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Abstract

The AdS5/CFT4 correspondence has the property of integrability,

which leads to the formalism of Quantum Spectral Curves (QSC). It

is a system of finite-difference equations and can be used to determine

the Hagedorn temperature for weak and strong coupling. Based on

the method introduced in [1], we solve the QSC numerically in the

strong coupling limit at the Hagedorn temperature. We then attempt

to find an analytic description of the constituent functions P and

Q of the QSC formalism in the strong coupling limit. The focus

of the study lies on the analysis of those functions concerning their

dependence of the spectral parameter and the coupling. In order to

find an analytic expression we fit the numeric solutions. We apply

different ansätze for those functions and compare them regarding

numeric stability and their behaviour in the limit g →∞.
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1 Introduction

In 1975, Hawking found that black holes are radiating energy due to quantum entan-

glement effects near the event horizon [2]. Quantum states falling into the black hole

must collapse and new states are formed which build the Hawking radiation. Thus, the

radiated states are independent of the states that were entering the black hole. This is

however a contradiction to the principle of information perseverance and is known as

the black hole information paradox. It was resolved in 1993, when ’t Hooft proposed the

idea that incoming states are not destroyed but the information is stored at the horizon

of the black hole [3]. Susskind formulated the idea in terms of string theory which is now

known as the holographic principle [4]. The first concrete example of the holographic

principle was proposed by Maldacena in [5]. He showed that conformal field theories

can be described as string theories. Witten’s papers [6, 7] generalize Maldacenas paper

and state that in fact conformal field theory (CFT) comes naturally at the boundary

of Anti-de Sitter (AdS) manifolds. This duality between a gauge theory and a gravity

theory is called AdS/CFT correspondence. And since then several such gauge-gravity

dualities have been found (see for example [5, 8, 9]). Since its discovery the duality

has been the subject of tremendous research in many fields such as nuclear (see e.g.

[10, 11, 12]) or condensed matter physics (see e.g. [13, 14]).

The most prominent and most studied realization of the AdS/CFT correspondence

is the original proposal by Maldacena [5]. It states that superstring theory of type IIB

defined on AdS5 × S5 spacetime is dual to N = 4 Super Yang-Mills theory (SYM) in

d = 3 + 1 dimensions. AdS5 is referring to a five-dimensional Anti-de Sitter spacetime

which has a negative cosmological constant and is a maximally symmetric solution of

Einstein’s equation. The symmetry is equal to the one of N = 4 SYM with gauge group

SU(N). This large number of symmetries makes the gauge theory physically unrealistic,

especially the large amount of supersymmetry which has not yet been found confirmed

with any observations. However, it shares some qualities with quantum chromodynam-

ics (QCD) which makes it a good model to gain a better understanding of QCD.

A very useful property of the duality is that strongly coupled theories, such as QCD, are

corresponding to gravitational theories on weakly curved background metrics. Nonethe-

less, that also implies that there is a strong string coupling. Non-perturbative methods

in type IIB string theory are not well established. Therefore, it is really difficult task to

directly prove the equivalence of those theories.

Although the AdS/CFT correspondence is difficult to prove, it still provides new
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tools to study strong coupling phenomena. One that has drawn considerable attention

is the quark-gluon plasma and its associated phase transition. At low energies quarks

and gluons can only occur in certain combinations that form hadrons. However, when

they reach a critical temperature they can break free and start behaving like a free gas of

quarks and gluons. This ”evaporation” is called deconfinement and it is accompanied by

a phase transition. It is rather difficult to study the thermodynamic behaviour of QCD

(and SU(N) gauge theories) since it is strongly coupled (except at very high energies)

and can only be solved using lattice or numeric techniques [1, 15, 16, 17]. However, in

the large N limit SU(N) or U(N) gauge theories placed on a compact manifold (such

as N = 4 SYM on R × S3) have a similar phase transition and are weakly coupled.

Therefore, they make good toy models for QCD.

At low temperatures N = 4 SYM on R × S3 shows Hagedorn behaviour, which

means that the density of states grows exponentially with the energy [15, 18]. However,

there is a limiting temperature known as Hagedorn temperature at which the partition

function diverges. In case of zero coupling this temperature is equal to the deconfine-

ment temperature, whereas by turning on coupling the deconfinement phase transition

occurs even below the temperature for N → ∞ [15]. On the string theory side, at tree

level the state density also grows exponentially until it reaches the Hagedorn temper-

ature. And as far as string interactions are concerned, the gas of strings collapses to

a black hole. This transition is known as Hawking-Page transition and is connected to

the deconfinement phase transition in the gauge theory [6].

Thermodynamics has not really been investigated in the strong coupling limit due

to the lack of efficient methods. The solution provides integrability a property that

enters the AdS/CFT correspondence naturally. Planar N = 4 SYM has an underlying

two-dimensional Heisenberg spin chain at weak coupling which can be solved exactly

using the Bethe ansatz (BA) [19]. In the planar limit of the gauge theory string in-

teractions can be neglected and the theory is thus described as a sigma model which

is integrable [20]. This makes it possible to study the spectrum and thermodynamic

quantities for any values of the coupling. The non-perturbative approach to the spectral

problem can be solved with a thermodynamic Bethe ansatz (TBA) and reduced to a

finite difference equation system called quantum spectral curves (QSC) [21].

With the QSC formalism it is possible to determine the Hagedorn temperature for

any finite coupling by interpolating between the weak and strong coupling limit. This
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has been performed numerically by Harmark and Wilhelm in [1]. Continuing their work,

it would be of considerable interest to find an analytic formulation of the QSC in the

strong coupling limit. Hence, the objective of this thesis is to gain a better understand-

ing of the strong coupling limit. As a foundation, we will use the method and numeric

solutions of [1]. We will analyse these solutions that were obtained in the algorithm

for strong coupling and further attempt to find an analytic expression by fitting those

solutions.

The thesis is divided into five sections, including this introduction. Section 2 will

provide the necessary theoretical background and consists of three parts: N = 4 SYM,

AdS/CFT and thermodynamics on both theories and finally integrability. The third

section presents the results of the research, which are then discussed in the last section.
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2 Theory

2.1 N = 4 Super Yang-Mills theory

N = 4 Super Yang-Mills (SYM) theory has been subject of profuse research (see for ex-

ample [22, 23, 24] and reference herein, which we will follow in this section). The primary

reason is that it is dual to type IIB superstring theory according to the AdS/CFT cor-

respondence [5]. But besides that it has many features that are of interest. N = 4 SYM

theory is a maximally symmetrical theory which makes it very convenient to work with.

It is, among other things, invariant under conformal transformations [25]. Although this

is not the case for QCD in general, at high energies the theory becomes asymptotically

free which means that it is also conformally invariant in this limit. Hence, N = 4 SYM

can be used to examine properties of QCD for high energies.

Conformal invariance, however, implies that there is no running coupling. Thus, there

is no mass scale which would allow confinement and further no physical particles like

hadrons in QCD. Nevertheless, it is possible to make N = 4 SYM a confining theory by

placing it on a compact space, for example on a sphere. In this case, it is possible to

use SYM to increase our understanding of QCD and its confinement and the transition

to the deconfining phase.

2.1.1 Action and symmetry algebra

The field components of N = 4 SYM are one gauge boson Aµ where µ = 1, . . . 4 are

spacetime vector indices, scalar fields φi where i = 1 . . . 6 and Weyl fermions λaα where

the indices are a = 1, . . . 4, α = 1, 2 and α̇ = 1, 2 representing the left and right chirality

SU(2)R and SU(2)L respectively. The Lagrangian for N = 4 SYM was first formulated

by Brink, Schwarz and Scherk in [26]

L = Tr

(
1

4
FµνF

µν+
1

2
DµφiD

µφi + λ̄aα̇σ
α̇β
µ Dµλβa − i

gYM

2
λαaσ

ab
i ε

αβ[φi, λβb]

−igYM

2
λ̄aα̇σ

i
abε

α̇β̇[φi, λ̄
b
β̇
]−

g2
YM

4
[φi, φj ][φi, φj ]

)
.

(1)

where Fµν = ∂µAν − ∂νAµ + igYM [Aµ, Aν ] is the field strength tensor and Dµ· =
∂µ · −ig[Aµ, ·] the covariant derivative. The matrices σµ and σm are the chiral projec-

tions of the γ-matrices in four or six dimensions, respectively. Furthermore, the theory

is gauge invariant and one can choose the gauge group, which is in our case SU(N) or

U(N). The Yang-Mills coupling constant is denoted as gYM . Its β-function vanishes for

all couplings. This was first shown for up to three-loop order by [27, 28, 29, 30] and then
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generalized by [26, 31, 32] to all loop orders using light cone superspace. This suggests

that the theory is UV finite for all loop orders.

The underlying algebra of N = 4 SYM is the superconformal algebra PSU(2, 2|4).

It is maximally symmetric which implies N = 4 supersymmetry, conformal symmetry

and R-symmetry [33].

The conformal algebra SU(2, 2) ' SO(2, 4) is invariant under Poincaré transformations,

which includes translations and Lorentz transformations. Furthermore, It is invariant

under dilatations and special conformal transformations which can be thought as a com-

position of transformation that has first an inversion, then a translation, then another

inversion. The dilatation operator will be of special interest in this work since it gives

the scaling dimensions of operators, as will be discussed below.

Supersymmetry allows us to transform between bosons and fermions. It is the natural

extension of Poincaré symmetry as stated by Haag, Sohnius and Lopuszanski [34]. Its

generators are supercharges Qaα and Q̃aα̇ as well as superconformal charges Saα, S̃α̇a,

where α, α̇ = 1, 2 and a = 1, . . . 4. They all behave in a fermionic way.

R-symmetry, which is SU(4) ' SO(6), is the manifestation of a global rotational invari-

ance of the supercharges and follows

Qaα 7→ Qa
′
α = RabQ

b
a, Q̄aα̇ 7→ Q̄′aα̇ = Q̄bα̇(R†)ba. (2)

R ∈ SU(4) are the generators of this symmetry in case of N = 4 SYM. It is non-Abelian

and it does not commute with supersymmetry.

The superconformal algebra PSU(2, 2|4) has a bosonic subalgebra SU(2, 2) ×
SU(4). It is of rank six and can thus be represented as a sextuplet (∆, S1, S2; J1, J2, J3).

It includes the dimension of the operator ∆, the charges of the Lorentz group S1 and

S2 and the charges of R-symmetry J1, J2 and J3.

2.1.2 Local operators

Local operators are constructed out of products and linear combinations of fundamental

fields and their derivatives. One can distinguish two types of operators: primary and

descendant. Descendant operators are constructed from derivatives of primary operators

and together they build a set of irreducible representations for PSU(2, 2|4) [33]. Local

operators can be regarded as states of the theory which can be made clear as in the

following. Consider spherical coordinates on Rd

ds2 = dr2 + r2dΩ2
d−1, (3)

5



By identifying r = eτ we obtain a cylinder R×Sd−1 instead of Rd. With that the metric

reduces to

ds2 = e2τ
(
dτ2 + dΩ2

d−1

)
(4)

which is just a Weyl transformation of eq. (3). Putting a local operator at the centre of

the sphere in Rd can then be viewed as preparing a state at τ = −∞. Time translations

for the operators are described by the dilatation operator on R whereas time translations

of the states on R × Sd−1 are described by the Hamiltonian. This translation between

states and operators is known as the state-operator map.

Each of the local operators O(x) has a dimension ∆. This dimension appears in

scalings such as x→ λx where O(x) transforms as

O(x)→ λ−∆O(λx). (5)

The generator of rescalings is the dilatation operator D for which then holds

O(x)→ λ−iDO(x)λiD. (6)

By considering the infinitesimal transformation, one can find the action of D on O(x)

[D,O(x)] = i

(
−∆ + x

∂

∂x

)
O(x). (7)

For operators at x = 0 this implies

[D,O(0)] = −i∆O(0). (8)

The dimension of the operator ∆ can be shifted up and down by acting on O(0) with

other generators. One of those is the generator of translations Pµ. Using the commuta-

tion relation [D,Pµ] = −iPµ one can calculate

[D, [Pµ,O(0)]] =[[D,Pµ],O(0)] + [Pµ, [D,O(0)]] = −i[Pµ,O(0)]− i∆[Pµ,O(0)]

=− i(∆ + 1)[Pµ,O(0)].
(9)

This calculation shows that the dimension of the operator O is raised by 1. The other

operator is the generator of special conformal transformations Kµ which is connected to

the dilation operator as [D,Kµ] = iKµ. Doing a similar calculation to eq. (9) one finds

[D, [Kµ,O(0)]] = −i(∆− 1)[Kµ,O(0)] (10)

that the dimension of the operator O is lowered by 1. Hence, it is possible to find a

lower limit for the dimension in each representation which is reached if

[Kµ, Õ(0)] = 0. (11)
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Local operators satisfying eq. (11) are called primary operators. They have the lowest

possible dimension and are thus eigenstates of special conformal transformations [33].

