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Abstract

Azurite is a mineral found in nature. It has some fascinating properties such as the

fact that it is a 1D diamond chain with S = 1
2 and antiferromagnetic exchange constants,

which makes azurite a frustrated magnet. The frustration in azurite gives a 1
3 magneti-

zation plateau. This has gained a lot of interest from researchers in condensed matter

physics. Since there is lacking a model that fully describes azurite I will in this thesis

perform numerical many-body calculations with exact diagonalization to look at the

excitation spectrum and the magnetization curve to describe the different models used

in recent research.
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1 Introduction

Blue pigment was used to paint Egyptian hieroglyphs, dye cloths and used in japanese

paintings [18]. The blue pigment was a natural mineral called azurite (Cu3(Co3)2(OH)2).

As said it has been used in paintings since it has a beautiful intense blue color, which is

caused by the crystal field splitting of Cu 3d orbitals in square planar coordination.

In recent years azurite has come into the researchers scope due to a discovery of a

plateau at 1
3 of the magnetization of the material. This has made this material quite in-

teresting and researchers are trying to figure out why this is the case. For this research

many models have been tried, and in the most resent research the distorted diamond

chain has been in use, but there is still discussion going since this model does not de-

scribe the properties of azurite fully.

To understand what models have been used I will in this thesis go through some of

the most recent studies of azurite to try to clarify which model describes which proper-

ties of azurite well. To do so will I look at the most used model, which is the diamond

chain model. In which all of the spins of Cu2+ are S = 1
2 . This model with the different

exchange constants from the different articles, I will use to try recreating the data from

experiments and calculations done on azurite. This will be done by exact diagonaliza-

tion with the program RLexact.

This thesis will concentrate on the 1
3 magnetization plateau and the excitation spectrum

of azurite calculated by RLexact to get a better understanding of which models describe

which property of azurite the most accurately. From this, the conclusion is that RLexact

is able to use the model for the 1D diamond chain to describe the magnetization curve

and excitation spectrum.
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2 Quantum magnetism

Magnetic materials have been a part of the condensed matter physic studies for quite

some time, but it is still a big and active field. This chapter is to give the most essential

knowledge about the topics needed for my thesis, including exchange interaction and

frustration [5][1].

In condensed matter magnets are typically put into two groups, ferromagnets and anti-

ferromagnet. A ferromagnets has all spins pointing the same direction. Antiferromag-

nets (as a classical Ising with spin pointing up and down) the spins will anti-align so

when there is a spin pointing up its neighbors will point down. This is more compli-

cated when seen from a quantum magnetic viewpoint.

2.1 Quantum Magnetism Basics

To take a classical approach I will start from electromagnetism. From here we know

that if there is electricity running through a loop there will be induced a magnetic field.

If this concept was downscaled to the atom level and took a look at the electrons, it is

possible to think the spins to be a small loop with a charge, which induce a magnetic

field. This is called a magnetic moment (dµ). The equivalent interaction between two

spins creates a magnetic dipole moment. The total magnetic moment (µ) for a material

is all the small moments (dµ) summed up.

µ =
∫

dµ (1)

In atoms the magnetic moment is explained by the electrons orbiting around the nu-

cleus in the same direction as the angular momentum (L) of the electron. In this case

the magnetic moment will be written as:

¯ = γL (2)

If we take a quantum mechanical view of the system, we have the orbiting electrons

with the angular momentum L, and the intrinsic spin angular momentum S. These are

coupling together and therefore L and S are not good quantum numbers. To get a good

quantum number we introduce the total angular momentum as

J = L + S (3)
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Since this thesis is going to concentrate around Cu+2, which is a 3d9 ion and therefore

the orbital moment will be quenched due to the crystal field, meaning L = 0.

For magnetic materials is more interesting to know how many magnetic moments there

are per unit volume to be able to compare magnetic materials, since there are to many

atoms in a material and therefor to many to count and this will grow as the material.

Magnetic moments per unit volume is the definition of the magnetization (M) that can

be considered to be a smooth vector field, continuous everywhere on the magnetic ma-

terial except the edges.

2.2 Exchange Interaction

To be able to talk about the exchange interaction we need to start with the magnetic

interaction, which can be thought of as two magnetic dipoles in vacuum. These two

dipoles µ1, µ2 has a distance between them of r, the interaction between these two

dipoles has the energy of:

E =
µ0

4πr3

[
µ1 · µ2 −

3
r2 (µ1 · r)(µ2 · r)

]
(4)

as seen the energy is dependent on the separation and the alignment of dipoles. The

main free parameter is the distance between the dipoles, which makes the energy de-

crease rapidly the further the dipoles are from each other. If we take two electrons and

say the distance between them is 1 Å the energy of the exchange will be as small as

10−23 J = 1K, which is a really weak interaction, since most of the magnetic ordering

happens at higher temperatures, and therefore will in most cases not be used.

As said before one of the strongest interactions to gain magnetic order, one of the

strongest interactions is the exchange interaction and it is therefore the primary mecha-

nism. Since electrons are in the main seat of the exchange interaction, and are fermions,

that means they must obey the Pauli exclusion principle. With the Pauli exclusion prin-

ciple comes exchange symmetry, which includes the overall asymmetric wave function.

To take a step back and think of the example with the two electrons again, how does the

exchange interaction work in this case? To take a more quantum mechanical approach,

will we decompose the state of the system into a spin part and a spatial part. The sys-

tem can then take one of two states. Either it can go into the singlet state χS which has
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a total spin of S = 0 (an asymmetric spin state) and includes a symmetric spatial wave

function. The other option is the triplet state which has total spin of S = 1 (a symmet-

ric spin state) and includes an asymmetric spatial wave function. These spatial wave

functions are defined as:

|ΨS⟩ =
1√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS =

1√
2
(|r1r2⟩+ |r2r1⟩ (5)

|ΨT⟩ =
1√
2
[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT =

1√
2
(|r1r2⟩ − |r2r1⟩ (6)

To gain the energies of the states, we need the wave functions to be normalized then

the energies can be calculated by:

ES = ⟨ΨS|H|ΨS⟩ = ⟨r1r2| H |r1r2⟩+ ⟨r2r1| H |r1r2⟩ (7)

ET = ⟨ΨT|HΨT⟩ = ⟨r1r2| H |r1r2⟩ − ⟨r2r1| H |r1r2⟩ (8)

The Coulomb interaction is described in the Hamiltonian H and ensures Es ̸= ET. We

can now reunite equation(7) and 8. S1 · S2 interaction for the two different states gives,

for the singlet − 3
4 and for the triplet 1

4 [1]. By this we gain a new Hamiltonian that can

be written as:

H =
1
4
(Es + 3ET)− (ES − ET)S1 · S2 (9)

From this we can determine that, without the unimportant constants, there are terms

that contribute to the energy which can be formulated as:

J =
ES − ET

2
(10)

This constant is called the exchange constant and with this we can rewrite the spin

depend part of the Hamiltonian into:

Hspin = −2JS1 · S2 (11)

Doing this for multiple spins gets tedious and therefore a general definition of the

Hamiltonian forms:

H = −2 ∑
<ij>

JijSi · Sj (12)

The sums goes over all the spin pairs and the exchange constant between the two spins.

This Hamiltonian is known as the isotropic Heisenberg model and is used for most
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studies of the magnetic properties.

Since we took the quantum mechanical approach the spin operator S must be a quan-

tum mechanical operator which can be written as: S = (Sx, Sy, Sz). As said before the

electrons are fermions and therefore obey the Pauli exclusion principle. The spin op-

erator can be written with Pauli matrices, σx, σy, σz so that Sx = 1
2 σx. With this we are

able to rewrite the Sx and Sy operator, and introduce the raising and lowering operators

S+,S−.

Sx =
1
2
(S+ + S−), (13)

Sy =
1
2
(S+ − S−) (14)

The commutator relations of these are:

[Sz
i , S±

j ] = ±S±
i δi,j, (15)

[S+
i , S−

j ] = 2Sz
i δi,j (16)

2.2.1 Zeeman interaction

Since electrons have magnetic moments, its possible to think they would interact with

other magnetic fields. This is the case when we apply an external magnetic field and

the interaction is called the Zeeman interaction. The Zeeman interaction is included in

the Heisenberg Hamiltonian as:

HZ = −gµB ∑
i

B · Si = −∑
i

h · Si (17)

g is the oddly named g-factor and h is the reduced magnetic field and is defined by

h = gµBB. This external field makes the spins align with the field (parallel) to minimize

the energy. Since the magnetic moments of the electrons are close to each other they

do also interact with each other. This effect is much weaker than the interaction with

the applied field and therefore can be forgotten and the electrons can be thought of as

individual. This type of magnet is called a paramagnet and the system is disordered

with no magnetization without an applied magnetic field.
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2.3 Frustration

Frustrated magnetism is a fairly new and active field with discussion on the defini-

tions of many concepts such as geometrical frustration, quantum spin liquids and spin

glasses which all will be introduced here. Since the geometrical frustration is the most

visual topic I will start with this.[6]

Geometrically frustrated systems have lattices that cannot be ordered due to their ge-

ometry. This can be shown by the example of the antiferromagnetic Ising model on the

triangular lattice:

H = J ∑
<ij>

Sz
i SZ

j (18)

J is the exchange coupling of the spins in position i and j. Since we have antiferromag-

netic exchange interactions they will minimise the energy by J < 0. This is achieved

by the spins facing in the opposite direction of their neighbors ( if one is pointing ↑ its

neighbours will point ↓). This cannot be done in all spin lattices as for example in the

triangular lattice or the diamond chain (as azurite) seen in figure 1 (c) and (b). These

are called frustrated spin systems. It is not possible for these systems to find a unique

ordering pattern, which causes a large ground state degeneracy.

Frustration is a research topic where the main focus is magnetic materials where the

spin system has many possible symmetries. This includes the 1D regime, 2D regime

and 3D regime. The 2D regime includes systems like the triangular lattice and the

kagome lattice. For the 1D regime the diamond chain is a possible example and can be

seen in figure 1. The pyrochlore lattice is an example of a 3D geometrically frustrated

system.
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(a) (b)

(c)

Figure 1: (a) is the kagome lattice, (b) is the diamond chain and (c) is the triangular
lattice

The Ising model in the triangular lattice looks like it must be fully frustrated, which

changes if one of the spins changes into a Heisenberg antiferromagnetic interaction in-

stead. H = J ∑<ij> Si · Sj, where Si = (Sx
i , Sy

i , Sz
i ) is an isotropic spin operator. This case

is different from the Ising since the Heisenberg triangular lattice does order at 0 K in

the 120◦ three-sublattice structure [6]. The ground state is when all the spins have 120◦

angle to its neighbour, and this will create the three sublattices. The thing is that this

ordering also occurs in the quantum S = 1/2 system and classical spins. These systems

will still be frustrated but changes the discrete spins to isotropic spins.

Geometrically frustrated magnets are most easily found by the dependence on tem-

perature T of their magnetic susceptibility χ. It is convenient to consider plots of χ−1

vs T, which at high temperature have the linear form:

χ−1 ∝ T − ΘCW , (19)
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Where the sign and strength of the interaction depends on the Curie-Weiss constant

ΘCW . For the antiferromagnet the Curie-Weiss constant is negative. Frustration and

magnetic order are seen as a sharp kink in χ, which happens below the Néel temper-

ature, TN ≈ |ΘCW |. Geometrically frustrated systems do not have this sharp change

below the Néel temperature due to the interaction strength. Geometrically frustrated

systems have an extended paramagnetic phase which goes to temperatures T ≪ ΘCW .

