrapolating. Thus, it might be

difficult to create a robust neural network based model when including these variables as inputs.

Having established a method for constructing neural network based turbulence parameterization

models, this thesis has paved the way for future works in this field of research. As an obvious

and relatively easy next step, the final part of the model optimization could be repeated using

more data, and sampling the training, validation and test datasets from different simulations

to ensure a higher degree of mutual independence between the datasets. In addition, to avoid

unphysical behavior related to extrapolation, the dataset should include more extreme values

for the surface fluxes.

Finally, a natural next step would be to train the neural networks on a training dataset

generated from more accurate high resolution data from, e.g., large-eddy simulations. Since

fewer closure assumptions are needed when using this type of model, this could potentially

improve the quality of turbulence parameterization in the future.

99 of 137

Bibliography

[1] Wyngaard, John C., Turbulence in the Atmosphere. Cambridge University Press, 2010.

[2] Lautrup, B., Physics of Continuous Matter, Second Edition. CRC Press, 2011.

[3] Holton, J. R. and Hakim, G. J.: Dynamic Meteorology, 5th edition, Elsevier, 2013.

[4] Wallace, John M., and Peter Victor Hobbs. Atmospheric Science: An Introductory Survey.

Amsterdam: Elsevier Academic Press, 2006.

[5] Tølløse, Kasper S.: Parameterization of boundary layer turbulence in NWP, Report for

project outside course scope. Unpublished, contact author for details: qrm173@alumni.ku.dk

[6] Crank, J., Nicolson, P., A practical method for numerical evaluation of solutions of partial

differential equations of the heat conduction type, Proc. Camb. Phil. Soc. 43 (1): 50–67, 1947.

https://doi:10.1017/S0305004100023197

[7] Mellor, George L., Analytic prediction of the properties of stratified planetary surface layers.

Journal of Atmospheric Sciences, 30, 1061-1069, 1973.

https://doi.org/10.1175/1520-0469(1973)030<1061:APOTPO>2.0.CO;2

[8] Mellor, G. L. and T. Yamada, A hierarchy of turbulence closure models for planetary bound-

ary layers. Journal of Atmospheric Sciences, 31, 1791–1806, 1974.

https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

[9] Mellor, G. L. and T. Yamada, Development of a turbulence closure model for geophysical

fluid problems. Reviews of Geophysics and Spacs Physics, 20, 851–875, 1982.

https://doi.org/10.1029/RG020i004p00851

[10] Nakanishi, M., Improvement of the Mellor–Yamada turbulence closure model based on large

eddy simulation data. Bound. Layer Meteor., 99, 349–378, 2001.

https://doi.org/10.1023/A:1018915827400

100 of 137

https://doi:10.1017/S0305004100023197
https://doi.org/10.1175/1520-0469(1973)030<1061:APOTPO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1023/A:1018915827400

BIBLIOGRAPHY

[11] Nakanishi, M. and Niino, H., An improved Mellor–Yamada level-3 model with condensation

physics: Its design and verification. Bound. Layer Meteor., 112, 1–31, 2004.

https://doi.org/10.1023/B:BOUN.0000020164.04146.98

[12] Nakanishi, M. and Niino, H., An improved Mellor–Yamada level-3 model: Its numerical

stability and application to a regional prediction of advection fog. Bound. Layer Meteor.,

119, 397–407, 2006.

https://doi.org/10.1007/s10546-005-9030-8

[13] Nakanishi, M. and Niino, H., Development of an Improved Turbulence Closure Model for

the Atmospheric Boundary Layer. Journal of the Meteorological Society of Japan, Vol. 87,

No. 5, 895-912, 2009.

https://doi.org/10.2151/jmsj.87.895

[14] Sommeria, G. and Deardorff, J.W., Subgrid-Scale Condensation in Models of Nonprecipi-

tating Clouds. Journal of the Atmospheric Sciences, vol. 34, 344-355, 1976.

https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2

[15] Hong, S.-Y., and Noh, Y., A New Vertical Diffusion Package with an Explicit Treatment of

Entrainment Processes. Monthly Weather Review, vol. 134, 2318-2341, 2006.

https://doi.org/10.1175/MWR3199.1

[16] Janjić, Z.I., Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the

NCEP Meso model. NCEP Office Note. No.437 (61 pp), 2002.

[17] Banks, R.F., Tiana-Alsina, J., Baldasano, J.M., Rocadenbosch, F., Papayannis, A., Solo-

mos, S. and Tzanis, C.G., Sensitivity of boundary-layer variables to PBL schemes in the

WRF model based on surface meteorological observations, lidar, and radiosondes during the

HygrA-CD campaign. Atmospheric Research vol. 176–177 (2016) 185–201, 2016.

https://doi.org/10.1016/j.atmosres.2016.02.024

[18] Fekih, A. and Mohamed, A., Evaluation of the WRF model on simulating the vertical

structure and diurnal cycle of the atmospheric boundary layer over Bordj Badji Mokhtar

(southwestern Algeria). Journal of King Saud University – Science, vol. 31, iss. 4, 602-611,

2019.

https://doi.org/10.1016/j.jksus.2017.12.004

[19] Tyagi, B., Magliulo, V., Finardi, S., Gasbarra, D., Carlucci, P., Toscano, P., Zaldei, A., Ric-

cio, A., Calori, G., D’Allura, A. and Gioli, B., Performance Analysis of Planetary Boundary

Layer Parameterization Schemes in WRF Modeling Set Up over Southern Italy. Atmosphere,

101 of 137

https://doi.org/10.1023/B:BOUN.0000020164.04146.98
https://doi.org/10.1007/s10546-005-9030-8
https://doi.org/10.2151/jmsj.87.895
https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1016/j.atmosres.2016.02.024
https://doi.org/10.1016/j.jksus.2017.12.004

BIBLIOGRAPHY

vol. 9, iss. 7, 2018.

https://doi.org/10.3390/atmos9070272

[20] Weather Research and Forecasting Model - ARW Version 4 Modeling System User’s Guide,

January 2019.

https://www2.mmm.ucar.edu/wrf/users/downloads.html

[21] Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W.,

Powers, J.G., Duda, M.G., Barker, D.M. and Huang, X.-Y., A Description of the Advanced

Research WRF Model Version 4. NCAR Technical Note No.556, March 2019.

https://doi:10.5065/1dfh-6p97

[22] Gill, Dave et al., The official repository for the Weather Research and Forecasting (WRF)

model.

https://github.com/wrf-model/WRF

[23] Xianyi, Z., Kroeker, M., OpenBLAS - An optimized BLAS library.

https://www.openblas.net

[24] Fenlason, Jay, GNU gprof.

https://sourceware.org/binutils/docs/gprof

[25] National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. De-

partment of Commerce, NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and

Forecast Grids, Research Data Archive at the National Center for Atmospheric Research,

Computational and Information Systems Laboratory, Boulder, CO, 2015.

https://doi.org/10.5065/D65Q4T4Z

[26] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning., MIT Press, 2016.

http://www.deeplearningbook.org

[27] Bishop, Christopher M., Pattern Recognition and Machine Learning. Springer, First ed.,

2006.