Introducing supersymmetry, there exists a similar picture. By commuting a local

operator O(0) with the superconformal charges Saα, S̃α̇a lowers the dimension by 1
2 . In

contrast acting with the supercharges Qaα and Q̃aα̇ the dimension is increased by 1
2 .

Furthermore, primary operators have to satisfy

[Saα,O(0)] = [S̃α̇a,O(0)] = 0. (12)

It is a more general lower boundary condition for the scaling dimension and it implies

eq. (11) due to the anti-commutation relations

[Saα,Kµ] = [S̃α̇a,Kµ] = 0. (13)

Fields of N = 4 SYM are defined in the adjoint representation. Therefore, they

transform in a covariant way

χ(x)→ χ(x) + [ε(x), χ(x)], (14)

where χ is a local field and ε the local gauge transformation. From those fields one can

construct new covariant fields by taking the covariant derivative

Dµχ(x) ≡ ∂µχ(x)− [Aµ(x), χ(x)] (15)

where Aµ(x) → Aµ(x) + ∂µε(x) + [ε(x), Aµ(x)]. To obtain a gauge-invariant operator

one can take the trace of products of covariant fields (or their covariant derivatives)

O(x) = Tr[χ1(x)χ2(x) . . . χL(x)]. (16)

Such operators are called single-trace operators and their products are multi-trace op-

erators. An example is the operator

O(x) = Tr
[
Xk
]
, (17)

where X is a complex scalar field of the form X = 1√
2
(φ5 +iφ6) and k > 2 since the trace

of a scalar field is zero [33]. Equation (17) is of special interest since it is a chiral primary

operator and has a scaling dimension of ∆ = k. Chiral primaries are a general set of

operators with symmetrized indices and are traceless in the sense that the trace of any

two indices vanishes. These properties leave their dimension invariant when introducing

quantum corrections, which will be explained further below.
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2.1.3 Large N factorization

As mention above, all the fields are in the adjoint representation to provide gauge-

invariance. Consider for example only the scalar fields in eq. (1). We can build a toy

Lagrangian for scalar fields and their coupling g that reads

L = −1

2
Tr(∂µφ∂

µφ) + gTr
(
φ3
)

+ g2 Tr
(
φ4
)

=
1

g2

(
−1

2
Tr
(
∂µφ̃∂

µφ̃
)

+ Tr
(
φ̃3
)

+ Tr
(
φ̃4
))

,
(18)

where we obtained the last equality by rescaling φ̃ = gφ. By introducing the ’t Hooft

coupling λ = g2N , we can further go to the limit where N → ∞ and λ is kept fixed.

This is called the ’t Hooft limit [35]. In this case the propagator of two scalar fields

reduces to

〈φ̃ijφ̃kl 〉 ∝
λ

N
δilδ

k
j . (19)

Feynman diagrams presenting such propagators scale as(
N

λ

)V ( λ
N

)E
NF =

(
N

λ

)χ
λF . (20)

Here V is the number of vertices in the diagram, E the number of propagators and F the

number of loops. They are the constituents of the minimal Euler character χ = V +F−E
and are connected to the genus of the surface g as χ = 2−2g. With that the correlation

function can be expanded in terms of N

〈O1 . . .On〉 =

∞∑
g=0

N2−n−2gfg(λ), (21)

whereOi represent single trace operators. By sending N →∞ the contributing diagrams

are the ones with g = 0 which are the planar diagrams. Equation (21) is known as the

large N expansion and can be connected to a similar expansion in string theory which

suggests the AdS/CFT correspondence and will be further discussed in section 2.2.1.

2.1.4 Anomalous dimension

In general, the scaling dimension of operators ∆ depends on the coupling gYM. When

considering the free theory, which means there is no interaction between field compo-

nents, the scaling dimension is equal to the bare dimension ∆0. However, in the case of

quantum corrections, the dimension ∆ obtains an additional term ∆ = ∆0 + δ∆. The

correction to the dimension δ∆ is called anomalous dimension.
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In the following we are going to consider the ’t Hooft limit which ensures that only

planar graphs contribute at one-loop level since all others are suppressed by 1
N2 . Further,

if the ’t Hooft coupling is small λ � 1 it is ensured that the anomalous dimension is

small compared to the bare dimension δ∆� ∆0.

The anomalous dimension can be determined by the two-point correlation function of

the operator with itself. As an example consider the bosonic subalgebra again with a

simple single trace operator for L scalar fields

O(x) =
(4π2)L/2√
CI1I2...ILN

L/2
Tr(φI1φI2 · · ·φIL). (22)

The factor before the trace is for normalization where CI1I2...IL is a symmetry factor.

The operator has L indices where each has an SO(6) tensor and it is mapped to a space

H = V1 ⊗ · · · ⊗ VL, Vl ∈ R6. (23)

Therefore, one can conclude that the anomalous dimension should also live on a space

as in eq. (23). Consequently, the anomalous dimension δ∆ should be the eigenvalue of

some 6L × 6L matrix Γ.

The matrix Γ can be calculated by considering all the relevant planar Feynman diagrams

at one-loop order which has been done several times as in [19, 36, 37, 38]. The quantum

correction term then delivers the anomalous dimension matrix which has been found to

be [19]

Γ =
λ

16π2

L∑
l=1

(Kl,l+1 + 2− 2Pl,l+1) . (24)

It contains the ’t Hooft coupling λ ≡ g2
YMN and two operators which act on the color

indices. Kl,l+1 is called the trace operator and contracts color indices I, J

Kl,l+1δ
J1
I1
· · · δJlIl δ

Jl+1

Il+1
· · · δJLIL = δJ1

I1
· · · δIlIl+1

δJlJl+1 · · · δJLIL . (25)

Pl,l+1 exchanges color indices

Pl,l+1δ
J1
I1
· · · δJlIl δ

Jl+1

Il+1
· · · δJLIL = δJ1

I1
· · · δJl+1

Il
δJlIl+1

· · · δJLIL . (26)

Therefore, it is called permutation operator. Acting with Γ on an operator gives the

anomalous dimension δ∆. As an example, let us first consider chiral primaries. The ac-

tion of the trace operator eq. (25) on chiral primaries as defined in eq. (17) vanishes since

they are traceless by definition. Furthermore, they are invariant under color exchanges,

since we look at symmetrized indices inside the trace. Thus,

ΓOPrimary(x) = 0 (27)
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which proves that chiral primaries are not affected by quantum corrections and thus

have a protected dimension. However, there are also operators, for which this is not the

case. Consider for example the Konishi operator

OKonishi(x) =

6∑
i=1

Tr(φiφi). (28)

It is invariant under color exchange as well, but acting on it with Kl,l+1 results in [36]

Kl,l+1OKonishi(x) = 6OKonishi(x). (29)

The anomalous dimension is then obtained by eq. (24)

δ∆Konishi =
3λ

4π2
. (30)

Now let us get back to the Hilbert space for the anomalous dimension eq. (23),

which is formed by the SO(6) singlets of scalar fields. This space is in fact the same

space as for a spin chain of length L and with SO(6) symmetry at each site [36]. Thus,

one can regard the anomalous matrix Γ as the Hamiltonian of this spin chain. Conse-

quently, N = 4 SYM has a spin chain as an underlying model. Spin chains are exactly

solvable and therefore also N = 4 SYM. This property is called integrability and will

be discussed in more detail in section 2.3.

2.2 Thermodynamic behaviour and Hagedorn temperature

N = 4 SYM theory, as discussed so far, has no temperature dependence. By putting the

theory on a compactified spacetime it becomes dependent on the temperature in a non-

trivial way [7]. This leads to two different descriptions of the thermodynamic behaviour

for high and low temperatures. They are connected by a phase transition which is

suspected to be the analogue of the confinement-deconfinement transition observed in

QCD [7]. Before discussing the thermodynamic behaviour, we are going to introduce the

AdS/CFT correspondence between N = 4 SYM on R × S3 and type IIB string theory

on AdS5 × S5. It allows to combine thermodynamics in the gauge theory with the one

of string theory. Thus, we are able to find new insights especially concerning the limit

of strong coupling. A significant finding is that the deconfinement phase transition is

dual to the Hawking-Page transition [15, 39]. Both phase transitions have a limiting

temperature at which the low temperature phase stops existing. This temperature is

known as Hagedorn temperature. It is accompanied with an exponential growth of the

density of states which is hence referred to as Hagedorn behaviour.
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2.2.1 AdS/CFT correspondence

The AdS/CFT correspondence relates a conformal field theory to a quantum gravity.

Different types of dualities have been found. However, the one that is relevant here is

the one that relates N = 4 SYM in d = 4 dimensions and with gauge group SU(N)

to type IIB string theory on AdS5 × S5. The discovery in [5] was motivated by string

theory as the description of D3-branes and gives hints that those theories describe the

same physics. This and some of the most important features will be briefly reviewed in

this section.

Anti-de Sitter Spacetime

The Lorentzian AdSd+1 spacetime is a hyperboloid which is embedded in a space

with one additional dimension Rd,2

−(X0)2 + (X1)2 + · · ·+ (Xd)2 − (Xd+1)2 = −R2, (31)

where X0 > 0 and R is the radius of AdS. It is convenient to introduce the coordinates

X0 = R cos t cosh ρ, (32)

Xµ = RΩµ sinh ρ, (33)

Xd+1 = −R sin t cosh ρ, (34)

with Ωµ are the coordinates of a unit sphere for µ = 1, . . . , d. With those coordinates

the metric is

ds2 = R2
(
− cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2

d−1

)
, (35)

with the time coordinate t ∈ R and the radial coordinate ρ ∈ [0,∞). As an example

consider a boost in the X1 - Xd+1 plane

X1 coshβ = Xd+1 sinhβ (36)

for Xµ = 0. Inserting the coordinates into this equation one obtains

tanhβ = tanhβ sin t. (37)

One can see that the trajectory is in fact oscillating with period 2π. For massless par-

ticles the trajectory follows cosh ρ = 1
cos t , which implies that for t = ±π

2 the particles

reach ρ = ∞. Therefore, the AdS space can be viewed as a box that confines classical

particles.
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The duality

The best studied example of the AdS/CFT correspondence is the duality between

type IIB string theory on AdS5 × S5 and N = 4 SU(N) SYM theory on S3 × R. The

duality follows from the physics of D3-branes at low energies. To see that, consider N

D3-branes in 10-dimensional Minkowski space. The physics of the branes can be viewed

in two ways:

• Open string interpretation: D3-branes are higher dimensional submanifolds which

open strings can attach to. While the open strings can be described as small

excitations of the D3-brane, closed strings can be viewed as excitation of 10-

dimensional Minkowski space. The open string interpretation is only trustworthy

for gsN ≥ 1, when we are able to neglect string interactions. Furthermore, we are

only interested in the low energy limit E
√
ls � 1 to which only massless string

excitations are contributing. When taking ls → 0 the closed and open string

sectors decouple. The description of the closed strings is then supergravity on

10-dimensional Minkowski-space, whereas open strings on the D3-brane can be

described as N = 4 SU(N) SYM.

• Closed string interpretation: D3-branes can be considered as sources for curved

backgrounds, on which closed strings can propagate. In order to use that descrip-

tion we need to impose strong coupling gsN → ∞. The background metric is

divided into two regions, either 10-dimensional Minkowski space or AdS5 × S5.

Going to the low energy limit by taking ls → 0 again, those two theories decouple.

Thus, one obtains supergravity in 10-dimensional space and type IIB string theory

on AdS5 × S5.

The result are two different description of D3-branes in the low energy limit. Which

of them is valid depends on the value of the coupling gsN . Both perspectives con-

clude in two decoupled descriptions. The open and the closed perspective have to be

equivalent as they describe the same physics. Furthermore, both have supergravity on

10-dimensional Minkowski space as one of the decoupled sectors. Therefore, type IIB

string theory on AdS5 × S5 should be equivalent to N = 4 SU(N) SYM.

Based on that, Maldacena [5] found that

g2
YM = 4πgs and

R4

l4s
= g2

YMN ≡ λ (38)
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where ls is the string length and R is the curvature of AdS and S. The reliable regime

in the gauge theory is the low coupling limit, in which perturbation theory is applicable.

Thus, when

λ = g2
YMN = 4πgsN =

R4

l4s
� 1, (39)

is given. On the other hand, in the opposite case, where λ � 1, the radius R becomes

very much smaller than the string length ls. From the point of view of the strings the

space is then approximately flat and the classical gravity description of string theory

can be used. It is important to note that for both cases one has to require the string

coupling gs to be small, as we can only use perturbative approaches to string theory.

So, while SYM can be used in the weakly coupled limit, classical supergravity can be

used in the strongly coupled limit. This makes the duality very useful. However, that

fact is exactly the reason why proving this duality is rather difficult. Proving it, would

require calculating an observable in both theories, which is generally very challenging.

It can be done in a few special cases where it is possible to use different methods, such

as integrability, which is reviewed in detail in section 2.3.