Most research on geometrically frustrated systems has a focus on quantum spin liquids

(QSL). [6] QSL systems are so frustrated that they never order, which is why they are

interesting. In condensed matter physics the QSL is something to be sought after since

the QSL states are highly correlated and should not have magnetic long range order

or no spontaneous symmetry breaking at any temperature due to the strong quantum

fluctuations. QSL are a type of frustrated system in which the frustration comes from

exotic forms of complex order breaking SU(2) symmetry but still support Goldstone

modes, and therefore can be understood by semiclassical (spin wave like) approxima-

tions. There are two different types of QSL, the first is Valence Bond Crystals (VBC)

systems and the other is Radionance Valence Bond (RVB) systems.

We need to take a step back and start introducing valence bonds. A valence bonds is a

bond where in a singlet state that connects two S = 1
2 spins at the positions of a and b in

a lattice, and hereafter will be called |ab⟩. The valence bond in this state is where the en-

ergy is minimized of the antiferromagnetic Heisenberg coupling between the two spins,

⟨ab|Sa · Sb |ab⟩ = − 3
4 . The valence bond configuration is a tensor product of all the dif-

ferent valence bonds from all the sites in the lattice, which means in a case of a N-site

lattice the valence bond configuration will have the total spin S2
tot = Stot(Stot + 1) = 0.

To continue lets take the simple case of the nearest-neighbor Heisenberg Hamiltonian

on a lattice with coordination number z and the variation of energy per spin of the

purely classical Néel state (ecl) compared to the valence bond (evb) configuration. For

the bipartite lattice, the energies are ecl = − z
2

1
4 and evb = − 3

8 , and for a 2D tripartite

lattice the energies are ecl = − z
2

1
8 and − 3

8 .

For the classical picture the best lattices will be in the square lattice, exact diagonal-

ization (will be explained in section 4.1) with finite-size scaling, will have Néel order at

T = 0 and in dimensions D > 1. The classical result is renormalized by spin-waves.

Valence bond configurations are in favor in cases of Heisenberg models on lattices such

8



Figure 2: (a) weakly coupled dimers in a Heisenberg model. (b) The limit of J’ = 0 the
trivial ground state is a product of spin singlet states. (c) For small J’ but non zero, other
valence bond configurations appear.

as 2D kagomé and 3D pyrochlore. These systems do not develop long ranged Néel

order at T = 0. Only in rare cases is a VB configuration an exact eigenstate of the

Hamiltonian [8]. In these cases the effect of the fluctuations of these valence bond con-

figurations are essential to find the true ground states.

VBC can also be divided into two groups. In the first group, the optimal valence bond

pattern for energy is unique, which respect to all the lattice symmetries and each cluster

fits into the unit cell of the lattice. In the second group, each single cluster involves spins

from a number (minimum two) of unit cells, multiple valence bond patterns, which are

related by symmetry, are degenerate. In case of the second group, VBC formation spon-

taneously breaks some discrete lattice symmetries. A system of weakly coupled dimers,

as in Fig 2 (a), is an example of group 1 while the frustrated Heisenberg model of (b) is

an example of group 2. The two groups are pretty similar.

It is important to remember that VBCs do not break any continuous symmetries and

do not have gapless Goldstone modes. This implies that materials of this type do not

melt like conventional solids, since they has a protection of the gap in the excitation

spectrum. Strong thermal fluctuations are expected to restore the broken symmetry in

group 1. This gives rise to one or more finite temperature phase transitions.

As said above the central idea of VBC is that a small number of spatially ordered VB

configurations are favored at T = 0. In some geometries, however this is far from ev-

ident, and the nearest-neighbor Heisenberg model on the kagomé lattice provides one

of the most straightforward examples which nevertheless contains some of the most

complex physics.

In the case where there is no preferred ordering pattern, the ground state will be weighted

of the same order of magnitude over many different valence bond configurations. From
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this picture of an RVB liquid, one may anticipate the following properties:

• such a system has no LRO in any spin, dimer or higher order correlation func-

tions. It is a true liquid.

• The absolute ground state wave function is the most stable superposition of VB

configurations.

• RVB liquid ground state wave function contains long exchange cycles between

different VB configurations.

To get more information on these topics look in [8] chapter 1 and 2.
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3 Neutron scattering

A experimental technique that is used to study the structure and dynamics in soft,

hard and biological matter and materials. This technique is one of the most versatile

experimental methods and is reminiscent of X-ray. It takes a longer time to execute

but it gives more information about the properties on the material. One of these is the

magnetic properties. [15][5]

3.1 Neutron scattering basics

Neutron scattering uses a reactor or a source that creates neutrons, which is getting

transported by neutron guide to hit the sample. Either it will get reflected or penetrate

the sample after which the neutrons will be absorbed by the detectors.

The mass of the neutron is

mn = 1.67493 · 10−27kg. (20)

So the neutron is a little heavier than the proton which it is sharing the nucleus of the

atoms with. Neutrons are not usually found free in nature, which means they decays.

The lifetime of a neutron is τ = 886s hereafter it will decay into a proton, electron and

an anti-neutrino. Luckily the lifetime of neutrons is a lot longer than the time it uses in

a neutron experiment.

As said before, with neutron scattering it is possible to investigate the magnetic prop-

erties of the material. This is because the neutron has a magnetic moment but is electri-

cally neutral.

µ = γµN (21)

where γ = −1.91304 is the neutron magnetogyric ratio and the nuclear magneton is

given by µN = e·h̄
2·mP

= 5.05078 · 10−27 J
T . The neutrons spin is s = 1

2 and is coupled anti

parallel to the magnetic moment. I will primarily go through magnetic scattering.

The neutrons are created in either a fission reactor from for example uranium or from

a spallation source, which is where neutrons are produced from a heavy element that

is bombarded with high-energy particles, typically accelerated protons. From here it

travels through a guide concentrated as a beam. The neutron beam has a flux of:

ψ =
number of neutrons impinging on a surface per second

surface area perpendicular to the neutron beam direction
(22)
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and is usually given in units of n
cm2·s . The flux needs to be taken into consideration since

the difference of the setups of different neutron facilities goes from 104 to 1010 n
cm2·s

The next part of the experiment is the scattering from the sample. The scattering cross

section is the ability of the system to scatter neutrons. The total scattering cross section

is given by:

σ =
1
ψ
· number of scattered neutrons per sec (23)

Where the unit is given in area. The scattering cross section section used depends on the

sample volume, V. The most important thing is the angular dependency of the scattered

neutrons. A simple way to imagine this is to follow the neutron beam. The incoming

neutron, which will be called ki for initial neutron wave vector, hits the sample and

scatters. After the beam has been scattered we call it k f for final vector. The difference

between ki and k f is the scattering vector q.

q = ki − k f (24)

Another important concept is the energy transfer of the scattering process. If the en-

ergy of the incoming neutrons is not the same as the neutrons that hit the detectors it is

called inelastic scattering. When doing inelastic scattering, it is often preferred to scan

over the incoming or outgoing energies to map out parts of (q, ω). The energy trans-

fer is called h̄ω and the neutron initial energy Ei and final energy E f which is defined as:

h̄ω = Ei − E f =
h̄2

2mn
(|ki|2 − |k f |2) (25)

Since all the neutrons in the beam do not have the exact same angle when they hit the

sample, they will scatter in a solid angle dΩ with the final wave vectors k f . This is

shown in figure 3. This means that when the detector absorbs the neutrons they will be

measured in the partial differential scattering cross section.

d2σ

dΩdE f
=

1
Ψ

·
No. of neutrons scattered per sec into dΩ with energies [E f ; E f + dE f ]

dΩdE f
(26)

Sometimes one would be interested in counting the neutrons and ignore the energy of

the neutrons, this can be acquired by the differential scattering cross section:

dσ

dΩ
=

∫ d2σ

dΩdE f
dE f (27)
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(a) (b)

Figure 3: (a) Illustration of scattering vector q as defined via the incomming- and outgo-
ing wave vector ki and k f . (b) An illustration of the scattering geometry. The incoming
neutrons, labeled ki, scatter at the center of the sphere with the scattering angle 2Θ and
azumital angle◦. The neutrons scattered into the solid angle element dΩ (or detector
area dA) are labeled with k f .[15]

If one simply counts the total number of neutrons scattered, this will again be quantified

by the total scattering cross section.

The neutrons interact with the material system but only weakly and can be thought of

as a weak perturbation. This gives a small change that causes the quantum state to turn

into another quantum state but the states are still intact. This means that Fermi’s golden

rule is a good approximation for this case. This is done by considering the neutron as

a plane wave that interacts with the state of the system. It is also assumed that the

wave goes unchanged through the system. The wave interacts with the potential and

is scatted.

Fermi’s golden rule will then give us:

∑
kf

in dΩ

Wki , λi → kf, ˘f =
2π

h̄
| ⟨ki, λi|V

∣∣k f , λ f
〉
|2ρk f (28)

where ki, k f is the incoming and outgoing wavevector, λi, λ f is the initial and final

state of the sample, Wki ,λi→k f ,λ f is the transition rate, and ρk f is the density of final

momentum states in dΩ, found by box normalising the system. In [14] the result for the
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differential cross section is found to be:(
dσ

dΩ dE

)
λi→λ f

=
|k f |
|ki|

( mn

2πh̄

)2
|
〈
ki, λi|V

∣∣k f , λ f
〉
|2δ(h̄ω + Ei − E f ) (29)

In actual experiments we collect all the finals states λ f , sum over them, and hold the

initial state fixed λi instead of measuring the scattering from the initial to the final. The

fixed initial state is obtained by an average over all initial states [14]. This average is

performed by multiplying the probability of the system that we scatter off, is in each of

the initial state, ρλi , and then sum all the initial states. ρλi is given by the Boltzmann

distribution for each initial state at temperature T:

ρλi =
1
Z

exp
{
− Eλi

kBT

}
, (30)

Z = ∑
λi

exp
{
− Eλi

kBT

}
, (31)

Where Z is the partition function. The total partial differential scattering cross section

in its final form is given by:(
d2σ

dΩdE

)
λi→λ f

=
|k f |
|ki|

( mn

2πh̄

)2
∑
λi

ρλi |
〈
ki, λi|V

∣∣k f , λ f
〉
|2δ(h̄ω + Ei − E f ) (32)

3.2 Magnetic scattering

To the magnetic dipole moment in neutrons makes them able to interact with the vari-

ations of the magnetic fields inside the material. The electronic magnetic moment is

often the source that generates the external magnetic field that the neutrons are inter-

action with. This can be described by the Zeeman term for a neutron interacting with

this field. The derivation can be found in [14] and the result for spin only unpolarised

magnetic scattering is:

d2σ

dΩdE
= (γr0)

2 |k f |
|ki|

(
g
2

F(q))2e2W ∑
α,β

∈x,y,z

(δα,β − qαqβ)Sα,β(q, ω) (33)

Where r0 = e2

mec2 is the classic electron radius, g is the Landé g-factor, F(q) is the mag-

netic form factor, and e−2W is the Debye-Waller factor which contains the local thermal

vibrations in the lattice. The term Σα,β(δα,β − qαqβ) is to make sure that only spin com-
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ponents that are perpendicular to the scattering vector is contributing to the partial

differential cross section. The last term in the equation is the dynamical correlation

function. Many of the components are either constants or depends on the experimental

setup.