[28] Mehta, P., Wang, C.-H., Day, A.G.R. and Richardson, C., A high-bias, low-variance intro-

duction to Machine Learning for physicists.

https://arXiv:1803.08823

[29] Kingma, D.P. and Lei Ba, J., Adam: a Method for Stochastic Optimization., International

Conference on Learning Representations, 2015.

https://arxiv.org/abs/1412.6980

102 of 137

https://doi.org/10.3390/atmos9070272
https://www2.mmm.ucar.edu/wrf/users/downloads.html
https://doi:10.5065/1dfh-6p97
https://github.com/wrf-model/WRF
https://www.openblas.net
https://sourceware.org/binutils/docs/gprof
https://doi.org/10.5065/D65Q4T4Z
http://www.deeplearningbook.org
https://arXiv:1803.08823
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY

[30] Smith, L.N., Cyclical Learning Rates for Training Neural Networks. IEEE Winter Confer-

ence on Applications of Computer Vision, WACV 2017.

https://arxiv.org/abs/1506.01186

[31] Snoek, J., Larochelle, H. and Adams, R.P., Practical Bayesian Optimization of Machine

Learning Algorithms. 2012. https://arxiv.org/abs/1206.2944.

[32] Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A. and Arshad, H.,

State-of-the-art in artificial neural network applications: A survey

https://doi.org/10.1016/j.heliyon.2018.e00938

[33] Python Core Team. Python: A dynamic, open source programming language. Python Soft-

ware Foundation, 2019.

https://www.python.org/

[34] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

2015.

https://www.tensorflow.org/

[35] Chollet, F. and Others, Keras. 2015.

https://keras.io

[36] Ling, J., Kurzawski, A. and Templeton, J., Reynolds Averaged Turbulence Modeling using

Deep Neural Networks with Embedded Invariance. Journal of Fluid Mechanichs, vol. 807,

155-166, 2016.

https://doi.org/10.1017/jfm.2016.615

[37] Li, Wei, Stable Boundary Layer Height Parameterization: Learning from Artificial Neural

Networks. Atmospheric and Climate Sciences, vol. 3, 523-531, 2013.

http://dx.doi.org/10.4236/acs.2013.34055

[38] O’Gorman, Paul A. and Dwyer, John G., Using Machine Learning to Parameterize Moist

Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events. Jour-

nal of Advances in Modeling Earth Systems, vl. 10, 2548–2563, 2018.

https://doi.org/10.1029/2018MS001351

[39] Rasp, Stephan, Pritchard, Michael S. and Gentine, Pierre, Deep learning to represent sub-

grid processes in climate models. Proceedings of the National Academy of Sciences, vol. 115

no. 39, 9684–9689, 2018.

https://doi.org/10.1073/pnas.1810286115

103 of 137

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1206.2944
https://doi.org/10.1016/j.heliyon.2018.e00938
https://www.python.org/
https://www.tensorflow.org/
https://keras.io
https://doi.org/10.1017/jfm.2016.615
http://dx.doi.org/10.4236/acs.2013.34055
https://doi.org/10.1029/2018MS001351
https://doi.org/10.1073/pnas.1810286115

BIBLIOGRAPHY

[40] Ukkonen, Peter and Makela, Antti, Evaluation of Machine Learning Classifiers for Predict-

ing Deep Convection. Journal of Advances in Modeling Earth Systems, vol. 11, 2019.

https://doi.org/10.1029/2018MS001561

104 of 137

https://doi.org/10.1029/2018MS001561

Appendix A

Namelist examples

Examples of the files Namelist.wps and Namelist.input. The examples show the configura-

tions for a 30-hour simulation, starting at 2017.01.06 06 UTC. Clarifying comments have been

added where appropriate.

Namelist.wps:

&share

wr f co r e = ’ARW’ ,

max dom = 1 ,

s t a r t d a t e = ’2017−01−06 06 : 0 0 : 0 0 ’ , ! s p e c i f y i n g t h e i n i t i a l t ime

end date = ’2017−01−07 12 : 0 0 : 0 0 ’ , ! s p e c i f y i n g t h e end t ime

i n t e r v a l s e c ond s = 21600 ! s p e c i f y i n g t h e i n t e r v a l be tween boundary c ond i t i o n f i l e s

i o f o rm geog r i d = 2 ,

/

&geogr id

pa r en t id = 1 ,

p a r e n t g r i d r a t i o = 1 ,

i p a r e n t s t a r t = 1 , ! s p e c i f y i n g t h e f i r s t index f o r s t a g g e r e d dimension in x

j p a r e n t s t a r t = 1 , ! s p e c i f y i n g t h e f i r s t index f o r s t a g g e r e d dimension in y

e we = 201 , ! s p e c i f y i n g t h e l a s t index f o r s t a g g e r e d dimension in x

e sn = 151 , ! s p e c i f y i n g t h e l a s t index f o r s t a g g e r e d dimension in y

geog da ta r e s = ’maxsnowalb ncep+albedo ncep+de f au l t ’ ,

dx = 10000 ,

dy = 10000 ,

map proj = ’ lambert ’ , ! s p e c i f y i n g t h e t ype o f map p r o j e c t i o n

r e f l a t = 57 , ! r e f e r e n c e l a t i t u d e

r e f l o n = 9 , ! r e f e r e n c e l o n g i t u d e

t r u e l a t 1 = 57 , ! t r u e l a t i t u d e 1

t r u e l a t 2 = 57 , ! t r u e l a t i t u d e 2

s tand lon = 9 , ! s t andard l o n g i t u d e

geog data path = ’ p a t h t o f i l e s ’

/

&ungrib

out format = ’WPS’ ,

p r e f i x = ’FILE ’ ,

/

&metgrid

fg name = ’FILE ’

io fo rm metgr id = 2 ,

/

105 of 137

Namelist.input:

! f i r s t , t h e du ra t i on o f t h e run and the i n i t i a l t ime and end t ime are s p e c i f i e d (must corre spond to wps)