One important aspect showing that those theories are the same is to check if they

have the same underlying symmetries. As explained in section 2.1, the N = 4 SYM is

based on the superconformal group PSU(2, 2|4). It can be split into the bosonic part and

the fermionic part. The bosonic subgroup is SU(2, 2) ∼ SO(4, 2) and SU(4) ∼ SO(6),

where the supercharges Q and S are constructing the fermionic part of the supergroup.

On the side of the string theory on AdS5 × S5, the isometry between AdS5 and S5 is

given by SO(4, 2) and SO(6) which is the same as the bosonic group. Furthermore, one

can show that string theory on AdS5 × S5 also preserves PSU(2, 2|4).

Quantum field theory performed on AdSd+1 space works similar to the known

theory on flat spacetime. When studying fields in the bulk theory, it has been found

that at the boundary of AdSd+1 they behave as operators in CFT. Thus, there is a way

to define the correlation function of CFT in terms of quantum field theory on an AdS

background. This led Witten [6] to formulate〈
e
∫
ddxφ0(x)O(x)

〉
CFT

= ZST(φ0). (40)

The LHS is the generating functional for the source φ0, which is φ living on the boundary

of AdS. The integral in the exponent should be thought of as a source φ0 that is coupled

to a conformal field O. The correlation functions are then derived by

〈O(p1) . . .O(pn)〉 =
δ

δφ0(p1)
· · · δ

δφ0(pn)

〈
e
∫
d4xφ0(x)O(x)

〉
CFT

∣∣∣
φ0=0

(41)
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where pi are coordinates on the boundary. On the RHS of eq. (40) is the string partition

function ZST = defined on the boundary. In the classical limit this partition function

is Z ≈ e−IS where IS is the classical supergravity action. A consequence of eq. (40) is

that masses of fields on the supergravity side can be related to the dimensions of the

operator on the CFT side [6, 40].

2.2.2 Finite temperature: gauge theory

N = 4 SYM, as formulated in section 2.1, does not contain any information regarding

temperature dependency. In order to introduce finite temperature to the theory, the

time direction can be compactified to a circle with circumference β = 1/T . Due to

conformal invariance, β is not relevant since it can be scaled out [6]. It is only if the

spatial directions are compactified as well, that the theory depends non-trivially on the

temperature. So by considering S1 × S3 we find a phase transition that depends on the

ratio β
β′ , where β′ is the circumference of the spatial dimensions [6]. This compactifica-

tion can be undone by taking β′ →∞ for which N = 4 SYM on S1× S3 reduces to the

one on flat space S1×R3. In SYM on S1×S3 there exist two spin structures that differ

in the periodicity of the spinors around the time direction. Thus, one can also find two

partition functions

Z1 = (−1)F Tr e−βH (42)

Z2 = Tr e−βH (43)

where F is a parameter depending on the boundary conditions of the spinors [6]. The

Hamiltonian H describes time propagation in the case where the time direction is R.

By looking at a cylinder R1 × S3 as background metric, the Hamiltonian is replaced by

the dilatation operator due to the state operator correspondence. The dilation operator

does not commute with the supersymmetric operator. Thus, supersymmetry is broken

in the finite temperature theory.

The thermodynamic behaviour of the free N = 4 SYM theory is in a confined

state for low temperatures, in which only singlets of the constituent particles are found.

Whereas for high temperatures those particles are allowed to exists freely. Those two

regimes are separated by a phase transition known as the confinement-deconfinement

transition at the Hagedorn temperature. By turning on the ’t Hooft coupling λ, an

intermediate phase establishes. The temperature dependent on the energy can take two

different shapes, which are schematically shown in fig. 1. The diagram on the top has
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Figure 1: The figure schematically shows the logarithmic temperature T as a function

of ln
(
E
N2

)
. The left diagram is for the free theory λ = 0, whereas the other two show

the dependence for weak coupling λ� 1. The graphic is taken from [15].

a single phase transition at T2 which is below the Hagedorn temperature TH , while the

diagram on the bottom has two transitions - one at the Hagedorn temperature TH and

another one above [15]. In the following we are going to focus on the top diagram, since

it shares the same features as the thermodynamics in string theory.

The thermodynamic behaviour for weakly coupled SU(N) gauge theories can be

divided into three different regimes depending on the energy of the system, which are

displayed in fig. 2 [15]. The phase for the lowest temperatures is indicated as Phase I

in fig. 2. It occurs for temperatures T < T1 and its free energy F = − ln(Z) (Z is the

partition function) scales as N0. When going to temperatures above T1, Phase II and

Phase III develop. Both have a free energy F that scales as N2. However, Phase II has

a negative free energy and is thus unstable. Thus, only Phase III is accessible at those

temperatures. The phase transition between Phase I and Phase III occurs at T2, which

is the confinement-deconfinement phase transition. Above the Hagedorn temperature

Phase I disappears and Phase III is the only possible state. For λ = 0, the Phase II

solution does not exist and the confinement-deconfinement transition occurs exactly at

the Hagedorn temperature. Furthermore, it is important to note that by taking N →∞,
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Figure 2: The figure displays a schematic diagram of three different phases in N = 4

SYM as dependency of the logarithmic density of states S′ = ∂S
∂E and temperature T on

the logarithmic energy E. This result was found in [15].

all energies after the Hagedorn growth of the density of states are not accessible anymore.

Now we will focus on the high and low temperature regime which are denoted

as Phase III and Phase I in fig. 2, respectively. The low temperature is called con-

fined phase. Its most prominent example is found in QCD for temperatures below the

confinement-deconfinement temperature. There it becomes manifest in the phenomenon

that gluons and quarks can only appear in groups. In non-Abelian gauge theories such

as QCD this effect is understood by introducing colours and gluons as colour charge

transmitters. This is also the case in more general theories as SU(N) gauge theories on

compact manifolds. Gluons and quarks are both particles that carry a colour charge.

Thus, by putting a single particle on the manifold Gauss’ law would be violated. This

means that gluons and quark are only allowed to show up in combinations classified as

hadrons and glueballs (only gluons).

In the confined phase, separating two colour charges means that the gluon field

builds up a flux tube or an effective string between the charges. Consequently, the

potential between the charges grows linearly with the distance L

V (L) ≈ σL, L→∞ (44)

where σ is the tension of the flux tube. At some point it is energetically favourable to
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produce another pair of charges instead of separating the initial charges any further.

This leads to the mathematical description of the confinement using the expectation

value of Wilson loops [7, 41] over the gauge field A

〈W (C)〉 =

〈
1

N
trPe

∮
C A

〉
∼ e−L′V (L). (45)

The last term occurs by taking a rectangular contour with side lengths L′ →∞ and L.

Using the AdS/CFT duality one can evaluate that integral and find the corresponding

confining potential [42].

This procedure does not work, if we look at finite temperature. However, one can

use a similar probe for confinement. Instead of the Wilson loop, we use the expectation

value of the Polyakov loop

〈P〉 =
1

N
TrPe−

∮
Cx

A. (46)

The Polyakov loop is the integral over a contour Cx around the Euclidean time circle β

at some fixed position x. The expectation value of the Polyakov loop is then

〈P〉 = e−F (T )/T , (47)

where F (T ) is the free energy in presence of an external quark. In the confining phase

it takes an infinite amount of energy to insert this quark. Therefore, a property of the

confining phase is F (T )→∞ or in terms of the Polyakov loop 〈P〉 = 0.

Thermodynamically speaking the confined phase is the low temperature limit.

The system does not have enough energy yet to allow separate states and the allowed

states are gauge-invariant and bound. Thus, this low temperature phase behaves as

a gas of glueballs. The free energy of such a model scales as F (T ) ∼ N0 and all the

interacting terms are suppressed by 1/N2 [43]. The dominating states have an energy

of E/N2 � 1/R and the number of states grows exponentially ρ ∝ eE/TH [15].

When the system reaches the limiting Hagedorn temperature, the particles in their

bound states gain enough energy to exist freely. This phase is also called the deconfined

state, or quark-gluon plasma in QCD. For infinite space S1 × R3, the entropy for this

free gas approximation has been found to be [44]

S =
2π

3
N2T 3 (48)
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in the ’t Hooft limit. Thus, since S = −∂F
∂T holds the free energy F is

F = −π
2

6
N2T 4. (49)

The free energy has been calculated for strong coupling Fstrong using the AdS/CFT

correspondence [45]. The result shows that the free energy Fstrong = 4
3Fweak, where Fweak

is the free energy in eq. (49). Fstrong corresponds to the Bekenstein-Hawking entropy in

[45]. One might interpolate between those results for weak ad strong coupling with an

ansatz

F = −π
2

6
N2T 4a(λ) (50)

where limλ→0 a(λ) = 1 and limλ→∞ a(λ) = 3
4 . However, this interpolation only work

when assuming that there is no phase transition as is it the case in flat space. In [7]

it was discussed that for finite space S1 × S3 the free energy in the high temperature

phase still scales as F ∼ N2. Therefore, the Polyakov loop defined in eq. (47) has to be

finite as well [7].

Phase transition

The low and high temperature limits have distinguished phases that can be iden-

tified by certain parameters. One is the expectation value of the Polyakov loop eq. (47).

It vanishes in the confined regime and takes finite values at the deconfined phase. An-

other way to distinguish between the phases is the free energy which jumps from N0 to

N2 when going from confinement to deconfinement. Thus, the quantity

lim
N→∞

F (T )

N2
(51)

can be used as an indicator since it is zero at low temperature and non-zero at high

temperatures.

Between those phases there is a phase transition at the limiting temperature called

Hagedorn temperature TH . At that point the confined phase stops existing and for

zero-coupling it becomes the transition temperature. In the planar limit, which means

N →∞, it is in general defined as the lowest temperature at which the partition function

diverges [46]

lim
T→TH

Z(T ) =∞. (52)
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The transition is in general not well explored. Its physics depends on the val-

ues of the ’t Hooft coupling. In free SU(N) gauge theory there exists only one phase

transition at TH of first order which was found by Sundborg in [18]. For N → ∞ the

jump from one phase to another is sharp, whereas for finite N this transition starts to

smooth out [15]. Considering interactions the behaviour of the phase transition can vary

between two options. The first possibility is that there exists a single transition of first

order below the critical temperature TH . In this case the states dominating are growing

exponentially with energy. However, the partition function cannot be dominated by

highly excited states. The second possibility is that the system undergoes two phase

transitions continuously. The first transition is at the Hagedorn temperature and the

second is above it. Between those two transitions the system undergoes an intermediate

phase. The Hagedorn spectrum is allowed to grow until is reaches the critical tempera-

ture. Therefore, singularities are forming in the neighbourhood which indicates a ”real”

Hagedorn transitions. Which of those two option is selected depends on the field content

and the second and third order vacuum loop diagrams [15].

The behaviour of the phase transition is not really known for strong coupling since

perturbative approaches do not work. An effective way is offered by lattice or numerical

techniques which however have their limitations (see for example [1, 15, 16, 47, 48, 49]).

A better method is to exploit the AdS/CFT duality. As already mentioned in sec-

tion 2.2.1, for strong ’t Hooft coupling λ we can use type IIB string theory in the

supergravity limit. Therefore, it is possible to use perturbation theory on the gravity

side and then relating it back to the dual gauge theory.

2.2.3 Finite temperature: string theory

For the strong ’t Hooft coupling we can turn to string theory. The thermodynamic

behaviour in type IIB string theory can be found for asymptotically flat space, which is

the case when the string length is much smaller than the radius of AdS and S, ls � R.

Furthermore, we want to be able to apply perturbation theory so we need to take gs → 0.

It has been found that there exist three distinct phases which are dominated by different

states (see fig. 3) [24, 50, 51]. The lowest energy regime with E < EHag ∼ l−1
s (gsN)9/4

is dominated by a gas of supergravity particles on AdS space, which is indicated as

”Gravitons” in fig. 3. Its entropy is given as

S(E) ∼ (ER)9/10. (53)
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Figure 3: The figure shows schematically the phases of type IIB string theory on the

AdS5 × S5 background. The logarithmic entropy and the logarithmic temperature are

plotted in dependency of the logarithmic energy. This figure is taken from [15].

The second regime is when EHag < E < Ebh ∼ N2R−1(gsN)−7/4. The entropy is

determined by fundamental strings as is

S(E) ∼ REλ−1/4. (54)

Thus, this is the regime in which the theory displays Hagedorn behaviour. When the

energy reaches Ebh < E < EAdS ∼ N2R−1 small black holes start dominating the

spectrum. They are formed by free strings that are collapsing. The resulting black

holes can then be described by classical supergravity with an entropy of

S(E) ∼
(
lPE

R0

)8/7

=

(
E

N1/4

)8/7

(55)

lP being the ten-dimensional Planck length. As soon as the energy reaches a certain

limit E > EAdS a big black hole is forming. The classical solution is not applicable any

more, however, the AdS-Schwarzschild solution is for which the entropy is

S ∼ N1/2E3/4. (56)

Depending on the temperature some of those regimes can be occur and some not.