Theoreticians will often be looking at the dynamical correlation function, and not the

rest of the cross sections, since it captures relevant dynamics of the sample that do not

depend on the experimental setup. It will be to much work to be calculate the full

cross-section with all the external factors by hand. The dynamical correlation function

is defined as:

Sα,β(q, ω) = 2π ∑
λi ,λ f

rλi

〈
λi
∣∣Sα

−q
∣∣λ f

〉 〈
λ f

∣∣Sqβ

∣∣λi
〉

δ(h̄ω + Ei − E f ) (34)

Again pλi is the Boltzmann factor and the sum goes over all the states, while the oper-

ator Sα
−q is the spin operator after the Fourier transformation. It is defined as:

Sα
q =

1√
N

∑
j

Sα
j eiq·rj (35)

The dynamic two-spin correlation function in (q, ω)-space, Sα,β(q, ω), has several names

for example the dynamic structure factor or the spectral function. While we use Lehmann’s

representation of the dynamical correlation function in equation (34), it is also possible

to convert the dynamical structure factor to be dependent on the time-dependent spin

operators by:

Sα,β(q, ω) =
∫ ∞

−∞
dte−iωt ∑

l
eiq·rl

〈
Sα

0(0)S
β
l (t)

〉
(36)

where the brakets indicate an average over all configurations. Sα,β(q, ω) quantifies, in

a loose sense, in which direction the excitation connecting the states λi and λ f points

in spin-space. Thus, for instance, for α = β = z the matrix product | ⟨λi| Sz
q |λi⟩ |2 will

quantify how much weight along the z direction the scattering event from λi to λ f will

contribute. This can also be seen from the expression in equation (36), where the de-

pendence is contained in the term < S0 ∗ α(0)Sβ
l > representing e.g. the components of

a spin wave excitation.

In unpolarised neutron scattering, where the neutrons have randomly oriented spins,

one will measure all Sα,β(q, ω) at the same time, and thus separation into individual α, β

channels is not possible with this technique. Exploiting the fact that magnetic scattering
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occurs only for spin components perpendicular to the scattering vector, one can obtain

information on the spin directions in the sample using spin-polarised neutron scatter-

ing. By measuring the scattering intensities for different combinations of incoming and

outgoing neutron spins, it is possible to extract information on the spin configuration in

the sample. Additionally one can separate the different Sα,β(q, ω) or some parametriza-

tion hereof into different channels, and thus analyse them separately.

For a theoretical T = 0 experiment the system will always be in the ground state before

any excitation, and the dynamical correlation function can be simplified to read:

Sα,β(q, ω) = ∑
e

Mα,β
e,q δ(h̄ω + Egs − Ee), Mα,β

e,q = 2π ⟨gs| Sα
−q |e⟩ ⟨e| Sβ

q |gs⟩ (37)

Here |e⟩ is an excited state, |gs⟩ is the ground state and Mα,β
e,q is the matrix element

that quantifies the probability for the ground state to scatter to a given excited state.

Sα,β(q, ω) is loosly a direction where the excitation that connects the initial and the final

states is ”pointing”. For example the matrix product
∣∣∣ 〈λ f

∣∣S−
q
∣∣λi

〉∣∣∣2 for α = β = z will

show how much weight the z direction of the the scatting event is contributing. The

dependence is in the term of
〈

Sα
0(0)S

β
l (t)

〉
, which is the components of a spin wave

excitation. For the case where α = β which is often the case with the most interest, this

can be rewritten as:

2π ∑
λi

λ f ρlambdai | ⟨λi| Sαq
∣∣λ f

〉
|2δ (38)

The method and program are described in Exact diagonalization below.
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4 Exact diagonalization

RLexact is a program used to perform exact diagonalisation on finite size s = 1
2 system

to get eigenengeries and dynamical correlations functions.[5][13]

4.1 Exact Diagonalisation

Finding eigenvalues and -states of spin systems larger that 4 spins, s = 1
2 , is demand-

ing a lot of time to calculate by hand and this is why many of the calculating tasks in

condensed matter have moved to be calculated by computers. There are many different

computational methods that shine and disappoint in different areas in this field. The

two most used are the Quantum Monte Carlo, which in short terms shines in the ther-

mal part of this field[24]. The other one is exact diagonalization, which will be gone

through here.

Exact diagonalization focuses on zero temperature, T = 0 and on finding eigenstates

and -values. As the name implies the method diagonalize matrices and for larger sys-

tems, pretty large matrices needs to be computed. If we take an example where a lattice

system has the degrees of freedom per site is K = 2S + 1 where K = 2 and S = 1
2 . The

dimensions in the Hilbert space will be given by the number of basis states Nst = KN ,

and N is the number of spins. This means that both K and N are required to be small

to modest, since this is the limitation of computational calculations. Even though it is

still able to get eigenenergies and -states out of larger systems than is possible to do

by hand. Exact Diagonalization uses two steps, which starts with setting up the sys-

tem with its Hamiltonian and then diagonalizing the large matrices created from that.

Computational calculations drawback is how much time and hardware it needs to run.

This is what makes it a desirable way of getting larger matrices calculated. The diago-

nalization in RLexact is actually done by the Lanczos algorithm which can be found in

section 4.6.

The Lanczos algorithm has been chosen is mainly because it fast and does not require

too much memory to deal with large matrices. The requirement to use the standard

diagonalization techniques is the CPU run-time, which scales with the number of op-

erations, Op ∼ O(N3
st), while the memory requirement is to store the matrices created

from the Hamiltonian, it goes as Mem ∼ O(N2
st). To set some numbers at the Lanczos
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iterative method it goes down roughly to Op ∼ O(Nst), Mem ∼ O(Nst) for sparse ma-

trices.

Since computers are binary (as before the quantum computer) the algorithm works

especially well for spin- 1
2 systems. Why you might ask, this is because spin- 1

2 systems

only have two different states the spins can be in. These states are spin up ↑ and spin

down ↓ and these states can be converted into bit values of 0 or 1 as integers. The lan-

guage, ANSI C, that RLexact is written in has a limit of how long unsigned integers

can be of a max of 64 bits. But it is possible to save entire spin configurations in an

integer and because of this save huge amount of memory and time since bit-operations

are really fast.

4.2 Symmetries

Another thing that can be done to help the computational limitation is to limit the is

when creating large systems with many spins, is to limit the number of basis states

that needs to be calculated so the Nst decreases. This is done by using symmetries in

the system, this makes it possible to break the Hamiltonian into smaller blocks and

therefore create smaller matrices that can be diagonalized separately. Symmetries that

I will use in this thesis is the translational symmetry and the mirror symmetry.

This thesis is working with the Heisenberg Hamiltonian which is defined as:

H = ∑
i,j

JijSiSj (39)

4.2.1 Translation

The translational symmetry works but only on systems with periodic boundary con-

ditions. Periodic boundary conditions are often used to approximate large or infinite

systems by only looking at a small portion of the system. This is done in figure 4 a

to b. For a more mathematical approach and as seen from figure 4 c to d the periodic

boundary condition works as the next in the chain after the ”last” will be the first in the

chain, Sn+1 = S0.

The standard notation of describing the basis state is |S0, S1, ...........Sn−1⟩, where each

spin in written in the Sz-basis. The translational symmetry then works as to move all
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the spin one time to the right in a cycle such as:

T |S0, S1, ...........Sn−1⟩ = |Sn−1, S0, S1, ...........Sn−2⟩ (40)

If the translation operator is used n times S0 will have moved through all the possible

positions and have come back to the original position. Since the energy calculated from

the Heisenberg Hamiltonian in equation (39) does not change due to the translation

operation they commute, [H, T] = 0.

All these states that can be found by the translation operator will be alike and there-

fore they can be included in a combined state. See section 4.3. For a single spin chain

system, this means that the translation operator works on the system to move one unit

cell at a time, which is one spin at a time. For other systems with larger unit cells, as

azurite, the translation operator moves one unit cell that contains multiple spins, three

in the azurite system.

(a) (b)

(c) (d)

Figure 4: Diamond chain of spins. a) Starting position. b) First use of the translational
operation. c) Second translation operation. d) Third translation operation and are now
back where we started.
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(a) (b)

Figure 5: (color plot) Nine spins in diamond chain model with symmetries where the
orange line represent the mirror line. From (a) to (b) has the mirror symmetry been in
use.

4.2.2 Mirror

Azurite is considered a 1D diamond chain, which is constructed of triangles. As it is

shown in figure 5 this means that we can use another symmetry that is called mirror

symmetry. Spins in the mirror plane does not get affected by the symmetry operator M

and stays the way they are. When the mirror operator works on the system, spins on

each sides of the plane swap places. As for the translation operator can this be shown

by the following formula.

M |S0, S1, S2, S3, S4, S5⟩ = |S0, S2, S1, S3, S5, S4⟩ (41)

States in the azurite system will be able to use the mirror operator two times before the

state will become the same again (M2 = I). Since the Heisenberg Hamiltonian will look

at two spins at a time and all the spins in azurite are connected with their neighbors the

swap does not affect the energy, therefore the swap happens with eigenvalues 1(sym-

metric) or -1 (antisymmetric). The mirror operator and the Heisenberg Hamiltonian

commute [H, M] = 0. These states can also be combined into a single states .

4.3 Uniques

Uniques states will be referred as uniques from now. Uniques are states that with use

of the symmetries can create a single state that represent many different states. To save

as much memory as possible, RLexact is using these uniques represented in the z-basis

as bit values translated to a single integer. This way to store spin systems allocates 64

bits to each unique. An example of this forN = 1, 1 represent the spin up |↑⟩ and 0

represent spin down |↓⟩. For N = 3 spins:

|↑↓↑⟩ = |010⟩ = |2⟩ (42)
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The last integer is then saved as a unique. These uniques can be created by taking the

”first” state |000⟩ and then use symmetry operations on this state to create the other

uniques.

4.4 Momentum states

There are two different ways to look at the system, one is in the position space where the

spins are placed in, or in the momentum space where the spins has each a momentum

vector. These two spaces are easily to come from one to the other, from position space

to momentum space is with the Fourier transformation and the opposite way by the

inverse Fourier transformation.

RLexact is working with momentum states |Ψk⟩. When symmetries are applied on

momentum states it will by definition be an eigenstate to the symmetry operator:

T |Ψk,M⟩ = e−ik |Ψk,M⟩ , (43)

M |Ψk,M⟩ = e−iM |Ψk,M⟩ (44)

Where T is the translational symmetry and M is the mirror symmetry. Since translation

symmetry is periodic it requires that Tri = 1, where ri is the number of translations a

unique has in the period, with the allowed momenta used for the eigenvalue equation

k = 2πq
N , with q = 0, 1, ............., N − 1. The states with different q’s will then be able to

form their own blocks in the Hamiltonian, seen in figure 6 to be diagonalized separately.

The uniques with all the symmetries used for a single state in the Ising basis will be

given as:

∣∣uq,i
〉
=

1√
Ni

Ni−1

∑
r=0

1

∑
b=0

exp
{

2iπqr
N

}
(−1)bTr Mb |ui⟩ (45)

Ni =
N2

Ri
(46)

Where Ni is a normalized constant by N the system size and Ri the periodicity of the

given unique.

