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Abstract

This thesis reports experimental findings of tunnelling spectroscopy measurements

performed in mesoscopic devices formed in a two dimensional electron gas. The de-

vices investigated are quasi one-dimensional indium arsenide nanowires proximitized

by aluminium. The wire has multiple segments, each tunable with a separately con-

trolled electrostatic gate. Tunnelling spectroscopy is performed at the middle and

at the ends of these segments to infer the density of states in the wire. The aim of

the experiment is to investigate Majorana zero modes, which are zero energy states

that emerge at boundaries and defects of topological superconductors. Topological

superconductivity is induced within the device by tuning the chemical potential and

magnetic field.
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CHAPTER 1

Introduction

This thesis is a work in experimental solid state physics, exploring a particular state

of matter called topological superconductivity. Fundamental research in this area

has rapidly expanded in the past decade with the anticipation of discovering physi-

cal phenomena that have theoretically been predicted to enable topological quantum

computation [1].

Chapter 2 explains the motivation behind topological quantum computation and in-

troduces the ingredients needed to construct such a computer. Majorana zero modes

are introduced as the basic building blocks of a topological qubit and we explain how

we attempt to create them. We describe the materials that we use and how we in-

tend to build the devices to be measured. Finally, we elaborate on the experimental

goals of this work and emphasize how the measurements performed on these devices

contribute to the field.

Chapter 3 describes how the devices are fabricated and how measurements are per-

formed on them. We also introduce the basic operating principles of the equipment

used in this experiment and explain how they enable measurements that give us in-
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formation regarding device properties that we are interested in.

Chapter 4 reports the main results of this work and demonstrates the improvements

and conclusions made, based on the data gathered. We also compare the results to

theoretical predictions and previous experimental findings from relevant research per-

formed by others.

Chapter 5 concludes the results and offers suggestions to benefit future experiments

that relate to this work.

The devices presented in this work were fabricated by Andreas Pöschl. Measure-

ments were performed and discussions were held in collaboration with Andreas Pöschl,

Deividas Sabonis and Alisa Danilenko.
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CHAPTER 2

Theoretical background

2.1 Motivation - topological quantum computing

Quantum computing is an area of intense research because it promises more pow-

erful computers that can solve certain problems exponentially faster than classical

computers [2]. Such solutions would have widespread application in chemistry [3, 4],

cryptography [5], and many other areas [6]. The central idea of quantum computation

is to utilize superposition [7]. This is a quantum mechanical phenomenon, which is

inaccessible to modern classical computers and incompatible with their basic operat-

ing principle.

The logical state of a modern classical computer is encoded in a sequence of binary-

valued bits. In a computation, an output is retrieved by decoding the state of the

computer after some algorithm has manipulated a given input. Every step of the al-

gorithm is deterministic, in the sense that when we query the state of the computer,

the result is uniquely determined by the specific computational step that the query

was made at, even if the program is run on a different classical computer. Moreover,

if done intelligently, checking the state of the computer does not change that state,
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nor does it modify the result of the subsequent computation. This is important, be-

cause it allows us to copy the states, compare them for errors and correct for them [8].

In contrast, a quantum computer is in a superposition of logical states, which could

be encoded with qubits, that are each in a superposition of two orthogonal quan-

tum states. Quantum algorithms need not be deterministic, meaning that there are

situations in which queries regarding the state of the computer return an inherently

random answer. The probability distribution of the output can be obtained by re-

peating the computation multiple times. The power of quantum computing is, that

as certain computational problems are scaled, the amount of time needed to sample

this distribution becomes much smaller than the time needed for a classical computer

to calculate it. This was recently demonstrated by Google [9], although contested by

IBM [10]

The error-correcting procedures implemented on classical computers cannot be straight-

forwardly applied to quantum computers because copying the state of a quantum

computer is impossible due to the no-cloning theorem [11, 12]. Nonetheless, quantum

error-correcting schemes do exist, but they can only function if the rate of errors

made by the quantum computer is below some certain threshold [13, 14, 15]. Errors

can arise from either interactions with the environment or from performing quantum

operations imprecisely during the computation.

Interactions with the environment are often out of our direct control. For exam-

ple, it could be a mechanical vibration in the system caused by sound or heat, or an

unwanted magnetic field penetrating an accidental loop in our wires or perhaps a cos-

mic ray [16] originating from another galaxy that coincidentally strikes a qubit during

a computation. Any such interaction represents an additional degree of freedom for

the quantum mechanical system. As time passes, those interactions take place and

the corresponding degrees of freedom will contain an increasingly substantial part of

the information that we encoded into our initial quantum state. That information is

lost to us because our measurement apparatus is necessarily restricted to only those

dimensions that we can control, measure and understand.
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Leaving a quantum computer open to the environment will eventually take the proba-

bility distribution into the thermal ground state of the system, leaving the information

that we hoped to obtain entirely unaccessible to our measurement scheme. This pro-

cess is known as decoherence and it is a major issue for all of the quantum computers

existing today. It represents an upper time limit for a successful computation, which

in turn limits the number of total operations that a quantum computation can in-

volve, given that those operations cannot be done arbitrarily quickly without losing

precision. As examples, this timescale is currently on the order of microseconds for

superconducting qubits [17] and up to hours for ionized donors in silicon [18]. As more

qubits are added to a computer, the decoherence time decreases even further, depen-

dent on the particular type of qubit involved. Finding a scalable platform that enables

a long decoherence time is a necessary criterion for a universal quantum computer [19].

Even if a quantum computer were perfectly isolated from the environment, the errors

stemming from performing imprecise operations remain. The reason why this is a

problem for quantum computers is that the coefficients of the qubit states vary con-

tinuously, making them dependent on even the smallest variations in operation. For

instance, if a qubit is controlled by microwave pulses, then a slight variation in the

frequency or duration of the pulse would result in a state that slightly differs from the

desired one. This is in contrast with a classical computer, where only a sufficiently

large mistake would cause a bit flip. Even if the errors that individual quantum op-

erations make are small, they accumulate with each step of the algorithm and may

noticeably distort the final result for a sufficiently long computation [20].

For many quantum computing platforms, it may be possible to alleviate both of

these problems with better material systems and clever engineering, however it is too

soon to determine which platforms will prove most successful. This thesis is focused

on fundamental experimental research in solid-state physics, that hopefully brings

us closer to realizing a particular approach called topological quantum computation

[21, 22, 23]. No topological quantum computers have been successfully built yet, but

the approach is promising and interesting because it attempts to bypass the problems

introduced above in a unique and reliable way.
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The starting point of topological quantum computation is to consider a configura-

tion of identical particles that reside in a degenerate ground state. Each of these

ground states represent a logical state for the computer and can physically be dis-

tinguished by some internal quantum number which is somehow encoded amongst

the particles. In specific proposals for this type of computer, this internal quantum

number is a topological invariant, hence giving the approach the name of topological

quantum computing. The user of such a computer can initialize a known ground

state by creating those particles in a specific manner. Unitary operations within the

manifold of ground states can be performed by exchanging those particles. After some

sequence of these exchanges, called braids, the user would perform a measurement on

the superposition of ground states by fusing the particles back together in a process

that resembles the initialization step in reverse [21].

The power of this approach stems from the property that when performing a braid,

the precise paths taken by the particles are not important as long as they can be

continuously deformed to each other, as depicted in Figure 2.1. This directly makes

small variations of the paths caused by imprecise hardware irrelevant. Additionally,

particles could be braided without ever having to be physically close to each other.

If they are always located far away from each other, then the probability of the envi-

ronment accidentally exchanging them is exponentially suppressed.
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Figure 2.1: A collection of non-Abelian particles, depicted as orange circles on a 2D

plane. Three possible closed paths for the central particle have been drawn and labeled

1 (blue), 2 (green) and 3 (red). Moving one particle around another, for instance by

traversing paths 1 or 2, changes the quantum state of the system. Since paths 1

and 2 are topologically equivalent, taking either path yields the same quantum state,

up to a phase factor of the many-body wavefunction. Traversing path 3 retains the

quantum state, because it does not encircle any particles and is therefore topologically

equivalent to a null path.

This setup is quite peculiar because bosons and fermions, which are the only possible

types of particles in three dimensions, do not possess the properties described above.

Namely, when exchanging bosons, the many-body wavefunction does not change at

all and when exchanging fermions, it is merely multiplied by a phase factor of π. The

particles that have the necessary properties are called Non-Abelian anyons and can

only exist in two-dimensional systems [24]. The term anyon means that the phase

picked up by the wavefunction during an exchange can have any value, instead of

just 0 or π. Anyonic exchange statistics have recently been observed in experiments

[25, 26, 27]. The term Non-Abelian means that the order, in which particle exchanges

are executed, has significance. Performing the same exchanges in a different order

may result in an entirely different many-body wavefunction. This property is what

provides the ground state degeneracy and it has not yet been observed in an experi-

ment.

7



Even though the topological quantum computation approach alleviates the problems

introduced before, some sources of decoherence still remain. For instance, thermal

energy could add unwanted particles to the system, which may braid or fuse with

the anyons. To avoid thermal quasiparticle excitations, it is necessary to use a mate-

rial system where the ground states are energetically gapped from the excited states,

such that the energy gap is larger than the thermal energy at experimentally acces-

sible temperatures. If such a system was built, it could in principle achieve the level

of fault-tolerance that is required by the error-correcting procedures necessary for a

universal quantum computer.