&t ime con t r o l

run days = 1 ,

run hours = 6 ,

run minutes = 0 ,

run seconds = 0 ,

s t a r t y e a r = 2017 ,

start month = 01 ,

s t a r t day = 06 ,

s t a r t hou r = 06 ,

end year = 2018 ,

end month = 01 ,

end day = 07 ,

end hour = 12 ,

i n t e r v a l s e c ond s = 21600

i n p u t f r om f i l e = . true . ,

h i s t o r y i n t e r v a l = 180 ,

f r ame s p e r o u t f i l e = 1000 ,

r e s t a r t = . fa l se . ,

r e s t a r t i n t e r v a l = 7200 ,

i o f o rm h i s t o r y = 2

i o f o rm r e s t a r t = 2

i o f o rm input = 2

io form boundary = 2

auxhist24 outname = ” tra in ingdata d<domain> <date>”

i o f o rm auxh i s t 24 = 2

auxh i s t 2 4 i n t e r v a l = 60

i o f i e l d s f i l e n am e = ” i o f i e l d s d 0 1 . txt ”

/

&domains

t ime s tep = 60 , ! s e t t i n g t ime s t e p

t ime s t ep f rac t num = 0 ,

t ime s t e p f r a c t d en = 1 ,

max dom = 1 ,

e we = 201 , ! number o f g r i d p o i n t s in x (must corre spond to wps)

e sn = 151 , ! number o f g r i d p o i n t s in y (must corre spond to wps)

e v e r t = 41 ,

a u t o l e v e l s o p t = 2 ! r e l a t e d to t h e v e r t i c a l c o o r d i na t e e t a

max dz = 1000. ! r e l a t e d to t h e v e r t i c a l c o o r d i na t e e t a

dzbot = 10 . ! r e l a t e d to t h e v e r t i c a l c o o r d i na t e e t a

d z s t r e t c h s = 1 .3 ! r e l a t e d to t h e v e r t i c a l c o o r d i na t e e t a

dz s t r e t ch u = 1.1 ! r e l a t e d to t h e v e r t i c a l c o o r d i na t e e t a

p top reques t ed = 5000 , ! r e l a t e d to t h e v e r t i c a l c o o r d i na t e e t a

num metgr id l eve l s = 32 ,

num metg r i d s o i l l e v e l s = 4 ,

dx = 10000 , ! s p a t i a l r e s o l u t i o n in h o r i z o n t a l d i r e c t i o n x

dy = 10000 , ! s p a t i a l r e s o l u t i o n in h o r i z o n t a l d i r e c t i o n y

g r i d i d = 1 ,

pa r en t id = 0 ,

i p a r e n t s t a r t = 1 ,

j p a r e n t s t a r t = 1 ,

p a r e n t g r i d r a t i o = 1 ,

p a r e n t t ime s t e p r a t i o = 1 ,

feedback = 1 ,

smooth option = 0

/

&phys i c s

p h y s i c s s u i t e = ’CONUS’ ! s e l e c t i n g t h e CONUS ph y s i c s s u i t e

mp physics = −1,

cu phys i c s = −1,

r a lw phy s i c s = −1,

r a sw phys i c s = −1,

s f s u r f a c e p h y s i c s = −1,

radt = 30 ,

b ldt = 0 ,

cudt = 5 ,

i c l oud = 1 ,

num land cat = 21 ,

106 of 137

s f u rban phy s i c s = 0 ,

s f s f c l a y p h y s i c s = 5 , ! o v e rw r i t i n g t h e s u r f a c e f l u x scheme wi th MYNN

b l pb l phy s i c s = 5 , ! o v e rw r i t i n g t h e s u r f a c e f l u x scheme wi th MYNN(2 . 5)

b l ann opt i on = . fa l se . ! o p t i on r e l a t e d to ANN scheme (not g e n e r a l l y a v a i l a b l e)

/

&fdda

/

&dynamics

hybr id opt = 2 ,

w damping = 0 ,

d i f f o p t = 1 ,

km opt = 4 ,

d i f f 6 t h o p t = 0 ,

d i f f 6 t h f a c t o r = 0 .12 ,

base temp = 290 .

damp opt = 3 ,

zdamp = 5000 . ,

dampcoef = 0 . 2 ,

khd i f = 0 ,

kvd i f = 0 ,

non hydros ta t i c = . true . ,

moist adv opt = 1 ,

s c a l a r adv op t = 1 ,

gwd opt = 1 ,

/

&bdy contro l

spec bdy width = 5 ,

s p e c i f i e d = . true .

/

&gr ib2

/

&name l i s t q u i l t

n i o t a sk s p e r g r oup = 0 ,

n io groups = 1 ,

/

! c o n f i g u r a t i o n s r e l a t e d to t h e DFI , must corre spond to t h e i n i t i a l t ime (1 hour be f o r e , 1/2 hour a f t e r)

&d f i c o n t r o l

d f i o p t = 3

d f i n f i l t e r = 7

d f i w r i t e f i l t e r e d i n p u t = . true .

d f i w r i t e d f i h i s t o r y = . fa l se .

d f i c u t o f f s e c o n d s = 3600

d f i t ime d im = 1000

d f i b ck s t op y ea r = 2017

df i bckstop month = 01

d f i b ck s top day = 06

d f i b ck s t op hour = 05

d f i bcks top minute = 00

d f i b ck s t op s e cond = 00

d f i fwd s t op yea r = 2017

df i fwdstop month = 01

d f i fwds top day = 06

d f i fwds top hour = 06

d f i fwdstop minute = 30

d f i fwds top s e cond = 00

/

107 of 137

Appendix B

Simulations used for training data

This appendix shows plots of relevant plots for the simulations used for the training dataset.

All six simulation run for 30 hours, where the first 6 hours is the spin-un phase, while data is

sampled for the training dataset (and the validation and test datasets) from the last 24 hours.

The initial times of the six simulations are: 2017.01.06 06 UTC, 2017.02.13 06 UTC, 2017.08.03

06 UTC, 2018.07.25 06 UTC, 2019.05.20 06 UTC and 2019.09.15 06 UTC.

Figure B.1 shows the surface elevation height and surface roughness to illustrate the varia-

tions in the surface conditions in the domain. The figures B.2-B.7 show plots of 2m temperature,

surface sensible heat flux and surface friction velocity. The plots are pedictions after 6 hours,

i.e. the first time step, where we start sampling data. Especially the surface sensible heat flux

is important for the overall structure of the boundary layer.

0° 10°E 20°E

60°N

surface elevation height

0° 10°E 20°E

surface roughness

-250

0

250

500

750

1000

1250

1500

1750

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

Figure B.1: Surface elevation height (left) and surface roughness (right) of the domain used
for generation of training data.

108 of 137

0° 10°E 20°E

60°N

2m temperature

0° 10°E 20°E

surface sensible heat flux

0° 10°E 20°E

surface friction velocity

252
256
260
264
268
272
276
280
284
288

-150

-100

-50

0

50

100

150

200

250

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2017.01.06 12 UTC

Figure B.2: 2m temperature (left), surface sensible heat flux (middle) and surface friction
velocity (right). The prediction is valid 6 hours after initial time, see title on the figure.