For temperatures below T1 the on only accessible phase is the gas of supergravity parti-

cles. When the temperature reaches T2, three different regimes can occur, supergravity

particles, small black holes or an AdS-black hole (see fig. 3). In order to determine

which phase is preferred, one can consider the free energy. This findings show that the
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small black hole solution is in fact unstable, as it was the case in section 2.2.2. So, there

is a phase transition between the low temperature and high temperature phase which

is the Hawking-Page phase transition. The limiting temperature for the transition is

the Hagedorn temperature TH where the low energy regime stops existing. As in sec-

tion 2.2.2, when taking N → ∞ the small black hole regime and the AdS-black hole

regime are not accessible.

Hawing-Page transition

By the Graham-Lee theorem [52], a conformal d-dimensional manifold can be

constructed by a summation of Einstein manifolds that induce the conformal manifold

at infinity. In our case, the conformal manifold is S3×S. Hawking and Page found two

Einstein metrics on AdS space that satisfy the theorem [39]. The first metric is known

as the thermal AdS metric and is written as

ds2 =

(
r2

R2
+ 1

)
dt2 +

dr2(
r2

R2

)
+ 1

+ r2dΩ2 (57)

with the Einstein equations written as

Rij = −dR−2gij . (58)

R is the radius of curvature of AdS space, dΩ is the metric of a (d − 1)-dimensional

unit sphere. The time variable t is periodic and, depending on its boundary conditions

for fermions, it contributes to either the normal partition function Z = Tr e−βH or

a partition function taking fermionic boundaries into account Z = (−1)F e−βH . The

metric can be compactified by introducing points at the boundary r =∞, which means

instead of R3 × S we obtain S3 × S.

The other solution is the Schwarzschild metric for black holes

ds2 =

(
r2

R2
+ 1− wdM

rd−2

)
dt2 +

dr2

r2

R2 + 1− wdM
rd−2

+ r2dΩ2 (59)

with

wd =
16πGN

(d− 1)Vol(Sd−1)
. (60)

M is the mass of the black hole and GN is the (d + 1)-dimensional Newton constant.

The metric has a horizon at

r2

R2
+ 1− wdM

rd−2
= 0. (61)
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The largest solution of this equation r = r+ gives a singularity which is removed when

looking at periodic time coordinates t. The period can be found by requiring smoothness

and completeness for the metric

β0 =
4πR2r+

d r2
+ + (d− 2)R2

. (62)

The period β0 has a maximum at r+ = r0 and thus the temperature a minimum at

T0 =

√
d(d− 2)

2πR2
. (63)

For T < T0 the black hole metric is not defined. Therefore, in the low temperature

regime the physics is described on the thermal AdS metric eq. (57). For T ≥ T0 both

metrics are defined. To determine the dominating metric one can compare the free

energy which was done by Hawking and Page in [39]. They concluded that for r+ < R

the thermal AdS metric dominates whereas for r+ > R the black hole solution takes

over. At the limit r+ = R there is a phase transition which is called the Hawking-Page

transition and the corresponding temperature is

T =
d− 1

2πL
. (64)

2.2.4 Phase transition comparison

In terms of the AdS/CFT correspondence the phase transition found in the gauge theory

and in the string theory should be the same. This was already suspected by Witten in

[6, 7]. One of the findings in [15] has been that the density of states for weak coupling

(see fig. 2) has a similar energy dependence as the one found in string theory (see fig. 3).

Both theories have three phases for which the scaling of the entropy is the same. Fur-

ther, at the Hagedorn temperature they both display Hagedorn behaviour. This is a

very reassuring argument that the transitions are in fact connected by the AdS/CFT

correspondence. However, for weak coupling the phase transition in the gauge theory

undergoes an intermediate phase (Phase II in fig. 2) [15]. In terms of the string the-

ory, the corresponding phase would be dominated by small black holes (see fig. 3) that

have to be stable. Such small stable black holes have been found later by Berenstein [53].

2.2.5 Hagedorn temperature

The Hagedorn temperature is a limiting temperature for exponentially growing density

of states ρ(E) [46] and a partition function of the form

Z(T ) =
∑
E

ρ(E)e−
E
T . (65)
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In the free theory the phase transition is at the Hagedorn temperature and the confined

phase stops existing. As mentioned in section 2.2.2 introducing coupling the phase

transition already occurs below the Hagedorn temperature. The indicator of this critical

point is the partition function which diverges at this temperature

lim
T→TH

Z(T ) =∞. (66)

Since we do not consider chemical potentials the partition function is the canonical par-

tition function Z(T ) =
∑

i e
−Ei/T . In order to find the expression for Z(T ) one has to

determine the contributing states which is normally a formidable task. As an example,

in the following the canonical partition function for the free theory is reviewed following

[18] and [15].

The free theory can be described as a system of decoupled harmonic oscillators on

S3×S1. They are located on a sphere and thus have infinitely many degrees of freedom.

The bound states constituting hadrons are represented as single trace states (see sec-

tion 2.1.2). The other contributing states are multi-trace states. In order to count the

relevant states one has to consider two important facts. First, due to the constituent

traces the states are invariant under cyclic permutations. Second, in SU(N) groups

there arise relations among traces. The number of such relations depends on the value

of N . Fortunately, in the limit N →∞ there remain no trace relations which simplifies

the counting process tremendously. Taking everything in consideration the number of

constituent states can be found counting the non-cyclic combinations of ordering the

fields inside the trace. One can use Pòlya’s theorem [54] to do that.

In general the single-site partition functions for bosons and fermions are defined

as

zB(β) =
∑
n=1

e−βEB,n , zF (β) =
∑
n=1

e−βEF,n . (67)

In the following we will use the notation x ≡ e−β ≡ e−
1
T . One may observe that each

z(x) =
∑

i x
Ei has a unique solution for z(x) = 1 at x = xH = e−1/TH and 0 < x < 1.

Since all the states are in the adjoint representation of SU(N) they are all one or

more traces.

In the planar limit the scaling dimensions of the multi trace operators are all determined

by single trace operators [18].
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It is convenient to first find a upper limit for the partition function of all single

trace operator. Say we have a number of k fields inside each trace then one can write a

first expression for the partition function

ZST =
∞∑
k=1

z(x)k

k
+ f(k) = − ln(1− z(x)) + f(k). (68)

The factor of 1
k reduces the number of states by their cyclicity. The function f(k) ac-

counts for all the states that should not be considered. The contributing states could for

example be reduced by general repetitions of the fields inside the trace. By using Pòlya’s

theory one can also take those repetitions into account and find an exact expression for

the large N limit [15]

ZST = −
∞∑
k=1

ϕ(k)

k
ln
(

1− z(xk)
)
. (69)

Here we introduced the Euler totient function ϕ(k) that gives the number of positive

integers that are less than k and relatively prime to k [18].

Now we have to sum over all states that with arbitrary many traces and obtain [15]

ln(Z) =
∞∑
n=1

1

n
ZST (xn) = −

∞∑
k=1

ln
(

1− z(xk)
)

= −
∞∑
k=1

ln
(

1− zB(xk) + (−1)kzF (xk)
)
.

(70)

This is only valid for N → ∞ because otherwise trace relations would have to be con-

sidered in the counting. Remember that we defined z(xH) = 1, then Z is well defined

for β > βH and diverges as − ln(β − βH) for β → βH . However, eq. (70) is ill-defined for

β < βH . Thus, the divergence shows that TH is the limiting temperature for N → ∞
[15].

A more specific condition for eq. (70) to be valid, is that the length of the single

trace operators has to be much smaller than N2 [15]. This is a problem for finite N

theories but is also states a problem for temperatures T > TH , since it is ill defined

there. Using a more advanced logic a matrix model has been found that allows an exact

solution for the partition function [15].

To find the Hagedorn temperature for the free theory it is in fact enough to state

the condition that the single partition function z(xH) = zB(xH) + zF (xH) = 1. It turns
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out that for N = 4 SYM on S3 × R

zB(x) =
6x+ 12x2 − 2x3

(1− x)3
(71)

zF (x) =
16x3/2

(1− x)3
. (72)

The Hagedorn temperature per unit of the radius R for the free SYM theory is thus

given as

TH = − 1

ln(xH)
= − 1

ln
(
7− 4

√
3
) ' 0.379663. (73)

In the following we look at the partition function for the free theory and how

the Hagedorn temperature can be obtained by it. It is also possible to find the Hage-

dorn temperature for weak coupling by using a perturbative approach. In [15] Aharony,

Marsano, Minwalla, Papadodimas and van Raamsdonk work with a matrix model that

can be used for weak coupling. However, going to strong coupling is not possible with

such methods. One way to solve this is to use numerical extrapolation methods, which

was also performed in [15], or one can use certain lattice techniques. Another way to

solve this problem is using integrability of N = 4 SYM, which will be reviewed in sec-

tion 2.3. After introducing that property we will review a method in section 2.3.5 to

find the Hagedorn temperature using the partition function as it was done by Harmark

and Wilhelm in [55].

2.3 Integrability and quantum spectral curves

Integrability is a property of planar N = 4 SYM and free type IIB string theory on

AdS5 × S5 that allows an exact solution for some physical quantities, including ther-

modynamics. On the string theory side, integrability occurs naturally [20]. The strings

on AdS5 × S5 can be described by a non-linear two-dimensional sigma model [56]. For

such a theory there exists a non-Abelian Lax-connection. To obtain integrability it is

required that the curvature of the Lax-connection vanishes (see e.g. [20, 57]). This then

provides a description of the spectra of the algebraic curves (see for example [58, 59, 60]

for a review). It has been found that the spectra exactly match the ones of N = 4 SYM

[61].

On the gauge theory side, integrability occurs by identifying the anomalous dimension

operator with the Hamiltonian of a spin chain which are known to be solved by the

Bethe ansatz (BA) or the thermodynamic Bethe ansatz (TBA) [62, 63, 64]. The TBA

contains a set of non-linear integral equations that can be formulated as what is known
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as Y-system [62, 65]. It is a system of infinite finite-difference equations and is further

related to the T-system [62] which is integrable. Therefore, it is possible to reduce the

T-system to a finite set of equations which is known as Q-system or quantum spectral

curve (QSC). The constituent Q-function depend on the spectral parameter and are

related to Baxter polynomials of a spin chain [66]. How this spin chain establishes from

planar N = 4 SYM is going to be reviewed in this section following closely [67]. In the

end we are going to explain how this approach can be applied to the solution of the

Hagedorn temperature using the methods in [1].

2.3.1 QSC for SU(2)

To get an understanding of how the spin chain manifests in SYM we will first study

the SU(2) sector. There, the operators are two complex scalar fields X = φ1 + iφ4 and

Y = φ2 + iφ5. Furthermore, the sector is closed which means that the operator mixing

also stays in this sector, making the description very convenient.

As already established in section 2.1.4, considering quantum corrections changes the

scaling dimension of operators (except if they are protected). One can find a corre-

sponding operator that has the anomalous dimension as an eigenvalue. This operator

was defined in eq. (24). The trace operator K vanishes within Γ as we consider the case

of the closed SU(2) sector. Thus, the expression eq. (24) reduces to

H = 2g2
L∑
l=1

(1− Pl,l+1), (74)

where we introduced the effective planar coupling g2 = λ
16π2 . However, this is in fact

the Hamiltonian of an SU(2) Heisenberg spin chain. One can identify Pl,l+1 with spin

operators ~S such that the operator Γ reads as the well known Hamiltonian for the spin

chain

Hspinchain = 2g2
L∑
l=1

(1− ~Sl · ~Sl+1) (75)

The spin chain described by eq. (74) with L spin sites. Furthermore, the operator only

affects the l and l+1 site which means that the interaction between the spins is restricted

to the nearest neighbour [19]. Since we are in the SU(2) sector, only two independent

states are allowed for eq. (74). Using the spin chain analogy we can identify them with

spin up and spin down state. The ground state is then defined as the state where all

spins are aligned in the same direction. The total spin is L/2 for that case. Furthermore,
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one can set boundary conditions for the chain for instance twisted boundaries which are

defined as

PL,L+1 |↑ . . . ↑〉 = |↑ . . . ↑〉 ,

PL,L+1 |↓ . . . ↓〉 = |↓ . . . ↓〉 ,

PL,L+1 |↓ . . . ↑〉 = e−2iφ |↑ . . . ↓〉 ,

PL,L+1 |↑ . . . ↓〉 = e2iφ |↓ . . . ↑〉 .

(76)

Excitations in spin chains can propagate through the chain with a momentum pi and

behave as quasi-particles which are called magnons. One can introduce the rapidity

variable ui which relates to the momentum as

eipi =
ui + i/2

ui − i/2
. (77)

An ansatz to find the eigenvalues and eigenvectors for the Heisenberg spin chain was

derived first by Bethe in [68]. If there are two excited states with momenta ui and uk

right next to each other they scatter and pick up a phase

Φ(ui, uk) = 2 arctan(ui − uk). (78)

The process is described more generally by introducing a scattering matrix

Sik =
ui − uk − i
ui − uk + i

. (79)

Together with the boundary conditions one can find a set of equations(
uk + i/2

uk − i/2

)L
= e−2iφ

N∏
j 6=k

uk − uj + i

uk − uj − i
, (80)

where k = 1 . . . N . They are called Bethe equations and are generally used to describe

the spectral problem of spin chains. Equation (80) is for the SU(2) case but they have

been generalized to other spin chains (see for example [69, 70]).