2.2 Topological superconductivity

Non-Abelian anyons have not been found to exist as elementary particles in nature,

but there are proposals for condensed matter systems where they may emerge as

quasiparticle excitations [28]. The quasiparticles that this thesis studies are Majorana

zero modes, which appear on boundaries of topological superconductors. This sec-

tion introduces the basics of superconductivity [29], the model of a one-dimensional

topological superconductor [30] and the approach taken to realize this model in a

semiconductor-superconductor heterostructure [31, 32].

Superconductivity is a state of matter that conducts electricity with no resistance. It

was first observed in 1911 by Heike Kamerlingh Onnes [33] and has since been found

in a plethora of materials [34]. For many of these materials, superconductivity can

be understood through the microscopic theory put forward by Bardeen, Cooper and

Schrieffer (BCS theory) [35].

In the BCS theory of superconductivity, charge carriers pair up into Cooper pairs

due to electron-phonon interaction. As an electron moves through a lattice of atoms,

it attracts the positively charged ions near its path, thereby creating a lattice vibration

called a phonon. A different electron with opposite momentum would be attracted

to this phonon, meaning that the two electrons essentially attract each other, despite

being repelled by regular electrostatics. At a sufficiently low temperature, called
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the critical temperature Tc1, the pairing potential supplied by this attractive mech-

anism becomes comparable to the thermal energy, meaning it becomes energetically

favourable for the electrons to pair up with partners that have opposite momentum.

Additionally, this mechanism makes it energetically favourable for the electrons to

have opposite spin, such that their spatial overlap does not compete with Pauli’s ex-

clusion principle. These pairs of particles are called Cooper pairs.

Cooper pairs can be treated as a type of particle in their own right, carrying a charge

of two electrons while having zero kinetic energy, momentum and spin. From these

properties it follows, that they all occupy the same ground state, known as the Cooper

pair condensate, regardless of how many Cooper pairs are present in the system. A

conventional superconductor can be described within this framework with an approx-

imate2 Hamiltonian

H =
∑
kσ

[
ε(k)c†kσckσ −

(
∆kc

†
kσc
†
kσ̄ + ∆∗kckσ̄ckσ

)]
(2.1)

where k is momentum, σ ∈ {↑, ↓} is spin and c† and c are the respective creation and

annihilation operators of electrons. The first term describes the energy ε(k) of free

electrons, measured with respect to the chemical potential µ. The pairing potential

∆ appearing in the second term shows how much energy is gained from combining

electrons or holes into Cooper pairs. A superconductor hosts no states within the

energy range µ − ∆ to µ + ∆, because any such particles will find it energetically

favourable to pair up. The width of this energy range 2∆ is called the superconducting

gap and for conventional superconductors, its value at zero temperature approaches

a limiting value [29]

lim
T→0

∆ = 1.764kBTc (2.2)

where kB is the Boltzmann constant. The density of states ρ(E) outside the gap is

ρ(E) = E√
E2 −∆2

for |E| > ∆ (2.3)

1This threshold depends on the material. In many materials, superconductivity has never been

observed.
2Mean field approximation c†

k↑c
†
−k↓c−k′↓ck′↑ ' 〈c

†
k↑c
†
−k↓〉 c−k′↓ck′↑ + c†

k↑c
†
−k↓ 〈c−k′↓ck′↑〉 −

〈c†
k↑c
†
−k↓c−k′↓ck′↑〉. The error introduced by this approximation is second order in deviations of

c†
k↑c
†
−k↓ and c−k′↓ck′↑ from their averages
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For concreteness, the description so far has mostly been formulated with electrons,

but it is equally relevant for holes. In fact, there is no meaningful distinction between

an electron and a Cooper pair combined with a hole. Curiously, neither electrons nor

holes are eigenstates of the Hamiltonian (2.1). Instead, the elementary excitations in

a superconductor are Bogoliubons γ, which are a superposition of the two and can be

expressed through the electron creation and annihilation operators:

γk↑ = ukck↑ − vkc†−k↓ (2.4)

γk↓ = ukck↓ + vkc
†
−k↑ (2.5)

where the coefficients u and v are called the quasiparticle charges of the electron-like

and hole-like components respectively. This can be shown by finding that for certain

values of u and v, the Hamiltonian (2.1) is indeed diagonal in the basis of γ operators

[29]. For energies above the chemical potential, the Bogoliubons are more electron-

like and for energies below, they are more hole-like. A Bogoliubon with zero energy

(residing precisely at the chemical potential) is an equal superposition of an electron

and a hole.

Now we will consider a simplified version of a superconducting system known as

the Kitaev chain [30], which is represented visually in Figure 2.2. This system has

three simplifying properties:

1. The superconductor is a one-dimensional chain of discrete sites that can each

be occupied by a fermion f . We will denote these sites with an index j. The

chain has a finite length, expressed by the total number of sites L.

2. The fermions in this system are spinless. They still obey fermionic statistics, but

are just missing a degree of freedom in spin, meaning that each site is limited

to one fermion instead of two, following Pauli’s exclusion principle.

3. Each fermion only interacts with their nearest neighbouring sites. This in-

teraction can mean pairing up with an adjacent fermion into a Cooper pair.

Fermions can also tunnel from one vacant site to another. The strength of these

processes are described with a pairing potential ∆ and a tunnelling amplitude

t respectively.
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Figure 2.2: A kitaev chain with length L = 5. Four occupied sites have been colored

red and one unoccupied site has been colored white. The middle site has been marked

with the three parameters of the model. The chemical potential µ is the energy

required to occupy the site. The tunnelling amplitude t describes the probability for

the fermion in the middle to move to the unoccupied site on the right. The pairing

potential ∆ is the interaction energy between the two neighbouring fermions.

The Hamiltonian for such a system is [36]

H =
L∑
j=1

[
−t
(
f†j fj+1 + f†j+1fj

)
− µ

(
f†j fj −

1
2

)
+
(

∆∗f†j+1f
†
j + ∆fjfj+1

)]
(2.6)

Generally, the fermionic operators f are complex and can (purely mathematically) be

split into real and imaginary parts

fj = e−iθ/2

2 (γ2j−1 + iγ2j) (2.7)

to define operators γ, which are real and therefore Hermitian γ† = γ by construction.

These are called Majorana operators, because they satisfy the Majorana equation [37],

which is the real-valued version of the Dirac equation. The factor e−iθ/2 contains the

superconducting phase θ defined by ∆ = |∆|eiθ and is included in this definition purely

for convenience, such that the subsequent equations have a simpler form. Rewriting

the Hamiltonian (2.6) using the definition (2.7) yields

H = i

2

L∑
j=1

[−µγ2j−1γ2j + (t+ |∆|)γ2jγ2j+1 + (−t+ |∆|)γ2j−1γ2j+2] (2.8)

This Hamiltonian could be interpreted as describing a chain of 2LMajorana particles,

that interact with their neighbours. The values of the parameters µ, t and ∆ determine

the relative strengths of precisely which neighbours each mode interacts with. In a

limiting case, where t and ∆ are equal in magnitude and both much larger than µ,

the Hamiltonian approximately becomes

H = it

L∑
j=1

γ2jγ2j+1, t = |∆| � µ (2.9)
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In this limit, only the Majorana modes indexed by 2j and 2j + 1 interact with each

other, forming new fermionic modes defined by

f̃j = e−iθ/2

2 (γ2j + iγ2j+1) (2.10)

This type of pairing means that the Majorana modes at the ends of the chain γ1

and γ2L have been left unpaired. We can formally pair them with each other by

constructing a special non-local fermionic operator to describe them:

d = e−iθ/2

2 (γ1 + iγ2L) (2.11)

The absence of this operator from the Hamiltonian (2.9) means that the correspond-

ing fermionic mode has zero energy, prompting the name Majorana zero modes for

γ1 and γ2L. This property is independent of whether the non-local fermionic mode is

occupied d†d = 1 or unoccupied d†d = 0. Therefore, in this regime, the ground state

of the system is doubly degenerate. This situation is already reminiscent of the start-

ing point for a topological quantum computer - a degenerate set of ground states that

differ by a quantum number (in this case d†d = {0, 1}) non-locally encoded amongst

the particles in the system. This would imply that the Majorana zero modes are

expected to exhibit Non-Abelian exchange statistics [38], but this remains yet to be

shown experimentally and is a major milestone towards building a topological quan-

tum computer [39]. The notion of exchanging particles without merging them in a

one-dimensional chain seems ill-defined, but it could be performed within a network of

such chains [40]. It is even possible to design these networks in a scalable manner [41].

To experimentally investigate Majorana zero modes, we have to engineer a material

system in which the Hamiltonian 2.9 is realized. There are obviously many limita-

tions to how closely it is possible to mimic the Kitaev model in an actual device.

One of the most important conditions is the second simplification introduced in the

model - that the fermions ought to be spinless. Without this property, there can be

no unpaired Majorana modes, since every site on the chain could be doubly occu-

pied. One way to achieve this is to create a hybrid semiconductor-superconductor

structure, that inherits properties from both of the materials simultaneously. Under

the right circumstances, the semiconductor can remove the spin degree of freedom

and the superconductor can supply superconductivity and the energy gap that comes
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along with it. This approach was proposed theoretically in 2010 [31, 32] and has been

studied in numerous experiments since then [42].

The first ingredient in this scheme is a semiconductor that exhibits a strong spin-orbit

effect. This effect is a relativistic interaction between the spin of a charge carrier and

its motion inside a potential [43]. Namely, as a result of relativistic electrodynamics,

an electric field is experienced by a moving object as a magnetic field in the reference

frame of that object. Consequently, if that object possesses a magnetic moment, then

traversing through an electric field causes that magnetic moment to align with the

perceived magnetic field. The magnetic moment of an electron is generated by its

charge and spin, which means that the spin-orbit effect ties the spin of an electron

to its motion through the material in which it is travelling. The magnitude of this

effect is dependent on the material, and is generally larger in crystals composed of

heavy elements, such as indium arsenide (InAs). The electric field can be supplied

by external electrostatic gates or it could originate from the gradient of the confining

potential created by band alignment in a grown heterostructure [44].