This normalization constant is to catch the multiple times the same unique will be

counted in the sum.
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Figure 6: Example of a block Hamiltonian from code validation in chapter 6

4.5 Hamiltionian in momentum basis

Since we have converted the eigenstates into momentum basis, we must construct the

Hamiltonian in the same basis of momentum states. The Hamiltonian will then work

on the uniques that are also written in a basis of the momentum states
∣∣uq,i

〉
and since

the symmetries commute with the Hamiltonian which gives:

H
∣∣uq,i

〉
=

1√
Ni

Ni−1

∑
r=0

1

∑
b=0

e
2iπqr

N H− 1bTr Mb |ui⟩ (47)

=
1√
Ni

Ni−1

∑
r=0

1

∑
b=0

e
2iπqr

N (−1)bTr MbH |ui⟩ (48)

(49)

Since each unique consists of states where each has a coefficient cL the Hamiltonian we

have:

H
∣∣uq,i

〉
=

1√
Ni

Ni−1

∑
r=0

1

∑
b=0

∑
l

e
2iπqr

N (−1)bTr Mbcl
∣∣uq,i,l

〉
(50)

4.6 Lanczos algorithm

The Lanczos algorithm is used to make the load of computations lighter when diago-

nalizing the Hamiltonian that has been set up by the user. This is done by a so called

iterative power method and is known for converging fast for extreme eigenvalues[5].

Finding eigenvalues of large matrices is how, many of the iterative method are de-

signed, this is also the case for the Lanczos algorithm, which is based on the Krylov

space, which is a subspace of the Hilbert space. I will not go into describing the Krylov

space, a description can be found in [5]. The description of the Lanczos algorithm is
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based on [5][24].

When the Lanczos algorithm starts, it will make an orthogonal basis by linear com-

binations of Krylov space vectors. This is done to make sure that the Hamiltonian for

the system is tridiagonal in this basis. The lowest and highest eigenenegies is where

the algorithm starts, and wher it is most accurate[5], the further in it goes the less ac-

curate it gets. This is done by transforming the hermitian Hamiltonian matrix of size

LxL, into a smaller tridiagonal matrix of size MxM . This tridiagonal matrix can then

be diagonalized to gain the eigenvalues and eigenstates by the same standard routines

as before. It is much faster to diagonalize a tridiagonal matrix than the ”normal” and

larger matrices. Not only is speed gained by transforming the matrices into the smaller

tridiagonal but also bits of ram to ”hold” the matrices of the projected Hamiltonian in

the smaller subspace MxM. The size of M can be in the order of tens to hundreds before

the convergence has been reached. The smaller the system the smaller the matrix and

the closer to the exact solution the Lanczos algorithm will be[24]. The Lanczos imple-

mented in RLexact is using normalized vectors and will be described here, and shown

in figure 7.

|Φ1⟩ =
H |Φ0⟩ − a0 |Φ0⟩

N1
(51)

(52)

N1 is a normalization constant. a0 is a constant obtained by taking the inner product

with |Ψ0⟩ on each side ao = ⟨Ψ0| H |Ψ0⟩. The first step is constructing the Lanczos basis

by choosing a random and normalized state |ϕ0⟩ with the only condition that it cannot

be orthogonal to the ground state of H. This means that |ϕ0⟩ will be used as the first

Lanczos vector in the newly made basis. If the matrix describing the Hamiltonian is of

size (LxL), that means that the vector will have the dimensions (Lx1), which is shown

in figure 7. The next state is then given by:

|ϕ1⟩ =
1

N1
(H |ϕ1⟩ − a1 |ϕ1⟩ − N1 |ϕ0⟩) (53)

Where N1 is a normalization constant. The a1 constant is obtained by calculating the

inner product with |Φ1⟩ on each side of H to obtain a0 = ⟨Φ0|H|Φ0⟩. By constructing
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Figure 7: (a) Step 0: Choose arbitrary normalized state |ϕ0⟩. (b) Step 1: Construct state
|ϕ1⟩ from |ϕ0⟩.(c) Step 2: Construct state |ϕ2⟩ from |ϕ0⟩ and |ϕ1⟩.The resulting three
orthonormal vectors |ϕ0⟩, |ϕ1⟩ and |ϕ2⟩. From [5]
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the vector |Φ1⟩ this way it is made orthogonal to Φ0, as seen in figure 7 b. After this is

done all that is left is to add it to the basis. The next state is then obtained by:

|Φ2⟩ =
1

N2
(H |Φ1⟩ − a1 |Φ1⟩ − N1 |Φ0⟩) (54)

As before N1, N2 are normalization constants. The parameter a1 = ⟨Φ1|H|Φ1⟩ is there

to ensure that the state |Φ2⟩ is orthogonal to |Φ1⟩ as before and is also hereafter added

to the basis. This is shown in figure 7c. This means that the basis now contains three

orthogonal basis vectors illustrated in figure 7 (d).

The steps from here is ”just” reruns of the above steps to the (i + 1)th Lanczos vector,

the maximum number of Lanczos vectors is i = M:

|Φi+1⟩ =
1

Ni+1
(H |Φi⟩)− ai |Φi⟩ − Ni |Φi−1⟩) =

|γi+1⟩
Ni+1

, 1 ≤ i ≤ M (55)

Here |γi+1⟩ is simply the generated state before normalization. The constants are found

via:

ai = ⟨Φi|H|Φi⟩ (56)

Ni = ⟨γi|γi⟩ (57)

Another memory saving feature of the Lanczos algorithm’s design is that it only needs

the two previous Lanczos vectors to generate the next. This means that it only needs

to have space for three Lanczos vectors at a time, but it does still need to save all the

constants of ai, Ni. To come to the convergence of the Lanczos algorithm it will keep

constructing new states |Φi+1⟩ that are orthogonal to the last two previous states |Φi⟩
and |Φi−1⟩. This means that the newly constructed state |Φi+1⟩ is also orthogonal to all

previous states |Φk⟩ for k < i − 1. This can be proven by constructing |Φ4⟩ and also

showing that it is orthogonal to |Φ0⟩ , |Φ1⟩, this can then be done for the next state until

we come to the last state. This can be shown in a general form:

⟨Φi+1|Φk⟩ =
1

Ni+1
(⟨Φi| H |Φk⟩ − ai ⟨Φi|Φk⟩ − Ni ⟨Φi−1|Φk⟩) (58)

=
1

Ni+1
(⟨Φi| H |Φk⟩) (59)

=
1

Ni+1
(Nk+1 ⟨Φi|Φk+1⟩+ ak ⟨Φi|Φk⟩+ Nk−1 ⟨Φi|Φk−1⟩) = 0 (60)
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This shows that any state |Φi+1⟩ is orthogonal to all previous states by using the last

part of eq. (55) and made it possible to obtain a expression for H |Φk⟩. It is possible to

terminate at a given iteration, lets say i = M by setting NM+1 = 0. The elements of the

Hamiltonian will then be given by:

⟨Φi−1| H |Φi⟩ =
√

Ni (61)

⟨Φi| H |Φi⟩ = ai (62)

⟨Φi+1| H |Φi⟩ =
√

Ni+1 (63)

Even after having created M Lanczos vectors from projections of the original (LxL)
Hamiltonian onto the new basis of Lanczos vectors creating a tridiagonal (MxM) ma-

trix, HM:

HM = Q†HQ (64)

where Q is a unitary transformation matrix whose columns are the Lanczos vectors,

Q = [|Φ0⟩ , |Φ1⟩ , ..........., |ΦM⟩] (65)

The smart thing of the tridiagonal matrix is that the eigenvalues and -vectors gained

by it converges to the eigenvalues and -states of the original Hamiltonian the more

Lanczos vectors that are added, and it is done with the standard routines as if it was a

”normal” matrix.

The implemented Lanczos algorithm inside RLexact this is done with a tridiagonal QL

algorithm with implicit shifts adapted from the book Numerical Recipes in C[20]. I will

not go through this algorithm but to understand how RLexact is doing the diagonaliza-

tion. Instead of using the last M vector as a stopping criterion, RLexact uses a dynamic

stopping criterion which is based on the Ritz vector, ⟨r|r⟩. The Ritz is a vector that is de-

fined as the lowest energy eigenvector for a certain subspace in the Hamiltonian, which

comes from the Lanczos algorithm that through Exact Diagonalization approximate the

lowest energy eigenstate.[24]

|r⟩ = Q |ψ0⟩ (66)

As for Lanczos vectors converges as more Lanczos vectors that are added to the ba-

sis, so does the Ritz vector that converges towards the true eigenvector. In RLexact,

for each iteration of the Ritz vector, the energy difference between the iterations are
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then evaluated. The algorithm will continue until a trigger terminates the algorithm.

The trigger will go off when the energy change between the iterations becomes small

(under a value we set), this means that the latest iteration did not improve the the ap-

proximation of the true eigenvalue. All the Lanczos vectors should now be orthogonal

but due to numerical truncation errors each iteration contributes to lowering the Ritz

value. Loss of orthogonality is not something we want to occur in the algorithm and

therefore it is not advisable to have a higher Ritz value than necessary. All of the calcu-

lations in this thesis is done with a Ritz convergence value of 0.0000001.

The last thing that should be mentioned about the Lanczos algorithm is that it can-

not find more than one member of a degenerate multiplet, due to the construction of

the Lanczos basis in the Krylov space[5]. The Lanczos algorithm can find some of the

linear combinations that are required to find the states, which depends on the starting

state |Φ0⟩. This means that it is hard for the exact diagonalization using the Lanczos

algorithm to calculate thermodynamics properties, since it may miss some states in the

partition function.

4.7 Dynamical correlation functions

One thing that exact diagonalization does that something like Quantum Mondo Carlo

does not is that exact diagonalization is able to calculate dynamical correlation func-

tions directly and does not need extra time to do the advanced analytical continua-

tions that Quantum Mondo Carlo would. Measurements of the dynamical correlation

function is found in the partial differential scattering cross section of inelastic neutron

scattering as described in chapter 3. Being able to numerically calculate the dynamical

correlation function and with this being able to compare with experimental research is

really useful and makes exact diagonalization interesting.

The dynamical correlation function for one-dimensional at T = 0 is:

Sα,β(q, ω) = ∑
e

Mα,β
e,q δ(h̄ω + Egs − Ee) = ∑

e
⟨e| Sβ

−q |gs⟩ ⟨e| Sα
q |gs⟩ δ(h̄ω + Egs − Ee)

(67)

where [α, β] ∈ [x, y, z]. The operator Sα
q is the Fourier transform of the spin operator:

Sα
q =

1√
N

N−1

∑
j=0

e
2πiqj

N Sα
j (68)
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N is the number of spins and the sum runs over all spin sites.

I will end it here since this is not a part of this thesis.

4.8 Overview of RLexact

After understanding the concepts RLexact is build on, exact diagonalization with the

Lanczos algorithm, I will go roughly through how RLexact works.

Firstly the way to communicate with RLexact: We need to have a header file which

contains all the information needed to run a simulation of a given material or system.

The information in this file contains number of spins, symmetries, couplings, coupling

strengths, how the symmetries work on the system, each coupling strength and lastly

where each spin is coupled and with what strength. All this is in table 1. Firstly, the ba-

sic properties of the system are presented, which are the number of spins, the number

of couplings, the three coupling strengths (Jz, J⊥ =
Jx+Jy

2 , Ja =
Jx−Jy

2 ) and the number

of symmetries. For azurite this is one translational symmetry, one mirror symmetry

and the identity. The maximum and the minimum magnetisation to diagonalize is also

given in the file. Only the positive magnetization is required due to the symmetry in

magnetization

RLexact will use masks to gain the same outcome as using the raise/lower method.