0° 10°E 20°E

60°N

2m temperature

0° 10°E 20°E

surface sensible heat flux

0° 10°E 20°E

surface friction velocity

265

268

270

272

275

278

280

282

285

-120

-80

-40

0

40

80

120

160

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

2017.02.13 12 UTC

Figure B.3: 2m temperature (left), surface sensible heat flux (middle) and surface friction
velocity (right). The prediction is valid 6 hours after initial time, see title on the figure.

0° 10°E 20°E

60°N

2m temperature

0° 10°E 20°E

surface sensible heat flux

0° 10°E 20°E

surface friction velocity

276

280

284

288

292

296

300

304

308

-300

-200

-100

0

100

200

300

400

500

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

2017.08.03 12 UTC

Figure B.4: 2m temperature (left), surface sensible heat flux (middle) and surface friction
velocity (right). The prediction is valid 6 hours after initial time, see title on the figure.

109 of 137

0° 10°E 20°E

60°N

2m temperature

0° 10°E 20°E

surface sensible heat flux

0° 10°E 20°E

surface friction velocity

280

284

288

292

296

300

304

308

-80

0

80

160

240

320

400

480

560

0.0

0.2

0.3

0.5

0.6

0.8

0.9

1.1

1.2

2018.07.25 12 UTC

Figure B.5: 2m temperature (left), surface sensible heat flux (middle) and surface friction
velocity (right). The prediction is valid 6 hours after initial time, see title on the figure.

0° 10°E 20°E

60°N

2m temperature

0° 10°E 20°E

surface sensible heat flux

0° 10°E 20°E

surface friction velocity

272

276

280

284

288

292

296

300

-80

0

80

160

240

320

400

480

0.0

0.2

0.3

0.5

0.6

0.8

0.9

1.1

1.2

2019.05.20 12 UTC

Figure B.6: 2m temperature (left), surface sensible heat flux (middle) and surface friction
velocity (right). The prediction is valid 6 hours after initial time, see title on the figure.

0° 10°E 20°E

60°N

2m temperature

0° 10°E 20°E

surface sensible heat flux

0° 10°E 20°E

surface friction velocity

252
256
260
264
268
272
276
280
284
288

-150

-100

-50

0

50

100

150

200

250

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2017.01.06 12 UTC

Figure B.7: 2m temperature (left), surface sensible heat flux (middle) and surface friction
velocity (right). The predictions are valid 6 hours after initial time, see title on the figure.

110 of 137

Appendix C

Additional variable distributions

This appendix shows the variable distributions for the statistically stable samples using loga-

rithmic scaling. The distributions including all stable samples are shown in Figures C.1 and C.3,

while the distributions including only stable samples with non-zero TKE are shown in Figures

C.2 and C.4.

0.0 0.5 1.0

103

105

q

−1.0 −0.5 0.0 0.5

104

106

B

−0.5 0.0 0.5 1.0

103

105

S

−1.0 −0.5 0.0

105

106
z

−1.0 −0.5 0.0 0.5

104

106
u∗

−1 0 1

103

105

Q0

−0.5 0.0 0.5 1.0

105

106
Θ

−1.0 −0.5 0.0 0.5

104

105

Qv

0.0 0.5 1.0

104

105

106

Qc

Figure C.1: Distributions of all the input variables. First the logarithmic scaling is applied and
then the linear scaling from Equation (4.3). The histograms are based on all stable samples
from the training dataset.

111 of 137

−0.5 0.0 0.5 1.0

103

105

q

−1.0 −0.5 0.0 0.5

103

104

105

B

−1 0 1

103

105

S

−1 0 1

103

105

z

−1.0 −0.5 0.0 0.5

103

104

105

u∗

−1 0 1

103

105

Q0

−0.5 0.0 0.5 1.0

103

105

Θ

−1.0 −0.5 0.0

103

104

105

Qv

0.0 0.5 1.0

104

105

106
Qc

Figure C.2: Distributions of all the input variables. First the logarithmic scaling is applied
and then the linear scaling from Equation (4.3). The histograms are based on stable samples
with non-zero TKE from the training dataset.

112 of 137

−20 −10 0

103

105

Kh

−10 −5 0

103

105

Km

−6 −4 −2 0
101

103

105

L

−20 −10 0
102

104

106

Bp

Figure C.3: Distributions of all the output variables. First the linear scaling from Equation
(4.4) is applied, and then the logarithmic scaling. The histograms are based on all stable
samples from the training dataset.

−20 −10 0

101

103

105

Kh

−10 −5 0

103

105

Km

−6 −4 −2 0

102

104

L

−15 −10 −5 0

103

105

Bp

Figure C.4: Distributions of all the output variables. First the linear scaling from Equation
(4.4) is applied, and then the logarithmic scaling. The histograms are based on stable samples
with non-zero TKE from the training dataset.

113 of 137

Appendix D

Additional examples of predictions

by the neural networks

This appendix shows more examples of predictions by the three models compared in Section

4.4.7. Whereas the two figures shown in Section 4.4.7 were choses as the two models with most

extreme values of surface sensible heat flux, the ten examples shown here are randomly selected.

0 2
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.001 0.000
B [s−2]

0.0 0.5
S [s−2]

Inputs

0 10
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 10
Km [m2s−1]

0 20
L [m]

−0.001 0.000
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.1: Example of predictions by the three neural networks. The three plots to the left
show the profiles of the three inputs, q, B and S, while the four plots to the right show the
output variables Kh, Km, L and Bp. Both the ”true” values and the predictions by the three
networks are shown. The example is randomly selected. The value of the surface sensible heat
flux is Q0 ≈ −2.2W/m2, and the value of the friction velocity for this case is u∗ ≈ 0.7m/s.
The planetary boundary layer height, pblh, is showed as well.

114 of 137

0.0 0.5
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.001 0.000
B [s−2]

0.000 0.001
S [s−2]

Inputs

0 50
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 25
Km [m2s−1]

0 100
L [m]

0.0000 0.0001
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.2: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ 0.5W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.2m/s.

0 1
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.00050.0000
B [s−2]

0.00 0.01
S [s−2]

Inputs

0.0 2.5
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 5
Km [m2s−1]

0 25
L [m]

−0.0005 0.0000
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.3: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ 6.4W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.3m/s.

0.0 0.5
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.001 0.000
B [s−2]

0.00 0.05
S [s−2]

Inputs

0 2
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 2
Km [m2s−1]

0 20
L [m]

−0.0002 0.0000
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.4: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ −2.2W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.2m/s.