The spin-orbit interaction makes it energetically favourable for charge carriers with

opposite momenta to have opposite spins. Nonetheless, at any given energy, it is still

possible to have the energetically disfavoured orientation of spin at the cost of having

lower momentum, so this system is not yet spinless. An additionally applied external

magnetic field can modify the energy levels even further, opening up a window of

energy within which either direction of momentum allows precisely one possible ori-

entation of spin. Within this region of energy, the spin degree of freedom is effectively

removed because it is locked to the momentum degree of freedom. This regime can

be accessed by tuning the chemical potential of the semiconductor to be within that

region, for instance by using electrostatic gates.

The second ingredient is superconductivity, which can be introduced into the semi-

conductor near the interface where it connects to a superconductor. This ability of

a superconductor to share its properties is called the proximity effect, which is made

possible by the electrons near the interface having a wave function that extends into

both materials over a finite range. Recently, it has become possible to make epitaxi-
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ally matched semiconductor-superconductor interfaces with molecular beam epitaxy

[45]. The epitaxial match between the two ensures minimal disorder at the interface,

which in turn enables the system to possess a hard gap [46] - a feature that was

previously unobtainable due to interface inhomogeneity [47].

The properties of the superconductor set some stringent experimental conditions.

First, superconductivity only manifests itself at low temperatures, which requires the

experiment to be carried out within a cryostat. Second, the magnitude of the super-

conducting gap decreases with the applied external magnetic field, which means that

the topological superconducting phase can only be observed in a particular range of

magnetic field strength, bounded from above by the vanishing gap of the supercon-

ductor and bounded from below by the requirements set by the spinless regime of the

semiconductor. Last, since the aim is to create a nanowire (ideally approximating a

1D wire), the materials and designs of experimental devices need to be compatible

with the available methods of nanofabrication.

2.3 The experiment

Performing quantum computation with Majorana zero modes is a complex task and

cannot be reliably performed without experimentally establishing how to perform

numerous subtasks first. The experiment described in this thesis is designed to in-

vestigate the creation, detection and manipulation of a single pair of Majorana zero

modes in various segments of a nanowire. The remainder of this section elaborates

on how the design of the experiment enables us to do those that.

In this experiment we aim to create topological wire segments in a two dimensional

electron gas (2DEG). A 2DEG is a layer of electrons that have been confined in the

third dimension within a quantum well. To engineer this confinement, a stack of vari-

ous materials is grown with molecular beam epitaxy. All of the data presented in this

thesis is from devices created from a single wafer of material, grown by the Manfra

group at Purdue university. The various layers and their dimensions are shown on

Figure 2.3. Near the top of the stack is a thin layer of InAs which is sandwiched

by thin sheets of InGaAs. The layers of InGaAs have a higher bandgap than InAs,
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thereby creating a confining potential well around the InAs [48]. A smaller quantum

well results in larger spacings between energy levels within the well. The width of

the InAs layer is 7 nm, which is much smaller than the Fermi wavelength within the

material, resulting in only one energy level being occupied. This effectively removes

the third dimension for the electrons in the well, thereby forming the 2DEG. Beneath

the lower layer of InGaAs are multiple layers of InAlAs with various ratios of indium

and aluminium. The purpose of these layers is to create a gradually changing lattice

spacing that can connect the quantum well with the InP substrate, while providing a

large potential barrier to ensure that electrons are unable to tunnel from the quantum

well into the substrate. Above the upper InGaAs layer is a layer of aluminium, which

is there to provide the superconductivity to the 2DEG via proximity effect. The

thickness of that InGaAs layer determines the interface transparency, which regulates

the proximity effect [44].

Au (20 nm)

Ti (5 nm)

HfO (15 nm)

Al (5 nm)

In0.75Ga0.25As (10 nm)

InAs (7 nm)
In0.75Ga0.25As (4 nm)

InxAl1-xAs (~1200 nm)

InP

Wafer
stack

Added during
device
fabrication

Figure 2.3: The material used for the experiment. The portion labelled wafer stack

is entirely grown in a molecular beam epitaxy chamber. During device fabrication,

detailed in Chapter 3, some of these layers are removed and others are added for

different regions of the devices.

During device fabrication, more thoroughly described in Chapter 3, a narrow wire is

patterned out of the aluminium by selective etching. Additionally, gold electrostatic

gates called plunger gates are deposited to cover multiple segments of that aluminium
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wire and its immediate surroundings. Figure 2.4 shows a false coloured scanning

electron micrograph of a complete device, where the placement of these gates can be

seen, coloured in red. The gates are separated from the other layers below by an

insulating layer of hafnium oxide.

1μm

Vplunger1 Vplunger2 Vplunger3 Vplunger4

Vcutter1
Vbias1 Vcutter2

Vbias2 Vcutter3
Vbias3 Vcutter4

Vbias4 Vcutter5 Vbias5

to lock-in
amplifier

to lock-in
amplifier

to lock-in
amplifier

to lock-in
amplifier

to lock-in
amplifier

Figure 2.4: Image of a finished device, taken with a scanning electron microscope.

Colours have been added for clarity. Coloured in teal are the visible areas of the

device where the aluminium has not been etched away. The approximate location of

the main wire has also been coloured teal on this image, although it is not visible from

the original image. Coloured in gold are cutter gates and coloured in red are plunger

gates. The cutter gates were deposited first and are separated from the plunger gates

by a layer of dielectric. Slight overlap of the gates is visible at the junctions. Electrical

lines have been schematically marked. A more detailed electrical circuit can be seen

in Figure 3.4.

The voltages of the plunger gates can be controlled externally and serve three distinct

purposes. First, setting a negative voltage for a gate (on the order of -1 V) depletes

the 2DEG directly underneath it by field effect. However, the region of 2DEG directly

underneath the aluminium wire is protected from this effect, because the electrons in
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the wire screen the electric field of the gate. This region of 2DEG forms a nanowire

- confined vertically by the InGaAs layers and confined horizontally by the electro-

static gate. This nanowire exhibits a strong spin-orbit effect due to the InAs and also

inherits superconductivity from the aluminium from above, giving it all the necessary

prerequisites for hosting Majorana zero modes [49].

The second function of the plunger gates is to insulate certain regions of the de-

vice from each other. The same electrostatic depletion that forms the wire can be

used in other areas to make a conducting region of 2DEG insulating instead. The

long appendages of the plunger gates that can be seen on Figure 2.4 partition the

2DEG into five probes that approach the nanowire from the side. Each probe can

be individually biased with a voltage, which enables us to perform tunnelling spec-

troscopy. Tunnelling spectroscopy is a method that enables us to infer the density

of states in the wire at the points in which the probes are situated and is further

elaborated on in Chapter 3. To aid this measurement, there are indentations at the

middle and ends of the plunger gates, which allow for a some conductance between

the probes and nanowire. For even more precise control, additional gates called cutter

gates are also deposited during fabrication. The effect of the cutter gates is screened

by the aluminium on the probes with the exception of their tip, where their role is to

regulate the electrostatic landscape between the probes and nanowire.

The third function of plunger gates is to tune the chemical potential within the

nanowire. Even though the aluminium screens the electric field from above, the wire

is still responsive to electrostatic depletion from the sides. This means that the gate

is able to tune the chemical potential, while never completely depleting the wire. The

tunability of chemical potential is necessary to enable the condition of Equation 2.9

to invoke the transition of the wire into the topological superconducting phase and

thereby create Majorana zero modes.

Since Majorana zero modes reside at zero energy, the presence of one is reflected

by an increase in the density of states at zero energy. For tunnelling spectroscopy

measurements, this translates into an increase in zero bias conductance by 2e2/h [50].

In this experiment, we can individually tune the chemical potential in each segment of
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the wire and attempt to detect the presence of Majorana zero modes with the probes

situated on the ends of those segments.

Observing a known feature of an object may be enough to detect it, but in many

cases can be insufficient to actually conclude the existence of that object. Numerous

other effects may produce a zero bias peak, such as Kondo effect [51], weak antilocal-

ization [52], reflectionless tunnelling [53] or the presence of quantum dots and random

disorder in the chemical potential [54]. To obtain the capability to distinguish between

the different origins for zero energy states, the experiment includes an additional tun-

nelling probe in the middle of each wire segment. The information supplied by this

middle probe is twofold. First, if it does happen to detect zero energy states, then we

can have a higher level of confidence that those occurrences are not Majorana modes,

because we have deliberately placed that probe in a location where we do not create

the conditions for one to appear. This in turn may aid us in analysing the data from

the end probes, since it gives a baseline for how many false-positive Majoranas usually

occur and what they may look like in terms of shape, magnitude and response to gates

in measured differential conductance. Second, even though we expect no Majorana

mode to be created in the middle of a segment, the entire segment still undergoes

a topological phase transition, which could also be detected by the middle probe.

Namely, the excitation gap is expected to momentarily close within the entire wire

at the specific values of magnetic field and chemical potential where the transition

occurs [55]. If this theoretical prediction holds true for our physical system, then

every additional tunnelling probe in the middle of a wire adds a degree of falsifiability

to the hypothesis that an observed zero energy state was created in conjunction with

a topological phase transition that spans the entire wire. This helps to corroborate

observations of Majorana zero modes and to reject effects that coincidentally mimic

the signatures at both ends of the wire simultaneously.