RLexact is using three different masks, they are called AND, AND NOT and OR. The

OR mask could use the unique above giving the mask |001⟩. OR will then compare the

states and raise the 0 to a 1 if there is a 1 present at the spot in the state.

|101⟩OR |001⟩ = |011⟩ (69)

AND and AND NOT are both operations that can lower the spins. These work this

way:

|011⟩ AND |110⟩ = |011⟩ ANDNOT |001⟩ = |010⟩ (70)

In this way RLexact can create uniques with masks instead of spin operations.

The information about translational symmetry is input into the program simply by stat-

ing which spins are transferring to which by the symmetry operator. Prior to this, the

spins in the system are numbered from 0 to N − 1 and since azurite is built of monomers

and dimers each spin will move by 3 places (Si → Si+3) see figure 4. The information

of the mirror symmetry will then swap spins in the dimers. The first symmetry vector

in table 1 is the identity.
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Variable Value
Number of spins 6

Number of couplings 10
Number of coupling strengths 3
Number of custom symmetries 3

M start 0
M end 1

Custom symmetries
(0 1 2 3 4 5)
(3 4 5 0 1 2)
(0 2 1 3 5 4)

Coupling strength vector

J1 =(1.337 1.337 0)
J2 =(2.845 2.845 0)
J3 =(0.597 0.597 0)
JM =(0.398 0.398 0)

Coupling vector

(0 1 0)
(0 2 2)
(1 2 1)
(1 3 2)
(2 3 0)
(3 4 0)
(3 5 2)
(4 5 1)
(4 0 2)
(5 0 0)

Table 1: Selected parameters in the header file for RLexact for N = 6 with the coupling
strength vectors from the article Jeschke [7], calculated from K to meV.

5 Azurite background

From azurite’s chemical structure, seen in figure 8 (b), it is easy to see where the di-

amond chain model comes from, seen in figure 8 (a). The points used in the models

comes from the spins in CU2 (S = 1
2 ) The experimental data that are used to describe

azurite suggest the coupling constants to be antiferromagnetic and this will cause the

system to be frustrated. As described in section 2.3. Since the diamond chain has been

proposed as the model for Azurite it has been used greatly to try to find the exchange

constants for the mineral. Which usually is described by the Hamiltonian of Heisen-
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berg:

H =J1

L/3

∑
i=1

[S3i · S3i+1 + S3i+1 · S3+2 + J2

L/3

∑
i=1

[S3i+2 · S3i+3] (71)

+ J3

L/3

∑
i=1

[S3i+1 · S3i+3 + S3i+2 · S3+4 − h
L

∑
i=1

Sz
i

The biggest problem that is up for discussion is how many exchange constant there are

and which atoms interacts. The most used number is three as shown in figure 8 a. and

its typical by this model that all the three exchange constants are different from one

another. All exchange constants will be collected in a Table 2

Figure 8: (a) The distorted diamond chain. (b) Schematic view of the crystal structure
of the azurite Cu3(CO3)2(OH)2 along the b axis.[10]

5.1 Diagonalization and magnetization studies

Mikeska and Luckmann[16] investigated the phase transitions at T = 0 and made a

phase diagram in the J1, J2 plane finding the ferrimagnetic phase, dimerized phase and

the spin fluid phase (today known as spin liquid) in the J1 and J3 plane where J2 = 1.

It is easy to see in the numerical data if the ground state is ferrimagnetic (M = Ms
3 or

M = 0). It is however hard to see the critical point from the spin liquid phase to the

dimer phase in the numerical data. To overcome this complication they calculated the
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dimer to SL intersection and looked at the energy gaps, with a method developed by

Okamato [25] which uses the NNN model, illustrated in figure 9, S = 1
2 to calculate the

spin liquid to dimer critical points by looking at the energy gaps. This will be explained

step by step here.

The ground state is usually unique and not a twofold state as for the Ising model. A

twofold state can appear when the lowest lying exited state goes down, as the system

size grows, and finally degenerate to the ground state as N → ∞.

In this case the ground state is two times degenerate and this consists of a linear

Figure 9: Next nearest neighbors Ising model. From [?].

combination of the ground state and the exited state as described above. From here

they look at the critical point from the spin liquid to the dimer phase. When the twofold

degenerate dimer state is chosen then the property Stot = 0 for the ground state in

the infinite system. Since the law of addition of the angular momentum has the same

property Stot = 0 counts for the low-lying exited state. In the spin liquid phase the low-

lying exited state should be of the spin-wave type which has Stot = ±1 (one magnon

state).

At a point between these two phases will there be a transition where the energy has to

obey both phases. The critical point will become a three-fold that has to follow these

criterion [25]:

∆Ess(N) < Est(N) ⇐⇒ (dimerstate) (72)

∆Ess(N) > Est(N) ⇐⇒ (spinliquidstate) (73)

Where ∆Ess is the singlet energy gap and ∆Est is the triplet energy gap. These are as[25]:

∆Ess = E1(N, Stot = 0)− Eg(N) (74)

∆Est = E0(N, Stot = 1)− Eg(N) (75)
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The E0(N, Stot) and E1(N, Stot) are the lowest and the second lowest energies in the sub-

space with Stot and Eg = E0(N, Stot = 0).

From here the authors find that the critical point for this transition where these ener-

gies cross hence they sweep over J1 and J3 and set J2 = 1 subspace to make the phase

diagram. Which can be seen in figure 10.

From the phase diagram one is able to see that if either J1 or J3 is below 0.3 then the

spin fluid phase (SF) is obtained. If 0.3 < J1, J3 < 1 then we are in the dimer phase (D)

and lastly if J1 > 1, J3 > 1.0 then we are in the ferrimagnetic phase.

The authors investigate the excitation energies of the dimer and the spin liquid phase

by calculating the eigen energies with exact diagonalisation and the Lanczos algorithm.

They have used spin systems sizes of 18 and 24, to investigate how the excitation spec-

tres looks for for example the 1
3 magnetization plateau. More information can be found

in the article [16]

Kang et al. produced a model for the spins in azurite with six different exchange con-

Figure 10: Phase diagram of the distorted diamond chain model [16] found by the
method by [25].

stants seen in figure 11. This model is not only based on azurite but multiple diamond

chain materials including Na2Cu2TeO6 and Bi4Cu3V2O14 to name a few. The compu-

tational calculation method is called electronic structure calculations (which is good at

identifying the leading exchange parameters of magnetic materials [12] [17]) [3].

By using Kikuchi[11][10][21] as stepping stones, using the Vienna ab initio simulation
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package (VASP) [26] which uses generalized gradient approximations. They started

the fitting analysis with the following exchange constants J2
kB

= 55, J1
kB

= 1, J3
kB

= −20,
Jm
kB

= 10.1, Jd
kB

= 1.8, these with the structural data they was able to conclude, that due

to the electronic structure of azurite it should not be described as a diamond chain but

as a 2D lattice where diamond chains are coupled through the exchange coupling of J4.

GGA stands for generalized gradient approximation, which is a approximation to the

exchange correlation energy function in density functional theory (DFT) [19], and the U

is the Cu 3dx2−y2 on cite Coulomb interaction strength. Their final exchange couplings

are calculated with GGA+U where there are two different U, 4eV and 6eV. Both will be

in the table underneath.

The computational group Jeschke et. al.[7] worked with the density functional the-

Figure 11: Spin exchange paths of azurite shown with two diamond chains in the ab-
plane, where the labels 1, 2, 3, 4, m, d and d refer to the spin exchange paths J1, J2, J3,
J4, Jm and Jd, and Jd∗ , respectively. [9]

ory (DFT) calculations and the computational model based on different variants of

the density-matrix renormalization group (DMRG) method and using the data from

Kikuchi [11] [10]. From which they conclude that the dimer-monomer diamond chain

model with the exchange constants J1, J2, J3, Jm, are a good model to explain a broad

range of experiments on azurite. Since the position of the lighter atoms (C, H, O) in azu-

rite gained from experiments have a large error than the heavier atoms. They will start

with a Car-Parrinello molecular dynamics calculation to determine positions of these

to a unit cell of 30 atoms. With this structure they where able to gain the electronic

properties which they uses with GGA+U calculations to find nine different exchange

constants. First they analyses the interaction paths based on the GGA band structure,

under the assumption that the exchange constants are antiferro magnetic. Then they

use 2. order perturbation theory where JAFM
i =

4t2
i

U . These constants can be found in
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Jeschke et. al. [7] Table 1 and is called the full model. A minimal model which contain

four exchange constants instead of the three in the other articles. Using the data from

magnetization and INS experiments they was able to refine the exchange constants for

a refined model of the minimal model. For the full models exchange constants, eight of

these couplings are shown in figure 12 but it misses Jd which is the coupling of dimers.

This coupling is parallel with Jm and couples two dimers together by coupling the ”top”

spins and the ”bottom” spins to each other.

For the refined model J1 = 15.51K, J2 = 33K, J3 = 6.93K and Jm = 4.62K.The exchange

constants of the refined model can be found in table 2. As seen in figure 13 Jeschke’s

computational data correspond very nicely with the magnetization curve that Kikuchi

has measured[11][10], which will be described later.

Jeschke conclude that DFT calculations to fit the exchange constants with the data is

not possible without guiding the four different exchange constants.

Figure 12: Arrangement of Cu2 ions in the structure of azurite. The two inequivalent
Cu2 ions form dimers (cyan) and monomers (blue). (a) Most important exchange paths
within the diamond chain running along the b axis: Dimer coupling J2 (black), dimer-
monomer couplings J1 and J3 (magenta and green), and monomer monomer coupling
Jm (orange). (b)–(c) Three-dimensional couplings between diamond chains, connecting
(b) monomer and dimer ions: J5 (yellow) and J6 (red) and (c) dimer ions only: J4 (pink)
and J7 (light green).[7]

5.2 Exerimental studies

On the more experimental side, Kikuchi et. al.[10] [11], studied a natural single crys-

tal of azurite. Powder X-ray diffraction was used to make sure the samples did not

have impurities. Quantum Design PPMS was used to measure the susceptibility in the
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Figure 13: Comparison of computations for the magnetization curve found by DMRG
for T = 0 and N = 300 spins with experimental data at T = 80 mK for H ⊥ b

temperature range between 2.0K - 300K with VSM and an applied external field of 0.1T.

Induction method in a pulsed magnetic field was used to to measure the high field mag-

netization curves below 4.2K, and up to 60T. The specific heat was measured with the

quasiadiabatic method from temperature 0.33K - 200K. With a pulsed positive muon

beam, the muon spin relaxation spectra was measured down to 0.02K. H-NMR spectra

and the spin-lattice relaxation time was measured at temperatures down to 1.7K and

fields up to 15T. [11].

They used an external perpendicular magnetic field from 0T - 60T and cooled the sys-

tem all the way down to 80mK. There is observed a spin-flip transition at 2.1T at 1.3K
and 80mK. But most interesting is the magnetization plateau that is clearly observed

between 11.4T and 31T. All this can be seen in figure 14.

By using the density matrix renormalization group method with the distorted diamond

chain they was able to obtain a exchange constant ratio to represent the data, these are

also shown in the figure 14 (b) as the dotted line.

There was a exact formula for Hs that was simplified to the case of isotropic diamond

chain to be:

Hs = gµBS(J1 + J3) (76)

With this equation the exchange constants J1 and J3 has been found, to be J1 = 19K,J2 =

24K J3 = 8.6K, from calculations from Hs = 33T. These will also be shown in Table 2

From all these experiments I will use on the magnetization later in the thesis.