115 of 137

0 2
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.0010.0000.001
B [s−2]

0.000 0.005
S [s−2]

Inputs

0 50
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 50
Km [m2s−1]

0 50
L [m]

0.000 0.005
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.5: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ 153W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.5m/s.

0 1
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.001 0.000
B [s−2]

0.000 0.001
S [s−2]

Inputs

0 50
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 50
Km [m2s−1]

0 100
L [m]

0.000 0.001
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.6: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ 134W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.2m/s.

0 1
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.00050.0000
B [s−2]

0.00 0.05
S [s−2]

Inputs

0 2
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 2
Km [m2s−1]

0 20
L [m]

−0.0001 0.0000
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.7: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ −8.1W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.3m/s.

116 of 137

0 2
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.001 0.000
B [s−2]

0.00 0.25
S [s−2]

Inputs

0 5
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 5
Km [m2s−1]

0 50
L [m]

−0.001 0.000
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.8: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ −15.9W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.6m/s.

0 2
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.0010.0000.001
B [s−2]

0.0000 0.0025
S [s−2]

Inputs

0 100
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 50 100
Km [m2s−1]

0 100
L [m]

0.000 0.005
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.9: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ 164W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.5m/s.

0 1
q [ms−1]

0

500

1000

1500

2000

z
[m

]

−0.00050.0000
B [s−2]

0.0 0.1
S [s−2]

Inputs

0 5
Kh [m2s−1]

0

500

1000

1500

2000

z
[m

]

0 5
Km [m2s−1]

0 25
L [m]

−0.0005 0.0000
Bp [m2s−3]

true
pred1

pred2

pred3

pblh

Outputs

Figure D.10: Example of predictions by the three neural networks. Similar to Figure 5.16. The
example is randomly selected. The value of the surface sensible heat flux is Q0 ≈ −0.5W/m2,
and the value of the friction velocity for this case is u∗ ≈ 0.4m/s.

117 of 137

Appendix E

Additional results

This appendix contain all the extra figures to Chapter 5. Section E.1 shows plots of the the

anomaly fields for the three ANN schemes for the second simulation (initiated 2018.08.02 06

UTC). Section E.2 shows plots of the the anomaly fields for the best ANN scheme, the YSU

scheme and the MYJ scheme, also for the second simulation. Section E.3 shows 10 additional

examples of Θ and wind speed profiles. These examples are from 5 randomly selected locations

and for both simulations.

E.1 Extra plots comparing the three ANN schemes

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

266
277
288
300
311
322
334
345

-43
-30
-16
-3
10
23
36
49

2m temperature, 2018.08.03 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

0
2
4
6
8
10
11
13

-12
-9
-6
-2
1
4
7
10

10m wind, 2018.08.03 06 UTC

Figure E.1: Predictions of 2m temperature (first row) and 10m wind (second row). First column shows
plots of the predictions of the MYNN scheme, while the three next columns show the anomaly fields for
the three ANN schemes, computed as pred

ANN
− pred

MYNN
. All predictions are valid at 2018.08.03 06

UTC, i.e. 24 hours after the initial time. The names ANN1, ANN2, ANN3 correspond to the model
numbers in Section 4.4.7.

118 of 137

E.1. EXTRA PLOTS COMPARING THE THREE ANN SCHEMES

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

-439
-301
-162
-23
115
254
392
531

-502
-368
-234
-100
33
167
301
435

surface sensible heat flux, 2018.08.03 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

-259
-127
5
138
270
402
535
667

-667
-489
-311
-133
44
222
400
578

surface latent heat flux, 2018.08.03 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

0
0
0
1
1
1
1
2

-1
-1
-0
-0
0
1
1
1

surface friction velocity, 2018.08.03 06 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN2

10°W 0° 10°E 20°E 30°E

ANN3

0
545
1090
1634
2179
2723
3268
3813

-3612
-2649
-1686
-722
241
1204
2167
3131

PBL height, 2018.08.03 06 UTC

Figure E.2: Similar to Figure 5.2, except for different variables. This figure shows surface sensible heat
flux (first row), surface latent heat flux (second row), surface friction velocity (third row) and pblh (fourth
row).

119 of 137

E.2. EXTRA PLOTS FOR EVALUATION OF THE BEST ANN SCHEME

E.2 Extra plots for evaluation of the best ANN scheme

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-225
-107
11
129
247
365
483
600

-591
-433
-276
-118
39
197
354
512

surface sensible heat flux, 2018.08.02 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-225
-107
11
129
247
365
483
600

-591
-433
-276
-118
39
197
354
512

surface sensible heat flux, 2018.08.05 06 UTC

Figure E.3: Predictions of surface sensible heat flux after 12 hours (first row), and after 72 hours (second
row). First column shows plots of the predictions of the MYNN scheme, while the three next columns
show the anomaly fields for the ANN scheme, YSU scheme and the MYJ scheme.

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-91
10
111
212
313
414
515
616

-548
-402
-256
-110
37
183
329
475

surface latent heat flux, 2018.08.02 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

-91
10
111
212
313
414
515
616

-548
-402
-256
-110
37
183
329
475

surface latent heat flux, 2018.08.05 06 UTC

Figure E.4: Predictions of surface sensible latent flux after 12 hours (first row), and after 72 hours (second
row). Otherwise similar to Figure E.3.

120 of 137

E.2. EXTRA PLOTS FOR EVALUATION OF THE BEST ANN SCHEME

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
0
0
1
1
1
1
2

-1
-1
-1
-0
0
1
1
2

surface friction velocity, 2018.08.02 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
0
0
1
1
1
1
2

-1
-1
-1
-0
0
1
1
2

surface friction velocity, 2018.08.05 06 UTC

Figure E.5: Predictions of surface friction velocity after 12 hours (first row), and after 72 hours (second
row). Otherwise similar to Figure E.3.

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

1
702
1404
2105
2807
3508
4210
4912

-5707
-4185
-2663
-1141
380
1902
3424
4946

PBL height, 2018.08.02 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

1
702
1404
2105
2807
3508
4210
4912

-5707
-4185
-2663
-1141
380
1902
3424
4946

PBL height, 2018.08.05 06 UTC

Figure E.6: Predictions of pblh after 12 hours (first row), and after 72 hours (second row). Otherwise
similar to Figure E.3.

121 of 137

E.2. EXTRA PLOTS FOR EVALUATION OF THE BEST ANN SCHEME

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

264
271
278
285
292
299
307
314

-11
-8
-5
-2
1
4
7
10

2m temperature, 2018.08.02 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

264
271
278
285
292
299
307
314

-11
-8
-5
-2
1
4
7
10

2m temperature, 2018.08.05 06 UTC

Figure E.7: Predictions of 2m temperature after 12 hours (first row), and after 72 hours (second row).
Otherwise similar to Figure E.3.