The energy spectrum of the spin chain which contains N magnons is found to be

E =

N∑
i=1

2g2

u2
i + 1/4

(81)

and the corresponding state of the spin chain can be described in form of Baxter Q-

functions (introduced by Baxter in [71])

Q1(u) = eφu
N1∏
i=1

(u− u1,i). (82)
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Equation (82) depends on the parameter u which is the spectral parameter and this

equation also contains a product of N1 Bethe-roots ui. The function Q1(u) describes a

spin up particle propagating in a sea of spin down particles or vice versa. Thus, if we

have N1 particles with spin up propagating through the chain, we obtain a polynomial

of order N1. Consequently, there must exist a dual polynomial of order N2 = L−N1 +1

that describes the spin down particles instead of spin up. So we have the two solutions

[72]

Q1(u) = eφu
N1∏
i=1

(u− u1,i), Q2(u) = const× e−φu
L−N1+1∏
i=1

(u− u2,i). (83)

One can rewrite the energy spectrum eq. (81) in a more general way using the

Q-function

E = i∂u log
Q+

1

Q−1

∣∣∣∣
u=0

, (84)

where we introduced the convenient notation f [±a] = f(u± ia/2) and f [±1] = f±.

The Baxter equation in the SU(2) case is found to be [73]

TQ = Q++

(
u− i

2

)L
+Q−−

(
u+

i

2

)L
, T (u) =

∣∣∣∣∣Q++
1 Q−−1

Q++
2 Q−−2

∣∣∣∣∣ (85)

where Q is a generic polynomial. The functions Q1(u) and Q2(u) are two linear in-

dependent solutions of the Baxter equation eq. (85). Thus, a new Q-function can be

constructed up to a constant by∣∣∣∣∣Q−1 Q+
1

Q−2 Q+
2

∣∣∣∣∣ = const ·Q12Q∅. (86)

The function is found to beQ12(u) ∝ uL whileQ∅ = 1 is introduced for later convenience.

The function Q∅ can be interpreted as a boundary function as it depends on the specific

underlying model. The numeric constant is not important for the relations now since it

can be found by looking a the large u limit. Equation (86) combined it with the Baxter

equation eq. (85) it can be written as

D(u) =

∣∣∣∣∣∣∣∣
Q++ Q Q−−

Q++
1 Q1 Q−−1

Q++
2 Q2 Q−−2

∣∣∣∣∣∣∣∣ = 0. (87)

Since T (u) is in general unknown eq. (87) can be used to determine T (u). To do so an

additional information on the structure of T (u) is needed. In case of the SU(2) it is
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enough to require polynomiality for T . Equation (86) is known as the QQ-relation for

the SU(2) algebra and is the main ingredient for the QSC [67].

To summarize, the spectral problem of the spin chain is described by Q-functions

which depend on the spectral parameter u. They satisfy the Baxter equation and thus

the Bethe equations. In addition to the relations between the functions one also needs

to know the analytic properties of the functions. This approach can be generalized to

other algebras where the relations and the functions become more evolved, however, the

main concept stays the same.

2.3.2 QSC for PSU(2, 2|4)

In this section we will discuss the principles introduced in section 2.3.1 for N = 4 SYM.

The underlying symmetry of the theory is PSU(2, 2|4). However, this is just SU(4|4)

with a projection and real form. Thus, we can just use SU(4|4) for the QQ-relation in

N = 4 SYM. In the following we will refer to SU(4) and its supersymmetric part as

bosonic and fermionic part, respectively.

Bosonic QQ-relations

First, we are going to focus on the bosonic part separately which is possible since

the structure does not change by including supersymmetry in the problem. The QQ-

relation in eq. (86) can be even more generalized to any SU(N) algebra [73]∣∣∣∣∣Q−Ab Q+
Ab

Q−Ac Q+
Ac

∣∣∣∣∣ ∝ QAQAbc (88)

or in the more convenient form

QAQAbc = Q+
AbQ

−
Ac −Q

−
AbQ

+
Ac. (89)

The indices b, c = 1, 2 . . . , N and A is a multi-index which can take on any single

indices,no index, any combination of indices or all indices. For instance, by identifying

I = ∅, and b, c = {1, 2} eq. (88) reduces to eq. (86). This relation is very powerful since

one can construct any function Qij...k out of it by applying it successively. It is important

to note, however, that the order of the indices in A does matter as Q12 = −Q12.

Therefore, the multi-index will be defined as sorted A = a1, a2 . . . , aN for ak < ak+1.

Thus, one can find a set of Q-functions using the QQ-relation eq. (89) which are all
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solution to the Bethe equations. Since they are all independent solutions they should

satisfy the Baxter equation ∣∣∣∣∣∣∣∣∣∣∣

Q Q[2] · · · Q[2n]

Q1 Q
[2]
1 · · · Q

[2n]
1

...
...

. . .
...

QN Q
[2]
N · · · Q

[2n]
N

∣∣∣∣∣∣∣∣∣∣∣
= 0. (90)

The Q-functions all have a Hodge dual defined as

QA = εAĀQ
Ā, (91)

where ε1,2...N = ε1,2...N = 1. The index A is a multi-index and Ā is a multi-index of the

set {Ā} = {1, 2 . . . N}/{A}. Note, that there is no summation over the indices.

The Q-functions are in fact depend on the gauge while the Y-system is independent

under rescalings of the form

QA 7→ g
[|A|]
(+) g

[−|A|]
(−) QA. (92)

The functions g(±) are arbitrary functions of u and can be interpreted as local gauge

transformations. The Q-functions are nonetheless invariant under rotations also called

H-symmetry [21]

Q̃b1b2...bn 7→
∑

c1,c2,...cn∈B
h

[n−1]
b1c1

h
[n−1]
b2c2

. . . h
[n−1]
bncn

Qc1c2...cn , B = {1, 2 . . . N}. (93)

hbc are i-periodic functions of the spectral parameter u for which h+ = h−.

Fermionic QQ-relations

Introducing supersymmetry to the relations above can be accomplished by simply

relabelling the Q-functions. More specifically if we rename the bosonic Q-functions

QA → QA, the fermionic functions can then be found by

QA|I = εĪIQA(Ī+M). (94)

First, it is important to note, that there is no actual summation over the index Ī.

Furthermore, here A and I are both multi-indices in the sets {1, . . . N} and {1, . . .M}
respectively. The index Ī is defined as Ī = {1, . . . , N}/I. Also, (Ī +M) means that to

each element of the set Ī we add M . We will address the index A as the bosonic and

30



I as the fermionic part of the function. For the case of N = 4 SYM N and M both

become four.

Instead of one QQ-relation eq. (89) there are now three relations [66, 74]

QA|IQAab|I =Q+
Aa|IQ

−
Ab|I −Q

−
Aa|IQ

+
Ab|I , (95)

QA|IQA|Iij =Q+
A|IiQ

−
A|Ij −Q

−
A|IiQ

+
A|Ij , (96)

QAa|IQA|Ii =Q+
Aa|IiQ

−
A|I −Q

−
Aa|IiQ

+
A|I . (97)

The first one is just the bosonic relation eq. (89) and the other two connect the fermionic

parts of the Q-function. Additionally, one has the freedom to choose the boundary

functions which are in this work going ot be Q∅|∅ = 1 and Q12...N |12...M = 1. All the

Q-functions satisfy the Bethe equations [74]

−1 =
QA|I(u+ i/2) QAa|I(u− i) QAab|I(u+ i/2)

QA|I(u− i/2) QAa|I(u+ i) QAab|I(u− i/2)
for u = uAa|I , (98)

−1 =
QA|I(u+ i/2) QA|Ii(u− i) QA|Iij(u+ i/2)

QA|I(u− i/2) QA|Ii(u+ i/2) QA|Iij(u− i/2)
for u = uA|Ii, (99)

1 =
QAa|Ii(u+ i/2) QA|I(u− i/2)

QA|I(u+ i/2) QAa|Ii(u− i/2)
for u = uAa|i or u = uA|Ii, (100)

where uAa|I is a root of the function QAa|I(u) and uA|Ii of QA|Ii. However, there are

only a few fundamental Q-function of which all others can be constructed out of using

eqs. (95) to (97). The basic elements are Pa = Qa|∅ and Qi = Q∅|i where a = 1, 2, . . . N

and i = 1, 2, . . .M . A semi-fundamental function which is also going to be important

in the following is Qa|i(u). Inserting I, A = ∅ in eq. (97) it reduces to the following

equation depending only on the elementary Q-functions

PaQi = Q+
a|i −Q

−
a|i. (101)

Starting from this equation it is possible to reconstruct Q-functions with more bosonic

indices. As an example consider A = ∅ and I = i from eq. (95) one can obtain Q-

functions with more bosonic indices

Qab|i =
Q+
a|iQ

−
b|i −Q

−
a|iQ

+
b|i

Qi
. (102)

The same works for the fermionic index using eq. (96). Therefore, it is sufficient to only

consider the fundamental function Pa and Qi. The Baxter equation of the Q-system

can also be expressed as a function only depending on Pa(u)

0 = D0Q
[+4] −Q[+2]

(
D1 −P[+2]

a Pa[+4]D0

)
+

1

2
Q
(
D2 −PaP

a[+2]D1 + PaP
a[+4]D0

)
+ c.c. (103)
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where Q has four solutions which correspond to Qi(u) and the coefficients are

D0 = det


P1[+2] P2[+2] P3[+2] P4[+2]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 ,

D1 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 ,

D2 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1[+2] P2[+2] P3[+2] P4[+2]

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 .

(104)

The symmetries of the Q-functions of SU(N |M) are similar to their bosonic ana-

logue eqs. (92) and (93). The functions are invariant under gauge transformations

QA|I 7→ g
[|A|−|I|]
1 g

[−|A|+|I|]
2 QA|I (105)

instead of rescaling invariance. The other symmetry is H-symmetry which affects the

Q-functions as

QA|I 7→
∑

|B|=|A|, |J |=|I|

(
H

[|A|−|I|]
b

)B
A

(
H

[|A|−|J |]
f

)J
I
QB|J , (106)

where H are i-periodic and arbitrary functions.

Furthermore, one can also define Hodge duals to the Q-functions

QA|I = (−1)|A||I|εĀAεĪIQĀĪ (107)

where there is no summation over the indices and {Ā} = {1, 2, . . . N}/{A} and {Ī} =

{1, 2, . . .M}/{I}. They satisfy the same QQ-relations as the usual Q-relations. In addi-

tion, one can choose freely the form of Q∅|∅ = 1 since it can be used as the normalization.

Furthermore, we can also specify Q1234|124 = Q∅|∅ = 1. This is rather non-trivial and can

be seen as the uni-modularity which is needed to obtain PSU(2, 2|4) from SU(2, 2|4).

With the definition fo the Hodge dual it is possible to find some relevant properties for
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the basic Q-functions

QiPaQ
a|i = 0, (108)

PaP
a = QiQ

i = 0, (109)

Qa|iQ
b|i = δba, (110)

Qa|iQ
a|j = δji . (111)

In the SU(2) case, we mentioned that only knowing the QQ-relations is not

enough. To fully determine all the Q-function some information about their structure

is needed. For the SU(2) Heisenberg spin chain one could make the assumption that all

Q-functions are simply polynomials. However, this is in general not the case for other

set ups. To find the form of the Q-functions one needs to consider boundary conditions

and their analytic properties.

2.3.3 Analytic properties

The QQ-relations make up a finite difference system of equations that reflect the PSU(2, 2|4)

symmetry. We already mentioned in sections 2.3.1 and 2.3.2 that to describe the QSC

one has to know the QQ-relations and their analytic properties. For spin chains the

Q-functions are usually polynomials, however, this is not the case in general. As will

be discussed here, introducing boundary conditions breaks this condition. Furthermore,

the objective is to find a description of the thermodynamics in terms of the coupling.

But to this point neither any of the functions nor any of the equations contain any

dependency of the ’t Hooft coupling. In fact, we can include this information by finding

additional analytical properties for the Q-functions which depend on the specific physics

of the observable.

We are interested in the thermodynamic properties of the spin chain where the

free energy is of special interest. To calculate the free energy one has two important

parameters, the temperature T and the length of the spin chain L. The QSC considered

so far has been derived at zero temperature and had a finite length L. In geometric

terms that can be interpreted as a theory on a torus with circumferences L and β = 1/T .

Taking T → 0 the circumference β → ∞ and thus the torus becomes a cylinder with

infinite length and finite circumference L. To find the Hagedorn temperature the QSC

should be considered for finite β as well as finite L which however is not been solved

yet. Nonetheless, since we are only interested in the Hagedorn temperature we can make

some simplifications [55]. Near the Hagedorn singularity the dominating states all have
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very high energies which means high scaling dimensions D and further high lengths of

the spin chain L [55]. Thus, one can say that the Hagedorn QSC is defined on a cylin-

der with finite circumference β and infinite length L. Or rather by taking the scaling

dimension D →∞ [55].