Having separate control of chemical potential in each segment allows us to deliber-

ately attempt to join or split two topological segments. Whether or not that actually

succeeds could most readily be observed with the probe located directly between the

two. If one segment is topological and the other is not, then the probe would observe

a Majorana zero mode there. If the segments are both topological and form one large
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topological region, then this probe would effectively become a middle probe and it

would be able to observe a gap closing and reopening but no Majorana zero mode. If

the segments were both topological, but still remained slightly separated, this probe

could still observe the Majorana modes, possibly no longer at zero energy - a finite

overlap of nearby Majorana wave functions would supply them with an interaction

energy [56, 57]. Consequently, observing these differences in the behaviour of this

probe would let us infer when these joining or splitting processes occur.

Being able to split and join topological segments would even enable us to perform

more complex operations with the Majorana zero modes. For instance, if we create

two separate topological segments and later join them through segments situated in

between, we could fuse two Majorana zero modes that were not initially created as a

pair [40], which is one of the basic capabilities needed to create a topological qubit

[21]
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CHAPTER 3

Experimental methods

3.1 Fabrication and preparation of devices

Experimental devices are fabricated onto 3x5 mm chips. To obtain a chip, the outline

of the chip is scribed onto the wafer (grown in Purdue) using a diamond tip and subse-

quently cleaved off by applying slight mechanical pressure with tweezers. Devices are

fabricated onto the chip through a scalable fabrication process. Typically, around 12

devices are made on a single chip. All of these devices are made simultaneously, which

means that making more devices or even making devices that have more complex ge-

ometries does not necessarily make the fabrication process longer or more difficult.

The number of devices per chip is instead limited by the total number of bonding

pads on the chip. A bonding pad is a region on the chip that is used to make an

electrical contact from a specific part of a device to our measurement circuits. These

pads are approximately squares with a side length of 0.1 mm and a single device uses

10 to 20 bonds, depending on its design, purpose and complexity.

We successively either remove the upper layers or add new ones on top. By selectively

doing this in some areas of the chip, while not in others, we can define nanostructures
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that function as devices that can be measured. To define which areas are processed

and which are not, we create a mask on the chip. To do this, we first cover the entire

chip with polymethyl methacrylate (PMMA) using a spin coater. Next, we use elec-

tron beam lithography to draw a pattern onto the resist. This pattern is designed on

a computer in a design program such as Autocad. The electron beam increases the

solubility of the resist that is exposed, so when the chip is dipped into a 1:3 solution

of methyl isobutyl ketone (MIBK) and isopropanol (IPA) for one minute, the exposed

resist is removed whereas the unexposed resist stays intact. Using this method, de-

signs with features as small as 40 nm can be reliably created. This process of creating

a mask needs to be done for every layer that is either removed or added. After a layer

is processed, the excess resist is dissolved away with 1,3 dioxolane before a new mask

is made.

The first fabrication step is a subtractive process called the mesa etch, which defines

the outlines of the devices. This step removes the aluminium and semiconducting

layers in regions that lie between devices, bonding pads and their appendages. This

is done with a wet etch, consisting of transene D for the aluminium and a mixture

of hydrogen peroxide, phosphoric acid and citric acid for the semiconducting layers.

With current technology, the mesa etch is not precise enough to define fine features

(below a micrometer) on devices, so it cannot be used in the inner-most areas of a

device. In those regions, we control the conductivity of the semiconductor electro-

statically, using plunger gates, as described in the previous chapter.

The second step is similar to the first one, but it is an etch that only removes alu-

minium. This can create finer features and we use it to define the main aluminium

wire of the device and also the aluminium parts of the probes. This step is precarious

for several reasons. First, it consists of dipping the chip into hot (50 degree) transene

D for just five seconds. For such a short duration, a small deviation in timing can be

relatively substantial. If etched too little, the aluminium does not get removed where

it should, which can easily short-circuit some parts of the device, especially if they

are close to each other. If etched too long, the etchant may start flowing under the

resist, removing areas of aluminium outside the pattern defined by the mask. This

phenomenum is known as etch run and even with a perfectly performed etch, it is
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expected to happen in some places sooner than in others, dependent on the geometry

of the design. As a result, aluminium nanostructures fabricated with this method are

always thinner than the design would suggest. This also sets a limit to how thin these

features can be made. For a 3 µm long wire, the width cannot be made less than 80

nm without having unpredictable discontinuities along the wire.

The next step consists of applying an insulating layer of hafnium oxide onto the

chip. For the devices in this experiment, there is no reason to avoid having this layer

on any part of the chip, so no mask is made for this step. This layer is grown in an

atomic layer deposition chamber to a thickness of 15 nm. This is thick enough to

insulate two layers of metal, while being thin enough to allow the electrostatic gates

to affect the density of the 2DEG buried underneath.

The final set of steps is gate deposition. A layer of metal is deposited onto the entire

chip by putting it into a vacuum chamber where metal is gradually evaporated from a

crucible using heat applied by an electron beam. This method covers the entire chip

with metal, in both masked and unmasked areas. However, when later dissolving the

excess resist away, the metal on top of that resist is also removed, leaving behind only

the pattern of gates that we defined with electron beam lithography. The material

used for the gates is primarily gold, but the first 5-10 nm of deposited metal is tita-

nium, which acts as an adhesive between gold and hafnium oxide. Gate deposition is

done in two separate rounds - one for inner features and one for outer features. The

inner features need to be finer and thinner so that they fulfill their function in the

device without touching each other. The outer features need to be larger, so that they

remain continuous while crossing the somewhat abrupt terrain created by the mesa

etch. To make this climbing even more uniform and reliable, the chip is tilted and

rotated during the metal evaporation for the outer gates. If needed, additional layers

of gates can be added by growing another layer of hafnium oxide and then repeating

the process. This can be useful or even unavoidable when designing gates that would

be very close to each other or even overlap if left on a single layer. A photograph of

a finished device with two layers of gates is shown on Figure 3.1.
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Figure 3.1: A photograph of a finished device, taken under an optical microscope.

The device is the same as shown in Figure 2.4 and the labels on the sides have been

marked consistently with that. An enlarged and rotated portion of the photo is shown

on the bottom, where the borders created by various fabrication steps are visible

When the devices are ready on the chip, they need to be electrically contacted so that

we can perform measurements for the experiment. This is done by gluing the chip

to a daughterboard and then individually connecting each bonding pad on the chip

to a bonding pad on the daughterboard with aluminium wires. This is done using a

wedge bonder, which essentially presses the wire into the pad and then fuses them

with heat supplied by an ultrasonic vibration. Up to four devices can be bonded up at

one time. This limitation comes from the total number of pads on the daughterboard

which connect to electrical lines in the cryostat. It also becomes increasingly difficult

to make new bonds that do not touch the existing ones. Although the bonding wire

is covered with a layer of oxide, it may get removed with friction, potentially causing
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two neighbouring bonds to make an unwanted electrical connection. A photograph of

a bonded chip is shown in Figure 3.2. New devices can later be bonded up with new

bonds after removing the existing ones.

Figure 3.2: Photograph of a 3x5mm chip (black rectangle in the center) glued onto a

daughterboard with PMMA. Four devices are bonded.

The daughterboard is subsequently placed inside a cylindrical frame called a puck,

which is designed to fit into the cryostat. It also provides the connections from the

daugtherboard to the electrical lines that are built into the cryostat, which eventually

lead to a breakout box outside the cryostat, where we are able to connect voltage and

current sources or various measurement instruments. Figure 3.3 shows a photograph

of the puck.

24



Figure 3.3: Puck with outer casing removed. A daughterboard, currently with no

chip, is mounted in the center, with wires connecting it to the electrical lines of the

cryostat.

3.2 Cryostat

The cryostat used in this experiment is a dilution refrigerator, manufactured by Ox-

ford Instruments1. The puck is in thermal contact with the coldest part of the cryo-

stat, called the mixing chamber, which has a base temperature between 15 to 20 mK.

All the measurements presented in this thesis were conducted at this temperature.

1Oxford Instruments Triton 200 Cryofree dilution refrigerator
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The primary cooling mechanism of a dilution refrigerator is based on the proper-

ties of two helium isotopes, 3He and 4He. When cooled down to slightly below a

kelvin, a mixture of these two helium isotopes spontaneously separates into two dis-

tinct phases, called the concentrated and the dilute phase [58]. The concentrated

phase is almost pure 3He liquid, with a concentration quickly approaching 100% as

temperature is further decreased. The dilute phase is 4He superfluid, with a small

concentration of 3He atoms sparsely scattered within. Although this small concentra-

tion decreases with temperature, it approaches approximately 6,6% instead of zero,

as temperature is lowered. The finite presence of 3He is enabled in 4He due to the

difference in mass. The larger mass of 4He gives it a lower zero-point motion, mean-

ing that it occupies a smaller volume. Consequently, the atoms in the 4He superfluid

are closer together, providing larger Van der Waals forces than the pure 3He liquid.

These forces bind atoms and stronger attractive forces result in lower energy quantum

states. The 3He atoms can sequentially fill up these states in the dilute phase, follow-

ing Pauli’s exclusion principle. A concentration of 6,6% saturates this mechanism, as

the next unoccupied state no longer has smaller energy than a pure 3He liquid.