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
2
4
7
9
11
13
15

-13
-9
-5
-1
3
7
11
14

10m wind, 2018.08.02 18 UTC

10°W 0° 10°E 20°E 30°E
40°N

50°N

60°N

MYNN

10°W 0° 10°E 20°E 30°E

ANN

10°W 0° 10°E 20°E 30°E

YSU

10°W 0° 10°E 20°E 30°E

MYJ

0
2
4
7
9
11
13
15

-13
-9
-5
-1
3
7
11
14

10m wind, 2018.08.05 06 UTC

Figure E.8: Predictions of 10m wind after 12 hours (first row), and after 72 hours (second row). Otherwise
similar to Figure E.3.

122 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

E.3 Extra examples of Θ and wind speed profiles

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.9: Surface sensible heat fluxes for the location of the profiles shown in Figure E.10.
The plots are based on the simulation initiated at 2017.01.11 06 UTC. The times thus corre-
spond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in the
output file from WRF). The location for the profiles is marked with the black ×.

275.0 277.5 280.0 282.5
 [K]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

2017.01.11 06 UTC

10 20 30
Wind speed [m/s]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

275.0 277.5 280.0 282.5
 [K]

2017.01.11 09 UTC

10 20 30
Wind speed [m/s]

275.0 277.5 280.0 282.5
 [K]

2017.01.11 12 UTC

10 20 30
Wind speed [m/s]

275.0 277.5 280.0 282.5
 [K]

2017.01.11 15 UTC

10 20 30
Wind speed [m/s]

275.0 277.5 280.0 282.5
 [K]

2017.01.11 18 UTC

10 20 30
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.10: Profiles of Θ and wind speed for the location shown in Figure E.9. The location
is randomly selected. The profiles are from the simulation initiated at 2017.01.11 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

123 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.11: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.12. The plots are based on the simulation initiated at 2017.01.11 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

260 265 270
 [K]

0

100

200

300

400

500

600

700

He
ig

ht
 [m

]

2017.01.11 06 UTC

0 10
Wind speed [m/s]

0

100

200

300

400

500

600

700

He
ig

ht
 [m

]

260 265 270
 [K]

2017.01.11 09 UTC

0 10
Wind speed [m/s]

260 265 270
 [K]

2017.01.11 12 UTC

0 10
Wind speed [m/s]

260 265 270
 [K]

2017.01.11 15 UTC

0 10
Wind speed [m/s]

260 265 270
 [K]

2017.01.11 18 UTC

0 10
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.12: Profiles of Θ and wind speed for the location shown in Figure E.11. The location
is randomly selected. The profiles are from the simulation initiated at 2017.01.11 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

124 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.13: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.14. The plots are based on the simulation initiated at 2017.01.11 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

275.0 277.5 280.0
 [K]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

2017.01.11 06 UTC

10 20 30
Wind speed [m/s]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

275.0 277.5 280.0
 [K]

2017.01.11 09 UTC

10 20 30
Wind speed [m/s]

275.0 277.5 280.0
 [K]

2017.01.11 12 UTC

10 20 30
Wind speed [m/s]

275.0 277.5 280.0
 [K]

2017.01.11 15 UTC

10 20 30
Wind speed [m/s]

275.0 277.5 280.0
 [K]

2017.01.11 18 UTC

10 20 30
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.14: Profiles of Θ and wind speed for the location shown in Figure E.13. The location
is randomly selected. The profiles are from the simulation initiated at 2017.01.11 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

125 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.15: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.16. The plots are based on the simulation initiated at 2017.01.11 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

280 285 290
 [K]

0

200

400

600

800

1000

1200

1400

He
ig

ht
 [m

]

2017.01.11 06 UTC

10 20 30
Wind speed [m/s]

0

200

400

600

800

1000

1200

1400

He
ig

ht
 [m

]

280 285 290
 [K]

2017.01.11 09 UTC

10 20 30
Wind speed [m/s]

280 285 290
 [K]

2017.01.11 12 UTC

10 20 30
Wind speed [m/s]

280 285 290
 [K]

2017.01.11 15 UTC

10 20 30
Wind speed [m/s]

280 285 290
 [K]

2017.01.11 18 UTC

10 20 30
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.16: Profiles of Θ and wind speed for the location shown in Figure E.15. The location
is randomly selected. The profiles are from the simulation initiated at 2017.01.11 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

126 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2017.01.11 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.17: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.18. The plots are based on the simulation initiated at 2017.01.11 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

275 280 285
 [K]

0

200

400

600

800

1000

He
ig

ht
 [m

]

2017.01.11 06 UTC

0 20 40
Wind speed [m/s]

0

200

400

600

800

1000

He
ig

ht
 [m

]

275 280 285
 [K]

2017.01.11 09 UTC

0 20 40
Wind speed [m/s]

275 280 285
 [K]

2017.01.11 12 UTC

0 20 40
Wind speed [m/s]

275 280 285
 [K]

2017.01.11 15 UTC

0 20 40
Wind speed [m/s]

275 280 285
 [K]

2017.01.11 18 UTC

0 20 40
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.18: Profiles of Θ and wind speed for the location shown in Figure E.17. The location
is randomly selected. The profiles are from the simulation initiated at 2017.01.11 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

127 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.19: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.20. The plots are based on the simulation initiated at 2018.08.02 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

286 288
 [K]

0

50

100

150

200

250

300

350

He
ig

ht
 [m

]

2018.08.02 06 UTC

0 5 10
Wind speed [m/s]

0

50

100

150

200

250

300

350

He
ig

ht
 [m

]

286 288
 [K]

2018.08.02 09 UTC

0 5 10
Wind speed [m/s]

286 288
 [K]

2018.08.02 12 UTC

0 5 10
Wind speed [m/s]

286 288
 [K]

2018.08.02 15 UTC

0 5 10
Wind speed [m/s]

286 288
 [K]

2018.08.02 18 UTC

0 5 10
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.20: Profiles of Θ and wind speed for the location shown in Figure E.19. The location
is randomly selected. The profiles are from the simulation initiated at 2018.08.02 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

128 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.21: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.22. The plots are based on the simulation initiated at 2018.08.02 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

300 305
 [K]

0

250

500

750

1000

1250

1500

1750

2000

He
ig

ht
 [m

]

2018.08.02 06 UTC

0 5 10
Wind speed [m/s]

0

250

500

750

1000

1250

1500

1750

2000

He
ig

ht
 [m

]

300 305
 [K]

2018.08.02 09 UTC

0 5 10
Wind speed [m/s]

300 305
 [K]

2018.08.02 12 UTC

0 5 10
Wind speed [m/s]

300 305
 [K]

2018.08.02 15 UTC

0 5 10
Wind speed [m/s]