35



(a) (b)

Figure 14: (
a)The high field magnetization curves of Cu3(CO3)2(OH)2 measured below 4.2 K. The
magnetic field was applied perpendicular to the b axis (b) The best fitting result for the

magnetization curve at 1.5 K for H ∥ b with the theoretical dotted line using
J1:J2:J3=1:1.25:0.45[10]
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Figure 15: (color online). Energy dependence of the INS spectra of azurite at q =
(1, k, 0), k = 0 to 0.5, in zero field (left) and a field of 14T ⊥ b∗ (right) at T = 1.5K. Lines
indicate fits to the data, which are shifted due to clarity

Other experiments on azurite was performed by the group of Rule et. al. [21][23][22].

Rule starts to study azurite with specific heat and inelastic neutron scattering (INS)

measurements. They have used a naturally grown azurite crystal for both of the two

different experiment types. From the crystal 0.36 g was cut off to do the specific heat

measurements (Cp(T)), which was measured in the temperature range of 1.6 to 30K on

an ac-calorimeter. They have an external field pointing at the ac-plane and 65◦ away

from the c-axis, why this direction is because they approximate that this is the easiest

axis of the AFM phase below T = 1.85K.

To start the analysis of the experiment they uses the Dimer-monomer model, which has

the inter-dimer exchange constant J2 that is the dominating the other exchange con-

stants (J1, J3) on the energy scale.

The INS was to gain magnetic excitation both at 0 T and 14 T field measured at T = 1.5K
to avoid thermal line broadening and adverse effects from structural distortion, which

have been observed at 1.86K. The data fits in figure 15 was produced by combining

Gaussian line shapes above 2 meV and calculated using a 1D chain convoluted with in-

strumental resolution and the copper form factor for below 2 meV. By fitting the Gaus-

sian to the peak positions in multiple different plot(see in article [21]) they gain different

expressions of the energy and with these expressions they come up with the following

coupling constants, J1 ≃ 1K, J3 ≃ −20K, J2 = 55K, Jmono = 10.1K, Jdimer = 1.8K.

The next experiment Rule[23] performed a INS, below the magnetization plateau at
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B = 11T. With the considerations that the symmetry of azurite was P21 and the mag-

netic moment was found to be two different, one for the dimer (m0 = 0.684µB and one

for monomer (m0 = 0.264µB [23]. They compared the data with the ideal Heisenberg

model and to find inconsistencies.

These calculations was performed with the ABACUS algorithm, which is a algorithm

to calculate the dynamical correlation functions of some important observable of the

system such as Heisenberg spin chain[2], and with the anisotropic Heisenberg Hamil-

tonian:

H =
N

∑
j=1

JxSx
j Sx

j+1 + JySy
j Sy

j+1 + JzSz
j Sz

j+1 − HzSz
j (77)

where Hz is the applied field and are increasing up to observe the plateau limit Hz ≈
11.T Hz are coupled to relative values of Jx, Jy and Jz.

With these data and calculations they were able to conclude that azurite is not well de-

scribed by the 1D Heisenberg chain.

5.3 Other materials

The last article to be mentioned in this composition of articles are Honecker and Läuchli

[4] who does calculations on another material (Cu3Cl6(H2O)2·2H8C4SO2). The model

to describe this material is also the diamond chain with three exchange constants. This

article takes a theoretical approach to find a suitable spin model to and compares with

data of susceptibility and specific heat[4]. They uses the Heisenberg Hamiltonian from

eq 72. From fitting the result from the Lanczos exact energies to the susceptibility data

they found that at least one of J1 or J3 should be ferromagnetic. They came to the

conclusion that the data compared the best when J1 = −260± 50K, J2 = 250± 40K and

J3 = −40 ± 30K. With these values they could find the 1
3 - magnetization plateau which

is shown in figure 16, since the material is not azurite. The plateau is placed differently

than for azurite as a function of applied field.

In this thesis I will use RLexact to produce magnetisation data with all the exchange

couplings constants given from the articles are inserted in table 2.
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Figure 16: Magnetization curve for J1 = −300K, J2 = 280K, and J3 = −60K. Which is
multiplied with g = 2.03. The thick line is an extrapolation whereas thin lines are for
finite system sizes: L = 12(dotted), L = 18(short dashes), L = 24 (long dashes), and
L = 30 (full)[4]

J1 J2 J3 J4 Jd Jm
Kang U = 4 eV [9] 89.4 363.3 86.1 46.3 -6.7 0.1
Kang U = 6 eV [9] 52.6 221.7 46.3 27.4 0.15 1.2
Jeschke refined [7] 15.51 33 6.43 0 0 4.62
Kikuchi [11] 19 24 8.6 0 0 0
Rule [21] 1 55 -20 0 1.8 10.1

Table 2: Collected exchange constants for azurite, taken from literature, all in units of K

6 Code Validation

6.1 Current state of RLexact

When I started this thesis RLexact was able to calculate energies, correlation functions

Szz(q, ω), Sxx(q, ω), Syy(q, ω), S+−(q, ω) and S−+(q, ω) for the transveres Ising model

and for 1D, 2D and 3D magnetic systems without any applied magnetic field. Symme-

tries included are the translational symmetry, mirror symmetry and the total Sz sym-

metry (in RLexact its called m-symmetry). No improvements to RLexact has been done

in this thesis.
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6.2 Validation

To validate RLexacts calculations, I have used the diamond chain model from azurite

and made a system of 6 spins with five different J’s as the articles propose. These calcu-

lations will then be compared with the calculations of RLexact. Due to there being no

mirror symmetry in the 1D diamond chain (Azurite), this part has been cut out.

To start I have taken all positive M’s and in this case this will be M = 0, 1, 2 and 3. Every

single possible way of the system has then been categorized as for M = 2 |0⟩ = |↓↑↑↑↑↑⟩,
following is shown below. The translational symmetry is used on these states to show

its effect.

|0⟩ = |↓↑↑↑↑↑⟩ |1⟩ = |↑↓↑↑↑↑⟩ |2⟩ = |↑↑↓↑↑↑⟩

|3⟩ = |↑↑↑↓↑↑⟩ |4⟩ = |↑↑↑↑↓↑⟩ |5⟩ = |↑↑↑↑↑↓⟩

T̂ |0⟩ = |3⟩ T̂ |1⟩ = |4⟩ T̂ |2⟩ = |5⟩

Hereafter, the states that are able to become each other with the use of translational

symmetry will be set into ”groups”. Such as |M, t, j⟩ where M is the magnetisation, t is

the translation symmetry and j is the different configurations.

H |2; 0, 0⟩ = (|0⟩+ |3⟩) ∗ 1√
2

H |2; 0, 1⟩ = (|1⟩+ |4⟩) ∗ 1√
2

H |2; 0, 2⟩ = (|2⟩+ |5⟩) ∗ 1√
2

H |2; 1, 0⟩ = (|0⟩ − |3⟩) ∗ 1√
2

H |2; 1, 1⟩ = (|1⟩ − |4⟩) ∗ 1√
2

H |2; 1, 2⟩ = (|2⟩ − |5⟩) ∗ 1√
2

From these it is possible to combine some of them into small matrices, as shown below.

It is also possible to set them into a big matrix but since they will have no interactions

between each of the small ones (and the big will not be able to be on one page, therefore

will i keep the small).
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|2; 0, 0⟩ |2, 0, 1⟩ |2; 0, 2⟩
|2, 0, 0⟩ J2

2 + Jm
2 + Jd

J1
2 + J3

2
J1
2 + J3

2
|2, 0, 1⟩ J1

2 + J3
2

J1
2 + J3

2 + Jm
2 + Jd

J2
2

|2; 0, 2⟩ J1
2 + J3

2
J2
2

J1
2 + J3

2 + Jm
2 + Jd

Table 3: Hamiltonian on matrix form of |2; 0, 0⟩, |2; 0, 1⟩ and |2; 0, 2⟩.

|2; 1, 0⟩ |2, 1, 1⟩ |2; 1, 2⟩
|2, 1, 0⟩ J2

2 − 3∗Jm
2 + Jd − J1

2 + J3
2

J1
2 − J3

2
|2, 1, 1⟩ − J1

2 + J3
2

J1
2 + J3

2 + Jm
2 − Jd

J2
2

|2; 1, 2⟩ J1
2 − J3

2
J2
2

J1
2 + J3

2 + Jm
2 − Jd

Table 4: Hamiltonian on matrix form of |2; 1, 0⟩, |2; 1, 1⟩ and |2; 1, 2⟩.

These matrices can then be diagonalized and the result will then be collected and

inserted in the following table. To make sure the calculations by RLexact are correct

then one of the five different J’s will have the strength of 1 while the other has the

strength of 0.01 to make sure no shenanigans happens, this will be done for all of them.

As seen in the table the analytical calculations do agree with the calculations done

by RLexact.
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|1
,0

,0
⟩

|1
,0

,1
⟩

|1
,0

,2
⟩

|1
,0

,3
⟩

|1
,0

,4
⟩

|1
,0

,5
⟩

|1
,0

,6
⟩

|1
,0

,7
⟩

|1
,0

,8
⟩

|1
,0

,0
⟩

−
J 1
+

J 2 2
−

J 3
+

J m 2
+

J d
0

J 1 √
2

J 3 √
2

0
J 3 √

2
J 1 √

2
0

0

|1
,0

,1
⟩

0
J 2 2
+

J m 2
−

J d
J 1 2

J 3 2
2
·J

d
J 3 2

J 1 2
0

0
|1

,0
,2
⟩

J 1 √
2

J 1 2
−

J 1 2
−

J m 2
+

J 3 2
J 2 2

J 3 2
J d
+

J m
0

J 1 √
2

0

|1
,0

,3
⟩

J 3 √
2

J 3 2
J 2 2

J 1 2
−

J 3 2
−

J m 2
J 1 2

0
J d
+

J m
0

J 3 √
2

|1
,0

,4
⟩

0
2
·J

d
J 3 2

J 1 2
−

J 2 2
+

J m 2
−

J d
J 1 2

J 3 2
J 2 √

2
J 2 √

2
|1

,0
,5
⟩

J 3 √
2

J 3 2
J d
+

J m
0

J 1 2
−

J m 2
+

J 1 2
−

J 3 2
J 2 2

J 3 √
2

0

|1
,0

,6
⟩

J 1 √
2

J 1 2
0

J d
+

J m
J 3 2

J 2 2
−

J m 2
−

J 1 2
+

J 3 2
0

J 1 √
2

|1
,0

,7
⟩

0
0

J 1 √
2

0
J 2 √

2
J 3 √

2
0

−
J 2 2
+

J m 2
+

J d
0

|1
,0

,8
⟩

0
0

0
J 3 √

2
J 2 √

2
0

J 1 √
2

0
−

J 2 2
+

J m 2
+

J d
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⟩.