Whenever 3He atoms migrate from the concentrated phase into the dilute phase,

heat is taken from the environment as the 3He expands into a volume with lower par-

tial pressure. To take advantage of this cooling effect, 3He is continuously pumped

out of the dilute phase and reinserted into the concentrated phase after precooling

and compression. The 3He is extracted from the dilute phase in a separate chamber

called the still, which is kept at a temperature of 500-700mK (using heaters), where
3He evaporates preferentially due to its higher partial pressure at this temperature

than 4He. The outgoing cold helium is also used to precool the incoming helium by

a set of heat exchangers coupling the two lines. The initial cooling is supplied by a

pulse tube refrigerator, which cools the mixture down to 4K and subsequent conden-

sation is achieved with a flow impedance that compresses and cools the helium further.

The cryostat is also equipped with a vector magnet, which is also cooled with the

pulse tube refrigerator. At the sample, it is possible to apply a magnetic field with a

strength of 6T along one axis and 1T along the other two. Changing the strength of

the magnetic field dissipates heat, so it is done slowly to avoid heating up the sample.
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The temperature of the mixing chamber, still and magnet are all monitored during

the experiment to ensure that they remain within acceptable bounds.

3.3 Measurement instruments

In this experiment, the primary method of investigation is the measurement of differ-

ential conductance. We perform the measurement with a lock-in amplifier 2, which

can measure small signals while minimizing unwanted electrical noise. A lock-in am-

plifier outputs a small AC voltage with a known frequency (typically below 150 Hz),

called the reference frequency f . When this output is connected to a device, it creates

a small AC current with the same frequency. We convert this current into a voltage

using a low noise I/V converter 3 and feed that voltage back into the lock-in ampli-

fier. The lock-in amplifier digitally multiplies this signal with the reference signal and

integrates the result, typically over the range of 30 or 100 milliseconds. This step

suppresses any noise or irrelevant signals that do not have the reference frequency

(such as the 50 Hz peak), because the integral of the product of two sinusoidal func-

tions approaches zero when the difference in frequencies is greater than the inverse

of the integration time. Therefore, the result of this measurement is proportional

to the magnitude of the differential current dI in the device at the reference signal

frequency. Once this current is calculated, it can be divided by the amplitude of the

reference signal dV to yield the differential conductance G = dI/dV of the device.

Choosing a longer integration may reduce noise, at the cost of having a measurement

that takes longer.

The datasets that we are interested in are measurements of differential conductance

as a function of one or more external variables. Among these variables are voltage off-

sets between different parts of the device. To set voltages, we use a digital-to-analog

(DAC) converter 4, which outputs voltages that we set with a computer. The DAC

has 48 independent channels, which is more than enough to simultaneously control all

necessary voltages with a single instrument. For certain measurements, we also use a
2Stanford Research Systems SR830
3Basel Precision Instruments Low Noise/High Stability I to V Converter SP983c [59]
448 channel QDAC developed at Niels Bohr Institute
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Keithley 2400 5 as a voltage source instead, because it also allows the measurement

of the DC current created by that voltage, up to high precision. This functionality is

useful for checking whether any parts of the device are shorted, by looking for excess

current. Since this instrument only has one or two outputs, we preferentially use the

DAC after these excess current detecting tests have been passed.

Often, we measure the differential conductance as a function of voltage bias. To

do this, we use a voltage adder to combine the bias supplied by the DAC with the

reference signal of the lock-in. Most commonly, we apply these voltages to one or

more probes on the device, while keeping the superconducting wire leads grounded.

The electrical scheme of this setup is shown in Figure 3.4
5Keithley Series 2400 Source Measure Unit
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Figure 3.4: Electrical circuit of the measurement setup. This scheme contains two

probes, but the actual setup has up to five (not shown on the scheme for readability).

Voltages are applied on the probes and the superconducting wire is grounded through

cryostat lines which have a finite resistance. Measurements for multiple probes can be

performed simultaneously. Additional lines that set voltages on gates are not shown

here.

To calibrate the measurement circuit, we disconnect the I-V converter from the cryo-

stat and connect it to a voltmeter instead. By dividing the reading of the voltmeter

with the bias applied by the DAC, we obtain the DC voltage division factor origi-

nating from the resistances in the voltage adder and internal division by 100 in the

I-V converter. We repeat the same process for AC voltage by using the input of the

lock-in instead of a voltmeter. These division factors let us calculate what voltages

we need our instruments to output to obtain the desirable voltages on the cryostat
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lines.

The voltage that we apply on the cryostat lines is already a good approximation

for the voltage that is actually applied on the components of the device, but it is

not entirely accurate because whenever current passes through the device, there is an

accompanying voltage drop across the resistance of the wiring leading to and resid-

ing within the cryostat. We can directly measure this difference with a four probe

measurement by connecting additional voltmeters or lock-in amplifiers to the same

parts of the device using lines that do not pass any current. To have access to these

additional lines, extra bonds need to be made to each probe and leads. On a de-

vice that had these extra bonds, we performed this measurement and found that the

discrepancy was no larger than 10% for tunnelling spectroscopy measurements.

3.4 Tunnelling spectroscopy

By measuring the differential conductance G as a function of the bias V applied

between probe and wire, we can map out the density of states at that point in the

wire, given that some important conditions are met. The probe and the wire need to

be separated by a potential barrier, such that tunnelling is the only mechanism that

allows for electrons to pass. The differential conductance is then proportional to the

tunnelling rate, which is in turn dependent on the density of states Dwire and Dprobe

on either side of the barrier

G(V ) = G0

∫ ∞
−∞

df(E − eV )
dV DwireDprobedE (3.1)

Here G0 = 2e2

h

∑
n

tn is the quantum of conductance for n modes, each with a trans-

mission coefficient tn, which we assume to be energy independent. The function f

is the Fermi function, which depends on the temperature. At low temperatures, the

expression approaches

lim
T→0

df(E − eV )
dV = δ(E − eV ) (3.2)

which simplifies Equation 3.1 to

G(V ) = G0Dwire(eV )Dprobe(eV ) (3.3)
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If we know the density of states in the probe, then the density of states in the wire

can be calculated:

Dwire = G(V )
G0Dprobe(eV ) (3.4)

In most designs of this experiment, the probes are superconducting due to the presence

of aluminium above, so they have a BCS density of states (Equation 2.3). However,

when a magnetic field B‖ is applied parallel to the main wire, the density of states

in the probes becomes constant, similar to a normal metal [60], whereas the main

wire remains superconducting. This changes SIS transport into SIN* transport. We

observe this transition (Figure 3.5) at 200 mT for the probes, much sooner than the

critical field of the wire, which is 3.8 T. These values may vary slightly among devices

with different designs, but by no more than 50mT.
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Figure 3.5: Bias spectroscopy as a function of magnetic field parallel to the wire.

Marked with magenta: The superconducting gap of the probe vanishes at 200 mT,

whereas the critical field of the wire is 3.8 T. Marked with red: the width of the gap

seen in spectroscopy is halved as the gap of the probe vanishes. The colourmap has

been saturated for increased visibility
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3.5 Non-local conductance measurements

Tunnelling spectroscopy can also be performed at one probe with respect to the

voltage applied to another probe. This is called non-local spectroscopy and it can be

measured simultaneously with the local signal by using an additional lock-in amplifier

for each probe. To do this, the additional lock-ins need to measure the current at

one probe while slaved to the reference frequency supplied to the other probe. The

four different differential conductances obtained from a non-local measurement are

commonly arranged in matrix form:

Measured at frequency f1 frequency f2

probe 1 G11 = dI1
dV1

G12 = dI1
dV2

probe 2 G21 = dI2
dV1

G22 = dI2
dV2

(3.5)

The non-local measurement in our setup is a three-terminal measurement, with two

terminals being the two probes that the signals are applied to and the third terminal

being the superconducting wire, which is grounded. Such a system has been stud-

ied theoretically [61, 62, 63] and experimentally in selective area growth nanowires

[64, 65] and it has potential use for aiding the interpretation of data obtained with

local bias spectroscopy.

When performing a non-local conductance measurement as a function of bias, we

vary Vbias1 for the left column and Vbias2 for the right column [66]. Although it would

be faster and easier to vary both biases at the same time, it can cause distortions in

the data, which are visible in Figure 3.6. It is evident that the data acquires some

specularity when the bias on the first probe is outside the value of the gap. This

suggests that we ought to vary only one bias at a time, while keeping the other bias

fixed at a value within the gap, such as zero.
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Figure 3.6: A non-local differential conductance measurement with two probes. Cur-

rent is measured at the first probe at the frequency of the voltage excitation applied

to the second probe. This is done as a function of biases on either probe.

Although the superconductor is connected to ground, it is unavoidably grounded

through the cryostat electrical lines that have a finite resistance. Again, the effect of

this can be checked with an additional voltage measurement if the probes are double

bonded, and doing so shows that the correction is below 10 %. As an alternative, we

also explored the possibility of using the known values of the resistances to make the

correction mathematically. Figure 3.7 displays a schematic of a three terminal device,

depicted as a black box, with voltages marked before and after the line resistances. It

is possible to derive the general relations between them from the basic electrical laws

of Kirchoff and Ohm.
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Figure 3.7: A schematic of a three terminal device. The names of resistances, currents

and voltages referred to in the main text are defined by the labels indicated here.

The conversion formula is derived in Appendix A and reads
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where
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(3.7)

We performed a test of the validity of this formula by adding various resistances to the

lines and benchmarking the results against direct voltage measurements. The result

turned out to be unreliable, deviating more from the voltage for higher resistances.