300 305
 [K]

2018.08.02 18 UTC

0 5 10
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.22: Profiles of Θ and wind speed for the location shown in Figure E.21. The location
is randomly selected. The profiles are from the simulation initiated at 2018.08.02 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

129 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.23: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.24. The plots are based on the simulation initiated at 2018.08.02 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

284 285 286 287
 [K]

0

50

100

150

200

250

300

He
ig

ht
 [m

]

2018.08.02 06 UTC

2 4 6
Wind speed [m/s]

0

50

100

150

200

250

300

He
ig

ht
 [m

]

284 285 286 287
 [K]

2018.08.02 09 UTC

2 4 6
Wind speed [m/s]

284 285 286 287
 [K]

2018.08.02 12 UTC

2 4 6
Wind speed [m/s]

284 285 286 287
 [K]

2018.08.02 15 UTC

2 4 6
Wind speed [m/s]

284 285 286 287
 [K]

2018.08.02 18 UTC

2 4 6
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.24: Profiles of Θ and wind speed for the location shown in Figure E.23. The location
is randomly selected. The profiles are from the simulation initiated at 2018.08.02 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

130 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.25: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.26. The plots are based on the simulation initiated at 2018.08.02 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

290 292
 [K]

0

10

20

30

40

50

60

70

He
ig

ht
 [m

]

2018.08.02 06 UTC

0.0 2.5 5.0 7.5
Wind speed [m/s]

0

10

20

30

40

50

60

70

He
ig

ht
 [m

]

290 292
 [K]

2018.08.02 09 UTC

0.0 2.5 5.0 7.5
Wind speed [m/s]

290 292
 [K]

2018.08.02 12 UTC

0.0 2.5 5.0 7.5
Wind speed [m/s]

290 292
 [K]

2018.08.02 15 UTC

0.0 2.5 5.0 7.5
Wind speed [m/s]

290 292
 [K]

2018.08.02 18 UTC

0.0 2.5 5.0 7.5
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.26: Profiles of Θ and wind speed for the location shown in Figure E.25. The location
is randomly selected. The profiles are from the simulation initiated at 2018.08.02 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

131 of 137

E.3. EXTRA EXAMPLES OF Θ AND WIND SPEED PROFILES

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 09 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 12 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 15 UTC

-200
-93
13
120
227
333
440
547

10°W 0° 10°E 20°E 30°E

40°N

50°N

60°N

2018.08.02 18 UTC

-200
-93
13
120
227
333
440
547

Figure E.27: Surface sensible heat fluxes for the location of the profiles shown in Figure
E.28. The plots are based on the simulation initiated at 2018.08.02 06 UTC. The times thus
correspond to the fluxes after 3, 6, 9 and 12 hours (the fluxes at initial time is not available in
the output file from WRF). The location for the profiles is marked with the black ×.

295 300 305
 [K]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

2018.08.02 06 UTC

0 5 10
Wind speed [m/s]

0

500

1000

1500

2000

2500

He
ig

ht
 [m

]

295 300 305
 [K]

2018.08.02 09 UTC

0 5 10
Wind speed [m/s]

295 300 305
 [K]

2018.08.02 12 UTC

0 5 10
Wind speed [m/s]

295 300 305
 [K]

2018.08.02 15 UTC

0 5 10
Wind speed [m/s]

295 300 305
 [K]

2018.08.02 18 UTC

0 5 10
Wind speed [m/s]

MYNN
ANN
YSU
MYJ
PBLH

Figure E.28: Profiles of Θ and wind speed for the location shown in Figure E.27. The location
is randomly selected. The profiles are from the simulation initiated at 2018.08.02 06 UTC and
are valid after 0, 3, 6, 9, and 12 hours, respectively. The planetary boundary layer height, pblh
is the one predicted by the MYNN scheme (not available for the initial time step).

132 of 137

List of Figures

1.1 Diurnal cycle of surface temperature flux . 14

1.2 Typical vertical profiles for unstable boundary layer 14

1.3 φm and φh from Monin-Obukhov similarity . 19

2.1 Flow chart illustrating the different elements of WRF 26

2.2 Flow chart illustrating the different elements of WPS 27

2.3 Illustration of Lambert conformal mapping. 28

2.4 Illustration of the terrain following vertical coordinate, η 29

2.5 Spatial discretization of WRF . 30

3.1 Illustration of feedforward neural network . 34

3.2 Four different activation functions. 37

3.3 Illustrative sketch of learning curves . 40

4.1 Domain used for generation of training data. 43

4.2 Illustration of how the neural network will interact with the WRF model 49

4.3 Validation losses for models using different inputs (for stable samples) 50

4.4 Validation losses for models using different inputs (for unstable samples) 51

4.5 Learning rate finder. Loss as function of learning rate. 54

4.6 Example of use of cyclic learning rate schedule 55

4.7 Distributions of input variables . 57

4.8 Distributions of output variables . 58

4.9 Distributions of output variables (stable/unstable) 59

4.10 Distributions of input variables (unstable samples and logarithmic scaling) 60

4.11 Distributions of output variables (unstable samples and logarithmic scaling) . . . 60

4.12 Learning curves for different model sizes . 65

4.13 Loss as function of the number of model parameters 66

4.14 Learning curves for models with different batch sizes 67

4.15 Learning curves for models with different activations 68

4.16 Learning curves for different model sizes (fewer input variables) 69

133 of 137

LIST OF FIGURES

4.17 Loss as function of the number of model parameters (fewer input variables) . . . 69

4.18 Example of predictions by the three neural networks (stable surface) 71

4.19 Example of predictions by the three neural networks (unstable surface) 72

4.20 Correlation plots showing predictions as function of true values 73

5.1 Domain used for testing the ANN schemes. 75

5.2 Contour plots of predictions of the three ANN schemes (first simulation) 78

5.3 Contour plots of more predictions of the three ANN schemes (first simulation) . 79

5.4 rmse and r as function of time (first simulation, comparing ANN schemes) . . . 80

5.5 Contour plots of predictions of 2m temperature for first 3 hours (second simulation) 81

5.6 rmse and r as function of time (second simulation, comparing ANN schemes) . . 82