42



|1, 1, 1⟩ |1, 1, 2⟩ |1, 1, 3⟩ |1, 1, 4⟩ |1, 1, 5⟩ |1, 1, 6⟩
|1, 1, 1⟩ J2

2 + Jm
2 − Jd

J1
2

J3
2 0 − J3

2 − J1
2

|1, 1, 2⟩ J1
2 − J1

2 + J3
2 − Jm

2
J2
2 − J3

2 Jd − Jm 0
|1, 1, 3⟩ J3

2
J2
2

J1
2 − J3

2 − Jm
2

J1
2 0 Jd − Jm

|1, 1, 4⟩ 0 − J3
2

J1
2 − J2

2 + Jm
2 − Jd

J1
2 − J3

2
|1, 1, 5⟩ − J3

2 Jd − Jm 0 J1
2

J1
2 − J3

2 − Jm
2

J2
2

|1, 1, 6⟩ − J1
2 0 Jd − Jm − J3

2
J2
2 − J1

2 + J3
2 − Jm

2

Table 6: Hamiltonian on matrix form of |1; 1, 1⟩, |1; 1, 2⟩, |1; 1, 3⟩, |1; 1, 4⟩, |1; 1, 5⟩, and
|1; 1, 6⟩.
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|0
,0

,0
⟩

|0
,0

,1
⟩

|0
,0

,2
⟩

|0
,0

,3
⟩

|0
,0

,4
⟩

|0
,0

,5
⟩

|0
,0

,6
⟩

|0
,0

,7
⟩

|0
,0

,8
⟩

|0
,0

,9
⟩

|0
,0

,0
⟩

J 2 2
−

J m
/

2
−

J d
J 1 2

0
J d

J 3 2
J d

0
J m

J 3 2
J 1 2

|0
,0

,1
⟩

J 1 2
−

J 1 2
−

J 3 2
+

J m
/

2
+

J d
J 1 2

+
J 3 2

J 3 2
J 2 2

J 1 2
0

J 3 2
0

0

|0
,0

,2
⟩

0
J 1 2

+
J 3 2

−
J 2 2

−
J m 2

+
J d

+
J m

J 2 2
0

J 2 2
0

0
J 1 2

+
J 3 2

0

|0
,0

,3
⟩

J d
J 3 2

J 2 2
J 1
−

J 2 2
−

J 3
−

J m
/

2
−

J d
J 1 2

+
J 3 2

J m
J 2 2

J d
J 3 2

J 3 2
|0

,0
,4
⟩

J 3 2
J 2 2

0
J 1 2

+
J 3 2

−
J 1 2

−
J 3 2

+
J m

/
2
+

J d
J 1 2

J 1 2
+

J 3 2
J 1 2

0
0

|0
,0

,5
⟩

J d
J 1 2

J 2 2
J m

J 1 2
J 1
−

J 2 2
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M State Analytical Energies

3 |3; 0, 0⟩ J1 +
J2
2 + J3 + Jm

2 + Jd

2 −2 · |2; 0, 0⟩+ |2; 0, 1⟩+ |2; 0, 2⟩ J1
2 − J2

2 +
J3
2 + Jm

2 + Jd

2 − |2; 0, 1⟩+ |2; 0, 2⟩ − J1
2 − J2

2 − J3
2 + Jm

2 + Jd
2 |2; 0, 0⟩+ |2; 0, 1⟩+ |2; 0, 2⟩ J1 +

J2
2 + J3 + Jm

2 + Jd

2 −2 · |2; 1, 0⟩ − |2; 1, 1⟩+ |2; 1, 2⟩ J1
2 +

J2
2 +

J3
2 + Jm

2 − Jd

2 |2; 1, 1⟩+ |2; 1, 2⟩ J1
4 +

J3
4 − Jm

2 −
√

9·J2
1−4·J1 ·J2−14·J1 ·J3−8·J1 ·Jd+8·J1 ·Jm+4·J2

2−4·J2 ·J3+16·J2 ·Jd−16·J2 ·Jm+9·J2
3−8·J3 ·Jd+8·J3 ·Jm+16·J2

d−32·Jd ·Jm+16·J2
m

4
2 |2; 1, 0⟩ − |2; 1, 1⟩+ |2; 1, 2⟩ J1 · 2 + J2

2
1 |1; 1, 1⟩ − |1; 1, 2⟩+ |1; 1, 6⟩ J1

2 +
J2
2 +

J3
2 − Jd +

Jm ]
2

1 |1; 1, 2 − |1; 1, 3⟩+ 2 · |1; 1, 4⟩ − |1; 1, 5⟩+ |1; 1, 6⟩⟩ − J1
2 − J2

2 − J3
2 − Jd +

Jm ]
2

1 |1; 1, 2⟩+ 1
3 · |1; 1, 3⟩ − 2

3 · |1; 1, 4⟩+ 1
3 · |1; 1, 5⟩+ |1; 1, 6⟩ − J1

4 − J3
4 − Jm

2 −
√

9·J2
1−4·J1 ·J2−14·J1 ·J3+8·J1 ·Jd−8·J1 ·Jm+4·J2

2−4·J2 ·J3−16·J2 ·Jd+16·J2 ·Jm+9·J2
3+8·J3 ·Jd−8·J3 ·Jm+16·J2

d−32·Jd ·Jm+16·J2
m

4

1 −2 · |1; 1, 1⟩ − |1; 1, 2⟩+ 3 · |1; 1, 3⟩ − 3 · |1; 1, 5⟩+ |1; 1, 6⟩ − J1
4 − J3

4 − Jm
2 +

sqrt9·J2
1−4·J1 ·J2−14·J1 ·J3+8·J1 ·Jd−8·J1 ·Jm+4·J2

2−4·J2 ·J3−16·J2 ·Jd+16·J2 ·Jm+9·J2
3+8·J3 ·Jd−8·J3 ·Jm+16·J2

d−32·Jd ·Jm+16·J2
m

4

1 −2 · |1; 1, 1⟩ − |1; 1, 2⟩ − |1; 1, 3⟩+ |1; 1, 5⟩+ |1; 1, 6⟩ J1
4 +

J3
4 − Jm

2 −
√

9·J2
1−4·J1 ·J2−14·J1 ·J3−8·J1 ·Jd+8·J1 ·Jm+4·J2

2−4·J2 ·J3+16·J2 ·Jd−16·J2 ·Jm+9·J2
3−8·J3 ·Jd+8·J3 ·Jm+16·J2

d−32·Jd ·Jm+16·J2
m

4

1 |1; 1, 3⟩+ |1; 1, 4⟩+ |1; 1, 5⟩ J1
4 +

J3
4 − Jm

2 +

√
9·J2

1−4·J1 ·J2−14·J1 ·J3−8·J1 ·Jd+8·J1 ·Jm+4·J2
2−4·J2 ·J3+16·J2 ·Jd−16·J2 ·Jm+9·J2

3−8·J3 ·Jd+8·J3 ·Jm+16·J2
d−32·Jd ·Jm+16·J2

m
4

Table 9: Analytical results obtained for the 13 energies (missing |1, 0, j⟩ , |0, 0, j⟩ and
|0, 1, j⟩ since the matrices becomes 9x9 and 10x10 and was hard to do analytic by hand)
in the case N=6 spins, as a function of the five coupling constants J1, J2, J3, Jm, Jd. J1
is J1 = 1, J2 = 0.01, J3 = 0.01, Jm = 0.01, Jd = 0.01 and J2 is J1 = 0.01, J2 = 1, J3 =
0.01, Jm = 0.01, Jd = 0.01 and so forth.

M Hand J1 RLexact J1 Hand J2 RLexact J2 Hand J3 RLexact J3 Hand Jm RLexact Jm Hand Jd RLexact Jd
3 1.03 1.03 0.535 0.535 1.03 1.03 0.535 0.535 1.03 1.03
2 -0.485 -0.485 0.505 0.505 -0.485 -0485 0.505 0.505 1.0 1.0
2 0.515 0.515 -0.475 -0.475 0.515 0.515 0.515 0.515 1.01 1.01
2 1.03 1.03 0.535 0.535 1.03 1.03 0.535 0.535 1.03 1.03
2 -0.495 -0.495 -0.495 -0.495 -0.495 -0.495 -1.485 -1.485 -0.99 -0.99
2 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 -0.98 -0.98
2 0.99 0.99 0.495 0.495 0.99 0.99 0.495 0.495 0.99 0.99
1 -1.0 -1.0 -0.505 -0.505 -1.0 -1.0 -1.495 -1.495 -1.0 -1.0
1 0.505 0.505 0.505 0.505 0.505 0.505 0.505 0.505 -0.98 -0.98
1 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.485 0.98 0.98
1 0.99 0.99 0.495 0.495 0.99 0.99 0.495 0.495 0.99 0.99
1 -0.495 -0.495 -0.495 -0.495 -0.495 -0.495 -1.485 -1.485 -0.99 -0.99
1 -0.515 -0.515 -0.515 -0.515 -0.515 -0.515 0.475 0.475 -1.01 -1.01

Table 10: Numerical results obtained for the 13 energies above in the case N=6 spins,
as a function of the five coupling constants J1, J2, J3, Jm, Jd. J1 is J1 = 1, J2 = 0.01, J3 =
0.01, Jm = 0.01, Jd = 0.01 and J2 is J1 = 0.01, J2 = 1, J3 = 0.01, Jm = 0.01, Jd = 0.01 and
so forth.
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7 Results

RLexact returns energies corresponding to a given M- and q-value. These energies are

then subtracted from the ground state energy and plotted up vs the q’s for the excitation

plots. Each article will be compared to my results with their interaction constants in

discussion. The interactions constats used fore these Rlexact calculations are found in

table 2.

7.1 Scaling

RLexact calculations for spin system sizes of 6, 12, 18, 24 and 30 spins are shown in

figure 17 (a-e). All of them have a plateau at 1
3 magnetization (exapt it is hard to see

on the 6 spin system plot). The higher we go in the system size the more ”flat” the

plateau will seem. This is due to the fact that there wwill be more allowed values of the

magnetization when the system size is increased. So the plots will become more ”com-

pressed”. The system sizes that look most like the data from the article (lets use Rule

as an example), is seen in figure 17 (f), of system size 24 and 30 spin. These two system

sizes will be used in further investigation of the data in magnetization and excitation

plots. For excitation scaling, the data will gain energies for higher q-values for larger

systems. For the 6 spin system the excitation energies will have q-values of 0 and 1,

corresponding to 0 and π in r.l.u. for 30 spins they will have q-values of 0-9. This will

give a higher resolution and it will therefore be easier to see the dispersion of the spin

waves.
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(a) Spin = 6 Magnezation (b) Spin = 12 Magnezation

(c) Spin = 18 Magnezation (d) Spin = 24 Magnezation

(e) Spin = 30 Magnezation

Figure 17: Magnetization plots by the model of Rule.
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(a) Spin = 6 Excitation spectrum (b) Spin = 12 Excitation spectrum

(c) Spin = 18 Excitation spectrum (d) Spin = 24 Excitation spectrum

(e) Spin = 30 Excitation spectrum

Figure 18: Excitation plots by the model of Rule.

All results can be found in Appendix A.
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7.2 Magnetization

In this section, I will present the results obtained with RLexact for the magnetization

in a given field for spin systems of sizes 24 and 30. For the magnetization plots I have

taken the lowest energy for each magnetization, found the difference in energy for each

of these and divided with the difference of magnetization. The y-axes of the magneti-

zation plots are divided with the total magnetization to be able to enable comparison

with the different system sizes and to compare with the results from the articles. Since

RLexact gives energies in the different magnetization and does not calculate the Zee-

man energy then this must be the energy difference between the magnetization. This

can be shown:

H = HH − hM (78)

EM,h = E(M)− hM (79)

∆E = EM,h − EM+1,h = 0 (80)

0 = E(M)− E(M + 1)− h (81)

h = −gµBB (82)

B =
E(M + 1)− E(M)

gµB
(83)

Let us first look at the results of the exchange constants of those from Rule, seen in figure

19, first and start at the low magnetization. From 0T to around 12T the magnetization is

almost a straight line and from 12T to around 17T it is growing fast. From 17T to 34T on

24 and 30 spin systems is where the 1
3 magnetization plateau is observed, where after it

goes up in a weak S-shape.