The reason this happened is that in general the signals of non-local conductance that

we measure are quite small and the noise in these components ends up amplifying the

corrections to the point where the theoretically "corrected" plots are less similar to

the voltage corrected data than the raw data.
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CHAPTER 4

Results and discussion

4.1 Preliminary tests

A prerequisite for any measurement results is to ensure that each component of the

device is working as intended. First we check if the connections to the wire and

probes are intact. We do this by using the lock-in amplifier to apply a voltage signal

to one of the wire leads or probes, while observing what happens when the other lines

are connected to ground. When nothing is grounded, then no circuit is formed and

the measured resistive component of the differential conductance is zero. With no

voltages applied to any of the gates, the 2DEG is conducting everywhere within the

device, so when any of the probes or wire leads are connected to ground, we expect

the differential conductance to become relatively large (multiple units of e2/h). If

this change does not occur, then that shows that one of the connected lines does

not actually reach the device and therefore cannot be used. This could happen if a

bond wire came loose or if a mistake was made with the numbering of connected lines.

If we repeat the same test while grounding gates, we expect the differential con-

ductance to remain at zero, as the gates are separated from the rest of the device by
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a layer of dielectric. If some differential conductance does appear, then it indicates a

defect within the dielectric layer, causing a gate to be shorted to one or more com-

ponents of the device. In such a situation, the gate simply cannot be used, because

the typical voltages that we would apply to them are in the order of volts, which

would cause irreversible damage to the entire device. If a cutter gate is unusable,

then the experiment could still be performed just with the caveat that the tunnelling

barrier at the associated probe cannot be regulated, which may not turn out to be

an immediate problem if zero volts happens to provide an optimal tunnelling barrier

by chance. A dysfunctional plunger gate makes an entire segment of a device useless

because we are unable to form a confined wire without the plunger gates.

Even if the dielectric layer managed to insulate the device, the gates might still be

connected to each other due to a misalignment of the chip during fabrication or a mi-

croscopic defect within the material. It is important to check this for the entire range

of voltage that can be applied to each gate because the gates are frequently operated

independently at voltages that differ from each other by many volts, which could

potentially result in current leakage between gates given their close proximity. We

perform this check by slowly sweeping the DC voltage on each gate while monitoring

the current passing through it. If this current begins to exceed 1 nA, then we termi-

nate the sweep to prevent heating and mark up the voltage at which this happened

to avoid exceeding it during the experiment. Even for perfectly isolated gates, there

are limits to voltage after which we observe leakage current to the entire chip. This

typically happens at less than -12 V and at more than 50 mV. These bounds need to

be taken into account when designing the gates. Specifically, the upper bound limits

the function of the cutter and its ability to open up the potential barrier created by

the plungers when operated at very negative voltages.

If two plunger gates happen to be connected to each other, then they can still be

used as one big plunger gate, effectively merging two segments together. If two cutter

gates are connected to each other, then this may complicate measurements that take

place simultaneously on both probes, but does not obstruct using them individually

in separate measurements, because they are all far away from each other in the de-

vice. This also means that this kind of short-circuit is rare, but could still technically
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happen for instance if the bonds on two cutters touched. If a plunger is connected to

a cutter, then the spectroscopy with the corresponding probe becomes very limited

if not impossible. This is because the voltage required on the plunger gates to form

the wire is often more negative than the lower limit of voltage required on the cutter

to maintain a tunnelling barrier with a measurably high conductance. To avoid con-

nections between gates, they need to be designed such that they are at least 50 nm

apart. Alternatively, gates can be moved closer to each other if they are separated by

a layer of dielectric, added with an extra fabrication step.

The next step is to attempt to form the main wire using the plunger gates. To

observe this, we apply a negative voltage on each plunger sequentially and measure

the differential conductance between the two ends of the wire. Since it would make no

difference to a superconducting wire whether or not the surrounding area is depleted,

we perform this measurement under a 400 mT magnetic field perpendicular to the

chip, which is enough to turn the entire device from superconducting to normal. In

that situation, the differential conductance between the two ends decreases sharply

at the voltage value where the wire gets depleted. This transition usually happens

at around -1.5 to -2.5V. After all plungers cross that threshold, the wire is entirely

formed and has a differential conductance of around 10-20 % less than initially. This

also indicates that the aluminium is continuous along the entire wire, because a break

in the aluminium would cause the differential conductance to drop close to zero, be-

cause the 2DEG underneath the break would also be depleted, thereby disconnecting

the two wire ends from each other.

Once the voltages on the plungers have been set, it is often necessary to also set

a nonzero voltage on the cutters to enable spectroscopy. If the plungers do not au-

tomatically pinch the wire junction off from the probe, then the cutter needs to be

set to a negative voltage to create a potential barrier in the area between the probe

and the wire. We discovered that this might not always be possible. Namely, the first

generation of devices that we measured had relatively large junctions, which created

a situation where the cutter was unable to cut off a probe entirely, shown in Figure

4.1. In some cases the cutter can be assisted by setting the plungers to an even more

negative voltage, but this is not ideal because it further narrows the window of wire
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chemical potentials that we can investigate, as that parameter is also regulated by

the plungers.

Figure 4.1: Cutter gate effect on differential conductance in two probes of the same

device. Probe 3 truly reaches zero conductance shown by the deep dips in the log-

arithmic scale, which indicate oscillations around zero. The conductance in probe

1 decreases with gate voltage but saturates at a certain value, indicative of residual

tunnelling which is not controllable with the cutter.

A fix to this issue was to separate cutters and plungers with a layer of dielectric, which

enabled a more compact junction. A comparison can be seen in Figure 4.2, where

the device in the bottom picture has cutter gates placed partially underneath plunger

gates. With this design, it is very easy to pinch off the junction with the cutter

gates, even with no special tuning of the plungers other than having them form the

wire. Moreover, with the cutters underneath the plungers, we are almost always

capable of preventing the plungers accidentally pinching off the junction - a problem

that frequently emerges when the plungers are set to a very negative voltage. This

capability is primarily provided by the screening effect that the cutters have simply by

virtue of being a piece of metal shielding the junction from the effect of the plungers.

We also tested a design variation, where cutters were on top of plungers, which turned

out to be less versatile. Namely, in the regime where plunger voltages were highly
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negative, the cutters were unable to prevent the entire junction from pinching off,

partially because they were screened by the plungers but mostly because it required

a positive voltage, which we found to cause leakage from around 50 mV, as described

earlier.

1500nm

Figure 4.2: False coloured SEM image of a segment in a first generation device (top)

and in a later device, also shown in Figure 2.4 (bottom). The first layer of gates is

coloured in gold, the second layer is coloured in red. Blue represents the approximate

size and location of the main aluminium wire, present underneath the gates and not

actually visible in this image.

A properly functioning cutter enables us to access the tunnelling regime in which

bias spectroscopy measures the density of states in the wire. Ideally, the tunnelling

regime ought to be enabled over a large range voltages so that we are able to make

adjustments to identify and/or avoid accidental quantum dots within the device. In

Figure 4.3 we observe an empty gap from cutter voltages -30 mV to -70 mV, with

above-gap conductance at less than one conductance quantum. At lower than -70

mV, conductance is pinched off entirely and at higher than -30 mV, conductance

increases and the gap becomes increasingly difficult to identify.
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Figure 4.3: Bias spectroscopy as a function of cutter gate voltage. The magnetic field

is 0.5 T parallel to the wire and the plunger gates are set to -5 V.

This range of voltages is typical for the devices with cutters underneath plungers (as

was the case for this measurement). However, this range can vary between cutters

quite a lot, even for probes on the same device that have an identical design, which

means that we need to perform this type of measurement on each probe to map out its

behaviour. The characteristics of a cutter do not change between most measurements

so an initial map is sufficiently accurate for selecting suitable cutter voltages where

tunnelling spectroscopy is possible. Under some circumstances it is possible that the

workable voltage range of a cutter shifts or changes entirely, for instance after large

(multiple volts) changes on plunger gates or after warming and recooling the chip in

the cryostat.

Figure 4.4 shows the same measurement as Figure 4.3, after warming and recool-

ing the chip. The chip was not removed from the vacuum of the cryostat during this.

The conductance is extremely small in comparison, and we are unable to increase it

by setting a more positive voltage on the cutter due to the leakage current that starts

flowing from the cutter to other parts of the device. All other probes (measurements

not shown here) on that device showed similar tendencies, with conductance getting

smaller and the suitable voltage range shifting upward.
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Figure 4.4: Bias spectroscopy as a function of cutter gate voltage. This measurement

is performed on the same probe with identical settings as in Figure 4.3, but after

thermal cycling.

In conclusion, bias spectroscopy in the tunnelling regime can be performed with these

devices, but the range of gate voltages required for it vary among probes and may

change after large shifts in temperature. However, once we have access to it we

can immediately use it to make a few improvements to the accuracy of subsequent

measurements. First, at low magnetic fields, supercurrent is visible at zero bias in

most probes. We can use that as a reference to apply a bias offset to our measurements

if it appears at a bias voltage slightly different than zero. Second, when we are able

to clearly see the quasiparticle gap, we can use it to align the magnetic field with our

devices properly. Although the chip is glued flat to the daughterboard, it might still

reside at an angle of a few degrees. We can find out what direction of magnetic field

is precisely parallel to the wires in the devices by performing a small field rotation - a

perpendicular field of the same magnitude results in a smaller gap, so by finding the

maximum of the gap as a function of field angle, we can experimentally determine

what direction the field is truly parallel to the wires in our devices.
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4.2 Searching for zero bias peaks

This experiment has four primary sets of parameters that we can vary - probe biases,

cutter voltages, plunger voltages and magnetic field. First, it is important to establish

that each probe is only directly affected by the gates that are adjacent to the cor-

responding junction. We can verify this by measuring on all probes simultaneously

while sweeping the voltage on each gate individually and observing no changes on

probes that are not in contact with the sweeped gate. Even so, each probe has 2 or

3 gate voltages that it is dependent on. Consequently, the amount of variables is too

great for a complete or even dense mapping of parameter space given the constraints

on time and resolution provided by the measurement setup. Therefore we are forced

to find an efficient recipe for sampling parameter space in order to find features of

interest.