The two theories can be converted into each other by performing a double Wick

rotation and therefore they differ in some properties. One main difference is the analytic

structure of the Q-functions. We are going to see later that the Q-functions have either

long or short branch cuts. The double Wick rotation converts the form of the branch

cuts from QSC into the opposite in Hagedorn QSC. Another difference is the boundary

conditions for the periodicity of the spin chain. In the Hagedorn QSC those become

twisted boundary conditions [55]. The twist enters the problem as a deformation of

the Bethe equations eqs. (98) to (100). The constants −1 or 1 on the left hand side of

eqs. (98) to (100) are now replaced by twist variables xa, yi

−xb
xa

=
QA|I(u+ i/2) QAa|I(u− i) QAab|I(u+ i/2)

QA|I(u− i/2) QAa|I(u+ i) QAab|I(u− i/2)
for u = uAa|I , (112)

−yj
yi

=
QA|I(u+ i/2) QA|Ii(u− i) QA|Iij(u+ i/2)

QA|I(u− i/2) QA|Ii(u+ i/2) QA|Iij(u− i/2)
for u = uA|Ii, (113)

xa
yi

=
QAa|Ii(u+ i/2) QA|I(u− i/2)

QA|I(u+ i/2) QAa|Ii(u− i/2)
for u = uAa|i or u = uA|Ii. (114)

One can approach the spectral problem in two ways. The first method is to work with

the deformed Bethe equations and adapt the QQ-relation to the deformed problem. The

second possibility is to introduce an exponential prefactor to the Q-functions(∏
a xa∏
i yi

)−iu
. (115)

This however breaks the polynomiality of the Q-functions that has been assumed until

now [75]. In the following we are going to use the exponential prefactor.

Asymptotic limit

In the asymptotic limit for large spectral parameter u the Q-functions reduce to

simple functions that are determined by the charges of PSU(2, 2|4) [73]. Hence, the

analytic structure of the Q-functions is easily accessible in this limit. Harmark and

Wilhelm [1, 55] derived the large u limit using the TBA for the Hagedorn QSC. They

found that the Q-functions need to have Cartan charges (S1, S2, J1, J2, J3) = (0, 0, 0, 0, 0)

to match the calculated T-system. Furthermore, the scaling dimension is kept fixed in
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the calculation in [55]. Thus, the Hagedorn temperature is then only determined by

changing the twists. This was done using the T-system in [55] and they found

P1(u) = A1

(
−e−

1
2TH

)−iu (
1 +O(u−1)

)
,

P2(u) = A2

(
−e−

1
2TH

)−iu (
u+O(u0)

)
,

P3(u) = A3

(
−e−

1
2TH

)+iu (
1 +O(u−1)

)
,

P4(u) = A4

(
−e−

1
2TH

)+iu (
u+O(u0)

)
,

(116)

where A1A4 = A2A3 = i

tanh2
(

1
4TH

) [1]. The exponential factor emerges from the twisted

boundary conditions where they determined the twist variables as 1
x1

= 1
x2

= x3 = x4 =

−e−
1

2TH and y1 = y2 = 1
y3

= 1
y4

= 1 [55]. The other Q-functions are

Q1(u) = B1(1 +O(u−1)),

Q2(u) = B2(1 +O(u0)),

Q3(u) = B3(1 +O(u1)),

Q4(u) = B4(1 +O(u2)),

(117)

where

3B1B4 = B2B3 = −8i cosh4

(
1

4TH

)
, (118)

A1 = iA2 = −A3 = −iA4 =

(
tanh

1

4TH

)−1

, B1 = B2 = 1. (119)

Equation (119) is a gauge choice due to some remnant symmetry (see the symmetries

in section 2.3.2). In this gauge the components of Pa can transform into each other at

leading order of their expansion

P1(u) ∼ −P3(−u), P2(u) ∼ P4(−u). (120)

Branch cuts

The coupling dependency enters the Hagedorn QSC through branch cuts of the

Q-functions. The exact structure was found in [1, 55] by constructing the T-system. Pa

and Qi are no longer polynomials but have Zhukowsky branch cuts

x(u) =
u

2g

(
1 +

√
1− 4g2

u2

)
(121)

in u ∈ (−2g, 2g), where g =
√
λ

4π depends on the ’t Hooft coupling λ and is called

the effective planar loop coupling. The analytic continuation of the Zhukowsky cut is
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x̃(u) = 1
x(u) [73]. The branch cuts of the Hagedorn QSC have to be the opposite to the

ones of the QSC due to the double Wick rotation. The simplest structure the Hagedorn

QSC can take on is when one chooses the Riemann sheets such that Qi has a single

branch cut at (−2g, 2g) and Pa has a long cut (−∞,−2g) ∪ (2g,∞) (see figs. 4 and 5)

[1, 55, 73]. However, the long cut is inconvenient since Pa and Qi have to satisfy the

QQ-relations and should thus have similar properties. Instead of the long cut one can

also choose the short cut of Pa. But due to the QQ-relations it has an infinite set of cuts

[73]. That emerges from the recursive formula eq. (101) by inserting it into the relation

Pa = −Q+
a|iQ

i, (122)

where we get

Q−a|i = Q+
a|i + QiQ

jQ+
a|j . (123)

Combining those two functions

Pa = −QiQ+
a|i

= −Qi
(
δji + Q

[+2]
i Qj [+2]

)
Q

[+3]
a|j

= −Qi
(
δji + Q

[+2]
i Qj [+2]

)(
δkj + Q

[+4]
j Qk [+4]

)
Q

[+5]
a|k = · · ·

(124)

it is apparent that due to its recursive nature, Pa has an infinite set of short cuts.

Those are located in the lower half plane at (−2g− in, 2g− in) where n ∈ N0 (see fig. 6).

The function Pa on the short cut is connected to the function on the long cut as an

analytic continuation. The path in the upper half plane, i.e. above the branch point,

we get a function Pa that is regular in the upper half plane (UHP) and has short cuts

(−2g − in, 2g − in) where n ∈ N0. Whereas, when taking the path in the lower half

plane (LHP) we obtain a function P̃a that is regular in the LHP but has the short cuts

(−2g+ in, 2g+ in) where n ∈ N0 (see fig. 7). P̃a is the analytic continuation of Pa and

it is found by replacing x(u) 7→ x̃(u) = 1
x(u) . For Qi(u) it one can also find an analytic

continuation Q̃i(u) by replacing x(u) with x̃(u) [73].

Gluing condition

The Hagedorn QSC discussed so far has a significant problem. By construction,

Pa satisfies all the QQ-relations and is well defined in the UHP. However, for P̃a no such

requirement exist. The analytic continuation in the Hagedorn QSC is solved using the

complex conjugation. Thus, it is possible that the symmetry under complex conjugation
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Figure 4: The figure shows the short branch

cut for Qi(u) in the interval u ∈ (−2g, 2g).

Figure 5: The figure shows the long

branch cut for Pa(u) in the interval u ∈
(−∞,−2g) ∪ (2g,∞).

Figure 6: The figure shows the analytic

continuation of Pa(u) in the upper half

plane of the imaginary axis.

Figure 7: The figure shows the analytic

continuation of P̃a(u) in the lower half

plane of the imaginary axis.

Figure 8: The figure shows the analytic con-

tinuation of Q̃(u).
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is not satisfied. To re-establish that symmetry one can impose a set of equations that

we will call gluing conditions [1, 73]

P̃a(u) = (−1)1+aPa(u) = (−1)1+aPa(−u). (125)

Those requirements close the QQ-relation equation system.

One additional property specific for the considered Hagedorn QSC is left-right

symmetry. It is a symmetry that connects the su(2|2) subalgebras of psu(2, 2|4). As a

result we find relation between Pa and Pa in addition to Hodge-duality [1, 67]

Pa = χabP
b, Qi = χijQ

j , (126)

where

χ =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 . (127)

That symmetry occurs in the Hagedorn QSC only if all the chemical potentials are set

to zero [1].

2.3.4 Solution of Hagedorn QSC

The Hagedorn QSC problem can only be solved numerically for the Hagedorn temper-

ature. The numeric method was proposed by Harmark and Wilhelm in [1] which is a

modified version of an algorithm that was introduced in [76] to solve the QSC problem.

The QQ-relations that are relevant for the following are

Q+
a|i−Q

−
a|i = PaQi, (128)

Pa = −QiQ+
a|i, (129)

Pa = χabPb, Qi =χijQj , Qa|i = χabχijQb|j . (130)

We established the structure of Qi(u) when discussing the analytic properties. The

function has only one short branch cut at (−2g, 2g) and we also now the asymptotic

behaviour in eq. (117). Thus, with this information we are able to make a proper ansatz

with Bi defined in eqs. (118) and (119)

Qi(u) = Bi(gx(u))i−1

(
1 +

∞∑
n=1

ci,n(g)

(gx(u))2n

)
. (131)
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The coefficient c3,1 is set to zero as a gauge choice. In the numeric implementation the

sum is truncated to a maximal value n ≤ N . One can then make an ansatz for the

auxiliary function Qa|i

Qa|i(u) =
(
−e−

1
2TH

)−saiu
upa|i

M∑
m=0

Ba|i,m

um
. (132)

For a = 1, 2 we use sa = 1 and pa|i = a + u − 2 whereas for the case a = 3, 4 we use

sa = −1 and pa|i = a+ i− 4. It is important to note, that eq. (132) is only converging

when the real part of isau is large, which means, for large imaginary u. Furthermore,

in the following we using large u in the positive imaginary plane. Therefore, it is only

possible to obtain convergent solutions when a = 1, 2 where in contrast the solutions for

a = 3, 4 are exponentially divergent.

All the coefficients ci,n and Ba|i,n together with the Hagedorn temperature TH are un-

known to this point. It is in our interest to reduce the number of unknowns. One

way to perform this task is the comparison of the asymptotic functions in their leading

behaviour. Inserting those into eq. (128), it is possible to express Ba|i,0 in terms of

Ba|i,0 = −isa
e
− 1

4TH

1 + e
− 1

2TH

AaBi. (133)

For higher n one has to make use of a different approach. In order to do so, take eq. (128)

and insert eq. (129) so that the function is free of Pa(u) and we find

Q−a|i = Q+
a|i + QiQ

jQ+
a|j . (134)

To be able to solve this equation one might make an expansion in power of 1
u for large

u of this expression(
−e−

1
2TH

)isau
u−pa|i

(
Q+
a|i −Q

−
a|i +Q+

a|jQ
jQk

)
=
∞∑
l=1

u3−lVa|i,l. (135)

Setting Va|i,l to zero yields the equations to determine Ba|i,n. Apart of that, also c4,1

and c4,2 are also determined that way. The equations can be solved numerically and

deliver the approximate values for Ba|i,n in dependence of the remaining ci,n, TH and g.

To gain the approximate solution of Qa|i for the given sum m ≤ M , one needs to find

solutions for Va|i,l = 0 where l ≤ m+ 8 [1].

With that Qa|i has been determined in the large u limit. With that we can now

turn to finding Pa(u) using eq. (129). In order to acquire the function Qa|i for finite u,

one can apply eq. (134) successively until one reaches Qa|i(u+ i/2) for a set of points in
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the interval u ∈ (−2g, 2g). Hence, Pa(u) on the cut is then constructed by the truncated

function Qi in eq. (131) and the shifted function Q+
a|i. Furthermore, taking the analytic

continuation of the Zhukowsky variable x̃(u) = 1
x(u) , we find the analytic continuation

Q̃i and thus

P̃a = −Q̃iQa|i. (136)

Up until now, we have determined all the Q-functions in terms of TH , g and the

coefficients ci,n, apart from c4,1 and c4,2. While keeping g as a free parameter, the other

variables can be acquired by imposing the gluing conditions. This is done in form of a

minimization function

F (TH , {ci,n}) =

2∑
a=1

P∑
j=1

∣∣∣∣Pa(pi)

P̃a(pi)
+ (−1)a

∣∣∣∣2. (137)

Here pi are P points living on the cut pi ∈ (−2g, 2g). Further, notice that the gluing

conditions are only imposed for a = 1, 2 since those are the only solutions that converge.

Equation (137) can then be solved by a Levenberg-Marquardt algorithm.

2.3.5 Hagedorn behaviour at any coupling

Considering the partition function for N = 4 SYM on R× S3

Z(T ) = TrR×S3 e−H/T (138)

which is just the general quantum mechanical formulation. Via the state-operator map

explained in section 2.1.2 the partition function can be expressed on R1,3 instead of a

sphere S3

Z(T ) = TrR1,3 e−D/T , (139)

where the dilatation operator is D = D0 + δD where δD is the anomalous part. The

operators participating in the partition function are multi-trace and single-trace opera-

tors. In the planar limit the problem simplifies since the scaling dimension ∆ = ∆0 +δ∆

of multi-trace operators reduces to the sum of the scaling dimension of the single-trace

operators ∆MT = ∆ST + ∆ST + · · · . So we only need the expression of the single-trace

partition function which is

Z(T ) = Trsingle-trace

(
e−

1
T

(D0+δD)
)

=

∞∑
m=2

e−
m
2T Zspin chain,D0=m

2
(T )

=

∞∑
m=2

e−
m
2T

(
Trspin chain,D0=m

2
e−

δD
T

)
.