From Rule the next will be the data from the exchange constants by Kikuchi, which are

shown in figure 20 and the experimental data (c) in the same figure. For both the 24

spin system and the 30 spin system from 0T to the beginning of the 1
3 plateau the data

is not a straight line, and has a weak S-shape just like Rule. The plateau starts at 14T

and ends at 25T whereafter it increases slowly until 31T where it increases fast.

Lastly the data calculated with the exchange constants of Jeschke is in figure 21 with

the plot from the article in the same figure as well. This has the same start as the two

figures before with a weak S-shape but here it is shorter since the plateau starts at 10T

and ends at 34T. After 34T the curve increases rapidly.

The calculated data from Jeschke does have a straight line from 0T to 9T with a sharp
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kink from 9T to 10T where the plateau starts. It ends at 31T and increases rapidly

afterwards.

(a) Rule Spin = 24 Magnezation (b) Rule Spin = 30 Magnezation

Figure 19: Magnetization plots by the model of Rule.
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(a) Kikuchi Spin = 24 Magnezation (b) Kikuchi Spin = 30 Magnezation

(c) Experimental data by Kikuchi

Figure 20: Magnetization plots by the model of Kikuchi and experimental data from
Kikuchi [11].
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(a) Jeschke Spin = 24 Magnezation (b) Jeschke Spin = 30 Magnezation

(c) Experimental data and calculated
data by Jeschke

Figure 21: Magnetization plots by the model of Jeschke and experimental data from
Jeschke [7].

7.3 Excitation

In this section, we will present the results obtained with RLexact for the excitation spec-

tra of the different systems sizes, 18, 24 and 30. To do so, we have represented the

Heisenberg energy as a function of the momentum, which in the first Brillouin zone is

bounded by q ∈ [0, 2π].

For Rule the excitation spectrum for the three different spin systems is not very occu-

pied at the lower energies, as it is seen in figure 22 (c-e). To start let us look at the 30

spin system and the first mode that comes to eye is at (0,0) to (π,2.5) to (2π,0). There

is another mode at (0,1.4) to (3/5π,1.6) to (π,1.4). There is something around (0,2.1) to

(π,2.5) to (2π,2.1) but it is not visible in the 18 or 24 spin system. The last mentioned

mode can be hard to determine since the density of the excitation are high in this region.

In figure 23 we see the excitation spectrum calculated with the exchange constants from
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Kikuchi [11] seen in table 2. It seems to have two modes. The first that came to mind

was from (0,0 meV) to (π,1.5 meV) and down to (2 π, 0 meV) and the second from

(0,0.8meV) to (2/5 π, 1.3) to (π,0.2meV). Energies above 1.5 meV are not really interest-

ing but have been kept to be consistent in the plots.

The excitation spectrum in figure 24 with exchange constants from Jeschke [7] are seen

in table 2. It seems to have a mode going from (0,0) to (π,1.1) to (2 π, 0) and another

mode from (0,0) to (3/5 π, 1.0) to (π, 0.2). It also looks like there is something like a gap

between the lower excitation and higher excitation, is around (0,1.1) to (4/5 π, 1.4) to

(6/5 π, 1.4) to (2 π, 1.1), which is easier to see in the 18 spin plot where it is from (0,1.3)

to (π,2.0) to (2π,1.3). Energies above 1.5 are not interesting here, but have been kept for

consistent plots. The group of Jeschke have also performed excitation measurements

with a field, but I will not cove these.

(a) Rule Spin = 18 Excitation (b) Rule Spin = 24 Excitation

(c) Rule Spin = 30 Excitation (d) Experimental data from Rule [21]

Figure 22: Excitation data of spin system with the model of Rule and experimental data
provided by Rule.
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(a) Kikuchi Spin = 18 Excitation (b) Kikuchi Spin = 24 Excitation

(c) Kikuchi Spin = 30 Excitation

Figure 23: Excitation data of spin system with the model of Kikuchi.
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(a) Jeschke Spin = 18 Excitation (b) Jeschke Spin = 24 Excitation

(c) Jeschke Spin = 30 Excitation

Figure 24: Excitation data of spin system with the model of Jeschke.
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8 Discussion

The group of Kang has not been calculated in RLexact due to the fact that the model

they have come up with has an exchange constant between the different diamond

chains, which is not possible to do in RLexact (yet).

8.1 Magnetization comparison

Materials with 1
3 magnetization and being able to find a fitting model for them are still

an interesting and active field. This is where calculations by hand are hard and need

some help from computational methods where Exact diagonalization, and hereunder

RLexact is handy. The articles of Jeschke [7] and Kikuchi [11] both have excellent M(h)

data to compare the calculations of RLexact with; and these are shown in figure figure

20 and 21. The Kikuchi plot of 1.5 K data and the experimental data of Jeschke agree on

where the plateau starts (11T) and disagree lightly on where it stops (30T for Kikuchi

and 31T for Jeschke). After the plateau there is a sharp rise in a weak s-shape in a cou-

ple of tesla (2-3T) until full M is reached.

To make a comparison of the data computed with RLexact with the plots from the arti-

cles let us start by talking about how the different calculations look in comparison with

the experimental data. Since the articles use different values for the exchange constants

the plateau is different for each of the articles. For Rule it seems to have moved the full

plateau around 5T further up than the experimental data suggest. Rule has less of a

straight line in comparison with the experimental data and the same goes for the end

rise, which is not as steep as the experimental data suggest.

For Jeschke with a starting of the plateau at 10T and an end at 34T. The ending is as

steep and looks very similar to the experimental data, but the beginning seems to have

a little too much of a curve just before the plateau. The data from RLexact look even

more similar to the theory data that Jeschke did with N=300. This enhances the credi-

bility of our data.

The data calculated with RLexact with the model of Kikuchi is the one furthest away

from the experimental data. The plateau starts from 14T and ending at 25T with a flat

ending. It is also the model with the flattest and therefore most accurate start (from 0
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to the start of the plateau).

8.2 Excitation comparison

Excitation spectra of materials contain important information and can be calculated by

algorithms such as the Lanczos algorithm used in RLexact. Experimental data is pro-

vided by Rule [21]. The experimental data are from INS in an applied field of 14T. These

can be found in figure 22 (d). The data of Rule has a mode going from (-π,0) to (π/2,2)

to (0,0) and another from (-π,0) to (-π·3/4,1.4) to (-π/2,0).

The three models give two groups, one where the spin wave mode is going to 1.0 meV

and the other is where it goes to 1.5 meV. Rule is in the last group and is very close

to the experimental data where the mode goes to 1.4 meV. The experimental data still

have oscillations of π/2 where in the calculated data the oscillations go by π. The other

mode in the experimental data by Rule go to 2.0 meV where the calculated data goes

to 2.5 meV. These are the differences between the calculated data and the experimental

data for Rules model and and some adjustments could be done to the model, for exam-

ple with the Dzyaloshinskii-Moriya (DM) interaction as Rule writes about in [22]. This

interaction is given by:

HDM = ∑
<i,j>

Dij · (Si × Sj) (84)

and is strongly influenced by the non centro symmetric J1 and J3 exchange interactions

as seen in figure 25. Including the DM interaction in the model would change the model

a little bit and could make the calculation of the model more accurate with the experi-

mental data.
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Figure 25: Dzyaloshinskii-Moriya (DM) interactions on the diamond shape units where
the vertical direction corresponds to the b-axis. We define the notation of ⊙ and ⊗
to represent antiparallel vectors since the actual orientation of the DM vector is not
known[22].

The two other models (Kikuchi and Jeschke) look very similar, and the only dif-

ference in the spin wave mode is where the top of it is placed (3/5 π for Kikuchi and

2/5 π for Jeschke) and both have around the same energy difference at q = π. An-

other thing they have in common is that the top of the other mode is around 1.6 meV .

This is a small difference in the excitation spectrum compared with the magnetization

plots above and the exchange constants are not that different either, besides the fact that

Jeschke has an exchange constant to couple the monomer spins. The top mode in the

Jeschke excitation spectrum is not visible in my calculations and the oscillations are π

in my calculations and 2π in Jeschke’s data.

Since the diamond chain is calculated by RLexact as a 1D chain let us compare how a

1D nearest neighbor Heisenberg model would look, since these calculations since these

calculations were done in RLexact as well. Can be seen in figure 26. The spin wave

mode in this model goes from 0 meV to 1.5 meV with a oscillation of π. The other

mode goes from 0 meV to 3 meV. The spin wave mode does look close to Rule’s model.

A difference is that Rules model the spin wave mode does not touch 0 meV at π but 2

π. This could be due to the finite size effect, which can be seen if we look at the trend

of the 18, 24 and 30 spin systems.
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Figure 26: 1D NNM chain of N=24 in zero field, crosses are the spin wave continuum
and dashed curves are dispersion for spin wave continuum states in the thermodynam-
ical limit. [14]

8.3 RLexact

Some specific spin system sizes with specific (but unidentified) interactions have a

problem where in a q in a high magnetization the ground state is not calculated cor-

rectly. The data can be seen in figure 27 and was easy to spot in the magnetization

plots. This is not physically possible and has therefore been removed in the data for the

results. This is done by opening the data files and removed some of the energies from

the specific q in the magnetization which is acting up.

In some of the RLexact calculations there was a problem where some of the q’s in dif-

ferent magnetizations stopped being calculated and restarted, this can be seen in figure

28. This means that the data was generated, but some of it was generated twice which

is not useful. I think this could be due to some memory leak or maybe a problem with

the cluster. I do not believe the error to be due to a problem in RLexact since it does not

happen every time the calculations is done.
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(a) Spin = 24 Magnezation (b) Spin = 24 Magnezation

(c) Spin = 30 Magnezation

Figure 27: Magnetization energy calculation error.

Figure 28: Some kind of error on the cluster where RLexact was used, restart marked
with red lines.
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9 Conclusion

The work of this thesis can conclude that the exact diagonalization program RLexact

is able to calculate and produce magnetization curves and excitation spectra for the

model of azurite (1D diamond chain).

Comparisons between data calculated by RLexact and data from articles revealed the

that the exchange constant from the study done by Rule best respresent the excitation

spectrum, while the exchange constants from Jeschke best represent the magnetization

curves.
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10 Appendix

(a) Spin = 6 Magnetization (b) Spin = 12 Magnetization

(c) Spin = 18 Magnetization (d) Spin = 24 Magnetization

(e) Spin = 30 Magnetization (f) Magnetization data from Kikuchi
[11]

Figure 29: Magnetization data calculated by RLexact with exchange constants from
Kikuchi and magnetization data from Kikuchi.
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(a) Spin = 6 Excitation spectrum (b) Spin = 12 Excitation spectrum

(c) Spin = 18 Excitation spectrum (d) Spin = 24 Excitation spectrum

(e) Spin = 30 Excitation spectrum

Figure 30: Excitation data calculated by RLexact with exchange constants from Kikuchi.
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(a) Spin = 6 Magnetization (b) Spin = 12 Magnetization

(c) Spin = 18 Magnetization (d) Spin = 24 Magnetization

(e) Spin = 30 Magnetization (f) Magnetization data from Jeschke
[7]

Figure 31: Magnetization data calculated by RLexact with exchange constants from
Jeschke and magnetization data from Jeschke.
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(a) Spin = 6 Excitation spectrum (b) Spin = 12 Excitation spectrum

(c) Spin = 18 Excitation spectrum (d) Spin = 24 Excitation spectrum

(e) Spin = 30 Excitation spectrum (f) Spin = 6 Excitation spectrum

Figure 32: Excitation data calculated by RLexact with exchange constants from Jeschke
and Excitation data from Jeschke.
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