The search for Majorana zero modes using tunnelling spectroscopy begins with a

search for zero bias peaks. By fixing the bias on the probes to zero, we can specif-

ically look for zero bias peaks within parameter space. Whether or not Majoranas

could even exist in the wire, is determined by the chemical potential and magnetic

field. Even in theory, the precise range of values in which we expect Majorana modes

to be present has a complicated dependence on these two variables [67]. This can

originate from multiband occupancy and disorder [68], which are essentially unknown

variables that are difficult to quantify in real devices. It would make sense to attempt

to map out this dependence, by varying the magnetic field and the plunger voltages.

A set of field-plunger maps can be seen in Figure 4.5, where differential conduc-

tance on three probes was measured simultaneously, while varying the plunger that

was common to all of them. The regions of higher zero bias conductance appear as

almost vertical lines that get dimmer and sparser at more negative gate voltages.

The verticality of the lines shows that although states appear and disappear with

magnetic field, they remain there at the same gate voltage almost independently of

magnetic field. This opens an opportunity for trading resolution in magnetic field in

exchange for resolution in some other parameter without losing a significant amount

of information, especially in the context of a broad search. For instance, we could
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vary two gates instead of one and map out that dependence at perhaps 5-10 magnetic

field values to get a more comprehensive idea of device behaviour concerning zero bias

conductance.
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Figure 4.5: Three zero bias conductance maps dependent on magnetic field and

plunger voltage. All three maps were measured simultaneously on a single segment,

shown in the bottom picture of Figure 4.2

In the most simple picture, we would expect to see a parabolic area of zero bias

conductance get added to the outer plots from the presence of Majorana zero modes

[69]. Even for a more sophisticated theoretical treatment, we would at least expect

to find pockets of conductance [67], again present on the outer plots while absent in

the middle plot. None of these features can be found, but it is apparent from these
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measurements that zero bias conductance in general is not at all rare, regardless of

whether it is measured on probes on the end of a segment or in the middle of a seg-

ment. This means that there are zero bias signals within our system that have most

likely no origin related to topological superconductivity. Additionally, all three probes

show a different set of states even though the probes are identical by design. This

variance is caused either by inhomogeneities in the material created by the fabrication

process or by the complexity of the electrostatic landscape caused by the shape and

amount of gates.

The change in zero bias conductance on the horizontal axis is partially caused by

change in chemical potential within the wire, but not entirely. One reason why the

states get dimmer with more negative voltages is that the plunger gates are also

modifying the potential barrier at the probes, causing a change in the transmission

coefficients present in Equation 3.4. This effect could in principle be counterbalanced

with cutter gates, but the precise action of gate voltages on the barrier and their

interdependence is complicated and unknown a priori. This further motivates us to

measure conductance maps dependent on a plunger and cutter, so that we might

begin to untangle the plunger’s effect on the chemical potential from its effect on the

tunnelling barriers.

An example of a plunger-cutter map at zero bias can be seen in Figure 4.6. The

plot contains an abundance of states appearing as lines at various angles. Such an

appearance of these plots was generic in our devices and it is reminiscent of the results

obtained in Ref [70]. The slope of each line indicates the relative strength of coupling

that state to either gate - a mostly horizontal line, such as the two lines near the bot-

tom of the plot, is most likely a resonance of a quantum dot in the junction, formed by

the cutter gate. Other features at intermediate angles are harder to straightforwardly

interpret and require closer inspection with bias spectroscopy. Although the cutter

gate ideally only controls the tunnelling barrier, we cannot rule out that it has the

ability to also modify the chemical potential in the wire to some extent, especially

given its physical location underneath the plunger. Consequently, the cutter gates

have more control over the conductance than they are designed to have - instead of

just regulating the value of the conductance, they can also cause states to appear and
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disappear at zero bias.
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Figure 4.6: Zero-bias conductance as a function of plunger and cutter gate. This

measurement is performed at a magnetic field of 2.8 T. Two slopes have been marked

to help identify states that couple more to the cutter (red) or to the plunger (magenta).

The field-plunger maps and plunger-cutter maps are our main resource for finding zero

bias peaks and can also be readily used to find states that appear simultaneously on

different probes. Although they are good for finding which settings of the device may

produce interesting physics, they leave out some important information. For instance,

they show only zero bias conductance, which could be a peak (as a function of bias),

but could just as well be a plateau or even dip. Furthermore, having no measurements

at biases other than zero keeps us from tracking how the energy of individual states

evolve as a function of other parameters, which could otherwise provide insight into

the physical mechanisms that may produce these zero bias signals.
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4.3 Testing a Majorana hypothesis on an individual

probe

From the field-plunger and plunger-cutter maps, it is clear that there is an abundance

of zero-bias signals at many different gate and field settings. We can investigate them

in more detail by performing bias spectroscopy to see how they emerge as a function

of one of the parameters. We find a variety of different behaviours, each possibly

corresponding to a different physical origin. We can compare these different results

to theoretical predictions [71, 72, 73, 74, 75] and other experimental works [76, 77].

As the cutter gate only acts locally on one point in the wire, we expect it not to

be able to create or destroy topological superconductivity in the rest of the wire,

meaning that it would only be able to regulate the visibility of a Majorana zero

mode, but not its existence. In contrast, a zero energy state of non-topological origin

could plausibly have its energy level modified by the cutter gate to an extent that may

be resolvable in bias spectroscopy. Figure 4.7 shows two separate measurements of

cutter-bias maps that exemplify these two behaviours. For comparison, a numerical

simulation, taken from Ref [71] is included, predicting no splitting for a topological

zero bias peak and splitting for a trivial one.
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Figure 4.7: Left column: Two separate differential conductance measurements as a

function of bias and cutter voltage. The upper one shows a zero bias peak that fades as

a function of cutter gate voltage and the lower one shows a zero bias peak that splits.

Right column: Plots taken from Ref [71], which simulate the effect of changing the

tunnelling barrier with a gate. The upper plot is the expected signal for a Majorana

mode, whereas the lower plot is the expected behaviour of a trivial Andreev bound

state.

The peak on the upper plot in Figure 4.7 appears to fade rather than split as a func-

tion of cutter. This is certainly not generic, as the visibly splitting zero bias peak on

the lower plot demonstrates. Although this is the expected behaviour of a Majorana

zero mode, it could still be a trivial Andreev bound state [78].

Similarly for plunger gates, there are some states that briefly cross through zero

and others that noticeably stick to zero. For a Majorana zero mode, we would expect

it to stick to zero for the entire range of voltage values in which the chemical potential

of the wire enables topological superconductivity. In all fully functioning devices, we
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observed zero energy states of various kinds, some of which could clearly be identified

as Andreev levels in quantum dots. The precise location of these dots is unclear, but

it is evident that they are often present, unintentionally created by the electrostatic

confinement from the gates. Figure 4.8 shows two separate measurements of plunger-

bias maps, with the middle plot having a zero bias crossing feature that is very similar

to a singlet-doublet-singlet transition of a quantum dot, measured in Ref [76]. These

kinds of states that only briefly cross zero bias at two nearby plunger voltages show up

on the field-plunger scans as twin peaks, which can for example be seen in the middle

plot of Figure 4.5. The lower plot in Figure 4.8 shows noticably different behaviour,

with a state sticking to zero bias instead of just crossing. This behaviour is consistent

with a Majorana zero mode, but could also be generically produced by an inter-band

coupling mechanism theoretically studied in Ref [73].
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Figure 4.8: Top: Data taken from [76], which shows the singlet-doublet-singlet transi-

tion of a quantum dot. Middle: A plunger-bias measurement taken that qualitatively

resembles the upper plot, with two states briefly crossing each other twice at zero

bias. Bottom: A separate plunger-bias measurement, that shows the presence of a

conductance peak that sticks to zero bias for a relatively long range of plunger gate

voltage.
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Figure 4.9 shows the formation of various kinds of zero bias peaks as a function of

magnetic field, also reproducing some of the data previously observed in a shallow

2DEG [77].
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Figure 4.9: Left column: A selection of separate measurements showing different be-

haviours of states converging to and/or crossing zero bias. Right column: A selection

of plots taken from Ref [72], that show qualitatively similar behaviour. All of the

simulations shown here include the presence of a quantum dot in the system and have

topologically trivial zero bias peaks. The horizontal axis of the simulation plots is the

Zeeman splitting energy, which is proportional to magnetic field strength.

For comparison, a selection of theoretical plots from Ref [72], which model the presence

of a quantum dot, show qualitatively similar behaviour. Although the simulations in
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Figure 4.9 all have zero bias peaks of non-topological origin, the expected behaviour

of a Majorana zero mode could be very similar, if not indisistinguishable from the

trivial ones [72].

All the observed zero bias peaks emerged at a parallel magnetic field larger than

∼ 1.2 T. Below that value, the gap was mostly empty, with no signal at zero bias

other than supercurrent, which could be faintly seen at low fields and relatively open

junctions (also visible in the bottom left plot of Figure 4.9).