5.7 Contour plots of surface sensible heat flux predictions of the ANN scheme com-

pared to existing PBL schemes (first simulation) 84

5.8 Contour plots of surface latent heat flux predictions of the ANN scheme compared

to existing PBL schemes (first simulation) . 84

5.9 Contour plots of surface sensible friction velocity predictions of the ANN scheme

compared to existing PBL schemes (first simulation) 85

5.10 Contour plots of pblh predictions of the ANN scheme compared to existing PBL

schemes (first simulation) . 85

5.11 Contour plots of 2m temperature predictions of the ANN scheme compared to

existing PBL schemes (first simulation) . 86

5.12 Contour plots of 10m wind predictions of the ANN scheme compared to existing

PBL schemes (first simulation) . 86

5.13 rmse and r as function of time (first simulation, comparing ANN scheme to

existing PBL schemes) . 87

5.14 rmse and r as function of time (second simulation, comparing ANN scheme to

existing PBL schemes) . 88

5.15 Surface sensible heat fluxes for example with stable surface conditions 89

5.16 Profiles of Θ and wind speed for stable surface conditions 90

5.17 Surface sensible heat fluxes for example with unstable surface conditions 91

5.18 Profiles of Θ and wind speed for unstable surface conditions 91

B.1 Surface elevation height and surface roughness (domain used for generation train-

ing data) . 108

B.2 2m temperature, surface sensible heat flux and friction velocity (case 1) 109

B.3 2m temperature, surface sensible heat flux and friction velocity (case 2) 109

B.4 2m temperature, surface sensible heat flux and friction velocity (case 3) 109

B.5 2m temperature, surface sensible heat flux and friction velocity (case 4) 110

134 of 137

LIST OF FIGURES

B.6 2m temperature, surface sensible heat flux and friction velocity (case 5) 110

B.7 2m temperature, surface sensible heat flux and friction velocity (case 6) 110

C.1 Distributions of input variables (stable samples and logarithmic scaling) 111

C.2 Distributions of input variables (stable, non-zero tke, and logarithmic scaling) . . 112

C.3 Distributions of output variables (stable samples and logarithmic scaling) 113

C.4 Distributions of output variables (stable, non-zero tke, and logarithmic scaling) . 113

D.1 Additional example 1: predictions by the three neural networks 114

D.2 Additional example 2: predictions by the three neural networks 115

D.3 Additional example 3: predictions by the three neural networks 115

D.4 Additional example 4: predictions by the three neural networks 115

D.5 Additional example 5: predictions by the three neural networks 116

D.6 Additional example 6: predictions by the three neural networks 116

D.7 Additional example 7: predictions by the three neural networks 116

D.8 Additional example 8: predictions by the three neural networks 117

D.9 Additional example 9: predictions by the three neural networks 117

D.10 Additional example 10: predictions by the three neural networks 117

E.1 Contour plots of predictions of the three ANN scemes (second simulation) 118

E.2 Contour plots of predictions of the three ANN scemes (second simulation) 119

E.3 Contour plots of surface sensible heat flux predictions of the ANN scheme com-

pared to existing PBL schemes (second simulation) 120

E.4 Contour plots of surface latent heat flux predictions of the ANN scheme compared

to existing PBL schemes (second simulation) . 120

E.5 Contour plots of surface sensible friction velocity predictions of the ANN scheme

compared to existing PBL schemes (second simulation) 121

E.6 Contour plots of pblh predictions of the ANN scheme compared to existing PBL

schemes (second simulation) . 121

E.7 Contour plots of 2m temperature predictions of the ANN scheme compared to

existing PBL schemes (second simulation) . 122

E.8 Contour plots of 10m wind predictions of the ANN scheme compared to existing

PBL schemes (second simulation) . 122

E.9 Surface sensible heat fluxes for additional example 1 123

E.10 Additional example 1: profiles of Θ and wind speed 123

E.11 Surface sensible heat fluxes for additional example 2 124

E.12 Additional example 2: profiles of Θ and wind speed 124

E.13 Surface sensible heat fluxes for additional example 3 125

135 of 137

LIST OF FIGURES

E.14 Additional example 3: profiles of Θ and wind speed 125

E.15 Surface sensible heat fluxes for additional example 4 126

E.16 Additional example 4: profiles of Θ and wind speed 126

E.17 Surface sensible heat fluxes for additional example 5 127

E.18 Additional example 5: profiles of Θ and wind speed 127

E.19 Surface sensible heat fluxes for additional example 6 128

E.20 Additional example 6: profiles of Θ and wind speed 128

E.21 Surface sensible heat fluxes for additional example 7 129

E.22 Additional example 7: profiles of Θ and wind speed 129

E.23 Surface sensible heat fluxes for additional example 8 130

E.24 Additional example 8: profiles of Θ and wind speed 130

E.25 Surface sensible heat fluxes for additional example 9 131

E.26 Additional example 9: profiles of Θ and wind speed 131

E.27 Surface sensible heat fluxes for additional example 10 132

E.28 Additional example 10: profiles of Θ and wind speed 132

136 of 137

List of Tables

4.1 The variables for the base model as well as the 7 additional variables tested on

top of the base model. 48

4.2 The model setup for determining input variables. 50

4.3 Model descriptions for optimization step 1 . 62

4.4 Performance of the models for optimization step 1. 64

4.5 Performance of model 3 and model 4 on stable samples with/without TKE . . . 64

4.6 Model setups for the three best models . 70

4.7 Performance of the three best models . 71

5.1 Computational cost of the different PBL schemes 93

5.2 Computational cost of subroutines of the ANN and MYNN schemes 93

137 of 137

	Introduction
	Atmospheric turbulence
	Governing equations for the PBL
	The fluid dynamical equations
	Including effects of water vapor and liquid water
	Interpretation of Reynolds terms
	Turbulent kinetic energy

	Turbulence in the planetary boundary layer
	Surface layer
	Intermediate layer
	Interfacial layer

	Turbulence parameterization in NWP
	K-closure
	Similarity theory
	Monin-Obukhov similarity
	Second order closure models
	Mellor-Yamanda-Nakanishi-Niino model

	The WRF model
	WRF Preprocessing System
	Advanced Research WRF
	Physics parameterizations

	Model setup

	Artificial neural networks
	The feedforward neural network
	Training the network
	Stochastic gradient descent

	Development and optimization of the model
	Creating the dataset
	Determining model output
	Determining model input
	Results
	How to conclude based on the results

	Training and optimizing the model
	Learning rate and optimizer
	Categorizing the data
	Pre- and postprocessing
	Other hyperparameters
	Model optimization
	Developing a model with fewer input variables
	Model comparison

	Implementation and test
	Method for model comparison
	Implementing neural networks in WRF
	Comparison of the three ANN schemes
	Evaluation of the best ANN scheme
	Comparing computational efficiency

	Discussion and conclusion
	Development of the ANN scheme
	Evaluation of the ANN scheme
	Conclusion and outlook

	Bibliography
	Namelist examples
	Simulations used for training data
	Additional variable distributions
	Additional examples of predictions by the neural networks
	Additional results
	Extra plots comparing the three ANN schemes
	Extra plots for evaluation of the best ANN scheme
	Extra examples of and wind speed profiles

	List of Figures
	List of Tables