(140)
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Defining the free energy of the spin chain as

Fm(T ) = −T 2

m
log
(

trspin−chain,∆0=m
2

(
e−

δ∆
T

))
(141)

per units of the scaling dimension D0 = m
2 , the single-trace partition function is then

ZST (T ) =
∞∑
m=2

e
m
2T

(1+Fm(T )). (142)

By also counting all multi-trace operators, the entire partition function reads as

Z(T ) = exp

( ∞∑
n=1

1

n

∞∑
m=2

(−1)m(n+1)e
m
2T

(n+Fm(T
n

))

)
. (143)

The Hagedorn temperature is defined as the lowest temperature that gives rise to a

singularity in the partition function. For Z(T ) in eq. (143) this is the case for n = 1.

Hence, one has to find a singularity for

∞∑
m=2

e−
m
2T

(1+Fm(T ) (144)

which is possible using the Cauchy root test. It states that a series
∑∞

n=1 an diverges if

r = limn→∞ n
√
an > 1 and converges if r < 1. For eq. (144) the condition for divergence

is

r = e−
1

2T
(1+F (T )) = 1 (145)

where

F (T ) = lim
m→∞

Fm(T ) = − lim
m→∞

2T

m
lnZspin chain,D0=m

2
(T ). (146)

The limit takes the classic scaling dimension which is exactly the limit we need to

obtain the direct theory (see section 2.3.3). Thus, the condition for the free energy at

the Hagedorn temperature is

F (TH) = −1. (147)

The free energy of the spin chain F (TH) was determined by Harmark and Wilhelm in

[55].

Based on the numeric implementation described in section 2.3.4 it is possible to

find the Hagedorn temperature for a large range of values for the coupling constant

g. In [1] the Hagedorn temperature TH has been evaluated as a function of g in the

interval [0, 3.24] which is depicted in fig. 9. In the figure one can see that the Hagedorn
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Figure 9: The plot shows the numeric solutions of the Hagedorn temperature TH and

the leading approximation function (defined in eq. (148)) as a function
√
g. The figure

is taken from [1].

temperature has an asymptotically linear growth in the strongly coupled region. There-

fore, the behaviour has been approximated using a linear function with correction terms

up to order
(

1√
g

)6
. Based on the found values it as been shown that the temperature

approaches the value

TH(g) ≈ (0.399 . . . )
√
g '

√
g

2π
(148)

for large ’t Hooft coupling. Since we set R = 1 in the beginning the temperature is

measured in units of R. The found result eq. (148) can be translated to the string

theory side by using the relation for the radius of the sphere S3 that we are working

with R = (4πλ)
1
4 ls (see section 2.2.1). In terms of string theory eq. (148) then is

TH(g) ' 1√
8πls

. (149)

This result is exactly the Hagedorn temperature for type IIB string theory on 10-

dimensional Minkowski space [77].
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3 Results

In the last section we saw that the Hagedorn QSC provides for a numerical approach

to gain insights to the deconfinement phase transition/Hawking-Page transition for any

values of the ’t Hooft coupling. The numeric analysis however is limited for strong

coupling due to the computational capacities. In practise obtaining values
√
g ≥ 2 is

effectively uneconomical. Therefore, it is of great interest to find an analytical solution

to the Hagedorn QSC in the strongly coupled limit. In order to find such a description,

we will start by analysing the numeric solutions of the Q-functions and try to find an

analytic expression in the limit g =
√
λ

4π →∞.

The foundation of this study is the algorithm described in section 2.3.4 which was im-

plemented in Mathematica by Harmark and Wilhelm in [1]. First we find the numeric

solutions for Qi (eq. (131)) and Pa on the cut (eq. (129)). The range of the coupling

constant is chosen to be 0.53 ≤ g ≤ 3.52. However, going from weak to strong coupling

is rather difficult since the precision is decreasing very fast. In order to get reasonable

results one can increase the working precision and the number of subleading orders in

eq. (131). We chose the working precision as 300 and N = 38 terms for the sum in

eq. (131). The high number of summands increases the computational capacities and

slows down the algorithm at such rate that it is difficult to obtain results or very high

g.

Hence, by solving the Hagedorn QSC, one can find the coefficients ci,n(u) for

Qi(u) and the values of the function Pa(u). In the following sections we are going

to analyse those functions and try to find an analytic expression to describe their be-

haviour at strong coupling. The fits are all performed in Mathematica with the function

NonLinearFit[]. As a measure of the goodness of the fit we are going to use the mean

squared error (MSE)

MSE =
1

n

n∑
i=1

(xi − x̄i)2 , (150)

where xi is the value found by the algorithm and x̄i the value of the fit.

We are starting the analysis of the Hagedorn QSC with the function Qi(u) which

is defined in eq. (131). The coefficients ci,n are the output of the minimization function

except c4, 1 and c4,2 as well as c3,1, which is set to zero (see section 2.3.4). The first

four coefficients ci,n for Q1(u) are shown in fig. 10 as a function of
√
g. One can see

that each of the coefficients behave different to the others. Thus, it is difficult to find
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Figure 10: The first four coefficients of Q1(u) eq. (131) plotted as a function of
√
g.

a function that would describe all the coefficients. One might also consider different

dependencies of g, as g
1
4 , g or g2 (see appendix for plots). However, the behaviour of

the coefficients is still not suitable for finding a common ansatz. Furthermore, in the

considered range of g the functions do not converge for the limit g → ∞. The same

problems occur for Qi(u) for i = 2, 3, 4 (see appendix). Thus, it might be more effective

to study the function Pa(u).

As already discussed in section 2.3.4, the function Qa|i(u) (eq. (132)) is exponen-

tially small for a = 1, 2 and exponentially large for a = 3, 4. Since the function Pa(u)

is constructed by eq. (129), it also has two convergent solutions and two divergent so-

lutions. For a = 1, 2 the convergent solution is found by enforcing the asymptotic limit

in the positive imaginary direction and further using eq. (134) to iteratively go down

to the real axis by steps of i, as described in section 2.3.4. P1,2 can be determined that

way since they are the convergent solutions. However, in the case of a = 3, 4, P3,4 are

divergent. To find the finite solution for a = 3, 4 we can use the same procedure but in

the negative imaginary limit. To do so, an equivalent to eq. (134) is needed to be found

for which we can just use the relation eq. (128) and multiply it by Qi(
Q+
a|i −Q

−
a|i

)
Qi = PaQiQ

i. (151)
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The RHS is equal to zero because of eq. (111). Equation (151) then reads as

Q+
a|iQ

i = Q−a|iQ
i = −Pa (152)

and so the recursive relation eq. (128) reduces to

Q+
a|i =

(
δji −QiQ

j
)
Q−a|j . (153)

That relation allows the asymptotic function to jump from the lower half plane to the

real axis in steps of i. Hence, this procedure delivers the finite solutions P3 and P4.

The convergent solution of P1(u) is exemplary shown in fig. 11 for all Pa(u). As

one can see, the function has very high values and a steep slope. This is not convenient

for a proper analysis. Hence, in the following we are going to construct a function

that works as a good foundation for further analysis. The steepness of Pa indicates

an underlying exponential function. This suspicion is consistent when considering the

ansatz for Pa in the asymptotic limit (defined in eq. (116)) which includes an exponential

prefactor. That factor can be rewritten as(
−e−

1
2TH

)∓iu
=
(
−e−

1
2TH + i0

)∓iu
= e±πu

(
e
− 1

2TH

)∓iu
. (154)

Thus, we obtain a product of a real exponential function and a phase. The real factor

is the source of the steep slope and hence, by cancelling this factor it leaves us a good

function for fitting

P̂1,2(u) = P1,2(u)e−πu (155)

P̂3,4(u) = P3,4(u)e+πu. (156)

Those function are depicted in figs. 12a to 12d. Since the function Pa(u) is ill-defined

at the branch points u = ±2g we would expect a series expansion for u.

One can see that the functions P̂a are symmetric and anti-symmetric. To un-

derstand why they are behaving in that way we have to look at the gluing conditions

eq. (125). Applying them to the asymptotic ansatz ensures that the functions P1(u)

and P3(u) have only a real part whereas P2(u) and P4(u) are only imaginary. With

those assumptions one can make an even more restricted ansatz for Pa(u) on the real

45



-6 -4 -2 2 4
u

10-8

10-5

0.01

10

104

P1(u)

Figure 11: The figure shows the function P1(u) in the interval u ∈ (−2g, 2g) where the

coupling g = 3.33 and the Hagedorn temperature TH = 0.8915.
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Figure 12: The figure shows P̂a(u) in the interval u ∈ (−2g, 2g) for a coupling constant

g = 3.33 and TH = 0.8915.
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axis

P̂1(u) =Re
(
P1e

−πu) =

∞∑
l=0

a1,l(g)u2l, (157)

P̂2(u) =Im
(
P2e

−πu) =

∞∑
l=0

a2,l(g)u2l+1, (158)

P̂3(u) =Re
(
P3e

+πu
)

=

∞∑
l=0

a3,l(g)u2l, (159)

P̂4(u) =Im
(
P4e

+πu
)

=

∞∑
l=0

a4,l(g)u2l+1, (160)

where all the coefficients are functions of the planar coupling g =
√
λ

4π . Note, that the

functions P2,4(u) do not have any coefficient of zeroth order due to the gauge eq. (120)

that requires P2,4(u) to have a root at the point u = 0. The series ansatz in eqs. (157)

to (160) has a convergence radius and hence, for a reasonable fit, only half of the points

will be considered. For the fits we will only take l = 8. This order has been chosen

considering the stability of the fit. The functions P̂a(u) are depicted in figs. 13a to 13d

for a certain value of g = 3.33 and TH = 0.8915.

Furthermore, in order to calculate the analytic continuation one has to take x(u)→
1

x(u) (see section 2.3.3). Figures 14a to 14d show the analytic continuations for P̃a.

Comparing those functions, we can see that Pa and P̃a are related as

P1(u) = −P̃3(u), (161)

P2(u) = −P̃4(u), (162)

P3(u) = −P̃1(u), (163)

P4(u) = −P̃2(u). (164)

These equalities stand directly in relation with the gauge choice eq. (120). One can

see that by using the gluing conditions eq. (125) and transforming P̃a(u) accordingly

it is possible to obtain eq. (120). The gauge choice was initially made in the large u

expansion for the leading order coefficients. However, it seems that it is valid on the cut

as well.
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Figure 13: The figure shows P̂a(u) in the interval u ∈ (−1.46g, 1.44g) for a coupling

constant g = 3.33 and TH = 0.8915. The orange dots are the numeric solutions from

the algorithm while the blue line is the fit.
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Figure 14: The figure shows
̂̃
Pa(u) in the interval u ∈ (−1.46g, 1.44g) for a coupling

constant g = 3.33 and TH = 0.8915.
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The next step in understanding the function Pa(u) is to determine the analytic

behaviour of the coefficients aa,l(g) eqs. (157) to (160) in the strong coupling limit. To

do so, we can make a first ansatz for the case of a = 1, 2

ln (a1,l(g)) = b0
√
g + b1 + b2

1
√
g

+ · · · . (165)

ln (−a2,l(g)) = b0
√
g + b1 + b2

1
√
g

+ · · · . (166)

The coefficients seem like they would behave exponentially and we thus try to fit the log-

arithmic values for aa,l. The first two coefficients for the case g = 3.33 and TH = 0.8915

are shown in figs. 15a to 15d. As one can see, they approach a linear behaviour, espe-

cially when looking at higher values of
√
g. Further, the coefficients a1,1 and a2,1 are not

converging well compared to the other two coefficients. This is due to the convergence

radius of the ansatz eqs. (165) and (166) and thus it is valid to cut off data points in

the lower
√
g region. We chose to cut off the first 15 points which allow the fit to have

a higher accuracy (see figs. 16a and 16b).

One might now also check whether the dependency of
√
g is the correct. For that

we compare the errors of the fits with different dependencies as they are listed in ta-

ble 1. It displays the mean squared error eq. (150) for a linear fit and with an additional

correction term of first order in 1√
g , as in eqs. (165) and (166). The error for a

√
g de-

pendence is in fact the smallest and hence we deduce that this is the correct dependence.