Among the various field scans we were unable to find a signature that could defini-

tively be interpreted as a Majorana oscillation [56, 57, 79], although it is plausible that

their amplitude could be smaller than our experimental resolution. From a previous

experiment in vapour-liquid-solid grown nanowires [80], the amplitude of Majorana

oscillations was a few microvolts for a wire length of 1.5 µm, which is the length of

our segments in this experiment. The resolution in bias is limited by the magnitude

of the reference signal form the lock-in, which we have set between 4 µV and 15 µV

for most measurements. Decreasing it further would entail a lower signal to noise

ratio, which also requires a longer lock-in integration time to obtain clean data. The

time needed to obtain each plot in Figure 4.9 is already on the order of hours.

There was no clearly discernible set of parameters that would more consistently pro-

duce a sticking rather than a crossing zero bias signal. Interestingly, we were also

unable to recognize any differences between probes situated in the middle of seg-

ments versus probes situated at the ends of segments. This likely means that most

of the zero bias signals that we observe do not originate from Majorana zero modes

because if that were the case, we would expect to see a pronounced absence of these

signals on middle probes. It is difficult to quantify how different the probes actually

are from each other, because even probes and devices with identical designs have a

large variance in behaviour, even when fabricated simultaneously. To make any sta-

tistically meaningful statement, tens of devices with identical designs should need to

be measured and a more rigorous method to classify behaviours ought to be devel-

oped. The measurements shown in this thesis were performed on four generations of

devices, each with a slightly different design.
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The effect of the different variables described in this section (cutter voltage, plunger

voltage and field) can each be used to improve the understanding of the physical

origins of the measured zero bias conductance peaks. Although none of these are con-

clusive by themselves, they can be used in combination with each other, to form a list

of tests for any zero energy state with an unknown origin in these devices. Perhaps

the tool with the most potential in this regard is the existence of middle probes in this

experiment. Finding phenomenology on end probes that is irreproducible on middle

probes would give a clear hint in favour of the involvement of Majorana zero modes,

but so far such a distinct signature has not been found in these devices.

4.4 Simultaneous measurements on multiple probes

One of the most fundamental features of Majorana zero modes is that they are created

in pairs. Since they require such specific circumstances to exist at all, there is not

much opportunity for one to go missing in the sense that if we were able to find one

in a wire, it is reasonable to believe that the other must also be present in the same

wire and in principle not harder to detect than the other. Adhering to this reasoning

gives us two guidelines that help us gather evidence for Majorana zero modes.

First, when analyzing data taken simultaneously from different points in the wire,

we can use correlations to preselect for simultaneously appearing signals. Given the

vast amount of zero bias signals and the relatively long duration of measurements, this

technique can speed up the search for Majorana zero modes by eliminating isolated

signals with no counterpart present or visible.

Second, when encountering data that is either consistent with Majorana zero modes

or has unexplainable behaviour, finding the simultaneous existence of identical be-

haviour would corroborate the Majorana hypothesis to a degree simply not achievable

by single probe measurements. The various ways in which other physical processes

may mimic Majorana signatures makes it difficult to know the precise nature of a

single probe measurement. Conversely, this richness in phenomenology also makes

coincidences of specific behaviours more unlikely to occur on multiple probes at once,
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giving the multiple probe setup a stronger capability to detect false-positives.

Ideally we would not only attempt to correlate zero bias peaks, but also their re-

sponse to gates and magnetic field. Again, the number of parameters makes finding

these correlations difficult. Furthermore, characteristics of individual probes could

plausibly lead to shifts or distortions in identical features. For instance, if the di-

electric grew slightly thicker on one area of the device, then the gates would have

a different lever arm and correspondingly a weaker effect on the density of states in

the wire and junction. Although correlations in gate space have been observed in

shorter devices in other experiments [81], it may be more straightforward to corre-

late field-bias scans since the magnetic field strength is independent of fabrication

variances and bias can be quite reliably calibrated by measuring supercurrent at low

field. Additionally, we have a more clear vision of what to expect on probes that are

located between the one that display a pair of Majorana induced zero bias peaks [55].

Namely, we would expect the quasiparticle gap to momentarily close and reopen at

the same field value for all probes, with zero bias states only emerging at the ends

and not in the middle.

The high degree of tunability in our devices enables us to observe such a situation.

The top row of plots in Figure 4.10 shows data taken from Ref [82] and the middle

and bottom rows show two separate sets measurements in our devices. All three rows

represent three consecutively positioned probes that were measured simultaneously.

Notably, the outer ones have zero bias states emerging whereas the middle one does

not. An important difference between these datasets is that Ref [82] had no gates to

regulate the tunnelling barriers. Instead, the barrier was formed by a thin layer of

aluminium oxide, left untunable after fabrication. One point of view is that the cutter

gates in our experiment allow us to optimize the visibility of whatever is present in the

wire, but the other view is that the cutter gates create certain features in tunnelling

spectroscopy (for instance by forming dots in the junction) which can easily lead to a

case of confirmation bias when trying to find specific shapes or behaviours of states.
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Figure 4.10: Top: Measurements taken from Ref [82] depicting the simultaneous

emergence of zero bias peaks on two probes with no peak appearing in between.

Middle and bottom: Analogous measurements performed on two separate devices.

Another resource that may augment the data gathered in these devices are non-local

conductance measurements. Especially with the superconducting wire grounded, the-

ory provides some methods for extracting various parameters of the system such as

the bulk superconducting gap, the induced gap, the induced coherence length [61]

and quasiparticle charges [83]. In conjunction with local spectroscopy measurements,

these would all be useful in detecting a topological phase transition in a manner more

robust to microscopic inhomogeneities in the devices [63]. In other experiments in-

volving shorter nanowire devices, progress has been demonstrated in this area [64, 65].
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In our devices, we were able to perform non-local conductance measurements and

observe the superconducting gap, shown in Figure 4.11. The magnitude of the sig-

nal was weak compared to the local conductance measurements, making individual

sub-gap states hard to observe in most measurements. The small magnitude of the

non-local conductance may be caused by chemical potential inhomogeneity and ran-

dom impurity disorder [63]. The measurement shown in Figure 4.11 is taken between

two neighbouring probes, with a distance of 750 nm. Whether the small magnitude

is a property of the material system or a consequence of the long length needs further

study to be clarified, for instance by gathering statistics of these measurements on

devices with significantly shorter or longer distances between probes. Again there is

a variance in individual probe behaviour making these aspects difficult to generalize.
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Figure 4.11: Measurement of the non-local conductance matrix between two probes,

as a function of bias and magnetic field. The top-left and bottom-right are local

tunneling spectroscopy measurements.

An interesting feature of Figure 4.11 is the closing of the gap at 1.8 T on the local

measurement on the right probe, which is apparently absent on the other plots. This
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could indicate that this particular feature is localized to the right probe, but it could

also just be unresolvable on the off-diagonal plots. As a future direction, measure-

ments like this could help distinguish between instances of the gap closing within the

bulk of the wire versus the gap closing only at certain points in the wire [84].
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CHAPTER 5

Conclusion and outlook

5.1 Conclusion

In conclusion, this work describes the performance of multiprobe devices formed in a

2DEG using top-down fabrication and electrostatic gating. Frequently occurring prob-

lems such as current leakage between gates and lack of control of the tunnelling barrier

were addressed with an improvement in design. Tunnelling spectroscopy within these

devices was characterized and a methodology for efficiently finding zero bias signals

was developed and implemented. The formation and physical origin of various zero

bias signals were analyzed as a function of gate voltages, magnetic field and bias.

Comparisons to other theoretical and experimental works indicate the presence of

unintentionally formed quantum dots within the devices, but include signatures con-

sistent with Majorana zero modes. No obvious dependence on probe location was

observed, possibly obscured by the inherently large variance of individual probe be-

haviour. Measurements were performed on multiple probes simultaneously to obtain

data with potentially stronger interpretive power compared to single probe measure-

ments. Comparisons with analogous results from nanowires broaden the generality

of these measurements and provide a baseline for assessing the results obtained from
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future multiprobe experiments.

5.2 Outlook

The experiment could be improved upon in multiple ways. First, plunger gate design

could be elaborated by using separate gates for each side of the wire, perhaps asym-

metrically, with the intention of creating a narrower and more uniform topological

wire [85]. Second, cutter gate design could potentially be improved upon with the

aid of numerical electrostatic simulations. Alternatives such as quantum point con-

tacts, possibly formed by appendages of plunger gates could also be tried. Third, a

more rigorous statistical analysis of the data could improve the understanding of the

rich phenomenology observed thus far. Statistical treatment could be enhanced by

exploring segments of different lengths.

The results of this experiment bring us a step closer to being able to control Ma-

jorana zero modes. Currently, the emphasis is on identifying their existence in these

systems, but once that is achieved, attempting to deliberately create, destroy and

move them would be the next step, which can be most readily done with a segmented

wire akin to the one studied in this experiment. Understanding of the interplay be-

tween multiple gates in more complex devices can be improved by examining the data

gathered from the devices investigated in this experiment.
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Appendix A

RG

V2
R2IRVR

V1
R1 IL VL

Kirchoff’s and Ohm’s laws:

VL = V1 − ILR1 − (IL + IR)RG (5.1)

VR = V2 − IRR2 − (IL + IR)RG (5.2)

Derivatives

dVL
dV1

= 1− (R1 +RG)dIL
dV1
−RG

dIR
dV1

(5.3)

dVL
dV2

= −(R1 +RG)dIL
dV2
−RG

dIR
dV2

(5.4)

dVR
dV1

= −(R2 +RG)dIR
dV1
−RG

dIL
dV1

(5.5)

dVR
dV2

= 1− (R2 +RG)dIR
dV2
−RG

dIL
dV2

(5.6)
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Conductances

dIL
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Inserting the derivatives yields
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The first and third equations in matrix form are 1 − (R1 + RG)dIL
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The result is
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