The next point that needs to be discussed is the order of corrections. We fitted

the coefficients using functions with corrections up to seventh order of 1√
g . The main

interest lies in the behaviour of the leading term b0 since the objective is to take g →∞
eventually. The values b0 for each coefficient aa,l are depicted in fig. 17a. The plot for

a1,0 and a2,0 figs. 17a and 17d show both a decreasing behaviour until N = 4, which

means
(

1√
g

)4
. After that point, b0 starts to show oscillating behaviour. The number of

data points is 33, thus, when fitting it with a polynomial of corrections up to order seven,

it is a loss of nine degrees of freedom in the fit. If there are sufficient fitting variables, it

is always possible to find a good fit for any function. Therefore, above a certain number

of correction terms the fitted coefficients are not reliable anymore. As a criterion, we

say that when the value of b0 reaches its first maximum or minimum depending on N

this value will be the most reliable one. So, for a1,0 as well as for a2,0 the coefficient b0

can be estimated as b0 = −2, 3 . . . . The first digit seems like a trustworthy choice since

it is valid in the cases 4 ≤ N ≤ 6. The leading order coefficient in a1,1 and a2,1 (figs. 17c

and 17d) is increasing until N = 3. For higher orders of correction the values start
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oscillating similar to the case a1,0 and a2,0. However, it starts to do so already at lower

orders N since they have less data points then a1,0 and a2,0. The best approximation

for b0 in this case is b0 = −2, 8 . . . .

We have only studied the coefficients l = 0, 1 of eqs. (157) and (158) here, although

one could use the same arguments for the coefficients of higher l. However, due to the

convergence radius of the ansatz eqs. (165) and (166), we would need to cut off too many

points for a proper analysis.

Following this example we can make another possible ansatz for a1,l and a2,l.

Instead of considering the logarithmic value we can use the original ones and make an

exponential ansatz

aa,l(g) = e−b
√
g(b1 + b2

1
√
g

+ · · · ) for a = 1, 2. (167)

The fits are depicted in figs. 18a to 18d where we already cut off 15 data points from

below for a1,1 and a2,1 due to the convergence radius as we did for the other ansatz.

Furthermore, we can again check whether the dependence of the
√
g is valid or not by

comparing the errors. Here it is the same result as for the case above, the accuracy

of the fit is the best for a
√
g dependence. The next step is to find a good parameter

in the exponential function b. Therefore, consider the plots in figs. 19a to 19d which

show the b by increasing the order of the correction order N in 1√
g . The reported values

seem in general a bit more stable than the ones in figs. 17a to 17d for larger corrections.

However, they seem to oscillate strongly already for lower orders of correction N . The

observed different behaviour to the previous case may be explained in this way. The

corrections are of polynomial form and are all multiplied by the same exponential factor.

Therefore, they are not able to affect the exponential prefactor as much as for example

for the purely polynomial ansatz in eqs. (165) and (166).

Table 1: List of the MSE of a1,0 and a2,0 defined in eqs. (165) and (166) with different

dependencies on g for an exponential fit and one with an additional first order correction

term

ln(a1,0)

linear correction

g 5.53× 10−3 3.77× 10−4

g
1
2 6.82× 10−5 1.18× 10−6

g
1
4 2.68× 10−3 4.11× 10−5

ln(−a2,0)

linear correction

g 9.24× 10−3 1.34× 10−4

g
1
2 7.50× 10−4 2.21× 10−6

g
1
4 4.30× 10−2 2.47× 10−3
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Figure 15: The figures show the dependency of the coefficients aa,l of
√
g and a fitted

linear function (blue line).
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Figure 16: The figures show the dependency of the coefficients aa,l of
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g as in figs. 15b
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√
g ∈ [1.075, 1, 875]. The fitted function is indicated as blue line

and the data as orange dots.
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Figure 17: The figures show the leading order coefficient b0 for aa,l defined in eqs. (165)

and (166). The axis N indicates the number of the order of correction in 1√
g . See table 4

in the appendix for the exact values.
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If we turn to a3,l and a4,l, we find that they behave completely different to a1,l

and a2,l. While the coefficients a3,0 a4,0 look like polynomials (see figs. 20a and 20b),

the coefficients a3,l and a4,l for higher l have an exponential appearance. However, they

are not entirely exponential since there exists a root. Therefore, the ansatz

aa,l = e−bf(g)

(
b0f(g) + b1 + b2

1

f(g)
+ · · ·

)
for a = 3, 4 (168)

might be able to describe the function for a = 3, 4 as a function of f(g) where f(g)

has yet to be determined. So, let us first consider a3,0 and a4,0 which are displayed

in figs. 20a and 20b. Comparing the MSE of the fits for different functions of g (see

table 3), it suggests that a3,0 and a4,0 are in fact depending on g and not
√
g. Going to

the next order of l, we have to cut off the first 15 values again due to the convergence

radius. The dependency of the coefficients is also listed in table 3. It is obvious that

the coefficients a3,1 and a4,1 are best described by a
√
g dependency. So, we found that

for l = 0 in eq. (168) the function f(g) = g, whereas the coefficients for l > 0 are better

described by f(g) =
√
g. One way to combine those dependencies is by using these

function

aa,l = e−b
√
g

(
b0g + b1 + b2

1

g
+ · · ·

)
for a = 3, 4, (169)

where the exponent depends on
√
g, while the linear term and the corrections depend

on g. It is a compromise the fits are not as good as the other as one can see in figs. 22a

to 22d. However, it would provide a description for all the coefficients. The stability of

the exponential value are rather stable for a3,0 and a4,0, but not for a3,1 and a4,1. There-

fore, it is not quite clear what the correct ansatz for a = 3, 4 is eq. (168). Therefore, it

is not clear what the correct description is for a = 3, 4.

Table 2: List of the MSE of a1,0 and a2,0 defined in eq. (167) with different dependencies

on g for an exponential fit and one with an additional first order correction term

a1,0

exponential correction

g 2.28× 10−4 8.25× 10−6

g
1
2 3.21× 10−6 4.81× 10−8

g
1
4 1.13× 10−4 8.68× 10−6

a2,0

exponential correction

g 2.36× 10−4 1.02× 10−5

g
1
2 6.21× 10−6 2.49× 10−8

g
1
4 1.40× 10−4 1.19× 10−5
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Figure 19: The figures show the leading order coefficient b for aa,l defined in eq. (167).

The axis N indicates the number of the order of correction in 1√
g . See table 5 in the

appendix for the exact values.
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Figure 20: The figures show the dependency of the coefficients aa,0 of g and a corre-

sponding fitted function (blue line).

Table 3: List of the MSE of a3,0 and a4,0 with different dependencies on g for an

exponential fit and one with a first order correction term

a3,0

exponential correction

g2 8.58× 10−2 0.012

g 1.03× 10−4 6.37× 10−5

g
1
2 0.01 6.13× 10−4

a4,0

exponential correction

g2 0.11 0.013

g 6.90× 10−4 9.40× 10−5

g
1
2 9.29× 10−3 6.24× 10−4

a3,1

exponential correction

g 1.14× 10−5 5.98× 10−5

g
1
2 6.58× 10−7 5.98× 10−7

g
1
4 3.69× 10−6 6.96× 10−7

a4,1

exponential correction

g 1.63× 10−5 5.97× 10−7

g
1
2 5.27× 10−7 5.26× 10−7

g
1
4 3.4× 10−6 5.58× 10−7
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Figure 23: The figures show the leading order coefficient b for aa,l defined in eq. (169).

The axis N indicates the number of the order of correction. The number N indicates

the order of the correction in 1√
g . See table 6 in the appendix for the exact values.
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4 Discussion & Outlook

In this work we have analysed the behaviour of the Q-functions in the strong coupling

limit. The foundation has been the numeric results obtained by the algorithm described

in section 2.3.4. For Qi(u) (see eq. (131)) we have not been able to find any conclusive

ansatz for the coefficients ci,n. The main problem was that the coefficients ci,n were not

converging for g → ∞, in the considered interval of g. Therefore, we have turned to

the function Pa(u) instead, where we have been able to make an series expansion as an

ansatz. Afterwards, we have studied the coefficients of this series expansion. We have

used two different ansätze for a = 1, 2 to determine which one agrees the best. The

first one is defined in eqs. (165) and (166) and we have found that the fit describes the

function well. However, above a certain order of correction the values for the leading

order start oscillating which makes it difficult to determine a trustworthy leading value.

The second ansatz is defined in eq. (167). The mean squared error eq. (150) is here

in general lower than for the first ansatz. Furthermore, the exponential dependency

is rather stable does not start to have large oscillations for higher orders of correction

compared to the first ansatz. Nonetheless, it is not obvious whether the discovered ex-

ponential dependence can be trusted since it is not stable when adding corrections. The

results for a = 3, 4 are behaving in a completely different way to the ones for a = 1, 2.

The main difficulty is that the coefficients of the series expansion of P3 and P4 have

an polynomial dependence in addition to the exponential. This is unexpected since we

have not found any obvious reason for this behaviour.

The analysis of the Q-function for strong coupling needs further investigation.

The main limiting factor in this analysis was the lack of data for even higher coupling.

Hence, for future studies the most important task might be to find more data points

for even higher g. To achieve that, it would be advantageous to find a more effective

algorithm so that it does not consume as much time and computing capacity to solve

the Hagedorn QSC for even higher coupling g. Having more data for the fit, the prob-

lem with the stability of the leading order might be solved. Furthermore, it would be

possible to study also higher order coefficients of Pa(u).

The analysis of P3(u) and P4(u) could also profit from more solutions for higher cou-

pling. Besides, one way to find the reason for the behaviour of their coefficients is to

look at the T-or Y-system again and try to find evidence for this behaviour. When this

question has been answered, it also might be more clear which function describes P1

and P2 well.

When further analysis of Pa provides an ansatz for the strong coupling limit, it is pos-
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sible to solve the Baxter-equation in eq. (103) to get a solution for Qi(u) and thus, for

the Hagedorn QSC. This might enable us to find a perturbative theory around it.

61



Acknowledgements

I would like to thank my supervisor Matthias Wilhelm for all the guid-

ance and support during the process of this project and who always

found the time to answer questions. Furthermore, I want to thank

Troels Harmark and Matthias Wilhelm for providing their Mathe-

matica code and all the numeric results which were the foundation

for this work.

Additionally, I owe thanks to Edith Egler, Martina Hosner and Bar-

bara Penzinger for proofreading the thesis. And lastly, I would like

to thank Fynn Wolf and my family for all the moral support.



Appendix

0.8 1.0 1.2 1.4 1.6 1.8
g

-0.64

-0.62

-0.60

-0.58

-0.56

c2,1

0.8 1.0 1.2 1.4 1.6 1.8
g

-0.30

-0.25

-0.20

c2,2

0.8 1.0 1.2 1.4 1.6 1.8
g

-0.04

-0.03

-0.02

-0.01

c2,3

0.8 1.0 1.2 1.4 1.6 1.8
g

-0.020

-0.015

-0.010

-0.005

c2,4

Figure 24: The first four coefficients of Q2(u) eq. (131) plotted as a function of
√
g.
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Figure 25: The first four coefficients of Q3(u) eq. (131) plotted as a function of
√
g. c3,1

is set to zero as explained in section 2.3.4.
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Figure 26: The third and fourth coefficients of Q4(u) eq. (131) plotted as a function of
√
g.
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Figure 27: The first four coefficients of Q1(u) eq. (131) plotted as a function of g.
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Figure 28: The first four coefficients of Q1(u) eq. (131) plotted as a function of g2.
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Table 4: Table of the leading order coefficient b0 for the coefficients aa,l defined as

eqs. (165) and (166). The columns show different orders of correction terms 1√
g .

0. 1. 2. 3. 4. 5. 6.

a1,0 -2.10119 -2.1961 -2.2468 -2.2954 -2.33523 -2.31317 -2.33572

a2,0 -2.11028 -2.22598 -2.25691 -2.29458 -2.33477 -2.312 -2.34658

a1,1 -4.02582 -3.25339 -2.96196 -2.85091 -2.86865 -1.81126 -13.2613

a2,1 -4.04787 -3.2743 -2.96265 -2.84488 -2.84894 -1.38396 -14.446

Table 5: Table of the leading order coefficient b for the coefficients aa,l defined as

eq. (167). The columns show different orders of correction terms 1√
g .

0. 1. 2. 3. 4. 5. 6. 7.

a1,0 -2.06641 -2.17233 -0.927896 -1.24612 -1.42009 -1.63121 -2.08836 -1.45113

a2,0 -2.06684 -2.20554 -0.965216 -1.29011 -1.4439 -1.65266 -2.09438 -1.49147

a1,1 -4.2512 -3.46086 -2.80371 -2.78012 -3.71924 -3.33696 -5.30077 -4.81567

a2,1 -4.27398 -3.48318 -2.62711 -2.821 -0.475266 -3.41779 -5.44683 -4.95569

Table 6: Table of the exponent coefficient b for the coefficients a3,l and a4,l defined as

eq. (169). The columns show different orders of correction terms 1
g .

0. 1. 2. 3. 4. 5. 6. 7.

a3,0 -1.16578 -1.31155 -1.41252 -1.49057 -1.5617 -1.63254 -1.67588 -1.62008

a4,0 -1.22425 -1.34388 -1.43626 -1.51041 -1.57643 -1.6421 -1.68516 -1.6474

a3,1 -2.40589 -2.41967 -2.33384 0.0157163 -2.52507 -2.52507 -4.35182 -6.7231

a4,1 -2.50817 -2.45005 -0.855504 -3.13898 -2.49326 -4.23644 -6.58695 -5.7474
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